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Abstract: 
The worldwide use of handheld devices (personal digital assistants, cell phones, etc.) with wireless connectivity 

will reach 2.6 billion units this year and 4 billion by 2010. More specifically, these handheld devices have become 

an integral part of industrial applications. These devices form pervasive ad hoc wireless networks that aide in 

industry applications. However, pervasive computing is susceptible and vulnerable to malicious active and 

passive snoopers. This is due to the unavoidable interdevice dependency, as well as a common shared medium, 

very transitory connectivity, and the absence of a fixed trust infrastructure. In order to ensure security and 

privacy in the pervasive environment, we need a mechanism to maintain a list of valid devices that will help to 

prevent malicious devices from participating in any task. In this paper, we will show the feasibility of using a 

modified human- computer authentication protocol in order to prevent the malicious attacks of ad hoc 

networks in industrial applications. We will also present two separate models for both large and small networks, 

as well as several possible attack scenarios for each network. 

SECTION I. Introduction 
Due to the advancement of technology for low-cost pervasive devices and inexpensive but powerful wireless 

communication, pervasive computing is now becoming an integral part of our everyday life. Pervasive 

computing—the brain child of Weiser [3]—is now proving its feasibility in education, industry, hospitals and 

healthcare, battlefields, etc. Though the memory capacity of pervasive computing devices, such as personal 

digital assistants (PDAs) and smart phones has significantly increased in the last few years, it is still in its infancy 

when compared to the storage capacity of other memory devices used in distributed computing with a fixed 

infrastructure scenario. Along with limited memory capacity, low battery power places another constraint on 

pervasive devices, as pointed out in [23]. Another important aspect of the pervasive computing environment is 

the dependency of one device on another as well as the mutual cooperation of each device. In this volatile 

scenario, where each device can join and leave arbitrarily, the knowledge of current, valid neighbors is 

important for each device. If a device enrolls a malicious device as its valid neighbor, then the security and 

privacy of the whole system might collapse. Let us use a hospital as an example, where doctors, nurses, and 

other medical staff can communicate with one another through a wireless network. A hacker can easily enter 

the hospital premise as a visitor. He could then communicate with others posing as a doctor and access 

sophisticated and classified patient records. Hence, a valid device discovery protocol is very important for 

pervasive computing applications. This discovery protocol is responsible for updating devices with the latest 

information about current, valid neighbors, and thus, prevents any valid device in the network from 

communicating with a malicious user. To the best of our knowledge, such a protocol as a middleware service for 

pervasive computing applications is yet to be developed. 

Although several papers [4]–[5][6] propose resource discovery protocols for dynamically changing 

environments, they do not address the impact of the protocol on issues like scalability, performance, and 

battery power optimization. For service discovery, some researchers have followed the insecure service 

discovery protocol in which each device in the network can access the services offered by other devices. 

Intentional naming system (INS)/Twine [7], INS [8], and service discovery in DEAPspace [9] are examples of this 

type of discovery protocol. Service location protocol (SLP) [10] and salutation consortium's protocol [11] take a 

conventional access control approach to ensure secure service discovery. Secure service discovery service 

(SSDS) [12] uses a trusted central server to provide several security features. Though device discovery is a part of 

service discovery, the main focus of these service discovery protocols is to make available services accessible 

while maintaining privacy and security. However, they do not address several active and passive attack 

scenarios. 



Our paper differs from the usual issues handled by these service discovery protocols. Popovski et al. [13] discuss 

a protocol for device discovery in a pervasive computing scenario in which the unique address of devices is not 

identifiable. Devices have to concurrently listen on several frequency channels in order to discover others as 

mentioned by Bluetooth. Bluetooth wireless technology has been described in [14]–[15][16]. However, these 

protocols operate in the media access control (MAC) layer and are not suitable as middleware service. The 

“adaptability” issue that has not been considered by many of the device discovery protocols has been partially 

addressed in [17]. The main focus of universal plug and play (UPnP) [18], [19], Jini [20], [21], and open services 

gateway initiative (OSGI) [22] protocols is to overcome the barrier of heterogeneity in discovering devices. Our 

focus, however, is on maintaining a list of valid devices and building a model for discovering valid devices that is 

unassailable in the face of active and passive malicious attacks. 

Hopper and Blum (HB) have shown the use of HB protocol [1], [2] in achieving a secure human–computer (HC) 

authentication, where the user has to communicate using a dumb terminal while in the presence of active and 

passive eavesdroppers. A variant of this is used in [27] for device authentication. In our proposed model, we 

adapted these protocols for device discovery, using an ad hoc scenario, in such a way so that the device 

discovery mechanism works in a distributed environment, where each device in the network can participate. At 

the same time, we introduced a set of new terms including “leader node” and ohm; that are discussed later. Our 

model has been designed in such a way that it incorporates security in every step. The incorporation of security 

from a design point of view and the ability to withstand attack are the unique features of this model. This model 

provides a second tier of security, while authentication builds the first tier. We are calling the model 

impregnable because it can withstand a wide variety of malicious attacks. It is also lightweight because it does 

not use a fixed infrastructure, and all the computations involve only binary and, xor, and rotate operations, 

which are very less expensive from a computational point of view. 

The remainder of the paper is structured as follows. The licensed vocational nurse (LPN) problem is defined and 

explained in Section II. Our proposed model is delineated step by step in Section III. The characteristics and the 

ability of the model to withstand attack for large and small networks is shown in Sections IV and Sections V, 

respectively. Couples of crucial issues are elaborated in Section VI. Section VII shows the architecture and 

placement of impregnable lightweight device discovery (ILDD) in our developed middleware. Related works on 

device discovery approaches are discussed in Section VIII. Evaluation are presented in Section IX. Some open 

issues and our future plan have been placed in Section X. 

