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Abstract: 
In this study, the authors propose multichannel weighted Euclidean (WE) and weighted cosh (WCOSH) cost 
function estimators for speech enhancement in the distributed microphone scenario. The goal of the work is to 
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illustrate the advantages of utilising additional microphones and modified cost functions for improving signal-to-
noise ratio (SNR) and segmental SNR (SSNR) along with log-likelihood ratio (LLR) and perceptual evaluation of 
speech quality (PESQ) objective metrics over the corresponding single-channel baseline estimators. As with their 
single-channel counterparts, the perceptually-motivated multichannel WE and WCOSH estimators are functions 
of a weighting law parameter, which influences attention of the noisy spectral amplitude through a spectral gain 
function, emphasises spectral peak (formant) information, and accounts for auditory masking effects. Based on 
the simulation results, the multichannel WE and WCOSH cost function estimators produced gains in SSNR 
improvement, LLR output and PESQ output over the single-channel baseline results and unweighted cost 
functions with the best improvements occurring with negative values of the weighting law parameter across all 
input SNR levels and noise types. 

SECTION 1 Introduction 
Over the past three decades, research in speech enhancement has concentrated on frequency-domain statistical 
estimators derived in the minimum mean-square error (MMSE) sense for estimation of the spectral amplitude 
(SA) [1 [2]–3]. Unfortunately, these MMSE estimators that minimise the Bayes risk on a squared-error cost 
function are not the most subjectively meaningful for three reasons: estimation errors do not necessarily 
directly relate to speech quality, estimators might not preserve spectral peak (formant) information or account 
for auditory masking effects and estimation errors do not convey the same perceptual meaning but are treated 
in the same unweighted fashion [3]. The true goal of speech enhancement is to not necessarily reduce the 
background noise, which is measured through signal-to-noise ratio (SNR) and segmental SNR (SSNR), but rather 
to improve both the quality and intelligibility of the noisy signals [4]. To evaluate speech quality in an 
automated, accurate and reliable way, Hu and Loizou [5] demonstrated that the log-likelihood ratio (LLR) and 
perceptual evaluation of speech quality (PESQ) objective metrics correlated the best with speech distortion and 
overall speech quality, which are better indicators for performance evaluation. Through modifications to the 
statistical prior models or estimator equations, Andrianakis and White [6], Erkelens et al. [7], Plourde and 
Champagne [8] and You et al. [9] demonstrated only marginal improvements in LLR and PESQ over the 
corresponding baseline methods. In order to achieve further gains in performance, these standard and more 
advanced single-channel estimators can be extended to multiple microphones [10, 11], particularly the relatively 
new distributed microphone paradigm [12 [13] [14]–15]. 

In this work, the focus is on extending the more advanced and perceptually-relevant cost functions for 
performing single-channel speech enhancement, namely the weighted Euclidean (WE) and weighted cosh 
(WCOSH) cost functions developed by Loizou [3], to distributed microphone domain. Specifically, the SA 
estimation is an extension of the short-time spectral amplitude estimator derived for distributed microphones 
by Lotter et al. [16]. In conjunction with the multichannel SA and spectral phase estimators [12, 17], the goal is 
to demonstrate that the reconstructed enhanced signal produces increase in not only in SSNR but also in LLR 
and PESQ performance over the baseline single-channel results with additional microphone channel 
information. As with their single-channel counterparts, the multichannel WE and WCOSH estimators are 
functions of a weighting law parameter, which influences attention of the noisy SA through a spectral gain 
function, emphasises spectral peak (formant) information and accounts for auditory masking effects. Overall, 
the multichannel SA estimators are now generalisations to the single-channel estimators for improving noise 
reduction, speech distortion and overall speech quality in a large region with all the available microphone 
channels. 

The remainder of this paper is organised into the following sections: distributed microphone system (Section 2), 
perceptually-motivated cost functions (Section 3), parameter estimation (Section 4), simulation experiments and 
results (Section 5) and conclusion (Section 6). 



SECTION 2 Distributed microphone system 
Consider an arbitrary array of 𝑀𝑀 microphones, where a particular microphone is represented as 𝑖𝑖 ∈ [1, … ,  𝑀𝑀]. 
At each microphone 𝑖𝑖, the source signal 𝑠𝑠(𝑡𝑡) is captured as time-delayed and attenuated coherent clean 
signals 𝑐𝑐𝑖𝑖𝑠𝑠(𝑡𝑡 −  𝜏𝜏𝑖𝑖  ) corrupted by additive and uncorrelated noise 𝑛𝑛𝑖𝑖 (𝑡𝑡) with time-invariant attenuation 
factors 𝑐𝑐𝑖𝑖 and time delays 𝜏𝜏𝑖𝑖. Without loss of generality, the first microphone, 𝑖𝑖 =  1, is assumed as the 
reference microphone with 𝑐𝑐1 =  1. Based on this multichannel scenario, the propagation model in the time 
domain is given as 

𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝑐𝑐𝑖𝑖𝑠𝑠(𝑡𝑡) + 𝑛𝑛𝑖𝑖(𝑡𝑡) (1) 

which can be accurately time-aligned through simple cross-correlation methods [18]. The frequency-domain 
representation of (1) is expressed as 

𝑌𝑌𝑖𝑖(𝜆𝜆,𝑘𝑘) = 𝑐𝑐𝑖𝑖𝑆𝑆(𝜆𝜆,𝑘𝑘) + 𝑁𝑁𝑖𝑖(𝜆𝜆, 𝑘𝑘)
𝑅𝑅𝑖𝑖(𝜆𝜆,𝑘𝑘)ej𝜗𝜗𝑖𝑖(𝜆𝜆,𝑘𝑘) = 𝑐𝑐𝑖𝑖𝐴𝐴(𝜆𝜆, 𝑘𝑘)ej𝛼𝛼(𝜆𝜆,𝑘𝑘) + 𝑁𝑁𝑖𝑖(𝜆𝜆, 𝑘𝑘) (2) 

where 𝜆𝜆 and 𝑙𝑙 represent the frame and frequency bin with noisy and clean SAs 𝑅𝑅𝑖𝑖 and 𝐴𝐴, noisy and clean 
spectral phases 𝜗𝜗𝑖𝑖 and 𝛼𝛼 and spectral noise 𝑁𝑁𝑖𝑖  for each individual microphone 𝑖𝑖. 

