
Marquette University
e-Publications@Marquette
Electrical and Computer Engineering Faculty
Research and Publications Engineering, College of

7-1-2016

Probabilistic Anomaly Detection in Natural Gas
Time Series Data
Hermine Nathalie Akouemo Kengmo Kenfack
Marquette University

Richard J. Povinelli
Marquette University, richard.povinelli@marquette.edu

Accepted version. International Journal of Forecasting, Vol. 32, No. 3 ( July/September 2016):
948-956. DOI. © 2015 International Institute of Forecasters. Published by Elsevier B.V. Used with
permission.
This is the author’s version of a work that was accepted for publication in International Journal of
Forecasting. Changes resulting from the publishing process, such as peer review, editing, corrections,
structural formatting, and other quality control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted for publication. A definitive version
was subsequently published in International Journal of Forecasting, Vol. 32, No. 3 ( July/September
2016): 948-956. DOI.

http://epublications.marquette.edu
http://epublications.marquette.edu/electric_fac
http://epublications.marquette.edu/electric_fac
http://epublications.marquette.edu/engineering
http://dx.doi.org/10.1016/j.ijforecast.2015.06.001
http://dx.doi.org/10.1016/j.ijforecast.2015.06.001


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

International Journal of Forecasting, Vol 32, No. 3 (July/September 2016): pg. 948-956. DOI. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

1 

 

 

 

Probabilistic Anomaly Detection in 

Natural Gas Time Series Data 

  

Hermine N. Akouemo 
Electrical and Computer Engineering, Marquette University 

Milwaukee, WI 

Richard J. Povinelli 
Electrical and Computer Engineering, Marquette University 

Milwaukee, WI 

 

 

 

 

Abstract: This paper introduces a probabilistic approach to anomaly 

detection, specifically in natural gas time series data. In the natural gas field, 

there are various types of anomalies, each of which is induced by a range of 

causes and sources. The causes of a set of anomalies are examined and 

categorized, and a Bayesian maximum likelihood classifier learns the temporal 

structures of known anomalies. Given previously unseen time series data, the 

system detects anomalies using a linear regression model with weather 

inputs, after which the anomalies are tested for false positives and classified 

using a Bayesian classifier. The method can also identify anomalies of an 

unknown origin. Thus, the likelihood of a data point being anomalous is given 

for anomalies of both known and unknown origins. This probabilistic anomaly 

detection method is tested on a reported natural gas consumption data set. 

Keywords: Data cleaning; Energy; Outlier detection; Linear regression; 

Bayesian classifier; Gaussian mixture models 
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1. Introduction 

Anomaly detection, which is the first step of the data cleaning 

process, improves the accuracy of forecasting models. Data sets are 

cleaned for the purpose of being used to train forecasting models. 

Training a forecasting model on time series that contain anomalous 

data usually results in an erroneous model, because the parameters 

and variance of the model are affected (Chang, Tiao, & Chen, 1988). 

There are various anomalies in historical natural gas time series, due 

to factors such as human reporting error, data processing error, failure 

of a natural gas delivery subsystem due to extreme weather, or faulty 

meter measurements. Examining natural gas time series manually for 

all causes of anomalies is a tedious task, and one that is infeasible for 

large data sets. Thus, there is a need for automated and accurate 

algorithms for anomaly detection. 

This paper proposes a two-stage method for the detection of 

anomalies. In the first stage, the probability of a data point being 

anomalous is determined, using a linear regression model derived from 

natural gas domain knowledge and a geometric probability distribution 

of the residuals. The second stage consists of training a Bayesian 

maximum likelihood classifier based on the types of anomalies 

identified at the first stage. For a test set, the classifier calculates the 

maximum likelihood of the data points given the prior classes, and 

uses the likelihood values to distinguish between false positives and 

true anomalies. If a data point is anomalous, the classifier is able to 

report the type of the anomaly. The contribution of the proposed 

method is its ability to incorporate domain knowledge in the 

techniques developed for the efficient detection of anomalies in natural 

gas time series. 

