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A Multiple Server Location–Allocation Model 
for Service System Design 
 

Siddhartha S. Syam 
Department of Management, College of Business Administration, Marquette University, Milwaukee, 
WI  
 

Abstract 
Service systems are endemic in a service economy, and effective system design is fundamental to the 
competitiveness of service organizations such as retailers, distributors, and healthcare providers. This is because 
system design may significantly facilitate (or hinder) the attainment of important organizational objectives such 
as minimizing system cost and maximizing service level. This paper develops and solves a comprehensive 
nonlinear location–allocation model for service system design that incorporates several relevant costs and 
considerations. These include, for instance, transportation, facility, and waiting costs, queuing considerations, 
multiple servers, multiple order priority levels, multiple service sites, and service distance limits. The model is 
first converted to an equivalent linear form and then solved using Lagrangian relaxation. A computational study 
shows problems with 250 service districts, 60 service sites, and 250 candidate locations are solved in about two 
and a half minutes. An extensive managerial experiment is conducted that evaluates alternative system designs 
from a number of important perspectives including centralization versus decentralization, system configuration, 
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and service distance limit. Each scenario is evaluated with respect to two fundamental criteria, namely, total 
cost and service level. The analysis provides insights into important tradeoffs that must be taken into 
consideration in designing an effective service system. 

Keywords 
Service system design, Location–allocation, Lagrangian relaxation 

1. Introduction 
Service systems are of fundamental importance in a developed service economy for various reasons. Service 
industries including retailing, healthcare, and distribution depend on well-designed service systems to meet 
demand in a timely fashion. Manufacturers also rely on service operations to provide after-sales services for 
complex products. When catastrophic events occur, such as 9/11 in New York City and Hurricane Katrina in the 
Gulf Coast, the critical nature of service systems in the public domain, such as emergency management systems, 
becomes apparent. 

The focus of this paper is the general service system design problem (GSDP), which differs from the problem of 
designing an emergency services system (ESDP) in one primary way: the key issue in GSDP is the capacity of 
service facilities to process incoming service demand, which is not limited to emergencies, while the focus of 
ESDP is the capability of the field units (police patrols, fire engines, ambulances, etc.) to quickly move to 
emergency sites. With that caveat, GSDP and ESDP share some important characteristics. These include the 
configuration of the system including the location of key facilities and the assignment of service districts to open 
facilities. They also include knowledge of the key parameters of the system such as the rate of occurrence of 
events and incidents that lead to demand for service. Instances of these events could be patients arriving at a 
clinic or customers arriving at a retail outlet center, depending on the nature and objectives of the system. 

The configuration of the service system has an overwhelming impact on its efficiency, effectiveness and 
productivity. This has made service system analysis a fairly active area of research for both academics and 
practitioners. The focus of this paper is service system design, with the inclusion of some features that are 
relevant to emergency response systems. Among these features are the incorporation of multiple levels of order 
priority (often referred to as severity or acuity in a healthcare context) and multiple modes of transportation. An 
example of the application of priority levels is the use of helicopters to transport critically injured patients to a 
hospital, and ambulances to transport those whose injury or illness is not considered life-threatening. Further, 
the paper incorporates differentials in cost rates depending on event priority, and also allows for multiple 
servers, multiple shifts, and differences in service capacities between service sites. 

The objective of this paper is to model and solve the service site design problem with the features discussed 
above. The original motivation for the research came from our participation in a project involving the design of 
the Veterans’ Health Administration (VHA) service system for specialized treatment services. The scope of the 
paper, however, goes beyond the VHA system or indeed healthcare systems in general. The model developed 
here may be applied, with minor modifications, to a broad variety of services. These include commercial 
applications in telecommunications (call centers), retailing, marketing, and applications in the public sector such 
as law enforcement, healthcare, and emergency management. 