SECTION 3 Perceptually-motivated cost functions 
Given the multichannel Bayes risk that is represented by the average cost as 

ℜB = 𝐸𝐸[𝑑𝑑(𝐴𝐴,𝐴𝐴
^

)] = ∫  ∞
−∞ ∫  ∞

−∞ ⋅⋅⋅ ∫  ∞
−∞ 𝑑𝑑(𝐴𝐴,𝐴𝐴

^
)

× 𝑝𝑝(𝐴𝐴,𝑌𝑌1, … ,𝑌𝑌𝑀𝑀)d𝐴𝐴d𝑌𝑌1 … d𝑌𝑌𝑀𝑀

= � [∫  ∞
−∞ ⋅⋅⋅ ∫  ∞

−∞ 𝑑𝑑(𝐴𝐴,𝐴𝐴
^

)𝑝𝑝(𝐴𝐴|𝑌𝑌1, … ,𝑌𝑌𝑀𝑀)d𝐴𝐴]
∞

−∞
× 𝑝𝑝(𝑌𝑌1, … ,𝑌𝑌𝑀𝑀)d𝑌𝑌1 … d𝑌𝑌𝑀𝑀

 (3) 

the minimisation of (3) with respect to 𝐴𝐴
^

 results in different estimators for a particular cost function. For the SA 
cost function [1] 

𝑑𝑑SA(𝐴𝐴,𝐴𝐴
^

) = (𝐴𝐴 − 𝐴𝐴
^

)2 (4) 

and log-spectral amplitude (LSA) cost function [2] 

𝑑𝑑LSA(𝐴𝐴,𝐴𝐴
^

) = (log 𝐴𝐴 − log 𝐴𝐴
^

)2 (5) 

the resulting estimators are 

𝐴𝐴
^
SA = 𝐸𝐸[𝐴𝐴|𝑌𝑌1, … ,𝑌𝑌𝑀𝑀] (6) 

and 

𝐴𝐴
^
LSA = exp (𝐸𝐸[ln (𝐴𝐴)|𝑌𝑌1, … ,𝑌𝑌𝑀𝑀]) (7) 
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By modifying the cost function 𝑑𝑑(𝐴𝐴,𝐴𝐴
^

) in (3), the consequence is that there are many alternative estimators to 
the common methods of (6) and (7) for estimating the SA of the clean source signal. Since only the LSA cost 
function in (5) deals with a more perceptual relevant criterion and has produced higher SNR/SSNR 
improvements in speech quality for single-channel speech enhancement [2] than the SA cost function in (4), 
Loizou [3] developed several perceptually significant estimators that outperformed both the SA and LSA cost 
functions. From the work, the best results occurred with the WE cost function 

𝑑𝑑WE(𝐴𝐴,𝐴𝐴
^

) = 𝐴𝐴𝑝𝑝(𝐴𝐴 − 𝐴𝐴
^

)2 (8) 

and WCOSH cost function 

𝑑𝑑WCOSH(𝐴𝐴,𝐴𝐴
^

) = [1
2

(𝐴𝐴
𝐴𝐴
^ + 𝐴𝐴

^

𝐴𝐴
) − 1]𝐴𝐴𝑝𝑝

= [cosh (ln(𝐴𝐴
𝐴𝐴
^)) − 1]

𝐴𝐴𝑝𝑝 = [cosh (ln (𝐴𝐴) − ln (𝐴𝐴
^

))− 1]𝐴𝐴𝑝𝑝

 (9) 

where 𝑝𝑝 is the weighting law parameter that influences whether the corresponding estimator produces larger or 
smaller attenuation of the noisy SA through its spectral gain function or focuses on the spectral peaks (𝑝𝑝 >  0) 
or spectral valleys (𝑝𝑝 <  0). 

Through the minimisation of (3) with the WE and WCOSH cost functions in (8) and (9), the subsequent true 
source SA estimators for distributed multichannel speech enhancement are given as 

𝐴𝐴
^
WE =

� ∫ 𝐴𝐴𝑝𝑝+1𝑝𝑝(𝑌𝑌1,…,𝑌𝑌𝑀𝑀|𝐴𝐴,𝛼𝛼)𝑝𝑝(𝐴𝐴,𝛼𝛼)d𝛼𝛼d𝐴𝐴2𝜋𝜋
0

∞

0

� ∫ 𝐴𝐴𝑝𝑝𝑝𝑝(𝑌𝑌1,…,𝑌𝑌𝑀𝑀|𝐴𝐴,𝛼𝛼)𝑝𝑝(𝐴𝐴,𝛼𝛼)d𝛼𝛼d𝐴𝐴2𝜋𝜋
0

∞

0

 (10) 