SECTION II. LPN Problem 
Given a random 𝑞𝑞 ×nn binary matrix A, a noise parameter 𝜂𝜂 ∈ (0,1/2), a random n-bit vector 𝑥, a vector 𝑣 such 

that |𝑣𝑣| ≤ 𝜂𝑞𝜂𝑞, and the product 𝑧𝑧 = A·𝑥𝑥 ⊕ 𝑣𝑣, find an n-bit vector 𝑥𝑥' such that |A·𝑥𝑥′ ⊕ 𝑧𝑧| ≤ 𝜂𝜂𝑞 [1], [2]. 

A. Explanation of LPN 
Let us take a scenario that is formed by a sender (𝑆) and a receiver (𝑅). Both of them share a common 

secret 𝑥𝑥 of size 𝑛𝑛. S sends a challenge 𝑎𝑎, which is actually a string of arbitrary 0s and 1s of length 𝑛𝑛 to R. Both S 

and R will calculate the Boolean inner product 𝑎𝑎· 𝑥𝑥 that actually indicates the parity bit. The receiver will send 

the parity to the sender where S will check for the matching of the calculated parity. 

Let us assume that the aforementioned procedure will be iterated for 𝑞𝑞 rounds. At each round, a passive 

intruder can guess the parity bit response of R with a probability of 2−1. So the probability of guessing the parity 

bit response correctly in all 𝑞𝑞 rounds is 2−q. But the problem here is that, if the procedure is continued for a 

minimum of nn times, by capturing nn challenge–response pairs, a passive intruder can easily compute the 

secret number 𝑥𝑥 using the Gaussian elimination method. 



In order to eliminate this problem, a noise term 𝑛𝑛 has been introduced. It allows R to respond with an incorrect 

answer with probability 𝑛𝑛. R is permitted to send 𝜂𝜂𝑞 rounds of improper response to the sender. Sender S will 

acknowledge R as a valid user if 

numberofincorrectresponses ≤ 𝜂𝑞𝜂𝑞. (1) 

 

SECTION III. 

Overview of ILDD 
Though we provide two separate models for small and large networks, the general steps are the same for both 

scenarios. At the end of ILDD, all the malicious devices are discarded, and each device is updated with a current 

valid neighbor list. Our model is specially suitable to large corporate or hospital environment where pervasive 

devices (PDAs, smart phones, cell phones, etc.) can communicate with one another through wireless 

connectivity. Since every device can listen to every other device in such a scenario, there is no headache of 

synchronization. 

In our model, each device maintains a list known as a “valid neighbor list” that contains the nodes that have 

been declared valid by the leader node. The term “leader node” is elaborated in Section IV-A. Here, we are using 

the term “valid device” to denote those devices that are already in the valid neighbor list of others. This also 

indicates that these devices have passed the challenge—response-based device update mechanism in the 

previous phase. If a malicious device can make the necessary number of correct responses to pass the 

challenge—response phase, it will also be updated as a valid device in the valid neighbor list of other devices. 

We have made a few assumptions that are as follows. 

1. All the devices who have passed the authentication phase know a specific secret 𝑥𝑥 of length nn. If there 

are malicious devices present in the network, they have bypassed the authentication phase, and hence, 

do not know the secret 𝑥𝑥. 

2. All the authenticated devices know a special function 𝑓(𝒙) that has been used in generating a new 

secret 𝑥𝑥 from the old one. As a result, even if a hacker gains the secret 𝑥𝑥 at some stage, he will not be 

able to generate the new secret as 𝑓(𝒙) is not known. Since 𝑓(𝒙) has never been communicated 

through the transmission medium, there is no chance of it being accessed by a malicious user. Thus, we 

ensure the secrecy of 𝑥𝑥. 

The process is initiated each time a device joins. In an idle scenario (lack of triggering due to joining), the system 

is triggered periodically. This initiation starts with the challenges sent by the leader node. 

The steps in our approach are as follows. 

1. Let us assume that there are ΔΔ valid devices and 𝜇𝜇 denotes the total number of devices in the network. 

The variable 𝜇𝜇 encompasses both valid devices and devices that are waiting to be updated as a valid 

device. Let us consider the steps from the point of view of a specific valid device S. 

2. The leader node will send a challenge to every other node in the network (this indicates that either a 

device is requesting to join the network or a specific amount of time has been elapsed without 

triggering ILDD). After receiving that challenge every device will generate the new secret 𝑥𝑥 using 𝑓(𝒙) 

and use the new secret in responding to all challenges. This process will be elaborated in scenario 3 

(Section IV-B). 



3. Each valid device in the network will send all other devices in the network a random challenge 𝑎𝑎 ∈ 0,1𝑛 

0,1n. So S will send arbitrary challenges 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … , 𝑎𝑎𝜇-1
 to 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, ……, 𝑏𝑏𝜇-1, respectively. 

4. 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, ……, 𝑏𝑏𝜇-1 will calculate (𝑎𝑎· 𝑥𝑥) modulo 2 and send their responses to S. 

5. S will also calculate (aa. 𝑥𝑥) modulo 2 for all the challenges 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3,…, 𝑎𝑎𝜇-1, and compare the results with 

corresponding responses. 

6. For all the matched results, S will send a “true” (1) recommendation to the leader node for the 

corresponding devices and a “false” (0) recommendation otherwise. So, from the point of view of the 

leader, a true recommendation indicates that the receiver node calculated the correct response while a 

false recommendation denotes an incorrect response. 

7. Now steps 2)–5) will be performed for each of the valid devices (𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3,…, 𝑏𝑏Δ-1, 𝑏𝑏Δ) present in the 

network. 

8. After receiving all of the recommendations, the leader will calculate the validity of each device including 

itself, using (1), and then broadcast the valid result. 

9. Every other device will update their valid neighbor list according to the leader's broadcasted results. 

 

One thing to be noted: a device that is trying to update itself as a valid device, but not yet in the valid neighbor 

list of others, cannot send challenges to other devices. This device can only send responses in reply to 

challenges. At the same time, it cannot send a recommendation about any device to the leader. Even if this 

device sends challenges or recommendations, those will be ignored because the trusted nodes will not accept 

any challenge or recommendation from any node that is not in their trusted neighbor list. 

