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ABSTRACT 

STRUCTURAL-FUNCTIONAL BRAIN CONNECTIVITY UNDERLYING 

INTEGRATIVE SENSORIMOTOR FUNCTION AFTER STROKE 

 

 

Benjamin T. Kalinosky, B.S. 

 

Marquette University, 2016 

 

In this dissertation research project, we demonstrated the relationship between the 

structural and functional connections across the brain in stroke survivors.  We used this 

information to predict arm function in stroke survivors, suggesting that the tools 

developed through this research will be useful for prescribing individualized 

rehabilitation strategies in people after stroke. Current clinical methods for rehabilitating 

sensorimotor function after stroke are not based on the locus of injury in the brain.  

Instead, therapies are generalized, treating symptoms such as weakness and spasticity.  

This results in outcomes that are highly variable, with severity of impairment 

immediately following stroke as the best predictor of recovery.  By using measures of 

brain structural and functional relations, we can better prognosticate and plan 

rehabilitation interventions. 

This research study utilized diffusion and functional magnetic resonance imaging 

(MRI) to quantify anatomical connectivity and functional networks of the brain after 

stroke.  In the first aim, diffusion MRI was used to track the white matter pathways 

throughout the entire brain. A new imaging biomarker sensitive to stroke lesions was 

developed that quantifies the level of anatomical connections between every point in the 

brain.  It was found that cortical areas most responsible for integration of sensorimotor 

and multisensory integration were the best predictors of motor impairments in chronic 

stroke subjects.  Our second aim investigated the role of multisensory integration during 

sensorimotor control in healthy adults and stroke survivors.  A novel functional MRI task 

paradigm involving wrist movement was developed to gain insight into the effects of 

multimodal sensory feedback on brain functional networks in stroke subjects. We found 

that the loss of functional interactions between the cerebellum and lesioned sensorimotor 

area were correlated with loss of movement function.  Our final aim investigated the 

relationship between structural and functional connectivity after stroke.  A model that 

marries diffusion MRI fiber tracking and resting-state functional MRI was designed to 

enhance indirect functional connections with structural information.  The technique was 

capable of detecting changes in cortical networks that were not seen in functional or 

structural analysis alone.  In conclusion, structure is essential to functional networks and 

ultimately, recovery of functional movements after stroke. 
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CHAPTER 1: INTRODUCTION & BACKGROUND 

1.1  THESIS STATEMENT 

Changes in integrative structural and functional brain networks after stroke can 

predict functional outcomes. 

1.2  IMPAIRMENT AND RECOVERY OF MOTOR FUNCTION AFTER STROKE 

1.2.1  Neurophysiology of an infarct 

Stroke is an event of massive cell death within the brain that results from 

hemorrhage or a blockage of blood from reaching the neurons.  Ischemic stroke is 

commonly caused by an embolism of the internal carotid artery.  Atherosclerotic plaques 

collect in the blood vessels, producing conditions that precede a stroke.   

In the acute phase after stroke, there is an area around the lesion with reduced 

water diffusion that is thought to be irreducibly damaged.  A similar area of impaired 

perfusion often exceeds the spatial extent of tissue with reduced water diffusion.  This 

perfusion-diffusion mismatch area, known as the penumbra (Olivot et al., 2008), has 

enhanced oxygen extraction.  An infarct can grow during the first 24 hours after an 

occlusion, with the amount of necrosis proportional to the drop in cerebral blood flow 

(Keir and Wardlaw, 2000).  Inflammatory infiltration and vasogenic edema lead occur six 

days after the infarction.  Additionally, macrophages and lymphocytes accumulate near 

the vasculature. 

Diaschisis is the hypometabolism and neurovascular uncoupling that occur near a 

lesion after stroke (Wieloch and Nikolich, 2006).  There are three phases to functional 
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recovery, which include repair from diaschisis, modification of existing networks, and 

new connections formed through neuroplasticity. Imaging studies have found that 

functional recovery is positively associated with ipsilesional supplementary motor area 

recruitment, while contralesional parietal and frontal activity is more reflective of 

incomplete recovery (Murphy and Corbett, 2009). 

1.2.2  Neural basis of sensorimotor impairments after stroke 

Impairments result from destroyed gray matter structures and white matter 

pathways.  Functional deficits depend on the location and extent of the lesion.  Patients 

with motor impairments typically have lesions to the corticospinal tract or the primary 

motor cortex.  Damage to integrative circuits involving the cerebellum, basal ganglia, 

thalamus, and association cortices may also impact fine motor control and recovery.   

Loss of function after stroke is not limited to motor networks, but can span a vast 

array of disorders in cognition, memory, language, visual perception, and auditory 

processing.  For example, Bates et al. found that stroke survivors with deficits in auditory 

comprehension had a common lesioned area in the middle temporal gyrus  (Bates et al., 

2003) . 

Neural repair mechanisms are limited after cortical damage, especially after the 

brain has fully matured. Some neurons are added to CNS throughout life. Neural stem 

cells exist in all ventricles but are usually dormant.  Only two regions give rise to new 

cells.  Stem cells in the subgranular zone of the dentate gyrus produce new granule cells, 

while stem cells in the subventricular zone of lateral ventricles produce new inhibitory 

neurons that migrate to the olfactory bulb. 
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1.2.3  Neural plasticity following stroke 

Animal studies have shown that movement may be controlled through alternate 

motor fibers after severe damage to the corticospinal tract (Lang and Schieber, 2004).  

Corticospinal tract integrity measured with diffusion tensor imaging (DTI) also predicts 

the amount of motor cortex activation during movement in stroke (Stinear et al., 2007).  

One study found that during unilateral movements, the contralesional sensorimotor cortex 

had an inhibitory impact on the ipsilesional sensorimotor cortex that was correlated with 

impairment (Grefkes et al., 2008).  The ipsilesional supplementary motor area had 

reduced functional connectivity with the contralesional sensorimotor cortex during 

bimanual movements.  The functional connectivity within the motor network has been 

correlated with impairment (Sharma et al., 2009).  The corticospinal tract splits into 

ventral and dorsal paths at the ventral pons, and the dorsal path integrity best correlates 

with motor function after stroke (Lindenberg et al., 2010).  Also, integrity of the 

contralesional corticospinal tract correlates with motor skill in chronic stroke survivors 

(Schaechter and Fricker, 2009). 

Complex tasks involving enhanced environments with interacting sensory 

integration and sensorimotor processes may be beneficial in stroke rehabilitation.  

Multisensory training has been shown to be more effective than unimodal approaches in 

healthy adults.  Multimodal stimulation activates a broader range of functional cortical 

areas, and it may promote plasticity during recovery after a stroke (Johansson, 2011).  

Such therapies may include music, cognitive tasks, exercise, virtual reality, and 
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massages.  Stroke survivors with left hemineglect have shown improved visuomotor 

performance while listening to music (Funes and Guzma, 2009). 

1.3  NEURAL MECHANISMS IN SENSORY INTEGRATION AND MOVEMENT  

1.3.1  Sensorimotor and multisensory integration  

The motor components in the brain are organized both in hierarchy and in parallel 

loops (Kandel et al., 2000).  Association areas “decide” that movement is needed.  

Premotor cortices devise a plan and pass it on to the primary motor areas, which then 

send commands to motor neurons.  The cerebellum is heavily involved in motor planning 

and learning.  It optimizes the error between somatosensory input and motor output by 

filtering commands from the primary motor cortex.  The basal ganglia also modulate 

activity of the primary motor cortex via thalamic nuclei.  However, the basal ganglia are 

involved in forming parallel processing loops in the brain circuitry.  Motor commands 

from the neocortex are carried by corticospinal fibers, which pass through the posterior 

limb of the internal capsule.  While half of the corticospinal fibers are provided by 

primary motor cortex and pass through the posterior limb of the internal capsule, the 

premotor cortex and supplementary motor area provide a third of corticospinal fibers that 

travel more anterior. 

Without sensory feedback, fine movements are not possible.  Sensory information 

is processed from bottom up (Kandel et al., 2000).  Peripheral sensory fibers synapse to 

their dorsal root ganglion, which then connects to the spinal cord.  This somatosensory 

information is relayed through a thalamic nucleus to the primary sensory cortex, S1.  

Low-level somatotopic cortical processes are forwarded to the somatosensory association 
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cortex, where neurons respond to complex combinations of somatotopic inputs.  Some of 

this unimodal association information is sent to the prefrontal and posterior parietal 

multimodal association areas for planning movement.  These multisensory neurons are 

responsible for integrating visual, auditory, and somatosensory information, which is then 

forwarded to the premotor cortex.   

Evidence from functional imaging studies suggest that there are superadditive 

bimodal neurons in the posterior parietal association cortex that show high gains in 

activation during multisensory stimulation (James and Stevenson, 2015).  It was 

discovered that under stimuli with a high signal to noise ratio, audiovisual activation did 

not reach the sum of individual auditory and visual activations.  However, superadditivity 

was observed when stimuli with lower SNR were presented.  Regions that were found to 

be sensitive to multimodal integration under this “inverse effectiveness” effect included 

superior temporal gyrus, inferior parietal lobule, medial frontal gyrus, and 

parahippocampal gyrus.    

There exists limited knowledge of the distinguished roles of the posterior and 

anterior association areas in sensorimotor integration.  Filimon et al. suggested that motor 

commands sent by frontal motor areas are forwarded to the posterior parietal cortex, 

which integrates an efference copy with sensory feedback in order to predict the current 

limb state (Andersen and Cui, 2009; Pynn and DeSouza, 2013).  This suggests that 

commands begin in frontal areas before reaching the posterior parietal areas.  In Filimon 

2010, they pointed out that task-based fMRI and resting state fMRI both find connectivity 

of anterior precuneus to premotor, SMA, the posterior precuneus to the visual cortex, and 

the between area to the frontal association areas (Filimon, 2010).   
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In addition to its role as an integrator of multisensory information and motor 

commands, the posterior parietal cortex (PPC) projects efferents to the premotor areas for 

planning movements (Kandel et al., 2000).  Buerze et al. found that the bilateral posterior 

parietal cortex and premotor cortex are involved in integrating target and arm cues for 

planning movement (Beurze et al., 2007).  The parietal cortex had the greatest activity 

during reaching.  Also dorsal premotor cortex and medial intraparietal sulcus had greater 

BOLD signal during uncued versus cued reaching.  Another study by Filimon et al. 

concluded that the superior portion of the parieto-occipital sulcus participates during 

reaching in visual feedback (Filimon et al., 2009). 

The cerebellum and basal ganglia also play an important role in both sensorimotor 

and multisensory integration.  Loss of cerebro-cerebellar circuits due to lesions in rats 

impaired the ability to guide behavior with somatosensory feedback (Proville et al., 

2014).  Conscious awareness of a phantom limb occurs due to reduced afferent 

information and reorganization, specifically an abnormal open basal-ganglia-

thalamocortical loop (Romero-Romo et al., 2010).  There is strong evidence of 

integrative multisensory neurons in caudate nucleus and substantia nigra (Nagy et al., 

2006).  Within these structures there was an extensive coverage of multiple sensory 

fields.   
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1.4  MAGNETIC RESONANCE IMAGING 

1.4.1  The MRI Signal 

 Each hydrogen atom from water in the human body has a single-proton nucleus 

that spins with a net positive charge. This high velocity charge creates a current loop, 

inducing a magnetic field. The magnetic moment of a proton is oriented along its spin 

axis.  When exposed to an external magnetic field,  𝐁0, the magnetic moments of protons 

become aligned either parallel or anti-parallel to the direction of the external field.  These 

two configurations are low energy and high energy states.  Slightly more protons are in a 

low energy state, leading to a net magnetization,  𝐌, in the direction of 𝐁0.  Due to the 

proton’s mass, its angular momentum causes the magnetic moment to tip away from the  

𝐁0.  This tipping causes the proton to precess, or wobble like a top, at the particle-

specific Larmor frequency that is proportional to the magnetic field strength.   

The external magnetic field is much greater in strength than the net magnetization 

of protons.  Thus, the portion of the 𝐌 that is parallel with 𝐁0, called the longitudinal 

magnetization 𝑀𝑍, cannot be measured.  However, if an external radio-frequency pulse at 

Larmor frequency is applied to the biological tissue, the precessing water hydrogen 

protons become excited.  This causes more protons to enter the higher energy state, which 

tips the net magnetization into the transverse plane away from 𝐁0.  Additionally, the RF 

pulse causes the spins to become phase-locked.  Since the magnetic moments are phase-

locked, their net transverse magnetization 𝑀𝑋𝑌 can be measured within the axial plane.  

Note that 𝑀𝑋𝑌 is the amplitude of the measured MRI signal.  Once the RF pulse is turned 

off, the magnetic moments of the protons return to rest over time.  As more protons return 
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to the low energy state, 𝑀𝑍 increases back 𝑀0.  In an independent process, the transverse 

magnetization 𝑀𝑋𝑌 decays back to zero due to spin dephasing.  The regrowth of 𝑀𝑍 and 

decay of 𝑀𝑋𝑌 are known as T1 and T2 relaxations.  T1 and T2 relaxation times are 

unique for white matter, gray matter, and corticospinal fluid in the brain.  MRI pulse 

sequences are designed to give greater weight to T1 or T2 within the measured signal 

with amplitude 𝑀𝑋𝑌. 

1.5  DIFFUSION MRI OF WHITE MATTER 

1.5.1  Diffusion-weighted MRI 

Diffusion of water follows the laws of Brownian motion.  If a population of water 

molecules beginning at the same location are allowed to move freely, they will randomly 

move in all directions with a spatial distribution that is Gaussian with an increasing 

standard deviation with time. 

During an RF excitation pulse, the water protons will become phase aligned and 

the MRI signal will increase.  If an additional magnetic field gradient is applied along one 

3D direction for a fixed duration and then turned off, the protons will have differences in 

phase based on spatial location in that direction.  This dephasing will lead to a drop in the 

MR signal.  If a negative gradient is then applied with the same direction and duration, 

the protons will rephased and the MRI signal will return close to its original magnitude.  

However, if water molecules are allowed to diffuse over a longer period of time between 

the dephasing and rephasing gradients, their phase is no longer a function of location 

along the gradient direction.  After the rephasing gradient is applied, protons of water 

molecules that diffused along the gradient direction will have different phases.  This net 
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dephasing leads to an MRI signal loss due to diffusion.  The diffusion coefficient of a 

specific tissue can be accurately estimated from this amount of signal loss by comparing 

the final MRI signal with and without the diffusion weighting gradients.  If 𝑆(𝑡) is a 

diffusion weighted signal and 𝑆0(𝑡) is the signal without diffusion weighting, then the 

diffusion coefficient is 𝐷 = −
ln(

𝑆(𝑡)

𝑆0(𝑡)
)

𝑏
.  The 𝑏-value is a diffusion-weighting parameter 

controlled by the time interval between dephasing and resphasing gradients as well as the 

field strength of the diffusion-weighting gradient. 

1.5.2  Diffusion anisotropy in white matter 

 It was discovered that diffusion of water in the brain’s white matter is anisotropic 

(Chenevert et al., 1990). White matter consists of axonal fibers that are organized in 

parallel as densely packed fiber bundles, or fasciculi (Douek et al., 1991). Water 

molecules cannot penetrate the axonal membranes and are thus constrained to diffuse 

primarily along the fiber bundle orientation.  Thus, diffusion is anisotropic in that it has a 

preferential direction or orientation. Basser et al. formulated a model that expresses the 3-

dimensional distribution of diffusion coefficients as an ellipsoid, expressed 

mathematically as a positive-definite symmetric 3x3 tensor (Basser et al., 1994).  This 

diffusion tensor requires at least 6 diffusion-weighted images with noncollinear gradient 

directions.  By diagonalizing the diffusion tensor, the largest eigenvector provides the 

principle direction of diffusion, which was shown to match the direction of white matter 

fibers. 
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1.5.3  Models for fiber orientation 

 A diffusion tensor image defines an ellipsoid at every voxel, with the principle 

eigenvector indicating the orientation of the fiber orientation (Alexander et al., 2001).  

This inference is only valid under the assumption that a single orientation occupies the 

voxel.  However, it has been shown that most voxels in the brain contain multiple fiber 

orientation populations due to crossing, kissing, or branching.  If the partial volumes of 

these orientations are similar, then there is not a unique preferential direction of diffusion.  

Thus, the diffusion tensor becomes isotropic and fractional anisotropy misleadingly 

decreases. 

High angular resolution diffusion MRI involves acquiring many (150-200) 

diffusion-weighted images in order to support higher order tensor models (Tuch et al., 

2002).  These models are used to calculate a voxel’s diffusion Orientation Distribution 

Function (ODF), which is a continuous spherical function of calculated by radially 

integrating over the diffusion measurements (Tuch et al., 2003).  Q-ball imaging uses 

HARDI data to model the diffusion ODF (Tuch, 2004; Tuch et al., 2003).  Every 

diffusion measurement is expressed as a vector in q-space, where the direction matching 

the diffusion gradient direction and the magnitude equaling the diffusion coefficient.  The 

b-value is kept fixed for all DWI’s in order to sample a “ball” in q-space. The ODF is 

continuous, which requires that the HARDI data be fit a set of parameters.  Some q-ball 

imaging studies fit the data to a linear combination of spherical harmonic basis functions 

or “shells”.  These models are effective if a high b-value is used.  However, increasing 

the diffusion gradient strength decreases the signal-to-noise ratio considerably.  
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Alternative models can still detect subtler local maxima in the ODF at lower b-values. 

The ball-and-sticks approach (Behrens et al., 2003), supports multiple sharp local 

maxima overlaying a nonzero baseline level of diffusion.   

1.5.4  Tractography 

1.5.4.1 Deterministic Tractography 

At each voxel, the primary direction of diffusion is inferred from the diffusion 

tensor or q-ball model. Furthermore, fiber trajectories can be reconstructed from this 

vector field using tractography techniques.  In streamlined tractography, seed points are 

distributed throughout the brain or a region of interest.  From each seed, a trajectory is 

grown by taking small steps along the principle eigenvector until a stopping condition is 

met.  Typical stopping criteria include a minimum FA threshold or maximum tract 

curvature.  This approach is deterministic in that each seed point has one possible 

trajectory, and it is used most often applied to diffusion tensor image data.  Mori et al. in 

1999 developed a fiber-assigned continuous tractography (FACT) method for streamlined 

tractography that could be applied to diffusion tensor image data.   Note that with this 

deterministic approach, any seed that is placed along a fiber with result in the same 

reconstructed fiber.  Thus, there are many degenerate fiber paths.   

1.5.4.2 Probabilistic Tractography 

Probabilistic tractography takes advantage of higher order diffusion models in 

order to estimate a full-brain spatial map of fibers connected to each voxel.  The 
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limitations of the second order diffusion tensor model and tractography can be partially 

alleviated by using such an approach. If enough diffusion-weighted gradient directions 

are acquired to estimate the orientation distribution function, multiple fiber orientations 

can be modeled at each voxel.  These techniques, such as q-ball imaging, allow for 

multiple possible fiber paths to be reconstructed from the same starting point (Behrens et 

al., 2003).   Unlike deterministic tractography, every voxel is densely seeded from which 

thousands of fiber trajectories are reconstructed.  The fiber reconstruction process is 

similar to the deterministic approach, except that the path is perturbed at every other step.  

These small deviations in the path are randomly introduced from the local orientation 

distribution, and directions with higher diffusion coefficients have greater weight.   After 

reconstructing many fibers from a voxel, fiber counts are binned within other voxels to 

calculated a structural connectivity probability map.  Thus, each voxel has a trajectory 

distribution. 

 A unique feature of probabilistic tractography is path propagation under 

uncertainty.  Behrens developed an algorithm for this purpose (Behrens et al., 2003).  The 

orientation space, estimated from the diffusion parameters, is defined as a probability 

density function 𝑃(𝜃, 𝜑|𝐘), with θ and φ being 3D polar angles.  Tractography is 

performed with a Marov Chain Monte Carlo (MCMC) Simulation using many Markov 

Chains (Behrens et al., 2003).  Probability density function P is estimated with the 

diffusion coefficients. Directions are sampled from P with greater preference for 

directions with higher probability.  The propagation is initiated with the diffusion tensor 

orientation estimated by least-squares.  During propagation, a random direction is 

selected randomly from P, and the current trajectory z is moved distance s along the 
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selected direction.  The first 500 steps were made without sampling P as a “burnin” 

(Behrens et al., 2007), after which P was sampled after every other step for up to 2000 

steps.   

1.6  STRUCTURAL CONNECTIVITY 

Every cortical area in the human brain is densely connected to other regions, and 

the topology of these interactions determines its functional capacity.   This provides a 

basis for describing the brain as a structural network, with gray matter nodes containing 

neuron cell bodies that communicate with other nodes through edges made up of white 

matter axonal fiber bundles (Kötter and Sommer, 2000).  

1.7  FUNCTIONAL MRI OF GRAY MATTER 

1.7.1  Neuronal activity and the BOLD signal 

 Ogawa et al. discovered that T2* signal in gradient-echo MRI scans is sensitive to 

the level of blood oxygenation in the brain (Ogawa and Lee, 1990).  The paramagnetic 

properties of deoxyhemoglobin make it an intrinsic contrast agent in MR imaging.  Under 

steady state conditions, the flow of deoxyhemoglobin in the venous beds creates a local 

magnetic field gradient along the blood vessel.  This magnetic field gradient promotes 

proton spin dephasing, and thus a faster rate of T2* decay and decrease in the MRI 

signal.  The signal change measured in these regions is known as the blood-oxygen level 

dependent (BOLD) contrast. 

 In the case of brain activation, neurons will consume ATP after firing and lead to 

increased levels of oxidative phosphorylation in the mitochondria.   This furthermore 



14 
 

  

leads to an increase in levels of deoxyhemoglobin, which causes the T2* signal to briefly 

decrease.  Decreased levels of oxygen lead to an autoregulatory increase in blood flow to 

the brain area.  As blood flow increases deoxyhemoglobin is flushed out, no longer 

promoting spin-spin interactions.  Thus, protons remain in phase longer, and the BOLD 

signal increases.  The BOLD signal will rise for 5 seconds and then drop back slowly 

over another 5-10 seconds.  Another consequence of increase blood flow is the dilation of 

veins, which causes more blood to be present without a fixed voxel volume.  Since the 

veins are still dilated after flow returns to normal, the T2* signal undershoots the 

baseline.  However, it rises back to baseline as the buildup of blood is relieved.  This 

physiological process is the tissue’s hemodynamic response to brain activation.  

Importantly, the BOLD signal is an indirect measure of brain activity. 

1.7.2  Functional MRI acquisition 

 Echo-planar imaging is used to collect functional MRI data.  A gradient-echo 

sequence allows for fast image acquisition, with a full volume collected every one to 

three seconds.  

1.7.3  Slice-time correction, motion correction, detrending 

 During an EPI acquisition, data are collected slice-by-slice.  Thus, the timing 

between slice acquisitions is equal to the repetition time (TR).  Moreover, the last slice of 

one volume is acquired only one TR before the first slice of the next volume.  In an 

event-related fMRI experiment, task-related activity may be detected correctly for only a 

small range of slices due to phase shifts throughout the volume.  Furthermore, temporal 
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correlations may be falsely introduced or lost between different slices.  The solution is 

slice-time correction, which involves resampling the slice data in the temporal domain 

such that time is uniform throughout each volume.  In an interleaved approach, all even 

slices and then all odd slices are collected.   

 Subject motion is another common source of data artifacts.  If a voxel is occupied 

by two different substances (e.g. air and gray matter), the effective signal intensity would 

be an average of the two uniform substance intensities.  This phenomenon is known as 

the partial volume effect.  If a subject moves during an EPI sequence, the boundary 

between tissues may move within or between voxels.  Thus, the signal will change 

uniquely in each voxel based on its partial volumes.  If the motion is correlated with the 

task parameters, then voxels with tissue boundaries oriented normal to the motion 

direction will be contaminated with erroneous brain activity.  The image volumes can be 

spatially registered across time to correct for motion.  However, the original data must be 

interpolated to calculate the corrected images.  This interpolation does not correct for 

partial volume of multiple tissues.  Motion cannot be completely corrected. 

 Scanner drift is another source of false changes in the BOLD signal over time.  

Due to nonideal scanner hardware, magnetic field heterogeneities and external field 

sources can lead to a low frequency drift in signal over the course of an experiment.  This 

artifact introduces false correlations across all voxels, it is typically spatially uniform.  

The drift can be removed from each voxel by zeroing the mean signal and normalizing 

the variance over the course of a single session. 
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1.8   FUNCTIONAL CONNECTIVITY 

Functional connectivity is the interactive communication between neural units 

over time.  A set of voxels in the brain that share a common activation pattern form a 

macroscale functional network. 

