
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of (- 2019)

4-2008

An Impregnable Lightweight Device Discovery (ILDD) Model for An Impregnable Lightweight Device Discovery (ILDD) Model for

the Pervasive Computing Environment of Enterprise Applications the Pervasive Computing Environment of Enterprise Applications

Munirul H. Haque
Marquette University, md.haque@marquette.edu

Sheikh Iqbal Ahamed
Marquette University, sheikh.ahamed@marquette.edu

Follow this and additional works at: https://epublications.marquette.edu/mscs_fac

 Part of the Computer Sciences Commons, Mathematics Commons, and the Statistics and Probability

Commons

Recommended Citation Recommended Citation
Haque, Munirul H. and Ahamed, Sheikh Iqbal, "An Impregnable Lightweight Device Discovery (ILDD) Model
for the Pervasive Computing Environment of Enterprise Applications" (2008). Mathematics, Statistics and
Computer Science Faculty Research and Publications. 308.
https://epublications.marquette.edu/mscs_fac/308

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213056878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs_fac?utm_source=epublications.marquette.edu%2Fmscs_fac%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.marquette.edu%2Fmscs_fac%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=epublications.marquette.edu%2Fmscs_fac%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=epublications.marquette.edu%2Fmscs_fac%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=epublications.marquette.edu%2Fmscs_fac%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/mscs_fac/308?utm_source=epublications.marquette.edu%2Fmscs_fac%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Computer Science Faculty Research and Publications/College of Arts and

Sciences

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The

published version may be accessed by following the link in the citation below.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 38, No. 3

(May 2008): 334 - 346. DOI. This article is © The Institute of Electrical and Electronics Engineers and

permission has been granted for this version to appear in e-Publications@Marquette. The Institute of

Electrical and Electronics Engineers does not grant permission for this article to be further

copied/distributed or hosted elsewhere without the express permission from The Institute of Electrical

and Electronics Engineers.

An Impregnable Lightweight Device Discovery
(ILDD) Model for the Pervasive Computing
Environment of Enterprise Applications

Munirul M. Haque
Purdue University, West Lafayette, WI, USA
Ubicomp Research Laboratory, Marquette University, Milwaukee, WI, USA

Sheikh I. Ahamed
Department of Mathematics, Statistics and Computer Science, Ubicomp Research Laboratory, Marquette

University, Milwaukee, WI, USA

https://doi.org/10.1109/TSMCC.2008.919182
http://epublications.marquette.edu/

Abstract:
The worldwide use of handheld devices (personal digital assistants, cell phones, etc.) with wireless connectivity

will reach 2.6 billion units this year and 4 billion by 2010. More specifically, these handheld devices have become

an integral part of industrial applications. These devices form pervasive ad hoc wireless networks that aide in

industry applications. However, pervasive computing is susceptible and vulnerable to malicious active and

passive snoopers. This is due to the unavoidable interdevice dependency, as well as a common shared medium,

very transitory connectivity, and the absence of a fixed trust infrastructure. In order to ensure security and

privacy in the pervasive environment, we need a mechanism to maintain a list of valid devices that will help to

prevent malicious devices from participating in any task. In this paper, we will show the feasibility of using a

modified human- computer authentication protocol in order to prevent the malicious attacks of ad hoc

networks in industrial applications. We will also present two separate models for both large and small networks,

as well as several possible attack scenarios for each network.

SECTION I. Introduction
Due to the advancement of technology for low-cost pervasive devices and inexpensive but powerful wireless

communication, pervasive computing is now becoming an integral part of our everyday life. Pervasive

computing—the brain child of Weiser [3]—is now proving its feasibility in education, industry, hospitals and

healthcare, battlefields, etc. Though the memory capacity of pervasive computing devices, such as personal

digital assistants (PDAs) and smart phones has significantly increased in the last few years, it is still in its infancy

when compared to the storage capacity of other memory devices used in distributed computing with a fixed

infrastructure scenario. Along with limited memory capacity, low battery power places another constraint on

pervasive devices, as pointed out in [23]. Another important aspect of the pervasive computing environment is

the dependency of one device on another as well as the mutual cooperation of each device. In this volatile

scenario, where each device can join and leave arbitrarily, the knowledge of current, valid neighbors is

important for each device. If a device enrolls a malicious device as its valid neighbor, then the security and

privacy of the whole system might collapse. Let us use a hospital as an example, where doctors, nurses, and

other medical staff can communicate with one another through a wireless network. A hacker can easily enter

the hospital premise as a visitor. He could then communicate with others posing as a doctor and access

sophisticated and classified patient records. Hence, a valid device discovery protocol is very important for

pervasive computing applications. This discovery protocol is responsible for updating devices with the latest

information about current, valid neighbors, and thus, prevents any valid device in the network from

communicating with a malicious user. To the best of our knowledge, such a protocol as a middleware service for

pervasive computing applications is yet to be developed.

Although several papers [4]–[5][6] propose resource discovery protocols for dynamically changing

environments, they do not address the impact of the protocol on issues like scalability, performance, and

battery power optimization. For service discovery, some researchers have followed the insecure service

discovery protocol in which each device in the network can access the services offered by other devices.

Intentional naming system (INS)/Twine [7], INS [8], and service discovery in DEAPspace [9] are examples of this

type of discovery protocol. Service location protocol (SLP) [10] and salutation consortium's protocol [11] take a

conventional access control approach to ensure secure service discovery. Secure service discovery service

(SSDS) [12] uses a trusted central server to provide several security features. Though device discovery is a part of

service discovery, the main focus of these service discovery protocols is to make available services accessible

while maintaining privacy and security. However, they do not address several active and passive attack

scenarios.

Our paper differs from the usual issues handled by these service discovery protocols. Popovski et al. [13] discuss

a protocol for device discovery in a pervasive computing scenario in which the unique address of devices is not

identifiable. Devices have to concurrently listen on several frequency channels in order to discover others as

mentioned by Bluetooth. Bluetooth wireless technology has been described in [14]–[15][16]. However, these

protocols operate in the media access control (MAC) layer and are not suitable as middleware service. The

“adaptability” issue that has not been considered by many of the device discovery protocols has been partially

addressed in [17]. The main focus of universal plug and play (UPnP) [18], [19], Jini [20], [21], and open services

gateway initiative (OSGI) [22] protocols is to overcome the barrier of heterogeneity in discovering devices. Our

focus, however, is on maintaining a list of valid devices and building a model for discovering valid devices that is

unassailable in the face of active and passive malicious attacks.

