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Abstract: 
A robust interturn fault diagnostic approach based on the concept of magnetic field pendulous oscillation, which 

occurs in induction motors under faulty conditions, is introduced in this paper. This approach enables one to 

distinguish and classify an unbalanced voltage power supply and machine manufacturing/construction 

imperfections from an interturn fault. The experimental results for the two case studies of a set of 5-hp and 2-hp 
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induction motors verify the validity of the proposed approach. Moreover, it can be concluded from the 

experimental results that if the circulating current level in the shorted loop increases beyond the phase current 

level, an interturn fault can be easily detected using the proposed approach even in the presence of the 

existence of motor manufacturing imperfection effects. 

SECTION I. Introduction 
Early stages of stator interturn faults may often have negligible effects on the machine performance, however 

such faults may rapidly lead to substantial interturn faults and subsequently catastrophic failures. Stator faults 

are caused by partial stator winding insulation failures. Such partial stator winding insulation failures may in turn 

be caused by one or more of the following causes: frequent machine overloading, coil vibration, transient 

voltage stress, and PWM inverter induced surges, particularly in the presence of substantial cable length 

between a motor and its drive, ambient stresses, and aging of the stator winding insulation [1]. Interturn faults 

lead to generated heat in the defective region of a winding which causes the fault to rapidly progress to more 

severe forms such as phase-to-phase and phase-to-ground faults. In industrial processes, where a machine is 

playing a key role as a prime-mover or energy conversion device, a sudden machine failure will likely result in an 

overall process failure. Moreover, a severe fault such as a phase-to-ground fault may lead to irreversible damage 

to the stator winding and core [1], [2]. In other words, early stage fault detection will enable orderly process 

shutdown, thereby avoiding expensive repairs and minimizing lost production time. Accordingly, it is worthwhile 

to detect stator interturn faults at an early stage to prevent further damage to the machine and involved 

systems. 

An induction machine with a healthy stator winding can be represented as a symmetrical three-phase circuit. 

Although a broken bar fault or dynamic eccentricity fault affects the stator phase currents, the machine can still 

be modeled as a symmetrical three-phase circuit since all three stator phases are affected identically by such a 

defect in a 120° sequenced manner. However, this is not the case for interturn short circuits occurring in one or 

more of the phases in the stator winding. Hence, an induction machine with a stator interturn fault is 

represented as an unsymmetrical three-phase system. It is well-known in power systems that an unsymmetrical 

three-phase system (circuit) can be modeled as a combination of three symmetrical systems, namely the 

positive, negative, and zero sequences [3]. Most investigations for online interturn fault diagnosis of induction 

machines are conceptualized from this circuitry representation point of view. Investigators have attempted to 

detect such faults by means of calculating the negative sequence current [4], [5] and the negative and zero 

sequence impedances [6], [7]. 

In spite of an extensive motor fault diagnostics literature, motor fault diagnostics still constitute an open 

problem. The difficulty is mainly caused by mechanical load variations, power supply unbalances and 

manufacturing/construction imperfections within the machine itself. The purpose of this paper is to extend the 

concept of pendulous oscillation [8], [9] to interturn short circuit fault diagnosis, in the presence of inherent 

machine and power supply unbalances. 

SECTION II. Magnetic Field Pendulous Oscillation 
Under ideal conditions, the magnetic fields of an induction machine rotate at synchronous speed. However, any 

asymmetry in the stator windings or rotor bars, which may be due to manufacturing imperfections or machine 

failure, disturbs the air-gap magnetic field causing the air-gap magnetic field to oscillate around its original 

synchronously rotating axis. Although, this oscillation may exist even for a healthy machine due to the machine 

structural imperfections, this oscillation will be significant and detectable in a case of internal failure in induction 

machines such as broken bar and interturn faults. This pendulous oscillation has been thoroughly discussed and 

experimentally demonstrated for broken bar faults in two previous papers [8], [9]. Hence, it can be mentioned 



that there exists mainly two motions for the resultant (air-gap) magnetic field in an induction machine: 1) 

rotation at synchronous speed, and 2) pendulous oscillation. It has been shown that the range of this pendulous 

oscillation progressively increases with the increase in the number of broken bars [8], [9]. It will be shown here 

that the range of this pendulous oscillation also progressively increases in proportionality with the circulating 

loop current magnitude in the shorted coil. However, the pendulous oscillation caused by interturn shorts is 

different in its nature (shape) from the pendulous oscillation caused by broken bar faults, and this aspect is 

delineated in this paper. 

SECTION III. Motor Fault Diagnosis Using the Magnetic Field Pendulous 

Oscillation Phenomenon 
In this section the different shapes of the pendulous oscillation phenomenon obtained from different fault 

scenarios are demonstrated in Figs. 1–4. These figures were obtained through an induction motor simulation 

based on the winding function method [10] in conjunction with line-to-line flux linkage state-space modeling of 

induction motors in the ABC frame [11]. For further detail see the Appendix. In Figs. 1–4, the angular phase shift 

between the space vectors of stator currents and voltages are plotted in a polar coordinate manner in which the 

radius indicates the absolute value of the real part of the space vector of the stator currents. Any point (𝑟, 𝛿) in 

this polar plot is determined by the following expressions: 

𝑟(𝑡) = abs(Re(𝑖
→

𝑠(𝑡)))

𝛿(𝑡) = ∠𝑖
→

𝑠(𝑡) − ∠𝑣
→

𝑠(𝑡)

 

(1)(2) 

where 𝑣
→

𝑠 and 𝑖
→

𝑠 are the space vectors of the stator terminal voltages and currents, respectively. It should be 

emphasized that the 𝑣
→

𝑠 and 𝑖
→

𝑠 are functions of time and they should not be confused with phasor quantities. 

Here, the 𝑣
→

𝑠 and 𝑖
→

𝑠 are defined as follows: 

𝑣
→

𝑠(𝑡) =
2

3
(𝑣ab(𝑡) + 𝛼𝑣bc(𝑡) + 𝛼2𝑣ca(𝑡))

𝑖
→

𝑠(𝑡) =
2

3
((𝑖𝑎(𝑡) − 𝑖𝑏(𝑡)) + 𝛼(𝑖𝑏(𝑡) − 𝑖𝑐(𝑡))

+𝛼2(𝑖𝑐(𝑡) − 𝑖𝑎(𝑡)))

 

(3)(4) 

where 𝛼 = exp(𝑗2𝜋/3) is the space vector operator and 𝑣ab, 𝑣bc and 𝑣ca are the stator terminal line to line 

voltages, while 𝑖𝑎 , 𝑖𝑏, and 𝑖𝑐 are the stator terminal line currents. 



