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Abstract 
Osteogenesis imperfecta is a genetic disorder of bone fragility; however, the effects of this disorder on bone 

material properties are not well understood. No study has yet measured bone material strength in humans with 

osteogenesis imperfecta. Small bone specimens are often extracted during routine fracture surgeries in children 

with osteogenesis imperfecta. These specimens could provide valuable insight into the effects of osteogenesis 

imperfecta on bone material strength; however, their small size poses a challenge to their mechanical 

characterization. In this study, a validated miniature three-point bending test is described that enables 

measurement of the flexural material properties of pediatric cortical osteotomy specimens as small as 5 mm in 

length. This method was validated extensively using bovine bone, and the effect of span/depth aspect ratio (5 vs 

6) on the measured flexural properties was examined. The method provided reasonable results for both Young’s 

modulus and flexural strength in bovine bone. With a span/depth ratio of 6, the median longitudinal modulus 

and flexural strength results were 16.1 (range: 14.4–19.3) GPa and 251 (range: 219–293) MPa, respectively. 

Finally, the pilot results from two osteotomy specimens from children with osteogenesis imperfecta are 

presented. These results provide the first measures of bone material strength in this patient population. 

Keywords  
Material properties, flexural, osteogenesis imperfecta, pediatric, bone 

Introduction 
Osteogenesis imperfecta (OI), or brittle bone disease, is a genetic disorder of bone fragility. This fragility is 

attributed to a combination of bone mass deficiency and compromised material properties. No data, however, is 

yet available to describe bone material strength in OI. Small bone fragments that are routinely extracted during 

fracture repair and corrective osteotomy procedures in young individuals with OI could be useful for bone 

material characterization. Unfortunately, their small size, that is, often not more than 5 mm in length, renders 

these fragments unsuitable for typical mechanical characterization protocols, which require machined bone 

specimens that are a few centimeters long.1–5 In fact, few studies6,7 have explored the material behavior of 

pediatric bones in general, due to a scarcity of specimens available for testing. For this reason, a validated and 

appropriately sized test method enabling the measurement of material strength of miniature bone specimens 

could be useful in characterizing pediatric bones, such as those from children with brittle bones. 

The characterization of OI bone material and structural behavior can provide valuable insight toward improved 

care for children with this disorder. For example, finite element models have been developed to assess stress 

distribution and fracture risk in OI during daily activities.8,9 These models could be useful in the development of 

treatment strategies to reduce fracture occurrence in individuals with OI; however, the ability of these models 

to assess fracture risk remains hindered by a shortage of bone material property data in OI. 

The most considerable challenge in mechanical characterization of pediatric osteotomy bone fragments is their 

small size, that is, often as small as 5 mm in length. Previously described techniques that are suitable for 

characterizing the mechanical properties of these miniature bone specimens include nanoindentation10–13 and 

micromechanical tests.14–16 Each of these techniques presents unique advantages and limitations. 

During nanoindentation, a diamond-tip indenter is compressed into the surface of a polished specimen to 

measure local material properties, specifically, Young’s modulus and hardness. The small scale of the indents, 

that is, typically a few hundred nanometers deep and a few microns wide,11,13,17 enables measurement of bone 

material properties within osteonal bone or individual trabeculae. Nonetheless, nanoindentation provides local 

measurements that vary considerably within a single specimen,18–21 and it does not offer a direct measure of 

material strength. 