The problem is modeled as a 0–1 binary integer programming model which selects a pre-specified number of 
open facilities (referred to in this paper as service sites) from a pool of candidate service centers. The model's 
goal is to assign each combination of order priority and service district to a service site so as to minimize the 
total cost of assignment. It incorporates several relevant costs including fixed and overhead costs of service 
sites, waiting costs, service costs, and travel costs. Service capacity at each service site at the time of occurrence 



is taken into account when making assignments, as is the maximum permissible service distance. These features 
allow the paper to investigate an important aspect of system design, which is the degree of capacity 
centralization. Highly centralized systems have relatively few service sites with concentrated capacity, while 
decentralized systems have many open facilities with relatively distributed capacity. The model computes 
available service site capacity as the product of the proportion of capacity assigned to the service and total 
center capacity. The problem is solved using the Lagrangian relaxation [1] methodology. 

A wide variety of problems is solved for which computational results are provided and managerial implications 
are discussed. Fig. 1 that follows provides a simplified schematic of the problem environment of the service 
system design problem investigated in this paper. The figure indicates that the environment involves a set of 
potential service centers and a set of customer demand districts. Customer arrivals and service times are 
probabilistic. However, customer arrival rates by priority level and shift at the various districts are known as are 
service rates by priority level and shift at the potential centers. The objective of the decision-maker is to 
optimize a combination of cost and service criteria. Important issues include the determination of which service 
centers to open, corresponding center capacities, and the allocation of customers to appropriate centers. 

 

Fig. 1. Service system with multiple servers, order priority levels, and time shifts. 

The following sections are concerned, respectively, with (i) a brief summary of the relevant literature, (ii) 
presentation and discussion of the binary programming model, (iii) the solution methodology, (iv) computational 
results and managerial implications and (v) concluding thoughts and possibilities for future research. 

2. Background 
The history of academic research in emergency response systems research starts in the 1960s when the City of 
New York collaborated with the Rand Institute [2] to study the optimal design for the city's firefighting and 



police patrol systems. The techniques used were OR/MS tools such as simulation and mathematical 
programming, and the collaboration resulted in several outstanding tools that were implemented by the City of 
New York and published in more than 15 refereed journal articles in top-tier academic journals. A general 
description of many of these projects may be found in a survey of management science applications in the area 
of emergency responsiveness that is provided in [3]. 

Deterministic location models are frequently found in the GSDP and ESDP literature. ReVelle and Swain [4] did 
early work on GSDP with a model that minimizes the average travel time between service site-node 
assignments, subject to a restriction on the number of open facilities. This restriction is the hallmark of the p-
median model [5] which is a well-known formulation of the location–allocation problem. Toregas et 
al. [6] introduced a maximal travel time constraint, and formulated the problem as a set covering problem, 
where each node is ‘covered’ by at least one member of a set of facilities that meet the travel time restriction 
for the particular node. Church and ReVelle [7] formulated the maximal covering location problem which relaxes 
the requirement that all demand nodes should be covered. Galvao and ReVelle [8] provide a Lagrangian 
heuristic to solve the maximal covering problem. The service system model developed in this paper, while 
including non-deterministic elements, has commonalities with the p-median and set covering models. A review 
of location–allocation modeling applications for health services in developing countries is found in Rahman and 
Smith [9]. 

Probabilistic location models include the hypercube model discussed in Larson [10]. The model incorporated 
several performance measures including travel time to incidents. The assumptions include a Poisson process for 
the service calls, and exponentially distributed service times, which are also followed in this paper. Numerous 
modifications of the hypercube model, as well probabilistic set covering models that extend the purview of 
deterministic models to include stochastic environments are reviewed in Swersey [11]. 