 
Fig. 1. Pendulous oscillation in a polar coordinate plot of 𝑟 and 𝛿 for a healthy induction motor, a straight line. 

 
Fig. 2. Pendulous oscillation in a polar coordinate plot of 𝑟 and 𝛿 for an induction motor in case of a typical 

broken bar fault, a petal shape. 
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Fig. 3. Pendulous oscillation in a polar coordinate plot of 𝑟 and 𝛿 for an induction motor in case of interturn 

fault, an unfilled-petal shape. 

 
Fig. 4. Pendulous oscillation in a polar coordinate plot of 𝑟 and 𝛿 for a healthy induction motor energized by 

unbalanced power supply (in voltage amplitudes), an unfilled-concave-petal shape. 

In order to setup a relationship between different types of faults, such as stator interturn and rotor broken bar 

fault scenarios, the following cases, illustrated in Figs. 1–4, are considered: 

1. healthy induction motor; see Fig. 1; 

2. induction motor with a typical broken bar fault; see Fig. 2; 

3. induction motor with a stator interturn fault; see Fig. 3; 

4. healthy induction motor energized by an unbalanced power supply; see Fig. 4. 

 

As the simulation results show in Figs. 1–4, each condition generates a different shape of the trace of the 𝑟 =

𝑟∠𝛿 vector, which can be used for fault diagnosis/classification purposes. The differences in these shapes can be 

explained based on the physics of each of the above-mentioned conditions. In order to obtain a better 

understanding of the differences, an analytical explanation is given below. 
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A. Case (a) 
A healthy induction motor energized by a three-phase balanced voltage power supply. The space vectors of the 

motor terminal voltages and currents are given as follows: 

𝑣
→

𝑠(𝑡) = 𝑉Lm exp(𝑗𝜔𝑡)

𝑖
→

𝑠(𝑡) = 𝐼Lm exp(𝑗𝜔𝑡 − 𝜓)
 

(5)(6) 

where 𝑉Lm and 𝐼Lm are the peak values of the voltage and current terms in (3) and (4), ω is the supply frequency 

in electrical rad/sec, and 𝑣
→

𝑠 as well as 𝑖
→

𝑠 are the space vectors of the terminal voltages and currents defined 

in (3) and (4), respectively. Accordingly, in this case, one can write the following expressions for 

the 𝑟 and 𝛿 quantities: 

𝑟(𝑡) = abs(𝐼Lm cos(𝜔𝑡 − 𝜓))

𝛿(𝑡) = −𝜓.
 

(7)(8) 

In other words, the polar plot of (𝑟, 𝛿) is a straight (radial) line, as illustrated in Fig. 1. 

B. Case (b) 
An induction motor with a typical rotor broken bars fault energized by a three-phase balanced voltage power 

supply. Accordingly, one can write the following expressions as approximations for 

the 𝑟 and 𝛿 quantities [8], [9], [12]: 

𝑟(𝑡) = abs(𝐼Lm(𝑡) cos(𝜔𝑡 − 𝜓))

𝛿(𝑡) = −𝜓 −
Δ𝛿

2
cos(2𝜔𝑟𝑡)

 

(9)(10) 

where the peak value of the current 𝐼Lm(𝑡) varies with time due to the existence of a broken bar fault, Δδ, the 

so-called swing angle [9], is the peak-to-peak value of the pendulous oscillation, and 𝜔𝑟 ≪ 𝜔 is the slip 

frequency's angular velocity. In other words, for any angle 𝛿, the 𝑟 value is changing from zero to its maximum 

value. Therefore, in this case, the polar plot of (𝑟, 𝛿) has a (filled) petal shape, as can be seen in Fig. 2, due to the 

fact that 𝜔𝑟 ≪ 𝜔 in (9) and (10). 

C. Case (c) 
An induction motor with a stator interturn fault energized by a three-phase balanced voltage power supply. In 

this case, the air-gap magnetic field can be resolved into two components which rotate at synchronous speed 

but in opposite directions. Also, the resultant (air-gap) magnetic field can be resolved into a main rotation at 

synchronous speed and an oscillation around the main rotation, where the speed of this oscillation is twice the 

synchronous speed [12]. Accordingly, one can write the following expressions as approximations for 

the 𝑟 and 𝛿 quantities: 

https://ieeexplore.ieee.org/document/#deqn3-4
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𝑟(𝑡) = abs(𝐼Lm(𝑡) cos(𝜔𝑡 − 𝜓))

𝛿(𝑡) = −𝜓 −
Δ𝛿

2
cos(2𝜔𝑡) .

 

(11)(12) 

Here, the speeds of variations of the 𝑟 and 𝛿 quantities with respect to time are the same, since the cosine 

expression in (11) is within the absolute value operator. In other words, at any angle 𝛿, the 𝑟 quantity will not 

change from zero to its maximum value because 𝑟 and 𝛿 are varying with time simultaneously at the same rate. 

Therefore, in this case, the polar plot of (𝑟, 𝛿) has an unfilled-petal shape, or in other words constitutes only the 

outer boundary of the petal shape, as can be seen in Fig. 3. 

As one can observe from (10) and (12), the frequency of the pendulous oscillation due to an interturn fault 2𝜔 is 

much larger than the frequency of the pendulous oscillation due to a broken bar fault, 2𝜔𝑟 [13]. Hence, the 

frequency characteristic of the pendulous oscillation can be used in order to detect both faults even if they 

occur simultaneously. 

D. Case (d) 
A healthy induction motor energized by an unbalanced three-phase voltage power supply. This case can be 

further categorized into two different cases [12]. 

1. High or low resistivity of one of the motor feeding phase lines. This will generate an unfilled-petal shape 

similar to Fig. 3 in Case (c). However, this similarity does not lead to ambiguities in fault diagnostics, 

since such unbalances will be detected in the measurement of the motor terminal voltages. 

2. Unbalances in the power supply voltage amplitudes generate an unfilled-concave-petal shape, see Fig. 4. 

 

Here in this paper, an interturn fault was modeled as a short circuit through a small resistor. This type of fault 

generates an unfilled-petal-like configuration with a slight degree of curvature in the shape. This will generate a 

shape similar to Fig. 4 of Case (d). However, this similarity, again, does not lead to ambiguities in fault 

diagnostics since any unbalances in the motor terminal voltages can be detected in the measurements at the 

motor terminals. 