A few studies have characterized flexural bone material properties using “microspecimens” (e.g. machined 

beams 120 µm × 120 µm × 1.5 mm in size).14–16 The described approach could be suitable for testing miniature 

osteotomy specimens. These microspecimens, however, are thinner than the diameter of a typical single 

secondary osteon, and they are therefore too small to capture the heterogeneous microstructure and 

composition of cortical bone. Moreover, the elastic modulus estimates obtained for adult human cortical bone 

using microspecimens, that is, 5–7 GPa,14–16 tend to be much lower than the generally accepted values, that is, 

typically 15–20 GPa.4,22 The size-dependency of human cortical bone elastic modulus measurements in bending 

was examined for beam depths (thicknesses) between 100 and 1000 µm, with a fixed span/depth aspect ratio of 

10.16 A beam depth of approximately 560 µm or greater provided a more or less constant modulus result of 

15 GPa, whereas this measure decreased for beam depths less than 320 µm. A depth of 560 µm would be 

appropriate for characterizing pediatric osteotomy specimens. With this specimen depth, a span/depth aspect 

ratio of 10 would require a span length of 5.6 mm. Unfortunately, the surgical pediatric bone specimens that 

have been collected to date are often not greater than 5 mm in length; therefore, a maximum span length of 

4 mm would be more appropriate for their characterization. 

The objectives of this study are to describe a validated three-point bending test method suitable for 

measurement of the elastic modulus, yield stress, yield strain, and flexural strength, of small cortical osteotomy 

specimens obtained by routine surgery. The validation of the test method was performed with 39 beam 

specimens of bovine bone having two span/depth aspect ratios, 5 and 6, and two orientations, that is, parallel 

and perpendicular to the long bone axis. The method was further validated with acrylic beam specimens. Finally, 

the described method was used to measure flexural bone material properties of cortical osteotomy specimens 

obtained from two children with OI. 

Methods 
A three-point bending apparatus was designed to characterize the mechanical properties of miniature beams of 

cortical bone, approximately 5 mm in length. The potential sources of error were investigated carefully, in light 

of the small scale of the specimens and that of their maximum deflections during testing. A multistage approach 

was taken to validate the test setup, including validating load and deflection measurement, identifying and 

minimizing potential sources of experimental error, and assessing the effectiveness of the setup in measuring 

the modulus of elasticity (E), yield strength (σy), yield strain (εy), and flexural strength (σfm) of bone specimens. 

Jig design and testing system 
A custom-designed, three-point bending jig was built for this study (Figure 1). The loading nose and supports 

consisted of 1/16-in (1.6 mm) diameter stainless steel pins that were fixed into grooves machined in upper and 

lower aluminum platens using cyanoacrylate. A constant bottom span length (L) of 4 mm (actual measurement 

3.973 mm) was chosen to accommodate the length of pediatric osteotomy specimens that were collected as 

part of another study. The jig was mounted onto an electromechanical testing system (Model 3345; Instron®, 

Norwood, MA) with a 50-N capacity load cell (Model 2519-102; Instron). 

 
Figure 1. Diagram of three-point bending test setup. The three-point bending jig was mounted on an 

electromechanical materials testing machine, and the upper and lower platens were aligned using four dowel 
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pins. Deflection was measured with an externally mounted LVDT. (a) Front view of the three-point bending test 

assembly (not drawn to scale). (b) Top view of the lower platen showing the bottom two rollers and the location 

of the four alignment pins. 

The following potential sources of experimental error were identified: load measurement error, displacement 

measurement error, and misalignment between the loading nose and supports. Special care was taken to 

address these sources of error as follows: 

a. Misalignment between the loading nose and supports: The top and bottom platens were aligned using 

four stainless steel dowel pins 1/16-in (1.6 mm) diameter, which were removed prior to testing (Figure 

1). These alignment pins helped to ensure that the loading nose was parallel to and centered between 

the supports for a symmetrical loading configuration. 

b. Load measurement error: The load cell calibration was verified using calibrated weights (Christian Becker 

Inc., New York). The slope of load measured versus load applied was 0.9999 (R2 = 1.0), indicating a load 

measurement error of approximately 0.01%. 