Hopper and Blum (HB) have shown the use of HB protocol [1], [2] in achieving a secure human–computer (HC)

authentication, where the user has to communicate using a dumb terminal while in the presence of active and

passive eavesdroppers. A variant of this is used in [27] for device authentication. In our proposed model, we

adapted these protocols for device discovery, using an ad hoc scenario, in such a way so that the device

discovery mechanism works in a distributed environment, where each device in the network can participate. At

the same time, we introduced a set of new terms including “leader node” and ohm; that are discussed later. Our

model has been designed in such a way that it incorporates security in every step. The incorporation of security

from a design point of view and the ability to withstand attack are the unique features of this model. This model

provides a second tier of security, while authentication builds the first tier. We are calling the model

impregnable because it can withstand a wide variety of malicious attacks. It is also lightweight because it does

not use a fixed infrastructure, and all the computations involve only binary and, xor, and rotate operations,

which are very less expensive from a computational point of view.

The remainder of the paper is structured as follows. The licensed vocational nurse (LPN) problem is defined and

explained in Section II. Our proposed model is delineated step by step in Section III. The characteristics and the

ability of the model to withstand attack for large and small networks is shown in Sections IV and Sections V,

respectively. Couples of crucial issues are elaborated in Section VI. Section VII shows the architecture and

placement of impregnable lightweight device discovery (ILDD) in our developed middleware. Related works on

device discovery approaches are discussed in Section VIII. Evaluation are presented in Section IX. Some open

issues and our future plan have been placed in Section X.

SECTION II. LPN Problem
Given a random 𝑞𝑞 ×nn binary matrix A, a noise parameter 𝜂𝜂 ∈ (0,1/2), a random n-bit vector 𝑥, a vector 𝑣 such

that |𝑣𝑣| ≤ 𝜂𝑞𝜂𝑞, and the product 𝑧𝑧 = A·𝑥𝑥 ⊕ 𝑣𝑣, find an n-bit vector 𝑥𝑥' such that |A·𝑥𝑥′ ⊕ 𝑧𝑧| ≤ 𝜂𝜂𝑞 [1], [2].

A. Explanation of LPN
Let us take a scenario that is formed by a sender (𝑆) and a receiver (𝑅). Both of them share a common

secret 𝑥𝑥 of size 𝑛𝑛. S sends a challenge 𝑎𝑎, which is actually a string of arbitrary 0s and 1s of length 𝑛𝑛 to R. Both S

and R will calculate the Boolean inner product 𝑎𝑎· 𝑥𝑥 that actually indicates the parity bit. The receiver will send

the parity to the sender where S will check for the matching of the calculated parity.

Let us assume that the aforementioned procedure will be iterated for 𝑞𝑞 rounds. At each round, a passive

intruder can guess the parity bit response of R with a probability of 2−1. So the probability of guessing the parity

bit response correctly in all 𝑞𝑞 rounds is 2−q. But the problem here is that, if the procedure is continued for a

minimum of nn times, by capturing nn challenge–response pairs, a passive intruder can easily compute the

secret number 𝑥𝑥 using the Gaussian elimination method.

In order to eliminate this problem, a noise term 𝑛𝑛 has been introduced. It allows R to respond with an incorrect

answer with probability 𝑛𝑛. R is permitted to send 𝜂𝜂𝑞 rounds of improper response to the sender. Sender S will

acknowledge R as a valid user if

numberofincorrectresponses ≤ 𝜂𝑞𝜂𝑞. (1)

SECTION III.

Overview of ILDD
Though we provide two separate models for small and large networks, the general steps are the same for both

scenarios. At the end of ILDD, all the malicious devices are discarded, and each device is updated with a current

valid neighbor list. Our model is specially suitable to large corporate or hospital environment where pervasive

devices (PDAs, smart phones, cell phones, etc.) can communicate with one another through wireless

connectivity. Since every device can listen to every other device in such a scenario, there is no headache of

synchronization.

In our model, each device maintains a list known as a “valid neighbor list” that contains the nodes that have

been declared valid by the leader node. The term “leader node” is elaborated in Section IV-A. Here, we are using

the term “valid device” to denote those devices that are already in the valid neighbor list of others. This also

indicates that these devices have passed the challenge—response-based device update mechanism in the

previous phase. If a malicious device can make the necessary number of correct responses to pass the

challenge—response phase, it will also be updated as a valid device in the valid neighbor list of other devices.

We have made a few assumptions that are as follows.

1. All the devices who have passed the authentication phase know a specific secret 𝑥𝑥 of length nn. If there

are malicious devices present in the network, they have bypassed the authentication phase, and hence,

do not know the secret 𝑥𝑥.

2. All the authenticated devices know a special function 𝑓(𝒙) that has been used in generating a new

secret 𝑥𝑥 from the old one. As a result, even if a hacker gains the secret 𝑥𝑥 at some stage, he will not be

able to generate the new secret as 𝑓(𝒙) is not known. Since 𝑓(𝒙) has never been communicated

through the transmission medium, there is no chance of it being accessed by a malicious user. Thus, we

ensure the secrecy of 𝑥𝑥.

The process is initiated each time a device joins. In an idle scenario (lack of triggering due to joining), the system

is triggered periodically. This initiation starts with the challenges sent by the leader node.

The steps in our approach are as follows.

1. Let us assume that there are ΔΔ valid devices and 𝜇𝜇 denotes the total number of devices in the network.

The variable 𝜇𝜇 encompasses both valid devices and devices that are waiting to be updated as a valid

device. Let us consider the steps from the point of view of a specific valid device S.

2. The leader node will send a challenge to every other node in the network (this indicates that either a

device is requesting to join the network or a specific amount of time has been elapsed without

triggering ILDD). After receiving that challenge every device will generate the new secret 𝑥𝑥 using 𝑓(𝒙)

and use the new secret in responding to all challenges. This process will be elaborated in scenario 3

(Section IV-B).

3. Each valid device in the network will send all other devices in the network a random challenge 𝑎𝑎 ∈ 0,1𝑛

0,1n. So S will send arbitrary challenges 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … , 𝑎𝑎𝜇-1
 to 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, ……, 𝑏𝑏𝜇-1, respectively.

4. 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, ……, 𝑏𝑏𝜇-1 will calculate (𝑎𝑎· 𝑥𝑥) modulo 2 and send their responses to S.

5. S will also calculate (aa. 𝑥𝑥) modulo 2 for all the challenges 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3,…, 𝑎𝑎𝜇-1, and compare the results with

corresponding responses.

6. For all the matched results, S will send a “true” (1) recommendation to the leader node for the

corresponding devices and a “false” (0) recommendation otherwise. So, from the point of view of the

leader, a true recommendation indicates that the receiver node calculated the correct response while a

false recommendation denotes an incorrect response.

7. Now steps 2)–5) will be performed for each of the valid devices (𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3,…, 𝑏𝑏Δ-1, 𝑏𝑏Δ) present in the

network.

8. After receiving all of the recommendations, the leader will calculate the validity of each device including

itself, using (1), and then broadcast the valid result.

9. Every other device will update their valid neighbor list according to the leader's broadcasted results.

One thing to be noted: a device that is trying to update itself as a valid device, but not yet in the valid neighbor

list of others, cannot send challenges to other devices. This device can only send responses in reply to

challenges. At the same time, it cannot send a recommendation about any device to the leader. Even if this

device sends challenges or recommendations, those will be ignored because the trusted nodes will not accept

any challenge or recommendation from any node that is not in their trusted neighbor list.

