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Studies using dogs provide an ideal solution to the gap in animal models for natural disease and 

translational medicine. This is evidenced by approximately 400 inherited disorders being characterized 

in domesticated dogs, most of which are relevant to humans. There are several hundred isolated 

populations of dogs (breeds) and each has a vastly reduced genetic variation compared with humans; 

this simplifies disease mapping and pharmacogenomics. Dogs age five- to eight-fold faster than do 
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humans, share environments with their owners, are usually kept until old age and receive a high level 

of health care. Farseeing investigators recognized this potential and, over the past decade, have 

developed the necessary tools and infrastructure to utilize this powerful model of human disease, 

including the sequencing of the dog genome in 2005. Here, we review the nascent convergence of 

genetic and translational canine models of spontaneous disease, focusing on cancer. 

The need for new models of complex disease 
The greatest challenge facing clinical scientists is an incomplete understanding of the genetic basis for 

complex human diseases [1]. Despite numerous technological advances in genetics, progress has been 

slow. This is owed, in part, to intricate gene–gene interactions and poorly understood environmental 

effects [2]. The identification of these interactions and environmental influences is difficult to dissect in 

humans because of the high level of genetic heterogeneity [3]. Most genome-wide association studies 

(GWAS) have only identified a small fraction of the genetic bases of complex diseases [4]. Yet, disease 

heritability is crucial to understanding disease risk, the effects of environment and lifestyle on disease 

development and response to treatment. 

Much of the research on human disease genetics relies on animal models. The most frequently used 

model, the mouse, has several advantages. Mice have short gestation times and are small, making their 

generation relatively rapid and inexpensive compared with other mammals. Moreover, technologies 

exist to manipulate the expression of genes in the entire organism or in selected cells or tissues [5]. 

However, mouse models of cancer have limitations. The most notable is that tumors arise 

spontaneously in humans, but must be induced in most mouse models. Whereas human disease is 

polygenic, genetic manipulations in mouse models often involve one or a few genes and/or 

environmental conditions that affect the expression of specific genes in an inbred mouse line with 

undetermined human relevance [3]. Mouse models of cancer in humans are thereby missing vast gene 

networks and interactions that are responsible for, or contribute to, disease in humans. Here, we 

discuss the advantages of tumor-bearing dogs as an alternative model for understanding the genetic 

bases of human disease [6], highlighting three cancer types as examples. 

Advantages of dog models 
Domesticated dogs (Canis lupus familiaris) are excellent models of human complex diseases for several 

reasons, including their easy accessibility and prominent status in diverse cultures. For instance, >73 

million dogs live in ∼40% of US households [7] and 54% of them are considered a ‘family member’ by 

their owners [8]. Over $40 billion is spent annually on dog health care [8], a level that is second only to 

humans in health care received [9]. That, combined with the shared environment of owners and dogs, 

can be exploited for epidemiological studies of diseases common to dogs and humans. 

Next to humans, domesticated dogs have the most phenotypic diversity and known naturally occurring 

diseases of all land mammals [10]. For example, the average weights of Chihuahuas and English 

Mastiffs differ by 65-fold. Dogs share ∼650 Mb of ancestral sequence in common with humans (which 

is absent in mice), and canine DNA and protein sequences are more similar to humans than are those 

of mice [11] (Figure 1a). The analysis of the 13 816 protein-coding genes with 1:1:1 orthology in 

humans, mice and dogs showed that the numbers of lineage-specific nonsynonymous substitutions 

(i.e. amino acid changing; KA) are 0.017, 0.038 and 0.021, respectively [11]. Thus, many aspects of 



human biology are presumably more relevant in dogs than they are in mice [12]. Approximately 400 

inherited diseases similar to those of humans are characterized in dogs, including complex disorders 

such as cancer, heart disease and neurological disorders 13, 14. Indeed, more than 40 naturally 

occurring canine diseases have mutations in a homologous human gene associated with a similar 

disease [15]. Additionally, depending on breed size, dogs have a five- to eight-fold accelerated aging 

process compared with humans [http://www.avma.org/animal_health/care_older_pet_faq.asp]. 

Moreover, dogs are kept as companion animals well into their old age 16, 17. The most recently 

available data (2006) shows that ∼45% of companion dogs were >6 years old [8], the human 

equivalent of ∼60–95. Thus, dog models hold great promise for accelerating the understanding of 

genetic and environmental contributions to human disease, particularly those that are chronic or 

associated with aging. 

 
Figure 1. Dog cancer genetics. (a) Protein sequence conservation in dogs. (i) Phylogenetic tree of the mammalian 
c-Met receptor. The branching pattern corresponds well with the organismal relationships. For example, the 
Boreoeutheria clade comprises two sister taxa that include primates, rodents, rabbits and a taxa including 
carnivorans and most hoofed animals. Although mouse and human c-Met branch together, the branch length of 
mouse c-Met shows that the protein sequence is more divergent than that of human and dog (scale bar shows 
amino acid changes per site). (ii) Dog proteins are more similar to those of humans than are mouse proteins. 
Phylogenetic treeing analysis of a composite of 10 cancer proteins branches human and dog proteins apart from 
mouse with a bootstrap value of 100. The following proteins were included: MYC, ERBB2, KIT, ret proto-
oncogene (RET), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), PTEN, RB1, CDKN2A, breast cancer 1, 
early onset (BRCA1) and p53. [Neighbor-joining trees shown (500-replicate bootstrap values); maximum 
parsimony topology is the same.] (b) Examples of breed-specific germline variation with potential cancer 
relevance. (i) Common missense variant in Rottweiler c-Met receptor. WebLogo analysis shows a close-up of the 
consensus amino acid sequence of c-Met from 23 mammals. Letter height corresponds to the frequency of a 
given amino acid at each position, with the highest letters signifying complete conservation. A total of 70% of 
Rottweilers have a missense variant at Gly 966, which is located in the extracellular region and could thereby 

affect ligand binding or receptor signaling [70]. (ii) More than 60% of Rottweilers have a 273 kb copy number 
variant (CNV) in an intron of CSMD1, but it has not been observed in other breeds (UCSC Browser; human gene 

transcribed right to left) [71]. (iii) Close-up of one of several noncoding conserved elements within 
the CSMD1 CNV (Vista Browser, conservation with human >60% shown by red coloring). The most conserved 
region within this area contains three candidate binding sites for the tumor suppressor transcription factor E2A 