c. Displacement measurement error: With the electromechanical testing system (Model 3345; Instron®), 

crosshead displacement is measured by a built-in encoder. The displacement measured by the built-in 

encoder provides a combined measure of beam specimen deflection and deformation occurring within 

the load frame, load cell, mounting base, and three-point bending jig, that is, the loading nose, supports, 

and platens (Figure 1). Thus, the use of the encoder displacement as a measure of midspan beam 

deflection would result in compounded errors from each of these components. To reduce this source of 

error, an external linear variable differential transformer (LVDT; Model 2601; Instron®) was incorporated 

in the jig design. The displacement measured by the external LVDT includes deformation within the 

platens (platens 2 and 3), loading nose, and supports, but does not include any deformation occurring 

within the load frame, load cell, and mounting base (Figure 1). The calibration of the LVDT was verified 

using gage blocks (Hoke Precision Gage Blocks; Pratt & Whitney Measurement Systems Inc., Bloomfield, 

CT), while the sensor was mounted onto the jig. The slope of LVDT measurement versus gage block 

thickness was 0.9980 (R2 = 1.0), indicating an LVDT displacement measurement error of approximately 

0.2%. 

 

In the original jig design, the loading nose and supports were 1/32-in (0.8 mm) diameter stainless steel pins. The 

compliance of the platens, loading nose and supports, based on the load cell and external LVDT measurements, 

was assessed using a stiff “dummy specimen” (a 7/32-in stainless steel Allen key). With these thinner pins, the 

compliance was not constant but instead increased nonlinearly with increasing load. This problem was resolved 

once these pins were replaced with thicker ones having a 1/16-in (1.6 mm) diameter. The final compliance of the 

platen and 1/16-in (1.6 mm) diameter loading nose and supports, based on the load cell and external LVDT 

measurements, was 0.06 µm/N. 

Validation of the three-point bending setup with bovine cortical bone 
A cross-section of cortical bone was harvested from the midfemoral diaphysis of a 1-year-old female cow. 

Miniature rectangular cortical beams were obtained from this cross-section using a diamond saw (IsoMet® Low 

Speed Saw; Buehler®, Lake Bluff, IL) and a 0.3-mm-thick blade. First, the cross-sections were cut into slices, each 

having a thickness approximately equal to the desired beam depth. The beams were then obtained from these 

bone slices (Figure 2). The following precautions were taken while cutting the beam specimen. The diamond saw 

blade was thinner in the periphery, which caused thickness variations in the machined part. More specifically, 

the last corner of the bone slice to be cut by the diamond saw had a larger thickness than the other regions of 

the slice (e.g. in one slice, that difference was 27%). The region having higher thickness than the rest of the slice 



was identified, marked with a permanent marker, and excluded when machining beams from the slice. The 

thickness was found to be relatively even within the remaining regions of the slice (after the last-cut thicker 

corner was removed), with variations of 1%–2%. Each beam was machined such that its depth was equivalent to 

the thickness of the slice. Finally, when machining the beams from the bone slices, the slices were gripped onto 

a 1/4-in-thick acrylic backing to prevent bending of the slice during cutting. 

 
Figure 2. Anatomical orientation and flexural loading configuration for the longitudinal and transverse beams. 

Dimensions shown are specimen width (w), depth (d), and span length (L). 

Three groups of specimens were tested: T1, L1, and L2, each having 13 beam specimens, n = 13 (Table 1). In 

group T1, the beam specimens were machined such that the long beam axis was transverse to the long axis of 

the femoral diaphysis, whereas in groups L1 and L2, the beam long axis was oriented parallel to the diaphyseal 

long axis (Figure 2). The beams were at least 5 mm in length and approximately 1 mm in width (w). A beam 

depth (d) of approximately 650 µm (L/d ratio of approximately 6) was used for groups T1 and L1. For group 

L2, d was approximately 800 µm (L/d ratio of approximately 5). The beam w and d measurements were obtained 

with a digital micrometer (Model 293-340; Mitutoyo Corporation, Kanagawa, Japan). These measurements are 

shown in Table 1. 

