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A Model and Methodologies for The Location 
Problem with Logistical Components 
 

Siddhartha S.Syam* 

College of Business Administration, Marquette University, Milwaukee, WI  

 

Abstract 
This paper significantly extends traditional facility location models by introducing several logistical cost 
components such as holding, ordering, and transportation costs in a multi-commodity, multi-location 
framework. Since location and logistical costs are highly inter-related, the paper provides an integrated model, 
and seeks to minimize total physical distribution costs by simultaneously determining optimal locations, flows, 
shipment compositions, and shipment cycle times. Two sophisticated heuristic methodologies, based on 
Lagrangian relaxation and simulated annealing, respectively, are provided and compared in an extensive 
computational experiment. 

Scope and purpose 
Logistics has recently acquired great significance in industry, in part due to the rapidly growing interest in Supply 
Chain Management. One of the important open issues in logistics is the effective integration of logistical cost 
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components such as transportation cost with facility location models, since the two are highly inter-related in 
practice. In particular, locations, flows, shipment compositions, and shipment cycle times are highly inter-
dependent. The determination of optimal values of these variables is crucial for minimizing physical distribution 
costs. This paper proposes an integrated location–consolidation model and provides two sophisticated 
methodologies to solve the problem. The relative performance of the two methodologies is investigated in an 
extensive computational experiment. 

Keywords 
Facility location, Logistics, Lagrangian relaxation, Simulated annealing 

1. Introduction 
The current interest in supply chain management has highlighted the importance of logistics, the physical 
distribution component of which alone averages about 7.5% of sales in the United States [1]. This paper is 
concerned with an important open issue in logistics, namely the integration of facility location models with 
logistical functionality. According to Ballou [2], (i) location models do not incorporate nonlinearities and 
discontinuities found in logistics, particularly in transportation and (ii) location models deal with location, 
transportation, and inventory decisions in a fragmented rather than integrated manner. 

The primary components of logistics costs are inventory holding costs, transportation costs, and ordering/setup 
costs. These costs are significantly impacted by the timing and grouping (consolidation) of products into 
shipments that flow through the distribution network. The timing aspect, for a single link between a supplier 
and a destination, has been developed as the classical economic order quantity (EOQ) problem. Timing and 
grouping considerations in an EOQ setting, have been investigated, for a single link and multiple products in the 
inbound consolidation literature. However, due to the extreme difficulty, if not impossibility, of developing 
analytical formulae in the case of multiple locations and/or warehouses, alternate methodologies, such as 
mathematical programming offer practical solution approaches. As Bowersox and Closs [3] have noted, the 
mixed-integer programming approach ‘offers considerable flexibility which enables us to incorporate many of 
the complexities and idiosyncrasies found in logistical applications’. 

To put the current research into perspective, compare two real-world applications. The first application, 
involving the impact of shipment consolidation on product flows and routing, is described in Blumenfeld et 
al. [4]. The electronic division of General Motors (Delco) in 1981 produced parts in Milwaukee (Wisconsin), 
Matamoros (Mexico), and Kokomo (Indiana). The central warehouse was located in Kokomo and products were 
shipped from Milwaukee and Matamoros to Kokomo by truck. At Kokomo, the parts were consolidated before 
being sent to about 30 GM plants located in various parts of the country. The objective was to minimize the sum 
of transportation and holding costs. This objective was determined by decisions regarding the composition of 
shipments and whether shipments should be sent direct to the plants or after consolidation at Kokomo. 
Routings, shipment compositions and cycle times were found to be highly interrelated. The problem was 
eventually solved heuristically by a methodology involving the decomposition of the network into subnetworks. 

The second, more recent application involves the proposed acquisition of a mid-sized lawn and garden fencing 
company by a larger rival. Comparing this problem to the Delco problem, it is seen that both applications seek to 
optimize a deterministic freight network in which the parameters of the business environment, such as cost 
structures and product demands, are assumed to be fixed in the short run. However, there are at least three 
important differences between the applications. First, the Delco problem involves known and fixed locations for 
plants and warehouses. In contrast, in common with most mergers/acquisitions, the proposed acquisition 
implies numerous system redundancies in the form of overlapping territories covered by adjacent plants, 
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branches, distribution centers, etc., necessitating network re-design in the interest of cost effectiveness. This 
implies that facility locations are outcomes, rather than fixed parameters of the model. 

The second important difference between the two approaches pertains to the solution methodology. The Delco 
application involves a methodology which does not provide a bound on the proximity of the solution provided to 
the optimal solution, requiring qualitative assessments of the need for further system improvements. In 
contrast, this paper develops a sophisticated Lagrangian methodology that provides a bound on the optimal 
solution, which, in turn, makes it easier to judge the benefit of any proposed modifications to the system (route 
changes, branch closings, etc.). Finally, this paper integrates a realistic stepwise transportation cost function into 
the model that mimics the fare structures of common carriers, while the Delco application uses a simpler cost 
structure. 

A simple prototype of the ‘location/consolidation’ problem investigated in this paper is provided in Fig. 1. The 
diagram shows a two-level freight network which comprised three facilities, three warehouses, and two 
destinations. Currently, facilities 1 and 3, and warehouses 1 and 2 are open. The flows in the network are 
implied by the arrowheads. Typical questions that are crucial to the analysis are shown in the figure — for 
instance, (i) should warehouse 3 be open? (ii) should group 1 on the link between warehouse 1 and destination 
1 comprise products 1 and 5? (iii) what are the cycle times of shipments between facility 1 and warehouse 1 (the 
sawtooth pattern represents the inventory level as a function of cycle time)? (iv) what are the optimal flows 
between warehouse 2 and destination 2? It should also be noted that every question is potentially applicable to 
every arc (arc and link are used inter-changeably here) on the network, complicating the analysis immensely, 
even on a simple prototype network. 

 

Fig. 1. The concurrent location/consolidation problem. 