(another conserved element contains p53-binding sites [71]). The conservation (which is absent in chicken) is 
reduced in the mouse in comparison to more distantly related mammals such as the horse and dog. (c) Somatic 
genome alterations in canine cancer. Kisseberth et al. isolated the OSW T-cell lymphoma cell line and identified 

several genomic alterations [72]. A single two-copy loss was found that affects the CDKN2A tumor suppressor 
gene. The subsequent analysis of OSW by high-resolution tiling oligonucleotide array CGH revealed many 



additional alterations, including focal two-copy deletions affecting just a single gene [71]. (i) The whole genome 

display of the CGH analysis of OSW [71]. The midline shows a 1:1 DNA ratio to the reference genome of a Boxer. 
Deletion CNVs are segments below the midline and gains are above the midline (log 2 scale). ‘Un’ denotes 
unmapped contigs and is highly enriched for repetitive sequences; the Y chromosome is absent from the 
canFam2 genome assembly. (ii, iii) Close-up of the CGH analysis of chromosomes 11 and 22. Both chromosomes 
have two-copy microdeletions. One confirms the complete deletion of the tumor suppressor p16/CDKN2A. The 

other spans a single active gene SLITRTK1, which was previously implicated in malignant hematopoiesis [73]. 
This illustrates how dogs can be used as translational models of known human cancer genetics, as well as for the 
discovery of novel genes in the same genetic pathways. (d) Second generation genotyping technology allows the 
integration of SNP and CNV maps. CNVs from two Greyhounds are shown. This 170 k oligonucleotide array 
enables simultaneous SNP genotyping and DNA copy number determination (Illumina CanineHD). For each pair, 
the top window (i) shows DNA copy number as log2R ratios, with the midline generally corresponding to a copy 
number of two. The bottom windows (ii) show allele frequencies. A copy number gain is detected as an upward 
shift in the logR ratio and as a shift from B allele ratios of 1:1 (left and right segments) to 1:2 and 2:1 allele ratios 
(center segment). A copy number loss is detected as a downward shift in logR ratio and as a shift from allele 
ratios of 1:1 (left and right segments) to an allele ratio of 1:0 (or loss of heterozygosity; center). 

 

The greatest advantage of dog models is the evolutionary history of canines, which has involved at 

least two severe population bottlenecks [14]. The first occurred when dogs were domesticated from 

wolves ∼15 000–40 000 years ago [18]. The second was most pronounced ∼200 years ago when most 

dog breeds were created by the selection of morphological and behavioral traits. Today, there are 

∼400 isolated populations or breeds. Breed creation has inadvertently selected many ‘founder’ 

mutations that are associated with specific traits and diseases; this translates into reduced disease and 

genetic heterogeneity, consistent with the fact that most breeds are predisposed to a distinct set of 

diseases. Because linkage disequilibrium is up to 100-fold greater in dogs than in humans, single breeds 

are powerful subjects for broad genetic mapping [14]. By contrast, related breeds that share a trait are 

powerful subjects for fine mapping. This advantage is illustrated by the recent analysis of 

polyneuropathy with juvenile onset in dogs, which is similar to human Charcot–Marie–Tooth (CMT) 

syndrome [19]. The comparison of seven affected and 17 related unaffected control Greyhounds 

identified a 19.5 Mb region that was homozygous in the affected dogs, and contained a 10 bp deletion 

in N-myc downstream regulated 1 (NDRG1), orthologous to a known human CMT gene. Pedigree 

information and the extended homozygosity suggest that the mutation arose in a popular sire in 1968. 

Now the disease can be eradicated from the breed through selective breeding, and the dog model can 

be used to better understand and treat human CMT [19]. Additionally, dogs might provide clues about 

the ‘missing heritability’ of human complex genetics. Recently, a group of 300 investigators performed 

a meta-analysis of GWAS (an approach using single nucleotide polymorphism (SNP) markers across the 

entire genomes of many people to find genetic variations associated with a particular disease) of 

180 000 individuals characterized for height (known to be 80% heritable) [20]. They identified 180 loci 

that together explain 10% of height heritability. Similarly, Boyko et al. studied 57 quantitative 

morphological traits in 915 dogs that included samples from 80 breeds; traits included body size and 

external dimensions, and cranial/dental/long bone size and shape [21]. In contrast to human studies, 

they found that one to three quantitative trait loci explain the majority of phenotypic variation for 

most of the dog traits examined. The question now is whether canine complex diseases will turn out to 

have a similarly simplified genetic architecture. 



Cancer development in dogs 
Dogs are exceptional models of cancer because they naturally develop the same cancers as do 

humans [22]. Indeed, dog tumors are histologically similar to human tumors and respond similarly to 

conventional therapies [6]. Although disease course is reported to be more aggressive in dogs than in 

humans for some cancer types [6], it is not clear whether dog cancer is generally more aggressive than 

is human cancer. This issue is complicated because dog cancers are not treated as aggressively as 

human cancers and, therefore, they result in shorter survival times and faster evaluations of outcomes. 

Moreover, disease-bearing dogs tend to present for treatment at later stages than do humans. 