Table 1. Beam dimensions and anatomical orientation for each group of bovine bone specimens (median 

(range)). 

 

Beam 
group 

Orientation Number 
of beams 

w (mm) d (mm) 

T1 Transverse 13 1033 683 
   (972–1113) (627–747) 

L1 Longitudinal 13 973 643 
   (926–1037) (636–659) 

L2 Longitudinal 13 989 806 
   (875–1088) (803–815) 

w: beam specimen width; d: beam specimen depth. 

 

The loading was applied using Bluehill 2 Software (Instron®) in flexural loading mode. The loading consisted of 

five cycles of preconditioning followed by a ramp to failure. The preconditioning cycles were applied at a 

crosshead displacement rate of 0.3 mm/min with minimum–maximum loads of 0.05–1.0 N (<15 MPa) for group 

T1 and 0.05–2.0 N (<30 MPa) for groups L1 and L2. The ramp to failure was applied in displacement control, 

using the external LVDT to control the displacement rate. The LVDT displacement rate was 2 (groups L1 and T1) 
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and 1.7 mm/min (group L2), which resulted in strain rates of 0.8%/s–1.0%/s for all specimens. The specimens 

were kept hydrated during the test using a drop of normal saline, which was held in place by surface tension. 

The force and displacement data were sampled at 100  Hz throughout the test. The flexural stress and strain 

were obtained from the load and LVDT displacement data using the following beam equations 

𝜎𝑓 =
3𝐹𝐿

2𝑤𝑑2
 

(1) 

𝜀𝑓 =
6𝑑𝛿

𝐿2
 

(2) 

where I is the cross-sectional moment of inertia of the beam; w and d are the beam specimen width and depth, 

respectively (Figure 2); L is the span between the supports; F is the applied load; δ is the beam deflection at 

midspan (displacement measured by the LVDT); and σf and εf are the calculated maximum tensile stress and 

strain at midspan, respectively. 

The following material properties were calculated from the stress–strain curve obtained during the 

displacement ramp to failure. The yield strength (σy) and yield strain (εy) were determined using the 0.2% strain 

offset method (Figure 3). The flexural strength (σfm) was defined as the maximum stress on the stress–strain 

curve. The energy absorbed to failure was estimated as the area under the stress–strain curve. The modulus of 

elasticity (E) was determined using the following equation 

 

Figure 3. Typical curves for (a) load–displacement and (b) flexural stress–strain data obtained from longitudinal 

(black) and transverse (gray) beam specimens. Yield strength (σy) and wield strain (εy) were calculated using the 
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0.2% strain offset method. Flexural strength (σfm) was determined as the maximum stress on the flexural stress–

strain curve. 

𝐸 = 𝑚
𝐿3

4𝑤𝑑3
 

(3) 

where m is the slope of the straight part of the load–displacement curve. For groups L1 and L2, E was calculated 

over a load range equivalent to stresses of 50–100 MPa, while for group T1, it was calculated within the 

equivalent stress range of 20–30 MPa. 

The flexural properties were compared between groups L1 and T1, and between groups L1 and L2 using Mann–

Whitney U tests, with a significance level of 0.05. A nonparametric method was chosen because the normality 

assumption was rejected in one of the variables (εy) for group T1, based on the Wilks–Shapiro test. For the sake 

of uniformity, nonparametric statistical approach was used consistently for all analyses, and the median and 

ranges were reported for all variables. 

Validation of the three-point bending setup with acrylic specimens 
The three beams of acrylic were prepared using the same specimen preparation methods as described for the 

bone specimens. Each beam was tested twice nondestructively, up to a maximum bending stress of 

approximately 35 MPa. The elastic modulus was obtained from the straight part of the stress–strain curve, that 

is, between stresses of 10 and 35 MPa. 