In order to provide tools that can directly tackle the problem of inter-dependency between structural 
parameters of a distribution/location network, the primary goal of the current research is the development of a 
model and solution methodologies that will permit the simultaneous determination of optimal (i) plant and 
warehouse locations, (ii) flows in the resulting distribution network, and (iii) shipment compositions and 
frequencies in the network, taking into account relevant logistical costs such as transportation costs, 
warehousing costs, etc. Subsequent sections of the paper contain (a) a summary review of relevant literature in 
freight networks, inbound consolidation, and facility location (b) a model for concurrent location and shipment 
consolidation (c) alternate methodologies based on the techniques of simulated annealing and Lagrangian 
relaxation (d) details of a computational experiment to test the methodologies and (e) provide concluding 
thoughts. 

https://www.sciencedirect.com/science/article/pii/S0305054801000235?via%3Dihub#FIG1


2. Related literature 
The primary reference fields for the location/logistics problem are freight networks, inbound consolidation, and 
facility location. As the literature on these topics is rather extensive, no effort is made here to provide 
comprehensive reviews. Freight network analysis primarily seeks to minimize the total cost of distribution by 
capitalizing on opportunities for consolidation in various forms. Some of these forms are inventory 
consolidation, vehicle consolidation, peddling (multiple deliveries to proximate customers), and terminal 
consolidation. Representative instances from the freight network literature include Blumenfeld et 
al. [4] described in the introduction, Klincewicz [5], and Benjamin [6]. 

Klincewicz proposes a network model consisting of multiple origins, consolidation terminals, and destinations in 
which the objective is to minimize the total inventory holding and transportation costs, assuming that the 
shipping cost functions can be adequately described by piece-wise linear functions of volume and that the 
quantities shipped between each origin–destination pair are known in advance. Benjamin considers a single-
commodity network and separates the logistics problem into a transportation problem and an economic lot size 
problem. He makes the distinction between annual flow and individual shipment size and emphasizes the need 
for simultaneous solution of flows and shipments. However, Benjamin actually employs an iterative rather than 
simultaneous procedure to solve the logistics problem. 

The field of inbound consolidation contains research on the problem of determining optimal shipment 
compositions and frequencies. Early work in consolidation [7] focused on the tradeoff between ordering and 
inventory holding costs recognized in the economic order quantity (EOQ) formula, which offers a simple 
analytical solution to the problem of minimizing the sum of ordering and holding costs. The EOQ concept has 
been extended to multiple products and the optimal determination of shipping packages and packaging 
frequencies. However, this research is confined to ordering and holding costs on a single link between two 
points such as a supplier and a customer. In part, this is because it is extremely difficult, if not impossible, to 
develop analytical formulae when considering complications such as transportation costs and/or multiple plants, 
destinations, and warehouses. 

Mathematical programming models offer a relatively tractable alternative approach to ‘closed-form’ solutions 
for solving the location–consolidation problem. Further, as noted by Bowersox and Closs [3], the modeling 
flexibility provided by the mixed-integer programming approach makes it particularly suitable for incorporating 
the complexities that arise in logistics in general and transportation in particular. Recent instances of 
mathematical programming approaches to the inbound consolidation problem include Russell and Krajewski [8], 
and Syam and Shetty [9]. However, these studies are confined to relatively simple environments involving only a 
single destination rather than multiple destinations, and supplier(s) with pre-determined rather than undecided 
locations. Further, both of these papers were concerned with single-echelon networks, rather than bi-echelon 
networks including warehouses, as in the current research. This paper significantly extends previous work in 
inbound consolidation by using a mathematical programming approach that seeks to simultaneously and 
optimally determine (i) the locations of multiple plants and (ii) the composition and timing of shipments and (iii) 
flows between multiple plants, warehouses, and destinations. 

The literature in facility location is vast, and with many variants. Of these variants, the capacitated plant location 
problem (CPLP) has some elements in common with the problem investigated in this paper. An extensive review 
of (CPLP), found in Sridharan [10], readily reveals that the problem considered here has not been investigated 
previously. Representative older work includes a seminal paper on multicommodity distribution by Geoffrion 
and Graves [11], who employed Benders’ partitioning technique. Their model did not include a way to select 
from multiple plants and did not incorporate the fixed costs of plant operation. More recently, Pirkul and 
Jayaraman [12] have investigated a problem with some structural similarities to that studied in this paper. Both 
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are capacitated and bi-echelon, and both include multiple plants, warehouses, and destinations. However, the 
current research includes significant complexities that go well beyond the scope of [12]. In particular, it includes 
many important logistical elements such as optimal shipment identification, shipment cycle times, holding costs, 
ordering costs, and a piecewise linear transportation cost structure that resembles those found in industry. 
Finally, it contains, as in the p-median problem, parameters regarding the specific number of plants and 
warehouses to open. The formulation studied in this research has neither been developed nor solved in previous 
research, and it is labeled, for convenience, as the location–consolidation model. This paper provides two 
methodologies to heuristically solve the model. 

3. Mathematical model and item consolidation 
The logistical framework and its mathematical representation are presented in this section. The section also 
contains a discussion of the manner in which the decision variables of the model facilitate inventory 
consolidation, an objective of the research. 

3.1. Logistical framework 
The logistics model encapsulates the functioning of a multi-commodity freight network, consisting of plants, 
intermediate warehouses for inventory consolidation, and final destinations. In this paper, a plant is sometimes 
referred to as a ‘manufacturing facility’, and a link between two points in the network is occasionally referred to 
as an ‘arc’. In common with the freight network and inbound consolidation literature, the term ‘cycle time’ 
refers to the frequency with which a good or group of goods is shipped — once a year, twice a year, etc. The 
objective is to determine locations, flows, groups of commodities, and their associated cycle times so as to 
minimize total logistics cost, comprised of inventory holding, purchase order line-item, purchase-order header, 
transportation, manufacturing, material handling, and fixed costs at plants and warehouse. The constraints of 
the model impose various logistical requirements — for instance, that the demand for each good at each 
destination must be met, that freight rates are a piecewise function of volume and shipment weight, that each 
facility is subject to certain capacity limitations, etc. 