and 

𝐴𝐴
^
WCOSH
2 =

� ∫ 𝐴𝐴𝑝𝑝+1𝑝𝑝(𝑌𝑌1,…,𝑌𝑌𝑀𝑀|𝐴𝐴,𝛼𝛼)𝑝𝑝(𝐴𝐴,𝛼𝛼)d𝛼𝛼d𝐴𝐴2𝜋𝜋
0

∞

0

� ∫ 𝐴𝐴𝑝𝑝−1𝑝𝑝(𝑌𝑌1,…,𝑌𝑌𝑀𝑀|𝐴𝐴,𝛼𝛼)𝑝𝑝(𝐴𝐴,𝛼𝛼)d𝛼𝛼d𝐴𝐴2𝜋𝜋
0

∞

0

 (11) 

which are valid for the parameters 𝑝𝑝WE >  −2 and 𝑝𝑝WCOSH >  −1 and exactly equivalent to the single-channel 
estimators in [3] for 𝑐𝑐1 =  1 and 𝑀𝑀 =  1. 

3.1 Statistical models 
Based on the form of the distributions given in [19], Gaussian models are assumed for both the speech prior 
likelihood 

𝑝𝑝(𝐴𝐴,𝛼𝛼) = 𝐴𝐴
𝜋𝜋𝜎𝜎𝑠𝑠2

exp �− 𝐴𝐴2

𝜎𝜎𝑠𝑠2
� (12) 

and noise likelihood 
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𝑝𝑝(𝑌𝑌𝑖𝑖|𝐴𝐴,𝛼𝛼) = 1
𝜋𝜋𝜎𝜎𝑁𝑁𝑖𝑖

2 exp�− �𝑌𝑌𝑖𝑖−𝑐𝑐𝑖𝑖𝐴𝐴ej𝛼𝛼�
2

𝜎𝜎𝑁𝑁𝑖𝑖
2 � (13) 

where 𝜎𝜎𝑆𝑆2 and 𝜎𝜎𝑁𝑁𝑖𝑖
2  are the speech and noise spectral variances. Since the WE and WCOSH estimators in (10) and 

(11) consists of a noise likelihood with M noisy microphone observations {𝑌𝑌1,  𝑌𝑌2, … ,  𝑌𝑌𝑀𝑀} conditioned on the true 
SA 𝐴𝐴 and true spectral phase 𝛼𝛼, the noise likelihood in (13) must account for all the available information, not 
simply at the ith microphone. Under the assumption of a diffuse noise field [16], the correlation of the noise 
between the various microphones is approximately low for high frequencies with relatively large microphone 
distances according to the magnitude-squared coherence (MSC). Therefore the noises are assumed uncorrelated 
at each of the microphones, which results in the conditional joint distribution of the noisy spectral observations 
{𝑌𝑌1, … ,  𝑌𝑌𝑀𝑀} given the SA and spectral phase written as 

𝑝𝑝(𝑌𝑌1, … ,𝑌𝑌𝑀𝑀|𝐴𝐴,𝛼𝛼) = � 𝑝𝑝(𝑌𝑌𝑖𝑖|𝐴𝐴,𝛼𝛼)𝑀𝑀
𝑖𝑖=1

= � 1
𝜋𝜋𝜎𝜎𝑁𝑁𝑖𝑖

2 exp (−� |𝑌𝑌𝑖𝑖−𝑐𝑐𝑖𝑖𝐴𝐴ej𝛼𝛼|2

𝜎𝜎𝑁𝑁𝑖𝑖
2

𝑀𝑀

𝑖𝑖=1

)

𝑀𝑀

𝑖𝑖=1

 (14) 

For the distributed microphone WE and WCOSH estimators that will be derived from (10) and (11), the 
relationship in (14) allows for the estimation of the noise statistics at each of the corresponding microphones. 

3.2 Optimal estimators 
From the given statistical models (12) and (14), the SA estimators (10) and (11) are now rewritten as (see (15)) 

𝐴𝐴
^
WE =

� 𝐴𝐴𝑝𝑝+2exp (−(𝐴𝐴2/𝜎𝜎𝑆𝑆
2))� exp (−� ((|𝑌𝑌𝑖𝑖−𝑐𝑐𝑖𝑖𝐴𝐴ej𝛼𝛼|2)/(𝜎𝜎𝑁𝑁𝑖𝑖

2 ))
𝑀𝑀

𝑖𝑖=1
)d𝛼𝛼d𝐴𝐴

2𝜋𝜋

0

∞

0

� 𝐴𝐴𝑝𝑝+1exp (−(𝐴𝐴2/𝜎𝜎𝑆𝑆
2))� exp (−� (|𝑌𝑌𝑖𝑖−𝑐𝑐𝑖𝑖𝐴𝐴ej𝛼𝛼|2/(𝜎𝜎𝑁𝑁𝑖𝑖

2 ))
𝑀𝑀

𝑖𝑖=1
)d𝛼𝛼d𝐴𝐴

2𝜋𝜋

0

∞

0

 (15) 

and (see (16)) 

𝐴𝐴
^
WCOSH
2 =

� 𝐴𝐴𝑝𝑝+2exp (−(𝐴𝐴2/𝜎𝜎𝑆𝑆
2))� exp (−� ((|𝑌𝑌𝑖𝑖−𝑐𝑐𝑖𝑖𝐴𝐴ej𝛼𝛼|2)/𝜎𝜎𝑁𝑁𝑖𝑖

2 )
𝑀𝑀

𝑖𝑖=1
)d𝛼𝛼d𝐴𝐴

2𝜋𝜋

0

∞

0

� 𝐴𝐴𝑝𝑝exp (−(𝐴𝐴2/𝜎𝜎𝑆𝑆
2))� exp (−� ((|𝑌𝑌𝑖𝑖−𝑐𝑐𝑖𝑖𝐴𝐴ej𝛼𝛼|2)/(𝜎𝜎𝑁𝑁𝑖𝑖

2 ))
𝑀𝑀

𝑖𝑖=1
)d𝛼𝛼d𝐴𝐴

2𝜋𝜋

0

∞

0

 (16) 