Pilot study—osteotomy specimens from two children with OI 
Under Institutional Review Board (IRB) approval and informed consent, two bone specimens were obtained 

from children with OI during routine osteotomy procedures (IRB #10101309 from Rush University Medical 

Center and #HR-2167 from Marquette University). Specimen “OI-I” was obtained from the right humeral 

diaphysis of an 11-year-old girl with OI type I (mild form of the disorder), and specimen “OI-III” from the right 

femoral diaphysis of an 8-year-old female with OI type III (severe form). The specimens were prepared into small 

beams using the same methods as described for the bovine bone specimens. The specimen OI-I, however, was 

too small to grip directly with the diamond saw chuck, and therefore, this specimen was affixed onto a wood 

mandrel using cyanoacrylate prior to cutting. These human bone specimens were oriented such that the long 

beam axis was parallel to the estimated long bone axis (based on the curvature of the periosteal surface). Their 

dimensions (Table 2) were roughly the same as those in bovine group L1, and they were subjected to the same 

test methods as described previously for that group. 

Table 2. Description of the pediatric OI bone specimens (median (range)). 

Human 
specimen 

OI severity Age Anatomic 
site 

Beam 
orientation 

Number 
of beams 

w (mm) d (mm) 

OI-I Type I (mild) 11 Right femur Longitudinal 3 1057 (1013–
1119) 

593 (590–
610) 

OI-III Type III 
(severe) 

8 Right 
humerus 

Longitudinal 9 969 (888–1040) 636 (617–
652) 

OI-I: osteogenesis imperfecta type I; OI-III: osteogenesis imperfecta type III. 

Results 
The load–displacement curves and corresponding stress–strain curves for typical longitudinal and transverse 

bovine bone specimens are shown in Figure 3. The stress–strain curves for the beams of OI bone are presented 



in Figure 4. The flexural material properties for the acrylic, bovine bone and human OI bone specimens are 

presented in Table 3. 

 
Figure 4. Stress–strain data curves for the OI bone specimens. The three beams obtained from the individual 

with mild OI (specimen OI-I) are shown as dashed lines, while the nine beams obtained from the individual with 

severe OI (specimen OI-III) are shown as solid lines. 

Table 3. Cortical bone modulus (E), flexural strength (σfm), yield strength (σy), yield strain (εy), and energy 

absorbed to failure measured for the bovine and pediatric OI bone, and acrylic beams (median (range)). 

 

Specimens E (GPa) sfm (MPa) sy (MPa) ey (%) Energy to 

failure (MJ/m3) 

T1 6.4 (4.7–7.9) 57 (43–71) 56 (43–63) 1.02 (0.91–1.45) 0.53 (0.25–1.53) 

L1 16.1 (14.4–

19.3)* 

251 (219–293)* 180 (161–225)* 1.36 (1.30–

1.53)* 

10.1 (6.6–15.2)* 

L2 17.3 (12.8–

19.3)** 

308 (253–

345)*** 

258 (207–

280)*** 

1.68 (1.51–

2.08)*** 

19.8 (10.5–

24.8)*** 

Mild OI (OI-I) 4.5 (3.2–7.4) 94 (83–145) 65 (46–114) 1.66 (1.65–1.73) 7.5 (7.2–10.4) 

Severe OI (OI-

III) 

5.1 (3.0–5.8) 74 (56–100) 57 (44–69) 1.43 (1.18–2.39) 3.7 (0.9–4.7) 

Acrylic 3.1 (3.0–3.1)     

*p  < 0.001 compared to group T1. 

**p = 0.069 compared to group L1. 

***p  <  0.001 compared to group L1. 

 

For the beams of bovine bone, the orientation (T1 vs. L1) had a significant effect on all measured flexural 

properties (p<0.001). The median E was 60% lower in the transverse beams (group T1) than in the longitudinal 

beams of equivalent dimensions (group L1). Similarly, the medians σy, εy, σfm, and energy to failure were 69%, 

25%, 77%, and 95% lower, respectively, for the transverse beams than for the longitudinal ones. 