3.2. Model structure 
In the mathematical model that follows, the objective function comprises the following components: (i) 
inventory holding costs (ii) ordering line-item costs (iii) ordering header costs (iv) transportation costs (v) 
manufacturing costs (vi) material handling costs at warehouses (vii) fixed costs at plants (viii) fixed costs at 
warehouses. Ordering costs, which are incurred when an order is fulfilled, consist of a fixed (header) charge for 
each order and additional line-item charges for individual items. Inventory holding costs in the model are 
computed as fixed percentages of item values. Plants differ in unit manufacturing costs of items and fixed costs, 
and material-handling costs vary from warehouse to warehouse, as do the fixed warehouse costs. All costs are 
considered on an annualized basis. Transportation costs are incurred on all links and are modeled to capture 
freight rates that vary as a function of shipping distance and shipment weight. 

In the model, constraint (1) ensures that the demand for each item at each destination is met, and constraint (2) 
imposes the capacity limitations at each facility by commodity (equal to zero if the facility is not open). 
Constraint (3) imposes material-handling capacity limits on each warehouse by commodity (equal to zero if the 
warehouse is not open). Constraints (4) and (5) impose freight rates on shipments according to weight. 
Constraint (6) ensures that at most one freight rate applies to a shipment. Constraint (7) ensures that a line-item 
ordering cost is incurred if an item is shipped on a link and also imposes capacity limits on links. Constraint (8) 
ensures that only one cycle time applies to an item on a particular arc. Constraint (9) compactly ensures that 
order header costs are incurred when line-item order costs and, by virtue of constraint (7), flows exist on a link. 
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Finally, constraints (10) and (11) impose restrictions on the numbers of open plants and warehouses, 
respectively. 

Mathematical notation and model 
The following parameters and variables are used to describe the mathematical location/consolidation model. 
Here, ‘n’ denotes arc or link, ‘i’ denotes commodity, ‘h’ denotes cycle-time, ‘f’ denotes freight rate, ‘s’ denotes 
manufacturing facility, ‘e’ denotes warehouse, and ‘d’ denotes destination. 

𝑁𝑁 set of arcs in the network 
𝑆𝑆 set of open manufacturing plants 
𝑆𝑆 − set of arcs outgoing from open manufacturing plants 
𝑠𝑠 − set of arcs outgoing from open manufacturing facility s 
𝐸𝐸 set of open warehouses 
𝐸𝐸 − set of arcs outgoing from open warehouses 
𝑒𝑒 − set of arcs outgoing from open warehouse e 
𝑒𝑒 + set of arcs incoming at open warehouse e 
𝐷𝐷 set of destinations 
𝐷𝐷 + set of incoming arcs at destinations 
𝑑𝑑 + set of incoming arcs at destination d 
𝐼𝐼 set of commodities (items) 
𝐻𝐻 set of cycle-times 
𝐹𝐹 set of freight rates 
ps parameter representing the number of open manufacturing plants 
pe parameter representing the number of open warehouses 
Vin value of item 𝑖𝑖 on arc 𝑛𝑛 
th cycle-time ℎ 
ki annual inventory holding cost percentage of item 𝑖𝑖 
wi weight per unit in pounds of item 𝑖𝑖 
cfn freight cost rate 𝑓𝑓 on arc 𝑛𝑛 
Gn fixed header cost of a purchase order on arc 𝑛𝑛 
ain line-item ordering cost of item 𝑖𝑖 on arc 𝑛𝑛 
me unit material handling cost at warehouse 𝑒𝑒 
Ks fixed annual cost associated with facility 𝑠𝑠 
Re fixed annual cost associated with warehouse 𝑒𝑒 
bdi demand for item 𝑖𝑖 at destination 𝑑𝑑 
uis manufacturing capacity limit for item 𝑖𝑖 at facility 𝑠𝑠 
uin capacity limit for item 𝑖𝑖 on arc 𝑛𝑛 
Cei material handling capacity limit for item 𝑖𝑖 at warehouse 𝑒𝑒 
βfn weight breakpoint 𝑓𝑓 on arc 𝑛𝑛. 

 

The decision variables of the model are: 

Xfhin  integer variable representing flow of item i on arc n with cycle-time h, freight category f 
αhfn binary variable, equal to 1 if there is flow on arc n with cycle-time h and freight category f, 0 otherwise 
𝜋𝜋ℎ𝑖𝑖𝑖𝑖 binary variable, equal to 1 if item i is ordered on cycle-time h on arc n, 0 otherwise 
𝜒𝜒hn binary variable, equal to 1 if an order is placed on cycle-time h on arc n, 0, otherwise 
𝜓𝜓s binary variable, equal to 1 if manufacturing facility s is open, 0 otherwise 
𝜑𝜑e binary variable, equal to 1 if warehouse e is open, 0 otherwise 

Using this notation the logistics model is as follows: 



Minimize∑f∈F∑h∈H∑i∈I∑n∈N12t hk iV inX fhi n+∑h∈H∑i∈I∑n∈Na int hπ hin+∑h=1H∑n=1NG nt hχ hn 

+∑h=1H∑n=1N∑f=1Fc fn∑i=1IX fhi nw i+∑f∈F∑h∈H∑i∈I∑n∈S−V inX fhi n 

+∑e∈E∑f∈F∑h∈H∑i∈I∑n∈E−m eiX fhi n+∑s∈SK sψ s+∑e∈ER eφ e, 

(1) 

subjectto∑f∈F∑h∈H∑n∈d+X fhi n=b di,∀d,i, 

(2) 

∑f∈F∑h∈H∑n∈s−X fhi n⩽u isψ s,∀i,s, 

(3) 

∑f∈F∑h∈H∑n∈e−X fhi n⩽C eiφ e,∀e,i, 

(4) 

t h∑i∈IX fhi nw i⩽β (f+1)nα fhn,∀f,h,n, 

(5) 

t h∑i∈IX fhi nw i⩾β fnα fhn,∀f,h,n, 

(6) 

∑f∈Fα fhn⩽1,∀h,n, 

(7) 

∑f∈F∑h∈HX fhi n⩽∑h∈Hπ hinu in,∀i,n, 

(8) 

∑h∈Hπ hin⩽1,∀i,n, 

(9) 

∑i∈Iπ hin⩽|I|χ hn,∀h,n, 

(10) 

∑s∈Sψ s=p s, 

(11) 

∑e∈Eφ e=p e, 

α fhn∈{0,1}∀f,h,n,π hin∈{0,1}∀h,i,n,χ hn∈{0,1}∀h,n, 

ψ s∈{0,1}∀s,φ e∈{0,1}∀e,X fhi ninteger∀f,h,i,n. 