When a leader node leaves the network, it selects another node in the network as the leader based on the 

criterions mentioned in Section IV-A and broadcasts a message about the new leader. 

SECTION IV. 

Model for a Large Network 
A device that is already in the valid neighbor list will be updated as a valid device if 

𝐕 ≥ ceil((1 − 𝜂1 − 𝜂) × 𝑘) − ΩΩ  (2) 

where V is the number of true recommendations from other devices to the leader about the device being 

validated, 𝜂𝜂 is the maximum allowable percentage of noise (intentional incorrect answer), 𝒌 is the total number 

of challenges received by one valid device. As each valid device receives challenges from every other valid 

devices except itself, k = ΔΔ – 1, ΩΩ is the expected number of malicious devices present in the network that have 

updated themselves in the valid neighbor list, and ΔΔ is the total number of valid devices in the network. 

So (2) can be rewritten as 

𝐕 ≥ ceil((1 − 𝜂1 − 𝜂) × (Δ − 1Δ − 1)) − ΩΩ.  (3) 

 

A new device that has just joined the network but is not in the valid neighbor list of other devices will receive a 

challenge from every valid device in the network. Thus, it will actually receive ΔΔ challenges. As a 

result, k in (2) has been replaced by ΔΔ. So, a new device will be updated as a valid device if 

𝐕 ≥ ceil((1 − 𝜂1 − 𝜂) × ΔΔ) − ΩΩ. (4) 



 

As the output of the term ((1 − 𝜂1 − 𝜂) × ΔΔ) can be a float value we are taking the ceiling of the term. For example, if 

the output of ((1 − 𝜂1 − 𝜂) ×Δ) is 3.2, we take it as 4 because the number of recommendations is an integer value. 

A. Characteristics of the Model (Large Network) 
1. The protocol of Hopper and Blum is for HC authentication in which a user is communicating with the 

computer through an insecure channel. This protocol was not designed for an ad hoc environment in 

which the scenarios are quite different. 

2. HB protocol is based on a single server–client scenario. However, in an ad hoc network, the scenario is 

completely different. An ad hoc network is formed by a handful of devices joining and leaving arbitrarily. 

Instead of providing a challenge from a single device/server, we modified the method so that each valid 

device sends only one challenge to every other node present in the network. 

3. We have introduced the concept of a leader node that is chosen based on trust level. For the trust 

portion we used the trust model proposed in [36]. This model updates the trust level of each device 

dynamically, based on its interaction and behavior with other devices. 

4. We made two significant changes in interpreting 𝑛𝑛, which has been defined as the probability of 

choosing an intentionally incorrect answer. a) Instead of using the term “probability,” we redefined 𝑛𝑛 as 

the maximum allowable percentage of noise. The purpose of this modification is explained in scenario 5 

(Section IV-B). b) The definition of LPN says ηη∈ (0,1/2). But, in our approach, we cannot allow 𝑛𝑛 to be 

near 1/2 that indicates almost 50% noise. If we allow a device to generate an intentionally wrong 

answer for about half of the times, then only around 50% of correct guesses will be enough for a 

malicious device to prove itself as a valid device. Thus, the probability of a malicious device to prove 

itself as a valid device reaches almost 1 irrespective of the number of challenges it receives as it can 

always guess a right answer with a probability of 0.5. The optimum value of 𝑛𝑛 is an issue that needs 

further research. 

5. A new term ΩΩ has been incorporated; ΩΩ denotes the expected number of malicious devices present in 

the valid neighbor list. The utility of the term is mentioned later in scenario 5 (Section IV-B). 

B. How Does the Model withstand Attack 
Here, we provide five possible attack scenarios that prove the effectiveness of our model. In the following 

scenarios, we consider a passive adversary as the one who can listen to messages but cannot alter the content. 

An active adversary, however, can change the content of a message. 

Scenario 1 (Passive Malicious Device, Listening in the Network): Here, a passive malicious device listens to the 

challenge–response pairs and tries to regenerate the secret 𝑥𝑥. However, due to the introduction of noise, it is 

not possible for the adversary to regenerate the secret 𝑥𝑥 even after listening to nn (assuming nn is the length of 

the secret) or more challenge–response pairs because it does not know which are the responses that are 

intentionally wrong. 

Scenario 2 (Passive Malicious Device, Participating in the Validation): If a malicious device takes part in the 

validation phase, then it has to make correct guesses for a minimum of ceil((1–  𝜂) × k) – ΩΩ challenges. Larger 

networks along with carefully chosen value of 𝑛𝑛 and ΩΩ make this nearly impossible. 

Scenario 3 (Active Malicious Device): If an active adversary participates in the validation mechanism without 

prior knowledge about the secret 𝑥𝑥, then the situation resembles Scenario 2. However, an active hacker has the 

capability to modify the challenge or response. The hacker can use this capability in the following way: let us 



consider a scenario where the number of valid devices present in the network is 7 and the length of the 

secret 𝑥𝑥 or challenge is 5. Thus, one device will receive six challenges from the other devices. The adversary will 

change these challenges to a specific challenge, for example, to 10 000. If the majority of responses of the 

devices are 0, the adversary considers 0 as the correct response for the challenge 10 000, otherwise 1 is 

considered. Now, it has a valid challenge—response pair. If it can generate five such challenge–response pairs, it 

will be able to regenerate the secret 𝑥𝑥 using the Gaussian elimination method. Even then, the active hacker will 

not be able to utilize this information because we are generating a new secret in each phase, with the help 

of 𝑓(𝒙). Since this function is not known to the adversary, he will not be able to generate the new secret 𝑥𝑥 from 

his knowledge of the previous secret 𝑥𝑥 ⋅ 𝑓(𝒙) works as follows. It generates 𝑦 and 𝑧 where 

𝑦 = ROL(𝑥, 1)
𝑧 = bitwise XOR of𝑥, 𝑦

ROL(𝐱, 𝟏) = Left rotate𝑥by1bit.
 