SECTION IV. Experimental Results 
A 5-hp, 6-pole, 460-V, and a 2-hp, 2-pole, 460-V set of induction motors were tested under interturn short circuit 

faults. The interturn short circuits were achieved through a 1 − Ω resistor 𝑟𝑓 for the 5-hp motor and a 0.8 −

Ω resistor for the 2-hp motor. The 5-hp motor was rewound such that there were twenty taps in one of the 

phases, while the 2-hp motor had only 5 taps. The stator winding connections of both motors are star (Y) 

connections, where the number of turns per phase for the 5-hp and the 2-hp motors were 240 and 216 turns, all 

in series, respectively. See Table I for further details. The 5-hp motor was also tested when it was energized by 

an unbalanced power supply. This was achieved through using a series resistor 𝑟se in one of the motor phase 

feeding lines, as shown in the circuit schematic of Fig. 5. 

Table I 2-hp and 5-hp Induction Motors Properties 

Design Feature 2-hp Induction Motor 5-hp Induction Motor 

Power (hp) 2 5 

Voltage (V) 460 460 

Current (A) 2.7 6.8 

https://ieeexplore.ieee.org/document/#deqn11-12
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Speed (r/min) 3450 1165 

Number of Poles 2 6 

Number of coils per phase 8 6 

Number of Turns per Phase 216 240 

Type of Stator Windings Concentrated Lap 

Number of Rotor Bars 36 45 

Number of Stator Slots 24 36 

 

 
Fig. 5. Schematic representation of a tapped induction motor. 

As representative examples of the many tests performed on the 2-hp and 5-hp induction motors in the 

laboratory, the pendulous oscillations of the 5-hp induction motor in a polar coordinate plot are shown 

in Figs. 6 and 7 with corresponding enlargements (zooms) in Figs. 8 and 9, respectively, for a healthy and a 12 

turns (5%) fault. The short circuit was through a 1 − Ω resistor, 𝑟𝑓 = 1Ω. Again, the range of the pendulous 

oscillation, the so-called swing angle Δδ, is shown for the above-mentioned cases of Figs. 6 and 7 in an enlarged 

fashion in Figs. 8 and 9, respectively. As one can see in Fig. 9, an interturn fault generates an unfilled-petal shape 

with a slight degree of curvature. This curvature is due to the existence of the resistor rf in the circuit shown 

in Fig. 5, which is used to restrict the shorted loop current to an immune (safe) level of current that does not 

cause permanent coil damage. The amplitude of the maximum thickness of the petal shape caused by the swing 

angle is used here as the interturn fault signature or index. 
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Fig. 6. Experimentally based results of the absolute value of Re(𝑖
→

𝑠(𝑡)) in amperes versus angle 𝛿(𝑡) =

∠𝑖
→

𝑠(𝑡) − ∠𝑣
→

𝑠(𝑡) in degrees for the case of the 5-hp induction motor under a healthy condition. 

 

Fig. 7. Experimentally based results of the absolute value of Re(𝑖
→

𝑠(𝑡)) in amperes versus angle 𝛿(𝑡) =

∠𝑖
→

𝑠(𝑡) − ∠𝑣
→

𝑠(𝑡) in degrees for the case of the 5-hp induction motor under a faulty condition having 12 (5%) 

shorted turns, (shorted through 1 − Ω resistor.) 

 

Fig. 8. Enlarged dotted-frame portion of Fig. 6, showing swing angle, Δ𝛿 = 𝑚𝑎𝑥(Δ𝛿(𝑟) = 𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛), in the 

healthy situation. 
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Fig. 9. Enlarged dotted-frame portion of Fig. 7, showing swing angle, Δ𝛿 = max(Δ𝛿(𝑟) = 𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛), in case 

of a 12 turns (5%) fault, (shorted through 1 − Ω resistor.) 

The functional block diagram of an on-line interturn fault diagnosis using the swing angle, Δδ, is depicted 

in Fig. 10. In this block diagram, the motor terminal currents and voltages are measured through current and 

voltage sensors and the outputs are digitized using an analog-to-digital (A/D) converter. The output signals of 

the A/D converter are filtered by a band pass filter (BPF), while the output signals of the BPF are further sampled 

(collected) throughout a period equal to the period of the power supply frequency; see Fig. 10. For each set of 

collected data over the duration of a power cycle, 𝑇 = 1/𝑓1, the angle, 𝛿(𝑡), where 0 < 𝛿(𝑡) < 2𝜋 rad, is 

calculated by (2). Then, the swing angle, Δδ, is obtained by calculating the maximum spread of Δ𝛿(𝑟) = 𝛿𝑚𝑎𝑥 −

𝛿𝑚𝑖𝑛 in a polar plot diagram; see Figs. 8 and 9. Thus, for each power cycle, a single value for the swing angle, Δδ, 

is obtained. The results of the on-line interturn fault detection over five seconds for the case studies of the 5-hp 

and the 2-hp induction motors are shown in Figs. 11 and 12, respectively. As one can see in Figs. 11 and 12, if 

the circulating current, 𝐼𝑓 (see Fig. 5) exceeds the value of line current, 𝐼𝐿, an interturn fault can be easily 

detected using the swing angle index. 

 
Fig. 10. Functional block diagram of the swing angle calculation for interturn fault diagnostics. 
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Fig. 11. Experimentally obtained swing angle, Δδ, in degrees verses time in seconds for the 5-hp induction motor 

under healthy as well as two, four, six, eight, ten, and twelve turns fault through a one-ohm resistor. 

 
Fig. 12. Experimentally obtained swing angle, Δδ, in degrees verses time in seconds for the 2-hp induction motor 

under healthy and one through five turns fault through a 0.8 − Ω resistor. 

At the same conditions, the peak values of an on-line trace of the negative sequence component of the line 

currents, which were obtained for each cycle, are shown over five seconds for the 5-hp and 2-hp motors 

in Figs. 13 and 14, respectively. Although the calculated negative sequence current component in test (b) and 

test (c) of Fig. 13 are very close during some periods of time, as shown with the oval-shaped doted lines in this 

figure, the negative sequence of the line currents can still be considered as a reliable diagnostic tool in the 5-hp 

motor case. However, this is not the case for the 2-hp induction motor. As one can see in Fig. 14, it is almost 

absolutely impossible to detect interturn faults for the 2-hp motor using the negative sequence index because of 

the closeness or “bunching-up” nature of the traces. This is because of the fact that the rewound 2-hp motor 

had an inherent manufacturing degree of unbalance due to the manufacturing (or construction) imperfection 

resulting from the random winding installation process and the layout of the winding taps. 
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Fig. 13. Experimentally obtained peak negative sequence component of line currents 𝐼𝑛 in amperes verses time 

in seconds for the 5-hp induction motor under healthy as well as two, four, six, eight, ten, and twelve turns fault 

through a 1 − Ω resistor. 