As in [12], the spectral phase α is integrated out from the inner integrals in both (15) and (16) to produce (see 
(17)) 
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𝐴𝐴
^
WE =

� 𝐴𝐴𝑝𝑝+2exp (−(𝐴𝐴2/𝜎𝜎𝑆𝑆
2))exp (−𝐴𝐴2(1/𝜆𝜆))𝐼𝐼0(2𝐴𝐴|� (𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖/(𝜎𝜎𝑁𝑁𝑖𝑖

2 ))
𝑀𝑀

𝑖𝑖=1
|)d𝐴𝐴

∞

0

� 𝐴𝐴𝑝𝑝+1exp (−𝐴𝐴2(1/𝜆𝜆))𝐼𝐼0(2𝐴𝐴|� (𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖/(𝜎𝜎𝑁𝑁𝑖𝑖
2 ))

𝑀𝑀

𝑖𝑖=1
|)d𝐴𝐴

∞

0

 (17) 

and (see (18)) 

𝐴𝐴
^
WCOSH
2 =

� 𝐴𝐴𝑝𝑝+2exp (−(𝐴𝐴2/𝜎𝜎𝑆𝑆
2))exp (−𝐴𝐴2(1/𝜆𝜆))𝐼𝐼0(2𝐴𝐴|� (𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖/(𝜎𝜎𝑁𝑁𝑖𝑖

2 ))
𝑀𝑀

𝑖𝑖=1
|)d𝐴𝐴

∞

0

� 𝐴𝐴𝑝𝑝exp (−𝐴𝐴2(1/𝜆𝜆))𝐼𝐼0(2𝐴𝐴|� (𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖/(𝜎𝜎𝑁𝑁𝑖𝑖
2 ))

𝑀𝑀

𝑖𝑖=1
|)d𝐴𝐴

∞

0

 (18) 

where 𝐼𝐼0(•) denotes the modified Bessel function of the first kind of the zeroth order and 

1
𝜆𝜆

= 1
𝜎𝜎𝑆𝑆
2 + � 𝑐𝑐𝑖𝑖

2

𝜎𝜎𝑁𝑁𝑖𝑖
2

𝑀𝑀

𝑖𝑖=1

 (19) 

By utilising (8.406.3) and (6.631.1) in [20] and [21], the closed-form solutions for (17) and (18) are given in terms 
of the confluent hypergeometric function  𝐹𝐹11

  (•;•;•) described by 9.210 in [21] as 

𝐴𝐴
^
WE = Γ((𝑝𝑝/2)+(3/2))

Γ(((𝑝𝑝/2)+1))
1

(1/𝜆𝜆)1/2
 1𝐹𝐹1(((𝑝𝑝+3)/2);1;𝑧𝑧)
 1𝐹𝐹1(((𝑝𝑝+2)/2);1;𝑧𝑧)

 (20) 

and 

𝐴𝐴
^
WCOSH
2 = Γ((𝑝𝑝/2)+(3/2))

Γ((𝑝𝑝/2)+(1/2))
1

(1/𝜆𝜆)
 1𝐹𝐹1(((𝑝𝑝+3)/2);1;𝑧𝑧)
 1𝐹𝐹1(((𝑝𝑝+1)/2);1;𝑧𝑧)

 (21) 

where 

𝑧𝑧 =
|� (𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖/𝜎𝜎𝑁𝑁𝑖𝑖

2 )
𝑀𝑀

𝑖𝑖=1
|2

(1/𝜆𝜆)
=

|� �𝜉𝜉𝑖𝑖𝛾𝛾𝑖𝑖ej𝜗𝜗𝑖𝑖
𝑀𝑀

𝑖𝑖=1
|2

1+∑ 𝜉𝜉𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (22) 

with 𝐴𝐴𝑖𝑖  =  𝑐𝑐𝑖𝑖𝐴𝐴, 𝜎𝜎𝑆𝑆𝑖𝑖
2 = 𝑐𝑐𝑖𝑖2𝜎𝜎𝑆𝑆2, a priori 𝜉𝜉𝑖𝑖  SNR and a posteriori 𝑌𝑌𝑖𝑖  SNR. Unlike in [12], the ratio of the  𝐹𝐹11

  (•;•;•) 
terms in both (20) and (21) cannot be further simplified into a single  𝐹𝐹11

  (•;•;•) term since the first-term 
argument changes each time for the corresponding the 𝑝𝑝 parameter. Based on the simplification of the term 

1
(1/𝜆𝜆)

= 𝜎𝜎𝑆𝑆
2

1+∑ 𝜉𝜉𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (23) 

the final form of the distributed multichannel WE and WCOSH estimators in (20) (equation 3.43 in [12]) and (21) 
(equation 3.44 in [12]) are written as 

𝐴𝐴
^
WE = Γ((𝑝𝑝/2)+(3/2))

Γ((𝑝𝑝/2)+1)
( 𝜎𝜎𝑆𝑆

2

1+∑ 𝜉𝜉𝑖𝑖𝑀𝑀
𝑖𝑖=1

)(1/2)

×  1𝐹𝐹1(−((𝑝𝑝+1)/2);1;−𝑧𝑧)
 1𝐹𝐹1(−(𝑝𝑝/2);1;−𝑧𝑧)

 (24) 
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and 

𝐴𝐴
^
WCOSH = Γ((𝑝𝑝/2)+(3 2⁄ )𝜎𝜎𝑆𝑆

2 1𝐹𝐹1(−((𝑝𝑝+1) 2⁄ );1;−𝑧𝑧)

Γ((𝑝𝑝/2)+�12�1+∑ 𝜉𝜉𝑖𝑖𝑀𝑀
𝑖𝑖=1 𝑠𝑠𝐹𝐹1(−((𝑝𝑝−1) 2⁄ );1;−𝑧𝑧)

(25) 

which decays to the single-channel perceptually-motivated Bayesian noise reduction filters [3] for the case 
of 𝑀𝑀 =  1. Full derivations of the estimators are presented in the appendices. 