3.4. Shipment consolidation 
Shipment consolidation is concerned with determining the composition and shipping frequencies of shipments 
(also called groups). Optimal grouping leads to the lowest possible logistical cost. The key to the concurrent 
determination of flows and shipments is a transformation found in network flow analysis, namely, artificially 
dividing (or splitting) the total flow of product on each link into smaller groups. Each group includes only the 



products that have the same cycle time (shipping frequency), and the same transportation freight rate. All the 
products in a group are shipped together, thus comprising a shipment. The model is solved to determine the 
optimal shipments on each link in the network. 

Using the notation of the model, assume, as an instance, that the optimal (or best) solution specifies optimal 
flows in which variables X321

2 and X325
2 are positive-valued. This means that commodities 1 and 5 are, first, both 

shipped on arc 2, and, second, both part of the same shipment on arc 2. This shipment incurs the third freight 
rate and is shipped with the second shipping frequency applicable on arc 2. Therefore, one of the optimal 
groups on arc 2 will include both items 1 and 5. It may be noted that the constraints of the model ensure that an 
item cannot belong to more than one group (i.e., shipment) on any particular link. This illustrates how the form 
of the decision variables of the model makes it possible to concurrently determine both optimal flows as well as 
optimal groups (shipments). In this context, permissible cycle times (shipping frequencies) belong to a discrete 
set that corresponds to the specifications or needs of logistics managers. 

4. Solution methodologies 
In its entirety, the model is a 0–1 integer representation of a p-median problem with an embedded 
multicommodity distribution sub-problem. The p-median problem and the multicommodity distribution 
problem are known to be NP-complete [13] making the model very difficult to solve. Hence, the solution 
methodologies involve the development of heuristic procedures. Two methodologies that have performed well 
on difficult combinatorial problems are simulated annealing and Lagrangian relaxation. Both these 
methodologies are heuristic in nature but often provide good solutions to NP-complete and other combinatorial 
problems. In this paper, the two methodologies are applied to identical instances of the location–consolidation 
problem and their relative performance is assessed. 

Simulated annealing and Lagrangian relaxation have to be highly tailored to a specific problem in order to 
perform well. In this respect using either of the methodologies is an art as well as a science, and a certain degree 
of experimentation is inevitable. The following sub-sections will describe the implementation of these 
methodologies in this paper. 

4.1. Simulated annealing procedure 
Simulated annealing, as the name may suggest, is the mathematical analog of the metallurgical process of 
annealing (slow cooling), the purpose of which is to impart certain desirable properties to the metal being 
treated. The cooling schedule, which is specific to a particular metal, is critical to the success of the process — 
schedules that are too fast or too slow usually impart certain undesirable properties to the metal. The cooling 
schedule is very important in the mathematical analog as well. The first application of simulated annealing to 
combinatorial optimization problems was reported by Kirkpatrick et al. [14]. Many successful applications have 
been reported since then, and no effort is made here to provide a complete survey. Representative (and 
relevant) applications include the application of annealing to the quadratic assignment problem [15], and a 
double-annealing procedure for the vertex-constrained multi-site location problem reported in Righini [16]. 

The methodology involves the iterative interaction of a primary step (P) and a secondary step (Q). In the primary 
step, the simulated annealing procedure determines which plants and warehouses should be open. In the 
secondary step, a Lagrangian procedure accepts the assignments of the master step and solves the flow and 
consolidation problem in the resulting network. The heuristic methodology alternates between the master and 
secondary steps. It is terminated when an acceptable degree (as compared to a pre-determined tolerance) of 
convergence between successive solutions to the master problem is achieved or if the annealing procedure has 
traversed a pre-determined number of ‘epochs’ (discussed below). 
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In this study, we use annealing to solve the ‘outer’ problem of determining the optimal sets of open plants and 
warehouses. The procedure starts with a random solution (assignment). A number of ‘epochs’ follow, in which 
the solution is perturbed by the systematic interchanging of a number of open and closed plants. The 
‘temperature’, which determines the probability of a solution being accepted, is reduced in successive epochs. A 
new solution is evaluated by solving the ‘inner’ consolidation problem. The objective function of the location–
consolidation model is neither concave nor convex in the decision (flow) variables. As a result, gradient-based 
solution methods may terminate in relatively inferior local optima. An important characteristic of simulated 
annealing is that it ameliorates this problem by occasionally accepting non-improving solutions with a gradually 
decreasing probability. The annealing procedure is terminated when either (i) all epochs have been traversed or 
(ii) convergence, as compared to a pre-determined tolerance, is achieved between successive solutions. A 
general overview and diagram of the simulated annealing procedure are provided below. 

4.1.1. Simulated annealing procedure 



 

 (1) Initialization    
(a)  Select an initial solution, s∈S — this implies randomly opening ps plants and pe warehouses (with sufficient 

capacity to meet demand). Initially s is both the incumbent (best) as well as current solution (sn). Solve the 
inner Lagrangian problem to obtain an objective function value 𝑓𝑓(𝑠𝑠).  

(b) 
 

Fix the number of epochs, E, an initial high temperature, 𝑇𝑇 > 0, the initial number of iterations per epoch, I, 
and a convergence parameter, ε.  

(c) 
 

Set the epoch number, 𝑒𝑒 = 0 and fix a temperature modification factor, t, and iteration modification 
factor, k. 

 (2) Epoch 
processing 

  
 

(a) e = e + 1.     
If 𝑒𝑒 > 𝐸𝐸, stop and accept the incumbent solution as best If e>1, modify the temperature i.e., 𝑇𝑇 = 𝑡𝑡 ∗ 𝑇𝑇, and 
modify the number of iterations/epoch i.e., 𝐼𝐼 = 𝑘𝑘 ∗ 𝐼𝐼. Set the iteration number, 𝑖𝑖 = 0.  