Previous work in anomaly detection using probabilistic and 

statistical methods is discussed in Section 2. Section 3 presents the 

types of anomalous data encountered in the natural gas domain. A 

detailed description of our method is presented in Section 4. The 

experiments and results are presented and analyzed in Section 5. 
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2. Previous work 

Anomalous data are data that we do not have (missing data), 

that we had and then lost (manual reporting error, bad query), or that 

deviate from the system expectations (natural gas consumption during 

outages due to extreme weather) (McCallum, 2012). Markou and 

Singh (2003) presented a survey of anomaly detection techniques, 

ranging from graphical methods such as box plots to more complex 

techniques such as neural networks. Statistical approaches to anomaly 

detection are based on the idea of modeling data using different 

distributions and looking at how probable it is that the data under test 

belong to these distributions. The method presented in this paper 

combines linear regressions and distribution functions for the detection 

of anomalies in natural gas time series, then uses Gaussian mixture 

models (GMM) for modeling training subsets that contain anomalous 

features (Barber, 2012). The likelihood of a test data point belonging 

to a prior subset is calculated using the GMM distributions, and the 

data point is classified. 

Regression analysis is a statistical method that is used widely 

for electricity and natural gas demand forecasting (Aras and Aras, 

2004, Hong, 2014, Hong et al., 2014, Hyndman and Fan, 2010, 

Lyness, 1984 and Nedellec et al., 2014). It has also been used in 

combination with a penalty function for outlier detection (Zou, Tseng, 

& Wang, 2014). The disadvantage of using a penalty function is that 

the design of the tuning parameters has to be precise, and is often 

quite subjective. Therefore, penalty function strategies do not always 

guarantee practical results. The advantage of linear regression is that, 

with the dependent variables being well defined, the technique is able 

to extract time series features (Magld, 2012). Lee and Fung (1997) 

showed that linear and nonlinear regressions can also be used for 

outlier detection, but they used a 5% upper and lower threshold limit 

for choosing outliers after fitting, which yielded many false positives 

for very large data sets. Linear regression has also been combined 

with clustering techniques for the detection of outliers (Adnan, Setan, 

& Mohamad, 2003). In this paper, linear regression is used for 

extracting weather features from the time series data and computing 

the residuals of the data. 
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Bouguessa (2012) proposed a probabilistic approach that uses 

the scores from existing outlier detection algorithms to discriminate 

automatically between outliers and the remaining points in the data 

set. Statistical approaches such as the GMM (Yamanishi, Takeuchi, & 

Williams, 2000), distance-based approaches such as kk-nearest 

neighbors (Ramaswamy, Rastogi, & Shim, 2000), and density-based 

approaches such as the Local Outlier Factor (LOF; see  Breunig, 

Kriegel, Ng, & Sander, 2000) are existing techniques that Bouguessa 

(2012) used for his ensemble model. Each technique provides a score 

for each observation, and the results are combined to decide whether 

the observation is an outlier or not. Yuen and Mu (2012) proposed a 

method that calculates the probability of a data point being an outlier 

by taking into account not only the optimal values of the parameters 

obtained by linear regression, but also the prediction error variance 

uncertainties. 

Gaussian mixture model approaches have also been used for 

outlier detection and classification. Tarassenko, Hayton, Cerneaz, and 

Brady (1995) studied the detection of masses in mammograms using 

Parzen windows and GMMs. The authors showed that GMMs do not 

work well when the number of training samples is very small, and that 

using Parzen windows yielded false positives. Gaussian mixture models 

were also used by Tax and Duin (1998) to reject outliers based on the 

data density distribution. They showed that the challenge when using 

GMMs is selecting the correct number of kernels. However, the 

approach developed by Povinelli, Johnson, Lindgren, Roberts, and Ye 

(2006) demonstrated that transforming the signal from a time domain 

into a phase space improves the GMM classifier. The approach also 

works well for small training samples and for multivariate data. 