 
Fig. 14. Experimentally obtained peak negative sequence component of line currents 𝐼𝑛 in amperes verses time 

in seconds for the 2-hp induction motor under healthy and one through five turns fault through a 0.8 −

Ω resistor. 

The average values of the swing angle, Δδ, over the period of time shown in Figs. 11 and 12 and the negative 

sequence components of the line currents, 𝐼𝑛, the positive sequence components of the line currents, 𝐼𝑝, and 

terminal line to line voltages, 𝑉𝑛, calculated based on the peak values of the current and voltage phasors at 

fundamental frequency [3], as well as the motor terminal negative sequence impedance, 𝑧𝑛 =

𝑉𝑛/(√3𝐼𝑛) [3], [7] are given in Tables II and III for the case studies shown in Figs. 11–14. 

Moreover, Table IV demonstrates that the swing angle as a function of the percentage of the circulating current 

versus the line current. It can be concluded that the swing angle index is a robust and reliable fault signature for 

interturn fault detection purposes, while the negative sequence components of motor terminal currents and 

impedances in the case of the 2-hp motor led to ambiguities. 

Table II Comparison Between Average Values Measured Over Five Seconds for the Swing Angle in Degrees and 

Negative Sequence Components at 60 Hz, Sinusoidal Excitation—at Constant Load 30-nm, 5-hp, 6-Pole Induction 

Motor 

ST (%) ∆𝛿° 𝐼𝑛(A) 𝑉𝑛(V) 𝑧𝑛(Ω) 𝐼𝑝(A) 𝐼𝑓(A) 

0.00 0.1449 0.0541 1.1237 12.1763 9.2669 0.00 
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0.83 0.0252 0.0408 1.1765 18.0377 9.2507 3.09 

1.66 0.1252 0.0495 1.1765 18.0377 9.2534 6.18 

2.50 0.1668 0.0874 1.2863 8.9228 9.2753 9.28 

3.33 0.2973 0.1261 1.1204 5.2595 9.2763 12.37 

4.16 0.5960 0.2053 1.3123 3.7518 9.1899 15.47 

5.00 0.7652 0.2955 1.4401 2.8384 9.2436 18.56 

 

Table III Comparison Between Average Values Measured Over Five Seconds for the Swing Angle in Degrees and 

Negative Sequence Components at 60 Hz, Sinusoidal Excitation—at Constant Speed 3510-r/min, 2-hp, 2-Pole 

Induction Motor 

ST (%) ∆𝛿° 𝐼𝑛(A) 𝑉𝑛(V) 𝑧𝑛(Ω) 𝐼𝑝(A) 𝐼𝑓(A) 

0.00 0.3742 0.1363 3.2882 13.9372 3.7162 0.00 

0.46 0.3282 0.1403 1.9624 8.2904 3.7960 1.73 

0.93 0.4676 0.1382 1.3821 5.8050 3.7040 3.57 

1.39 0.6082 0.1265 2.8478 13.0041 3.7289 5.21 

1.85 0.7273 0.1342 3.0026 13.0375 3.7278 6.94 

2.31 1.0147 0.1295 2.1435 9.6430 3.7163 8.68 

 

Table IV Comparison Between the 2-hp and 5-hp Induction Motors Average Values of the Swing Angle in 

Degrees Versus the Percentage of Shorted Turns and the Short Circuit Circulating Loop Current 

5-hp Induction Motor    2-hp Induction Motor    

Shorted Turns ST (%) 𝐼𝑓 𝐼𝐿⁄  ∆𝛿° Shorted Turns ST (%) 𝐼𝑓 𝐼𝐿⁄  ∆𝛿° 

Healthy 0.00 0.00 0.144 Healthy 0.00 0.00 0.374 

Two 0.83 0.33 0.025 One 0.46 0.45 0.328 

Four 1.66 0.66 0.125 Two 0.93 0.96 0.467 

Six 2.50 0.99 0.166 Three 1.39 1.39 0.608 

Eight 3.33 1.33 0.297 Four 1.85 1.86 0.727 

Ten 4.16 1.68 0.596 Five 2.31 2.33 1.014 

Twelve 5.00 2.00 0.765 ---- ---- ---- ---- 

 

Here, a question comes to mind: “What is the difference between the 2-hp and the 5-hp induction motors, which 

leads to ambiguities regarding the use of the negative sequence components approach in detecting the fault in 

the 2-hp motor?” This query is addressed in the next section. 

SECTION V. Analysis and Discussion of Results 
In this investigation a 2-hp and a 5-hp set of induction motors were examined under interturn short circuit 

faults. In order to create such a fault, the short circuits are conducted through an external 1 − Ω resistor for the 

5-hp motor and a 0.8 − Ω resistor for the 2-hp motor to emulate the beginning of the breakdown of insulation 

between turns. The test results of the 5-hp motor show that the interturn faults can be detected using the swing 

angle, Δδ, as well as the 𝐼𝑛 and 𝑧𝑛 indices, if the circulating current exceeds the motor line current, as observed 

from Table II. However, the test results of the 2-hp motor show that only the swing angle, Δδ, as the fault 

signature (index) enables one to clearly detect an interturn fault, again this is possible if the circulating current 

exceeds the motor line current, as observed from Table III. Here, the earlier question comes to the mind: “What 

is the difference between the 2-hp and the 5-hp induction motors, which leads to ambiguities regarding the use 



of negative sequence components approach in detecting the fault in the 2-hp motor?” Before addressing this 

question, it has to be mentioned that the rewound 5-hp motor was built to a degree of perfection to render it a 

near perfectly balanced machine under healthy condition, while the 2-hp induction motor had a degree of 

construction imperfections. From Table II for the 5-hp motor, it can be observed that the negative sequence 

indices 𝐼𝑛 and 𝑧𝑛 can indicate an interturn fault only if the shorted turns (ST) exceed the threshold of 2.5 percent 

of the total number of turns per phase. From Table III, for the case of the 2-hp motor, it can be observed that 

the maximum number of shorted turns did not exceed 2.31% of the total number of turns per phase which is 

below the 2.5% threshold mentioned above, and the negative sequence indices could not indicate any interturn 

fault in this case. However, the corresponding short circuit circulating current 𝐼𝑓 is more than twice the 

magnitude of the line current for the five turns fault (i.e., 2.31%) in the 2-hp motor; see Table III. In other words, 

the negative sequence component indices 𝐼𝑛 and 𝑧𝑛 are direct functions of the shorted turns (ST), and not a 

function of the circulating loop current ratio, 𝐼𝑓/𝐼𝐿. However, the swing angle index, Δδ, can indicate an 

interturn fault for both the 2-hp and 5-hp motors if the circulating current, 𝐼𝑓, exceeds the line current, 𝐼𝐿 , (𝐼𝐿 ≅

𝐼𝑝); see Table IV. Notice as it can be seen in Fig. 15, if the circulating short circuit current 𝐼𝑓 increases beyond the 

line current 𝐼𝐿 the shorted portion of the phase coil demagnetizes the rest of the impacted phas 

 
Fig. 15. Circuit schematic representation of a motor-phase with an interturn fault. 