SECTION 4 Parameter estimation 
Based on an arbitrary reference microphone 𝑚𝑚 =  1, the perceptually-motivated SA estimators are rewritten as 

𝐴𝐴
^
WE = 1

𝛾𝛾1

Γ(𝑝𝑝/2)+(3/2)
Γ((𝑝𝑝/2)+1)

( 𝜉𝜉1𝛾𝛾1
1+∑ 𝜉𝜉𝑖𝑖𝑀𝑀

𝑖𝑖=1
)(1/2)

×  1𝐹𝐹1(−((𝑝𝑝+1)/2);1;−𝑧𝑧)
 1𝐹𝐹1(−(𝑝𝑝/2);1;−𝑧𝑧)

𝑅𝑅1
 (26) 

and (see (27)) 

Extra close brace or missing open brace 

From (26) and (27), the fundamental components are the a priori SNR 𝜉𝜉𝑖𝑖  and a posteriori SNR 𝛾𝛾𝑖𝑖  and attenuation 

factors 𝑐𝑐𝑖𝑖. In order to fully estimate the true source signal 𝑠𝑠
^
, the SA estimators 𝐴𝐴

^
 require the estimate of the 

spectral phase 𝛼𝛼. 

4.1 A priori and a posterior SNR 
The decision-directed [1] smoothing approach is utilised to recursively estimate the a priori SNR as 

𝜉𝜉
^
𝑖𝑖 =

𝜎𝜎𝑆𝑆𝑖𝑖
2

𝜎𝜎𝑁𝑁𝑖𝑖
2 = 𝑐𝑐𝑖𝑖

2⋅𝜎𝜎𝑆𝑆
2

𝜎𝜎𝑁𝑁𝑖𝑖
2

= 𝛼𝛼SNR ⋅ 𝑐𝑐
^
𝑖𝑖
2 ⋅ 𝐴𝐴

^2(𝜆𝜆−1)
𝜎𝜎𝑁𝑁𝑖𝑖
2 + (1 − 𝛼𝛼SNR) ⋅ 𝑃𝑃[𝛾𝛾𝑖𝑖(𝜆𝜆) − 1]

 (28) 

and the a posteriori SNR is calculated as 

𝛾𝛾𝑖𝑖 = 𝑅𝑅𝑖𝑖
2

𝜎𝜎𝑁𝑁𝑖𝑖
2  (29) 

for each channel as with 𝛼𝛼SNR = 0.98 using thresholds of 𝜉𝜉𝑖𝑖 ,min =  10− 25/10   and 𝛾𝛾𝑖𝑖 ,min =  40 (implemented 
as a floor on 𝜎𝜎𝑁𝑁𝑖𝑖

2 ). By utilising the perceptually-motivated SA estimators of (24) and (25) and spectral phase [12] 
for distributed multichannel speech enhancement, the clean source signal is reconstructed using the overlap-
add technique. 

4.2 Attenuation factors 
The attenuation factors ci must be accurately estimated for estimation of the a priori SNR in (28). Based on the 
discussion in [12], the attenuation factors are estimated from the signal powers of the noisy 
observations yi under the assumed independence of the speech 𝑠𝑠 and noise 𝑛𝑛 as 
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𝑐𝑐
^
𝑖𝑖 = �𝜎𝜎𝑦𝑦𝑖𝑖2 − 𝜎𝜎𝑛𝑛𝑖𝑖2 /𝜎𝜎𝑠𝑠 = �𝜎𝜎𝑦𝑦𝑖𝑖2 − 𝜎𝜎𝑛𝑛𝑖𝑖2 /�𝜎𝜎𝑦𝑦12 − 𝜎𝜎𝑛𝑛12  (30) 

where 𝑐𝑐1 =  1 serves as the reference microphone defined as 𝑚𝑚 =  1. From (30), the estimated attenuation 
factors are simply a relative SNR ratio of the particular microphone 𝑖𝑖 to a reference microphone. Thus, the value 
of attenuation factors can be determined by assuming a known 𝑐𝑐𝑖𝑖 at any arbitrary reference microphone. 

4.3 Spectral phase 
To estimate the spectral phase α for both the single-channel and multichannel WE and WCOSH estimators, the 
multichannel MMSE spectral phase estimator [12, 17] is used as 

𝛼𝛼
^

= tan−1 (
� ((�𝜉𝜉𝑖𝑖)/𝜎𝜎𝑁𝑁𝑖𝑖)Im(𝑌𝑌𝑖𝑖)

𝑀𝑀

𝑖𝑖=1

� ((�𝜉𝜉𝑖𝑖)/𝜎𝜎𝑁𝑁𝑖𝑖)Re(𝑌𝑌𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

) (31) 

which is an a priori SNR weighted sum of the noisy microphone observations. For the single-channel case 
with 𝑀𝑀 =  1, the multichannel MMSE estimator in (31) simplifies to the single-channel noisy spectral phase 
estimator [1]. 