When comparing results from groups L1 vs. L2, the following observations were made. There was no significant 

difference in E between these two groups (p = 0.069). However, the beam depth had a significant effect on σy, 

εy, σfm and energy to failure (p<0.001). The median results for σy, εy, σfm, and energy to failure were 69%, 19%, 

19%, and 96% higher for specimens in group L2 than for those in group L1, respectively. 
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Discussion 
In this study, a validated three-point bending test setup is described that enables measuring flexural bone 

material properties of small cortical osteotomy specimens. The test method was validated using miniature 

beams of acrylic, as well as beams of bovine cortical bone oriented longitudinally and transversely relative to the 

long axis of the femur diaphysis. Finally, a pilot study of osteotomy specimens from children with OI was 

performed, providing the first data for bone material strength in this patient population. 

Three point bending tests are a common tool used to characterize bone material properties.1,16,23–

25 Nonetheless, these bending tests entail a number of limitations. For example, local deformation of the 

specimen is likely to occur at the points of contact with the loading nose and supports due to stress 

concentrations. This local deformation can result in an overestimation of beam deflection at midspan, and thus 

underestimation of E. Fracture is assumed to occur at the midpoint between the supports, which may not be 

exactly true. Furthermore, the beam theory used to derive stresses and strains from the load–displacement data 

assumes linear elastic behavior throughout the test. This assumption, however, does not hold true beyond the 

point of yield. For this reason, bending test results tend to overestimate ultimate material strength. A more in-

depth discussion of this phenomenon can be found in previous works.26,27 To emphasize its distinction from 

ultimate tensile strength, the maximum stress value in bending is sometimes referred to as “flexural 

strength,”28“bending strength,”1“modulus of rupture,”29,30 or “computed ultimate bending strength.”2 In this 

article, this value is reported as flexural strength. Similarly, the energy to failure was calculated for each bone 

specimen as the area under the flexural stress–strain curve up to the point of fracture. Due to overestimation of 

stress in the post-yield region, the energy to failure results presented in this study thus represent estimates 

rather than accurate values. 

A minimum span/depth aspect ratio of 8 has been recommended for measuring the flexural properties of 

ceramic materials (ASTM C674). For bone, E has been found to decrease with decreasing span/depth ratio when 

that ratio was below 15, while it was roughly constant for ratio over 20.31 As mentioned earlier, due to the small 

size of our previously collected pediatric bone specimens, a maximum span length of 4 mm was deemed 

appropriate for characterizing those specimens. With this chosen span length, beam depths of 500 and 266 µm 

would be required in order to obtain span/depth ratios of 8 and 15, respectively. As discussed earlier, the beam 

depths above 560 µm (i.e. span/length ratios of 5 and 6) were selected for our specimens on the basis of 

decreased E values reported with smaller beam depths.16 This minimum depth value, being two or three times 

the size of a secondary osteon, also ensures a certain amount of heterogeneity in microstructure within the 

specimens. Nonetheless, it should be acknowledged that the relatively small span/depth aspect ratios used in 

this study may have resulted in some error due to shear deformation within the specimens.31,32 

In spite of the abovementioned limitations, the methods described in this article yielded reasonable results for 

acrylic as well as bovine bone. For acrylic, E was within 3% of the expected value of 3.2 MPa.33 The 

longitudinal E values for bovine bone (groups L1 and L2) were of similar magnitude to those reported in another 

bending study that characterized larger bovine specimens (10 mm × 4 mm × 80 mm), that is, 18.6 ± 

1.2 GPa.25 Similarly, the longitudinal σfm results were within the range of value reported in other studies of larger 

bovine bone specimens in bending, that is, 170–400 MPa.3,25 

In this study, beam depth did not have a significant effect on longitudinal E. There was no significant difference 

in E between groups L1 and L2, having specimen depths of 636–659 µm (span/depth ratio of 6) and 803–815 µm 

(ratio of 5), respectively. This observation was similar to that of a previous study of human cortical bone, in 

which a more or less constant E was reported for beam depths greater than 560 µm, with a constant span/depth 

ratio of 10.16 Beam depth, however, had significant effects on σy, εfy, and σfm, all of which were higher for the 

thicker specimens (group L2) than for the thinner ones (L1). 