Based on the laboratory measurements, it was found that the peaks of the instantaneous line current 𝐼𝐿 and the 

circulating current If do not occur at the same instance. Accordingly, the demagnetizing effect of the circulating 

current does not disturb the peak current of the impacted phase in a significant manner. However, the swing 

angle Δδ is not based on only the peak values of the three phase currents. In other words, the swing angle is 

measured based on the maximum thickness of the polar plot (𝑟, 𝛿), see Fig. 16. 

 
Fig. 16. Typical polar coordinate plot (𝑟, 𝛿) in case of an interturn fault, where Δ𝛿 = 𝑚𝑎𝑥(Δ𝛿(𝑟) = 𝛿𝑚𝑎𝑥 −

𝛿𝑚𝑖𝑛). 
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This means that asymmetries occurring at any point in the entire three phase current waveforms with respect to 

the voltage waveforms 𝛿 = ∠𝑖
→

𝑠 − ∠𝑣
→

𝑠 can be observed (or extracted) using the swing angle index, Δδ; 

see Fig. 16. This is the reason that the swing angle index can detect the interturn faults successfully for both the 

2-hp and the 5-hp case study induction motors, regardless of the existence of any manufacturing imperfection 

effects, when the circulating current exceeds the motor line current; see Figs. 11 and 12. 

SECTION VI. Conclusion 
A robust interturn fault diagnostic method based on the pendulous oscillation concept has been introduced and 

examined for the case studies of the 2-hp and the 5-hp induction motors. The experimental results have shown 

the strength and fidelity of this method, even in the presence of a degree of machine construction 

imperfections. It was also shown that the swing angle magnitude is a function of the ratio between the short 

circuit circulating current and the line (phase) current. Moreover, an interturn fault can be detected if the 

circulating current increases slightly beyond the phase current level even before the occurrence of higher levels 

of damaging circulating currents. Hence, the swing angle index enables one to detect stator interturn faults at an 

early stage to prevent further damage to the machine and involved systems. These concepts and findings have 

been verified experimentally in the results presented in this paper. 
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Induction Motor State-Space Model 
In this Appendix, a simulation model of induction motors under interturn and broken bar fault conditions is 

presented in details based on the winding function method [10] and the line-to-line flux linkage state-space 

model [11]. This is done only for purposes of continuity and reproducibility of the work presented in this paper. 

The stator winding layout of phase-A and phase-B of a typical three-phase induction motor with the 

concentrated winding over a pole span are depicted in Fig. 17. Although the winding layout is assumed a 

concentrated winding, the results are valid for an induction motor with a lap winding. Here, the MMF profile of 

phase-A over 180 electrical degrees is depicted in Fig. 18. In order to calculate the self inductance of phase-A, 

the total flux linkage of phase-A is obtained here as a summation of the individual flux linkage of each coil in a 

phase 

𝜆ss| 𝐼𝑏=0,
𝐼𝑐=0,
𝐼ℓ𝑘=0,

𝑘=1,2,…,𝑁bar

= ∑ 𝜆ssj

𝑁coils

𝑗=1

= ∑ 𝑁𝑗𝜙ssj

𝑁coils

𝑗=1

 

(A1) 

where, 𝑁𝑗  is the number of turns per each coil and 𝑁coils is the number of coils per pole per phase. In Figs. 17–

19 just for the sake of graphical simplification, 𝑁coils = 4. In (A1), 𝜆ssj is obtained by 

https://ieeexplore.ieee.org/document/#deqna1


𝜆ssj = 𝑁𝑗 (
𝜇0𝑟𝑙

2𝑔
) (

𝜋𝑝

𝑁slot
)( ∑ 𝑁𝑘𝜏ck

𝑁coils

𝑘=1

)𝐼path 

(A2) 

where 𝑗 = 1,… ,𝑁coils, 𝜏ck is the 𝑘 th step-width in the MMF profile, see Fig. 18, 𝜋𝑝/𝑁slot is the angular 

displacement between each two adjacent stator slots in electrical radians, 𝑁slot is the total number of the stator 

slots, 𝑝 is the number of poles, 𝑙 is the rotor axial length, 𝑔 is the effective air-gap height, and 𝑟 is the motor 

radius at mid air-gap. Using (A1) and (A2) and after some algebraic manipulation, the stator self inductance can 

be expressed as follows: 

𝐿ss = (
𝜇0𝑟𝑙

2𝑔
) (

𝜋𝑝

𝑁slot
) 𝑘se

2 (𝑁𝑇𝑄ss𝑁) 

(A3) 

where 𝑘se = 1 for a parallel connection (low voltage) and 𝑘se = 2 for a series connection (high voltage), the 

vector 𝑁(𝑁coils×1) and the matrix 𝑄ss(𝑁coils×𝑁coils) are defined as follows: 

𝑁 = [𝑁1𝑁2 ⋯𝑁𝑗 ⋯𝑁coils]
𝑇

𝑄ss = [

𝜏𝑐1 𝜏𝑐2 ⋯ 𝜏cNcoils

𝜏𝑐2 𝜏𝑐2 ⋯ 𝜏cNcoils

⋯ ⋯ ⋱ ⋮
𝜏cNcoils

𝜏cNcoils
⋯ 𝜏cNcoils

] .
 

(A4)(A5) 

For instance, the vector 𝑁 and the matrix 𝑄ss for the layout depicted in Fig. 18 are given as follows: 

𝑁 = [𝑁1𝑁2𝑁3𝑁4]
𝑇

and

𝑄ss = [

𝜏𝑐1 𝜏𝑐2 𝜏𝑐3 𝜏𝑐4

𝜏𝑐2 𝜏𝑐2 𝜏𝑐3 𝜏𝑐4

𝜏𝑐3 𝜏𝑐3 𝜏𝑐3 𝜏𝑐4

𝜏𝑐4 𝜏𝑐4 𝜏𝑐4 𝜏𝑐4

]
 

 

where, for the winding layout shown in Figs. 17 and 18, 𝜏𝑐1 = 11, 𝜏𝑐2 = 9, 𝜏𝑐3 = 7, 𝜏𝑐4 = 5. 
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Fig. 17. Stator winding layout of phase-A and phase-B of a three-phase induction motor with a concentrated 

winding (over a pole span). 