1.8.1  Correlation-based Functional Connectivity 

 The first functional connectivity MRI techniques were based on temporal 

correlation in the BOLD signal of two or more voxels (Friston, 1994).  Behavior-related 

changes in functional connectivity have been observed in task-based fMRI paradigm.  

However, these coactivation patterns were also observed in the motor cortex at rest 

(Biswal et al., 1995).  Calculating the correlation coefficient of a voxel’s time course with 

the entire brain reveals one or more widely distributed functional networks.  Joel et al. 

showed that seed-based connectivity maps are a weighted combination of independent 

spatial network maps that are extracted with later techniques based on independent 

component analysis (Joel et al., 2011). 

1.8.2  Independent Component Analysis 

   The neurons within a single voxel may participate in one or more functional 

networks.  If a voxel has high membership within multiple cortical networks, its 

functional connectivity distribution is greatest locally in regions that are also part of the 

same networks.  The high degree of overlap between seed-based connectivity maps 

allows for common patterns to be extracted.  Independent component analysis 

(Beckmann and Smith, 2004; Hyvarinen, 1999) techniques have been introduced to 
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automatically extract network components from resting-state fMRI datasets.  Each 

independent component output from the analysis can be interpreted as a functional 

network.  It has a time course and a spatial map that specifies the contribution of each 

voxel.  Multiple subjects and sessions can be concatenated in time to perform a group 

ICA (Beckmann and Smith, 2005; Li et al., 2012), from which networks common to the 

group are derived.  ICA requires a selected number of independent components, and 

methods have been proposed for automating this task based on the data (Ray et al., 2013).  

Subject-specific spatial maps and amplitude time courses for each network can be 

recalculated from the group components by using a dual regression technique (Zuo et al., 

2010).  From these maps, voxel-based analysis can be performed to localize network-

specific changes.   

1.9   STRUCTURAL AND FUNCTIONAL BRAIN NETWORKS 

1.9.1  Human Connectome 

The Human Connectome Project (Van Essen et al., 2013) is a current effort to 

map the structural and functional connections within the human brain (Sporns, 2013, 

2011; Sporns et al., 2005).  The term “connectome” was initially exclusive to the 

anatomical connections (Sporns et al., 2005). Techniques from graph theory were applied 

to study full-brain structural connectivity measured with diffusion MRI tractography 

(Bullmore and Sporns, 2009; Hagmann et al., 2008, 2007; Rubinov and Sporns, 2011, 

2010).  Nonetheless, the scope has evolved to incorporate functional connectomes from 

fMRI (Castellanos et al., 2013; Meskaldji et al., 2013; Smith et al., 2013), approaching a 

unified structural-functional connectome (Horn et al., 2013).   
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1.9.2  Predicting function from structure 

 Using converging evidence from functional MRI and positron emission 

tomography (PET), Raichle et al. demonstrated that a set of cortical areas form a default-

mode network in the brain (Raichle et al., 2001).  This network is most active when an 

individual is at rest with the eyes closed and is deactivated during tasks (Forn et al., 

2013).  It includes the posterior cingulate gyrus (BA 31/7), bilateral supramarginal gyrus 

(BA 40), and prefrontal cortex (BA 10), where BA is Brodman’s area.  These same 

regions were also found with diffusion MRI to have the densest anatomical connectivity, 

forming a structural core of the human brain (Hagmann et al., 2008).  The high 

correspondence between the default-mode network and the structural core has been 

shown (Greicius et al., 2009).  Since the discovery of the default-mode network, many 

other resting-state networks have been identified with fMRI (van den Heuvel and 

Hulshoff Pol, 2010). 

1.9.3  Structure-function relationship in plasticity after stroke  

 Clinical applications of functional connectomes have been proposed (Castellanos 

et al., 2013).  Specifically, resting-state fMRI allows for individuals to be imaged while 

relaxing rather than requiring a specific task.  This allows for a fMRI to be incorporated 

into a sequence of clinical MRI scans.   
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1.10  IMAGING BIOMARKERS IN STROKE 

1.10.1  Diffusion MRI 

Diffusion weighted imaging (DWI) has become a clinical standard for acute 

stroke patients because it provides unprecedented contrast for ischemic tissue (Rordorf et 

al., 1998).  Edema within the white matter near the blood-brain barrier leads to 

constrained water diffusion, making ischemic tissue in DWIs hypointense.  Apparent 

diffusion coefficients of less than 5e-4 mm2/sec indicate irreversibly damaged tissue 

(Seitz et al., 2005).   

 With the advent of diffusion tensor imaging, measures such as fractional 

anisotropy can detect breakdown in perilesional white matter structure even where 

apparent diffusion coefficients appear normal (Thomalla et al., 2004).  Decreased FA 

within the posterior limb of the internal capsule is an indicator of motor impairment (Jang 

et al., 2005).  Diffusion MRI tractography techniques have shown that corticospinal tract 

integrity is the best predictor of motor function in chronic stroke subjects (Stinear et al., 

2007).   

1.10.2  Functional MRI 

 Functional MRI has provided insight into altered cortical function following a 

stroke.  However, resting-state paradigms have made fMRI clinically relevant due to the 

ease of imaging patients at rest.   
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1.10.3  Personalized rehabilitation based on network models 

Determining the optimal strategy for rehabilitating lost function after stroke has 

been difficult due to high variability in functional outcome.  Grouping stroke survivors 

into standardized treatment plans has shown to be ineffective in improving the level of 

recovery.  Due to the limited success of standardized treatments in after stroke, there has 

been a recent shift in direction for towards personalized rehabilitation.  Structural and 

functional connectivity models can account for the interactions between areas outside of 

the lesion.  Furthermore, plastic changes in cortical organization during recovery may be 

explained by network models. 

 

1.11  SPECIFIC AIMS 

This study uses novel imaging and behavioral testing paradigms to examine 

chronic stroke sensorimotor deficits in performance involving coordinated fine motor 

control.  Our approach will investigate fine motor performance during a coordinated wrist 

and forearm task.  Imaging techniques will be used to characterize the associated changes 

in structural and functional connectivity of the entire brain.  Our task will incorporate 

multiple conditions of wrist and forearm movement and different combinations of 

targeted sensory pathways.  We will first characterize the relationship between global 

anatomical brain connectivity and chronic stroke impairments with a diffusion tensor 

imaging voxel-based analysis.  We will then delineate functional networks involved in 

sensorimotor and multisensory integration using fMRI in chronic stroke subjects age-

matched controls.  Our last aim is to demonstrate that structural connectivity in stroke 
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survivors can predict differences in functional connectivity and sensorimotor impairment.  

Explaining differences in objective voxel-level connectivity will offer insight into how 

changes in overall brain structure lead to plastic changes involved in impairment and 

recovery in the context of complex fine motor control.  Our specific aims are: 

 

1.11.1  AIM 1: Determine whether full brain white matter structural connectivity 

can predict motor impairment in chronic stroke. 

In our first aim, we will determine whether motor outcomes after stroke can be 

determined by the volume of brain tissue anatomically connected to the lesion boundary.  

This aim will provide the first metric based on voxel-wise structural connectivity and its 

application in quantifying a lesion’s impact on functional outcomes after stroke.  Chronic 

impairments in function after stroke are better predicted by overall anatomical brain 

circuitry than differences in regional volumes or conventional DTI metrics. 

 

1.11.2  AIM 2: Show that functional connectivity underlying sensorimotor and 

multisensory integration is associated with motor function after stroke. 

In our second aim, we will invoke highly integrative sensory networks in chronic 

stroke subjects to perturb fine motor control.  This model could identify mechanistic 

changes in how the brain integrates sensory information during movement after stroke.  

We hypothesize that altered functional subnetworks involving sensorimotor integration 

will predict fine motor control impairment.  In upper extremity motor control of higher 
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functioning chronic stroke subjects, perilesional voxels will have increased functional 

connectivity with voxels in highly integrative cortical areas. 

 

1.11.3  AIM 3: Demonstrate the relationship between resting-state cortical networks 

and their anatomical connections in chronic stroke survivors. 

In our final aim, we will use a novel model that incorporates voxel-based 

structural and functional connectivity information to identify specific neuroanatomical 

networks involved in sensorimotor integration and visuospatial attention during fine 

motor control.  This aim’s results will offer the first quantification of temporal and spatial 

motor coordination associated with the cost of multimodality sensory processing in 

stroke. 
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CHAPTER 2: WHITE MATTER STRUCTURAL CONNECTIVITY IS ASSOCIATED 

WITH SENSORIMOTOR FUNCTION IN STROKE SURVIVORS 

2.1 INTRODUCTION 

Diffusion tensor imaging (DTI) of brain white matter structural connectivity may 

have prognostic value for acute stroke patients at risk of motor impairment.  In particular, 

DTI of the corticospinal tract has been a primary focus for predicting stroke severity and 

clinical outcome (Thomalla et al., 2004; Puig et al., 2010).  In the corticospinal tract of 

stroke survivors, DTI measures that indicate structural integrity in white matter correlate 

with muscle strength (Chen et al., 2008; Puig et al., 2010; Schulz et al., 2012), walking 

ability (Jayaram et al., 2012) hand function and motor recovery (Thomalla et al., 2004; 

Schaechter and Fricker, 2009; Lindenberg et al., 2010; Vargas et al., 2012).  

Corticospinal tract size and damage to the corticospinal tract, estimated using DTI in the 

acute setting, also correlate with long-term recovery (Parmar et al., 2006; Pannek et al., 

2009; Zhu et al., 2010).  In addition to the natural recovery from stroke, information 

about corticospinal tract loss predicts the extent of motor recovery obtained from 

therapeutic interventions (Stinear et al., 2007; Riley et al., 2011).  Thus, the predominant 

approach in developing imaging biomarkers in stroke survivors has been corticospinal 

tract-specific measures based on manually-identified or atlas-based regions of interest 

(Borich et al., 2012).  These previous approaches highlight the potential value in utilizing 

DTI data to predict functional outcomes; however, analyses based on specific regions of 

interest require subjective region selection, and might not account for impairments 

associated with damage to or connections to other regions of the brain.  The purpose of 

the current study was to develop and test a new imaging parameter as a biomarker for 
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sensorimotor function in stroke survivors based on a whole brain, voxel-wise analysis of 

anatomical connectivity. 

Although DTI measures of the corticospinal tract provide valuable information 

about stroke, a whole brain voxel-based analysis of brain structure might have advantages 

over corticospinal tract region of interest approaches.  Namely, voxel-based analyses are 

simple to apply, objective, and test the structural changes across the entire brain.  A 

voxel-based analysis involves the normalization of images (through registration and 

spatial filtering) followed by statistical comparisons of DTI parameters of the resulting 

maps (Wright et al., 1995; Ashburner and Friston, 2000).  These analyses have been 

applied to DTI parameters of the brain in normal development and aging (Della Nave et 

al., 2007; Snook et al., 2007), following traumatic injury (Bendlin et al., 2008; Chu et al., 

2010) and during progressive disease (Agosta et al., 2007; Thivard et al., 2007; Sage et 

al., 2009).  Conversely, there are limitations to voxel-based analyses including 

dependence on the quality of image registration across subjects and effects of smoothing 

applied to the images (Ashburner and Friston, 2001; Bookstein, 2001; Abe et al., 2010; 

Van Hecke et al., 2011).  Consequently, an alternative voxel-based approach for 

assessing brain white matter, Tract-Based Spatial Statistics (TBSS) (implemented within 

the FMRIB Software Library (FSL)) has been developed (Smith et al., 2006).  This 

technique accounts for the registration and smoothing issues by using a tract ‘skeleton’ 

obtained from fractional anisotropy (FA) values.  In addition to a number of other 

applications, TBSS has been applied to the brain of stroke survivors and detects FA 

changes in white matter tracts that correlate to upper extremity function (Schaechter and 

Fricker, 2009). 
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Incorporating measurements of white matter structural connectivity of the brain 

within DTI voxel-based approaches may offer additional opportunities for the 

characterization of structural changes after stroke.  The loss of white matter tracts after 

stroke has implications throughout the brain, including functional processes that require 

the integration of information from multiple brain areas.  The primary tool for 

characterizing the structural connectivity between brain regions is DTI tractography 

(Conturo and Lori, 1999; Jones and Simmons, 1999; Mori et al., 1999).  The results of 

tractography models have been used to identify anatomical tracts and features of the 

tractography analysis, such as the number of fibers passing through a voxel (Roberts et 

al., 2005; Calamante et al., 2010).  A structural connectivity matrix can then be obtained 

by combining white matter fiber trajectories with gray matter anatomical regions of 

interest segmented from a high resolution anatomical MR image (Hagmann et al., 2007; 

Sporns, 2011).  This matrix represents the anatomical connectivity of the specific regions 

of the brain, but depends on the parcellation of specific regions of gray matter as nodes in 

the connectivity matrix.  In contrast, voxel-based connectivity models make no 

assumptions about the parcellation of voxels into ROIs, nor do they require a proiri 

knowledge about the physiology of the tissue within that voxel (Scheinost et al., 2012).  

The absence of assumptions in a voxel-based approach is appealing for generalizing 

connectivity models for clinical application.   

In this study, we developed a unique metric of structural connectivity as a 

biomarker for loss of sensorimotor function in subjects with chronic stroke.  Our metric 

characterized the anatomical connectivity of each voxel of the brain based on diffusion 

tractography (i.e. a voxel-wise indirect structural connectivity (VISC)).  This VISC 
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metric was designed to have high sensitivity to lesions of prominent white matter tracts, 

which normally connect large numbers of voxels.  A voxel-based analysis of stroke and 

control brains was conducted on the VISC metric and compared to a voxel-based analysis 

of FA and mean diffusivity in the same samples.  Sensitivity to sensorimotor function 

was tested by correlating the volume of differences in VISC, between stroke subjects and 

controls, with sensorimotor impairment measured by the Fugl-Meyer Assessment (Fugl-

Meyer, 1975). 

2.2 METHODS  

2.2.1  Data Collection 

2.2.1.1  Subject Recruitment and Fugl-Meyer Testing 

Ten subjects with chronic post-stroke hemiparesis (5 female, age 55.20 ±7.06 

years, at least 1.1 years since stroke) and nine age-matched control subjects (6 female, 

age 53.40 ±13.10 years) participated in this study.  Each subject provided written consent 

to the experimental protocol, which was approved by the Institutional Review Boards at 

Marquette University and the Medical College of Wisconsin.  In recruiting subjects, a 

sample of convenience was used.  General inclusion criteria were ability to provide 

informed consent and the ability to move the legs with no contraindications to light 

exercise.  Additional inclusion criteria for stroke survivors were a single cortical or 

subcortical stroke at least 6 months earlier, clinically detectable movement impairment on 

one side of the body, communication adequate to follow instructions for the experiment, 
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and no neurological impairments other than stroke.  Control subjects had to be free of 

stroke or other neurological impairments. 

Each stroke subject completed a slightly modified upper extremity (UE) and 

lower extremity (LE) portions of the Fugl-Meyer (FM) Assessment (Fugl-Meyer, 1975) 

for global impairment (maximum possible score is 130 for UE and 96 for LE).  The 

scoring system for the FM Assessment is shown in Table 2-1, and the FM scores for each 

subject are shown in Table 2-2.  Note that lower scores indicate greater impairment.  FM 

assessments were completed by a physical therapist with 9 years of clinical experience.  

Reliability and validity assessments were not done for this study; however, the FM has 

been shown to have excellent construct validity, good concurrent validity with other 

stroke motor scores, satisfactory predictive validity for functional level at discharge from 

hospital (r=0.72), and excellent intra- and inter-tester reliability (ICC=0.98)  (Gladstone 

et al., 2002; Hsueh et al., 2008).  The maximum score for the UE portion of FM is 130 

because it includes UE reflexes (max=6), UE movements in and out of synergy 

(max=30), voluntary movements of the wrist and hand (max=24), and UE coordination 

(max=6),   parachute responses (max=4), UE light touch (max=4), UE proprioception 

(max=8), UE ROM (max=24), and UE pain (max=24).  Nevertheless, the scale required 

adjustment to better reflect the possible range of scores.  Since the control subjects did 

not have any lesions and the Fugl-Meyer assessment is a measure of impairment, 

sensorimotor function in control subjects was not tested.   
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2.2.1.2  MRI Scans 

After completing MRI safety screening, the nineteen subjects were imaged with a 

3T clinical MR system (GE Signa Excite, GE Healthcare, Milwaukee).  For each subject, 

an axial DTI sequence was acquired with one b0 image, 25 noncollinear, equally spaced 

diffusion directions, b-value = 1000 s/mm2, matrix = 128 x 128, FOV = 24 cm, slice 

thickness = 4 mm, TE = 86.5 ms, TR = 10 s, NEX = 2.   As an anatomical reference, a 

sagittal T1-weighted image with 1 mm isotropic resolution was acquired using a spoiled 

gradient recalled (SPGR) pulse sequence. 

  



29 
 

  

Fugl-Meyer Scoring System Maximum Possible Score 

Grand Total 226 

UE + LE Motor 100 

UE + LE Balance 14 

UE + LE Sensation 24 

UE + LE ROM 44 

UE + LE Pain 44 

  

UE Total 130 

UE Motor 66 

Parachute Responses 4 

UE Light Touch 4 

UE Proprioception 8 

UE ROM 24 

UE Pain 24 

  

UE Motor Total 66 

UE Reflexes 6 

UE Movements in and out of Synergy 30 

Voluntary Movements of Wrist and Hand 24 

UE Coordination 6 

  

LE Total 96 

LE Motor 34 

Standing Balance 8 

Sit without Support 2 

LE Light Touch 4 

LE Proprioception 8 

LE ROM 20 

LE Pain 20 

  

LE Motor Total 34 

LE Reflexes 6 

LE Movements in and out of Synergy 22 

LE Coordination 6 

  

Table 2-1: Description of the Fugl-Meyer scoring system used in this study. 
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2.2.2  Subject-Specific Data Processing 

2.2.2.1  Diffusion Tensor Calculation 

From the diffusion weighted images acquired for each subject, twenty-five 

diffusion coefficients were calculated at each voxel as the signal loss between the 

diffusion-weighted signal and zero-diffusion signal.  These diffusion coefficients were fit 

to a second order tensor model by the least squares method.  The diffusion tensor matrix 

was then diagonalized to derive three eigenvalues and eigenvectors.  The three 

eigenvalues (  
1 2 3
, , ) were used to calculate the MD and FA (Basser et al., 1994). 

2.2.2.2. Image Registration 

Anatomical brain images from all control and stroke subjects were registered to a 

reference image (Fig 2-1b) in order to compare DTI metrics between individual stroke 

subjects and the control group.  The control subject with characteristics closest to 

Talairach space was selected as the reference.  Each subject’s T1-weighted image was 

then registered to the reference subject using a deformable image registration framework 

implemented in Tactful Functional Imaging Research Environment (TFIRE, 

http://www.eng.mu.edu/inerl/tfire), an in-house Java-based software platform.  A nine-

parameter affine transform was performed before proceeding with Thirion’s demons 

deformable image registration method (Thirion, 1998).  The output from this process was 

a 3D displacement field that mapped each voxel center in the fixed reference control 

space to a physical location in the subject space. 
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Figure 2-1: Overview diagram of image processing. 

Overview of image registration, DTI tractography, and VISC calculation.  (a) A lesion mask was 

manually selected from the stroke subject’s SPGR image, and then (b) the stroke subject was 

registered to the reference control subject.  (c) The registration transform was used to warp seeds 

from the reference control space to perform DTI tractography in the stroke subject’s space.   

Reconstructed fibers were then transformed back into the reference control space and (d) used to 

perform structural connectivity analysis.    Furthermore, a novel voxel-wise indirect structural 

connectivity (VISC) metric was calculated. 

2.2.2.2.1 Stroke Lesion Selection and Correction 

Initial registration results for stroke subjects were determined unacceptable based 

on visual observation.  In particular, areas in the control image were mapped to the lesion 

boundary of the stroke subject.  Lesion masking and a modified smoothness constraint 

were introduced to preserve anatomical features near the lesion boundary (Fig 2-2).  A 

lesion mask was manually identified for all slices using a custom user-interface.  
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Although some lesions were discontinuous in some slices, they were not broken up 

volumetrically.  Only one contiguous unilateral lesion was selected for each subject.  

During the registration, displacements that mapped the fixed image to locations inside the 

lesion mask region were not updated.  An edge-preserving Gaussian filter was used to 

impose piece-wise continuity.  This modified filtering allowed tissue surrounding the 

lesion to register, while preserving the lesion features. 

2.2.2.2.2 Inverse Deformation Estimate 

Aside from challenges with stroke lesion mapping, the deformable registration 

was performed in a small deformations setting, which led to a non-invertible deformation 

field.  However, an inverse transform was needed for our subsequent tractography 

approach.  We mitigated this problem by approximating an inverse with the following 

method.  First, a 3D displacement field was initialized to zero at each location.  The 

forward transform was used to map each physical coordinate in the fixed subject image 

space to a location in the reference (control) image space.  The displacement of the 

inverse transform at this location was forced to map back to the fixed image coordinate.  

Since this update step resulted in inhomogeneous mappings in the fixed image space, the 

inverse transform was smoothed with a 2 mm full-width half-max Gaussian filter.  The 

update and smoothing steps were repeated for 10 iterations.  This iteration number was 

chosen heuristically to balance the tradeoff between computation time and residual error.  

The mean and standard deviation of the final error magnitude across subjects was 0.5622 

± 0.3326 mm.  This process produced forward and inverse transformations between each 
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subject and the reference control based on the anatomical (T1 weighted) images.  These 

transformations were subsequently used for the diffusion image data. 

2.2.2.2.4 Diffusion to Anatomical MRI 

In order to use the anatomical image transformations for aligning the subjects in 

DTI space, each subject’s T1-weighted image was registered to his or her FA image.  The 

SPGR and FA images were histogram-matched, and then a nine-parameter 3-dimensional 

affine transformation was optimized using a gradient descent algorithm with a mean 

squared difference cost function.  

2.2.2.3. Tractography and Voxel-wise Indirect Structural Connectivity Metric 

2.2.2.3.1  DTI Tractography 

Our in-house software, TFIRE, was also used for DTI tractography (Fig 2-1c) and 

structural connectivity analysis (Fig 2-1d).  We chose to define of a voxel by the location 

of its center.  This convention allowed for a straight-forward one-to-one mapping 

between a connectivity matrix and an image space.  Further detail is provided in the 

Appendix. 

Using the reference control DTI image, tractography was initialized by seeding 

with uniform 1 mm spacing in all areas with an FA above 0.3.  The coordinate of each 

seed was transformed from control into subject space.  The FACT method (Mori et al., 

1999) was implemented in TFIRE and used to reconstruct fiber trajectories seeded at 

each voxel center.  Specifically, the principle eigenvector with an FA magnitude was 
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integrated using a 4th order Runge-Kutta technique with a step size of 0.1 mm.  A 

maximum angle of curvature of 60 degrees was used to terminate propagation at voxels 

with crossing white matter fiber bundles.  Since the endpoints of fibers often converge at 

gray matter voxels, a minimum FA stopping criterion of 0.15 was used to allow the fibers 

to propagate into the gray matter.  Including white matter voxels in the VISC calculation 

was intended to account for bifurcating and converging fiber pathways.  After 

construction was completed, all fibers with length < 1 cm or > 14 cm were excluded.  

Each reconstructed white matter fiber was transformed back into the reference control 

space using the inverse registration transform. 

 

 

Figure 2-2: Stroke image registration. 

In registering a stroke brain (a) to the template control (b), the original deformation algorithm (c) 

was modified to include lesion masking (d) and anisotropic smoothing (e) to produce the best 

result. 

 

2.2.2.3.2 Theoretical Framework 

In order to model the effects of a stroke lesion at the voxel-level, a measure of 

voxel-wise indirect structural connectivity (VISC) was developed.  The desired properties 

of VISC were to reproducibly amplify lesion-induced effects on white matter structural 
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connectivity of the entire brain, and to intrinsically measure these effects at the voxel-

level.  We started by defining the structural connectivity of the whole brain based on the 

voxel-wise direct and indirect connections obtained from DTI tractography (Fig 2-3).  As 

an example, consider an axonal fiber pathway that structurally connects three voxels; A, 

B, and C in Figure 2-3.  We defined B and C to be direct neighbors to A by their 

structural connection.  There are also axonal pathways that connect B or C to voxels other 

than A.  These pathways indirectly connect A to voxels D, E, and F, which we define as 

indirect neighbors of voxel A.  A connectivity graph for this example is shown in Figure 

2-3b. The VISC of voxel A is the average number of connections to indirect neighbors D, 

E, and F.  Since F has one direct connection, and D and E each have two direct 

connections, the VISC of A is 5/3.   