Now, 𝑧 becomes the new secret. 

Scenario 4 (Handling Devices with Decreased Trust Level): The trust level of a device increases or decreases 

based on its behavior with other nodes in the network. If a device receives malevolent treatment from any other 

currently trusted device, it has the flexibility to send an intentionally “false” (0) recommendation to the leader 

about that malicious device irrespective of the response (correct or incorrect) it gets from that particular device. 

The definition of “malevolent treatment” and our plan to combat is mentioned in Section V. Thus, if a trusted 

device mistreats another device, its trust level will be decreased. Thus, this device will be removed from the 

network when the leader node receives the intentionally false recommendations from the mistreated devices. 

Scenario 5 (Worst Case Scenario): Let us consider the scenario of a large network of 101 valid 

devices 𝑏𝑏1,𝑏𝑏2,𝑏𝑏3,…, 𝑏𝑏98, 𝑏𝑏99, 𝑏𝑏100, 𝑏𝑏101 where two of them (𝑏𝑏100, 𝑏𝑏101) are malicious. This indicates 

that 𝑏𝑏100 and 𝑏𝑏101 have made the necessary number of correct guesses in the previous device update phase and 

joined the valid neighbor list. Let us assume that the value of 𝜂 =  10%. Thus, a device is permitted to respond 

up to 10 out of 100 challenges with intentional incorrect answers. So, 𝑏𝑏1 has received 100 challenges from other 

devices and consider that it has sent ten intentionally generated wrong answers to ten valid devices that are 

within the range (𝑏𝑏2, 𝑏𝑏3,…, 𝑏𝑏98, 𝑏𝑏99). The remaining devices have received correct responses from 𝑏𝑏1. Despite 

receiving correct responses, 𝑏𝑏100 and 𝑏𝑏101 can provide a “false” (0) recommendation about 𝑏𝑏1 in an attempt to 

remove the network from 𝑏𝑏1. Thus, the leader will receive 12 (10 + 2) “false” recommendations and 88 “true” 

recommendations. As a result, this valid device will be discarded from the network according to (1). In order to 

handle this scenario, we have modified (1) by incorporating the term ΩΩ The term ΩΩ denotes the expected 

number of malicious devices present in the network that have made the necessary number of correct guesses to 

prove themselves as valid devices. By carefully choosing the value of ΩΩ, we can avoid the aforementioned 

situation. For example, if we choose the value of ΩΩ to be a minimum of 2 and use (3), then device 𝑏𝑏1 will not be 

discarded in the aforementioned scenario. In essence, the value of ΩΩ denotes the highest number of malicious 

devices that have been updated as valid, but still can be handled by our approach. This amount of malicious 

devices will not be able to have any negative impact on the validation of true nodes. Thus, ΩΩ has an inversely 

proportional relationship with the number of valid nodes in the network. The greater the number of valid nodes, 

the greater the number of correct guesses a malicious device has to make to prove itself as valid. With the 

increase of valid devices in the network, the probability for a malicious device to pass the challenge—response 

phase decreases, and thus, enables us to choose a smaller value for ΩΩ. 

On the other hand, the introduction of ΩΩ increases the probability of a malicious node to make the minimum 

number of correct guesses needed for validation by a bit. For example, in the aforementioned scenario, the 

minimum number of correct guesses that a malicious node has to make to prove itself as a valid device has been 



reduced from 90 to 88 as a result of introducing ΩΩ. However, for a large network, this impact is quite negligible 

since making 88 correct guesses is almost equally impossible as making 90 correct guesses. 

The redefined interpretation of 𝑛𝜂𝜂 proves its utility in this example. If we interpret 𝑛𝜂𝜂 as probability and set 𝜂𝜂= 0.1, 

it does not ensure the number of intentionally incorrect answers will not exceed 10% of the whole challenges. If 

a valid device gives more than 10 incorrect responses when 𝜂𝜂= 0.1, then the device will be discarded in the 

aforementioed scenario even after introducing ΩΩ. 

SECTION V. Model for Small Network 
A device will be updated as a valid device if 

𝑉 = 𝑘 (5) 

where V is the number of true recommendations of other devices to the leader about this device and k is the 

total number of challenges received by the device. 

For a device that is already in the valid neighbor list, k = Δ−1, whereas for a new device that has just joined in the 

network but is not in the valid neighbor list of others, the value of k will be ΔΔ. 

A. Characteristics of the Model (Small Network) 
Along with the first three characteristics of the large-network model, this specialized model for small network 

has the following unique characteristics. 

1. Here, we have omitted the introduction of noise (𝜂𝜂) and ΩΩ. Introduction of both 𝑛𝜂𝜂 and ΩΩ facilitates the 

malicious user with the increased probability of proving itself as a valid user by a bit. However, 

introducing 𝑛𝜂𝜂 and ΩΩ in a small network will have a much greater impact on the probability of a malicious 

user gaining access to the network. For a small-network scenario, where only a few devices are present, 

this increased probability is not acceptable. The purpose of 𝜂𝜂was to ensure the secrecy of 𝑥𝑥. Here, 

secrecy of 𝑥𝑥 will be guaranteed by ensuring that the number of challenge–response pairs observed by 

the intruder is less than the length of the secret 𝑥𝑥. If the number of devices present in the network 

is 𝜇𝜇 and ΔΔ denotes the number of valid devices, then 

𝛿𝛿 = ΔΔ((Δ − 1Δ − 1) + (𝜇 − Δ𝜇 − Δ))

= ΔΔ(𝜇 − 1𝜇 − 1)
 (6) 

where 𝛿 is the total number of challenge–response pairs generated, 𝜇 − Δ is the number of devices present in 

the network that are not in the valid neighbor list but are taking part in the validation process. 