SECTION 5 Simulation experiments and results 
To evaluate the proposed optimal multichannel WE and WCOSH estimators derived in (24) and (25), distributed 
multiple microphone noisy signals were simulated using the TIMIT [22] and NOISEX [23] corpora. The noisy 
signals were sampled at 16 kHz and created according to (1) with equal number of uncorrelated noises as 
microphones. Although the signals were assumed to be perfectly synchronised without any time misalignment, 
previous work has illustrated that cross-correlation methods can accurately estimate time delays in the signals 
and effectively time align signals without any significant degradation in the enhancement results [24]. To 
demonstrate the best-case results, constant attenuation factors (𝑐𝑐𝑖𝑖 =  1), which represent the equal amplitude 
reduction between the original acoustic clean source signal and recorded noisy signals, were estimated at each 
of the microphones using the signal powers of the noisy signals across an entire utterance [24]. At each of the 
non-reference microphones, the noises were scaled according to the noise at the reference microphone and 
added to each of the attenuated clean signals at an input SNR of 0 dB. The noisy signals were truncated to 
produce an equal number of samples in each frame. Analysis conditions consisted of frames of 256 samples (16 
ms) with 50% overlap using Hanning windows. Noise estimation was performed on five initial silence frames 
without any subsequent updating of the spectrum. Objective measures of SSNR [25], LLR [26] and PESQ [27] 
were utilised to measure the noise reduction, speech distortion and overall quality [5] averaged over ten 
enhanced signals, which were reconstructed using the overlap-add technique. At input SNRs ranging from −10 to 
+10 dB at increments of +5 dB, the input LLR and input PESQ were 1.71, 1.69, 1.64, 1.55 and 1.36 and 1.16, 1.37, 
1.64, 1.94 and 2.29. 

Figs. 1 and 2 show the SSNR improvement, LLR improvement and PESQ improvement as a function of the 
number of microphones in the array and weighting law parameter p for the multichannel WE and WCOSH 
estimators with white noise (pink and babble noises produced similar results), where LLR (lower scores indicate 
better performance) and PESQ (higher scores indicate better performance) are defined with ranges of 0–2 and 
0.5–4.5. Based on the trends as a function of the weighting law parameter p, the multichannel WE and WCOSH 
estimators produced significant increases in noise reduction, decreases in speech distortion and increases in 
overall speech quality. In terms of SSNR improvement, the estimators had the largest gains at lower input SNR 
levels and largest increases over the single-channel baseline at higher input SNR levels. Conversely with both LLR 
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output and PESQ output, the estimators’ largest gains and largest increases over the single-channel baseline 
were both at higher input SNR levels. As the weighting law p was decreased from positive p values (spectral 
peaks) to p = 0 (unweighted estimators) to negative p values (spectral valleys), it is clear that the estimators had 
more improvements with the negative p values since the estimators focused more on the spectral valleys, where 
the quantisation noise was not masked by the spectral peaks (formants) and the estimators would produce 
audible differences between the noisy spectrum and enhancement spectrum. For SSNR improvement, it should 
be noted that the larger values of the weighting law parameter p, specifically at p = 2 for both estimators, 
produced little separation between the various input SNR levels and much lower gains and smaller increases 
over the single-channel baseline. In contrast, the LLR and PESQ improvements did not experience the same 
trend since they do not directly measure noise reduction as with SSNR and focus more on the actual speech 
quantity. Overall, the multichannel WE and WCOSH estimators performed much better than the unweighted 
baselines and single-channel baselines, particularly for larger negative values of the weighting law parameter p. 

 
Fig. 1 SSNR improvement, LLR improvement and PESQ improvement for multichannel WE cost function 
estimator for input SNR of −10, −5, 0, +5 and +10 dB with input SSNRs (−20, −15, −10, −5 and 0 dB), input LLRs 
(1.71, 1.69, 1.64, 1.55 and 1.36) and input PESQs (1.36 and 1.16, 1.37, 1.64, 1.94 and 2.29) in white noise 

 
Fig. 2 SSNR improvement, LLR improvement and PESQ improvement for multichannel WCOSH cost function 
estimator for input SNR of −10, −5, 0, +5 and +10 dB with input SSNRs (−20, −15, −10, −5 and 0 dB), input LLRs 
(1.71, 1.69, 1.64, 1.55 and 1.36) and input PESQs (1.36 and 1.16, 1.37, 1.64, 1.94 and 2.29) in white noise 
 

Tables 1 and 2 summarise the impact of the additional microphones and modified multichannel WE and WCOSH 
cost functions on speech enhancement. Specifically, the results were evaluated using the PESQ output metric to 
determine the gains in overall speech quality with increments of 0.1 for the weighting law parameter p. From 
Table 1, the multichannel WE cost function slightly outperformed the multichannel WCOSH cost function over 
the corresponding single-channel WE and WCOSH cost functions across all five input SNR levels for 12 
microphones. In general, the additional microphone information produced increases in PESQ output 
improvement. With both estimators, the range of PESQ output improvement over the single-channel baseline 
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results ranged from ∼ 0.7–0.9, which is a considerable amount of gain considering that the PESQ output metric 
only ranges from 0.5–4.5. The most improvement was again seen with negative values of p since the weighting 
law parameter embedded in the cost functions concentrated more on the important spectral valleys, not 
spectral peaks. In terms of Table 2, the PESQ output improvements of the multichannel WE and WCOSH cost 
functions over the multichannel Euclidean and COSH cost functions (i.e. unweighted estimators with weighting 
law parameter p = 0) produced slightly less gains than including the additional microphone information. The 
range of PESQ output improvement of the modified cost functions was around 0.1–0.4 with negative values of 
the weighting law parameter p producing the best results, which were consistent across the different input SNR 
levels. In the end, the multichannel WE and WCOSH cost function estimators worked better in the PESQ output 
sense with additional microphones, but still have noteable gains over the unweighted multichannel WE and 
WCOSH cost function estimators. 