2.2.2.3.3 Voxel-wise Indirect Structural Connectivity (VISC) Calculation 

As a foundation for deriving a voxel-wise connectivity metric, the reconstructed 

fiber trajectories were expressed as sets of coordinates in the template control subject’s 

DTI image-space.  Binary matrix X  represents the direct connectivity between the 

voxels penetrated by one reconstructed fiber, where 
ij
x  is 1 if the ith and jth voxels are 

both penetrated by that fiber and 0 otherwise.  Matrix X  represents the direct 

connectivity between all voxels in an image, where 
ij
x  is 1 if the ith and jth voxels are 

both penetrated by at least one fiber and 0 otherwise.  Thus, X  is the union of individual 

X  across all fibers.  Directly calculated from X , matrix Y  represents the indirect 

connectivity between all voxels in an image, where 
ij
y  is 1 if the ith and jth voxels share a 
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directly connected voxel but are not directly connected to one another.  Then row vector 

( )i
y  from Y  represents the indirect connections of the ith voxel.  Using 1  as the 

summation vector, the VISC of the ith voxel in an image is its total number of direct 

connections to its indirect neighbors (expressed as 
( )i
y X1 ) divided by its total number of 

indirect neighbors (expressed as 
( )i
y 1 ). 
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(Eq. 1) 

Previously introduced voxel-wise metrics based on DTI tractography, such as 

fiber count and mean fiber length (Roberts et al., 2005), are correlated with FA.  In order 

to consider whether fiber count information affected the correlation of VISC with FA, we 

incorporated a connection count weighting factor α.  This contrast mechanism gives 

weight to the total number of connections to a voxel’s indirect neighbors.  As α is 

decreased from 1 to 0, the VISC approximates the total number rather than the mean 

number of direct connections to a voxel’s indirect neighbors, with VISC parameterized 

by α as 
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Figure 2-3: Example calculation for VISC.   

 

 

The “anatomical” diagram (a) and the theoretically equivalent network graph (b) 

provide the information necessary to calculate the VISC of voxel A.  Voxels B and C 

(yellow) are directly connected to voxel A by at least one common fiber.  Voxels D, E, 

and F (aqua) are indirect neighbors to voxel A because they are not directly connected to 

A by any fiber but do share a common direct neighbor (B or C) with A.    The VISC of 

voxel A is the average number of direct connections to its indirect neighbors.  These 

direct connections are marked with an * in (b).  Since there are 5 total direct connections 

for its 3 indirect neighbors, the VISC of voxel A is 5/3.  

 



39 
 

  

2.2.2.4  Effect of tractography parameters and contrast parameter α on VISC 

Parameters used for tractography and VISC connection weighting were 

manipulated to determine their effect on the final VISC value.  Since VISC is derived 

from DTI tractography, it is expected to depend on the stopping criteria for fiber 

propagation.  We considered that VISC might decrease as FA threshold increased due to 

a more conservative stopping criterion.  If the minimum FA is increased, then 

propagation ends more readily and reconstructed fibers are shortened.  Thus, the spatial 

distribution of reconstructed white matter fibers decreases in volumetric extent as FA 

threshold increases.  Since VISC is based on structural connectivity with surrounding and 

distant voxels, it can also be interpreted as a volume-based metric.  If the volume of the 

spatial extent of fibers decreases proportionally with increased FA threshold, then the 

percent change in volume is higher at lower FA thresholds.  Thus, the logarithm of the 

volume of VISC was expected to be negatively correlated with the FA threshold.  To test 

this hypothesis, we calculated the mean VISC of 3 voxels selected from the center of 

each of the cerebral peduncles, which are known to have a high anatomical fiber density.  

The purpose of selecting only 3 voxels was to understand how the VISC in ipsilesional 

voxels and their contralesional “equivalent” were affected by FA threshold in anatomical 

regions of high fiber density.  We manipulated the FA threshold from 0.10 to 0.40 in 

increments of 0.05, and the mean VISC of the cerebral peduncle ROI was calculated for 

each FA threshold setting.  Correlation analyses were performed between the mean VISC 

and FA threshold.  The analysis was repeated for the left and right ROIs of the control 

subjects, and the ipsilesional and contralesional ROIs of the stroke subjects.  A whole-
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brain analysis was also performed in which the VISC and FA were correlated across all 

voxels with nonzero VISC in the reference control brain.  

Since high FA may be an indicator of anatomical white matter fiber density, a 

voxel-wise metric based on DTI tractography might correlate with FA.  For example, the 

fiber density index (FDi) introduced by Roberts et al. represents the number of fibers 

penetrating a voxel and was found to be correlated with FA (Roberts et al., 2005).  In 

every subject, the FA and VISC were regressed across all voxels in the reference space.  

This whole-brain correlation analysis was repeated for 11 settings of α in order to 

understand the effects of α on the correlation between VISC and FA.  The mean and 

standard deviation of R2 values were plotted for each VISC setting.  The R2 values with 

FA were also plotted for mean fiber length and fiber count for visual reference. 

Beyond the effects of tractography stopping criteria, we also considered that the 

total number of connections to a voxel might influence VISC or its correlation to FA.  If 

the number of structural connections to a voxel increases with greater FA, then it is 

possible that greater connection number weighting (decreasing parameter α) might 

increase the correlation between FA and VISC.  The direct effect of total connections on 

VISC was qualitatively analyzed by manipulating α from 0 to 1 and visualizing the 

changes in the contrast of the reference control’s VISC image. 
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2.2.2.5. Statistical analyses 

2.2.2.5.1. Whole-brain analysis 

A whole brain voxel-based analysis was used to compare each stroke subject to 

the controls.  For each voxel, a one-tailed Student’s t-test was performed on the 

differences of the 9 controls with a single stroke subject, with a zero mean difference null 

hypothesis.  The resulting number of significant voxels, or difference volume, was 

considered as a possible predictor of Fugl-Meyer score.  This difference volume can also 

be interpreted as the percent of effected brain volume.  As the difference volume 

becomes large, a further increase leads to a lower percent change in volume.  

Consequently, we expected that increasing the size of a small difference volume would 

lead to a greater percent change in impact on function.  Thus, we hypothesized that the 

log number of significant voxels, or logarithmic difference volume (LDV), would 

increase as Fugl-Meyer score decreased.  A simple linear regression was performed for 

each DTI metric, with its LDV as a predictor of Fugl-Meyer score in stroke subjects.  

Separate regressions were conducted for FA, VISC, and MD using Matlab (R2009b, The 

Mathworks, Natick, MA).  For each regression, an F-test was used to test the slope for 

significance.  In a second set of simple linear regressions, the mean FA and VISC in the 

ipsilesional hemisphere were regressed against total FM score.  In order to prevent voxels 

with zero VISC from contaminating the mean VISC, the means were first calculated for 

only voxels with a nonzero VISC.  However, the regression was also repeated with all 

iplesional voxels included.  In summary, nine simple linear regressions were performed 

in the whole-brain analysis, with three tests per voxel-based measure.  
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Four multiple linear regressions were performed to determine the unique 

relationships between the differences in DTI measures and sensorimotor impairments.  

The Fugl-Meyer score was divided into subcomponents with two strategies.  The first 

approach split the FM score into its five domains; motor (100 max), balance (14 max), 

sensation (24 max), range of motion (44 max), and pain (44 max).  The second approach 

divided the total FM into two groups: upper extremity (130 max) and lower extremity (96 

max).  The whole-brain LDVs of VISC, FA, and MD were regressed as predictors of 

each set of FM subscores.  Two more multiple linear regressions were performed, with 

the mean VISC, FA, and MD in the ipsilesional hemisphere as the independent variables.  

In all multiple regression tests used in this study, multiple comparisons correction was 

performed by dividing the Type I Error rate, α, by the number of metrics, being 3. 

Although the VISC metric was developed for the purpose of enhancing detection 

of the effects of brain lesions, the unknown variability of VISC in the control group could 

compromise the calculation of the difference volume.  The intersubject reproducibility of 

VISC within the control group was tested by calculating the whole-brain LDV between 

each control subject and the other controls.  We found zero significantly different voxels 

in every control subject.  Lesion selection could also affect the reproducibility of VISC in 

an image.  A second investigator reselected all lesions, and then image registration and 

analyses were repeated.  Across all voxels and subjects, the percent difference in VISC 

due to lesion selection was 1.52 ±0.37%.  Lesion-selection did not change the findings in 

this study. 
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2.2.2.5.2. Region-based post hoc analysis 

Since we expected the logarithmic difference volume (LDV) within specific brain 

region to reflect its volume of effect, a region-based correlation analysis was performed.  

Using the same registration algorithm performed on the T1-weighted images, the 

fractional anisotropy image of the template control was registered to the Johns Hopkins 

University “Eve” atlas (Oishi et al., 2009) in Talairach coordinates, also named JHU-

Talairach-ss in MRIStudio.   The registration transform was used to warp 85 ipsilesional 

regions of interest (ROIs) from the atlas space into the reference control space.  For each 

ipsilesional ROI, the same set of simple linear regressions used in the whole-brain 

analysis was repeated. 

If the total number of significantly different voxels in a particular region were 

correlated with Fugl-Meyer, then the raw measurement itself may share that correlation.  

To address this question, linear regressions were performed with the mean VISC, FA, and 

MD of every ipsilesional ROI in stroke subjects as a predictor of FM score.  As with the 

regressions involving the log difference volumes, an F-test was used to test each slope for 

significance.  In comparison to mean FA and MD, we expected that the mean VISC 

would correlate with FM score in an additional set of effected regions distant from a 

lesion.  
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2.3 RESULTS 

2.3.1  Comparison of VISC, fiber count, and mean fiber length  

VISC was compared with fiber count and mean fiber length by adjusting 

parameter α (Fig 2-4a, 2-4b).  Fiber count was calculated as the number of fibers 

penetrating a voxel, and mean fiber length was calculated as the average physical length 

of these fibers.  These two measures were sensitive to the number of degenerate fibers 

passing through a voxel, which led to undesired local hyperintensities.  If α was set to 

zero in Eq. (2), then the denominator of VISC became 1, which equated VISC with its 

numerator,  .  In this case, VISC was greatest in voxels with a high calculated fiber count 

and number of direct connections.  As α was increased from 0 to 0.7, the VISC metric 

provided an enhanced contrast similar to mean fiber length.  This similarity was a 

consequence of including all white matter voxels in the VISC calculation.  Setting α = 1 

was determined to minimize inter-subject variability between controls.  Although α was 

an important parameter in developing the VISC metric, Eq. (1) was used to calculate 

VISC in all group analyses. 

 

2.3.2  Weak correlations of FA with VISC, mean fiber length, and fiber count 

In order to compare the correlations of FA with multiple DTI tractography-

derived metrics, the coefficient of determination between each metric and FA was 

calculated in each subject across all voxels with an FA above 0.15 (a stopping criterion 

during tractography).  These metrics included mean fiber length, fiber count, and VISC at 
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11 different settings of α from 0.0 to 1.0 (Fig 2-4b).  The R2 values of individual subjects 

are listed in Table 2-3.  Subject sample mean and standard deviation of R2 values were 

calculated for each metric.  The correlation of FA with VISC suggested a small but 

significant portion of VISC variability can be predicted by the FA (R2=0.184±0.033).  As 

a point of reference, the correlations between FA and mean fiber length 

(R2=0.199±0.041), and fiber count (R2=0.140±0.041) were comparable.  As α was 

decreased from 1.0 to 0.0, the correlation between VISC and FA increased until α=0.7, 

which then decreased as α was further adjusted 0.7 to 0.0.  

2.3.3  Tractography minimum FA stopping criterion correlates with VISC  

As expected, the mean VISC decreased exponentially as minimum FA threshold 

(tractography stopping criterion) increased.  The logarithm of the mean VISC metric was 

strongly correlated (R2=0.991±0.007) with tractography FA threshold across subjects.  

The log mean contralesional and ipsilesional VISC were both lower than controls for all 

FA thresholds (Fig 2-4c); however, FA thresholds less than 0.15 led to the greatest 

contrast between control and stroke VISC.  At greater FA thresholds, the difference in 

VISC between the left and right cerebral peduncles increased in control subjects and 

decreased in stroke subjects.  Although we selected an FA threshold of 0.15 in 

correspondence to past literature (e.g. An FA threshold of 0.18 was used in (Chen et al., 

2008)), our results suggested that this threshold was optimal for contrasting controls with 

chronic stroke subjects.  Across all voxels in the normalized space, the correlation 

between VISC and FA threshold was R=-0.950±0.044, and the correlation between 

log(VISC) vs. FA threshold was R=-0.978±0.025. 
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Figure 2-4: VISC correlations and contrasts.   

(a) Visual comparison of VISC, fiber count, and mean fiber length for a central axial slice of a 

stroke subject at the level of the internal capsule.  The indirect connectivity weighting factor, α, 

was manipulated from 0 to 1 to observe its effect on the spatial contrast of VISC. (b) The R2 

values of FA with several tractography-derived measures.  The VISC at different settings of α are 

labeled as VISC(α) (e.g. VISC(1.0) for α=1.0).  The mean and standard deviation in R2 values are 

across all 19 subjects included in this study are shown.  (c) The natural log of the mean VISC in 

the cerebral peduncles is plotted against the minimum FA threshold used as a stopping criterion 

for DTI tractography.  The same bilateral ROIs were used to report this relationship in the 

paretic/ipsilesional (diamond) and nonparetic/contralesional (square) hemispheres of stroke 

subjects, and the left (+) and right (x) hemispheres in control subjects.  
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Figure 2-5: Changes in VISC distant from a lesion 

Bilateral voxels were selected from the posterior limb of the internal capsule (PLIC) in a chronic 

stroke subject with a lesion localized to the right anterior limb of the internal capsule (ALIC).  

Overlaid on lesioned (panel a) and non-lesioned (panel b) sides of the subject’s VISC image, the 

direct neighbors (white) and their direct connections (blue) of each selected voxel (cyan) 

encompass the sensorimotor area in the most superior slice. Although the fractional anisotropy 

(panel c) in the cortex of the lesioned hemisphere indicates structural integrity, VISC (panels a 

and b) is reduced due to the ALIC lesion.  

 

 

2.3.4  VISC highlighted brain areas distant from the lesion  

Voxel-based analyses of VISC, FA and MD were conducted to locate and 

quantify differences between each stroke survivor and the controls.  Each of the three 
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measures identified differences in specific ipsilesional areas of the brain.  The VISC 

revealed ipsilesional regions with lesion-induced changes in structural connectivity, and 

these differences were not apparent with MD or FA.  Between-group differences (stroke 

versus control) exclusive to VISC (and not seen with FA or MD) were consistently 

located outside of the lesion volume (Fig 2-5, 2-6d, 2-7d).  The voxels with significantly 

different MD (Fig 2-6b, 2-7b) were commonly found inside or near the boundary of the 

lesion volume (Fig 2-6a, 2-7a), and differences in FA (Fig 2-6c, 2-7c) were largely found 

in the white matter portion of the lesion volume.  In all stroke subjects, VISC detected 

differences within the lesion volume that were revealed by FA and MD.  However, VISC 

exclusively detected additional voxels affected by the lesion that extended along fiber 

pathways and within the cortical volume superior to the lesion (Fig 2-5).  Across all 

subjects, the number of significantly different voxels between stroke and control groups 

was always lowest for FA and greatest for MD, with the VISC between the other metrics 

(Fig 2-8). 
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Figure 2-6: Region-based difference volume versus Fugl-Meyer score 

Diagram of ipsilesional ROIs in the control template space, showing the lesion distribution and 

the correlation coefficients of logarithmic difference volume and composite Fugl-Meyer (FM) 

score. (a) The lesion distribution of the stroke group was most dense in the EC, SLF, PrWM, 

SCR, and Insula.  (b) The MD log difference volume and FM score were not significantly 

correlated in any ROI.  (c) Correlations with total FM score were significant (p < 0.01) for FA log 

difference volume in the middle temporal gyrus.  (d) The VISC log difference volume was 

correlated (p < 0.01) with FM score in the midbrain.  

 
Acronyms: angular gyrus white matter (AWM); external capsule (EC); middle temporal gyrus 

(MTG); precentral gyrus white matter (PrWM); superior corona radiata (SCR); superior frontal 

gyrus (SFG); superior frontal white matter (SFWM); superior longitudinal fasciculus (SLF); 

superior temporal gyrus (STG).   
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Figure 2-7: Region-based metric means versus Fugl-Meyer score. 

Diagram of ipsilesional ROIs in the control template space, showing the lesion distribution and 

the correlation coefficients of the regional mean versus composite Fugl-Meyer (FM) score. (a) 

The lesion distribution of the stroke group was most dense in the EC, SLF, PrWM, SCR, and 

Insula.  (b)  Correlations between mean MD and total Fugl-Meyer score were significant (p < 

0.05, corrected) in the MOG.  (c) Correlations between mean FA and total Fugl-Meyer score were 

significant (p < 0.05, corrected) in the MFOG, CP, PTR, and AWM.  (d) Mean VISC was 

significantly (p < 0.05, corrected) correlated with Fugl-Meyer score in but not limited to the IFG, 

MFG, IC, BG, and the IFO. 

 
Acronyms: angular gyrus white matter (AWM); basal ganglia (BG); cerebral peduncle (CP); 

cingulate gyrus (CingG); external capsule (EC); middle occipital gyrus (MOG); middle temporal 

gyrus (MTG); internal capsule (IC); inferior frontal gyrus (IFG); inferior occipitofrontal 

fasciculus (IFO); middle frontal gyrus (MFG); middle fronto-oribital gyrus (MFOG); posterior 

thalamic radiation (PTR); precentral gyrus white matter (PrWM); superior corona radiata (SCR); 

superior frontal gyrus (SFG); superior longitudinal fasciculus (SLF).   
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  Fiber 

Count 

Fiber 

Length 
VISC(1.0) 

C13 0.131 0.200 0.195 

C17 0.174 0.217 0.192 

C18 0.176 0.220 0.204 

C19 0.134 0.220 0.204 

C20 0.075 0.166 0.192 

C21 0.175 0.211 0.201 

C23 0.120 0.171 0.154 

C26 0.139 0.225 0.179 

S01 0.168 0.248 0.206 

S02 0.208 0.256 0.249 

S04 0.125 0.199 0.174 

S10 0.143 0.207 0.186 

S11 0.166 0.203 0.176 

S13 0.150 0.222 0.192 

S14 0.154 0.206 0.193 

S15 0.142 0.175 0.170 

S17 0.026 0.072 0.084 

S19 0.118 0.153 0.158 

Mean 0.140 0.199 0.184 

Stdev 0.041 0.041 0.033 

Table 2-3: Subject information. 

For each subject, three tractography derived metrics (fiber count, mean fiber length, and VISC) 

are compared in terms of their correlation (R2 value) with fractional anisotropy.   

 

 

2.3.5  VISC metric enhances lesion-related differences 

In order to visually compare changes in FA and VISC near the lesion boundary, 

four isosurfaces were extracted from one stroke subject’s FA and VISC images and 

visualized in 3D (Fig 2-9).  FA was sensitive to changes local to the lesion, while VISC 

reflected changes in regions distant from the lesion.  VISC effectively thickened white 

matter regions that were densely connected to surrounding regions, while thinning those 

regions less connected to surrounding structures.  In Figure 2-9, the FA showed an 
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asymmetry in the size of the cerebral peduncles, which were not part of the lesion.  This 

asymmetry was enhanced in the VISC image since the paretic cerebral peduncle had a 

greater decrease in structural connectivity. 

2.3.6  Whole-brain VISC correlates with Fugl-Meyer score 

The whole-brain log difference volume (LDV) of each metric in the entire brain 

was regressed with FM score.  In comparison with FA and MD, the LDV of VISC had a 

greater correlation with Fugl-Meyer score.  The relationships between Fugl-Meyer score 

:of the association between difference volume and total Fugl-Meyer score was greater for 

VISC (R2=0.796, p=0.0005) than for the MD (R2=0.512, p=0.0199) and FA (R2=0.674, 

p=0.0036).   

 

Figure 2-8: Scatterplot of log difference volume versus Fugl-Meyer.  

In stroke subjects, the log difference volumes of each DTI metric were correlated with the Fugl-

Meyer scores.  Log difference volume (LDV) of fractional anisotropy (FA, diamond), mean 

diffusivity (MD, circle), and voxel-wise indirect structural connectivity (VISC, star) versus Fugl-

Meyer (FM) score.  The log difference volumes of MD (R2=0.512), FA (R2= 0.674), and VISC 

(R2=0.796), were significantly correlated with FM score. In each subject, the size of the 

difference volume was smallest in FA and greatest in MD.  The difference volume in VISC was 

greater than in FA and less than in MD. 
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In the stroke group, the mean FA and VISC in the ipsilesional hemisphere were 

regressed against total FM score (Fig 10).  Means were first calculated for only voxels 

with a nonzero VISC, and then again for all voxels.  Although the mean FA across 

ipsilesional voxels with a nonzero VISC was poorly correlated (R2=0.165, p=0.2442) 

with FM score, the mean VISC in these same voxels was significantly correlated 

(R2=0.633, p=0.0059) with FM.  Across all voxels in the ipsilesional hemisphere, the 

mean FA had a strong correlation (R2=0.570, p=0.0117) with the behavioral 

measurements, and mean VISC held its strong correlation (R2=0.676, p=0.0035).  The 

mean MD across voxels with nonzero VISC was moderately correlated (R2=0.304, 

p=0.0985) with FM, while this correlation was poor (R2=0.194, p=0.2030) for the mean 

of all ipsilesional voxels.  

 

Figure 2-9: 3D isosurfaces of VISC and FA 

A visual comparison of FA (top) and VISC (bottom) in a control (left) and a stroke (right).  The 

manually-selected lesion volume is shown with a blue surface. 
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2.3.7  Association between VISC and Fugl-Meyer Score 

The first multiple linear regression analysis tested DTI parameter LDVs as 

predictors of Fugl-Meyer domain scores.  No significant (p < 0.05, corrected) 

associations were detected in this regression.  Next, the second multiple regression tested 

DTI parameter LDV’s as predictors of full upper extremity and full lower extremity FM 

scores.  In this case, the LDV of VISC was a significant (R2=0.821, p < 0.05, corrected) 

identifier of the upper extremity score.  As shown in Figure 11, the upper extremity 

subscore of the Fugl-Meyer test was strongly associated with LDV for VISC (R2=0.879, 

p=0.00006), but the lower extremity subscore was not significantly correlated with LDV 

(R2=0.177, p=0.226).  Significant correlations (p < 0.05, corrected) were found 

specifically between the log number of significant voxels in VISC and the full upper 

extremity score (max 130).  Two equivalent tests were repeated with the mean DTI 

parameter across all voxels in the iplesional hemisphere as a predictor of the FM 

subscores.  The mean ipsilesional VISC and FA were both significantly (p < 0.05, 

corrected) correlated with the pain domain score of the Fugl-Meyer.  We did not further 

consider this correlation with pain as a reliable result since eight of the ten stroke subjects 

scored perfectly (44 out of 44) in the pain domain.  No other significant associations were 
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found in these four tests.

 

Figure 2-10: Scatter plots of mean FA and VISC versus Fugl-Meyer score. 

In the stroke group, the mean FA (left) and VISC (right) in the ipsilesional hemisphere were 

regressed against total FM score.  Means were first calculated for only voxels with a nonzero 

VISC (star), and then again for all voxels (circle).  Although the mean FA across ipsilesional 

voxels with nonzero VISC was poorly correlated (R2=0.1649, p=0.2442) with FM score, the 

mean VISC in these same voxels was significantly correlated (R2=0.6332 , p=0.0059) with FM.  

Across all voxels in the ipsilesional hemisphere, the mean FA had a strong correlation 

(R2=0.5691, p=0.0117) with the behavioral measurements, and mean VISC held its strong 

correlation (R2=0.6763 , p=0.0035). 

 

 

Figure 2-11: Scatter plots of VISC differences versus clinical score. 