Gaussian mixture models are a common descriptor of data, but the 

outliers need to be well defined. This is why standard methods such as 

linear regression and statistical hypothesis testing are used first for 

detecting the anomalies in a time series. 

3. Natural gas time series anomalies 

Understanding the sources of anomalies in natural gas time 

series data is important for their detection and classification, because 

the definition of false positives depends on the context. The time 
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series data in this paper are the reported natural gas consumption 

levels for residential and commercial (offices, schools, administrative 

buildings, and hospitals) customers. For these categories of customers, 

the possible sources of anomalous data include:  

• Missing data or missing components of aggregated data 

occur when there are no data values for a specific observation in 
a univariate data set or when there are no data values for a 
particular variable of a multivariate data set. 

• Electric power generation occurs when the natural gas load 
used for the generation of electric power is included in the 

residential or commercial customers’ consumption load. 
• Main breaks are unplanned events that interfere with the 

normal consumption of natural gas, such as a backhoe hitting a 

pipeline or heavy snow days. 
• Naïve disaggregation or a stuck meter occurs when a 

normally variable natural gas load does not vary across several 
meter reporting periods. 

• Negative natural gas consumption is typically the result of a 

system misconfiguration. A natural gas consumption can be zero 
but not negative. A negative consumption can be reported 

because different pieces of the system (pipelines, types of 
customers, or corrections) have been merged together 
mistakenly. 

• Human error yields unexpected data values as a result of a 
bad query or incorrect manual entry reporting. 

• Mismatched meter factors or mismatched units of 
aggregated data occur when the meter factor is switched 
during data collection (usually, the natural gas load for an 

operating area is composed of loads from various territories) 
without applying the adjustment factor to previous data (for 

example decatherms to therms). It also occurs when the units 
of subsets of the data are different, and the proper conversion is 
not applied when merging the data. 

• Outliers are data points that are dissimilar to the remaining 
points in the data set (Hawkins, 1980). If there is no correlation 

between natural gas consumption and the factors driving the 
consumption, and the cause is not identifiable, the data point is 

simply considered an outlier. In this paper, outliers refer to 
anomalies that do not fit into any of the cases defined above. 
 

These causes of anomalies are used to divide a training set into 

subsets. Each subset contains a specific type of anomalous feature, 

and is used to train a Bayesian maximum likelihood classifier. 

http://dx.doi.org/10.1016/j.ijforecast.2015.06.001
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4. Anomaly detection method 

This section presents the natural gas time series anomaly 

detection algorithm and the Bayesian maximum likelihood classifier 

developed for anomaly detection. Because the consumption of natural 

gas by residential and commercial customers is influenced by the 

weather, a linear regression model is used to extract weather features 

from the time series data. The residuals of the time series data form a 

data set that can be studied using distribution functions. 

4.1. Linear regression 

Any natural gas time series can be divided into three parts: a 

base load that does not depend on the temperature, but is related to 

everyday usages of natural gas, such as cooking, water heating, and 

drying clothes; and heating and cooling loads that vary with the 

temperature (Vitullo, Brown, Corliss, & Marx, 2009). 

Fig. 1 shows an example of the relationship between natural gas 

consumption and temperature for operating area 1. The explanatory 

variables for the linear regression model are weather-related inputs.  

The general linear regression model that is used to extract features 

and calculate residuals on the natural gas time series data sets in this 

paper is  

𝑦�̂� = 𝛽0 + 𝛽1HDDW𝑇𝑟𝑒𝑓𝐻
+ 𝛽2ΔHDDW + 𝛽3CDD𝑇𝑟𝑒𝑓𝐶

+ 𝛽4𝑦𝑡 − 1, 
(1) 

 