Regardless, the significantly shorter duration time of canine clinical trials is a major 

advantage [6] (Figure 2). The disease-free time interval in dogs treated for cancer is 18 months 

compared with the >7 years needed to assess treatment outcomes in humans [6]. Additionally, many 

histological types of cancer are associated with similar genetic alterations in humans and dogs. For 

instance, the statistical analysis of genomic alterations in human and dog colorectal tumors showed 

that samples were clustered according to stage, origin and instability status across species [23]. 

Strikingly, a cluster analysis of genome regions affected by DNA copy number alterations showed a 

branching together of human and dog tumors according to colorectal cancer subtypes (vs. 

species) [23]. This suggests that the same genetic pathways are affected in colorectal tumorigenesis in 

both species. By contrast, species-specific alterations tended to localize to evolutionarily unstable 

genome regions. These observations hint that the alterations common to both species are more likely 

to cause cancer than are those found in only one (i.e. the latter could be irrelevant species-specific 

mutation hotspots). In summary, dogs are useful in multiple approaches to cancer investigation [24]: 

breed-specific risk can be used to discover disease pathways; human cancer pathways can be tested 

for roles, and targeted for treatment, in canine disease; and canine somatic mutations and genome 

alterations can be used to narrow down human mutations (Figure 1b–d). Below we provide three 

examples of canine–human comparative oncology. 

 
Figure 2. An example of the clinical relevance of dogs for cancer treatments. Canines are increasingly being used 
in clinical cancer drug trials to determine the efficacy of treatment given how closely many of the cancers they 
develop recapitulate the human cancer. (a) A picture of a Boston Terrier, a breed predisposed to the 
development of mast cell tumors. (b) London et al. conducted a clinical trial of an oral receptor tyrosine kinase 
inhibitor Palladia on dogs with recurrent mast cell tumors. Shown here is a Kaplan–Meier survival analysis 
demonstrating time-to-tumor progression in placebo-treated and Palladia-treated dogs with mast cell 

tumors [74]. (c) A breakdown of the clinical trial of Palladia, including the demonstrated advantages of dogs as 

models of pharmacologic cancer intervention. Reproduced, with permission, from [74]. 
 



Soft tissue sarcomas (STS) 
STS comprise 1% of all newly diagnosed cancer types in humans [25] and represent a heterogeneous 

group of mesenchymal neoplasms that demonstrate a high degree of variation in clinical presentation 

and cellular morphology [26]. These genetically complex cancers include angiosarcomas 

(hemangiosarcomas in dogs), fibrosarcomas and histiocytomas. Recent advances in 

immunohistochemistry, cytogenetics and molecular genetic analysis have allowed a clinically relevant 

division of STS to improve diagnosis and treatment [27]. Based on clinical and biological variation 

among these neoplasms, STS can be broadly dichotomized into two groups. One is characterized by 

specific, balanced chromosomal translocations, whereas the other typically shows more extensive 

chromosomal rearrangements leading to recurrent, but nonspecific, chromosomal gains and 

losses [27]. Owing to their complex nature, the specific cells from which most of this group of cancers 

develop remain largely unknown. Although some strains of mice have developed spontaneous STS, 

rodent models generally require an induction of STS [28]. By contrast, dogs are an excellent model of 

STS because they have similar tumor genetic complexity to that of humans [29]. For instance, two 

poorly differentiated fibrosarcomas taken from Labrador Retrievers had large chromosomal 

rearrangements, amplifications and deletions similar to those observed in human fibrosarcomas [30]. 

Notably, these fibrosarcomas had a loss of heterozygosity affecting the cyclin-dependent kinase family 

2A and 2B (CDKN2A/CDKN2B). Given that deletions of CDKN2A and CDKN2B have been reported in 

other cancer types, including STS in humans, this offers a novel target for discovering common 

pathways and genes affected in both dogs and humans that affects the development or progression of 

STS [29]. 

Another advantage of using canines for studying STS is breed predispositions to specific types of STS, 

including increased incidences in Flat-coated Retrievers and Rhodesian Ridgebacks [13]. For example, 

hemangiosarcomas are relatively common in dogs, accounting for ∼5–7% of all observed tumors [31]. 

The dogs at greatest risk for hemangiosarcomas are Golden Retrievers (GRs), German Shepherds and 

Boxers [32]. One group recently compared gene expression profiles in hemangiosarcoma tumors from 

multiple dog breeds [22]. They found that the GR was unique in its overexpression of vascular 

endothelial growth factor 1 (VEGF1) compared with other breeds, whereas VEGF2 was more highly 

expressed in the other breeds compared with the GR. When VEGF2 expression was blocked in 

hemangiosarcoma-derived tumor cell lines, the rate of cell growth slowed – except in cell lines derived 

from GR tumors. This finding implies that the unique genetic background of the GR influenced the 

susceptibility of this breed to the development of hemangiosarcomas, suggesting that canine tumors 

can be used to understand how genetic background can influence the susceptibility of an individual to 

non-inherited cancers. Clinical trials involving tyrosine kinase inhibitor treatment of STS found that the 

most effective (e.g. Sorafenib) also targeted all VEGF isoforms [33]. Performing clinical trials on 

pedigree dogs, such as GRs, could provide novel information regarding genetic background effects on 

tumor progression. Thus, given the increased incidence of STS in dogs, the diversity of naturally 

occurring ‘complex’ and ‘simple’ sarcoma similarity in humans and dogs and the availability of different 

genetic backgrounds across breeds for clinical therapy testing, the canine model is more relevant than 

are other animal models for direct human STS applications. 