When a leader node leaves the network, it selects another node in the network as the leader based on the

criterions mentioned in Section IV-A and broadcasts a message about the new leader.

SECTION IV.

Model for a Large Network
A device that is already in the valid neighbor list will be updated as a valid device if

𝐕 ≥ ceil((1 − 𝜂1 − 𝜂) × 𝑘) − ΩΩ (2)

where V is the number of true recommendations from other devices to the leader about the device being

validated, 𝜂𝜂 is the maximum allowable percentage of noise (intentional incorrect answer), 𝒌 is the total number

of challenges received by one valid device. As each valid device receives challenges from every other valid

devices except itself, k = ΔΔ – 1, ΩΩ is the expected number of malicious devices present in the network that have

updated themselves in the valid neighbor list, and ΔΔ is the total number of valid devices in the network.

So (2) can be rewritten as

𝐕 ≥ ceil((1 − 𝜂1 − 𝜂) × (Δ − 1Δ − 1)) − ΩΩ. (3)

A new device that has just joined the network but is not in the valid neighbor list of other devices will receive a

challenge from every valid device in the network. Thus, it will actually receive ΔΔ challenges. As a

result, k in (2) has been replaced by ΔΔ. So, a new device will be updated as a valid device if

𝐕 ≥ ceil((1 − 𝜂1 − 𝜂) × ΔΔ) − ΩΩ. (4)

As the output of the term ((1 − 𝜂1 − 𝜂) × ΔΔ) can be a float value we are taking the ceiling of the term. For example, if

the output of ((1 − 𝜂1 − 𝜂) ×Δ) is 3.2, we take it as 4 because the number of recommendations is an integer value.

A. Characteristics of the Model (Large Network)
1. The protocol of Hopper and Blum is for HC authentication in which a user is communicating with the

computer through an insecure channel. This protocol was not designed for an ad hoc environment in

which the scenarios are quite different.

2. HB protocol is based on a single server–client scenario. However, in an ad hoc network, the scenario is

completely different. An ad hoc network is formed by a handful of devices joining and leaving arbitrarily.

Instead of providing a challenge from a single device/server, we modified the method so that each valid

device sends only one challenge to every other node present in the network.

3. We have introduced the concept of a leader node that is chosen based on trust level. For the trust

portion we used the trust model proposed in [36]. This model updates the trust level of each device

dynamically, based on its interaction and behavior with other devices.

4. We made two significant changes in interpreting 𝑛𝑛, which has been defined as the probability of

choosing an intentionally incorrect answer. a) Instead of using the term “probability,” we redefined 𝑛𝑛 as

the maximum allowable percentage of noise. The purpose of this modification is explained in scenario 5

(Section IV-B). b) The definition of LPN says ηη∈ (0,1/2). But, in our approach, we cannot allow 𝑛𝑛 to be

near 1/2 that indicates almost 50% noise. If we allow a device to generate an intentionally wrong

answer for about half of the times, then only around 50% of correct guesses will be enough for a

malicious device to prove itself as a valid device. Thus, the probability of a malicious device to prove

itself as a valid device reaches almost 1 irrespective of the number of challenges it receives as it can

always guess a right answer with a probability of 0.5. The optimum value of 𝑛𝑛 is an issue that needs

further research.

5. A new term ΩΩ has been incorporated; ΩΩ denotes the expected number of malicious devices present in

the valid neighbor list. The utility of the term is mentioned later in scenario 5 (Section IV-B).

B. How Does the Model withstand Attack
Here, we provide five possible attack scenarios that prove the effectiveness of our model. In the following

scenarios, we consider a passive adversary as the one who can listen to messages but cannot alter the content.

An active adversary, however, can change the content of a message.

Scenario 1 (Passive Malicious Device, Listening in the Network): Here, a passive malicious device listens to the

challenge–response pairs and tries to regenerate the secret 𝑥𝑥. However, due to the introduction of noise, it is

not possible for the adversary to regenerate the secret 𝑥𝑥 even after listening to nn (assuming nn is the length of

the secret) or more challenge–response pairs because it does not know which are the responses that are

intentionally wrong.

Scenario 2 (Passive Malicious Device, Participating in the Validation): If a malicious device takes part in the

validation phase, then it has to make correct guesses for a minimum of ceil((1– 𝜂) × k) – ΩΩ challenges. Larger

networks along with carefully chosen value of 𝑛𝑛 and ΩΩ make this nearly impossible.

Scenario 3 (Active Malicious Device): If an active adversary participates in the validation mechanism without

prior knowledge about the secret 𝑥𝑥, then the situation resembles Scenario 2. However, an active hacker has the

capability to modify the challenge or response. The hacker can use this capability in the following way: let us

consider a scenario where the number of valid devices present in the network is 7 and the length of the

secret 𝑥𝑥 or challenge is 5. Thus, one device will receive six challenges from the other devices. The adversary will

change these challenges to a specific challenge, for example, to 10 000. If the majority of responses of the

devices are 0, the adversary considers 0 as the correct response for the challenge 10 000, otherwise 1 is

considered. Now, it has a valid challenge—response pair. If it can generate five such challenge–response pairs, it

will be able to regenerate the secret 𝑥𝑥 using the Gaussian elimination method. Even then, the active hacker will

not be able to utilize this information because we are generating a new secret in each phase, with the help

of 𝑓(𝒙). Since this function is not known to the adversary, he will not be able to generate the new secret 𝑥𝑥 from

his knowledge of the previous secret 𝑥𝑥 ⋅ 𝑓(𝒙) works as follows. It generates 𝑦 and 𝑧 where

𝑦 = ROL(𝑥, 1)
𝑧 = bitwise XOR of𝑥, 𝑦

ROL(𝐱, 𝟏) = Left rotate𝑥by1bit.

Now, 𝑧 becomes the new secret.

Scenario 4 (Handling Devices with Decreased Trust Level): The trust level of a device increases or decreases

based on its behavior with other nodes in the network. If a device receives malevolent treatment from any other

currently trusted device, it has the flexibility to send an intentionally “false” (0) recommendation to the leader

about that malicious device irrespective of the response (correct or incorrect) it gets from that particular device.

The definition of “malevolent treatment” and our plan to combat is mentioned in Section V. Thus, if a trusted

device mistreats another device, its trust level will be decreased. Thus, this device will be removed from the

network when the leader node receives the intentionally false recommendations from the mistreated devices.