Since every valid device sends a challenge to every other valid device as well as to devices that are taking part in 

the validation process, we get the aforementioned equation. In order to ensure the secrecy of 𝑥𝑥 

length of secret𝑥 𝑥, 𝑛𝑛 > 𝛿𝛿. (7) 

 

Thus, the passive intruder will not be able to regenerate 𝑥𝑥 by capturing sample challenge–response pairs. As a 

result, the purpose of noise introduction becomes invalid. 

2. The term ΩΩ was used to overcome the false testimony against a correct response by devices that are 

malicious but present in the valid neighbor list. The term ΩΩ has also been discarded for the same reason 

that 𝑛𝑛 has been omitted. If a valid device is discarded due to the false recommendation of a malicious 

device, it can again join the network when the device update mechanism is again initiated, provided no 



malicious devices have been able to make the necessary number of correct guesses during this phase. 

For example, if a malicious device that is not in the valid neighbor list makes the necessary number of 

correct guesses in phase 𝑖𝑖, it will be able to provide intentionally false recommendations about valid 

users in phase 𝑖𝑖+1. Here, phase 𝑖𝑖 means the 𝑖𝑖th incident of the device list update mechanism. So, in 

phase 𝑖𝑖 +1, a valid device may be trapped by the intentionally false recommendation of the valid but 

malicious device. It is very likely that this malicious device will be discarded in phase 𝑖𝑖 +1 since it does 

not know the secret 𝑥𝑥. As a result, the temporarily discarded valid device will be able to rejoin the 

network in phase(𝑖𝑖 +2). On the other hand, even if we include a very small value of ΩΩ, this will also 

benefit a malicious user with huge gain in its attempt to make the necessary number of correct guesses 

to pass the challenge—response phase. For example, consider a scenario where a malicious device is 

trying to prove itself as a valid device with 𝜂 =  0 (because we omitted 𝑛𝜂), Δ= 5 (a small network where 

five valid devices are present), and ΩΩ = 1; thus, (4) suggests that the malicious device will be declared as 

valid if 

𝐕 > = ceil((1 − 𝜂) × ΔΔ) − ΩΩ

> = ceil((1 − 0) × 5) − 1

> = 4.

 

But, if we omit ΩΩ and use (5), then the malicious device will be declared as valid if V= 5. 

This shows that correctly guessing 80% of the time is enough for the malicious device to prove itself as a valid 

device in the former case, whereas it has to guess 100% correctly in the later case. 

This scenario also tells why we have not excluded the valid nodes from taking part in the authentication 

mechanism. If we do that, a malicious device that joined as a valid device by arbitrarily making correct number 

of guesses will remain in the network for eternity. 

3. Here, the leader has the flexibility to dynamically change the length of the secret 𝑥𝑥 according to the 

number of nodes present in the network. When the device discovery mechanism is initiated, the leader 

node knows what should be the minimum length of the secret 𝑥𝑥 using (7). Based on this, it generates 

challenges of length 𝑚 = 𝛿 +  1. 

The device discovery mechanism starts with challenges to everyone from the leader. Now, f(x) comes into play. 

It generates 𝑦 and 𝑧 where 

𝑦 = ROL(𝑥, 1)
𝑧 = bitwise XOR of𝑥, 𝑦

ROL(𝑥, 1) = Left rotate𝑥𝑥by1bit.
 

Considering the length of the challenge as mm and length of the secret 𝑥𝑥 as 𝑛, there are following three possible 

cases. 

1. (𝑚 = 𝑛):  𝑧 becomes the new secret. 

2. (𝑚 >  𝑛): We take the last (𝑚 − 𝑛) bits of 𝑧 and pad it at the front of the previous secret to form the 

new secret. 

3. (𝑚 <  𝑛): We take the last (𝑛 − 𝑚) bits of 𝑧 as the new secret. 

As a result, the new secret 𝑥𝑥 will always have the length 𝛿 +  1 that is enough to ensure that no hacker will be 

able to regenerate 𝑥𝑥 because the number of challenge–response pairs generated will be less than the length of 

the secret 𝑥𝑥. 



This capability removes the burden of keeping a large enough secret that obeys (7) all the time. 

B. How Does the Model withstand Attack 
This model for a small network withstands first, second, third, and fourth attack scenarios depicted in Section IV-

B. There is much less of a capability to prevent attack Scenario 2 for a small network since there are a fewer 

number of devices. This is the Achilles heel of a small network. The fifth attack scenario is not applicable for a 

small network because noise (𝑛𝜂) is not present here. 

SECTION VI. Critical Issues 

A. Optimal Length of Secret 𝑥𝑥 
In the small-network model, the leader node automatically varies the length of the secret 𝑥𝑥, depending on the 

number of nodes, to ensure security. However, for a large network, the scenario is quite different as the length 

of the secret is constant. We discussed the importance of inserting an intentionally false response or noise 

parameter (𝑛𝑛) to maintain the secrecy of 𝑥𝑥. Unfortunately, this is not enough. If the number of valid challenge–

response pairs generated is too high relative to 𝜂, then there is a possibility that all the 𝑛 challenge–response 

pairs collected arbitrarily by the malicious node are valid (here a valid challenge—response pair means a pair 

where the response has not been intentionally altered). In that case, the malicious node will easily be able to 

reproduce the correct secret 𝑥𝑥. Considering 𝜂 =  0.2 (Hopper and Blum [1] showed that this is one of the 

optimal values for 𝜂), ΩΩ = 1, and the probability of choosing intentionally false answer is evenly distributed over 

the total number of responses sent, then the probability that an arbitrarily chosen challenge–response pair is 

valid becomes (1 – 0.2) = 0.8. Thus, the probability that a malicious node arbitrarily collects 𝑛 challenge–

response pairs and all of them are valid is 0.8n. This probability decreases as we increase the value of 𝑛, but at 

the same time incrementing for the value of nn increases the response time. We have seen the best 

performance at 𝑛 = 32 by simulating (using OMNeT ++) an ad hoc network consisting of a large number of 

nodes, includes malicious nodes who are trying to regenerate the secret by arbitrarily capturing challenge–

response pairs. The result of our experiment has been shown in Fig. 1. 