Osteosarcoma (OSA) 
In humans, the most commonly diagnosed primary malignant tumor of the bone is OSA. It is the third 

most frequent cause of cancer in adolescents and represents over 56% of all bone tumors. The 

prognosis for patients with metastatic OSA is poor, with only 20% surviving event-free for 5 years post-

diagnosis [34] and >30% of patients failing to respond to chemotherapy [35]. Approximately 10 000 

dogs are diagnosed with OSA yearly in the USA [36] compared with 2650 new cases of human primary 

bone cancer (including OSA, Ewing sarcoma, malignant fibrous histiocytoma and 

chondrosarcoma; http://www.cancer.gov/cancertopics/types/bone/). Because there is no consistent 

method for reporting cancer in dogs, we estimate OSA incidence is at least 13.9/100 000 8, 37 as 

opposed to the actual incidence of 1.02/100 000 in humans (across all ages) [38]. In both humans and 

dogs, OSA has a bimodal age distribution and the main cause of death is pulmonary metastasis. It 

accounts for 85% of malignancies originating in the bone [39] in large and giant dog breeds [40], which 

have an OSA risk 61 times higher than all breeds [32]. The canine disease is much more aggressive than 

the human disease, with surgical treatment alone producing a 5% survival rate [36]. The same 

treatments for OSA are used in both humans and dogs [41]. Dogs develop OSA at similar sites as do 

humans and both have similar histologies and responses to treatment 36, 42. Indeed, dogs have been a 

valuable model of OSA since they first participated in clinical trials pioneering limb salvage techniques 

that are now used in humans [43]. 

In addition to the similarity of tumor biological behavior of human and dog OSA, recent studies have 

identified parallel genetic features [44]. Both human and canine OSA have a 75% aneuploid DNA index, 

and both share similar genetic alterations [42]. Moreover, many candidate genes implicated in 

pediatric OSA have also been implicated in the canine disease: phosphatase and tensin homolog 

(PTEN), retinoblastoma 1 (RB1), ezrin (EZR), met proto-oncogene [hepatocyte growth factor (HGF) 

receptor; MET], v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2) and tumor protein 

53 (TP53) [45]. The commonly affected p53 tumor suppressor pathway has similar alterations in human 

and canine OSA [46]. Because human TP53 is more similar to that of dogs than to that of mice [47], and 

because mutations occur naturally in dogs, the canine OSA model is presumably more relevant to 

humans. Additionally, recent work in dogs has focused on the differential OSA tumor expressions of 

genes associated with short- and long-term survival [48]. In experiments using cDNA microarrays, 

investigators found the deregulated expression of the following signaling pathways that were 

previously reported in human OSA: Wnt, chemokine/cytokine, apoptosis signaling, interleukin and 

Ras [48]. The coexpression of HGF and the proto-oncogenic receptor c-Met are implicated in growth, 

invasion and metastasis in human OSA. Although they are more frequently overexpressed in human 

OSA, another study found the coexpression of HGF and c-Met in all 59 OSA canine tumors studied, with 

the overexpression of both present in 24% of cases [49]. Other investigators have identified two genes, 

interleukin 8 (IL8) and solute carrier family member 3 (SLC1A3), that were uniformly expressed in all 

canine OSA tumors, but not in all human pediatric OSA tumors. However, pediatric patients who did 

overexpress IL8 and SLC1A3 had poorer outcomes then those who did not [50]. Yet another gene 

expression study of canine OSA tumors identified 10 significantly differentiated pathways between 

responders to treatment and nonresponders [51]. These pathways (including cAMP signaling, 

chemokines and adhesion and sonic hedgehog and parathyroid hormone signaling pathways in bone 

and cartilage development) are also disrupted in human cancers. These various findings suggest that 



alterations in similar pathways occur in human and canine OSA, but that species-specific genetic 

changes might account for the overall disparity in incidence and aggressiveness. Related to that, 

Phillips et al. used a whole genome linkage approach to map OSA segregating in a four-generation 

pedigree of Scottish Deerhounds [52]. They found evidence of linkage (Zmax=5.766) consistent with a 

dominant OSA mutation in a 4.5 Mb region of chromosome 34q16.2–q17.1 (syntenic to human 3q26). 

Because OSA is relatively rare and most cases are sporadic in humans, inherited forms and different 

risks across dog breeds offer a great opportunity to identify pathogenetic pathways. 

OSA tumors in dogs and humans also share DNA structural changes. Analyzing 38 OSA tumors from 29 

Rottweilers and nine GRs, a recent study demonstrated that, as with its human counterpart, dog OSA 

has a tendency toward highly complex and chaotic karyotypes [53]. These comprise structural and 

numerical aberrations, including gene dosage imbalances of known oncogenes and tumor suppressors. 

The most frequently observed genome alteration was an amplification affecting both 

the MYC and KIT (c-KIT) oncogenes. This is consistent with observations of genome alterations in 

human OSA that are predictive of clinical outcome. Notably, KIT was recently proposed as a novel 

therapeutic target for pediatric OSA [54]. This supports not only the genetic relevance of the canine 

model, but also the clinical utility of including dogs in OSA clinical trials. Thus, the canine OSA model 

recapitulates the human cancer and, because OSA occurs 20 times more often in dogs than in 

humans [42], it provides an unparalleled opportunity for identifying key cellular pathways in this 

cancer [12]. 