Micromechanical bending studies of human bone,14–16 with specimen depths ranging from 50 to 200 µm, 

reported much lower E (by 50%–75%) than typical values for larger adult human cortical bone specimens (15–

20 GPa).4,22 This size-related phenomenon has not yet been explained, however, it was suggested that the 

lower E reported in micromechanical bending tests may be attributed to stress concentrations and 

inhomogeneities in microspecimens caused by Haversian canals and canaliculi.34 The methods described in this 

article, however, did not result in such underestimation of E, but provided values similar to those reported for 

larger bovine bone specimens.25 

The methods described in this article were used to characterize two osteotomy specimens from children with OI. 

For these specimens, E was lower than values previously obtained by nanoindentation for children with severe 

OI (9–22) GPa.10–13,18 The moduli measured by nanoindentation, however, do not take into account specimen 

porosity, and a substantial amount of cortical porosity was apparent in our specimens by visual inspection. Such 

cortical porosity has also been observed histologically in iliac biopsies from children with OI.35 In the pediatric OI 

specimens observed in this study, the flexural properties were lower than previously published values for adult 

cortical bone, for example, 11–20 GPa for E, 194 (21) MPa for σfm, and 154 (13) MPa for σy.4,22,23 Little normal 

pediatric data, unfortunately, is available for comparison with the flexural properties measured in this study. 

One study characterized flexural properties in cadaveric bones from children and adults.6 It was found that E and 

σfm were lower in pediatric than in adult bones. The E values reported in that study (79–162 GPa, when 

combining specimens of all ages), however, were consistently much higher than the generally accepted range 

for adult human bones. The flexural strength for the two OI pediatric bone specimens were lower than the value 

previously reported for a “normal” 8-year-old girl (190 MPa).6 This apparent decreased flexural strength in the 

pediatric OI bone specimens may be the result of cortical porosity. 

In this study, the beams obtained from the individual with severe OI (specimen OI-III) absorbed less energy to 

failure than did those obtained from the individual with mild OI (specimen OI-I). Nonetheless, a certain amount 

of variability was seen within each OI osteotomy specimen (Table 3 and Figure 4), and in light of the small 

sample size in this pilot study (one specimen with each mild and severe OI), a larger study is needed to draw 

definitive conclusions regarding the effects of OI severity on bone material properties. 

In conclusion, this study describes a validated three-point bending test method with a span of 4 mm suitable to 

characterize the material behavior of miniature bone specimens such as those obtained during osteotomy 

procedures. This method provided reasonable E, σy, and σfm results for bovine bone. The results for σy, and σfm, 

however, were sensitive to the span/depth aspect ratio. For that reason, this parameter should be considered 

when comparing bone properties measured with the presented method. Two specimens obtained from children 

with OI were also characterized in a pilot study, providing the first ever data for flexural and yield strength for 

this patient population. Finally, the flexural test setup described in this article can be used to characterize 

miniature bone specimens, such as those obtained during routine osteotomy procedures, which can lead to 

improved understanding of bone disorders such as OI. 

Appendix 1 

Notations 
d beam specimen depth 
E modulus of elasticity 
F applied load 
I cross-sectional moment of inertia of the beam specimen 
L span length between the supports 
m slope of load–displacement curve in the linear elastic region 



OI osteogenesis imperfecta 
w beam specimen width 
δ beam deflection at midspan 
εf maximum tensile strain at midspan 
εy yield strain 
σf maximum tensile stress at midspan 
σfm flexural strength 
σy yield strength 
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