 
Fig. 1. Success rate in regenerating secret 𝑥𝑥 through arbitrarily captured challenge–response pairs with 

increasing number of nodes. 

We started with 𝑛 = 8 bits. We ran the ILDD mechanism and collected 𝑛 (here 𝑛 = 8) arbitrary challenge–

response pairs for 15 cycles. We then tried to regenerate the secret 𝑥𝑥 using Gaussian elimination method. If all 

the collected challenge–response pairs are valid, the hacker can successfully regenerate the secret 𝑥𝑥 through 

this procedure. We initiated the ILDD mechanism 15 times with different secret 𝑥𝑥 (since secret 𝑥𝑥 gets changed 

each time) and followed this strategy. Thus, the malicious node would have to regenerate the secret 𝑥𝑥 by 

collecting nn arbitrary challenge–response pairs a total of 15×15=225 times. Then, we calculated the success 
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rate in regenerating the secret. We continued this procedure for an increasing number of nodes. This whole 

procedure was then repeated for secret 𝑥𝑥 with length 16, 24, and 32 bits. 

In this experiment, we used three malicious nodes (though any number of malicious nodes can be used) with 

less than a total of 20 nodes in the network. When the total number of nodes became more than 20, we used 

five malicious nodes. 

B. Optimal Value of Ω 
In order to find an appropriate value of ΩΩ, we simulated the model for a large network with increasing number 

of nodes starting from 5. 

We started with 𝑛 = 32 bits and 𝜂 =  0.2. In this experiment, we used 15 malicious nodes (these nodes do not 

know the secret 𝑥𝑥 and always attempt to break in as valid nodes by answering the challenges arbitrarily). The 

choice of 15 malicious nodes was arbitrary and any number of malicious nodes could have been used. These 

nodes request for joining the network and get challenge from the existing nodes of the network. If the malicious 

devices can guess the necessary number of correct responses, they would be declared as valid node. We used 15 

different secret 𝑥𝑥, and with a specific secret, we ran the ILDD mechanism for large-network model for 15 times. 

So, the number of attempts in authentication by each malicious node will be a total of 15 × 15 = 225 times. We 

collected the maximum number of malicious nodes that were able to join the network as valid nodes in a single 

iteration. 

Fig. 2 demonstrates the maximum number of malicious nodes making correct guesses with varying ΩΩ in the 

large-network model. In our experiment, out of 15 malicious nodes, a maximum 4, 6, 10, and 13 nodes (with ΩΩ 

= 0, 1, 2, and 3, respectively) were able to make necessary number of correct guesses in a single iteration out of 

225 iterations. As we can see from the graph, due to the introduction of ΩΩ, malicious nodes get more advantage 

when the network is quite small but this fades out as the network grows. Since malicious nodes can arbitrarily 

guess and sometimes make the correct number of guesses to join the network as valid, the model may suffer 

from the Scenario 5 mentioned in Section IV-B in the absence of ΩΩ (ΩΩ =0). According to the experimental result, 

the maximum number of malicious nodes that can be present in the network is 1 with the number of valid nodes 

more than 20 and ΩΩ = 1. This means that, if Δ > 20 and ΩΩ = 1, the model can effectively handle the presence of 

maximum one malicious node. So, if we take ΩΩ = 1, we can run the large-network model when Δ > 20. According 

to the graph, no more than two malicious devices can be present in the network when Δ > 25 and ΩΩ = 2. So, in 

this case, we can use the large-network model when Δ > 25. The corresponding value with ΩΩ = 3 is Δ > 27. 

 
Fig. 2. Maximum number of malicious devices in a single iteration that made necessary number of correct 

guesses to join the network. 

We would like to deploy the large-network model as early as possible, since it takes less time. Moreover, we 

need to ensure fewer numbers of malicious devices present in the network as valid as well. For example, from 
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the aforementioned data, if we deploy the large-network model with ΩΩ = 3 and Δ > 27, it ensures that no more 

than three malicious devices will be present in the network and the presence of up to three malicious device will 

not have any negative effect on the existing valid nodes. If we consider ΩΩ = 1 and Δ > 20, we can restrict the 

maximum number of malicious device to 1. Moreover, ΩΩ = 1 provides the earliest opportunity to deploy the 

large-network model. Considering all these, we chose ΩΩ = 1. 

We continued this experiment for 100 nodes. Since the maximum number of malicious nodes present in the 

network was always 0 from the moment Δ ≥ 48, the result for Δ >50 in the graph was not necessary. 

C. Switching Between a Small and Large Network 
As we propose two separate algorithms for a small and large network, an obvious question is when to switch 

from a small-network algorithm to large or vice versa. In order to answer this question, we deployed both 

models in the simulated environment using OMNeT++ and collected the required response time for the 

mechanism. In the case of a large network, the algorithm is a bit complex, but the length of the secret is 

constant over the number of nodes. On the other hand, for the small network, the model is simple but the 

length of the secret 𝑥𝑥 increases exponentially with the number of nodes. Thus, we expected that the response 

time for small networks would increase rapidly as the network is expanded. Fig. 3 proves our assumption. 

 
Fig. 3. Timing comparison between a large and small-network. 

This experiment suggests 7 as the switching moment from a small to a large network and vice versa. But Section 

VI-B suggests that we can effectively introduce the large-network model when Δ > 20. So, we decided to switch 

from a small network to large when Δ > 20 and vice versa. This switching is transparent to the user. 

Now another question arises. As a malicious node needs to guess a correct response to all the challenges in a 

small network, this model is quite rigid. The large-network model minimizes the time requirement but here a 

malicious node does not need to make a correct response to all challenges. As this research seems to be fine 

when the network has a large number of nodes, we assumed that it would work fine if we switch to a large-

network model when the number of nodes reaches 21. So an issue of vulnerability arises as we just switch to a 

large-network model. To verify this issue, we simulated the following experiment. 