Lymphomas 
The group of cancers affecting the lymph tissue is collectively known as lymphomas. Lymphomas represent ∼5% 
of all human cancers in the US and account yearly for treating totaling $4.6 billion 

(http://www.cancer.gov/aboutnci/servingpeople/snapshots/lymphoma.pdf). One specific class, namely 
non-Hodgkin's lymphoma (NHL), occurs in B- or T-cells, with >65 000 new cases reported in 2009 (for types of 

NHL, see http://www.cancer.gov/cancertopics/types/non-hodgkins-lymphoma). Notably, the incidence of 

NHL is increasing but the etiology remains obscure [55]. Thus, an alternative model of lymphoma is needed to 
elucidate the causes and identify clinically meaningful cancer biology. Dogs and humans have similar tumor 
biologies, tumor biological behaviors and genetic aberrations. The incidence of lymphoma in humans and dogs is 

similar [56]: 15.5–29.9 and 15–30 [57] per 100 000, respectively. The most common type of NHL is the same in 

both humans and dogs – diffuse large B-cell – and the same chemotherapy agents are used to treat it [55]. An 
additional advantage of the dog model is the increased prevalence of lymphoma within specific dog breeds. 
Lymphoma is the most common life-threatening cancer in all dogs, accounting for 24% of all canine cancers 

(http://www.akcchf.org/pdfs/2009FundingRequest.pdf). Approximately one in four Boxers and one in eight 

GRs develop lymphomas [32]. Additionally, there is a breed-specific distribution of B-cell and T-cell 

lymphomas [58] (Figure 3), whereas an excess incidence of T-cell lymphomas was noted in 10 breeds, the most 
striking occurring (in order of observed frequency) in Irish Wolfhounds, Siberian Huskies and Shih Tzus. By 
contrast, the breeds with an excessive occurrence of B-cell lymphomas were Cocker Spaniels and Basset Hounds. 
A second study conducted in Norway grouped all types of lymphomas and identified an excessive occurrence of 

lymphomas in specific breeds, lending credence to a breed-specific risk for lymphoma development [59]. They 
found the relative risk of lymphoma was highest in the Boxer and Flat-coated Retriever. More recently, a study 
examining records from the Veterinary Medical Database selected cases with an unspecified diagnosis of 
lymphoma type, giant follicular lymphoma and lymphosarcoma and used controls with any diagnosis other than 

lymphoma [60]. This study also identified a breed-specific risk for lymphoma with the highest breeds including 
Bullmastiff [odds ratio (OR) 4.83 vs. control], Boxer [OR 4.05 vs. control] and Bernese Mountain dog [OR 3.64 vs. 
control]. Notably, although the former and latter studies examined different subsets of lymphomas, they 



included many of the same breeds and had similar findings. For instance, the Irish Wolfhound had the highest 

rate of T-cell lymphoma in the Modiano et al. study [58], and also had an OR of 3.23 for lymphoma compared 

with other dogs in the Villamil et al. study [60]. The underlying cytogenetic basis of lymphoma seems to be 
shared in humans and dogs. The examination of three canine hematological cancers, including Burkitt lymphoma 

and small lymphocytic lymphoma [61], showed that these canine cancers shared cytogenetic abnormalities with 
those characteristic of their human counterparts. This suggests that humans and dogs share common pathways 

or an ancestrally retained pathogenetic basis for lymphoma [61]. Consequently, by comparing the dog genome 
with the human genome, relevant genetic aberrations can be identified. 

 
Figure 3. Prevalence of B- and T-cell lymphomas in dog breeds. A varying excess of T- and B-cell lymphomas, in a 
breed-specific manner, has been noted. Presented here is the observed percentage of T- vs. B-cell lymphomas 
by breed: Irish Wolfhounds (100:0 Siberian Huskies (88.9:11.1), Shih Tzus (81:19), Airedale Terriers (80:20), 
Cavalier King Charles Spaniels (80:20) and Yorkshire Terriers (80:20). By contrast, the breeds with an excessive 
occurrence of B-cell compared with T-cell lymphomas were Cocker Spaniels (93.2:6.8) and Basset Hounds 

(94.4:5.6) [58]. Photo sources 

follow: http://www.dublinirishfestival.org/animals/irishwolfhound.php; http://blogneffy.blogspot.com/
2010/06/wanted-shih-tzu-breeders-in-davao-
city.html; http://sentinelkennels.com/images/airedale.jpg; http://www.justdogbreeds.com/images/bre
eds/cavalier-king-charles-spaniel.jpg; http://www.petsflick.com/images/yorkshire-
terrier.jpg; http://tidyyourdog.com/wp-content/uploads/2009/04/siberian-
husky.jpg; http://www.petside.com/breeds/chinese-shar-
pei.php; http://www.fordogtrainers.com/ProductImages/dog-breeds-muzzles/Australian-Shepherd-
muzzle-Australian-
Shepherd.jpg; http://www.breederretriever.com/photopost/pindex/516/; http://retrieverman.files.wo
rdpress.com/2009/01/white-golden-retriever-
wikipedia.jpg; http://www.dogtastic.org/dogtastic/images/BreedPics/cocker%20spaniel.jpg; http://a1.
cdnsters.com/static/images/dogster/breeds/basset_hound.jpg. 

 

Finally, the relevance of dogs as a lymphoma model is supported by use in clinical trials. Given that 

dogs develop spontaneous B-cell NHL and share many characteristics in common with human B-cell 

NHL [such as diagnostic criteria and response to a chemotherapy-based regimen that includes 

cyclophosphamide, doxorubicin, vincristine and prednisone (commonly referred to as CHOP 

chemotherapy)], dogs were recently enrolled in a clinical trial of a selective and irreversible Bruton 

tyrosine kinase (Btk) inhibitor PCI-32765, which blocks B-cell activation [62]. The activation of the B-cell 

antigen receptor signaling pathway contributes to the initiation and maintenance of B-cells [62]. This 

clinical trial research began when the same group described the synthesis of a series of Btk inhibitors 

that bind covalently to a cysteine residue, leading to the potent and irreversible inhibition of Btk 

enzymatic activity. In that study, after the additional analysis of this agent in both cell lines and mouse 

models, they initiated a canine clinical trial. Although the clinical trial is ongoing, eight dogs have been 

treated, with three demonstrating stable disease and three with partial responses including one dog 

with a 77% decrease in tumor size (this drug is now undergoing human clinical development in patients 



with B-cell malignancies). Finally, a recent pilot study used antihuman leukocyte antigen (HLA)-DR 

monoclonal antibody (mAb) as a treatment for dogs with lymphomas [63]. Preliminary results have 

demonstrated that humanized IgG4 anti-HLA-DR, currently under evaluation preclinically for human 

trials, also bound malignant canine lymphocytes. These findings provide justification for using dogs 

with lymphomas in the safety and efficacy evaluations of therapy for both veterinary and human 

purposes [63] (Figure 4). 