Scatter plots of the logarithm of significant voxels versus the Fugl-Meyer subscores. (a) The 

upper extremity FM score was highly correlated with the differences volumes of FA (R2= 0.7453, 

p < 0.01), MD (R2= 0.6549, p < 0.01), and VISC (R2= 0.8795, p < 0.0001).  (b)  However, the 

lower extremity FM score was not correlated with the difference volumes of FA (p = 0.23), MD 

(p = 0.62), or VISC (p = 0.27). 
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2.3.8  Post-hoc region-based results 

There were significant correlations (p < 0.05, corrected) between the logarithmic 

difference volume and the total FM score with respect to specific ipsilesional ROIs and 

metrics (Fig 2-6).  The correlations were generally strongest with the VISC metric as the 

predictor in both whole-brain and region-based analyses.  The LDV of VISC in the 

midbrain and association areas (Fig 2-6d) was correlated with total FM.  The FM score 

was also correlated with the LDV of MD (Fig 2-6b) in the midbrain and LDV of FA in 

the middle temporal gyrus (Fig 2-6c).  Table 2-4 lists the levels of significance in the  

 

VISC MD FA 

Mdbrain 0.00155 ** EC 0.01746 * MTG 0.00003 * 

SOG 0.01290 * Mdbrain 0.02202 * IFG 0.06732   

SFWM 0.01582 * SLF 0.02359 * SFWM 0.07459   

AWM 0.01689 * RLIC 0.04980 * STG 0.07861   

IOG 0.03041 * CingG 0.05828   PrCWM 0.11204   

ACR 0.03494 * PrCWM 0.05860   STWM 0.11483   

AG 0.03515 * STWM 0.05942   Fu 0.11843   

STWM 0.04184 * SFG 0.06571   SFG 0.13267   

RLIC 0.04844 * PoCWM 0.07137   AWM 0.16955   

GP 0.06572   MFWM 0.08297   SCC 0.17872   

STG 0.06706   Ins 0.08956   IOG 0.19262   

Table 2-4: Clinical Correlations with Region-based Mean. 

Significance levels of correlations between the ROI mean of each DTI metric and the total Fugl-

Meyer (226 maximum).   

* indicates the first level of significance (corrected p < 0.05).  ** indicates the second level of 

significance (corrected p < 0.01). 

 

Acronyms: anterior limb of the internal capsule (ALIC), angular gyrus white matter (AWM), 

caudate nucleus (Caud), cingulum (CGC), cingulate gyrus (CingG), cerebral peduncle (CP), 

globus pallidus (GP), hippocampus (Hippo), inferior frontal gyrus (IFG), inferior frontal white 

matter (IFWM), lateral fronto-orbital white matter (LFOWM), middle frontal gyrus (MFG), 

middle fronto-orbital gyrus (MFOG), middle fronto-orbital white matter (MFOWM), middle 

frontal white matter (MFWM), medial lemniscus (ML), middle occipital gyrus (MOG), posterior 

limb of the internal capsule (PLIC), pons (Pons), precentral gyrus (PrCG), posterior thalamic 

radiation (PTR), putamen (Put), gyrus rectus (RG), superior frontal gyrus (SFG), superior frontal 

white matter (SFWM), sagittal stratum (SS) 
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correlations between the ROI log number of significant voxels and FM score.  The mean 

VISC in the basal ganglia, posterior limb of the internal capsule, and middle and inferior 

frontal gyri (Fig 2-7d) was strongly correlated with the FM score and its upper extremity 

subscore.  Mean MD was correlated with FM score in the middle occipital gyrus (Fig 2-

7b), and mean FA was significantly correlated with FM score in the fronto-orbital gray 

and white matter, cerebral peduncle, angular white matter, and posterior thalamic 

radiation (Fig 2-7c). Table 2-5 lists the levels of significance in the correlations between 

the ROI mean and FM score. 

 

VISC MD FA 

IFG 0.00568 ** MOG 0.03746 * MFOWM 0.01453 * 

IFWM 0.00622 ** Pons 0.05387   MFOG 0.02856 * 

GP 0.00662 ** CingG 0.05538   CP 0.04144 * 

MFWM 0.01019 * SFG 0.08993   AWM 0.04931 * 

MFG 0.01331 * IFWM 0.10148   PTR 0.04999 * 

Caud 0.01511 * ML 0.10301   IFWM 0.12120   

Put 0.01836 * CP 0.12125   RG 0.19977   

Hippo 0.02196 * CGC 0.12518   PrCG 0.20301   

PLIC 0.02262 * MFOWM 0.13135   LFOWM 0.20901   

SS 0.02323 * SFWM 0.13771   MFWM 0.22168   

ALIC 0.02412 * PLIC 0.21877   ML 0.24035   

Table 2-5: Clinical Correlations with Region-based Difference Volume. 

Significance levels of correlations between the ROI log number of significant voxels of each DTI 

metric and the total Fugl-Meyer (226 maximum).  * indicates the first level of significance 

(corrected p < 0.05).  ** indicates the second level of significance (corrected p < 0.01). 

 

Acronyms: anterior corona radiata (ACR), angular gyrus (AG), angular gyrus white matter 

(AWM), cingulate gyrus (CingG), external capsule (EC), fusiform gyrus (Fu), globus pallidus 

(GP), inferior frontal gyrus (IFG), insular cortex (Ins), inferior occipital gyrus (IOG), midbrain 

(mdbrain), middle frontal white matter (MFWM), middle temporal gyrus (MTG), postcentral 

white matter (PoCWM), precentral white matter (PrCWM), retrolenticular part of the internal 

capsule (RLIC), splenium of the corpus callosum (SCC), superior frontal gyrus (SFG), superior 

frontal white matter (SFWM), superior longitudinal fasciculus (SLF), superior occipital gyrus 

(SOG), superior temporal gyrus (STG), superior temporal white matter (STWM). 
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2.4  DISCUSSION AND CONCLUSIONS 

The results of this study suggest that VISC provides unique information about 

sensorimotor impairment after stroke.  VISC was weakly correlated with FA (R2<0.2) on 

a voxel-by-voxel basis.  Furthermore, the mean VISC and FA across ipsilesional voxels 

with an FA above 0.15 were correlated with FM score.  This suggests that each metric 

accounts for a different portion of the variance in impaired function in chronic stroke.  In 

both ROI analyses, the VISC metric enhanced a broader set of brain regions.  Thus, the 

VISC metric uniquely identified areas whose structural connectivity may be involved in 

sensorimotor function after stroke. 

Our novel VISC metric differed in chronic stroke survivors compared to controls 

in brain regions outside the lesion site.  Further, the number of voxels with significantly 

different VISC values correlated with sensorimotor impairment.  Although VISC and FA 

were significantly correlated with Fugl-Meyer, they were weakly correlated with one 

another.  This suggests that VISC and the other DTI metrics each explain a significant 

amount of variance in motor impairment of chronic stroke subjects.  Multiple regression 

revealed that both the whole-brain log difference volume and ipsilesional mean of VISC 

provide unique information about upper extremity sensorimotor impairment after stroke.  

Furthermore, VISC and FA identified different regions with differences between stroke 

and controls, which suggests that the VISC provides unique information about the effect 

of a lesion on brain structure.  The ipsilesional mean and log number of significant voxels 

in the VISC metric both had a greater correlation with sensorimotor impairment than the 

conventional DTI metrics, MD and FA.  This observation may indicate that a broader set 
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of brain areas associated with sensorimotor function can be assessed with the VISC 

metric as compared to MD and FA.  The correlations also seen with MD and FA suggest 

that local white matter structural diffusion properties near the lesion are associated with 

higher function.  The region-specific correlations exclusive to the VISC metric support 

that white matter structural connectivity is key to sensorimotor recovery in chronic stroke 

survivors. 

VISC could serve as a unique tool for voxel-wise structural network analysis 

based on DTI tractography in stroke subjects.  Rather than integrating the voxel-wise z-

scores of stroke subjects, weighted by a metric derived from region-based structural 

network analysis (Kuceyeski et al., 2011), or lesion overlap with specific fiber bundles 

(Riley et al., 2011), the VISC metric is intrinsic and derived directly from DTI 

tractography.  Our conclusion that DTI tractography-based metrics correlate with  FM 

score after stroke is consistent with other studies (Lindenberg et al., 2010; Riley et al., 

2011; Zhu et al., 2010).   

The VISC  metric bears some resemblance to the region-based indirect structural 

connectivity metric introduced for ROI analysis (Sporns, 2011).  This metric is computed 

for an ROI by summing the product of structural connectivity for all connections through 

level 2, from all regions, divided by the ROI’s number of connections with level 2.  In 

addition to being a voxel-wise metric, VISC is different in that it is the mean number of 

direct (level 1) connections over only indirect neighbors (level 2).  Sporns et al. found 

that region-based direct structural connectivity has a higher correlation with regional 

resting-state functional connectivity as compared to regional indirect structural 

connectivity.  We found that at the voxel level, indirect structural connectivity is more 
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reproducible in the control population than direct structural connectivity.  It is possible 

that since it is a measure of mean connectivity, VISC is more robust to voxel-level 

misregistrations.  We incorporated the α parameter into VISC so that setting α to 0 leads 

to simply the sum of all direct (level 1) connections to indirect (level 2) neighbors, which 

is similar to region-based indirect connectivity measures. 

Results from the whole-brain analyses revealed the ability of VISC to detect 

lesion-induced changes in structural connectivity in voxels where FA was not 

significantly affected.  However, the ROI analyses used in this study associated different 

sets of brain areas with measurements of sensorimotor impairment.  Our log difference 

volume analysis accounted for the mean and variance in the control group at every voxel.  

This approach identified areas inside of the lesion (as with MD), near lesion boundaries 

(FA and VISC), and distant integrative association areas (as with VISC).  On the other 

hand, the means of FA and VISC were correlated with FM score in prefrontal areas and 

the basal ganglia.  A change in a regional mean could be caused by a large localized 

change or a moderate change distributed throughout the region.  Due to this uncertainty, 

the correlations with regional means are difficult to interpret.  In combination, the two 

ROI analyses do not necessarily agree on which regions are associated with sensorimotor 

impairment after stroke.  Inconsistencies between the results of the ROI analyses places 

limits on the insights gained about the roles of specific brain areas in sensorimotor 

function after stroke.  Whole-brain voxel-based analyses may serve as an objective and 

more reliable tool for assessing stroke lesions; however, this study was limited by the 

relatively small number of stroke subjects, and it is possible that the sample size impacted 

the region-based results. 
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The voxel-based approach used for the VISC metric in the current study has some 

advantages over ROI analyses.  Voxel-based analysis is not subject to region of interest 

selection and a priori information.  This is important since ROI segmentation may be 

sensitive to lesion-related changes in structure in stroke survivors.  Voxel-wise metrics 

also provide more sensitive and specific localization of spatial variations, and contrast 

maps may be visualized in a standardized image space.  The VISC metric is also intrinsic 

and excludes direct neighbors from the average, being based on number of neighbors 

rather than number of connections.  Scheinost et al. introduced a similar intrinsic voxel-

wise functional connectivity metric to alleviate the need for a threshold in resting state 

functional resonance imaging analysis (Scheinost et al., 2012), which produced 

advantages similar to the voxel-based VISC analysis for DTI data. 

Correlations between the upper extremity Fugl-Meyer score and DTI metrics, 

along with the absence of a correlation between DTI metrics and lower extremity Fugl-

Meyer score, could provide insight into the role of white matter structural connectivity in 

motor impairment.  Specifically, correlation analyses between FM subcomponents and 

VISC volume of significance may suggest that structural connectivity of integrative brain 

regions may play a larger role in upper extremity motor function than in lower extremity 

function.  The FA of association cortical regions has been previously shown to correlate 

with upper extremity motor function in stroke subjects with severe impairment.  For 

example, one study found that upper extremity Fugl-Meyer score was correlated with 

fiber number asymmetry (R = -0.80; p < 0.001) and regional fractional anisotropy 

asymmetry (R = -0.71; p < 0.001) in the corticospinal tract (Lindenberg et al., 2010).  

Although such past work and this study did not find correlations between DTI measures 
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and lower extremity Fugl-Meyer scores, other measures of lower extremity function may 

lead to positive results. 

Partial volumes of fiber populations in a voxel will affect the calculation of VISC 

because the metric is based on a union of direct connections via multiple penetrating 

fibers.  Image resolution likely has some effect on VISC, but we suspect that normalizing 

VISC based on resolution may be sufficient to preserve its intensity at each point.  If 

every voxel theoretically included only one white matter fiber, then the connectivity 

would be based solely on indirect connections via fiber end points.  In this case, the 

indirect neighbors to any voxel would reside in gray matter, and the VISC would reduce 

to their average joint volume of connected fibers.  Even at high image resolution, voxels 

would often contain multiple fibers from the same bundle.  VISC would still take 

advantage of this partial volume effect since different fibers from the same bundle can 

bifurcate and converge.  A high percent of voxels contain multiple fiber bundle 

populations at current resolution.  On the other hand, the VISC calculation is likely 

affected by the diffusion tensor model, which fails to resolve crossing or kissing white 

matter fiber bundles.  This is a limitation of the current study, and it must be considered 

in the physiological interpretation of VISC. 

Our tractography technique suffers from the limitations introduced in any DTI 

tractography method.  The diffusion tensor model assumes that any voxel is populated by 

white matter fibers with only one fiber orientation.  This assumption is not valid in the 

majority of voxels.  A higher-order tensor model would improve the physiological 

relevance of VISC.  Also, we did not account for crossing white matter fiber bundles in 

our tractography algorithm.  If a higher order tensor model were used, then the indirect 
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voxel-based connectivity would need to account for voxels with multiple fiber 

populations. 

Tractography methods and their application to stroke subjects have been criticized 

because they are correlated with fractional anisotropy.  For example, fiber density, 

calculated as the number of reconstructed fibers that intersect a voxel or region, is 

correlated with FA (Roberts et al., 2005).  We also considered the correlation of VISC 

and FA for different indirect connectivity weighting factors, α.  The VISC and FA of 

voxels with FA above 0.15 were weakly correlated, as shown in Fig 2-4b.  As the 

influence of total connection count on VISC was increased by adjusting α from 1.0 to 0.0, 

the correlation of VISC with FA increased until α=0.7 and then decreased.  This suggests 

that the number of indirect connections to a voxel and the average brain volume 

connected to these indirect neighbors may each provide unique information about local 

FA.   

Another criticism of DTI tractography is the issue of performing tractography in 

brain images that contain lesions.  Although DTI metrics of brain structure based on 

tractography have been formulated (Buch et al., 2012; Riley et al., 2011) many 

investigators have avoided performing tractography in the stroke population due to 

complex changes in diffusion anisotropy associated with the lesion (Budde and Frank, 

2010).  As an alternative to performing tractography in stroke subjects, (Buch et al., 

2012) calculated tractography-based voxel-wise statistics and local structural network 

measures for a control group within a spatially normalized image space, and then each 

stroke subject’s lesion was warped into the standardized space to localize abnormal 

anatomy.  Our results suggest that a voxel-wise metric based on DTI tractography is 
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useful for predicting sensorimotor impairment in stroke subjects.  Thus, while 

tractography-based metrics must be interpreted with caution, they may have value is 

assessing the implications of a brain lesion. 

Key limitations of this study include concerns with the image registration 

technique, multiple comparisons correction in voxel-wise analysis, and manual lesion 

selection.  Diffeomorphic registration algorithms have been used previously for aligning 

diffusion tensor images (Beg et al., 2005).  An advantage of diffeomorphic registration is 

that the transform is guaranteed to have a smooth inverse.  Thus, applying a forward 

transform followed by its inverse leads to negligible error.  In this study, a noninvertible 

registration algorithm was used to align the anatomical MR images.  An inverse 

transform was approximated with an error distribution of 0.5622 ± 0.3326 mm.  This 

error could have increased both false positive and false negative voxel-wise t-tests.  

Diffeomorphic registration is also superior to other techniques in preserving anatomical 

topology (Beg et al., 2005).   We chose a method with less assumptions of topology since 

stroke lesions may alter the topology of the anatomy.  Note that this likely led to higher 

registration errors in voxels distant from the lesion.  Nonetheless, our analysis accounted 

for the distribution in error due to misregistration at each voxel because the same 

registration method in this study was used in the control group. 

Another minor concern with this study was that the voxel-wise analysis did not 

account for misregistration errors.  Concerns have been raised with voxel-based 

approaches when used for group comparison because of  image misregistration 

(Bookstein, 2001).  There are a number of studies that have addressed registration in 

voxel-based approaches.  Voxel-based morphometry (Ashburner and Friston, 2000) is an 
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attractive technique in that it allows for objective full-brain analysis between populations.  

This technique reduces effects of registration errors by performing of spatial smoothing 

prior to voxel-wise Student’s T-tests, and then corrects for multiple comparisons by 

determining significant clusters of spatially connected voxels.  Tract-based spatial 

statistics (TBSS) (Smith et al., 2006) attenuates the effects of misregistration on voxel-

based analysis without spatial smoothing.  TBSS skeletonizes the mean FA across 

spatially normalized subjects, and then uses the FA from a voxel near the skeleton in each 

subject.  The VISC metric of the current study may have been less sensitive to 

misregistration errors because it based on a mean of fiber volumes that, together, 

represent global white matter structural connectivity of the brain. Being based on the 

union of multiple fiber pathways, VISC may also be robust against degenerate fibers that 

contaminate metrics based on fiber counts or mean fiber length.  Although VISC can 

intrinsically detect changes in global white matter structural connectivity at the voxel 

level, differences in VISC between neighboring voxels should still be interpreted with 

caution.   

This study’s third limitation was the manual delineation of the lesion volume.  

Initially, registering each stroke subject to a control without any correction resulted in 

distorted morphology near the lesion boundary.  Thus, we manually selected a 3D lesion 

ROI from the structural MR image and then masked the lesion during registration.  Few 

methods have been proposed for automatically segmenting stroke lesions from an 

anatomical MR image.  One technique automatically calculates a lesion mask by 

thresholding the displacement of the uncorrected deformation map, and then performs 

registration with lesion masking (Buch et al., 2012).  We decided not to use such an 
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approach since some lesions were too small to be detected by the displacement mapping 

but still led to misregistration near the lesion boundary.  Another study optimized local 

correlations between T1-weighted images in order to register abnormal anatomy with 

controls (Avants et al., 2008).  Although this approach may have provided more 

consistent registration in stroke subjects, we feel that our method, which accounted for 

lesion information, was sufficient for the statistical analyses in this study.  Overall, we 

believe that the errors associated with manual selection were minor compared to the 

advantages it provided in registration. 

Voxel-based analyses of structural connectivity in the stroke population can be 

used to objectively identify brain areas involved in sensorimotor function and may be a 

useful tool for understanding impairments.  The voxel-wise indirect structural 

connectivity (VISC) measure opens opportunities to investigate the impact of a stroke 

lesion on extralesional anatomical connectivity.  VISC and conventional DTI measures 

each explain a significant amount of variance in upper extremity motor impairment after 

stroke.  Future investigations will validate VISC with analyses that are based on artificial 

lesions in healthy control subjects.  The sensitivity of VISC to image resolution must also 

be investigated.  Although VISC was not predictive of lower extremity Fugl-Meyer 

scores, it may associate with other measures of lower extremity function.  In order to 

confirm that this method may be used across a spectrum of lesion sizes and locations, this 

technique should be performed in a larger sample of stroke subjects.  Future studies 

investigating the percent damage or change in mean value of ROIs should interpret the 

results with caution in that these widely-used approaches may lead to strikingly different 

results.  Increasing the subject sample size may reduce these inconsistencies.  We 
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conclude that our novel VISC metric based on DTI tractography can provide unique 

information about upper extremity sensorimotor impairment in chronic stroke.   
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2.6  APPENDIX – Voxel-wise Indirect Structural Connectivity Derivation  

In this study, we defined a voxel by the position of its center rather than its 

vertices.  In the Digital Imaging and Communications in Medicine (DICOM) standard, 

the Image Position (Patient) header element with tag (0020,0032) defines the x, y, z 

coordinates of both the upper left hand corner of the image and the center of the first 

voxel.  Since the DICOM standard defines a voxel by its center in the patient coordinate 

system, we elected to use this convention in our software and nomenclature. 

As a foundation for deriving a voxel-wise connectivity metric, the reconstructed 

fiber trajectories were expressed as sets of coordinates in the template control subject’s 

DTI image-space with the following mathematical formulation.  An image here has nz 

slices, each with ny rows and nx columns, giving a total of N voxels.  

Let each reconstructed fiber be represented as a matrix, F , of 3D fiber trajectory 

coordinates, where 
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(Eq. A1) 

M is the number of points in the reconstructed fiber and 
,j d
f  is the dth dimension 

continuous coordinate of the jth point along the trajectory.  Using nearest neighbor 

interpolation, the 3D continuous coordinates from F  are converted into 1D voxel 

indices.  Let these indices be represented in vector f , with 

, , ,
0.5 0.5 0.5 . 1,2,..., 1,

j j x x j y x y j z
f f n f n n f j M M                      

 

Next, we represent the set of voxels penetrated by fiber F  as an inclusion mask 

over the entire image.  Let vector p  of length N (# of voxels) be the voxel-wise inclusion 

mask of one fiber, where  
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(Eq. A2) 

If 1
i
p  , this indicates that fiber F  penetrates the ith voxel.  Note that all voxels 

included in p   are described here as being structurally connected.  An N N  

connectivity matrix, X , is used to represent the direct connections between the voxels 

masked by p  with 
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(Eq. A3) 

Note that 
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If k
X  is the connectivity matrix for the kth fiber, then let X  be the union of 

connectivity matrices across all Q fibers, where  
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(Eq. A4) 

 

If 
ij
x  , an element of X , is 1, then the ith and jth voxels are penetrated by least one 

common fiber.  Thus, X is a voxel-wise direct connectivity matrix.  Next, if the ith and jth 

voxels share at least one common direct neighbor but are not directly connected by a 

fiber, then we define them as indirect neighbors.  Let matrix Y  be the voxel-wise 

indirect structural connectivity (VISC) matrix, where
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Note that term (1 )
ij
x  excludes voxels that are direct neighbors, and term 
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   includes pairs of voxels that share at least one direct neighbor.  

Finally,  the VISC index for the ith voxel is 
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Where 1  is the summation vector of length N and 
( )i
y  is the ith row vector from 

matrix Y . 

Note that the denominator of VISC is the total number of voxels indirectly 

connected to the ith voxel, whereas the numerator is the summation of direct connections 

to these same voxels.  The nested summation in the numerator of Eq. (1) is over 
jk
x , 

which gives the total number of direct connections to the jth voxel.  The 
ij
y  terms are 

inclusive to only indirect connections to the ith voxel. 

Previously introduced voxel-wise metrics based on DTI tractography, such as 

fiber count and mean fiber length (Roberts et al., 2005), are correlated with FA.  In order 

to consider whether fiber count information affected the correlation of VISC with FA, we 

incorporated a connection count weighting factor α.  This contrast mechanism gives 

weight to the total number of connections to a voxel through structural connectivity level 

2 (Sporns, 2011) neighbors.  As α is decreased from 1 to 0, the VISC approximates the 

total number rather than the mean number of direct connections to a voxel’s indirect 

neighbors, with VISC parameterized by α as 

 

 

( )

( )

VISC( )
( )

i

i

i


 

y X1

y 1
. 

 

(Eq. 2) 

  



71 
 

  

CHAPTER 3: CEREBELLAR FUNCTIONAL CONNECTIVITY IN MULTISENSORY 

INTEGRATION DURING MOVEMENT AFTER STROKE 

3.1  INTRODUCTION 

Brain areas known for integrating multiple forms of information may be a central 

hub of communication that allows humans to process sensory information during 

movement.  The primary sensory areas pass information to unimodal association areas, 

which then converge in multimodal sensory integration areas.  The posterior association 

area is located in the intraparietal sulcus, while the anterior association area is located in 

the prefrontal cortex.  Communication between the premotor cortex and posterior parietal 

cortex has been shown to be critical in fine motor skill (Buch et al., 2012).  Structural and 

functional human brain mapping based on magnetic resonance imaging contrasts can be 

used to measure these interactions.  Diffusion MRI tractography is a technique that 

allows mapping axonal pathways that connect brain areas at the macroscopic level.  

Functional MRI (fMRI) measures a signal that is sensitive to the level of blood 

oxygenation in the brain, known as the blood-oxygen level dependent (BOLD) signal. 

Although current measures of structural and functional connectivity can 

characterize the nature of communication between the network hubs and other brain 

areas, the role of the association areas has not been explored in a paradigm of multimodal 

sensory integration during fine movement.  In order to understand the interaction between 

movement and sensory integration, functional connectivity must be measured during 

sensorimotor integration with and without movement. 

In this study, we developed an experimental paradigm that invokes sensory 

integration pathways during movement.  Additionally, we developed a novel metric 
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based on functional and structural brain connectivity that may serve as a potential future 

biomarker in stroke patients. 