 

where 𝑇𝑟𝑒𝑓𝐻
and 𝑇𝑟𝑒𝑓𝐶

are the reference temperatures below or above 

which heating or cooling is needed, respectively (Beccali, Cellura, 

Brano, & Marvuglia, 2008). The reference temperatures usually vary 

by climatic regions. HDDW𝑇𝑟𝑒𝑓𝐻
and CDD𝑇𝑟𝑒𝑓𝐶

are the daily wind-

adjusted heating degree days and cooling degree days, calculated at 

reference temperatures 𝑇𝑟𝑒𝑓𝐻
and 𝑇𝑟𝑒𝑓𝐶

, respectively. ΔHDDW is the 

http://dx.doi.org/10.1016/j.ijforecast.2015.06.001
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difference in heating degree days between two consecutive days, and 

captures the temperature variation from one day to the next. If T is an 

average daily temperature,  

 

HDDW𝑇𝑟𝑒𝑓𝐻

= max(0, 𝑇𝑟𝑒𝑓𝐻
− 𝑇)

× (wind factor), 𝑎𝑛𝑑 CDD𝑇𝑟𝑒𝑓𝐶

= max(0, 𝑇 − 𝑇𝑟𝑒𝑓𝐶
). 

(2) 

 

After the coefficients of the linear regression have been calculated, 

they are used to compute the residuals of the data by taking the 

difference between the actual and estimated values. The natural gas 

time series anomaly detection algorithm is applied to the residuals to 

find any anomalies. 

4.2. Natural gas time series anomaly detection 

The linear regression model only extracts the weather 

dependency of the time series. Therefore, the residuals form a data 

set that can be modeled using probability distribution functions. The 

extrema (maximum and minimum) of the set of residuals are used to 

find anomalies. An extremum is an anomaly if its probability of 

belonging to the same distribution as the remaining points in the 

residual data set is less than the probability of committing a type I 

error at a specified level of significance, typically 1% (Akouemo & 

Povinelli, 2014). 

The data need to be imputed at each iteration of the anomaly 

detection process to reduce masking (Grané & Veiga, 2010). The 

estimated coefficients may be erroneous at the beginning of the 

process because it is uncertain whether the data set contains 

anomalies. After an anomaly has been identified, the linear regression 

model coefficients are re-calculated on cleaner data at each iteration of 

the algorithm. The algorithm stops when no more anomalies are 

http://dx.doi.org/10.1016/j.ijforecast.2015.06.001
http://epublications.marquette.edu/
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identified. The MATLAB-like pseudo-code of the natural gas time series 

anomaly detection algorithm is presented in Algorithm 1. 

The replacement values in this paper are calculated using the 

same linear regression model as is used for anomaly detection. 

However, the model only provides a naïve imputation of the 

anomalous data because it does not include the trends or seasonality 

components of the natural gas time series. The replacement values are 

sufficient for anomaly detection purposes, but complex forecasting 

models are more suitable for data imputation because they include the 

domain knowledge that is necessary for modeling the particularities of 

natural gas data sets or utility systems. 

After the anomalies have been detected, they are divided into 

subsets according to the types of anomalies, as defined in Section 3. 

Each type of anomaly constitutes an anomalous feature, and each 

subset is used to train the Bayesian maximum likelihood classifier. 

4.3. Bayesian maximum likelihood classifier 

A Bayesian maximum likelihood classifier is used to learn the 

anomalous features found in a training set using Algorithm 1. The 

features are used to test and classify unseen data points. A classifier is 

an algorithm which includes features as inputs and produces both a 

label and confidence values as outputs (Palaanen, 2004). The 

probability that a feature vector xx belongs to a class cici is 

p(ci|x)p(ci|x); this is often referred to as the a posteriori   probability, 

which is derived using the Bayes theorem. If xx is a feature vector and 

cici is the iith class, the probability p(ci|x)p(ci|x) is 

𝑝(𝑐𝑖|𝑥) =
𝑝(𝑥|𝑐𝑖)𝑝(𝑐𝑖)

𝑝(𝑥)
, 

(3) 

 

where p(x)p(x) is the unknown probability of the feature variables 

(𝑥 = {𝑥1, … , 𝑥𝑗 , … , 𝑥𝑛}), and does not depend on the class 𝑐𝑖. The 

prior of the iith class is p(ci). The prior is assumed to be equiprobable 

across all classes (p(ci)=p(c)). 
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Because p(x) and p(ci) are constants, they can be treated as 

scaling factors, and p(ci|x) becomes a non-normalized probability,  

p(ci|x)∝p(x|ci). 
(4) 