 
Figure 4. Translational potential of tumor-bearing dogs. At the bottom is the typical course of human drug R&D. 

There is no established paradigm for drug R&D in dogs and other companion animals [6]. Although our 
schematic mirrors the same process in pets, most drugs used on patient animals are taken from human drug 
development or are approved human drugs used off-label. Indeed, few regulations exist for phase I/II/III clinical 
trials before drugs are used in pets. 

 

Potential utility of dogs in translational medicine 
The naturally occurring relevance of the canine model to cancer in humans can be exploited to 

generate new treatments relatively quickly (Figure 4). Whereas there are strict FDA regulations 

concerning treatments to be used and commercialized, as well as for clinical trials in humans, there are 

fewer regulations for phase I/II/III clinical trials before drug use in 

pets [64] (http://prsinfo.clinicaltrials.gov). Rather, it is left to the discretion of the owner, who could 

approve the use of investigational therapeutics before conventional treatments. Several trends in drug 

development suggest the increased use of dogs as translational models. Two of these are the rising 

proportion of biological vs. chemical compounds and the growing focus on targeting 

genetic/biochemical pathways (or disease subtypes) vs. broad diseases or types of cancer. Here, we 

propose that dogs are ideal patients in which to develop novel therapeutics. Several facts indicate that 

using dogs in translational medicine can hugely accelerate drug development: reduced regulatory 

guidelines, vastly diminished and soon-to-be fully defined genetic variation within breeds (but similar 

levels of variation occur across all breeds as with humans), reduced disease heterogeneity (i.e. breed-

specific risks of diseases are often associated with a single founder mutation) and accelerated 

aging/disease progression compared with humans. These genetic benefits translate into faster 

progress at every stage (e.g. identifying disease mutations in discovery, identifying biomarkers and 

endpoints in clinical trials and using pharmacogenetics from preclinical research to postapproval 

studies). Indeed, dogs have been instrumental in the rapid development of biological and biological-

like therapeutics, including gene therapies (e.g. for specific inherited forms of muscular and retinal 

dystrophies [65]) and antisense morpholino oligonucleotides (e.g. to alter mRNA splicing and avert the 

nonsense-mediated decay of dystrophin [66]). However, we believe dog patients are greatly 

underutilized in the development of therapeutic interventions. Drug development is difficult and risky, 



with the average drug costing approximately $800 million to develop. One of the most challenging 

go/no go decision points is determining whether a therapeutic agent is effective in humans. This is 

established by a small clinical study of select subjects that might respond to therapy. Dog breeds with 

known disease mutations are ideal lead-ins to such studies. Depending on the disease, such proof-of-

concept studies could be robustly performed in even fewer than 10 subjects and at a pace proportional 

to the accelerated disease progression. Such studies would establish not only efficacy, 

pharmacokinetics/dynamics and toxicity, but also dosing, biomarkers/endpoints and adverse effects. 

This could dramatically reduce the failure rate of human proof-of-concept studies, and thereby save 

time and costs. 

Concluding remarks 
Dogs are uniquely suited as animal models for complex human diseases because of their phenotypic 

diversities and the similarity to human conditions of their naturally occurring diseases. The 

evolutionary histories of dogs, their positions as a family member in many households and the high 

levels of health care they receive offer tremendous opportunities. That, combined with recently 

developed genetic resources, makes dogs outstanding models for the study of known genetic 

pathways, discovery of genetic and environmental contributions to disease and translational studies in 

cancer risk, prevention and treatments 6, 14. The full utilization of canine models of cancer will require 

expertise in basic science, translation and direct clinical relevance. This will necessitate large 

collaborations across almost all aspects of veterinary and human medicine including molecular biology 

and genetics, epidemiology, pharmacology, bioinformatics, statistics and engineering. Developing 

these pipelines now will speed potential therapeutic outcomes. Although this review has focused on 

the relevance of the dog as a model for research in cancer genetics, biomedical research has long 

included canine models of numerous other diseases and their treatments [14]. For example, dogs are 

also increasingly used in behavioral research, including learning [67], social cognition [68] and the 

effects of diet and behavior enrichment on executive functioning [69]. The increased appreciation of 

the unique and comparative value of the dog as a model for diverse human diseases should accelerate 

research, leading to new treatments and improved health care for both humans and our best friends. 

Acknowledgments 
We thank C.A. London for critically reading the manuscript, and W.C. Kisseberth and C.G. Couto for 

providing their veterinary clinical expertise. CEA is supported by R210602710 from NIH/NIHGR and 

funding from The Research Institute at Nationwide Children's Hospital. JLR is supported by a fellowship 

award F31NR011559 from NIH/NINR. 