We simulated the same scenario used in Section VI-B for a small- and large-network model. For the large-

network model we used 𝜂 =  0.2 and ΩΩ = 1. Then, we calculated the maximum number of malicious nodes in the 

network that proved them as valid by making necessary number of correct guesses. We continued this 

procedure for an increasing number of nodes starting from 21 (since we are trying to see the effect just after 

switching). 
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Fig. 4 shows that the performance of the two models in terms of vulnerability is almost the same. The little 

spikes that denote the presence of one malicious node are handled by ΩΩ. 

 
Fig. 4. Maximum number of malicious devices in the network by making necessary number of correct guesses in 

small- and large-network models. 

D. Issue of the Leader Node 
When there is no other node, the first node will be the leader node. When a valid node A sends the 

recommendation for all other nodes (B𝑖), it also includes the trust value that it has on the other nodes in the 

recommendation packet. We have discussed about this trust issue in detail in [36]. 

Later, the leader node generates the average trust value for every other node by dividing the summed trust 

value by the number of recommendations. Finally, when the leader node broadcasts the valid neighbor list, it 

also includes the IP address of the node that has the highest trust value. Let us assume that this node is M. 

Here, T denotes the “waiting time for the leader node” discussed in Section IX-C. 

The leader node normally sends a notification packet before leaving and M becomes the new leader. If a new 

node requests to join the network but there is no response from the leader node in T milliseconds (which 

indicates that the leader node has left without notification), then M takes the position and starts sending 

challenge as the new leader. 

E. Optimal Value of η 
The hacker can introduce itself in the network in two ways: 1) by collecting 𝑛 (length of the secret) valid 

challenge–response pairs and solving them using Gaussian elimination method to find the secret 𝑥 and 2) by 

guessing the necessary number of correct responses. 

We started with 𝑛 = 32 bits and ΩΩ = 1. In this experiment, we used 15 malicious nodes (these nodes do not 

know the secret 𝑥𝑥 and always attempt to break in as valid nodes by following one of the strategies mentioned 

earlier). The choice of 15 malicious nodes was arbitrary, and any number of malicious nodes could have been 

used (we used 15 since, without loss of generalization, we can assume that the number of malicious nodes is 

much less than that of valid nodes). 

Fig. 5 shows the result when these nodes request for joining the network and try to guess the necessary number 

of correct responses needed to be declared as valid node. 
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Fig. 5. Maximum number of malicious nodes present in one iteration when the first strategy is followed. 

Fig. 6 shows the result when the hacker nodes just try to regenerate secret 𝑥𝑥 by capturing 𝑛 (𝑛 = 32) arbitrarily 

challenge–response pairs. 

 
Fig. 6. Maximum number of malicious nodes present in one iteration when the second strategy is followed. 

We used 15 different secret 𝑥𝑥, and with a specific secret, we ran the ILDD mechanism for large-network model 

for 15 times. So, the number of attempts in authentication by each malicious node will be a total of 

15 × 15 = 225 times. We collected the maximum number of malicious nodes that were able to join the network 

as valid nodes in a single iteration. 

In case of the first strategy, the probability of getting all valid challenge–response pairs out of 𝑛 arbitrarily 

collected challenge–response pair decreases with the increased value of 𝑛𝑛. This is so because as we increase the 

value of 𝑛𝑛, the number of intentional incorrect answers in the network also increases. But this increased value 

of 𝑛𝑛 helps the attacker if he adopts the second strategy since he has to make less number of correct guesses. As 

we increase the value of 𝑛𝑛, more and more malicious nodes make necessary number of correct guesses to prove 

them valid. 

If we take 𝜂 =  0.1, it gives good result against second strategy but not for the first one. But 𝜂 =  0.2 gives 

acceptable result in both cases. In the second case, at most one malicious node was able to make the necessary 

number of correct guesses in one iteration when 𝜂 =  0.2 and can handle the presence of one malicious node. 

So we have chosen 0.2 as the value of 𝑛𝑛. 
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SECTION VII. Architecture 
Middleware adaptability for resource discovery, knowledge usability, and self-healing (MARKS) [28] provides the 

core communication facilities as well as other services, such as knowledge usability [29], secure, adaptive, fault-

tolerant resource discovery (SAFE-RD) [30], and government emergency telecommunications service (GETS) self-

healing [31]. ILDD has been added as a service to MARKS. The placement of ILDD service has been shown 

in Fig. 7. 

 
Fig. 7. MARKS architecture. 

SECTION VIII. Related Work 
Several device discovery protocols [13]–[14][15], [17], [26] have been implemented for ad hoc networks. These 

protocols are compatible with diverse wireless communication protocols like Bluetooth, 802.11, etc., but none 

of these protocols have the ability to serve as middleware service. These protocols work in the MAC and 

network layers and do not provide any application interface that is needed for application developers to use a 

middleware service. 

The security of Web service has been discussed in [32]. However, the focus of this software system is to support 

the interoperability of applications over the Internet. Martin and Hung proposed a security policy [33] to handle 

different security-related issues including confidentiality, integrity, and availability for voice over Internet 

protocol (VoIP). However, our main focus is on secure service discovery in pervasive ad hoc networks. Aleksy et 

al. proposed a three-tier approach to overcome heterogeneity and interoperability issues [34]; unfortunately, 

their solution is appropriate for common object request broker architecture (CORBA) environment. Milosevic 

and Dromey proposed a model [35] for automating the behavior monitoring issues in contracts by employing 

two complementary methods. In our model, we have focused on making a validity decision based on behavior. 