Table 1 PESQ output improvement of multichannel (12 microphones) WE and WCOSH estimators over single-
channel baseline WE and WCOSH estimators for input SNR of −10, −5, 0, +5 and +10 dB with input SSNRs (−20, 
−15, −10, −5 and 0 dB) and input PESQs (1.36 and 1.16, 1.37, 1.64, 1.94 and 2.29) in white noise 

Method WE  WCOSH  
Input 
SNR, dB 

Best weighting 
law parameter 

PESQ output 
improvement over single 
channel 

Best weighting 
law parameter 

PESQ output 
improvement over single 
channel 

−10 −1.6 0.71 −0.6 0.71 
−5 −1.7 0.81 −0.8 0.80 
0 −1.8 0.86 −0.9 0.80 
+5 −1.8 0.87 −0.9 0.87 
+10 −1.9 0.89 −0.9 0.83 
average −1.8 0.83 −0.8 0.80 

Table 2 PESQ output improvement of multichannel (12 microphones) WE and WCOSH estimators over 
multichannel baseline unweighted (Euclidean and COSH, where p = 0) estimators for input SNR of −10, −5, 0, +5 
and +10 dB with input SSNRs (−20, −15, −10, −5 and 0 dB) and input PESQs (1.36 and 1.16, 1.37, 1.64, 1.94 and 
2.29) in white noise 

Method WE  WCOSH  
Input 
SNR, dB 

Best weighting 
law parameter 

PESQ output improvement 
over unweighted Euclidean 

Best weighting 
law parameter 

PESQ output 
improvement over 
unweighted cosh 

−10 −1.6 0.24 −0.6 0.11 
−5 −1.2 0.32 −0.9 0.15 
0 −1.4 0.32 −0.8 0.16 
+5 −1.7 0.30 −0.9 0.17 
+10 −1.5 0.36 −0.8 0.17 
average −1.5 0.31 −0.8 0.15 

 

SECTION 6 Conclusion 
In this paper, the multichannel perceptually-motivated WE and WCOSH cost functions were derived for 
multichannel speech enhancement using distributed microphones. The focus was to demonstrate the benefits 
of utilising additional microphones and modified cost functions for providing gains in noise reduction, speech 
distortion and overall speech quality, which were measured by the SSNR, LLR and PESQ objective metrics. From 
the simulation results, the multichannel WE and WCOSH cost function estimators showed significant gains in 



SSNR improvement, LLR improvement and PESQ improvement over both the corresponding single-channel WE 
and WCOSH cost functions and multichannel unweighted cost functions baseline results. From scenarios that 
require distributed microphones, the recommendation from this work is to employ negative values of the 
weighting law parameter p across all input SNR levels and noise types, emphasising spectral valleys. 
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9 Appendix 
9.1 Appendix 1 
In this appendix, the perceptually-motivated WE SA estimator is derived for distributed multichannel signals. By 
substitution of the statistical models in (12) and (14), (10) is written as (see (32)) 

𝐴𝐴
^
WE =

� 𝐴𝐴𝑝𝑝+2exp (−(𝐴𝐴2/𝜎𝜎𝑆𝑆
2))� exp (−� (|𝑌𝑌𝑖𝑖−𝑐𝑐𝑖𝑖𝐴𝐴ej𝛼𝛼|2/𝜎𝜎𝑁𝑁𝑖𝑖

2 )
𝑀𝑀

𝑖𝑖=1
)d𝛼𝛼d𝐴𝐴

2𝜋𝜋

0

∞

0

� 𝐴𝐴𝑝𝑝+1exp (−(𝐴𝐴2/𝜎𝜎𝑆𝑆
2))� exp (−� (|𝑌𝑌𝑖𝑖−𝑐𝑐𝑖𝑖𝐴𝐴ej𝛼𝛼|2/𝜎𝜎𝑁𝑁𝑖𝑖

2 )
𝑀𝑀

𝑖𝑖=1
)d𝛼𝛼d𝐴𝐴

2𝜋𝜋

0

∞

0

 (32) 

As in Appendix D of [12], the spectral phase 𝛼𝛼 is integrated out from both of the inner integrals as 

𝐴𝐴
^
WE =

� 𝐴𝐴𝑝𝑝+2exp (−𝐴𝐴2(1/𝜆𝜆))𝐼𝐼0(2𝐴𝐴|� (𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖/𝜎𝜎𝑁𝑁𝑖𝑖
2 )

𝑀𝑀

𝑖𝑖=1
|)d𝐴𝐴

∞

0

� 𝐴𝐴𝑝𝑝+1exp (−𝐴𝐴2(1/𝜆𝜆))𝐼𝐼0(2𝐴𝐴|� (𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖/𝜎𝜎𝑁𝑁𝑖𝑖
2 )

𝑀𝑀

𝑖𝑖=1
|)d𝐴𝐴

∞

0

 (33) 

where (1/𝜆𝜆) is defined in (19). By utilising (8.406.3) and (6.631.1) in [20] and [21], (33) is given in terms of the 
gamma function Γ(•) and confluent hypergeometric function 𝐹𝐹11

  (•;•;•) described by 9.210 in [21] as 

𝐴𝐴
^
WE = Γ((𝑝𝑝/2)+(3/2))