Scenario 5 (Worst Case Scenario): Let us consider the scenario of a large network of 101 valid

devices 𝑏𝑏1,𝑏𝑏2,𝑏𝑏3,…, 𝑏𝑏98, 𝑏𝑏99, 𝑏𝑏100, 𝑏𝑏101 where two of them (𝑏𝑏100, 𝑏𝑏101) are malicious. This indicates

that 𝑏𝑏100 and 𝑏𝑏101 have made the necessary number of correct guesses in the previous device update phase and

joined the valid neighbor list. Let us assume that the value of 𝜂 = 10%. Thus, a device is permitted to respond

up to 10 out of 100 challenges with intentional incorrect answers. So, 𝑏𝑏1 has received 100 challenges from other

devices and consider that it has sent ten intentionally generated wrong answers to ten valid devices that are

within the range (𝑏𝑏2, 𝑏𝑏3,…, 𝑏𝑏98, 𝑏𝑏99). The remaining devices have received correct responses from 𝑏𝑏1. Despite

receiving correct responses, 𝑏𝑏100 and 𝑏𝑏101 can provide a “false” (0) recommendation about 𝑏𝑏1 in an attempt to

remove the network from 𝑏𝑏1. Thus, the leader will receive 12 (10 + 2) “false” recommendations and 88 “true”

recommendations. As a result, this valid device will be discarded from the network according to (1). In order to

handle this scenario, we have modified (1) by incorporating the term ΩΩ The term ΩΩ denotes the expected

number of malicious devices present in the network that have made the necessary number of correct guesses to

prove themselves as valid devices. By carefully choosing the value of ΩΩ, we can avoid the aforementioned

situation. For example, if we choose the value of ΩΩ to be a minimum of 2 and use (3), then device 𝑏𝑏1 will not be

discarded in the aforementioned scenario. In essence, the value of ΩΩ denotes the highest number of malicious

devices that have been updated as valid, but still can be handled by our approach. This amount of malicious

devices will not be able to have any negative impact on the validation of true nodes. Thus, ΩΩ has an inversely

proportional relationship with the number of valid nodes in the network. The greater the number of valid nodes,

the greater the number of correct guesses a malicious device has to make to prove itself as valid. With the

increase of valid devices in the network, the probability for a malicious device to pass the challenge—response

phase decreases, and thus, enables us to choose a smaller value for ΩΩ.

On the other hand, the introduction of ΩΩ increases the probability of a malicious node to make the minimum

number of correct guesses needed for validation by a bit. For example, in the aforementioned scenario, the

minimum number of correct guesses that a malicious node has to make to prove itself as a valid device has been

reduced from 90 to 88 as a result of introducing ΩΩ. However, for a large network, this impact is quite negligible

since making 88 correct guesses is almost equally impossible as making 90 correct guesses.

The redefined interpretation of 𝑛𝜂𝜂 proves its utility in this example. If we interpret 𝑛𝜂𝜂 as probability and set 𝜂𝜂= 0.1,

it does not ensure the number of intentionally incorrect answers will not exceed 10% of the whole challenges. If

a valid device gives more than 10 incorrect responses when 𝜂𝜂= 0.1, then the device will be discarded in the

aforementioed scenario even after introducing ΩΩ.

SECTION V. Model for Small Network
A device will be updated as a valid device if

𝑉 = 𝑘 (5)

where V is the number of true recommendations of other devices to the leader about this device and k is the

total number of challenges received by the device.

For a device that is already in the valid neighbor list, k = Δ−1, whereas for a new device that has just joined in the

network but is not in the valid neighbor list of others, the value of k will be ΔΔ.

A. Characteristics of the Model (Small Network)
Along with the first three characteristics of the large-network model, this specialized model for small network

has the following unique characteristics.

1. Here, we have omitted the introduction of noise (𝜂𝜂) and ΩΩ. Introduction of both 𝑛𝜂𝜂 and ΩΩ facilitates the

malicious user with the increased probability of proving itself as a valid user by a bit. However,

introducing 𝑛𝜂𝜂 and ΩΩ in a small network will have a much greater impact on the probability of a malicious

user gaining access to the network. For a small-network scenario, where only a few devices are present,

this increased probability is not acceptable. The purpose of 𝜂𝜂was to ensure the secrecy of 𝑥𝑥. Here,

secrecy of 𝑥𝑥 will be guaranteed by ensuring that the number of challenge–response pairs observed by

the intruder is less than the length of the secret 𝑥𝑥. If the number of devices present in the network

is 𝜇𝜇 and ΔΔ denotes the number of valid devices, then

𝛿𝛿 = ΔΔ((Δ − 1Δ − 1) + (𝜇 − Δ𝜇 − Δ))

= ΔΔ(𝜇 − 1𝜇 − 1)
 (6)

where 𝛿 is the total number of challenge–response pairs generated, 𝜇 − Δ is the number of devices present in

the network that are not in the valid neighbor list but are taking part in the validation process.

Since every valid device sends a challenge to every other valid device as well as to devices that are taking part in

the validation process, we get the aforementioned equation. In order to ensure the secrecy of 𝑥𝑥

length of secret𝑥 𝑥, 𝑛𝑛 > 𝛿𝛿. (7)

Thus, the passive intruder will not be able to regenerate 𝑥𝑥 by capturing sample challenge–response pairs. As a

result, the purpose of noise introduction becomes invalid.

2. The term ΩΩ was used to overcome the false testimony against a correct response by devices that are

malicious but present in the valid neighbor list. The term ΩΩ has also been discarded for the same reason

that 𝑛𝑛 has been omitted. If a valid device is discarded due to the false recommendation of a malicious

device, it can again join the network when the device update mechanism is again initiated, provided no

malicious devices have been able to make the necessary number of correct guesses during this phase.

For example, if a malicious device that is not in the valid neighbor list makes the necessary number of

correct guesses in phase 𝑖𝑖, it will be able to provide intentionally false recommendations about valid

users in phase 𝑖𝑖+1. Here, phase 𝑖𝑖 means the 𝑖𝑖th incident of the device list update mechanism. So, in

phase 𝑖𝑖 +1, a valid device may be trapped by the intentionally false recommendation of the valid but

malicious device. It is very likely that this malicious device will be discarded in phase 𝑖𝑖 +1 since it does

not know the secret 𝑥𝑥. As a result, the temporarily discarded valid device will be able to rejoin the

network in phase(𝑖𝑖 +2). On the other hand, even if we include a very small value of ΩΩ, this will also

benefit a malicious user with huge gain in its attempt to make the necessary number of correct guesses

to pass the challenge—response phase. For example, consider a scenario where a malicious device is

trying to prove itself as a valid device with 𝜂 = 0 (because we omitted 𝑛𝜂), Δ= 5 (a small network where

five valid devices are present), and ΩΩ = 1; thus, (4) suggests that the malicious device will be declared as

valid if

𝐕 > = ceil((1 − 𝜂) × ΔΔ) − ΩΩ

> = ceil((1 − 0) × 5) − 1

> = 4.

But, if we omit ΩΩ and use (5), then the malicious device will be declared as valid if V= 5.

This shows that correctly guessing 80% of the time is enough for the malicious device to prove itself as a valid

device in the former case, whereas it has to guess 100% correctly in the later case.

This scenario also tells why we have not excluded the valid nodes from taking part in the authentication

mechanism. If we do that, a malicious device that joined as a valid device by arbitrarily making correct number

of guesses will remain in the network for eternity.