 
Fig. 18. MMF profile of phase-A of the stator winding over 180 electrical degrees (over a pole span). 

 
Fig. 19. MMF profile of phase-B of the stator winding over 180 electrical degrees (over a pole span). 

If the same procedure is performed for the flux linkage of phase-A when phase-B is energized; see Fig. 19, one 

can write the following expression for the stator mutual inductance: 

𝐿𝑀 = −(
𝜇0𝑟𝑙

2𝑔
) (

𝜋𝑝

𝑁slot
) 𝑘se

2 (𝑁𝑇𝑄𝑀𝑁) 

(A6) 

where 

𝑄𝑀 =

[
 
 
 
𝜏𝑐1

′ 𝜏𝑐1
′ 𝜏𝑐1

′ 𝜏𝑐1
′

𝜏𝑐1
′ 𝜏𝑐1

′ 𝜏𝑐1
′ 𝜏𝑐2

′

𝜏𝑐1
′ 𝜏𝑐1

′ 𝜏𝑐2
′ 𝜏𝑐3

′

𝜏𝑐1
′ 𝜏𝑐2

′ 𝜏𝑐3
′ 𝜏𝑐4

′ ]
 
 
 

 

 

for the layout shown in Fig. 17, 𝜏𝑐1
′ = 4, 𝜏𝑐2

′ = 3, 𝜏𝑐3
′ = 2, 𝜏𝑐4

′ = 1; see Fig. 19. 

𝐋𝐬 =

[
 
 
 
(1 − 𝜂)2𝐿ss + (1 − 𝜂)𝐿sl (1 − 𝜂)𝐿𝑀 (1 − 𝜂)𝐿𝑀 𝜂(1 − 𝜂)𝐿𝑀

(1 − 𝜂)𝐿𝑀 𝐿ss + 𝐿sl 𝐿𝑀 𝜂𝐿𝑀

(1 − 𝜂)𝐿𝑀 𝐿𝑀 𝐿ss + 𝐿sl 𝜂𝐿𝑀

𝜂(1 − 𝜂)𝐿𝑀 𝜂𝐿𝑀 𝜂𝐿𝑀 𝜂2𝐿ss + 𝜂𝐿sl]
 
 
 

. 
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(A14) 

𝐋𝐫 =

[
 
 
 
 
𝐿ℓℓ + 2(𝐿𝑏 + 𝐿𝑒) 𝐿ℓ𝑚 − 𝐿𝑏 ⋯ 𝐿ℓ𝑚

𝑛𝑏

𝐿ℓ𝑚 − 𝐿𝑏 𝐿ℓℓ + 2(𝐿𝑏 + 𝐿𝑒) ⋯ 𝐿ℓ𝑚
𝑛𝑏

⋮ ⋮ ⋱ ⋮
𝐿ℓ𝑚
𝑛𝑏 𝐿ℓ𝑚

𝑛𝑏 … 𝐿ℓℓ
𝑛𝑏 + 2(𝐿𝑏 + (𝑛𝑏 + 1)𝐿𝑒)]

 
 
 
 

. 

(A15) 

𝐋𝐫 =

[
 
 
 
 
𝐿ℓℓ + 2(𝐿𝑏 + 𝐿𝑒) 𝐿ℓ𝑚 − 𝐿𝑏 ⋯ 𝐿ℓ𝑚

𝑛𝑏

𝐿ℓ𝑚 − 𝐿𝑏 𝐿ℓℓ + 2(𝐿𝑏 + 𝐿𝑒) ⋯ 𝐿ℓ𝑚
𝑛𝑏

⋮ ⋮ ⋱ ⋮
𝐿ℓ𝑚
𝑛𝑏 𝐿ℓ𝑚

𝑛𝑏 … 𝐿ℓℓ
𝑛𝑏 + 2(𝐿𝑏 + (𝑛𝑏 + 1)𝐿𝑒)]

 
 
 
 

. 

(A20) 

𝐑 =

[
 
 
 
 
[

(1 − 𝜂)𝑟as −𝑟bs −𝑟𝑓
𝑟cs 𝑟bs + 𝑟cs 0
−𝑟𝑓 0 𝑟𝑓 + 𝜂𝑟as

] [0]3×(𝑁bar−𝑛𝑏)

[0](𝑁bar−𝑛𝑏)×3 [𝐑r](𝑁bar−𝑛𝑏)×(𝑁bar.−𝑛𝑏)]
 
 
 
 

. 

(A31) 

The mutual inductance between each phase of the stator windings and each loop of the rotor cage can be 

obtained using the Fourier series of the stator MMF waveform. To do this, one can write the following 

expression for the stator MMF waveform of phase-A; see Fig. 18 

MMF𝐴 = ∑ (
4𝐼path

ℎ𝜋
𝑘wh sin (

ℎ𝜋

2
))

∞

ℎ=1,3,5,…

× sin(ℎ𝜃)

 

(A7) 

while 𝑘wh is given by 

𝑘wh = ∑𝑁𝑗 sin (
𝜏cj𝜋𝑝

2𝑁slot
ℎ)

𝑁coils

𝑗=1

. 

(A8) 

Meanwhile, one can write the following for the flux linkage of a healthy rotor loop: 



𝜆𝑠ℓ1| 𝐼𝑏=0,
𝐼𝑐=0,
𝐼ℓ𝑘=0,

𝑘=1,2,…,𝑁bar

= ∫ 𝐵𝑠ℓ1𝑟𝑙𝑑𝜃𝑚

𝜃𝑚+(𝛼/2)

𝜃𝑚−(𝛼/2)
 

(A9) 

where 𝜃 = (𝑝/2)𝜃𝑚, 𝛼 = 2𝜋/𝑁bar, 𝑁bar is the total number of rotor bars, and 𝐵𝑠ℓ1 = 𝜇𝑜MMF𝐴/2𝑔. 

Accordingly, the mutual inductance between phase-A, and loop-one, assuming it is a healthy loop, is obtained as 

follows: 

𝐿𝑠ℓ1 =
4𝜇0𝑟𝑙

𝜋𝑔

2

𝑝
∑

𝑘se𝑘wh

ℎ2

∞

ℎ=1,3,5,…

sin (
ℎ𝜋

2
)

× sin (
ℎ(𝑝 2⁄ )𝛼

2
) sin(ℎ𝜃) .