Popovski et al. [13] have proposed a randomized distributed algorithm for device discovery with collision 

avoidance through the use of a stack algorithm, which fails to adapt itself with the dynamically changing 

environment of an ad hoc network. In UPnP protocol [18], [19], a controlled device publicizes its presence and 

services that it is willing to offer. Jini [20], [21] forms a community where each device can use the services 

provided by other devices in the community. OSGI [22] provides the framework for a home network that allows 

the user to communicate through devices with heterogeneous communication protocols, such as UPnP, 

Bluetooth, 802.11, etc. However, none of these technologies addresses the issue of power and resource 

optimization. The issue of maintaining a valid device list and corresponding security threats have not been 

discussed. Research studies in [14]–[15][16] discussed Bluetooth wireless communication. However, this 
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protocol does not address power optimization and fault tolerance. At the same time, it does not focus on 

malicious attacks that we have discussed in our findings. 

In a recent work [24], [25], the authors have shown that the Hopper–Blum protocol can be used to increase the 

security features of RFID. RFID reader sends several challenges to every RFID tag several times, receives the 

responses, and performs calculations. In our approach, the task of sending challenges is distributed to all valid 

nodes. Thus, the leader only sums up the recommendations of other devices. Due to the limitation of battery 

power, it is not possible for a specific node to handle all the challenges and calculations as the ad hoc network 

increases in size. 

SECTION IX. Evaluation 
This service can be evaluated in the following ways. 

A. Implementation of the Prototype 
We have developed a prototype of ILDD using the VC++. NET Compact framework on a set of wirelessly 

connected Dell Axim X50v PDAs in ad hoc mode. In Figs. 8–15, we provide some of the screenshots of our 

implementation. 

B. Measurement of the Performance 
Our model is a perfect example of the term “small memory footprint” that is a required characteristic for 

pervasive computing devices since these devices have much less memory storage capacity. Table I proves the 

fact. 

 
Fig. 8. Initial state of the leader. 
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Fig. 9. Leader is sending challenge. 

 
Fig. 10. Member is sending challenge. 
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Fig. 11. Member is receiving response. 

 
Fig. 12. Leader is receiving recommendation from member. 
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Fig. 13. Leader is sending updated neighbor list. 

 
Fig. 14. Updated neighbor list, leader. 
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Fig. 15. Updated neighbor, member. 

Our model consumes a small amount of battery power. In order to prove this statement, we measured the 

remaining amount of battery power in two scenarios: 1) when ILDD is not running on PDA and 2) when ILDD is 

running on PDA. We have modeled these two scenarios for two types of nodes: 1) normal valid node and 2) 

leader node. We did this because the work load of a normal valid node and a leader node is 

different. Figs. 16 and 17 show that the decrement rate of the curves indicating the remaining amount of battery 

power is almost the same in both cases. This actually indicates that even while ILDD is running, it is not 

consuming significant amount of battery power. 

C. Performance Measurement Using Simulation 
In order to check the scalability issue, we have simulated the ILDD mechanism using OMNeT ++. We tried to find 

out the time required for the ILDD mechanism when the number of nodes present in the network is rather 

large. Fig. 18 shows the time needed for completing an entire ILDD mechanism (completed all the steps 

mentioned in Section III) with an increasing number of nodes. 

Table I Miniature Footprint of ILDD 

 Line of code (LOC) Executable file size 

ILDD 1001 36 KB 
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Fig. 16. Rate of decrement of remaining batter power before and after running the ILDD (normal valid node). 

 
Fig. 17. Rate of decrement of remaining batter power before and after running the ILDD (leader node). 

 
Fig. 18. Timing requirement for ILDD. 

When we implemented the model, we used a timer in the leader node. When the timer expires, the leader node 

stops taking any more recommendation and starts the calculation. 

By using the values we got from this experiment, we tried to formulate an equation that enables the leader 

node to determine the value of the timer. We used the equation given as 

𝑇 = {𝑡 +
𝑁 − 5

5
× ΦΦ, where𝑁 ≥ 5

𝑡, otherwise
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where 𝑁 is the number of nodes present in the network, t is the initial timing requirement, 𝑇 is the waiting time 

for the leader node, and 𝛷 is the average increase in the required time for an increase of every five nodes to 

finish the ILDD mechanism. 

In our simulation, we started with five nodes and that takes 70 ms (𝑡 =  70 ms). We obtained this value by 

manually running ILDD in five PDAs. For any number of nodes up to 5, the leader node will wait for 70 ms for 

receiving all recommendations. From the simulated experiment, we found that 𝛷 =  34.32 (considering up to 

100 nodes). So, we used 𝛷 =  35 in the equation. This issue will save the leader from waiting too long for all 

recommendations. 

SECTION X. Conclusions and Future Works 

In this paper, we have adopted the well-known Hopper–Blum algorithm in an ad hoc scenario and presented 

several pros and cons about its working methodology. As the number of nodes in an ad hoc network can vary 

substantially, we proposed two different models for both a small and large network. The unique characteristics 

of these models have been specified clearly. We also depicted several attack scenarios that can be handled with 

our model. 

At present, we are working on a behavioral model that will be used to indicate the malevolent attitude of a 

node. This behavior model, though a simple one, takes into account issues like number of total requests, 

number of requests for the same service, number of rejections for a specific service, number of total rejections, 

etc. This model will be fitted in our developed trust model, and the output of the behavior model will play an 

important role in calculating dynamic trust. 

We have not concentrated on a couple of issues like challenges to a selective number of devices, loss of 

challenge or response due to collision, spoofing or replay attack, etc. Cryptographic analysis of 𝑓(𝒙) is also saved 

for our future work. We are planning to incorporate these issues as future work. 

Table II contains the meaning of notations used. 

Table II Definitions of Notations 

Notation Meaning 

x The secret key 

n Length of the challenge or response 

_ Number of valid devices in the network 

μ Total number of devices in the network 

- Maximum allowable percentage of noise (Intentional incorrect answer) 

k Total number of challenges received by one valid device 

Ω Expected number of malicious devices present in the network that have updated themselves in the 
valid neighbor list 

- Total number of challenge – response pairs generated 

T Waiting time for the leader node 

F Average increase in the required time for an increase of every 5 nodes to finish the ILDD 
mechanism 
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