Γ((𝑝𝑝/2)+1)
1

(1/𝜆𝜆)(1/2)
 1𝐹𝐹1(((𝑝𝑝+3)/2);1;𝑧𝑧)
 1𝐹𝐹1(((𝑝𝑝+2)/2);1;𝑧𝑧)

 (34) 

where 

1
(1/𝜆𝜆)(1/2) = ( 𝜎𝜎𝑆𝑆

2

1+∑ 𝜉𝜉𝑖𝑖𝑀𝑀
𝑖𝑖=1

)(1/2) (35) 

with 𝜎𝜎𝑆𝑆𝑖𝑖
2 = 𝑐𝑐𝑖𝑖2𝜎𝜎𝑆𝑆2. From (34) and (35), the final closed-form solution 𝐴𝐴

^
WE is given in (24) as 

𝐴𝐴
^
WE = Γ((𝑝𝑝/2)+(3/2))

Γ((𝑝𝑝/2)+1)
( 𝜎𝜎𝑆𝑆

2

1+∑ 𝜉𝜉𝑖𝑖𝑀𝑀
𝑖𝑖=1

)(1/2)

×  1𝐹𝐹1(((𝑝𝑝+1)/2);1;𝑧𝑧)
 1𝐹𝐹1((𝑝𝑝/2);1;𝑧𝑧)

 (36) 

https://ieeexplore.ieee.org/document/#disp-formula12
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https://ieeexplore.ieee.org/document/#disp-formula19
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https://ieeexplore.ieee.org/document/#disp-formula34
https://ieeexplore.ieee.org/document/#disp-formula35
https://ieeexplore.ieee.org/document/#disp-formula24


with free parameter 𝑝𝑝WE >  2. 

9.2 Appendix 2 
In this appendix, the perceptually-motivated WCOSH SA estimator is derived for distributed multichannel 
signals. From substitution of the statistical models in (12) and (14), (11) is written as (see (37)) 

𝐴𝐴
^
WCOSH
2 =

� 𝐴𝐴𝑝𝑝+2exp (−(𝐴𝐴2/𝜎𝜎𝑆𝑆
2))� exp (−� (|𝑌𝑌𝑖𝑖−𝑐𝑐𝑖𝑖𝐴𝐴ej𝛼𝛼|2/𝜎𝜎𝑁𝑁𝑖𝑖

2 )
𝑀𝑀

𝑖𝑖=1
)d𝛼𝛼d𝐴𝐴

2𝜋𝜋

0

∞

0

� 𝐴𝐴𝑝𝑝exp (−(𝐴𝐴2/𝜎𝜎𝑆𝑆
2))� exp (−� (|𝑌𝑌𝑖𝑖−𝑐𝑐𝑖𝑖𝐴𝐴ej𝛼𝛼|2/𝜎𝜎𝑁𝑁𝑖𝑖

2 )
𝑀𝑀

𝑖𝑖=1
)d𝛼𝛼d𝐴𝐴

2𝜋𝜋

0

∞

0

 (37) 

After integrating out the spectral phase 𝛼𝛼 from the both of the inner integrals as in Appendix D of [12], (37) is 
given as 

𝐴𝐴
^
WCOSH
2 =

� 𝐴𝐴𝑝𝑝+2exp (−𝐴𝐴2(1/𝜆𝜆))𝐼𝐼0(2𝐴𝐴|� (𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖/𝜎𝜎𝑁𝑁𝑖𝑖
2 )

𝑀𝑀

𝑖𝑖=1
|)d𝐴𝐴

∞

0

� 𝐴𝐴𝑝𝑝exp (−𝐴𝐴2(1/𝜆𝜆))𝐼𝐼0(2𝐴𝐴|� (𝑐𝑐𝑖𝑖𝑌𝑌𝑖𝑖/𝜎𝜎𝑁𝑁𝑖𝑖
2 )

𝑀𝑀

𝑖𝑖=1
|)d𝐴𝐴

∞

0

 (38) 

where (1/𝜆𝜆) is defined in (19). Through (8.406.3) and (6.631.1) in [20] and [21], (38) is given in terms of the 
gamma function Γ(•) and confluent hypergeometric function 𝐹𝐹11

  (•;•;•) described by 9.210 in [21] as 

𝐴𝐴
^
WCOSH
2 = Γ((𝑝𝑝/2)+(3/2))

Γ((𝑝𝑝/2)+(1/2))
1
1
𝜆𝜆

 1𝐹𝐹1(((𝑝𝑝+3)/2);1;𝑧𝑧)
 1𝐹𝐹1(((𝑝𝑝+2)/2);1;𝑧𝑧) (39) 

where 

1
1
𝜆𝜆

= 𝜎𝜎𝑆𝑆
2

1+∑ 𝜉𝜉𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (40) 

using 𝜎𝜎𝑆𝑆𝑖𝑖
2 = 𝑐𝑐𝑖𝑖2𝜎𝜎𝑆𝑆2. As a result of (39) and (40), the closed-form solution of A^WCOSH is given in (25) as (see (41)) 

𝐴𝐴
^
WCOSH
 = Γ((𝑝𝑝/2)+(3/2))

Γ((𝑝𝑝/2)+(1/2))
� 𝜎𝜎𝑆𝑆

2

1+∑ 𝜉𝜉𝑖𝑖𝑀𝑀
𝑖𝑖=1

�  1𝐹𝐹1(−((𝑝𝑝+1)/2);1;𝑧𝑧))
 1𝐹𝐹1(−((𝑝𝑝−1)/2);1;−𝑧𝑧)

 (41) 

with free parameter 𝑝𝑝WCOSH >  −1. 
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