3. Here, the leader has the flexibility to dynamically change the length of the secret 𝑥𝑥 according to the

number of nodes present in the network. When the device discovery mechanism is initiated, the leader

node knows what should be the minimum length of the secret 𝑥𝑥 using (7). Based on this, it generates

challenges of length 𝑚 = 𝛿 + 1.

The device discovery mechanism starts with challenges to everyone from the leader. Now, f(x) comes into play.

It generates 𝑦 and 𝑧 where

𝑦 = ROL(𝑥, 1)
𝑧 = bitwise XOR of𝑥, 𝑦

ROL(𝑥, 1) = Left rotate𝑥𝑥by1bit.

Considering the length of the challenge as mm and length of the secret 𝑥𝑥 as 𝑛, there are following three possible

cases.

1. (𝑚 = 𝑛): 𝑧 becomes the new secret.

2. (𝑚 > 𝑛): We take the last (𝑚 − 𝑛) bits of 𝑧 and pad it at the front of the previous secret to form the

new secret.

3. (𝑚 < 𝑛): We take the last (𝑛 − 𝑚) bits of 𝑧 as the new secret.

As a result, the new secret 𝑥𝑥 will always have the length 𝛿 + 1 that is enough to ensure that no hacker will be

able to regenerate 𝑥𝑥 because the number of challenge–response pairs generated will be less than the length of

the secret 𝑥𝑥.

This capability removes the burden of keeping a large enough secret that obeys (7) all the time.

B. How Does the Model withstand Attack
This model for a small network withstands first, second, third, and fourth attack scenarios depicted in Section IV-

B. There is much less of a capability to prevent attack Scenario 2 for a small network since there are a fewer

number of devices. This is the Achilles heel of a small network. The fifth attack scenario is not applicable for a

small network because noise (𝑛𝜂) is not present here.

SECTION VI. Critical Issues

A. Optimal Length of Secret 𝑥𝑥
In the small-network model, the leader node automatically varies the length of the secret 𝑥𝑥, depending on the

number of nodes, to ensure security. However, for a large network, the scenario is quite different as the length

of the secret is constant. We discussed the importance of inserting an intentionally false response or noise

parameter (𝑛𝑛) to maintain the secrecy of 𝑥𝑥. Unfortunately, this is not enough. If the number of valid challenge–

response pairs generated is too high relative to 𝜂, then there is a possibility that all the 𝑛 challenge–response

pairs collected arbitrarily by the malicious node are valid (here a valid challenge—response pair means a pair

where the response has not been intentionally altered). In that case, the malicious node will easily be able to

reproduce the correct secret 𝑥𝑥. Considering 𝜂 = 0.2 (Hopper and Blum [1] showed that this is one of the

optimal values for 𝜂), ΩΩ = 1, and the probability of choosing intentionally false answer is evenly distributed over

the total number of responses sent, then the probability that an arbitrarily chosen challenge–response pair is

valid becomes (1 – 0.2) = 0.8. Thus, the probability that a malicious node arbitrarily collects 𝑛 challenge–

response pairs and all of them are valid is 0.8n. This probability decreases as we increase the value of 𝑛, but at

the same time incrementing for the value of nn increases the response time. We have seen the best

performance at 𝑛 = 32 by simulating (using OMNeT ++) an ad hoc network consisting of a large number of

nodes, includes malicious nodes who are trying to regenerate the secret by arbitrarily capturing challenge–

response pairs. The result of our experiment has been shown in Fig. 1.

Fig. 1. Success rate in regenerating secret 𝑥𝑥 through arbitrarily captured challenge–response pairs with

increasing number of nodes.

We started with 𝑛 = 8 bits. We ran the ILDD mechanism and collected 𝑛 (here 𝑛 = 8) arbitrary challenge–

response pairs for 15 cycles. We then tried to regenerate the secret 𝑥𝑥 using Gaussian elimination method. If all

the collected challenge–response pairs are valid, the hacker can successfully regenerate the secret 𝑥𝑥 through

this procedure. We initiated the ILDD mechanism 15 times with different secret 𝑥𝑥 (since secret 𝑥𝑥 gets changed

each time) and followed this strategy. Thus, the malicious node would have to regenerate the secret 𝑥𝑥 by

collecting nn arbitrary challenge–response pairs a total of 15×15=225 times. Then, we calculated the success

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-1-source-large.gif

rate in regenerating the secret. We continued this procedure for an increasing number of nodes. This whole

procedure was then repeated for secret 𝑥𝑥 with length 16, 24, and 32 bits.

In this experiment, we used three malicious nodes (though any number of malicious nodes can be used) with

less than a total of 20 nodes in the network. When the total number of nodes became more than 20, we used

five malicious nodes.

B. Optimal Value of Ω
In order to find an appropriate value of ΩΩ, we simulated the model for a large network with increasing number

of nodes starting from 5.

We started with 𝑛 = 32 bits and 𝜂 = 0.2. In this experiment, we used 15 malicious nodes (these nodes do not

know the secret 𝑥𝑥 and always attempt to break in as valid nodes by answering the challenges arbitrarily). The

choice of 15 malicious nodes was arbitrary and any number of malicious nodes could have been used. These

nodes request for joining the network and get challenge from the existing nodes of the network. If the malicious

devices can guess the necessary number of correct responses, they would be declared as valid node. We used 15

different secret 𝑥𝑥, and with a specific secret, we ran the ILDD mechanism for large-network model for 15 times.

So, the number of attempts in authentication by each malicious node will be a total of 15 × 15 = 225 times. We

collected the maximum number of malicious nodes that were able to join the network as valid nodes in a single

iteration.

Fig. 2 demonstrates the maximum number of malicious nodes making correct guesses with varying ΩΩ in the

large-network model. In our experiment, out of 15 malicious nodes, a maximum 4, 6, 10, and 13 nodes (with ΩΩ

= 0, 1, 2, and 3, respectively) were able to make necessary number of correct guesses in a single iteration out of

225 iterations. As we can see from the graph, due to the introduction of ΩΩ, malicious nodes get more advantage

when the network is quite small but this fades out as the network grows. Since malicious nodes can arbitrarily

guess and sometimes make the correct number of guesses to join the network as valid, the model may suffer

from the Scenario 5 mentioned in Section IV-B in the absence of ΩΩ (ΩΩ =0). According to the experimental result,

the maximum number of malicious nodes that can be present in the network is 1 with the number of valid nodes

more than 20 and ΩΩ = 1. This means that, if Δ > 20 and ΩΩ = 1, the model can effectively handle the presence of

maximum one malicious node. So, if we take ΩΩ = 1, we can run the large-network model when Δ > 20. According

to the graph, no more than two malicious devices can be present in the network when Δ > 25 and ΩΩ = 2. So, in

this case, we can use the large-network model when Δ > 25. The corresponding value with ΩΩ = 3 is Δ > 27.

Fig. 2. Maximum number of malicious devices in a single iteration that made necessary number of correct

guesses to join the network.