References 
1 E.S. Lander, N.J. Schork. Genetic dissection of complex traits. Science, 265 (1994), pp. 2037-2048 

2 K. Strauch, et al. How to model a complex trait. 1. General considerations and suggestions. Hum. 
Hered., 55 (2003), pp. 202-210 

3 E.K. Karlsson, K. Lindblad-Toh. Leader of the pack: gene mapping in dogs and other model organisms. Nat. 
Rev. Genet., 9 (2008), pp. 713-725 

4 T.A. Manolio, et al. Finding the missing heritability of complex diseases. Nature, 461 (2009), pp. 747-753 



5 Y. Gondo, et al. Next-generation gene targeting in the mouse for functional genomics. BMB Rep., 42 (2009), 
p. 315-323 

6 M. Paoloni, C. Khanna. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. 
Cancer, 8 (2008), pp. 147-156 

7 APPA National Pet Owners Survey (2005). American Pet Products Manufacturers Association (APPMA). 

8 US pet ownership & demographics sourcebook. (2007). American Veterinary Medical Association. 

9 D.F. Patterson. Companion animal medicine in the age of medical genetics. J. Vet. Intern. Med., 14 (2000), 
pp. 1-9 

10 M.P. Starkey, et al. Dogs really are man's best friend – canine genomics has applications in veterinary and 
human medicine! Brief Funct. Genomic Proteomic, 4 (2005), pp. 112-128 

11 K. Lindblad-Toh, et al. Genome sequence, comparative analysis and haplotype structure of the domestic 
dog. Nature, 438 (2005), pp. 803-819 

12 C. Khanna, et al. The dog as a cancer model. Nat. Biotechnol., 24 (2006), pp. 1065-1066 

13 D.R. Sargan. IDID: inherited diseases in dogs: web-based information for canine inherited disease genetics. 
Mamm. Genome, 15 (2004), pp. 503-506 

14 H.G. Parker, et al. Man's best friend becomes biology's best in show: genome analyses in the domestic dog. 
Annu. Rev. Genet., 44 (2010), pp. 309-336 

15 E.A. Ostrander, et al. Canine genetics comes of age. Trends Genet., 16 (2000), pp. 117-124 

16 B.J. Cummings, et al. The canine as an animal model of human aging and dementia. Neurobiol. 
Aging, 17 (1996), pp. 259-268 

17 B.N. Bonnett, A. Egenvall. Age patterns of disease and death in insured Swedish dogs, cats and horses. J. 
Comp. Pathol., 142 (Suppl. 1) (2010), pp. S33-38 

18 M. Germonpré, et al. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: 
osteometry, ancient DNA and stable isotopes. J. Archaeological Sci., 36 (2009), pp. 473-490 

19 C. Drogemuller, et al. A deletion in the N-myc downstream regulated gene 1 (NDRG1) gene in Greyhounds 
with polyneuropathy. PLoS ONE, 5 (2010), p. e11258 

20 H. Lango Allen, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human 
height. Nature, 467 (2010), pp. 832-838 

21 A.R. Boyko, et al. A simple genetic architecture underlies morphological variation in dogs. PLoS 
Biol., 8 (2010), p. e1000451 

22 B.A. Tamburini, et al. Gene expression profiles of sporadic canine hemangiosarcoma are uniquely 
associated with breed. PLoS ONE, 4 (2009), p. e5549 

23 J. Tang, et al. Copy number abnormalities in sporadic canine colorectal cancers. Genome Res., 20 (2010), 
pp. 341-350 

24 M. Breen. Update on genomics in veterinary oncology. Top Companion Anim. Med., 24 (2009), pp. 113-121 

25 D. Krikelis, I. Judson. Role of chemotherapy in the management of soft tissue sarcomas. Expert Rev. 
Anticancer Ther., 10 (2010), pp. 249-260 

26 L. Guillou, A. Aurias. Soft tissue sarcomas with complex genomic profiles. Virchows Arch., 456 (2010), 
pp. 201-217 

27 F. Mertens, et al. Genomic characteristics of soft tissue sarcomas. Virchows Arch., 456 (2010), pp. 129-139 

28 S.M. Cohen, et al. Hemangiosarcoma in rodents: mode-of-action evaluation and human relevance. Toxicol. 
Sci., 111 (2009), pp. 4-18 

29 J. Aguirre-Hernandez, et al. Disruption of chromosome 11 in canine fibrosarcomas highlights an unusual 
variability of CDKN2B in dogs. BMC Vet. Res., 5 (2009), p. 27 

30 D.R. Sargan, et al. Chromosome rearrangements in canine fibrosarcomas. J. Hered., 96 (2005), pp. 766-773 

31 J. Modiano. Canine hemangiosarcoma – the road from despair to hope. National Canine Cancer 
Foundation (2008) 



32 A.L. Shearin, E.A. Ostrander. Leading the way: canine models of genomics and disease. Dis. Model 
Mech., 3 (2010), pp. 27-34 

33 J. Chao, W.A. Chow. Novel targeted therapies in the treatment of soft-tissue sarcomas. Expert Rev. 
Anticancer Ther., 10 (2010), pp. 1303-1311 

34 V. Mialou, et al. Metastatic osteosarcoma at diagnosis: prognostic factors and long-term outcome – the 
French pediatric experience. Cancer, 104 (2005), pp. 1100-1109 

35 H.J. Mankin, et al. Survival data for 648 patients with osteosarcoma treated at one institution. Clin. Orthop. 
Relat. Res. (2004), pp. 286-291 

36 S.J. Withrow, D.M. Vail (Eds.), Withrow & MacEwen's Small Animal Clinical Oncology (4th edn), Saunders 
Elsevier (2007) 

37 S.J. Withrow, G. MacEwan (Eds.), Small Animal Clinical Oncology (3rd edn), W.B. Saunders (2001) 

38 L. Mirabello, et al. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the 
Surveillance, Epidemiology, and End Results Program. Cancer, 115 (2009), pp. 1531-1543 

39 J. Harari. The prevalence of and risk factors for canine appendicular osteosarcoma.(study recaps and 
comments). Vet. Med., 103 (2008) 79(1) 

40 G. Ru. Host related risk factors for canine osteosarcoma. Vet. J., 156 (1998), pp. 31-39 

41 P.J. Messerschmitt, et al.Osteosarcoma. J Am. Acad. Orthop. Surg., 17 (2009), pp. 515-527 

42 S.J. Withrow, R.M. Wilkins. Cross talk from pets to people: translational osteosarcoma treatments. ILAR 
J., 51 (2010), pp. 208-213 