(b) Iteration    
(i) 𝑖𝑖 = 𝑖𝑖 + 1.    

If 𝑖𝑖 > 𝐼𝐼, start new epoch, i.e., go to step 2a.   
(ii) Generate a new solution, s′, by warehouse interchange and facility interchange with the current solution 

(sn). Solve the inner problem (Q) to obtain the objective function value f(s′) using Lagrangian relaxation of 
constraints (2), (3), (6), (8), and (10) [details in Section 4.3].   

(iii) Calculate Δ = f(s′)− f(s).    
If Abs(Δ) < ε, stop and accept the incumbent solution as best.   

(iv) If Δ < 0, then sn=s′, else if Random(0,1)<Exp(−Δ/T) then s n=sʹs=s n if f(s n)<f(s).   
(v) Go to new iteration i.e., step 2b(i).   
End 
Iteration 

 
 

End Epoch   
End 
Procedure 
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In practice, simulated annealing procedures have to be tailored to the problem at hand (Fig 2). In particular, 
their behavior has to be closely monitored because they usually ‘plateau’ after a while. To ‘plateau’ in this 
context is to execute at length without noticeable improvement in the objective value. The point at which a 
particular annealing procedure begins to plateau depends on the structure of the problem and also on the 
values of the annealing parameters. As a result of this, simulated annealing has elements of an art as well as a 
science. In the case of the location/consolidation problem, the critical annealing parameters are the annealing 
schedule and the choice of neighborhood. Details regarding the effects of these parameters are provided in the 
computational results below. 

 

Fig. 2. Overview of simulated annealing. 
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4.2. Lagrangian methodology 
The critical logistical issue in the current research is the determination of optimal locations for plants and 
warehouses. The secondary issue (which is also important) is the determination of optimal consolidation 
policies, given the set of open sites. The simulated annealing approach uses Lagrangian relaxation to address the 
secondary issue and annealing to determine optimal sites. The purely Lagrangian methodology, on the other 
hand, uses Lagrangian relaxation in order to determine both the optimal sites as well as optimal consolidation 
policies. Thus, the two methodologies differ in their approach to the critical logistical issue. This has a significant 
impact on their relative performance as assessed in the computational experiment described in Section 5. 

Lagrangian methodology [17] involves the relaxation of constraints that complicate the model. The objective 
function is penalized to the extent that the relaxed model violates the omitted constraints. This is achieved by 
adding the relaxed constraints to the objective function multiplied by suitable penalties or multipliers. The 
solution to the relaxed problem with suitable fixed values of the multipliers provides a lower bound on the 
original problem. The Lagrangian dual problem is to find the values of the multipliers that provide the tightest 
possible lower bound i.e., maximizes the optimal solution to the relaxed problem. 

The dual problem is usually solved by updating the multipliers in a systematic manner. Typically, the updated 
multipliers improve the lower bound progressively, but not necessarily monotonically. The method used in this 
research to update the multipliers is the subgradient method [18], convergence results for which may be found 
in Polyak [19]. In the absence of a duality gap, the optimal objective value of the dual problem coincides with 
that of the primal (original) problem. Lagrangian methods are typically terminated when there is acceptable 
convergence between upper bounds obtained from primal-feasible solutions and lower bounds generated by 
the relaxed problem. The lower bounding methodology is described next, followed by a description of the upper 
bounding mechanism. 

4.3. Lower bounding technique 
The technique is initiated by associating non-negative multipliers ω is 1,ω ei 2,μ fhn 1,μ fhn 2,λ in 1, and λhn

2 with 
the complicating constraints , , , , , and (9), respectively. These constraints are complicating in the sense that 
their removal greatly facilitates the solution of the transformed problem. Lagrangian relaxation is carried out by 
multiplying these constraints by their respective multipliers and adding them to the objective function (OF) of 
the original problem. The sub-problems associated with these relaxations have the integrality property [20], 
which implies that the resulting lower bounds cannot be tighter than those from a linear programming 
relaxation of the problem. Nevertheless, the Lagrangian approach is used because the resulting sub-problems 
can be solved very rapidly. 

The relaxed problem has the following objective function: 

OF lag=OF+∑f∈F∑h∈H∑n∈Nμ fhn 1t h∑i∈IX fhi nw i−β (f+1)nα fhn+∑i∈I 

∑s∈Sω is 1∑f∈F∑h∈H∑n∈s−X fhi n−u isψ is+∑e∈E∑i∈Iω ei 2∑f∈F∑h∈H 

∑n∈s−X fhi n−C eiφ e∑f∈F∑h∈H∑n∈Nμ fhn 2β fnα fhn−t h∑i∈IX fhiw i+∑i∈I 

∑n∈Nλ in 1∑f∈F∑h∈HX fhi n−∑h∈Hπ hinu in+∑h∈H 

∑n∈Nλ hn 2∑i∈Iπ hin−|I|χ hn. 

The Lagrangian dual problem is represented as follows: 

Maxϕ(ω is 1,ω ei 2,μ fhn 1,μ fhn 2,λ in 1,λ hn 2), 
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where ϕ(ω is 1,ω ei 2,μ fhn 1,μ fhn 2,λ in 1,λ hn 2) is the following model (Q1): 

MinOF lags.t.constraints(1),(6),(8),(10),and(11). 

Terms may be combined in OFlag, resulting in the following coefficients: 

For n∈s−,R fhi n={ω is 1+1/2t hk inV in+c fnw i+m ei+(μ fhn 1−μ fhn 2)t hw i+λ in 1}. 
For n∈e−,R fhi n={ω ei 2+1/2t hk inV in+c fnw i+m ei+(μ fhn 1−μ fhn 2)t hw i+λ in 1}. 
S hin={(a in/t h)−λ in 1+λ hn 2},T hn={(G n/t h)−|I|λ hn 2}, 
K� s=K s−∑i∈Iω is 1u is,R� e=R e−∑i∈Iω ei 2C ei,A fhn=μ fhn 2β fn−μ fhn 1β (f+1)n. 
 