We would like to deploy the large-network model as early as possible, since it takes less time. Moreover, we

need to ensure fewer numbers of malicious devices present in the network as valid as well. For example, from

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-2-source-large.gif

the aforementioned data, if we deploy the large-network model with ΩΩ = 3 and Δ > 27, it ensures that no more

than three malicious devices will be present in the network and the presence of up to three malicious device will

not have any negative effect on the existing valid nodes. If we consider ΩΩ = 1 and Δ > 20, we can restrict the

maximum number of malicious device to 1. Moreover, ΩΩ = 1 provides the earliest opportunity to deploy the

large-network model. Considering all these, we chose ΩΩ = 1.

We continued this experiment for 100 nodes. Since the maximum number of malicious nodes present in the

network was always 0 from the moment Δ ≥ 48, the result for Δ >50 in the graph was not necessary.

C. Switching Between a Small and Large Network
As we propose two separate algorithms for a small and large network, an obvious question is when to switch

from a small-network algorithm to large or vice versa. In order to answer this question, we deployed both

models in the simulated environment using OMNeT++ and collected the required response time for the

mechanism. In the case of a large network, the algorithm is a bit complex, but the length of the secret is

constant over the number of nodes. On the other hand, for the small network, the model is simple but the

length of the secret 𝑥𝑥 increases exponentially with the number of nodes. Thus, we expected that the response

time for small networks would increase rapidly as the network is expanded. Fig. 3 proves our assumption.

Fig. 3. Timing comparison between a large and small-network.

This experiment suggests 7 as the switching moment from a small to a large network and vice versa. But Section

VI-B suggests that we can effectively introduce the large-network model when Δ > 20. So, we decided to switch

from a small network to large when Δ > 20 and vice versa. This switching is transparent to the user.

Now another question arises. As a malicious node needs to guess a correct response to all the challenges in a

small network, this model is quite rigid. The large-network model minimizes the time requirement but here a

malicious node does not need to make a correct response to all challenges. As this research seems to be fine

when the network has a large number of nodes, we assumed that it would work fine if we switch to a large-

network model when the number of nodes reaches 21. So an issue of vulnerability arises as we just switch to a

large-network model. To verify this issue, we simulated the following experiment.

We simulated the same scenario used in Section VI-B for a small- and large-network model. For the large-

network model we used 𝜂 = 0.2 and ΩΩ = 1. Then, we calculated the maximum number of malicious nodes in the

network that proved them as valid by making necessary number of correct guesses. We continued this

procedure for an increasing number of nodes starting from 21 (since we are trying to see the effect just after

switching).

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-3-source-large.gif

Fig. 4 shows that the performance of the two models in terms of vulnerability is almost the same. The little

spikes that denote the presence of one malicious node are handled by ΩΩ.

Fig. 4. Maximum number of malicious devices in the network by making necessary number of correct guesses in

small- and large-network models.

D. Issue of the Leader Node
When there is no other node, the first node will be the leader node. When a valid node A sends the

recommendation for all other nodes (B𝑖), it also includes the trust value that it has on the other nodes in the

recommendation packet. We have discussed about this trust issue in detail in [36].

Later, the leader node generates the average trust value for every other node by dividing the summed trust

value by the number of recommendations. Finally, when the leader node broadcasts the valid neighbor list, it

also includes the IP address of the node that has the highest trust value. Let us assume that this node is M.

Here, T denotes the “waiting time for the leader node” discussed in Section IX-C.

The leader node normally sends a notification packet before leaving and M becomes the new leader. If a new

node requests to join the network but there is no response from the leader node in T milliseconds (which

indicates that the leader node has left without notification), then M takes the position and starts sending

challenge as the new leader.

E. Optimal Value of η
The hacker can introduce itself in the network in two ways: 1) by collecting 𝑛 (length of the secret) valid

challenge–response pairs and solving them using Gaussian elimination method to find the secret 𝑥 and 2) by

guessing the necessary number of correct responses.

We started with 𝑛 = 32 bits and ΩΩ = 1. In this experiment, we used 15 malicious nodes (these nodes do not

know the secret 𝑥𝑥 and always attempt to break in as valid nodes by following one of the strategies mentioned

earlier). The choice of 15 malicious nodes was arbitrary, and any number of malicious nodes could have been

used (we used 15 since, without loss of generalization, we can assume that the number of malicious nodes is

much less than that of valid nodes).

Fig. 5 shows the result when these nodes request for joining the network and try to guess the necessary number

of correct responses needed to be declared as valid node.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-4-source-large.gif

Fig. 5. Maximum number of malicious nodes present in one iteration when the first strategy is followed.

Fig. 6 shows the result when the hacker nodes just try to regenerate secret 𝑥𝑥 by capturing 𝑛 (𝑛 = 32) arbitrarily

challenge–response pairs.

Fig. 6. Maximum number of malicious nodes present in one iteration when the second strategy is followed.

We used 15 different secret 𝑥𝑥, and with a specific secret, we ran the ILDD mechanism for large-network model

for 15 times. So, the number of attempts in authentication by each malicious node will be a total of

15 × 15 = 225 times. We collected the maximum number of malicious nodes that were able to join the network

as valid nodes in a single iteration.

In case of the first strategy, the probability of getting all valid challenge–response pairs out of 𝑛 arbitrarily

collected challenge–response pair decreases with the increased value of 𝑛𝑛. This is so because as we increase the

value of 𝑛𝑛, the number of intentional incorrect answers in the network also increases. But this increased value

of 𝑛𝑛 helps the attacker if he adopts the second strategy since he has to make less number of correct guesses. As

we increase the value of 𝑛𝑛, more and more malicious nodes make necessary number of correct guesses to prove

them valid.

If we take 𝜂 = 0.1, it gives good result against second strategy but not for the first one. But 𝜂 = 0.2 gives

acceptable result in both cases. In the second case, at most one malicious node was able to make the necessary

number of correct guesses in one iteration when 𝜂 = 0.2 and can handle the presence of one malicious node.

So we have chosen 0.2 as the value of 𝑛𝑛.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-6-source-large.gif

SECTION VII. Architecture
Middleware adaptability for resource discovery, knowledge usability, and self-healing (MARKS) [28] provides the

core communication facilities as well as other services, such as knowledge usability [29], secure, adaptive, fault-

tolerant resource discovery (SAFE-RD) [30], and government emergency telecommunications service (GETS) self-

healing [31]. ILDD has been added as a service to MARKS. The placement of ILDD service has been shown

in Fig. 7.

Fig. 7. MARKS architecture.

SECTION VIII. Related Work
Several device discovery protocols [13]–[14][15], [17], [26] have been implemented for ad hoc networks. These

protocols are compatible with diverse wireless communication protocols like Bluetooth, 802.11, etc., but none

of these protocols have the ability to serve as middleware service. These protocols work in the MAC and

network layers and do not provide any application interface that is needed for application developers to use a

middleware service.