The purpose of this study was to characterize differences in multimodal sensory 

integration circuits in stroke survivors with motor impairment.  In a number of prior 

studies, attention has focused on the functional effects of stroke lesions in the primary 

motor pathways (Cheng et al., 2012; Sharma et al., 2009; Wang et al., 2010; Ward et al., 

2003). However, brain lesions might have even stronger impact on integrative networks 

that process multisensory inputs and plan movements in a functional context.  These 

networks are widespread, making it more likely that they will be affected by a stroke at a 

number of possible locations.  Lesions affecting sensorimotor integrative networks of the 

brain may play a critical role in recovery and further, damage to these networks could 

lead to chronic impairment as they are important to motor learning and recovery (Bosnell 

et al., 2011; Buch et al., 2012; Evans, 2013; Lotze et al., 2012; Murphy and Corbett, 

2009; Sharma et al., 2009; Ward et al., 2003).  In order to characterize the function of 

sensorimotor networks in stroke survivors, we measured brain connectivity with 

functional magnetic resonance imaging (fMRI) using a task that invoked key features of 

sensorimotor and multisensory integration.  

fMRI has been used to characterize differences in brain activation patterns in 

stroke survivors and to document cortical plasticity with recovery or following 

therapeutic interventions.  Ward et al. looked at correlations of task-based fMRI with 

sensorimotor function in stroke subjects with an intact primary motor cortex.  They found 

that the intensity of brain activation within the motor system decreased over multiple 

sessions in lower functioning stroke survivors, and that these changes correlated with 
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recovery (Ward et al., 2003).  Hypoactive cortical areas have also been documented 

during continuous pedaling during fMRI (Promjunyakul et al., 2015).  During finger 

movement, stroke survivors have increased cortical activation with a broader spatial 

extent in the ipsilesional hemisphere as well as contralesional activity absent in controls 

(Rehme et al., 2011).  The level of perilesional hyperactivation has been correlated with 

lower function.  Increases in cortical activity distant from a stroke lesion are seen as 

evidence for cortical reorganization (Grefkes and Fink, 2011).  These plastic changes 

may be compensatory or potentially maladaptive for functional recovery.  To date, these 

changes have been documented primarily in activation patterns.  The emergence of brain 

functional connectivity analyses (Biswal et al., 1995; van den Heuvel and Hulshoff Pol, 

2010) raises the question of whether changes in brain function can be better documented 

using this approach. 

Functional connectivity analyses offer potential insight into changes in brain 

networks after stroke.  Functional connectivity MRI (fcMRI) (Biswal et al., 1995; 

Friston, 1994) infers coactivation of one or more cortical areas by their correlated fMRI 

signal over time.  This analysis can then be used to identify functional networks using 

fMRI signals obtained at rest (Biswal et al., 1995) or during a task (Friston, 1994). In 

resting-state fMRI studies, the most consistent finding has been decreased functional 

connectivity between the ipsilesional and contralesional sensorimotor cortices (Rehme 

and Grefkes, 2013).  The network topology in stroke subjects has been found to be 

nonoptimal, with a decrease in network efficiency (Cheng et al., 2012).  For this analysis, 

nodes are defined by predetermined anatomical regions of interest or by measuring 

regional homogeneity of voxel-wise intrinsic functional connectivity (Yeo et al., 2011).  
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Edge strength is defined by the temporal correlation between the nodes.  In addition, both 

resting-state and task-based functional connectivity can be decomposed into a set of 

spatiotemporal networks using an independent component analysis (Beckmann and 

Smith, 2004; Minka, 2000).  Each independent component consists of a 3D volume that 

provides each voxel’s contribution to the network, and a BOLD time-course that is shared 

by all voxels within that network.  Changes in functional MRI networks have been seen 

in both spatial extent of nodes and in the strength of edges measured in time in diseases 

such as dementia (Li et al., 2012; Rytty et al., 2013).   

Functional connectivity analysis might be particularly effective in quantifying 

functionally relevant changes in brain networks after stroke and during recovery.  Large-

scale cortical networks may be critical for functional recovery after stroke (Grefkes and 

Fink, 2014) .  Each cortical region may actively participate in multiple functional 

networks, allowing the brain to reorganize after damage to a particular node (Ward, 

2005). Plasticity has been observed in the motor network in stroke (Jiang et al., 2013). 

The integrity of contralesional parietofrontal (Buch et al., 2012) and sensorimotor cortical 

networks has been associated with less motor impairment after stroke.  These findings 

suggest that connectivity of sensorimotor integration areas may provide explanations for 

impairments and plasticity of these networks would provide mechanisms for restoring 

motor function. 

In order to identify changes in sensorimotor networks in chronic stroke survivors, 

we calculated the functional connectivity of the brain using task-based MRI, with a 

unique sensorimotor task.  The task was specifically designed engage integrative 

sensorimotor networks.  We then compared the changes in these networks to a clinical 



75 
 

  

measure of upper limb function.  We hypothesized that functional connectivity between 

brain nodes associated with sensorimotor integration would be reduced in stroke 

survivors, and that the reduction would be correlated to function. 

3.2  METHODS 

3.2.1  Data Collection 

3.2.1.1  Subject Recruitment and Clinical Testing 

Twelve young adults (4 female, 25.2 ± 2.4 years), ten individuals with chronic 

post-stroke hemiparesis (4 female, age 66.7 ± 7.94 years, at least 1.1 years since stroke), 

and nine age-matched control subjects (5 female, age 64.2 ± 7.73 years) participated in 

this study.  Each subject provided informed written consent to the experimental protocol, 

which was approved by the Institutional Review Boards at Marquette University and the 

Medical College of Wisconsin. Inclusion criteria included a history of an ischemic 

cortical or subcortical stroke that occurred no less than 6 months prior to recruitment.  

Subjects with no ability to perform supination, pronation, ulnar deviation, or radial 

deviation of the wrist were excluded.   Control subjects without history of stroke or other 

neurological impairments were age-matched (within 3 years) and gendered-matched to 

the stroke subjects.  Each stroke subject completed the upper extremity (UE) portion of 

the Fugl-Meyer Assessment (Fugl-Meyer, 1975) for a maximum possible score is 126.  

Subjects also completed the Box and Blocks Test of Manual Dexterity (Mathiowetz et al., 

1985), the Wolf Motor Function Test (Wolf et al., 2001) for upper extremity motor 
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ability (maximum score of 75), and the Modified Ashworth Scale (Bohannon and Smith, 

1987).   

3.2.1.3 Experimental Paradigm 

Our sensorimotor integration experiment was designed with cues and feedback 

that contrast the effects of auditory and visual sensation.  We introduce a task paradigm 

for studying the role of sensory integration in complex movement.  Chronic stroke 

subjects have more difficulty coordinating sensorimotor behavior, especially in tasks with 

higher complexity (Hollands et al. 2012).  Our task requires the subject to produce 

movement while integrating multiple sensory modalities.  

 

Motion recording and audiovisual feedback: Every subject completed two sessions on 

separate days no more than two weeks apart.  The subject was trained to perform a wrist-

movement task during the first session, and the second session consisted of a task-based 

fMRI session using the same wrist movement task.  The experimental apparatus is shown 

in Figure 3-1a.  The forearm of the impaired limb was fixed on a small ramp to allow for 

radial and ulnar deviation of the wrist.  The hand gripped the end of a ShapeTape device 

(Measurand Inc., Canada), an array of sixteen optical fiber sensor pairs that provide 3D 

Euclidean coordinates along the sensor region.  Visual feedback was presented on a 

computer monitor, and speakers provided auditory feedback.  Motion data were recorded 

every 24 milliseconds, or 41.67 Hz.   
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Figure 3-1: Task paradigm for wrist movement and sensorimotor integration.  

(Left) Illustration of the ShapeTape apparatus.  The forearm position is fixed. 

(Right) Experimental design of the multisensory search task.  During each trial, the subject 

maximizes sensory feedback using wrist joint angles to minimize error to a target angle. The 

subject was instructed to move the wrist to maximize the circle diameter and/or a sound volume.  

Auditory, visual, or audiovisual feedback were presented at the start and during each trial.  After 

reaching the target, the subject fixated on a yellow square during a 2-4 second intertrial period.  

The average trial duration was 5 seconds. 

 

Shown in Figure 3-1a, two sensor pairs at the end of the ShapeTape were used to 

calculate a 3D ray with angle 𝜽 = {𝜃𝑥, 𝜃𝑧} relative to the horizontal (x-z) plane, which 

was used to define the orientation of the wrist.  Effectively, pronation/supination was 

mapped to the angle within the x-y plane 𝜃𝑧, and radial and ulnar deviation was mapped 

to the angle 𝜃𝑥 in the z-y plane.  Letting 𝐩𝑛 and 𝐩𝑛−1 be the 3D coordinates of the last 

two sensors, an orientation vector 𝒗 was calculated as  

 𝒗 =
𝐩𝑛 − 𝐩𝑛−1
‖𝐩𝑛 − 𝐩𝑛−1‖

 
Eq. 1 
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The wrist orientation was estimated as𝜃𝑥 = tan−1(v𝑋/v𝑌), and 𝜃𝑍 =

tan−1(v𝑍/v𝑌).  For each search task, a target angle, 𝝋, was created.  The error to 𝝋 

during the search task was calculated as 𝐸 = √(𝜃𝑋 − 𝜑𝑋)2 + (𝜃𝑍 − 𝜑𝑍)2.  𝐸  was then 

used to provide feedback to the subject related to wrist proximity to the target.  The 

feedback intensity, 𝑤, was calculated as 𝑤 = exp(−𝐸/𝜎), with the sensitivity parameter 

𝜎 fixed at 0.1 radians for all trials.  Intensity 𝑤 was used to modulate visual and auditory 

feedback stimuli.  Auditory feedback was a 440 Hz tone and its volume was modulated 

linearly by 𝑤.  Visual feedback was presented as a solid red circle at the center of a black 

screen.  The circle diameter was modulated linearly by 𝑤 from 15 to 160 pixels or 0.38 – 

4.06 cm.  The screen was placed approximately 2 feet away from the eyes.   The resulting 

aperture angle was effectively varied between 0.179 – 1.91 degrees.  

   

Experimental design:  As shown in Figure 3-1b, a search-based wrist movement task 

was designed to invoke brain networks involved in sensorimotor and multisensory 

integration. The first session began with up to five familiarization trials, in which the 

subject used the wrist to move a white cursor to a yellow square target at the center of the 

screen.  These trials were also used to verify the subject’s range of motion.  Once 

comfortable reaching the square, the subject was then informed that the square and cursor 

would not be visible.  At the start of each trial, one of three types of sensory feedback 

were presented.  For both the training session and the fMRI session, a series of two 

search-task runs (6 minutes each) and one sensory-motor only run (6 minutes) were 

conducted.   
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The search-task run consisted of a series of trials, each trial including visual, 

auditory, or combined audiovisual feedback.  In the visual-only feedback condition, a 

solid red circle appeared and grew larger as error decreased. Once the subject reached the 

target, the solid red circle was changed into an outline and then disappeared.  During 

auditory-only trials, the subject searched for the target with feedback provided by the 

tone volume.  Upon the subject reaching the target, the tone was altered to a fixed pitch 

of 880 Hz, giving a “beep” sound, and turned off.  In audiovisual feedback trials, the red 

circle and auditory tone were mapped independently to the x-coordinate and y-coordinate 

errors.  The goal was to maximize both feedback intensities.  After the target was 

reached, the subject fixated at a yellow square at the center of the screen for an intertrial 

period with a normal random duration of 2.5 ± 0.5 seconds.  Subjects were notified that 

the trial would end automatically after an unspecified time if they failed to reach the 

target.  A maximum duration of 15 seconds was used for all experiments. 

A control task involving isolated sensory and motor tasks was conducted after the 

two search-based task runs.  In the motor task, the words “Keep Moving” appeared on the 

screen, and the subject was told to move the wrist randomly in a similar pattern as during 

the search task.  The subject was instructed to stop moving once the words disappear.  

The message “Relax” was displayed on the screen for two seconds prior to the sensory 

only trails.  For this condition, the subject was warned that there would be times during 

which the red circle and sound would appear and change outside of the subject’s control.  

The subject was trained to not move and just watch and listen.  The last instruction to the 

subject was “If you see the words “Keep moving” then move.  If you do not see the 

words “Keep moving”, then stay still no matter what happens.” Throughout this final run, 
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the experiment would alternate between motor-only and sensory-only conditions every 12 

± 2.0 seconds. 

3.2.1.4. MRI Scans 

Every subject was screened for MRI safety before entering the magnetic 

environment.  An axial T1-weighted anatomical image was acquired using a fast spoiled 

gradient recalled (SPGR) pulse sequence, with TE: 3.2 ms, TR: 8.16 ms, flip angle: 12 

deg, prep time: 450, bandwidth: 22.73, FOV: 240 mm, 156 1mm slices, matrix size: 

256x240.  Next, an axial q-ball high angular resolution diffusion imaging sequence was 

acquired with a single-shot echo planar imaging sequence, including 5 b=0 images, 150 

diffusion-weighted directions, SENSE parallel imaging, TE: 72.3 ms, TR: 5700 ms, 

FOV: 250 mm, matrix size: 128x128 resampled to a 256x256 grid (2mm pixel 

width/height), 57 2.5 mm slices.  For functional MRI, a sagittal view gradient-echo echo-

planar sequence was acquired with TE: 25 ms, TR: 2000ms, flip angle: 77 deg, FOV: 

240mm x 240mm, 41 slices with 35 mm thickness. 

3.2.1.5.  MRI experimental setup:  

As the subject lay supine, the forearm was elevated with foam and fixed in place 

with sandbags.  The ShapeTape was placed into the subject’s impaired hand, or right 

hand in healthy adults.   Visual feedback was projected to a visor attached to the head 

coil, and earbuds were placed into the ears to provide auditory feedback.  The MRI scan 

session consisted of one resting-state run followed by three task-based runs.  During the 
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6-minute resting-state run, each subject was asked to close their eyes and stay alert.  After 

the resting-state scan, the ShapeTape was placed into the subject’s hand.  If the subject 

had difficulty gripping the device, then a surgical wrap was used to keep the hand closed.  

The subject completed three 6-minute runs of the same experiment conducted for the first 

session, including two search-based and one sensory-motor only. 

 

3.2.2  Image registration and lesion side normalization 

Intersubject and intermodality image registration was completed in both healthy 

adults and stroke subjects using fully automated techniques.  Each subject’s anatomical 

T1-weighted MRI volume was registered to a 152-brain MNI space using a 12-parameter 

affine registration, and then nonlinear image registration was performed using Maxwell’s 

demons algorithm (Thirion, 1998).  Local histogram matching was performed prior to 

deformable image registration in order to mitigate errors caused by lesion contrasts.  The 

images of all stroke subjects that completed the experiment with the left arm were flipped 

over the sagittal plane so that all lesions were on the left side of MNI space.  One of these 

subjects had a lesion within the left cerebellum.  The flipping placed all strokes outside 

the cerebellum on the left side of MNI space. 
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3.2.3  fMRI data processing 

3.2.3.1. General linear model for the search task 

Task-based functional MRI analysis was performed with Analysis of Functional 

Neurological Images (AFNI, afni.nimh.nih.gov/afni).  Data were temporally resampled in 

order to correct for nonuniform slice acquisition timing within each volume.  BOLD 

signal changes related to head translation and rotation were corrected by affine 

coregistration between volumes using AFNI’s 3dvolreg function.  The data were high-

pass filtered above 0.01 Hz.  The motion parameters included roll, yaw, pitch, and x, y, z 

translations, and were treated as coregressors for all subsequent analyses.   

3.2.3.2. General linear model and cortical activation maps 

We were interested in stroke-related differences in cortical activity involved in 

sensorimotor integration during movement.  As previously shown in Figure 3-1, at the 

start of the trial the sensory feedback is at its lowest while.  On the contrary, the level of 

wrist motion (not displayed in the figure) is greatest at the start of the search.  As the 

subject closes in on the target, sensory feedback increases.  In this latter phase of the task, 

finer wrist movements must be made.  Thus, wrist movement is greatest at the start of 

each trial, and sensory feedback is greatest at the end.  In order to identify the brain 

activity associated with movement, wrist motion was estimated as the absolute change in 

𝜽 with time.   

The sensory feedback and wrist movement signals, both produced with our in-

house software from the ShapeTape data, were median filtered with a window of 2 
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seconds.  Using the “waver” function in AFNI, the signals were then convolved with a 

double-gamma variate hemodynamic response function to produce modeled BOLD 

responses and resampled to the fMRI temporal resolution of 0.5 Hz.  This method was 

repeated for the auditory, visual, and audiovisual feedback conditions to produce three 

movement regressors (AM, VM, AVM) and three sensory feedback regressors (AS, VS, 

AVS).  Using the 3dDeconvolve program in AFNI, a multilinear regression was 

performed for each voxel, with the six task-related regressors and six head motion 

parameters (three rotation, three translation) contributing to the BOLD signal.  The 

marginal t-value for the beta coefficient of each task-related movement regressor (e.g. 

AM, VM, AVM) was resampled into 1mm MNI space.  These three cortical activation 

maps were calculated for every stroke subject and age-matched control. 

3.2.3.3. Functional network maps  

Functional connectivity MRI analysis was performed with Multivariate 

Exploratory Linear Decomposition into Independent Components (MELODIC) Version 

3.14 available with the FMRIB’s Software Library (FSL, www.fmrib.ox.ac.uk/fsl).  All 

runs and subjects were time concatenated for a single 75-run (19 subjects and 4 runs) 

group ICA.  The sensory-motor only task run of subject S04 was not included in the 

analysis since data collection was not complete.  The data were high-pass filtered with a 

cutoff frequency of 0.01 Hz (Marchini and Ripley, 2000).  The first five TRs were 

discarded to exclude signal drifts due to system ramp-up. This left each run with 175 

volumes over 350 seconds.  The functional image volumes were motion corrected using 

the MCFLIRT implementation (Jenkinson et al., 2002).  Slice-time correction was 

http://www.fmrib.ox.ac.uk/fsl
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applied using linear interpolation.  Skull-stripping was automatically performed with the 

brain extraction tool (BET) (Smith, 2002), and the data were spatially smoothed with a 5 

mm full-width half-max Gaussian kernel.  The resulting brain mask was used to exclude 

non-brain voxels from the remaining analysis.  All subjects were spatially normalized to 

an anatomical MNI standard template using a 12-parameter affine registration 

implemented in FLIRT (Jenkinson and Smith, 2001).  The voxel BOLD times series were 

demeaned, variance normalized, and whitened.   

The number of independent components was estimated using a Bayesian approach 

described by Minka et al. in (Minka, 2000).  Using Probabilistic Independent Component 

Analysis (Beckmann and Smith, 2004), the whitened time data were projected onto a 53-

dimension subspace.  Fixed-point iteration optimization (Hyvarinen, 1999) was used to 

decompose the projected data into independent vector sets that account for variability in 

temporal, spatial, and subject domains.  The spatial components were normalized by the 

variance of the residuals, and a mixture model was fit to their intensity histograms to 

determine a statistical threshold (Beckmann and Smith, 2004).  

Once the independent components for the group were calculated, a dual 

regression (Beckmann et al., 2009) was used to estimate individual spatial maps and time 

courses for each subject and session.  Components with vertical stripes in the axial view 

were associated with motion and excluded from further analysis.  Voxel-based t-tests 

were performed between stroke and age-matched controls for each independent 

component.  
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3.2.3.4. Task-based network identification 

Overall relationships between resting-state networks and the task conditions were 

estimated with temporal correlation.  The BOLD response to each task condition was 

modeled by convolving the stimulus presentation time signal with a double-gamma 

hemodynamic response function. The modeled time courses were concatenated across all 

nineteen subjects and four runs using the same arrangement used for the time-

concatenated group ICA.    The relationship between an independent component and the 

experimental variable was estimated by correlating the spatial component’s data time 

course to the modeled BOLD response of the experimental variable.  Since the 

movement-only and sensory-only conditions were presented in regular 15-second 

intervals, their modeled time courses were used to identify the functional brain network 

associated with the task.   Shown in Figure 3-S1, one particular task-related independent 

component (SML) had a high correlation (r > 0.9) with the movement-only condition.  

This component, shown in Figure 3-S1 below, will be referred to as the active 

sensorimotor network.   
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Figure S 3-1: Overlay of task-based network time-course and GLM model. 

A comparison of the active sensorimotor network time-course (blue) and the modeled BOLD 

response to the motor-only condition (dotted black line) for a single control subject.  

3.2.3.5. Post-hoc seed-based functional connectivity analysis 

 We were also interested in the functional connectivity between nodes within each 

identified functional network.  Group ICA network maps were thresholded at a z-score of 

30, and local maxima of clusters greater than 2 cm3 were treated as nodes for a 

subsequent seed-based functional connectivity analysis.  The z-score threshold and 

cluster size threshold were chosen heuristically such that only one or two clusters 

remained for each network.  Shown in Table 3-1, a total of 27 local maxima were 

extracted from the left and right sensorimotor networks, the left and right parietofrontal 

control networks, the default-mode network, the bilateral cerebellar network, the bilateral 
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extrastriate visual network, the primary visual network, the left and right auditory 

networks, and the bilateral thalamic network.  Since the task-fMRI data were also 

included in the ICA, the left sensorimotor network map contained three clusters.  These 

included the left precentral gyrus, and two clusters within the right cerebellum.  The 

inclusion of task-positive BOLD data also caused the right sensorimotor network’s local 

maximum to occur within the postcentral gyrus.  Since the contralesional sensorimotor 

network has been shown to be involved in motor plasticity after stroke, the nodes from 

left and right sensorimotor networks were reflected over the mid-sagittal plane to produce 

4 additional nodes.  Independent components that were related to motion or cardiac 

artifact were regressed out of the raw BOLD data. The six motion regressors that were 

calculated by the MCFLIRT function prior to the group ICA were also used to clean the 

original BOLD data.  The temporal correlation coefficient was calculated from the 

cleaned BOLD time courses of each pair of seed points. 
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Table 3-1: Locations used for seed-based FC analysis. 

 

3.2.4  Statistical analyses 

3.2.4.1. Voxel-based analysis of BOLD activation maps and spatial network maps 

Three BOLD activation maps from AFNI and two spatial network maps from the 

dual regression analysis were compared between subject groups and conditions by using 

voxel-based Student’s t-tests.  Since we were focused on sensorimotor function in this 

study, only the spatial maps of networks included in Table 3-1 were analyzed.   Voxel-

level Student’s t-tests were performed to test contrasts between stroke and control groups.  

In the functional network maps, additional paired t-tests were performed to determine 

Network Region x y z

DMN Precuneus 0 -55 26

DMN IPL left 48 -63 30

DMN IPL right -40 -59 30

PF left aPFC left 44 -55 42

PF left IPL left 48 33 18

PF right aPFC right -28 -63 38

PF right IPL right -44 17 22

SM left M1 left 36 -19 62

SM left Cbl ant right -24 -51 -30

SM left Cbl post right -24 -55 -58

SM left * M1 right -36 -19 62

SM left * Cbl ant left 24 -51 -30

SM left * Cbl post left 24 -55 -58

SM right S1 right 40 -31 42

SM right * S1 left -40 -31 42

Cbl Cbl left 24 -67 -38

Cbl * Cbl right -24 -67 -38

Vis V1 left -20 -91 -6

Vis * V1 right 28 -91 -6

Visual Ext. V5 right 44 -59 -18

Visual Ext. V5 left -40 -67 -10

Aud left A1 left 64 -7 -2

Aud right A1 right -56 -11 2

Thal Thal right -24 9 -6

Thal Thal left 28 13 -6
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within-group contrasts between resting-state and search.  Spatial clusters of significantly 

different voxels (p < 0.01) were identified.  In order to account for multiple comparisons, 

clusters less than 11 voxels (704 mm3) in size were excluded from analysis.  The cluster 

threshold was determined using the ClustSim tool in AFNI.  Multiple comparisons 

correction was further applied for the number of contrasts performed (3 activation maps 

and 20 functional networks). 

3.2.4.2. Functional connectivity analysis 

A Student’s t-test with was performed between stroke subjects and age-matched 

controls for the edge strength between each pair of seed points.  Multiple comparisons 

FWE correction was applied for the number of pairwise t-tests, which was (n*(n-1)/2) = 

(27*26/2) = 702. 

3.2.4.3. Correlational analysis with clinical functional scores 

We hypothesized that stroke-related differences in task-related BOLD activation 

and functional network spatial maps would be correlated with the clinical evaluations of 

sensorimotor impairment/function.  A linear regression analysis was performed with each 

BOLD activation contrast and functional network maps as a predictor of the Box and 

Blocks Score for the impaired arm.  The independent components that were compared 

between groups included the left and right sensorimotor networks.  The p-values were 

multiplied by the number of analyzed networks to correct for multiple comparisons. 
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3.3  RESULTS 

3.3.1  The search task produced cortical activation patterns within motor control 

and multisensory integration areas. 