 

(A10) 

However, in general, the mutual inductance between each phase and each rotor loop with or without broken 

bars can be obtained from 

𝐿𝑠ℓ𝑘
𝑛𝑏 =

4𝜇0𝑟𝑙

𝜋𝑔

2

𝑝
∑

𝑘se𝑘wh

ℎ2

∞

ℎ=1,3,5,…

sin (
ℎ𝜋

2
)

× sin (
ℎ(𝑛𝑏 + 1)(𝑝 2⁄ )𝛼

2
)

× sin(ℎ(𝜃 − (𝑝 2⁄ )𝜃ℓ1ℓ𝑘))

 

(A11) 

where 𝑛𝑏 equals zero for a healthy loop and it equals to the number of adjacent broken bars for a defective 

loop, the subscript 𝑘 indicates the 𝑘 th loop of the rotor's squirrel-cage circuit and 𝜃ℓ1ℓ𝑘 is the angular 

displacement between loop-one and the kth loop in mechanical radians, and for phase-A 𝜃 = 𝜃𝑎 =

(𝑝/2)∫ 𝜔𝑚(𝑡)𝑑𝑡, for phase-B 𝜃 = 𝜃𝑎 − 2𝜋/3, and for phase-C 𝜃 = 𝜃𝑎 − 4𝜋/3, where 𝜔𝑚(𝑡) is the rotor 

angular velocity in mechanical radian per second obtained from the dynamics of the motor rotation. 

In the case of interturn faults, the self inductance of an impacted phase, the mutual inductance between an 

defective phase and a healthy phase, and the mutual inductance between a rotor loop and an defective phase 

can be still calculated by (A3), (A6), and (A11) with slight adjustment in (A4) and (A8), assuming the number of 

shorted turns 𝑁sc in a phase winding does not exceed the number of turns in the impacted coil. In this case, the 

only required adjustment is 

𝑁𝑗
new = 𝑁𝑗

healthy
− 𝑁sc. 

(A12) 
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Moreover, the number of stator phases (states) in a three-phase motor impacted by an interturn fault is 

increased to four, with the additional fourth phase representing the shorted portion of a phase winding. This 

fourth phase is mutually coupled to the original three phases and the rotor cage circuit. Assuming that an 

interturn fault occurs in phase-A, the self inductance of the additional phase can be approximated by the 

following: 

𝐿sc = (
𝜇0𝑟𝑙

𝑔
) (

𝜋𝜏sc

𝑁slot
)𝑁sc

2 ≃ 𝜂2𝐿ss 

(A13) 

where η indicates the effective shorted turns ratio. Accordingly, the inductance matrix of the stator windings 

when an interturn fault occurs in phase-A can be obtained as shown in (A14) at the bottom of the page. 

Considering (A10) through (A12), assuming an interturn fault occurs in phase-A, the stator-rotor mutual 

inductance matrix is given by (A15) at the bottom of the page. Using the MMF profile of a rotor loop, the self 

inductance of healthy loops is given by [10] 

𝐿ℓℓ =
𝜆ℓℓ

𝐼loop
=

𝜇0𝑟𝑙

𝑔
𝛼 (1 −

𝛼

2𝜋
) 

(A16) 

where 𝛼 = 2𝜋/𝑁bar and 𝑁bar is the total number of rotor bars. Meanwhile, using the rotor loop MMF 

waveform depicted in Fig. 20, the self inductance of a defective loop due to 𝑛𝑏 adjacent broken bars is given by 

𝐿ℓℓ
𝑛𝑏 =

𝜆ℓℓ

𝐼loop
=

𝜇0𝑟𝑙

𝑔
(𝑛𝑏 + 1)𝛼 (1 −

𝛼(𝑛𝑏 + 1)

2𝜋
) . 

(A17) 

Also, the mutual inductance between each two healthy loops is [10] 

𝐿ℓ𝑚 = (−1)
𝜇0𝑟𝑙

𝑔
(
𝛼2

2𝜋
) . 

(A18) 

Meanwhile, the mutual inductance between a defective loop and healthy loop is 

𝐿ℓ𝑚
𝑛𝑏 = (−1)

𝜇0𝑟𝑙

𝑔
(𝑛𝑏 + 1)(

𝛼2

2𝜋
) . 

(A19) 

Accordingly, the rotor inductance matrix is obtained as shown in (A20) at the bottom of the page, 

where 𝐿𝑏 and 𝐿𝑒 are the leakage inductances of rotor-bar and rotor end-ring, respectively. 
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Fig. 20. MMF profile of a faulty loop of the rotor cage over 360 mechanical degrees. 

𝐑𝐫 =

[
 
 
 
 
 
2(𝑟𝑏 + 𝑟𝑒) −𝑟𝑏 0 ⋯ 0 −𝑟𝑏

−𝑟𝑏 2(𝑟𝑏 + 𝑟𝑒) −𝑟𝑏 0 ⋯ 0
0 ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
0 0 0 −𝑟𝑏 2(𝑟𝑏 + 𝑟𝑒) −𝑟𝑏

−𝑟𝑏 0 0 0 −𝑟𝑏 2(𝑟𝑏 + (𝑛𝑏 + 1)𝑟𝑒)]
 
 
 
 
 

. 

(A32) 

𝐋aux = [

𝐋𝐩(1, [1, … ,4 + 𝑁bar − 𝑛𝑏]) − 𝐋𝐩(2, [1, … ,4 + 𝑁bar − 𝑛𝑏])

𝐋𝐩(2, [1, … ,4 + 𝑁bar − 𝑛𝑏]) − 𝐋𝐩(3, [1, … ,4 + 𝑁bar − 𝑛𝑏])

𝐋𝐩([4,… ,4 + 𝑁bar + 𝑛𝑏], [1, … ,4 + 𝑁bar − 𝑛𝑏])

] . 

(A34) 

𝐋 = [

L𝐚𝐮𝐱([1,… ,4 + 𝑁bar − 𝑛𝑏], 1) − 𝐋𝐚𝐮𝐱([1,… ,4 + 𝑁bar − 𝑛𝑏], 3)

𝐋𝐚𝐮𝐱([1,… ,4 + 𝑁bar − 𝑛𝑏], 2) − 𝐋𝐚𝐮𝐱([1,… ,4 + 𝑁bar − 𝑛𝑏], 3)

𝐋𝐚𝐮𝐱([1,… ,4 + 𝑁bar + 𝑛𝑏], [4, … ,4 + 𝑁bar − 𝑛𝑏])
]

𝑇

. 