The security of Web service has been discussed in [32]. However, the focus of this software system is to support

the interoperability of applications over the Internet. Martin and Hung proposed a security policy [33] to handle

different security-related issues including confidentiality, integrity, and availability for voice over Internet

protocol (VoIP). However, our main focus is on secure service discovery in pervasive ad hoc networks. Aleksy et

al. proposed a three-tier approach to overcome heterogeneity and interoperability issues [34]; unfortunately,

their solution is appropriate for common object request broker architecture (CORBA) environment. Milosevic

and Dromey proposed a model [35] for automating the behavior monitoring issues in contracts by employing

two complementary methods. In our model, we have focused on making a validity decision based on behavior.

Popovski et al. [13] have proposed a randomized distributed algorithm for device discovery with collision

avoidance through the use of a stack algorithm, which fails to adapt itself with the dynamically changing

environment of an ad hoc network. In UPnP protocol [18], [19], a controlled device publicizes its presence and

services that it is willing to offer. Jini [20], [21] forms a community where each device can use the services

provided by other devices in the community. OSGI [22] provides the framework for a home network that allows

the user to communicate through devices with heterogeneous communication protocols, such as UPnP,

Bluetooth, 802.11, etc. However, none of these technologies addresses the issue of power and resource

optimization. The issue of maintaining a valid device list and corresponding security threats have not been

discussed. Research studies in [14]–[15][16] discussed Bluetooth wireless communication. However, this

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-7-source-large.gif

protocol does not address power optimization and fault tolerance. At the same time, it does not focus on

malicious attacks that we have discussed in our findings.

In a recent work [24], [25], the authors have shown that the Hopper–Blum protocol can be used to increase the

security features of RFID. RFID reader sends several challenges to every RFID tag several times, receives the

responses, and performs calculations. In our approach, the task of sending challenges is distributed to all valid

nodes. Thus, the leader only sums up the recommendations of other devices. Due to the limitation of battery

power, it is not possible for a specific node to handle all the challenges and calculations as the ad hoc network

increases in size.

SECTION IX. Evaluation
This service can be evaluated in the following ways.

A. Implementation of the Prototype
We have developed a prototype of ILDD using the VC++. NET Compact framework on a set of wirelessly

connected Dell Axim X50v PDAs in ad hoc mode. In Figs. 8–15, we provide some of the screenshots of our

implementation.

B. Measurement of the Performance
Our model is a perfect example of the term “small memory footprint” that is a required characteristic for

pervasive computing devices since these devices have much less memory storage capacity. Table I proves the

fact.

Fig. 8. Initial state of the leader.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-8-source-large.gif

Fig. 9. Leader is sending challenge.

Fig. 10. Member is sending challenge.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-9-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-10-source-large.gif

Fig. 11. Member is receiving response.

Fig. 12. Leader is receiving recommendation from member.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-11-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-12-source-large.gif

Fig. 13. Leader is sending updated neighbor list.

Fig. 14. Updated neighbor list, leader.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-13-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-14-source-large.gif

Fig. 15. Updated neighbor, member.

Our model consumes a small amount of battery power. In order to prove this statement, we measured the

remaining amount of battery power in two scenarios: 1) when ILDD is not running on PDA and 2) when ILDD is

running on PDA. We have modeled these two scenarios for two types of nodes: 1) normal valid node and 2)

leader node. We did this because the work load of a normal valid node and a leader node is

different. Figs. 16 and 17 show that the decrement rate of the curves indicating the remaining amount of battery

power is almost the same in both cases. This actually indicates that even while ILDD is running, it is not

consuming significant amount of battery power.

C. Performance Measurement Using Simulation
In order to check the scalability issue, we have simulated the ILDD mechanism using OMNeT ++. We tried to find

out the time required for the ILDD mechanism when the number of nodes present in the network is rather

large. Fig. 18 shows the time needed for completing an entire ILDD mechanism (completed all the steps

mentioned in Section III) with an increasing number of nodes.

Table I Miniature Footprint of ILDD

 Line of code (LOC) Executable file size

ILDD 1001 36 KB

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-15-source-large.gif

Fig. 16. Rate of decrement of remaining batter power before and after running the ILDD (normal valid node).

Fig. 17. Rate of decrement of remaining batter power before and after running the ILDD (leader node).

Fig. 18. Timing requirement for ILDD.

When we implemented the model, we used a timer in the leader node. When the timer expires, the leader node

stops taking any more recommendation and starts the calculation.

By using the values we got from this experiment, we tried to formulate an equation that enables the leader

node to determine the value of the timer. We used the equation given as

𝑇 = {𝑡 +
𝑁 − 5

5
× ΦΦ, where𝑁 ≥ 5

𝑡, otherwise

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-16-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-17-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5326/4492353/4492359/4492359-fig-18-source-large.gif

where 𝑁 is the number of nodes present in the network, t is the initial timing requirement, 𝑇 is the waiting time

for the leader node, and 𝛷 is the average increase in the required time for an increase of every five nodes to

finish the ILDD mechanism.

In our simulation, we started with five nodes and that takes 70 ms (𝑡 = 70 ms). We obtained this value by

manually running ILDD in five PDAs. For any number of nodes up to 5, the leader node will wait for 70 ms for

receiving all recommendations. From the simulated experiment, we found that 𝛷 = 34.32 (considering up to

100 nodes). So, we used 𝛷 = 35 in the equation. This issue will save the leader from waiting too long for all

recommendations.

SECTION X. Conclusions and Future Works

In this paper, we have adopted the well-known Hopper–Blum algorithm in an ad hoc scenario and presented

several pros and cons about its working methodology. As the number of nodes in an ad hoc network can vary

substantially, we proposed two different models for both a small and large network. The unique characteristics

of these models have been specified clearly. We also depicted several attack scenarios that can be handled with

our model.

At present, we are working on a behavioral model that will be used to indicate the malevolent attitude of a

node. This behavior model, though a simple one, takes into account issues like number of total requests,

number of requests for the same service, number of rejections for a specific service, number of total rejections,

etc. This model will be fitted in our developed trust model, and the output of the behavior model will play an

important role in calculating dynamic trust.

We have not concentrated on a couple of issues like challenges to a selective number of devices, loss of

challenge or response due to collision, spoofing or replay attack, etc. Cryptographic analysis of 𝑓(𝒙) is also saved

for our future work. We are planning to incorporate these issues as future work.

Table II contains the meaning of notations used.

Table II Definitions of Notations

Notation Meaning

x The secret key

n Length of the challenge or response

_ Number of valid devices in the network

μ Total number of devices in the network

- Maximum allowable percentage of noise (Intentional incorrect answer)

k Total number of challenges received by one valid device

Ω Expected number of malicious devices present in the network that have updated themselves in the
valid neighbor list

- Total number of challenge – response pairs generated

T Waiting time for the leader node

F Average increase in the required time for an increase of every 5 nodes to finish the ILDD
mechanism

References

1. N. Hopper and M. Blum, "A secure human computer authentication scheme", Carnegie Mellon

Univ., 2000.