Next, we briefly note some recent representative instances of the continuing research in this area, without 
claiming to provide comprehensive coverage. Berman et al. [12] develop a model involving multiple transfer 
points and one service site, where a transfer point is a location where a group of people are loaded into a 
(usually) faster mode of transportation. Sinreich and Marmor [13] apply simulation to the analysis of emergency 
room services, while Beraldi et al. [14] use stochastic programming to hedge against uncertain conditions in 
environments where service sites must be identified and the number of emergency vehicles to be assigned to 
each site must be determined. D’Amico et al. [15] apply simulated annealing and graph partitioning to the 
design of police districts, including issues pertaining to the quality of emergency services such as limits to the 
response time to calls for service. Service standards, such as service availability within a specified time or a 
specified distance, are also investigated in Marianov and ReVelle [16]. The study contains an analysis of the 
maximal availability location problem with a model for the situating of emergency vehicles. Similarly, resource 
allocation in emergency evacuation networks is studied in Bakuli and Smith [17] and Rajan and 
Mannur [18] investigate set covering-location models for emergency situations that need multiple response 
units. Pirkul and Schilling [19] consider the location of emergency facilities with workload capacity limits and the 
need for backup service. 

Amiri [20], [21] consider service system design issues that have similarity to those considered in this paper. 
These studies, like the current paper, determine service site location and user node allocation, and employ 
mathematical techniques of solution based on Lagrangian relaxation. The main area of application of the 
problem studied in Amiri [20] is the design of telecommunication networks, although other applications are 
possible. The goal is to minimize total costs which consist of access costs, waiting or queuing costs, setup costs, 
and operating costs. Computational results are provided for an integer programming model solved using two 
heuristic approaches based on Lagrangian relaxation. Amiri [21] extends the general approach to the case where 
backup or secondary service is provided at user nodes. 



The research described in this paper incorporates several important features not found in Amiri [20], [21]. In 
addition to multiple service districts and queuing considerations, the model developed here includes (i) a pre-
specified number of service sites as in the p-median problem, which have to be chosen from the set of candidate 
locations, (ii) multiple levels of order priority (for instance, a heart attack might represent the highest priority 
while the common cold could represent the lowest level), (iii) multiple level staffing, processing, and 
transportation costs, (iv) multiple work shifts, (v) multiple and varying numbers of servers and (vi) varying 
waiting times and associated waiting costs that depend on the number of servers available and demand rates. 

In addition, this paper draws on general ideas associated with emergency response systems described in Green 
and Kolesar [3]. For instance, it imposes a service distance limit for each level of order priority (or severity), and 
service center capacity limits for every combination of priority and time shift. It also includes fixed and overhead 
costs at service sites for each level of priority. The model developed is quite general and variants may be useful 
in the design of telecommunications and other networks where queuing considerations are relevant. 

3. Service model formulation 
The model is based on assumptions which are typical of queuing behavior in service systems. It is assumed that 
user arrivals are Poisson distributed, and that service time is exponentially distributed. It is also assumed that 
facilities have sufficiently large buffers relative to the demand that infinite buffer size may be assumed. The 
model allows for multiple servers at each service site and multiple classes of service corresponding to the 
priority category of the incoming demand. A service limit, equal to a pre-specified proportion of service site 
capacity, is imposed at each service site. The rationale for this is the fact that certain types of capacity are 
shared by different specialties (for instance, physicians and nursing staff on duty have to be shared by programs 
in hospitals). Thus, capacity constraints on individual programs are needed to avoid excessive allocation of 
resources to any single program. 

The service system is modeled as a set of independent M/M/s queues [22], [23] in which service rates depend 
on the average service rate of an individual server and the available number of servers. Using these 
assumptions, and the Poisson distributed demand rates, service times, waiting times, and associated waiting 
costs can be computed for each combination of service site, priority class, and work shift. The specific formulae 
used to calculate the service and waiting times are standard and shown in Fig. 2. The index sets, variables, and 
parameters of the service system model are shown next, followed by the model itself. A discussion follows the 
model, which is subsequently referred to as Model (P). 



 

Fig. 2. Queuing equations for M/M/s queues. 