43 S.M. LaRue, et al. Limb-sparing treatment for osteosarcoma in dogs. J. Am. Vet. Med. Assoc., 195 (1989), 
pp. 1734-1744 

44 F. Mueller, et al. Comparative biology of human and canine osteosarcoma. Anticancer Res., 27 (2007), 
pp. 155-216 

45 J. Kirpensteijn, et al. TP53 gene mutations in canine osteosarcoma. Vet. Surg., 37 (2008), pp. 454-460 

46 R.A. Levine, M.A. Fleischli. Inactivation of p53 and retinoblastoma family pathways in canine osteosarcoma 
cell lines. Vet. Pathol., 37 (2000), pp. 54-61 

47 L. Nasir, et al. Nucleotide sequence of a highly conserved region of the canine p53 tumour suppressor gene. 
DNA Seq., 8 (1997), pp. 83-86 

48 G.T. Selvarajah, et al. Gene expression profiling of canine osteosarcoma reveals genes associated with short 
and long survival times. Mol. Cancer, 8 (2009), p. 72 

49 H. Fieten, et al. Expression of hepatocyte growth factor and the proto-oncogenic receptor c-Met in canine 
osteosarcoma. Vet. Pathol., 46 (2009), pp. 869-877 

50 M. Paoloni, et al. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma 
progression. BMC Genomics, 10 (2009), p. 625 

51 L.E. O’Donoghue, et al. Expression profiling in canine osteosarcoma: identification of biomarkers and 
pathways associated with outcome. BMC Cancer, 10 (2010), p. 506 

52 J.C. Phillips, et al. A novel locus for canine osteosarcoma (OSA1) maps to CFA34, the canine orthologue of 
human 3q26. Genomics, 96 (2010), pp. 220-227 

53 R. Thomas, et al. Influence of genetic background on tumor karyotypes: evidence for breed-associated 
cytogenetic aberrations in canine appendicular osteosarcoma. Chromosome Res., 17 (2009), pp. 365-
377 

54 N. Entz-Werle, et al. KIT gene in pediatric osteosarcomas: could it be a new therapeutic target? Int. J. 
Cancer, 120 (2007), pp. 2510-2516 

55 Cancer Trends Progress Report – 2009/2010 Update, National Cancer Institute, NIH, DHHS, Bethesda, MD, 
April 2010. 

56 K. Hansen, C. Khanna. Spontaneous and genetically engineered animal models; use in preclinical cancer 
drug development. Eur. J. Cancer, 40 (2004), pp. 858-880 



57 K.A. Hahn, et al. Naturally occurring tumors in dogs as comparative models for cancer therapy research. In 
Vivo, 8 (1994), pp. 133-143 

58 J.F. Modiano, et al. Distinct B-cell and T-cell lymphoproliferative disease prevalence among dog breeds 
indicates heritable risk. Cancer Res., 65 (2005), pp. 5654-5661 

59 H. Gamlem, et al. Canine neoplasia – introductory paper. APMIS Suppl. (2008), pp. 5-18 

60 J.A. Villamil, et al. Hormonal and sex impact on the epidemiology of canine lymphoma. J. Cancer 
Epidemiol. (2009), p. e591753 

61 M. Breen, J.F. Modiano. Evolutionarily conserved cytogenetic changes in hematological malignancies of 
dogs and humans – man and his best friend share more than companionship. Chromosome 
Res., 16 (2008), pp. 145-154 

62 L.A. Honigberg, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is 
efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. 
U.S.A., 107 (2010), pp. 13075-13080 

63 R. Stein, et al. Evaluation of anti-human leukocyte antigen-DR monoclonal antibody therapy in 
spontaneous canine lymphoma. Leuk. Lymphoma, 52 (2011), pp. 273-284 

64 C. Khanna, et al. Guiding the optimal translation of new cancer treatments from canine to human cancer 
patients. Clin. Cancer Res., 15 (2009), pp. 5671-5677 

65 Z. Wang, et al. Gene therapy in large animal models of muscular dystrophy. ILAR J., 50 (2009), pp. 187-198 

66 T. Yokota, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann. 
Neurol., 65 (2009), pp. 667-676 

67 A.M. Elgier, et al. Communication between domestic dogs (Canis familiaris) and humans: dogs are good 
learners. Behav. Process., 81 (2009), pp. 402-408 

68 V. Morell. Animal behavior. Going to the dogs. Science, 325 (2009), pp. 1062-1065 

69 C.W. Cotman, E. Head. The canine (dog) model of human aging and disease: dietary, environmental and 
immunotherapy approaches. J. Alzheimers Dis., 15 (2008), pp. 685-707 

70 A.T. Liao, et al. Identification of a novel germline MET mutation in dogs. Anim. Genet., 37 (2006), pp. 248-
252 

71 W.K. Chen, et al. Mapping DNA structural variation in dogs. Genome Res., 19 (2009), pp. 500-509 

72 W.C. Kisseberth, et al. A novel canine lymphoma cell line: a translational and comparative model for 
lymphoma research. Leuk. Res., 31 (2007), pp. 1709-1920 

73 T. Milde, et al. A novel family of slitrk genes is expressed on hematopoietic stem cells and leukemias. 
Leukemia, 21 (2007), pp. 824-827 

74 C.A. London, et al. Multi-center, placebo-controlled, double-blind, randomized study of oral toceranib 
phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the treatment of dogs with recurrent 
(either local or distant) mast cell tumor following surgical excision. Clin. Cancer Res., 15 (2009), 
pp. 3856-3865 

 

 


	Dog Models of Naturally Occurring Cancer
	Recommended Citation

	tmp.1613053971.pdf.MuF0N