2. N. J. Hopper and M. Blum, "Secure human identification protocols", Proc. 7th Int. Conf. Theory Appl.

Cryptol. Inf. Secur.: Adv. Cryptol. Adv. Cryptol. (ASIACRYPT)., vol. 2248, pp. 52-66, 2001.

3. M. Weiser, "Some computer problems in ubiquitous computing", Commun. ACM, vol. 36, no. 7, pp.

75-84, Jul. 1993.

4. P. Eronen and P. Nikander, "Decentralized Jini security", Netw. Distrib. Syst. Secur. Symp., 2001-Feb.

5. Hewlett Packard CoolTown. (2008).

6. UC Berkeley. (2008). The Ninja Project: Enabling internet scale services from arbitrarily small

devices.

7. M. Balazinska, H. Balakrishnan and D. Karger, "INS/Twine: A scalable peer-to-peer architecture for

intentional resource discovery", Int. Conf. Pervasive Comput., 2002.

8. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan and J. Lilley, "The design and implementation of an

intentional naming system", 17th ACM Symp. Operating Syst. Principles (SOSP 1999).

9. M. Nidd, "Service discovery in DEAPspace", IEEE Pers. Commun., vol. 8, no. 4, pp. 39-45, Aug. 2001.

10. E. Guttman, C. Perkins, J. Veizades and M. Day, (1999). Service location protocol Version 2.

11. The Salutation Consortium Inc. (1999). Salutation architecture specification.

12. S. Czerwinski, B. Y. Zhao, T. Hodes, A. Joseph and R. Katz, "An architecture for a secure service

discovery service", 5th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom 1999).

13. P. Popovski, T. Kozlova, L. Gavrilovska and R. Prasad, "Device discovery in short-range wireless ad

hoc networks", IEEE Netw., vol. 3, pp. 1361-1365, Oct. 2002.

14. G. V. Zaruba and V. Gupta, "Simplified Bluetooth device discovery—Analysis and simulation", Proc.

37th Hawaii Int. Conf. Syst. Sci., pp. 307-315, 2004-Jan.

15. F. Ferraguto, G. Mambrini, A. Panconesi and C. Petrioli, "A new approach to device discovery and

scatternet formation in Bluetooth networks", Proc. 18th Int. Parallel Distrib. Process. Symp., pp.

221-228, 2004-Apr.

16. G. V. Zaruba and I. Chlamtac, "Accelerating Bluetooth inquiry for personal area networks", Proc.

IEEE Global Telecommun. Conf., vol. 2, pp. 702-706, 2003-Dec.

17. K. Sohrabi, J. Gao, V. Ailawadhi and G. J. Pottie, "Protocols for self-organization of a wireless sensor

network", IEEE Pers. Commun., vol. 7, no. 5, pp. 16-27, Oct. 2000.

18. Universal Plug and Play Forum. (2008). About universal plug and playtechnology.

19. Universal Plug and Play. (2000 Jun.). Understanding universal plug and play: A white paper.

20. Sun Microsystems. (2008). Jini network technology.

21. Sun Microsystems. (2008). The community resource for Jini technology.

22. P. Dobrev, D. Famolari, C. Kurzke and B. Miller, "Device and service discovery in home networks

with OSGI", IEEE Commun. Mag., vol. 40, no. 8, pp. 86-92, Aug. 2002.

23. M. Satyanarayanan, "Fundamental challenges in mobilecomputing", Proc. 15th ACM Symp.

Principles Distrib. Comput., pp. 1-7, 1996-May.

24. S. A. Weis, "Security parallels between people and pervasive devices", Proc. 3rd IEEE Int. Conf.

Pervasive Comput. Commun. Workshops, pp. 105-109, 2005.

25. A. Juels and S. A. Weis, "Authenticating pervasive devices with human protocols", 25th Annu. Int.

Cryptol. Conf. Adv. Cryptol. (CRYPTO 2005), 2005-Aug.-14--18.

26. A. Wils, F. Matthijs, Y. Berbers, T. Holvoet and K. De Vlaminck, "Device discovery in residential

gateways", IEEE Trans. Consum. Electron., vol. 48, no. 3, pp. 478-483, Aug. 2002.

27. M. Haque, S. I. Ahamed, H. Li and K. M. Asif, "An authentication based lightweight device discovery

(ALDD) model for pervasive computing", Proc. 31st Annu. Int. Comput. Softw. Appl. Conf. (COMPSAC

2007), pp. 57-64.

28. M. Sharmin, S. Ahmed and S. I. Ahamed, "MARKS (middleware adaptability for resource discovery

knowledge usability and self-healing) in pervasive computing environments", Proc. 3rd Int. Conf. Inf.

Technol.: New Gen., pp. 306-313, 2006-Apr.

29. S. Ahmed, M. Sharmin and S. I. Ahamed, "Knowledge usability and its characteristics for pervasive

computing", Proc. 2005 Int. Conf. Pervasive Syst. Comput. (PSC 2005), pp. 206-209.

30. M. Sharmin, S. Ahmed and S. I. Ahamed, "SAFE-RD (Secure adaptive fault tolerant and efficient

resource discovery) in pervasive computing environments", Proc. IEEE Int. Conf. Inf. Technol. (ITCC

2005), pp. 271-276.

31. S. Ahmed, M. Sharmin and S. I. Ahamed, "GETS (Generic efficient transparent and secured) self-

healing service for pervasive computing application", Int. J. Netw. Secur., vol. 4, no. 3, pp. 271-281,

2007.

32. B. Carminati, E. Ferrari and P. C. K. Hung, "Web services composition: A security perspective", 21st

Int. Conf. Data Eng. (ICDE 2005) Int. Workshop Challenges Web Inf. Retrieval Integr. (WIRI)

Conjunction.

33. M. V. Martin and P. C. K. Hung, "Toward a security policy for VoIP applications", 18th Annu. Can.

Conf. Electr. Comput. Eng. (CCECE 2005).

34. M. Aleksy, M. Schader and C. Tapper, "Interoperability and interchangeability of middleware

components in a three-tier CORBA-environment-state of the art", Proc. 3rd Int. Conf. Enterprise

Distrib. Object Comput. (EDOC 1999), pp. 204-213.

35. Z. Milosevic and R. G. Dromey, "On expressing and monitoring behaviour in contracts", Proc. 6th Int.

Conf. Enterprise Distrib. Object Comput. (EDOC 2002), pp. 3-14.

36. M. Sharmin, S. Ahmed and S. I. Ahamed, "An adaptive lightweight trust reliant secure resource

discovery for pervasive computing environments", Proc. 4th Annu. IEEE Int. Conf. Pervasive Comput.

Commun. (PerCom 2006), pp. 258-263.

	An Impregnable Lightweight Device Discovery (ILDD) Model for the Pervasive Computing Environment of Enterprise Applications
	Recommended Citation

	tmp.1615307922.pdf.6CIwq