Model index sets: 

𝐼𝐼 set of service districts, indexed by 𝑖𝑖 
𝐽𝐽 set of candidate service centers indexed by 𝑗𝑗 
𝐾𝐾 set of order priority levels, indexed by 𝑘𝑘 
𝐿𝐿 set of work shifts, indexed by 𝑙𝑙 
𝑆𝑆 set of server categories, indexed by 𝑠𝑠 

Model variables: 

𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖binary, = 1ifdistrict𝑖𝑖, priority𝑘𝑘, shift𝑙𝑙isassignedtoservicesite𝑗𝑗, 0otherwise 
𝜓𝜓𝑖𝑖binary, = 1ifcandidatecenter𝑗𝑗isopen, 0otherwise 
𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗binary, = 1ifservercategory𝑠𝑠appliestocenter𝑗𝑗, priority𝑘𝑘, shift𝑙𝑙, 0otherwise 

Model parameters: 

𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 service rate for a single server at center 𝑗𝑗, priority 𝑘𝑘, shift 𝑙𝑙 
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 user arrival rate at district 𝑖𝑖, priority 𝑘𝑘, shift 𝑙𝑙 
𝐷𝐷𝑖𝑖𝑖𝑖 distance in miles between district 𝑖𝑖 and center 𝑗𝑗 

Sc𝑖𝑖𝑖𝑖𝑖𝑖 unit staffing cost at center 𝑗𝑗, priority 𝑘𝑘, shift 𝑙𝑙 
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 unit processing/assistance cost at center 𝑗𝑗, priority 𝑘𝑘, shift 𝑙𝑙 
Tc𝑖𝑖𝑖𝑖𝑖𝑖 transportation cost per customer between district 𝑖𝑖 and center 𝑗𝑗 for priority 𝑘𝑘 
Wc𝑖𝑖 waiting cost per customer per period for order priority 𝑘𝑘 

Wt𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 average waiting time per customer at center 𝑗𝑗, priority 𝑘𝑘, shift 𝑙𝑙, server category 𝑠𝑠 
𝛼𝛼𝑖𝑖 fixed cost for order priority 𝑘𝑘 
𝜎𝜎𝑖𝑖 variable overhead cost for order priority 𝑘𝑘 
𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖 total service capacity at center 𝑗𝑗, priority 𝑘𝑘, shift 𝑙𝑙 
𝜍𝜍𝑖𝑖𝑖𝑖𝑖𝑖 capacity proportion allocated at center 𝑗𝑗, priority 𝑘𝑘, shift 𝑙𝑙 
𝛩𝛩 number of service sites (i.e., open candidate centers) 



𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 number of servers at center 𝑗𝑗, priority 𝑘𝑘, shift 𝑙𝑙, server category 𝑠𝑠 
𝜔𝜔𝑖𝑖 service distance limit for order priority 𝑘𝑘 
𝜉𝜉 scale economy parameter 

Model (P): 

Minimize: 

The sum of fixed costs, overhead costs, transportation costs, processing costs, staffing costs, and waiting costs 
which is equal to 

�  
𝑖𝑖∈𝐽𝐽

�  
𝑖𝑖∈𝐾𝐾

�  
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�  
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subject to: 

(1) 

�𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1∀𝑖𝑖,𝑘𝑘, 𝑙𝑙,
𝑖𝑖∈𝐽𝐽

 

(2) 

𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⩽ 𝜓𝜓𝑖𝑖∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, 

(3) 

�𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ⩽ 1∀𝑗𝑗, 𝑘𝑘, 𝑙𝑙,
𝑗𝑗∈𝑆𝑆

 

(4) 

�𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ⩾ 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙,
𝑗𝑗∈𝑆𝑆

 

(5) 

�𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⩽ 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗∀𝑗𝑗,𝑘𝑘, 𝑙𝑙, 𝑠𝑠,
𝑖𝑖∈𝐼𝐼

 

(6) 

𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ⩽ 𝜍𝜍𝑖𝑖𝑖𝑖𝑖𝑖𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖∀𝑗𝑗,𝑘𝑘, 𝑙𝑙, 𝑠𝑠, 

(7) 

𝐷𝐷𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⩽ 𝜔𝜔𝑖𝑖∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, 

(8) 

�𝜓𝜓𝑖𝑖 = 𝛩𝛩,
𝑖𝑖∈𝐽𝐽

 

(9) 



𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗,𝜓𝜓𝑖𝑖 ∈ {0,1}. 