For fixed values of the multipliers, model (Q1) separates into the following six sub-problems, the sum of whose 
objective functions provides a lower bound (LB) on objective value of the primal problem. 

Model X 
(12) 
MinZ 1=∑f∈F∑h∈H∑i∈I∑n∈NR fhi nX fhi n 
s.t.∑f∈F∑h∈H∑n∈d+X fhi n=b di∀d,i, 
X fhi ninteger∀f,h,i,n. 
Model α 
(13) 
MinZ 2=∑f∈F∑h∈H∑n∈NA fhnα fhn 
s.t.∑f∈Fα fhn⩽1∀f,h,n, 
α fhn∈{0,1}∀f,h,n. 
Model π 
(14) 
MinZ 3=∑f∈F∑h∈H∑n∈NS fhnπ fhn 
s.t.∑h∈Hπ hin⩽1∀i,n, 
π hin∈{0,1}∀h,i,n. 
Model χ 
MinZ 4=∑h∈H∑n∈NT hn.(unconstrained) 
Model ψ 
(15) 
MinZ 5=∑s∈SK� sψ s 
s.t.∑s∈Sψ s=p s, 
ψ s∈{0,1}∀s. 
Model φ 
(16) 
MinZ 6=∑e∈ER� eφ e, 
s.t.∑e∈Eφ e=p e, 
φ e∈{0,1}∀e. 
 

 



The last two models are not necessary in the simulated annealing methodology because open sites and 
warehouses are determined by the annealing procedure outside of the Lagrangian framework. The six models 
are all linear knapsack problems that can be solved extremely rapidly using relatively simple greedy 
algorithms [21]. 

4.4. Upper bound heuristic 
Upper bounds are obtained from feasible solutions. In the Lagrangian methodology, a primal feasible solution is 
obtained at each iteration of the subgradient optimization. Similarly, the simulated annealing methodology 
generates a primal feasible solution for each accepted assignment of plants. For both the methodologies, 
generation of a primal feasible solution is done in three steps. 

(a) The first step is the determination of open plants. In the pure Lagrangian methodology, the solutions of 
the ψ s and φ e subproblems in the lower bounding procedure provide readily available sets of open 
plants and warehouses, respectively. The simulated annealing methodology uses the annealing 
procedure as described previously to select open plants. 

(b) Secondly, the flow problem (model X) is solved, restricted to the sets of selected plants and warehouses. 
The resulting allocations are likely to violate freight rate breakpoint constraints , , since these have been 
relaxed. 

(c) Third, and finally, a routine is applied that (i) restores feasibility to violated freight rate breakpoint 
constraints and (ii) determines cycle times on each link that minimize costs for the flows found in model 
X. The routine is described in procedure Resfeas below. The objective value of the feasible solution at an 
iteration (current upper bound or CUB) is a candidate to replace the incumbent upper bound (IUB). It 
does so if it is smaller in value than the IUB. 
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Procedure Resfeas 

A
. 

Loop until 
all arcs have 
been 
processed: 

    

  
Compute total flow on arc, and total weight sent on arc      
(1) Set mincyccost=0, mincyc=0       

Loop until 
all cycles 
are 
examined: 

  

    
Compute total cost on arc assuming all flows use 
current cycle 

 
    

If total 
cost < mincyccost, mincyccost=totalcost,mincyc=curre
ntcycle 

 

   
End cycle 
loop 

  
  

(2) Set appfrtrate=0, Compute 
shipment weight=Total weight ∗ mincyc 

   
   

Loop until 
applicable 
freight 
rate is 
found: 

  

    
If rate 
minimum weight<shipmentweight<rate maximum 
weight then appfrtrate=currentfreightrate 

 

   
End 
freight 
rate loop 

  

  
(3) Convertallflowsonarcsothatcycle=mincyc,freightrate=a
ppfrtrate 

   
 

End arc loop     
B
. 

Compute 
upper 

    



bound as 
sum of costs 
correspondi
ng to 
feasible 
flows found 
in step A 
and fixed 
costs of 
facility and 
warehouse 
assignments 



4.5. Algorithm for the location–consolidation problem 
The combination of the upper and lower bounding schemes described above provides an algorithm for the flow-
consolidation problem. An outline of this algorithm follows, and an overview is provided in Fig. 3. 

 

Fig. 3. Overview of lagrangian methodology. 

Algorithm Loccons 

A. Initialize the dual multipliers to zero, and the incumbent lower bound, ILB, to −∝. Set a tolerance, ε, for 
convergence between upper and lower bounds, and fix an iteration limit. Set the value of the incumbent 
upper bound, IUB to +∝. 

B. Solve the lower bound problem. LB=Z 1+Z 2+Z 3+Z 4+Z 5+Z 6. If LB>ILB, then ILB=LB. Generate the upper 
bound, CUB, from the lower bound solution. If CUB<IUB,thenIUB=CUB. 

C. Check for convergence. If IUB−ILB)/IUB⩽ε, the solution is acceptable, therefore terminate. Otherwise, 
use subgradient optimization to update the multipliers as described below. If the number of iterations is 
less than the iteration limit, return to step B, otherwise terminate. 

 

4.6. Updating of dual multipliers 
The subgradients of the function ϕ(ω is 1,ω ei 2,μ fhn 1,μ fhn 2,λ in 1,λ hn 2) are the following: 

sgμ1 fhn=t h∑i∈IX fhi nw i−β (f+1)nα fhn,sgμ2 fhn=β fnα fhn−t h∑i∈IX fhiw i, 

sgλ1 in=∑f∈F∑h∈HX fhi n−∑h∈Hπ hinu in,sgλ2 hn=∑i∈Iπ hin−|I|χ hn, 

sgω1 is=∑f∈F∑h∈H∑n∈s−X fhi n−u isψ s,sgω2 ei=∑f∈F∑h∈H∑n∈e−X fhi n−C eiφ e. 