(A35) 

In a general case, the state-space representation of the model of stator windings can be expressed as follows: 

𝑣as = 𝑟as𝑖as +
𝑑𝜆as

𝑑𝑡
+ 𝑣𝑛

𝑣bs = 𝑟bs𝑖bs +
𝑑𝜆𝑏𝑠

𝑑𝑡
+ 𝑣𝑛

𝑣cs = 𝑟cs𝑖cs +
𝑑𝜆cs

𝑑𝑡
+ 𝑣𝑛

 

(A21)(A22)(A23) 

where 𝑣𝑛 indicates the instantaneous voltage at the neutral point of an assumed star-connection for the stator 

windings. Meanwhile, the state-space representation of the kth rotor healthy loop is given by 

0 = 2(𝑟𝑒 + 𝑟𝑏)𝑖ℓ𝑘 − 𝑟𝑏𝑖ℓ𝑘−1 − 𝑟𝑏𝑖ℓ𝑘+1 +
𝑑𝜆ℓ𝑘

𝑑𝑡
 

(A24) 
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where 𝑟𝑏 and 𝑟𝑒 are the rotor-bar and rotor-end-ring resistances, respectively. Meanwhile, for the 𝑚 th loop 

with 𝑛𝑏 adjacent broken bars the state-space representation is given by 

0 = 2((𝑛𝑏 + 1)𝑟𝑒 + 𝑟𝑏)𝑖ℓ𝑚 − 𝑟𝑏𝑖ℓ𝑚−1

−𝑟𝑏𝑖ℓ𝑚+𝑛𝑏+1 +
𝑑𝜆ℓ𝑚

𝑑𝑡
.

 

(A25) 

Now, in order to eliminate the unknown neutral voltage in the formulation and also have a stiff set of 

differential equations in the case of an interturn fault, (A21) through (A23) are reduced to only two differential 

equations as 

𝑣as − 𝑣bs = 𝑟as𝑖as − 𝑟bs𝑖bs +
𝑑𝜆ab

𝑑𝑡

𝑣bs − 𝑣cs = 𝑟bs𝑖bs − 𝑟cs𝑖cs +
𝑑𝜆bc

𝑑𝑡

 

(A26)(A27) 

where the so-called line-to-line flux linkages, 𝜆ab = 𝜆as − 𝜆bs and 𝜆bc = 𝜆bs − 𝜆cs, are defined here as the state 

variables. Meanwhile, the state-space representation of the additional fourth phase, representing the shorted 

portion of phase-A, can be expressed by 

0 = −𝑟𝑓𝑖𝑎 + (𝑟sc + 𝑟𝑓)𝑖sc +
𝑑𝜆sc

𝑑𝑡
 

(A28) 

where rf is the external resistor in Fig. 15 (𝑖sc = 𝑖𝑎 − 𝑖𝑓), and 𝑟sc = 𝜂𝑟as. It should be pointed out that, if 𝑟𝑓 ≫

𝜂𝑟as = 𝑟sc, (A28) can be expressed by the following algebraic equation: 

0 = −𝑟𝑓𝑖𝑎 + (𝑟sc + 𝑟𝑓)𝑖sc + 𝜂𝑣as. 

(A29) 

Accordingly, 𝐋𝐬 in (A14) and 𝐋𝐬𝐫 in (A15) are converted to 3-by-3 and 3-by- (𝑁bar − 𝑛𝑏) matrices, respectively. 

However, in general the state space representation of the electrical portion of the transient model can be 

represented by 

(𝑑/𝑑𝑡)Λ = (−𝐑𝐋−1)Λ + 𝑉 

(A30) 

where, in (A28), Λ is the vector of flux linkages, R, and L matrices are calculated using the formulations shown 

in (A31) at the bottom of the page, where 𝐑𝐫 is given by (A32) at the top of the next page. Meanwhile, 

matrix 𝐋 in (A30) is calculated through two steps in order to eliminate the third row and the third column of 

matrix 𝐋𝐩 

https://ieeexplore.ieee.org/document/#deqna21-a23
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𝐋𝐩 = [
[𝐋𝐬]4×4 [𝐋𝐬𝐫]4×(𝑁bar−𝑛𝑏)

[𝐋𝐬𝐫
𝑇 ](𝑁bar−𝑛𝑏)×4 [𝐋𝐫](𝑁bar−𝑛𝑏)×(𝑁bar−𝑛𝑏)

] .
 

(A33) 

This is due to the fact that in (A28), 𝑉(1) = 𝑣ab = 𝑣𝑎 − 𝑣𝑏, and 𝑉(2) = 𝑣bc = 𝑣𝑏 − 𝑣𝑐. Meanwhile, the so-

called “line-to-line” flux linkages are the stator windings state variables, namely Λ(1) = 𝜆ab = 𝜆𝑎 − 𝜆𝑏, 

and Λ(2) = 𝜆bc = 𝜆𝑏 − 𝜆𝑐. It should be noted that in case of using (A29) instead of (A28), Ls and L𝐬𝐫 will 

become a (3-by-3) and a (3-by- (𝑁bar − 𝑛𝑏)) matrices, respectively [12]. 

• Subtracting the third row of 𝐋𝐩 from the first and second row and eliminating the third row 

yields (A34) at the top of the page. 

• Subtracting the third column of 𝐋𝐚𝐮𝐱 from the first and second column and eliminating the third column 

yields (A35) at the top of the page. Thus, the entire set of 𝐑 and 𝐋 matrices for the stator and rotor have 

been defined. 

 

In order to complete the state space model, the dynamics of the motor rotation are governed by the following 

equation based on Newton's law for rotational motion: 

𝐽
𝑑𝜔𝑚(𝑡)

𝑑𝑡
= 𝑇𝑒(𝑡) − 𝑇𝑚(𝑡) 

(A36) 

where 𝜔𝑚(𝑡) is the rotor angular speed in mechanical rad/sec, 𝐽 is the moment of inertia of the rotor-load 

system, 𝑇𝑚(𝑡) is the mechanical load torque, and 𝑇𝑒(𝑡) is the electromagnetic torque calculated by 

𝑇𝑒(𝑡) = (
𝑝

2
) 𝐼𝑠

𝑇
∂Lsr

∂𝜃
𝐼𝑟  

(A37) 

where the matrix ∂Lsr/ ∂𝜃 is obtained from (A11) and (A15), 𝐼𝑠 is the vector of stator winding currents, and 𝐼𝑟 is 

the vector of the rotor loop currents. 
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