 Figure 3-2 demonstrates that in young healthy individuals and in the age-matched 

control group, our search task successfully produced unique cortical activation patterns 

for different sensory conditions.  Activity is reported where the group mean is 

significantly positive zero (t > 2.79, p < 0.01).  Search task-related activation common to 

all conditions was detected in contralateral sensorimotor cortex, bilateral premotor cortex, 

bilateral somatosensory association cortex, and bilateral anterior cerebellum.  Purely 

visual or auditory activity was found in the primary visual and auditory cortices.  An 

inferior-to-superior spatial gradient in overlapping activation maps were seen along the 

bilateral occipital surface.  The superior occipital gyrus activity was exclusive to 

unimodal auditory feedback condition.  The middle occipital gyrus responded to the 

auditory and audiovisual conditions.   

 In young adults, there was unique activation during the audiovisual feedback 

condition within the bilateral dorsolateral prefrontal cortex and bilateral posterior parietal 

cortex, corresponding to the anterior and posterior multimodal association areas.  BOLD 

activation in the control group that was age-matched to the stroke survivors was similar 

with the young healthy adults.  However, this group did not have unique activation within 

the prefrontal and posterior parietal areas. 
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Figure 3-2: Search-task BOLD activation maps in healthy individuals. 

These activations were produced from the novel search task paradigm.  Mean BOLD activation 

for the auditory (A), visual (V), and audiovisual (AV) task conditions in (a) the young healthy 

adult group and (b) the control group age-matched to the stroke survivors. 

 

 

3.3.2  During sensory-guided movement, BOLD activation in stroke survivors 

depends on sensory feedback modality. 

Demonstrated in Figure 3-3 and Table 3-2, the BOLD activation in stroke 

survivors is dependent on the modality of sensory feedback.  First, in the visual search 

condition, stroke survivors had similar activation to the age-matched controls within the 

active contralateral sensorimotor cortex.  There was an increased activation in the 

contralesional prefrontal, posterior parietal, and sensorimotor cortices (p < 0.01).  

Increased activation was also observed within the ipsilesional prefrontal cortex (p < 

0.01).  Second, overall BOLD activity in stroke subjects was lower than controls during 

the auditory feedback condition.  Since this effect was present in both low and high 

functioning stroke subjects, this decrease was not correlation with functional scores.  
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Thirdly, the task-related BOLD activity in stroke survivors during the audiovisual 

condition was not significantly different from the age-matched controls.   

 

Figure 3-3: BOLD activation maps of stroke versus controls. 

BOLD activation in visual, auditory, and audiovisual sensory guided movement.  Group-averaged 

activity and significant differences (p < 0.01, corrected) are shown in stroke survivors (n=10) and 

controls (n=9) on inflated brain surfaces.  The three sensory conditions had similar activation in 

the contralateral sensorimotor cortex, bilateral premotor cortex, and bilateral somatosensory 

association cortex.  Stroke subjects had greater contralesional activation than controls during the 

visual condition and less ipsilesional activity during the auditory condition. 
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Table 3-2: Localized group differences in BOLD activation. 

 

†: p < 0.05, ††: p < 0.01 

ROI Acronyms: IFG: inferior frontal gyrus, IOG: inferior occipital gyrus, MOG: middle occipital 

gyrus, STG: superior temporal gyrus, SPG: superior parietal gyrus, ITG: inferior temporal gyrus, 

SMG: supramarginal gyrus, LG: lingual gyrus, Cbl: cerebellum, PoCG: postcentral gyrus, PrCG: 

precentral gyrus, AG: angular gyrus, Fu: fusiform gyrus, MTG: middle temporal gyrus, MCP: 

middle cerebellar peduncle, PTR: posterior thalamic radiation 

 

3.3.3  Stroke subjects have increased contralesional involvement within the task-

related sensorimotor network  

Functional connectivity information provided by the independent component 

analysis complemented the BOLD activation results, as shown in Figure 3-4.  Figure 3-4a 

Condition ROI x y z nVox t p (t) corr B&B p (slope)

Visual MOG_R 46 -73 2 850 -3.16 †† 0.00636 0.716 † 0.03610

Search STG_R 68 -17 2 655 3.49 †† 0.00321 -0.765 † 0.01972

SPG_R 31 -62 63 35 -2.00 0.06249 0.851 †† 0.00389

Cbl_R 10 -46 -59 12 -2.35 † 0.03182 0.697 † 0.04527

Visual AG_L -40 -75 49 96 2.34 † 0.03275 -0.845 †† 0.00471

Target

Auditory LG_L -19 -82 -9 3616 -3.65 †† 0.00221 0.844 †† 0.00481

 Search LG_R 11 -80 -1 1234 -3.79 †† 0.00167 0.698 † 0.04486

SPG_L -27 -55 67 80 -2.73 † 0.01503 0.761 † 0.02112

MCP_L -12 -22 -33 50 -3.15 †† 0.00651 0.672 0.05666

STG_R 30 24 -34 12 -2.00 0.06236 0.742 † 0.02676

SPG_L -15 -63 71 12 -4.27 †† 0.00062 0.655 0.06525

Auditory STWM_L -52 -21 -1 6027 -3.77 †† 0.00174 0.887 †† 0.00154

Target Cu_L -4 -96 6 963 -2.58 † 0.02122 0.916 †† 0.00049

PoCWM_R 27 -35 74 528 -3.58 †† 0.00265 0.837 †† 0.00566

Cbl_R 8 -82 -47 296 -5.21 †† 0.00009 0.698 † 0.04485

IFG_R 35 17 14 166 -3.77 †† 0.00173 0.632 0.08274

PrCG_L -58 -1 24 86 -2.44 † 0.02772 0.848 †† 0.00427

PrCG_L -3 -30 74 37 -3.24 †† 0.00546 0.885 †† 0.00162

STG_R 70 -22 -2 35 -3.63 †† 0.00235 0.590 0.11181

MCP_R 21 -64 -35 34 -3.79 †† 0.00168 0.485 0.21533

Audiovisual IOG_R 39 -77 3 643 -4.46 †† 0.00041 0.740 † 0.02721

 Search PTR_R 36 -61 0 484 -3.89 †† 0.00138 0.807 † 0.01023

Audiovisual MTWM_L -49 -49 1 70 4.77 †† 0.00022 -0.602 0.10391

Target Cbl_L -31 -88 -29 52 -1.54 0.14873 0.910 †† 0.00067

ITG_L -63 -53 -18 40 -3.55 †† 0.00282 0.712 † 0.03807

STG_L -47 -41 5 32 2.93 † 0.01033 -0.692 † 0.04777

PoCWM_L -39 -27 36 25 2.46 † 0.02672 -0.752 † 0.02369

SPG_L -31 -49 34 12 2.48 † 0.02587 -0.743 † 0.02650



94 
 

  

presents the network that had the highest temporal correlation the recorded movement.  

This network includes the contralateral sensorimotor cortex, bilateral premotor cortex, 

and ipsilateral cerebellum had the highest temporal correlation with the modeled BOLD 

response (0.716 across all subjects).  During both rest and the search task, this 

movement-related network was similar between stroke subjects and age-matched 

controls.  In controls, the participation of sensorimotor cortices became lateralized during 

the task.   Both hemispheres contributed to this shift in laterality, with greater positivity 

in contralateral sensorimotor areas and negative coefficients in the ipsilateral 

sensorimotor cortex.  There was also an increased bilateral contribution from the 

supplementary motor area.  These task-related network changes were not seen in stroke 

subjects.  Rather, contralateral somatosensory cortex and ipsilateral SMA and 

ventromedial premotor cortex increased in network participation.  Thus, stroke subjects 

had greater network participation in the ipsilateral hemisphere during the search task.  

This result also held after subtracting the resting-state network values. 

As shown in Figure 3-4b, cortical areas within the ipsilateral sensorimotor 

network became less positive during the search task in control subjects, further 

suggesting task-related inhibition of ipsilateral cortex in healthy individuals.  These 

decreases were not present in stroke survivors, but increased participation was found in 

the ipsilateral dorsolateral prefrontal and posterior parietal cortex. 
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Figure 3-4: Stroke versus controls functional network maps. 

Independent component spatial maps for the ipsilesional/contralateral (a) and 

contralesional/ipsilateral (b) sensorimotor networks.  Stroke and control group averages and 

differences for rest and task conditions are overlaid on an inflated cortical map surface.  Group 

averages with a mean normalized component intensity above 3 are colored red.  Difference maps 

show clusters greater than 704 cubic millimeters after thresholding at p < 0.01. 

a

) 

b

) 
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Table 3-3: Localized group differences in network spatial maps. 

 

†: p < 0.05, ††: p < 0.01 

ROI Acronyms: ITG: inferior temporal gyrus, SMG: supramarginal gyrus, LWM: lingual gyrus, 

Cbl: cerebellum, PoCWM: postcentral gyrus, PrCG: precentral gyrus, AWM: angular gyrus, Fu: 

fusiform gyrus, MTG: middle temporal gyrus. 

 
IC Acronyms: PF: parietofrontal control network, DAN: dorsal attention network, V1 medial: 

central visual network, SM: sensorimotor network, DMNmpf: default-mode network medial 

prefrontal node. 

 

3.3.4  Stroke survivors have decreased interhemispheric connectivity and increased 

intrahemispheric functional connectivity to visual areas. 

Functional connectivity between independent components at rest and during the 

search task are shown in Figure 3-5.  The resting-state functional connectivity between 

left and right sensorimotor networks was lower (p < 0.05) in the stroke group, but there 

was no correlation with the clinical measures.  The left and right parietofrontal networks 

also had lower internetwork and intranetwork functional connectivity during the search 

task.   

Run IC ROI x y z nVox t p (t) corr B&B p (slope)

Rest Right PF ITG_R 44 -1 -44 13 -3.42 †† 0.00360 0.928 †† 0.00028

DAN/CblL SMG_R 68 -33 20 11 3.72 †† 0.00188 -0.794 † 0.01276

††

Search V1 Medial LWM_R 12 -81 0 32 -3.18 †† 0.00617 0.853 †† 0.00377

Left SM Cbl_R 44 -65 -40 54 3.71 †† 0.00192 -0.915 †† 0.00049

Left SM Cbl_R 32 -53 -24 39 -3.26 †† 0.00515 0.883 †† 0.00171

Left SM PoCWM_L -20 -33 40 35 3.52 †† 0.00301 -0.857 †† 0.00347

Left SM PrCG_R 36 -5 60 17 -4.43 †† 0.00043 0.899 †† 0.00097

Right PF AWM_R 36 -53 32 11 2.99 †† 0.00900 -0.732 † 0.02957

††

S xor M Right Insula Fu_R 28 -81 -8 12 2.64 † 0.01955 -0.953 †† 0.00020

DMNmpf MTG_L -60 -21 -16 11 -4.28 †† 0.00069 0.892 †† 0.00305

Left SM Cbl_R 50 -61 -44 22 3.12 †† 0.00720 -0.965 †† 0.00007

Left SM Cbl_R 36 -53 -28 17 -3.01 †† 0.00903 0.810 † 0.01711

Central M1 Cbl_R 36 -77 -40 11 -3.81 †† 0.00177 0.913 †† 0.00152
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3.3.5  Decreased functional connectivity with the cerebellum during sensorimotor 

integration correlates with motor impairment after stroke. 

Figure 3-6 shows that decreases in functional connectivity to the cerebellum and 

visual association areas is correlated with Box and Blocks Score in individuals with 

stroke.   In stroke subjects, the contralesional cerebellum had decreased functional 

connectivity with the active sensorimotor cortex (p < 0.005).   As shown in Figure 3-7, 

this decrease is negatively correlated with Box and Blocks score (R2=0.744).  Lower 

functioning stroke survivors have reduced functional connectivity between the 

cerebellum and primary motor cortex correlate, as well as between the left and right 

extrastriate visual network nodes.  These data are plotted in Figure 3-7. 
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Figure 3-5: Group differences in functional connectivity.   

An inflated pial surface of a template brain is shown with color-coded independent components 

and functional network graph overlay.  Increased connections are in red and decreases are in 

cyan.  The overhead view in a) shows the connectivity to the left and right sensorimotor network 

nodes and in b) presents connectivity to the bilateral parietofrontal networks.  c) The posterior 

views show connectivity differences to four c) sensorimotor network nodes and d) eight 

cerebellar nodes. 
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Figure 3-6: Functional trends in seed-based functional connectivity. 

Differences in functional connectivity in stroke survivors during the search task correlate with 

Box and Blocks Score.   
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Figure 3-7: Scatterplots of seed-based connectivity versus motor function. 

Stroke subjects are shown with black dots and controls are shown with blue triangles.  The 

dependent variable in each plot is the partial correlation between two specified seed points.  

Linear regressions were performed within stroke subjects and repeated across all subjects 

(assuming that controls scored a 76). The first r2 and Pa are the coefficient of variation and slope’s 

p-value for the regression analysis across all subjects.  The second r2 and Ps are associated with 

the analysis that included only stroke survivors.  Group differences are reported by t-value and 

corresponding Pt-value. 
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3.4  DISCUSSION AND CONCLUSIONS 

The level of motor impairment was associated with decreased functional 

connectivity between the ipsilesional sensorimotor cortex and the cerebellum of the 

opposite hemisphere.  Connectivity between sensory association areas was decreased in 

stroke, but these areas also increased connectivity with primary sensory and motor 

cortices.  This suggests that association areas favor local integration over whole-brain 

integration.  Our third observation was an increased connectivity between the 

sensorimotor to visual cortex, suggesting a dependence on visuomotor pathways in stroke 

survivors.  All of these changes were correlated with Box and Blocks.  

In addition to reproducing results of past studies, this work revealed new insights 

into cerebellar functional connectivity after stroke specifically during sensorimotor 

integration.  Involvement of the cerebellum in different networks involving movement 

and multisensory integration give it a critical role in brain plasticity after stroke (Proville 

et al., 2014).  The motor cortex and cerebellum together have been shown to be involved 

in plasticity during motor training and in sensorimotor integration (Baarbé et al., 2014).  

Voxel-based analysis of the ipsilesional sensorimotor network and seed-based 

correlations within this network both demonstrate a loss in connectivity to the cerebellum 

in lower functioning stroke subjects.  Past imaging studies have shown that the 

cerebellum and parietofrontal networks are involved in sensorimotor function.  Visual 

information is carried from the visual cortex to the dorsolateral pons and then passed to 

the cerebellum.  It is thought that auditory information has a similar pathway through the 

pons.  The two lowest functioning subjects had lesions to the pons and cerebellum.   
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Reduced functional connectivity between the left and right V5 was strongly 

correlated with fine motor control function in stroke individuals.  The middle temporal 

gyrus plays a role in integrating visual and auditory information during movement.  

While this region has been classically associated with the primary language pathways, its 

functional connectivity has recently revealed a broader role in motor control (Bauer et al., 

2012).  During the search task, functional connectivity between the MTG and 

parietofrontal nodes increased.  The MTG may also link unimodal visual association 

cortex with the posterior parietal multisensory association area.  Lower interhemispheric 

functional connectivity between the bilateral middle temporal gyri in stroke survivors 

may allow for independent coupling within each hemisphere. The basal ganglia also 

integrate sensory information during movement (Bauer et al., 2012) , and in this study the 

contralesional lentiform nucleus was observed to increase in functional connectivity with 

the insular cortices.   

Ipsilesional cortical activity was greater than controls during the visuomotor task, 

and there was an increase functional connectivity between sensorimotor and visual areas.  

During the auditory feedback conditions their performance was lower than controls, and 

auditory cortex was less active.   Limited literature has shown that individuals with stroke 

have severe auditory processing deficits (Bamiou et al., 2012).  Imaging studies have 

shown that stroke survivors with deficits in auditory comprehension have a common 

lesioned area in the middle temporal gyrus  (Bates et al., 2003) .  In our study, two 

subjects had lesions to the MTG.  Individuals with stroke have been shown to rely on 

visual feedback for posturing (Bonan et al., 2004).  
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Head motion is a potential confounding factor in any study using functional 

activity or connectivity MRI, especially those involving task-based paradigms and patient 

populations.  Indeed, head motion has been found in past studies to be greater in patients 

than in controls, but also increases with age (Van Dijk et al., 2012).  Van Dijk et al. found 

in young adults that although most variability in functional connectivity was not 

associated with head movement, there was significantly reduced functional coupling 

between the parietofrontal and default-mode network nodes.  Furthermore, greater mean 

head motion led to increased local functional coupling and interhemispheric connectivity 

between sensorimotor areas.  Stroke subjects in this study undesirably had significantly 

greater mean head motion than controls (p < 0.05) at rest and during the search task.  

Thus, our findings that stroke survivors had decreased connectivity within parietofrontal 

networks and increased local connectivity could be in part due to increased head motion.   

However, we observed decreased interhemispheric connectivity, opposite to what was 

observed by Van Dijk et al.  Since head motion was regressed out of the original data 

before our seed-based analysis, we do not believe that it was the prime contributor to our 

findings. 

Changes in vasculature after stroke can lead to differences in neurovascular 

coupling near the lesion, which may influence correlations of these voxels with distant 

areas.  Differences in brain structure can have an impact on functional connectivity 

metrics due to changes in the partial volume of gray matter (Dukart and Bertolino, 2014).  

Using simulations, Dukart et al. showed that between-group differences in brain structure 

leads to significant differences in functional connectivity between the groups.  Due to the 
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large variability in lesion location in this study, partial volume was not expected to have a 

significant impact on functional connectivity results. 

Non-stroke related lateralization of cortical activation and functional connectivity 

is a potential confounding factor in this study.  Studies of healthy adults have shown 

significant lateralization of resting-state functional connectivity (Nielsen et al., 2013).   

Nielson et al. showed that there are twenty “lateralization hubs” that have the most 

lateralized functional connectivity.  Some of these hubs included the dorsolateral 

prefrontal cortex, supplementary motor area, premotor cortex, Broca’s area, insula, and 

junctions between the parietal, occipital, and temporal lobes.  Many of these regions are 

unimodal and multimodal sensory association areas.  Handedness of our subjects and the 

procedures of flipping the brain over the mid-sagittal plane could have also had an impact 

on the results. 

In conclusion, sensorimotor and multisensory association networks decrease in 

interhemispheric and intranetwork connectivity.  However, new intrahemispheric 

networks are formed between nodes from the lost networks.  Future work will investigate 

the role of structural connectivity in these mechanistic changes between sensorimotor and 

sensory integration networks. 
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CHAPTER 4: STRUCTURO-FUNCTIONAL CONNECTIVITY REVEALS GREATER 

IMPACT OF STROKE LESIONS 

4.1  INTRODUCTION 

Resting-state functional magnetic resonance imaging and diffusion MRI together 

provide unprecedented insight into the structure-function relationship associated with 

changes in brain connectivity after stroke.  This information might be useful for 

prognosis in the acute stages of stroke and could help to personalize rehabilitation 

strategies.  Consequently, the purpose of this study was 1) to develop a novel 

connectivity model that marries structural and functional connectivity analyses, and 2) to 

demonstrate that it provides unique information about subject-specific changes in brain 

connectivity that may be used to develop new biomarkers for functional recovery. 

Diffusion magnetic resonance imaging has provided potentially useful tools for 

detecting changes in white matter structure and structural connectivity following stroke.  

One such tool, high angular-resolution diffusion imaging (HARDI) (Tuch et al., 2002) 

involves multiple measurements of the diffusion coefficient within each voxel for many 

directions.  From these directional data, an orientation distribution function (ODF) of 

white matter fibers within a voxel can be estimated with techniques such as q-ball 

imaging (Tuch, 2004).  Diffusion MRI tractography uses these directional diffusivity 

measurements to model white matter fiber pathways.  Deterministic tractography 

approaches propagate modeled fibers along the principle direction of diffusion (Zhang et 

al., 2009), while probabilistic approaches add random perturbations to estimate a 

distribution of structural connections to a voxel.  Measures of structural connectivity of 

the brain can then be calculated based on these tractography models, and applied to the 
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brain of stroke survivors.  Structural connectivity analyses automatically locate changes 

in fiber pathways after stroke (Yeh et al., 2013), and  retained connectivity is associated 

with higher motor function (Buch et al., 2012). 

Resting-state functional magnetic resonance imaging (rs-fMRI) can be used to 

measure low-frequency oscillations in cortical activity that are associated with functional 

connectivity of the brain.  In this approach, measurements are made while the subject lies 

in a scanner with their eyes closed, making it attractive for clinical use.  The rs-fMRI data 

are often analyzed using an independent components analysis (ICA) to automatically 

extract sets, or networks, of voxels that follow a common pattern of signal change 

(Beckmann and Smith, 2004; Beckmann et al., 2009; Du and Fan, 2013; Park et al., 2014; 

Rytty et al., 2013).  Each independent component includes a spatial volume of voxel 

contributions and a common signal time-course.  When applied to stroke, resting state 

fMRI has provided evidence of cortical reorganization associated with motor recovery, 

with the most common finding of reduced interhemispheric functional connectivity 

between sensorimotor cortices (Rehme and Grefkes, 2013).  Network measures have also 

been used to characterize longitudinal changes in the motor execution network (Wang et 

al., 2010) during recovery after stroke.  

Multimodal MRI techniques that combine diffusion and functional MRI 

approaches provide the opportunity to identify effects of structural damage on brain 

functional connections in stroke survivors.  In healthy individuals, there is a strong 

correspondence between the default-mode network, a distinct brain network that 

demonstrates strong functional connectivity at rest, and the density of anatomical 

connections between its nodes (Hagmann et al., 2008).  Further, an inverse relationship 
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has been observed between fiber distance and functional connectivity (Sporns, 2011).  A 

combined structural-functional connectome (Horn et al., 2013) has been described using 

correlations between the structural and functional connections of all voxels of the brain.  

The combined structural and functional connectivity information might be particularly 

useful in describing changes in function following localized brain lesions, such as those 

associated with stroke (Rehme and Grefkes, 2013).      

In this chapter, we introduce a new automated analysis that expresses functional 

connectivity in the context of structural connectivity while avoiding constraints on either 

individual analysis.  Our approach first calculated the functional connectivity for all 

structurally connected voxels of the brain.  We then identified average levels of 

functional connectivity to a voxel for regions that were structurally connected at similar 

distances.  A novel structuro-functional correlation (SFC) that identifies maximum 

functional connectivity to a voxel across these distances was obtained.  The SFD was 

then used to enhance resting-state networks derived from conventional fMRI connectivity 

analyses.  These spatial enhancements were validated through correlational analyses with 

clinical assessment scores.   

 



108 
 

  

4.2  METHODS 

4.2.1  Data Collection 

4.2.1.1 Subject Recruitment and Functional Testing 

Ten individuals with chronic post-stroke hemiparesis (4 female, age 66.7 ± 7.94 

years, at least 1.1 years since stroke), and nine age-matched control subjects (5 female, 

age 64.2 ± 7.73 years) participated in this study.  The experimental protocol was 

approved by the Institutional Review Boards of Marquette University and the Medical 

College of Wisconsin, and written consent was obtained from each subject.  Inclusion 

criteria included a history of stroke that occurred no less than 6 months prior to 

recruitment.  Stroke subject information is provided in Table 4-1.  Subjects with no 

ability to perform supination, pronation, ulnar deviation, or radial deviation of the wrist 

were excluded.  Control subjects were comprised of individuals without history of stroke 

or other neurological impairments that were age-matched (within 3 years) and gendered-

matched to the stroke subjects.  Each stroke subject completed the upper extremity (UE) 

portion of the Fugl-Meyer Assessment (Fugl-Meyer, 1975), the Box and Blocks Test of 

Manual Dexterity (Mathiowetz et al., 1985) and the Wolf Motor Function Test (Wolf et 

al., 2001) for upper extremity motor ability. 
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Table 4-1: Stroke subject information 

Cort=Cortical, Subc=Subcortical, BS=Brainstem, Cbl=Cerebellum 

 

4.2.1.2 MRI Scans 

Every subject was screened for MRI safety according to the Medical College of 

Wisconsin Institutional Review Board before entering the magnetic environment.  An 

axial T1-weighted anatomical image was acquired using a fast spoiled gradient recalled 

(SPGR) pulse sequence, with TE: 3.2 ms, TR: 8.16 ms, flip angle: 12 deg, prep time: 450, 

bandwidth: 22.73, FOV: 240 mm, 156 1mm slices, matrix size: 256x240.  Next, an axial 

q-ball high angular resolution diffusion imaging sequence was acquired with a single-

shot echo planar imaging sequence, including 5 b=0 images, 150 diffusion-weighted 

directions, SENSE parallel imaging, TE: 72.3 ms, TR: 5700 ms, FOV: 250 mm, matrix 

size: 128x128 resampled to a 256x256 grid (2mm pixel width/height), and 57 2.5 mm 

slices.  The 2.5 mm slice thickness was needed for cerebellum coverage in subjects with 

larger heads.  For functional MRI, a sagittal view gradient-echo echo-planar sequence 

was acquired with TE: 25 ms, TR: 2000ms, flip angle: 77 deg, FOV: 240mm x 240mm, 

41 slices with 35 mm thickness.   