The step size at iteration i is given by si=δi(IUB−ILB)/||ηi||2, where δi is a scalar between 0 and 2, and ηi is the 
vector of subgradients at iteration i. Using this step size, convergence results for which are provided in 
Polyak [19], the multipliers are systematically updated in the following manner: Letting θ represent, in a general 
way, any of the six multipliers, with sgθ representing the corresponding subgradient, θi+1=θi+si(sgθ). The 
updated multipliers are used to solve the lower bound problem in the next iteration. 
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5. Computational testing 
A computational experiment was conducted to assess the computational effectiveness of the Lagrangian and 
simulated annealing algorithms. This involved solving several sets of test problems of varying size, ranging from 
small to very large on a Pentium (400 megahertz) personal computer. Several model parameters are kept 
common to the different problem sets, in order to focus on the effectiveness of the algorithms as a function of 
problem size. In order to provide a better sense of performance of the algorithms, a number of smaller 
problems were solved to optimality by a process of total enumeration i.e., considering all the possible 
combinations. In addition, the performance of the simulated annealing algorithm was evaluated as a function of 
experimental parameters such as annealing speed and neighborhood size. These factors are discussed in greater 
detail in the section below. 

5.1. Computational experiment 
The solution methodologies for the location/consolidation problem were tested by solving 10 test problems for 
each of a number of configurations which vary by size from small to very large. The following parameters are 
common to the problem sets: (i) number of freight rates=5 (ii) number of items=5 (iii) number of cycle times=5 
(iv) fixed costs of plants are uniformly distributed: U($200000, $20000) (v) fixed costs of warehouses are 
uniformly distributed: U($100000, $10000). Other distributions of costs, such as those for procurement, holding, 
and ordering costs, and transportation rates are also kept common to the various problem sets. 

Early ‘trial runs’ of the simulated annealing methodology suggested the following: (i) the rate of cooling 
influenced the quality of the final solution (ii) the greatest improvements in solution value are experienced in 
the initial epochs, rather than the later ones, and that if the algorithm stalled at a particular temperature epoch, 
it generally did not improve until movement to a different epoch (iii) the choice of a neighborhood is important: 
if a neighboring solution is defined as one that is extremely close to an incumbent solution, then the possibility 
of ‘getting stuck’ in a particular neighborhood increases; on the other hand, neighboring solutions that are 
relatively distant from the incumbent solution may cause the algorithm to ‘bounce around’ continuously 
without improvement of the objective value. In order to explore the practical issues discussed above, the 
simulated annealing procedure included the following design parameters: 

(a) Two cooling schedules, ‘fast’ and ‘slow’ were tested on each problem. In the slow schedule, the 
temperature at each epoch following the initial epoch was set at 95% of the temperature at the previous 
epoch. The fast schedule used a corresponding cooling rate of 55%, i.e., 45% reduction at each epoch. 

(b) Three different neighborhood interchange options were tested: (i) option 1 in which 50% of the 
incumbent locations were replaced in a new solution (ii) option 2 in which 75% were replaced and (iii) 
option 3 in which 100% were replaced. Option 1 moves incrementally around the solution space, option 
2 explores the solution space at a medium space, and option 3 moves relatively rapidly around the 
solution space. 

(c) The number of iterations at an epoch was determined in the following manner: the first epoch used 10 
iterations, and the number of iterations in each of the subsequent epochs was 95% of the number in the 
previous epoch. In addition, processing at an epoch was curtailed if no solutions were accepted by the 
annealing algorithm in three consecutive iterations. 

 

5.2. Computational results 
The first set of results are for relatively small problems which can be solved to optimality by evaluating all 
possible combinations of open plants and warehouses. The purpose of solving these problems is to provide an 
idea of the relative proximity of the actual optimal objective values to those provided by the Lagrangian and 
simulated annealing algorithms. While the Lagrangian procedure provides a bound on the optimal solution, the 



difference between the best obtained and optimal objective values is often smaller than the bound. The 
computational result tables use the following notation: 

(a) ‘#CL’=the number of candidate plant locations. 
(b) ‘#CW’=the number of candidate warehouse locations. 
(c) ‘#PL’=the permitted number of plants. 
(d) ‘#PW’=the permitted number of warehouses. 
(e) ‘ANS’=annealing speed, fast or slow. 
(f) ‘NS’=neighborhood size, small, medium or large. 
(g) ‘LCV%’=percent convergence between upper and lower bounds in the Lagrangian methodology. 
(h) ‘LOP%’=for small problems, percent difference between the best objective value from the Lagrangian 

feasible solutions and the optimal objective value. 
(i) ‘SOP%(a,b)’=for small problems, percent difference between the best objective value from the simulated 

annealing feasible solutions and the optimal objective value. The first percent applies when the 
annealing is run until 10% improvement is achieved, and the second percent applies when the annealing 
is restricted to the same time limit as the Lagrangian method. 

(j) ‘LSEC’=computational seconds for Lagrangian methodology. 
(k) ‘SSEC’=computational seconds for simulated annealing methodology. 

 

On the basis of the results for small problems, it may be surmised that the Lagrangian methodology often 
provides best feasible solutions that are closer to the optimal solution than indicated by the Lagrangian bounds 
themselves. For the small problems, it also appears that the simulated annealing procedure generally provides 
solutions that are closer to the optimal solution, when required to run until at least 10% improvement in 
objective value is achieved. However, with a few exceptions, annealing is generally inferior when executed for 
the same time as the Lagrangian (Table 1). 