 

GMMs are used to model the density of the data belonging to 

each class. A GMM is a parametric probability distribution function that 

consists of a weighted sum of Gaussian densities. If the number of 

Gaussian mixtures chosen to represent a data set is M, the probability 

p(x|ci) is 

𝑝(𝑥|𝑐𝑖) = ∏ 𝑝(𝑥𝑗|𝑐𝑖)

𝑀

𝑗=1

, 

(5) 

 

where p(xj|ci) is the probability of the feature vectors in the jth 

mixture assuming the ith class. The GMM parameters are estimated 

using expectation maximization (EM). The estimation fits the 

distribution to the training features (Reynolds, 2008). If the GMM is 

used for modeling the data, the likelihood that a feature vector is from 

a label or class ci is  

 

𝑐�̂� = argmax 𝑝(𝑥|𝑐𝑖) = ∑ argmax 𝑝(𝑥𝑗|𝑐𝑖)

𝑗

. 

(6) 

The likelihood of a data feature is calculated for every class. The 

data feature belongs to the class that yields the maximum likelihood. 

Because time series data are not the outcomes of a random process, 

Bayesian techniques are difficult to apply to time series data. 

Therefore, the data are transformed from the time domain to a phase 

space in order to extract the multidimensional features of the data 

using a Reconstructed Phase Space (RPS) (Povinelli et al., 2006). A 
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RPS is a way of extracting the multidimensional features of the data 

that are embedded in a time series signal by studying the signal 

against delayed versions of itself (Sauer, Yorke, & Casdagli, 1991). 

The RPS is formed as  

𝑌 = [𝑦𝑘𝑦𝑘−𝜏 ⋯ 𝑦𝑘−(𝑑−1)𝜏] 

with  𝑘 = (1 + (𝑑 − 1)𝜏) ⋯ 𝑁, 
(7) 

 

where Y is the dimensional phase space vector of features, yk is the 

kth d-dimensional time series vector feature, τ is the time lag, d is the 

phase space dimension, and N is the number of features or 

observations in the time series. For the experiment presented in this 

paper, yk=(flowk,temperaturek). A RPS is equivalent in a topological 

sense to the original system (Sauer et al., 1991), and is therefore an 

effective mechanism for representing the data. 

The classifier is trained on RPS training features instead of time 

series features. Training a classifier is a supervised learning process, 

because the data are assumed to come from a specific class. The k-

means technique can be used for the efficient detection of the 

numbers of lags and mixtures necessary for representing a data set. In 

practice, it is also found that the Bayesian maximum likelihood 

classifier trained on phase space features works well for as few as two 

mixtures (Povinelli et al., 2006). 

We can be certain that a data point is anomalous if both the 

natural gas time series anomaly detection algorithm and the Bayesian 

maximum likelihood classifier detect and classify it as anomalous. The 

next section presents the experiments, the results, and an analysis of 

the results. 

5. Experiments and results 

The natural gas time series anomaly detection algorithm and the 

Bayesian maximum likelihood classifier are tested on a natural gas 

data set. The data set represents the daily reported natural gas 

consumption of operating area 2. The data set covers the period from 

http://dx.doi.org/10.1016/j.ijforecast.2015.06.001
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01 January 1996 to 31 August 2009, with a total of 4992 data points. 

The data are scaled so as to maintain confidentiality, but the scaling is 

done in such a manner that it preserves the time series characteristics. 