Subject ID S04 S05 S07 S08 S10 S12 S14 S15 S16 S18

Sex M M F M M F M F F M

Age 65 57 83 66 69 65 64 80 62 66
Lesion Location Cort Subc BS Subc Cort Cort Cbl Subc Subc Subc
Lesion Side R L L L L R L L L L
Arm Affected L R R R R L L R R R
Dominant Post R R L R R R R R R R
Dominant Pre L R R R R Amb R R R R
Wolf Motor 71 72 38 72 75 54 58 74 75 74
Fugl-Meyer 124 106 82 122 124 97 120 126 124 122
Box & Blocks (ND) 24.5 62.5 8 41 75.5 14.5 13 57 50 64
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4.2.2  MRI Data Processing 

4.2.2.1 Intersubject Anatomical Image Registration 

Fully automated techniques were used for intersubject and intermodality image 

registration.  Anatomical T1-weighted images were registered to the 152-MNI template 

from fMRI of the Brain Software Library (FSL).  First, the FLIRT tool from FSL 

(Jenkinson and Smith, 2001) was used to perform linear affine regitration to translate and 

rotate the brain .  The anatomical images were then deformed to MNI space using an ITK 

implementation of the Maxwell’s demons algorithm (Thirion, 1998). 

4.2.2.2 Lesion-side Normalization 

Lesion-side normalization was performed by flipping each row of data in the x-

dimension in stroke survivors with right lesions.  This correction was done prior to 

anatomical image registration.  However, the orientation distribution function (ODF) 

estimation and diffusion MRI tractography were performed with the raw diffusion MRI 

data. The resulting fractional anisotropy (FA) map was flipped and registered to the 

subject’s flipped T1-weighted image using a 12-parameter affine registration.  The 

BOLD fMRI data was similarly flipped and registered to the anatomical image.  

Intermodality and intersubject registration results were concatenated in order to map each 

subject’s BOLD and diffusion images to MNI coordinates.  Fiber trajectories were 

flipped over the mid-sagittal plane before warping into MNI space.  
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4.2.2.3 Resting-state Network Calculation 

Resting-state networks were determined from raw BOLD time-course data using 

the Multivariate Exploratory Linear Decomposition into Independent Components 

(MELODIC) Version 3.14 available with the FSL (www.fmrib.ox.ac.uk/fsl).  All 19 

subjects were time concatenated for a single group ICA.  The data were high-pass filtered 

with a cutoff of 100 seconds (Marchini and Ripley, 2000).  Before time-concatenation, 

five TRs were discarded from each subject, leaving 175 volumes over 350 seconds.  The 

functional image volumes were motion corrected using the MCFLIRT implementation 

(Jenkinson et al., 2002).  Slice-time correction was applied using linear interpolation.  

Skull-stripping was automatically performed with the brain extraction tool (BET) (Smith, 

2002), and the data were spatially smoothed with a 4 mm full-width half-max Gaussian 

kernel.  The brain mask was used to exclude non-brain voxels from the remaining 

analysis.  All subjects were spatially normalized to an anatomical MNI standard template 

using a 12-parameter affine registration implemented in FLIRT (Jenkinson and Smith, 

2001).  The voxel BOLD times series were demeaned, variance normalized, and 

whitened.   

The number of independent components was estimated using a Bayesian approach 

described in (Minka, 2000).  Using Probabilistic Independent Component Analysis 

(Beckmann and Smith, 2004), the whitened time data were projected onto a 83-dimension 

subspace.  A fixed-point method (Hyvarinen, 1999) decomposed the data into 83 

independent components that accounted for variability in temporal, spatial, and subject 

domains.  The spatial components were normalized by the variance of the residuals, and a 

http://www.fmrib.ox.ac.uk/fsl
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mixture model was fit to their intensity histograms to determine a statistical threshold 

(Beckmann and Smith, 2004).  

Once the group independent components were calculated, a dual regression 

(Beckmann et al., 2009) was used to estimate subject-specific spatial maps and time 

courses.  Components with vertical stripes in the axial view were associated with motion 

and excluded from further analysis.  45 of the 83 components were excluded due to high 

amounts of frequency content above 0.1 Hz or were determined to be related to 

anatomical artifacts.  The MELODIC tool was used to regress these components out of 

each subject’s original fMRI data.  Voxel-based t-tests were performed between stroke 

and age-matched controls for each independent component.   

4.2.2.4 Structural Connectivity Analysis 

The high-resolution diffusion-weighted images were processed with the Diffusion 

Toolkit to estimte the fiber orientation and model fiber tracts (Wang et al., 2007).  At 

each voxel, Q-ball reconstruction was performed with 181 reconstruction points and 150 

measurement points.  Since access to the fiber trajectories was required for our model, the 

deterministic tractography module was used from the Diffusion Toolkit.  Diffusion MRI 

tractography was performed in the subject’s native space.  At each voxel, 30 seeds were 

randomly distributed and a fiber trajectory was reconstructed.  This path was warped into 

MNI space using a combination of the subject’s intermodality registration and anatomical 

intersubject registration.  Stopping criteria included an angle threshold of 35 degrees.  

These fibers were stored for later data analysis. 
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4.2.2.5 Structuro-functional Correlation 

In this model, every fiber endpoint voxel was treated as a potential network node.  

All processing that combines structural and functional connectivity was performed in 

MNI space.  Thus, both BOLD data and fiber trajectories were both spatially normalized 

using the anatomical image registration. 

Rather than analyzing the functional connectivity of a voxel to every structurally 

connected location, signal averaging is first performed across connections by similar fiber 

path distance.  Note that this model makes an assumption that functionally connected 

nodes in a network can be both distinguished and grouped by fiber distance in a 

meaningful way.  Also note that since averaging was performed with fiber length fixed, 

metrics within this framework may be less biased by tractography seeding and spatial 

variations in fiber density. 

To describe the analysis, first let 𝑉(𝐱, 𝑙) be a map that provides a set of N voxel 

locations, {𝐲1, 𝐲2, … , 𝐲𝑁}, that are structurally connected to voxel 𝐱 by fibers with length 

𝑙.  Although N will vary with 𝐱, we write it as a constant in subsequent equations for 

simplicity.  Let 𝑆(𝐱, 𝑡) be the BOLD signal at time 𝑡 and physical location 𝐱, with 𝐱 ∈

ℝ3.  With time fixed at frame  , averaging this function across 𝑉(𝐱, 𝑙) gives a new 

weighted time signal, 𝑍(𝐱, 𝑡, 𝑙).  Let this structurally connected mean fMRI signal be 

 𝑍(𝐱, 𝑡, 𝑙) = 𝑁−1∑ 𝑆(𝐲𝑖, 𝑡)
𝑁

𝑖=1
: 𝐲𝑖 ∈  𝑉(𝐱, 𝑙) 

(Eq. 1) 

In this study, we were interested in the level of functional connectivity to the 

ensemble of structural connections at different fiber distances from a voxel.  Here, we 
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define the structuro-functional correlation (SFC) index as the temporal correlation with a 

voxel’s structurally connected mean fMRI signal at distance 𝑙, 

 SFC𝑙(𝐱, 𝑓(𝑡)) = Corr(𝑍(𝐱, 𝑡, 𝑙), 𝑓(t)). (Eq. 2) 

If SFC is maximized over all fiber lenghs, then it provides the maximum 

functional connectivity of an arbitrary function, 𝑓(𝑡), to the structural connections of 𝐱 at 

distance 𝑙. Here, we denote 𝑙 as the fiber length that maximizes SFC.  We define the 

maximum structuro-functional correlation (SFCmax) of voxel x as 

 SFCmax(𝐱, 𝑓(𝑡)) = SFC𝑙(𝐱, 𝑓(𝑡)) = max
𝑙min≤𝑙≤𝑙max

SFC𝑙(𝐱, 𝑓(𝑡)). (Eq. 3) 

In the simplified example shown in Figure 4-1, the SFC is calculated for an 

arbitrary voxel 𝐱 within the thalamus.  Voxel 𝐱 is connected to cortical voxels 𝐲2 and 𝐲3 

by fibers with length 𝑙1.  The SFC of function 𝑓(𝑡) at length 𝑙1 from 𝐱 is its correlation 

with mean fMRI signal (𝑆(𝐲𝟐, t) + 𝑆(𝐲𝟑, t))/2.  Likewise, at fiber length 𝑙2, 𝐱 is 

structurally connected to cerebellar voxel 𝐲1.  The SFC of 𝑓(𝑡) at distance 𝑙2 from 𝐱 is its 

correlation with 𝑆(𝐲𝟏, t), which is the original BOLD signal at 𝐲𝟏.  SFCmax will be the 

larger of the correlations. 
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𝑘 𝑉(𝐱, 𝑙𝑘)  𝑍(𝐱, 𝑡, 𝑙𝑘) SFC𝑙𝑘(𝐱, 𝑓(𝑡)) 

1 {𝐲2, 𝐲3} 𝑆(𝐲𝟐, t) + 𝑆(𝐲𝟑, t)

2
 Corr(

𝑆(𝐲𝟐, t) + 𝑆(𝐲𝟑, t)

2
,  𝑓(t)) 

2 {𝐲1} 𝑆(𝐲𝟏, t) Corr(𝑆(𝐲𝟏, t),  𝑓(t)) 

Figure 4-1: Example of SFC calculation. 

Diagram depicting the structural-functional correlation (SFC) index of a thalamic voxel 𝐱.  The 

SFCmax provides a maximum temporal correlation to the structural connections of 𝐱 .     

 

In the special case that 𝑓(𝑡) is the orginal BOLD signal at 𝐱, then SFC provides 

the functional connectivity of voxel 𝐱 to its own structural connections. We define the 

intrinsic structuro-functional correlation (iSFC) as  

 iSFC𝑙(𝐱) = SFC𝑙(𝐱, 𝑆(𝐱, t)) (Eq. 4) 
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Combining this with Eq. 3, the maximum intrinsic SFC is 

 iSFCmax(𝐱) = max
𝑙min≤𝑙≤𝑙max

Corr(𝑍(𝐱, 𝑡, 𝑙),  𝑆(𝐱, t)) (Eq. 5) 

4.2.2.6 Calculating the structural connectivity-weighted fMRI signal 𝑍(𝐱, 𝑡, 𝑙)  

The signal, 𝑍(𝐱, 𝑡, 𝑙), was calculated independently using Eq. 1 for each time 

frame, 𝑡, and fiber length interval, ∆𝑙.  In this study, the minimum (𝑙min) and maximum 

(𝑙max) fiber distances were chosen as 20 mm and 300 mm.  Eight intervals were chosen 

for this study: 20, 40, 70, 100, 130, 160, 190, 220, and 300 mm.  A 4-D dataset with the 

same dimensions as the original fMRI data was created to store the filtered data for each 

fiber length interval.  The fMRI signal 𝑆(𝐱, 𝑡) had to be estimated for each fiber endpoint 

because of differences in resolution of the fMRI and anatomical images.  Specifically, the 

signal at the endpoint of each tract was defined as the mean of the fMRI signals across 

the three endmost points of the fiber.  Values at each of these three fiber points were 

extracted from the original fMRI signal by trilinear interpolation within MNI space.  At 

each voxel, 𝐱, the weighted summation 𝑍(𝐱, 𝑡, ∆𝑙) was calculated as the sum of the 

structurally connected 𝑆(𝐱, 𝑡), divided by the total number of fibers, 𝑁, at 𝐱.  Thus, 

𝑍(𝐱, 𝑡, ∆𝑙) is a mean BOLD signal across voxels that are structurally connected to 𝐱, for 

fibers within the specified length interval ∆𝑙. 
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4.2.2.7 Calculating the intrinsic structuro-functional correlation (iSFC)  

According to Eqs. 2 and 4, each voxel’s iSFC𝑙 was calculated for every fiber 

length interval ∆𝑙.  Next, using Eq. 5, the iSFCmax at that voxel was calculated as the 

maximum iSFC𝑙. 

4.2.2.8 Resting-state network enhancement based on SFC 

 Structural connections between and within different resting-state networks 

may have an impact on the functional integration of cortical regions involved in motor 

control after stroke.  If 𝑓(𝑡) in Eq. 2 is a function of network activity, then the SFC 

becomes an enhanced form of that activity, or effectively, a connectivity map.  ICA, as 

implemented in the MELODIC tool of FSL, decomposes the BOLD data 𝑆(𝐱, 𝑡) into 

spatially independent networks, each with a spatial map, 𝑀(𝐱), and time-course, 𝐴(𝑡).  

As described by Joel et al. (Joel et al., 2011), these independent components are related 

to the original BOLD signal as  

 𝑆(𝐱, 𝑡) =∑𝑀𝑗(𝐱)𝐴𝑗(𝑡)

𝐽

𝑗=1

 

(Eq. 6) 

By letting 𝑓(𝑡) = 𝐴(𝑡), the resulting SFCmax is an enhanced spatial map of a 

resting-state network’s structural connections,  

 SFCmax(𝐱, 𝐴(𝑡)) = max
𝑙min≤𝑙≤𝑙max

Corr(𝑍(𝐱, 𝑡, 𝑙),  𝐴(𝑡)). (Eq. 7) 
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4.2.3  Statistical Analysis 

4.2.3.1  Validation of enhanced resting-state network maps 

Resting-state networks that were analyzed in this study included the posterior 

default-mode network (DMN), the prefrontal network (anterior DMN), the primary visual 

network, the ipsilesional and contralesional sensorimotor networks, the bilateral 

cerebellar network, and the basal ganglia network.  

 In order to validate the level of network map enhancement provided by SFC, it 

was compared against a correlation map of 𝐴𝑗(𝑡) and the original fMRI signal.  Note that 

the independent component spatial maps, 𝑀𝑗(𝐱), in Eq. 6 are not correlation coefficients.  

Thus, SFC could not be compared directly with the original network maps.  However, the 

correlation of the network’s timecourse, 𝐴𝑗(𝑡), with the original BOLD signal, 𝑆(𝐱, t), 

provided a composite network map with the greatest weight given to the jth network.  We 

denote this baseline correlation as 𝑟0 = Corr (𝑆(𝐱, 𝑡),𝐴𝑗(𝑡)).  Based on in Eq. 7 we then 

use a similar notation to define the enhanced correlation as 𝑟𝑆𝐹 = SFCmax (𝐱,𝐴𝑗(𝑡)).  The 

difference between the Fisher-transformed 𝑟𝑆𝐹 and 𝑟0 was then used as a measure of 

network enhancement.  The original and enhanced correlation maps were visualized for 

comparison using 3D isosurfaces at multiple isovalues. 

4.2.3.2 Voxel-based analysis of group differences and clinical correlates 

A voxel-based based analysis was used to measure differences in SFC between 

stroke survivors and age-matched controls.  Metrics that were compared included the 
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intrinsic structuro-functional correlation (iSFCmax in Eq. 5), and each enhanced resting-

state network 𝑟𝑆𝐹.  In addition, the baseline and enhanced correlation maps for each 

resting-state network, r0, and the SFC-enhanced correlation map, 𝑟𝑆𝐹, of each resting-state 

network (Eq. 4) for the posterior DMN, prefrontal network, primary visual network, 

sensorimotor networks, cerebellar network, and basal ganglia network were compared.  

The Fischer transform was used to normalize rSF and ro for statistical testing.  Stroke and 

control groups were compared by performing voxel-based Student’s t-tests, using clusters 

of connected significant voxels that were more than 700 mm3 in volume in order to 

correct for multiple comparisons.  The initial t-tests were performed with an alpha of 

0.01, and the 3dclustsim tool in AFNI was used to determine cutoff cluster sizes for a 

corrected p-value of 0.05.  The maximum t-value, its MNI coordinate, and the size in 

number of voxels were reported for each cluster.  A correlational analysis with behavioral 

measures in stroke subjects was performed by linearly regressing each voxel-wise metric 

with the Box and Blocks Score.  The maximum Box and Blocks correlation coefficient 

was reported for each cluster of significant t-values.  For the correlation analyses, p-

values were not corrected based on multiple network comparisons.  An F-test was used to 

test the slope of the Box and Blocks correlation for significance.  Since clinical 

correlations were analyzed for significantly different clusters, no additional multiple 

comparisons corrections were applied.    
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4.3  RESULTS 

4.3.1  Stroke survivors have decreased global structural-functional connectivity. 

Shown by isosurfaces of the iSFCmax metric in Figure 4-2, the voxels with greatest 

correlation maximized by fiber length were located within the precuneus, anterior 

cingulate gyrus, and sensorimotor cortex.  Voxels having the greatest fiber length that 

maximizes functional connectivity were within the prefrontal and posterior parietal 

regions.  

There are multiple brain areas in stroke survivors with significantly lower 

functional connectivity (p < 0.01) to their structural neighbors.  Figure 4-2 shows that the 

iSFCmax is greatest within the posterior parietal and sensorimotor areas within both 

controls and stroke survivors.  The iSFCmax was greater within the contralesional/right 

hemisphere in both groups.  Nodes within the default-mode network have wide-spread 

decreases in functional connectivity in stroke survivors.  Clusters that were significantly 

different in stroke survivors and correlated with Box and Blocks are shown in Figure 4-3 

and Table 4-2.  All significant differences (p < 0.01) in iSFCmax were lower in stroke.  

These differences were located in the left superior frontal gyrus, left superior occipital 

gyrus, the right putamen, right superior frontal gyrus, the right cerebellum, the left 

midbrain, and the right insula.  The only cluster with a maximum t-value that was also 

correlated with Box and Blocks was in the right/contralesional insula (p < 0.01, 

R=0.770). 

Stroke survivors also had significant differences in the fiber distance, 𝑙, associated 

with maximum intrinsic functional connectivity to a voxel, iSFCmax.  There were 



121 
 

  

decreases in 𝑙 within the contralesional hemisphere and increases in the ipsilesional 

hemisphere.  The right postcentral gyrus, right superior frontal gyrus, and right insula all 

had significant decreases in 𝑙. 

 

 

Figure 4-2: Intrinsic structuro-functional correlation in stroke and controls. 

Shown are group differences in the structuro-functional correlation (iSFCmax is displayed as 

iSFCmax) metric indicative of a voxel’s maximum functional connectivity to structurally 

connected neighbors at a fixed fiber distance. SFCmax distance shows isosurfaces of distance 

associated with the maximum correlation.  The SFCmax product displays the group averages and 

differences for the product of the first two metrics.  On the bottom, clusters of significantly 
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different voxels (p < 0.01) with a minimum cluster size of 700mm3 are shown    Correlation 

coefficients with Box and Blocks Score were used to color-code the cluster surfaces, with Red: R 

= 1.0; Green: R = 0.0; Blue: R = -1.0. 

 

  The product of the maximum functional connectivity and the fiber distance 

associated with that connectivity was used as a third metric to compare between stroke 

subjects and controls.  This product was significantly lower (p < 0.01) in stroke subjects 

in the left cerebellum, frontoorbital gyrus, left middle frontal gyrus, left amygdala, right 

precentral gyrus, right insula, and left cuneus.   The decrease within the left cerebellum 

was greater in stroke subjects with a lower Box and Blocks Scores (R=0.700). 

 

  

Figure 4-3: Scatter plots of clinical correlations with iSFCmax. 

Scatterplots of the structuro-functional correlation (iSFCmax) spatial clusters significantly (p < 

0.01) different between stroke survivors (black circles) and controls (blue triangles), and with 

significant correlations with Box and Blocks Score in stroke subjects.  Regions shown include 

right inferior frontal gyrus (IFG_R) and right cerebellum. 
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p-values are corrected for the number networks and metrics compared.  

Table 4-2: Localized changes the structuro-functional correlation maps.   

Student’s t-values and Box and Blocks scores were both used to identify clusters for this table.  

The maximum t-value and its MNI coordinate are reported for each cluster.  The maximum 

correlation with Box and Blocks Score is also reported. Clusters were identified by smoothing 

each metric map with a full-width-half-max Gaussian kernel of 4mm and performing voxel-wise 

t-tests between subject groups with initial p threshold of 0.01, followed by a minimum cluster 

size cutoff of 700mm3. 

 

4.3.2  Additional stroke-related differences in functional connectivity can be 

delineated with information provided by SFC at different fiber-lengths. 

Voxel-wise differences in SFC between stroke survivors and age-matched 

controls reveal that network changes can be delineated at specific fiber lengths.  As 

shown in Figure 4-4, the precentral gyrus has an increased functional connectivity (p < 

0.001), specifically with its structural neighbors that are between 40-70mm in fiber 

distance.  Likewise, stroke subjects have lower functional connectivity (p < 0.001), 

correlated with Box and Blocks (R2 = 0.58), between the contralesional lateral 

†: p < 0.05,      ††: p < 0.01

Metric ROI x y z nVox t p (t) corr B&B p (slope)

SFCmax IFG_R 38 27 -8 40 -3.55 †† 0.00262 0.781 †† 0.00916

coef Cbl_R 34 -73 -40 30 -1.93 0.07368 0.859 †† 0.00163

Midbrain_L -2 -9 -12 21 -2.63 † 0.01840 0.606 0.07593

Amyg_L -10 3 -24 17 -1.61 0.12719 0.827 †† 0.00361

AG_L -46 -61 36 14 1.92 0.07522 -0.8023 †† 0.00624

CingG_L -2 -5 44 11 -1.75 0.10225 0.845 †† 0.00234

SFCmax Thal_L -14 -21 -4 50 1.98 0.06529 -0.814 †† 0.00492

dist Cbl_L -34 -49 -24 22 -3.22 †† 0.00536 0.631 0.05936

ITG_L -38 -13 -28 20 1.17 0.26051 -0.924 †† 0.00012

Put_L -22 19 0 12 2.16 † 0.04801 -0.692 † 0.03109

SFCmax Ins_R 38 27 -4 30 -2.54 † 0.02228 0.783 †† 0.00865

prod AG_L -42 -61 40 27 2.41 † 0.02851 -0.758 † 0.01336

STG_R -62 -17 -4 15 -2.45 † 0.02651 0.786 †† 0.00801

Cbl_L -26 -49 -20 12 -3.89 †† 0.00124 0.704 † 0.02787

SFC(l=1) IFG_L 38 31 -8 38 -3.18 †† 0.00578 0.705 † 0.02753

Midbrain_R -6 -13 -8 108 -3.47 †† 0.00312 0.697 † 0.02954

SFC(l=2) PrCG_R -26 -13 48 22 4.00 †† 0.00093 -0.699 † 0.02923

SFG_R -10 63 0 16 -2.56 † 0.02165 0.766 † 0.01189

LFOWM_L 38 31 -12 32 -3.52 †† 0.00280 0.790 †† 0.00758

SFC(l=3) MOWM_R -26 -73 20 29 2.31 † 0.03439 -0.836 †† 0.00302
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orbitofrontal cortex and its neighbors at this l=2 fiber length.  These two connections 

approached a similar correlational strength and appeared to mirror one another across 

stroke subjects, as shown in Figure 4-4c.  

4.3.3  Structural-functional correlation enhanced areas of the brain within each 

resting-state network. 

Each resting-state network had additional regions enhanced by structural 

connectivity with the new SFC metric.  As seen in Figure 4-5, the basal ganglia have 

enhanced connectivity to the amygdala, precentral gyrus, and frontal areas.  The 

prefrontal network has enhanced connections to the precuneus, the cerebellum, and 

brainstem areas.  An independent component that was localized to the medulla was 

enhanced throughout the brain at projection fiber endpoints.  The primary visual network 

was enhanced completely along the pathway from V1, to the thalamus, and finally the 

orbitofrontal gyrus. 
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Figure 4-4: Scatter plots showing length-specific SFC group differences  

Stroke survivors (circles) and controls (triangles), with Box and Blocks correlations.   

a) Stroke survivors have increased functional connectivity of the ipsilesional/left precentral gyrus 

(PrCG_L) with surrounding structural connections within fiber distance interval l=2. b) The 

contralesional/right lateral frontoorbital gyrus (LFOG) has decreased functional connectivity at 

this fiber length.  c) Scatter plot demonstrating an example of “structuro-functional equalization” 

of connectivity after stroke.  Shown here is the structuro-functional correlation of the ipsilesional 

precentral gyrus at l=2 (green) and contralesional insula at l=1 (blue).  In healthy adults 

(triangles), the precentral gyrus is not functionally connected to its structural neighbors at this 

particular fiber length.  Likewise, the right insula has strong functional connections within a short 

fiber distance.  In stroke subjects, the precentral gyrus increases its functional connectivity to 

structural neighbors at fiber length l=2 (40-70mm).  Additionally, the contralesional insula 

becomes less connected. 
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Figure 4-5: 3D visualization of SFC-enhanced resting-state networks. 