Table 1. Small problem configurations and results 

Set #CL #PL #CW #PW ANS NS LCV% LOP% SOP% (a,b) LSEC SSEC 
1.1 10 2 4 2 0.95 1.00 2.05 1.55 0.61, 1.85 0.5 1.0 
1.2 10 2 4 2 0.55 1.00 1.04 0.85 0.26, 1.48 0.20 1.0 
1.3 10 2 4 2 0.95 0.75 2.12 1.61 0.66, 0.66 1.0 1.0 
1.4 10 2 4 2 0.55 0.75 1.03 0.88 0.24, 2.09 0.2 1.0 
1.5 10 2 4 2 0.95 0.50 1.13 0.98 0.65, 1.49 0.5 0.9 
1.6 10 2 4 2 0.55 0.50 1.43 1.30 0.35, 0.35 1.0 1.0 
1.7 10 4 6 4 0.95 1.00 1.51 1.39 0.75, 2.13 0.8 2.0 
1.8 10 4 6 4 0.55 1.00 1.82 1.66 0.94, 1.92 1.0 2.0 
1.9 10 4 6 4 0.95 0.75 1.38 0.87 1.34, 2.12 1.0 2.0 
1.10 10 4 6 4 0.55 0.75 0.63 0.42 0.52, 4.17 0.20 2.0 
1.11 10 4 6 4 0.95 0.50 0.73 1.15 0.98, 3.14 0.5 2.0 
1.12 10 4 6 4 0.55 0.50 1.50 1.23 1.67, 3.13 0.7 2.0 

 

To facilitate analysis, further results are shown for medium-sized and large problems, which are too large to 
solve to optimality. These results are: 

(a) ‘L<S%(a)’=percent difference between the best objective values from the Lagrangian and simulated 
annealing procedures for problems in which the Lagrangian solution is superior (lower). The number of 
problems (out of a set of ten) where the Lagrangian approach provided better solutions is shown in 
parentheses. Set (a) applies to normal runs where parameters require the annealing procedure to 
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achieve at least 10% improvement relative to the initial solution (or stop at 1000 s). Set (b) applies where 
the annealing procedure is constrained to the same time as the Lagrangian method. 

(b) ‘S<L%’=percent difference between the best objective values from the simulated annealing and 
Lagrangian procedures for problems in which the simulated annealing solution is superior (lower). The 
number of problems (out of a set of 10) where the annealing procedure provides better solutions is 
shown in parentheses. 

 

The computational results for the second set of problems are meant to provide an idea of the comparative 
performance of the two methodologies with respect to objective function value and computational speed. The 
results suggest that, with very few exceptions, (i) the Lagrangian methodology finds superior (with lower 
objective function value) solutions and (ii) the Lagrangian approach is quicker than the simulated annealing 
procedure, with the time differential widening with problem size. 

The finding above appears to apply regardless of the ‘fine-tuning’ of the annealing procedure by altering the 
annealing speed and neighborhood search scheme, suggesting that the Lagrangian procedure should be 
preferred for medium-sized and large problems (Table 2). An examination of the ‘L<S%’ and ‘S<L%’ cells further 
emphasizes this -the average percentage differences between the best objective function values obtained from 
the two methodologies are in the vicinity of 5–6% when the Lagrangian procedure is superior, and in the 
neighborhood of 0.5–3% in the few cases where the annealing procedure finds better solutions. It is also clear 
from the ‘L<S% (b)’ results that the annealing procedure is not competitive when constrained to the same time 
as the Lagrangian method. 

Table 2. Medium and large problem configurations and results 

Set #CL #PL #CW #PW ANS NS LCV% L<S% (a) L<S% (b) S<L% LSEC SSEC 
2.1 25 5 5 2 0.95 1.00 2.73 4.43(10) 5.41(10) — 3 5 
2.2. 25 5 5 2 0.55 1.00 2.70 4.86(8) 5.09(10) 3.34(2) 2 5 
2.3 25 5 5 2 0.95 0.75 3.49 1.85(8) 6.48(10) 0.38(2) 3 5 
2.4 25 5 5 2 0.55 0.75 2.96 1.63(4) 2.73(10) 0.62(6) 2 5 
2.5 25 5 5 2 0.95 0.50 3.43 2.10(6) 4.88(10) 0.73(4) 3 5 
2.6 25 5 5 2 0.55 0.50 4.00 2.73(6) 6.06(10) 3.81(4) 3 5 
2.7 50 10 10 4 0.95 1.00 2.75 5.29(10) 6.96(10) — 19 45 
2.8 50 10 10 4 0.55 1.00 3.48 4.86(10) 6.85(10) — 22 45 
2.9 50 10 10 4 0.95 0.75 3.02 5.63(10) 6.36(10) — 23 44 
2.10 50 10 10 4 0.55 0.75 3.71 4.53(10) 4.87(10) — 20 44 
2.11 50 10 10 4 0.95 0.50 3.18 5.87(10) 6.19(10) — 22 43 
2.12 50 10 10 4 0.55 0.50 4.41 2.84(10) 5.50(10) — 21 43 
2.13 100 20 20 8 0.95 1.00 4.32 4.24(10) 6.62(10) — 149 324 
2.14 100 20 20 8 0.55 1.00 4.01 5.65(10) 7.56(10) — 152 294 
2.15 100 20 20 8 0.95 0.75 3.67 6.66(10) 7.36(10) — 150 321 
2.16 100 20 20 8 0.55 0.75 4.81 4.15(10) 6.70(10) — 148 329 
2.17 100 20 20 8 0.95 0.50 3.68 5.88(10) 7.58(10) — 150 328 
2.18 100 20 20 8 0.55 0.50 4.04 5.18(10) 7.75(10) — 152 324 

Within the annealing procedure, performance does vary between combinations of annealing speed and 
neighborhood size. However, a pattern with regard to performance is hard to detect, suggesting that 
experimentation will be required if an annealing methodology is applied to any particular instance of the 
location–consolidation problem. In any event, the current results indicate that there is a high probability that a 
Lagrangian methodology will either out-perform or be very competitive with a simulated annealing approach to 
this problem. 
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6. Conclusion 
This paper is concerned with the exposition and solution of an important problem in logistics, referred to as the 
location–consolidation problem. It involves simultaneously determining facility locations, flows, shipment 
compositions, and shipment cycle times in a multicommodity, multiple plant and multiple warehouse 
environment. The problem is combinatorial in nature (NP-complete) and extremely difficult to solve. Two 
competing methodologies, based on simulated annealing and Lagrangian relaxation, respectively, are provided 
and compared in an extensive computational experiment. The Lagrangian methodology provides tight bounds 
and out-performs the annealing procedure for medium-sized and large problems, with respect to both 
computational time and solution quality. The annealing procedure provides better solutions for small problems, 
when allowed to run for somewhat longer than the Lagrangian method. 
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