5.1. Anomaly detection results 

For this data set, the HDDW are calculated at both reference 

temperatures 55°F and 65°F, and the CDD are calculated at both 

reference temperatures 65°F and 75°F. Therefore, the linear 

regression model used for anomaly detection is a seven-parameter 

model. ΔHDDW is the difference between the mean HDDWs of two 

consecutive days:  

ΔHDDW=0.5[HDDW55+HDDW65]−0.5[(HDDW55)−1 

+(HDDW65)−1]. 
(8) 

Fig. 2 shows the results of Algorithm 1 for the natural gas data 

set of operating area 2. It depicts four types of natural gas anomalies: 

power generation (in the summer of 2001), negative flow values, main 

break (extreme high and low flow values in December 2006), and 

outliers (all other types of anomalies that are not recognized by 

domain knowledge). The data set is divided into a training set from 01 

January 1996 to 31 December 2008, and a test set from 01 January 

2009 to 31 August 2009, as depicted in Fig. 3. The training set is 

divided further into three subsets. The first subset, from 01 January 

1996 to 30 June 2001, corresponds to the portion of the data set 

where no anomalies were found. In the second subset, from 01 July 

2001 to 15 October 2001, all anomalies are due to power generation. 

The third subset, from 16 October 2001 to 31 December 2008, 

contains all other types of anomalies. The classifier is trained on each 

subset. Because no anomalies were found in the first subset, it is 

considered to represent the class of “clean” data. The classifier is also 

trained on the power generation anomalies set because there are 

enough samples. The main break phenomena in December 2006 

cannot be trained as a class because of the lack of training samples. 

Also, training on a class of only negative flow values is impossible 

because it yields non-positive semi-definite covariance matrices. 

Therefore, the third subset, representing the “outlier” class, contains 
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all of the other types of anomalies that have not been trained yet. The 

classifier is trained with one time lag and two Gaussian mixtures. Each 

data feature consists of the pair (flow, temperature). These “clean”, 

“power generation”, and “outlier” classes are used to test the last year 

of the data set.  

The anomaly detection results on the test set are presented in 

Fig. 4. The maximum likelihoods of the monthly subsets of the data 

are calculated, and the results are presented in Table 1. Table 2 

presents the maximum likelihoods of the anomalies found using the 

natural gas anomaly detection algorithm, labeled B to M. In addition, 

the maximum value of the time series data set, labeled A, is also 

classified. The point A is tested to show that the extremum of the time 

series data set is not necessarily an anomaly. Confusion matrices of 

the Bayesian maximum likelihood classifier results are also built and 

presented in Table 3 and Table 4. The maximum likelihoods measure 

how confident we are that a particular point is anomalous. Because the 

maximum likelihood is not a normalized probability, the output of the 

algorithm is a Boolean variable (0 or 1).  

Table 1 agrees with the data set of Fig. 4, with the exception of 

March 2009. In Table 1, January and February 2009 are clean data 

sets, while the data set from April to August 2009 contains some 

anomalous negative flow values. March 2009 is labeled “clean”, but its 

actual label according to Algorithm 1 was “outlier”. The classifier 

accuracy calculated on monthly subsets is 87.5%, as is shown in the 

confusion matrix of Table 3. 

Table 2 presents the anomalies identified and the maximum 

value of the test set that is tested for being a false positive, along with 

the values of the data points, their probabilities of being anomalous, 

and the Bayesian maximum likelihood classifier results. According to 

the output of Algorithm 1, points B to M are anomalous data points, 

and A is a clean data point. The classifier labels A and B as clean data 

points, and C to M as anomalous data points. The label output of B is 

in agreement with March 2009 being labeled a clean data set. Point A, 

while being the maximum value of the data set, is not classified as an 

anomaly. The probabilities are calculated at different iterations of the 

anomaly detection process. The actual labels are derived from a 
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comparison of the probabilities of the data points, and the level of 

significance is chosen to be 0.01. 

The confusion matrix for individual test data points is presented 

in Table 4, and the results yield an accuracy of 92.3%. Testing the 

Bayesian classifier on monthly subsets yields a low accuracy compared 

to testing individual data points because of the number of samples 

(eight monthly samples as opposed to 13 data points). We can be 

certain that a data point is anomalous if it is labeled anomalous by 

both the natural gas time series anomaly detection algorithm and the 

Bayesian maximum likelihood classifier. We conclude that points C to 

M are anomalous, while points A and B are not anomalous. 