Shown are four selected resting-state independent components from conventional MELODIC 

time-concatenated group ICA and the same components enhanced with the structuro-functional 

correlation metric.  Voxels that are structurally connected to nodes from each network were 

enhanced intrinsically.  Isosurface colors for individual  𝑟0 and 𝑟𝑆𝐹 maps correspond to positive 

correlation coefficients of 0.3, 0.4, 0.5, 0.6, and 0.7.  In the 𝑟𝑆𝐹 − 𝑟0 column, an isovalue of 0.3 

was extracted, and the surface is colored by 𝑟𝑆𝐹 − 𝑟0 ranging from -1 to 1, , with Red: R = 1.0; 

Green: R = 0.0; Blue: R = -1.0. 

  



127 
 

  

4.3.4  The prefrontal cortex decreases its functional connectivity with its long-

distance structural connections after stroke. 

The prefrontal resting-state network decreases in functional connectivity with the 

posterior default-mode network and increases with lesioned motor network.  As shown in 

Figure 4-6a, the SFC highlights additional areas in the posterior parietal cortex, the 

brainstem, and cerebellum. Differences between stroke survivors and controls reveal 

decreases within the cerebellum.  

4.3.5  The cerebellum has decreased functional connectivity with structural 

connections to the prefrontal cortex. 

Shown in Figure 4-6b and Table 4-3, control subjects have dilated indirect 

functional connectivity within cerebellum network’s structural connections within frontal 

lobe.  These enhancements are reduced in stroke survivors.  This result compliments the 

previous finding that the cerebellum was reduced in the prefrontal network.  The two 

lowest functioning stroke subjects, which had lesions to the right cerebellum and left 

pons, had the greatest reduction in the cerebellar network SFC map.  Table 4-3 indicates 

that the contralesional inferior frontal gyrus has a lower SFC within the cerebellar 

network (p < 0.01), although this reduction is not correlated with Box and Blocks Score.   
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Figure 4-6: 3D visualization of functional trends in SFC-enhanced networks. 

SFC-enhanced prefrontal (a) and cerebellar (b) resting-state networks are shown in stroke 

survivors, age-matched controls, and individual stroke subjects.  Isosurfaces were extracted with 

𝑟𝑆𝐹 = 0.3, and are colored based on the difference 𝑟𝑆𝐹 - 𝑟0 .  The “Box and Blocks” subpanel 

shows significant t-value clusters at p < 0.01, which are color-coded based on Box and Blocks 

correlation, with Red: R = 1.0; Green: R = 0.0; Blue: R = -1.0. 

 

 

a

) 

b

) 
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Table 4-3: Voxel-based group differences in SFC-enhanced networks. 

Clusters of significantly different voxels between stroke and age-matched controls are reported 

for the original resting-state network correlation coefficients (white background) and the same 

networks with SFC-enhancement (gray background).  Acronyms: AG: angular gyrus, CGH: 

cingulate gyrus, Fu: fusiform gyrus, IFG: inferior frontal gyrus, Ins: insular cortex, ITG: inferior 

temporal gyrus, MFG: middle frontal gyrus, MFWM: middle frontal white matter, MTG: middle 

temporal gyrus, PoCG: postcentral gyrus, PrCG: precentral gyrus, PreCu: precuneus, SFG: 

superior frontal gyrus, SMG: supramarginal gyrus, SPG: superior parietal lobule, STG: superior 

temporal gyrus, Thal: thalamus. 

 
Network acronyms: Salience: salience network nodes in anterior cingulate gyrus and bilateral 

insula, SMC: sensorimotor network and contralateral cerebellum, Cerebellum: bilateral 

cerebellum network, DMN ant: default-mode network anterior half, Prefrontal: prefrontal cortex 

near anterior surface, aCingG: anterior cingulate gyrus, dlPFC: dorsolateral prefrontal cortex 

 

†: p < 0.05,      ††: p < 0.01

Network ROI x y z nVox tmax p (t) R B&B p (slope)

Cerebellum IFG_R 46 35 12 166 -4.43 †† 0.00816 -0.593 0.08563

Prefrontal MTG_R 46 -41 12 196 -5.70 †† 0.00053 0.762 † 0.01265

- - v - - Fu_L -42 -45 -16 103 -4.64 †† 0.00511 0.841 †† 0.00266

DMN ant AG_L -54 -45 40 460 -5.13 †† 0.00177 0.894 †† 0.00049

- - v - - PreCu_L -6 -61 40 298 -4.62 †† 0.00531 0.717 † 0.02422

- - v - - SPG_R 30 -41 40 165 -4.31 † 0.01043 0.859 †† 0.00164

- - v - - Ins_R 50 -1 0 106 -3.71 † 0.04035 -0.583 0.09310

aCingG MFG_L -34 63 4 113 -6.18 †† 0.00019 0.701 † 0.02863

dlPFC Left SFG_R 18 -5 72 423 -5.55 †† 0.00070 0.953 †† 0.00002

- - v - - STG_R 62 -33 20 177 -4.41 †† 0.00861 0.936 †† 0.00006

SMC Left PrCG_R 26 -13 56 67 -3.36 0.08598 -0.780 †† 0.00936

Cerebellum Thal_L 2 7 -20 553 -5.84 †† 0.00038 -0.755 † 0.01391

- - v - - Ins_R 46 7 -8 121 -4.33 † 0.01003 -0.270 0.47865

Prefrontal PreCun_L -10 -29 28 167 -4.79 †† 0.00375 0.897 †† 0.00044

DMN ant SFG_R 18 43 40 172 -5.01 †† 0.00231 -0.891 †† 0.00057

- - v - - PreCu_R 6 -61 36 162 -7.01 †† 0.00004 -0.400 0.28083

- - v - - SMG_L -38 -29 20 109 -5.38 †† 0.00104 0.724 † 0.02215

dlPFC Right MFWM_L -18 51 28 110 4.99 †† 0.00240 0.847 †† 0.00220

dlPFC Left ITG_R 50 3 -40 355 -5.73 †† 0.00050 0.856 †† 0.00177

- - v - - LFOG_L -22 27 -24 164 -5.17 †† 0.00158 0.842 †† 0.00258

- - v - - PLIC_R 30 -17 4 101 -4.71031 †† 0.00444341 0.860 †† 0.00160

SMC Right CGH_L -14 -29 -8 141 5.29 †† 0.00125574 0.514 0.15032

- - v - - SFG_R 26 31 40 104 5.05 †† 0.00212827 0.666 † 0.04369

- - v - - PrCG_R 58 7 0 94 4.25 † 0.01152175 -0.425 0.24352

- - v - - PoCG_L -38 -25 52 6 -3.29 0.09858856 -0.507 0.15847

Salience MTG_R 46 7 -28 105 -4.74 †† 0.00417189 0.787 †† 0.00788
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4.4  DISCUSSION AND CONCLUSIONS 

 The results indicate that structural connectivity can be used to estimate higher 

order expansions of conventional rest-state functional networks, and that these 

enhancements are predictive of both functional connectivity changes and motor function 

after stroke.  Our new model of structural-functional connectivity successfully enhanced 

resting-state networks, and these changes correlated with motor function in stroke 

survivors.  Structural and functional connectivity analyses were successfully married with 

our model. 

 The SFC index uniquely enhanced structurally connected regions to each resting-

state network, making it viable extension to conventional ICA methods when structural 

connectivity information is also available.  Our technique may be the first to explicitly 

fuse structural and functional connectivity by combining BOLD signals across fiber 

endpoints.  We believe that our technique is the first to express each voxel’s intrinsic 

functional connectivity distribution based on fiber length.  This work is also the first to 

produce a new fMRI time course at each voxel that is a combined signal of its structural 

connections.   

The structuro-functional correlation technique is different from others that 

combine structural and functional connectivity.  Methods introduced in the past use 

structural connectivity to impose constraints on functional connectivity and dynamic 

causal models  (Sporns et al., 2000; Stephan et al., 2009).  The current approach attempts 

to enhance rather than constrain functional networks in order to estimate a broader 

network.   
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Although resting-state functional connectivity in itself can detect differences in 

stroke subjects that are correlated with function, SFC may predict the broader impact of 

lesions on these same networks.  For example, our results suggest that the SFC enhances 

polysynaptic pathways between the sensorimotor cortex, pons, and contralateral 

cerebellum.  This enhancement is reduced in individuals with stroke.  Lu et al. found that 

local lesions to the pons led to reduced polysynaptic functional connectivity between the 

motor cortex, pons, and cerebellum (Lu et al., 2011).  This polysynaptic pathway was 

revealed with SFC.  This finding also underscores the importance of considering both the 

structural and functional properties of a network in assessing the impact of a lesion after 

stroke. 

Stroke subjects had reduced functional connectivity between areas that are 

structurally connected at greater distances, as shown in Figure 4-2.  These differences 

were notably seen in regions that are associated with nodes of the default-mode network.  

This result is consistent with studies that have found reduced anterior-posterior DMN 

connectivity in aging (Vidal-Piñeiro et al., 2014).  Vidal-Pineiro et al. found that white 

matter integrity of the cingulum was correlated with reduced DMN functional 

connectivity in the aging population.  The results in this study suggest that anterior-

posterior DMN connectivity is also reduced after stroke when compared to age-matched 

individuals.   

We found potential evidence of structuro-functional equalization of cortical 

networks after stroke, as shown in Figure 4-4.  This also suggests that our model may be 

capable of measuring such forms of such phenomena.  We speculate that after stroke, 
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reorganization may occur as a rebalancing or equalization of functional connections 

across residual structural pathways. 

The intrinsic SFCmax metric was correlated with the Box and Blocks Score within 

the cerebellum and prefrontal cortex, suggesting that functional connectivity to the 

structural connections of these regions is important for motor function after stroke.  The 

medial prefrontal cortex is densely connected to posterior parietal areas, forming the core 

of the default-mode network.  It is possible that the nodes of integrative networks, such as 

the DMN or cerebellar networks, reorganization in connections in order to compensate 

for lost function after stroke.  However, this speculation needs further evidence.  

Combining structural and functional connectivity information overcomes the 

limitations of each individual analysis.  A common limitation of diffusion MRI 

tractography is that voxels with crossing white matter fibers can lead to inaccurate 

structural mappings.  Most tractography fibers originating in the cerebellum, for example, 

fail to cross at the pons, thus leading to many positive connections with the ipsilateral 

hemisphere and false negative connections with the contralateral hemisphere.  In this 

study, we chose to exclude fibers that did not cross at the pons in order to mitigate the 

connectivity bias introduced by this limitation of tractography.  However, it is known that 

there are in fact fibers that synapse at the red nucleus and influence the ipsilateral 

hemisphere.  Thus, our technique was not able to detect these connections that may 

indeed play a role in alternative pathways after stroke.    

Our approach shares many of the same limitations as functional MRI and 

diffusion MRI tractography.  Functional connectivity MRI assumes that voxels with 

correlations in BOLD signal are co-active and thus functionally connected.  Due to the 
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course temporal resolution of fMRI and the slow nature of the hemodynamic response, 

this modeled connectivity is left undirected.  The accuracy of structural connectivity 

estimated by diffusion MRI tractography approaches is limited by the fiber orientation 

model.  Models of the orientation distribution function at each voxel make the 

assumption that axon organization is the prime contributor to diffusion directionality.  

Our technique also has unique limitations.  Multiple assumptions made by our 

model must be considered.  First, it assumes that every reconstructed fiber endpoint 

contains neurons that are connected to the neurons located at the other endpoint.  Since 

there are cases in which reconstructed fibers terminate within the white matter, our 

current implementation occasionally mixes the BOLD signals of gray matter voxels with 

white matter voxels. These violations of our assumption led to the enhancement of white 

matter pathways within our resulting maps.  Another limitation was the usage of 

deterministic tractography, which does not provide a connectivity distribution for every 

voxel as do probabilistic approaches.  Probabilistic approaches are capable of generating 

more fibers from the cerebellum that cross at the brainstem, which would have been 

beneficial for studying the cerebellum’s structural-functional connectivity.  In the case of 

a stroke, there are alterations of the vasculature and white matter microstructure within 

and nearby the lesion that may impact the SFC model’s assumptions. 

The most important source of potential error in voxel-based approaches is 

intersubject and intermodality image registration.  This study involved coregistration of 

functional, structural, and diffusion MRI within and between subjects.  Each of these 

images has its own unique artifacts.  Spatial distortions inherent to echo-planar imaging 

have different characteristics between diffusion and functional MRI, leading to a 
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nonlinear mapping between voxels.  An additional field-correction map can be acquired 

before the EPI scan in order to correct the distortions.  This study did not include this 

field-map in its acquisition.  In order to improve mappings between diffusion and 

functional MRI spaces, a nonlinear deformable registration was performed on mean 

BOLD images between subjects.  Such a registration between functional images has been 

subject to criticism. 

In this study, respiration and cardiac cycle were not treated as coregressors, which 

leaves them as potential confounds.  These physiological processes have been shown to 

introduce artifacts into resting-state connectivity analyses.  It has been recommended that 

these data be collected during the scan and be treated as coregressors during the ICA 

and/or seed-based connectivity analyses.  However, other investigators have argued 

against this correction measure since that there may be important cortical activity that is 

highly correlated with respiration and heart rate.  Independent components that were 

determined to be related to artifact or noise were regressed out of our data before 

applying our analyses.   

In conclusion, our novel analysis can detect changes in structure-function 

interactions in cortical networks after stroke.  In future work, we would like to explore 

potential applications of independent component analysis to extract common patterns 

from our novel structurally filtered functional time-course datasets.  Additionally, SFC 

will be validated with a publically available collection of young healthy adults. 
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CHAPTER 5: INTEGRATION OF RESULTS 

5.1  SUMMARY OF RESULTS 

5.1.1  Brief Summary 

The scope of this dissertation was to detect voxel-level changes in connectivity-

derived metrics within the brain after stroke in order to predict the greater impact on 

large-scale cortical networks and clinical outcomes.   In Chapter 2, the results showed 

that the voxel-wise indirect structural connectivity (VISC) metric was able to detect 

stroke-related changes in cortical areas distant from the lesion.  Specifically, the global 

structural connectivity to voxels within integrative association areas was correlated with 

level of motor impairment in chronic stroke survivors.  Chapter 3 further investigated the 

role of multimodal sensory association areas within functional brain networks when 

engaged during movement.  The results indicated that, after stroke, the nodes of 

integrative networks were less connected to one another, but they often had greater 

connectivity with the nodes of sensorimotor and visual networks.  Additionally, the 

cerebellum appeared to have a central role in controlling these changes.  Finally, in 

Chapter 4 the structure-function relationship in voxel-level connectivity after stroke was 

tested with a newly developed structuro-functional correlation (SFC) analysis.  The SFC 

metric successfully enhanced functional resting-state networks with structural 

connectivity information.  These enhancements within and between the cerebellum and 

prefrontal networks were significantly different in stroke survivors and were also 

correlated with motor function.  Collectively, the results from these works suggest that 

global structural connectivity to integrative hubs allows for the brain to assist damaged 
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primary motor and sensory processing pathways during fine motor control.  Furthermore, 

there is a close relationship between structure and function even in pathologic conditions 

following a stroke.  Lastly, the cerebellum may play a central role in controlling these 

mechanistic changes in network topology. 

5.1.2  Potential new insights into brain plasticity and motor recovery 

The structuro-functional correlation technique introduced in this dissertation may 

resolve the black box that associates structural and functional connectivity with recovery 

after stroke.  Resting-state motor networks enhanced by SFC account for both CST 

integrity and the strength of functional connections.  Shown in Figure 5-1 is the left 

sensorimotor network in the stroke subject with the lowest Box and Blocks Score in this 

dissertation.  The conventional resting-state network shows increased recruitment within 

the contralesional sensorimotor cortex.  The lesion’s influence on this increase is not 

clear.  We may speculate that this subject had increased contralesional recruitment in 

order to control movement by the uncrossed corticospinal tract.  The SFC-enhanced 

network reveals two additional unique insights.  First, the ipsilesional pons is not 

enhanced due to the lesioned CST, which may explain the lack of recovery in this 

subject.  Second, the contralesional pons had a positive SFC enhancement.  Increased 

contralesional sensorimotor recruitment and an intact contralesional corticospinal tract 

were both necessary to achieve this enhancement.  Thus, SFC may reveal details about 

the mechanisms behind cortical reorganization and their relationship with motor 

recovery. 
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Resting-state 

Motor Network 

 

SFC-enhanced 

Motor Network 

 

Figure 5-1: SFC motor network in lowest functioning stroke subject. 

Comparison of the conventional resting-state motor network before and after being enhanced by 

structuro-functional correlation.  Functional connectivity is used to color the gray matter, with 

hotter colors indicating greater network recruitment. 

 

5.1.3  Translation to personalized rehabilitation strategies  

The SFC-enhanced resting-state networks may be used to target system-specific 

recovery while selecting rehabilitation strategies.   The residual structural and functional 

connectivity of the brain after stroke can be used to select a personalized treatment that 

maximizes functional outcomes.  Such an algorithm for determining the optimal motor 

rehabilitation strategy based on brain connectivity was proposed by Stinear et al. (Stinear 

et al. 2010).  Recovery, compensation, and substitution were distinguished as three 

possible goals of rehabilitation.  The ideal goal is recovery, which involves regaining the 

ability to perform the same movements with the same effectors.   When full recovery is 

not possible, compensation involves achieving a similar task by using the same effectors 

with altered movements.  In the case that a stroke renders an effector dysfunctional, 

substitution involves using other effectors to complete a task (Stinear et al. 2010).  
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Shown in Figure 5-2, a similar algorithm was created here based on the results from this 

dissertation.  Note that the images are from the same stroke patient as in Figure 5-1. 

 

Figure 5-2: Personalized rehabilitation with SFC networks. 

The first step is to collect structural MRI, diffusion MRI, and resting-state BOLD fMRI data.  

Second, the clinician would select a resting-state network to target with therapy.  This network 

would be enhanced with the structuro-functional correlation (SFC) methods.  The enhanced areas 

outside of the lesion would be used to select an appropriate treatment plan. 

 

5.2  FUTURE INVESTIGATIONS 

The structuro-functional correlation approach should be further developed and 

applied to further investigate differences in structure-function interactions of brain 

networks after stroke, particularly in the acute phase during recovery.  If similar results 

can be reproduced with this technique in longitudinal studies, then it would confirm that 

the structural connectivity information in acute stroke can predict potential avenues for 

recovery in the context of brain connectivity.   Furthermore, such findings would make 

patient-specific rehabilitation a reality in the near future. 
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CHAPTER 6: APPENDIX 

6.1  VISC intersession and intersubject reproducibility 

 Intersubject and intersession reproducibility was a consideration when developing 

the VISC metric.  However, the data collected in the first aim included exactly one scan 

per subject, making it impossible to test for intersession differences.  While collecting 

data for the second and third aims, the HARDI protocol was repeated twice in one young 

healthy adult.  These imaging sessions were performed on different days but with the 

same equipment and scan parameters.  White matter fiber trajectories were calculated 

with the q-ball tractography methods used in Aim 3, and were then spatially normalized 

into MNI space using the subject’s anatomical image registration result.  The VISC 

metric was calculated in MNI space at a 4 mm isotropic resolution.  At each voxel, 𝐱, the 

percent difference, 𝑑(𝐱), between the first session, 𝑓1(𝐱), and second session 𝑓2(𝐱) was 

used to estimate intersession reproducibility, with 𝑑(𝐱) =
|𝑓1(𝐱)−𝑓2(𝐱)|

max(|𝑓1(𝐱)|,|𝑓2(𝐱)|)
.  In order to 

also estimate intersubject reproducibility, this VISC calculation was repeated for all 

stroke subjects and age-matched controls that were collected under the HARDI protocol.  

At each voxel, the intersubject coefficient of variation was calculated for the age-matched 

control group, with 𝑐�̂� = (1 +
1

4𝑛
)
𝑠

�̅�
, where 𝑛, �̅�, and 𝑠 are the sample size, mean and 

standard deviation.  In order to compare the reproducibility of other metrics, the 𝑐�̂� was 

calculated for fractional anisotropy, VISC, the node degree (number of direct 

connections), the mean node degree of directly connected voxels.  This analysis was 
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performed throughout the entire brain, but repeated for each of 170 regions from the 

Johns Hopkins Eve atlas.   

 Figure 6-1 shows the fractional anisotropy and VISC computed for the single 

young healthy control subject.  The absolute percent difference between sessions 

throughout the brain was similar for FA (0.185 ± 0.061) and VISC (0.175 ± 0.083).  

However, the differences were greater in first-order node degree (0.944 ± 0.504) and 

second-order node degree (0.333 ± 0.160).  This suggests that globally VISC has similar 

intersession reproducibility as fractional anisotropy.  Shown on the right of Figure 6-1, 

FA had greater differences in gray matter areas, while VISC had lower intersession 

differences in these regions.  Interregional variability in mean intersession difference was 

greater in VISC, suggesting it provided better intersession reproducibility for specific 

regions.   In 122 of the 170 regions compared, VISC had a lower mean |𝑑|.  VISC had 

lower |𝑑| within the basal ganglia, thalamus, cerebellum, and gray matter cortical areas, 

while FA had lower |𝑑| within the occipital lobe and white matter tracts.    

 Intersubject reproducibility within the age-matched control group was similar to 

the intersession differences.  Figure 6-2 shows the coefficient of variation for FA and 

VISC for stroke subjects and age-matched controls.  The coefficient of variation between 

subjects for the whole brain was similar for FA (0.207 ± 0.072) and VISC (0.207 ± 

0.066).  However the VISC had lower variability in gray matter (0.212 ± 0.058) than 

white matter (0.255 ± 0.057), while FA was less variable in the white matter (0.224 ± 

0.054) than gray matter (0.250 ± 0.064). 
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Figure 6-1: Intersession reproducibility of FA and VISC for one subject. 

Comparison of two separate HARDI acquisitions (Scan 1 and Scan 2) within the same subject, 

showing differences in fractional anisotropy (FA) and voxel-based indirect structural connectivity 

(VISC).  Left: Images of FA, VISC, and percent difference between scans. Right: Intersession 

differences for gray matter (GM), white matter (WM), and all brain regions.   Error bars indicate 

standard deviation between voxels within each tissue type. Percentages are on scale of 0.0 to 1.0. 

 

 

Figure 6-2: Coefficient of variation of FA and VISC in stroke and controls. 

Comparison of intersubject coefficient of variation of stroke subjects and age-matched controls, 

shown for fractional anisotropy (FA) and voxel-based indirect structural connectivity (VISC). 
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6.2  Head motion and task performance differences in stroke subjects 

Head motion during MRI data collection leads to spatial artifacts that contaminate 

connectivity measurements.  Past literature has shown that patient populations often have 

greater head motion during MRI, even at rest.   This leads to potential confounding 

factors that cannot be ignored in any study that tests differences between patient and 

control populations.  Head movement during BOLD fMRI was estimated for all subjects 

that participated in Aims 2 and 3.  Six 3D head motion parameters (3 rotations and 3 

translations) were estimated at every time point by the MCFLIRT motion correction tool 

in FSL.  The frame-to-frame absolute difference in head translation was calculated for 

every time point.  With 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖 being the x, y, and z positions of the head at the ith 

time point, the average head translation was calculated as 

 Total translation =
1

𝑇
∑√

(𝑥𝑖 − 𝑥𝑖−1)2

(𝑦𝑖 − 𝑦𝑖−1)2

(𝑧𝑖 − 𝑧𝑖−1)2

 +
 +

𝑇

𝑖=2

 

 

The total head translation was calculated for every run and subject.  Figure 6-3 

shows the total head translation of the young adults, age-matched controls, and stroke 

survivors during the resting-state fMRI scan.  There was a significant difference in total 

head translation between stroke and age-matched controls (p < 0.05) during all 

conditions.   
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Figure 6-3: Comparison of head motion during the search task in Aim 2. 
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