5.2. Evaluation of forecasting improvement 

To evaluate the percentage improvement in the forecasting 

accuracy due to data cleaning, the original and cleaned data sets are 

each used to train the same forecasting model and calculate out-of-

sample root mean squared errors (RMSE) and mean average 

percentage errors (MAPE). The errors are calculated on the test set 

from 01 January 2009 to 31 August 2009 using Vitullo’s natural gas 

demand forecasting model (Vitullo et al., 2009)  

𝑦�̂� = 𝛽0 + 𝛽1HDDW𝑇𝑟𝑒𝑓𝐻
+ 𝛽2𝛥HDDW + 𝛽3CDD𝑇𝑟𝑒𝑓𝐶

+ 𝛽4 sin (
2𝜋𝐷𝑂𝑊

7
) + 𝛽5 cos (

2𝜋𝐷𝑂𝑊

7
) + 𝑓(𝑡). 

(9) 

 

 

The coefficients (βi,i={0,…,3}) are explained in Section 4.1. β4 and β5 
are used to model the variation in the natural gas demand by the day 

of the week (DOW). f(t) is used to model the effects of holidays and 

days around holidays on the natural gas demand. 

The replacement values for all anomalies found are calculated 

using the same linear regression model as is used for anomaly 

detection. The cleaned data set obtained is presented in Fig. 5.  
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The RMSEs and MAPEs calculated using both the original and 

clean data sets are presented in Table 5. Table 5 depicts the RMSEs 

and MAPEs both on average for all days in the test set and by month. 

The RMSEs and MAPEs calculated on the clean test set are smaller 

than those calculated on the original test set for all months. On 

average, the RMSEs computed on the test set using models trained on 

the clean data set are 37.5% smaller than those computed on the test 

set using models trained on the original data set. The MAPEs are also 

improved by 7.84%. The maximum observed improvement in RMSE, 

83.6%, is obtained for the month of July (due to cleaning of the data 

point J and the power generation subset shown in Fig. 3). The 

maximum observed improvements in MAPEs, 33.8%, 20.6%, and 

23.5%, are obtained for the months of May, June, and August, 

respectively. The high MAPE values are due primarily to the negative 

flow values that occur in the summer. 

The imputation model used in this case is a naïve model that 

does not include the particularities of natural gas time series, such as 

trends and seasonality components. Therefore, the use of robust 

forecasting models for data imputation could improve the forecasting 

accuracy further and reduce the errors. The data imputation models 

could be substituted easily in the natural gas time series anomaly 

detection algorithm. 

6. Conclusion 

This paper presents a two-stage method that combines two 

probabilistic anomaly detection approaches in order to identify and 

classify anomalies in historical natural gas time series data. First, a 

natural gas time series anomaly detection algorithm is used to identify 

anomalies; then a Bayesian maximum likelihood classifier is trained for 

each type of anomalous feature that has enough training samples. For 

each test data point, it is determined whether the point is anomalous, 

and its label is obtained using the classifier. We can be certain that a 

data point is anomalous if it is labeled anomalous by both the natural 

gas time series anomaly detection algorithm and the Bayesian 

maximum likelihood classifier. The techniques are applied to the daily 

reported natural gas consumption of a utility, and provide good 

results. The improvement in forecasting accuracy obtained by cleaning 
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the data, with replacement values calculated using a naïve imputation 

model, is 37.5% on average for RMSEs, and 7.84% for MAPEs. The 

percentage forecast accuracy could be improved further by using 

robust forecasting models for data imputation. The Bayesian maximum 

likelihood classifier could be improved by adding exogenous inputs to 

the reconstructed phase space, and also, the data sets could be 

normalized using surrogate data techniques, to overcome the lack of 

training samples for some types of anomalies. This method could also 

be extended to other fields such as electric energy, econometrics, or 

finance, if the exogenous factors of the time series data are known. 
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Fig. 1. The relationship between natural gas consumption and temperature for 
operating area 1. The red function captures the trend lines of the linear regression 

model for operating area 1, given by 𝑦𝑡 = 𝛽0 + 𝛽1HDD55 + 𝛽2HDD65 + 𝛽3CDD65. (For the 

interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Fig. 2. Anomaly detection result for the natural gas time series of operating area 2. 
The red dots represent the anomalies identified by the natural gas time series anomaly 
detection algorithm. (For the interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
 

 
Fig. 3. Anomaly detection results for the natural gas time series of operating area 2, 

depicting the set used to train the Bayesian classifier and the test set. (For the 
interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Fig. 4. Test set of operating area 2, from 01 January 2009 to 31 August 2009. The 
blue circles represent the anomalies identified by the natural gas time series anomaly 
detection algorithm. The red circle is the maximum value of the time series that is 
tested for being a false positive. The points are annotated with letters for ease of 
representation in Table 2. (For the interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
 

Table 1. Bayesian maximum likelihood classifier results on monthly subsets. 

Months 
Estimated classes 

 
Actual 

 Clean Outlier Power generation  

January 2009 1 0 0 Clean 

February 2009 1 0 0 Clean 

March 2009 1 0 0 Outlier 

April 2009 0 1 0 Outlier 

May 2009 0 1 0 Outlier 

June 2009 0 1 0 Outlier 

July 2009 0 1 0 Outlier 

August 2009 0 1 0 Outlier 

 

Table 2. Anomaly detection results for the test set of operating area 2. 

Points Flow values Probability Actual label 
Estimated classes 

 

    Clean Outlier Power generation 

A (25 Jan.) 509.74 1.0 Clean 1 0 0 

B (22 Mar.) 449.26 1.1×10−3 Outlier 1 0 0 

C (01 Apr.) −13.50 4.7×10−13 Outlier 0 1 0 

D (07 Apr.) −5.43 1.4×10−4 Outlier 0 1 0 

E (15 May) −2.93 6.3×10−3 Outlier 0 1 0 
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Points Flow values Probability Actual label 
Estimated classes 

 

    Clean Outlier Power generation 

F (27 May) −7.39 3.2×10−3 Outlier 0 1 0 

G (31 May) −1.75 9.4×10−3 Outlier 0 1 0 

H (10 Jun.) −5.48 4.1×10−3 Outlier 0 1 0 

I (23 Jun.) −8.13 6.3×10−4 Outlier 0 1 0 

J (22 Jul.) −636.56 3.4×10−102 Outlier 0 1 0 

K (09 Aug.) −8.29 1.2×10−5 Outlier 0 1 0 

L (11 Aug.) −3.24 8.2×10−3 Outlier 0 1 0 

M (14 Aug.) −3.52 8.3×10−4 Outlier 0 1 0 

 

Table 3. Confusion matrix of the Bayesian maximum likelihood results 

presented in Table 1. 

Actual 
Predicted 

 

 Clean Outlier Power generation 

Clean 2 0 0 

Outlier 1 5 0 

Power generation 0 0 0 

 

Table 4. Confusion matrix of the Bayesian maximum likelihood results 

presented in Table 2. 

Actual 
Predicted 

 

 Clean Outlier Power generation 

Clean 1 0 0 

Outlier 1 11 0 

Power generation 0 0 0 
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Fig. 5. Clean natural gas time series for operating area 2. 

 

Table 5. RMSEs and MAPEs for all days and by months, calculated on the test 

set of operating area 2. 

Months 
RMSE (Scaled DTh) 

 

MAPE (%) 

 

 Original Clean Original Clean 

All days 52.62 32.88 20.27 12.43 

January 2009 25.39 24.52 2.36 2.22 

February 2009 38.87 38.12 2.79 2.75 

March 2009 44.12 27.43 2.70 2.27 

April 2009 48.62 39.63 34.11 18.40 

May 2009 42.17 38.54 52.88 19.06 

June 2009 25.33 23.11 45.41 24.73 

July 2009 131.29 21.55 28.01 24.70 

August 2009 35.94 29.36 33.40 9.89 
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