The first term in the objective function represents the fixed costs of service sites. These costs depend on the 
level of priority, since the processing equipment and operating environment costs more for severe problems or 
injuries. The scale economy parameter captures savings due to economies of scale (if any). The second term is 
the sum of service site overhead costs (also incorporating scale economies), transportation costs between 
service sites and districts (which depend on distance and the level of priority) and processing costs. The third 
term in the objective function represents server staffing costs. The final term represents waiting costs. It is 
nonlinear because it contains the product of the variable representing the assignment of a district to a service 
site for a particular priority and shift combination (i.e., 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)) and the variable representing the number of 
servers available for the service with the particular priority and shift combination (i.e., 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗)). This term is 
necessary because the waiting time in a queue, and therefore the associated waiting cost, are dependent on 
both the rate of arrival of demand at a service site and the number of servers available to meet the demand. The 
nonlinearity makes the model significantly more difficult to solve than a linear model would be. The model is 
therefore ‘linearized’ (i.e., converted to an equivalent linear form) by means of a modeling artifact described in 
the next section. 

The constraints of the model reflect the general operating environment of the service system. Constraints (1) 
say that, for every combination of priority and shift, a district has to be assigned to exactly one service site. 
Constraints (2) impose the requirement that an assignment can be made only to an open service center. 
Constraints (3) limit each combination of service site, priority, and shift, to, at most, one server category (and, 
therefore, the corresponding number of servers). Constraints (4) indicate that a combination of service site, 
priority, and shift will have to select a server category and corresponding positive number of servers if any 
patient or user district is assigned to it. Constraints (5) ensure that, service capacity is greater than the demand 
rate for any combination of service site, priority, shift, and server category. Since each service site has a limited 
capacity to process a particular service. Constraints (6) ensure that the service rate for any combination of 
service site, priority, shift, and server category does not exceed the service capacity assigned to the service. This 
service capacity is the product of the total capacity at the site and the proportion of capacity assigned to the 
particular service. Constraints (7) impose the requirement that no assignment should exceed the service 
distance upper limit of the corresponding level of priority. Finally, Constraints (8) indicate that the number of 
service sites has to equal a pre-specified number, and Constraints (9) impose binary requirements on the 
variables of the model. 

4. Solution methodology 
The linearization of Model (P), the Lagrangian approach to solution of combinatorial problems, the dual 
Lagrangian model, and the details of the solution methodology are provided next. 

4.1. Linearization of Model (P) 
As stated earlier, the product of variables in the fourth term of the objective 
function, ∑  𝑖𝑖∈𝐼𝐼 ∑  𝑖𝑖∈𝐽𝐽 ∑  𝑖𝑖∈𝐾𝐾 ∑  𝑖𝑖∈𝐿𝐿 ∑  𝑗𝑗∈𝑆𝑆  (Wt𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗Wc𝑖𝑖)𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, makes the model nonlinear and difficult to 
solve. The model is therefore converted to an equivalent linear form in the following two steps: 

(i) A new binary variable, 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 equal to 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 is introduced. It replaces the product of variables in the fourth 
term which therefore becomes ∑  𝑖𝑖∈𝐼𝐼 ∑  𝑖𝑖∈𝐽𝐽 ∑  𝑖𝑖∈𝐾𝐾 ∑  𝑖𝑖∈𝐿𝐿 ∑  𝑗𝑗∈𝑆𝑆 (𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑊𝑊𝑀𝑀𝑖𝑖)𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗. 

(ii) In order to have equivalency between the new and original forms of Model (P), 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 must equal 0 whenever 
either 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 is equal to 0, and it must equal 1 whenever both 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 are both equal to 1. These 
conditions are imposed by introducing a set of four constraints shown below: 



(10) 

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ⩽ 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, 𝑠𝑠, 

(11) 

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ⩽ 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, 𝑠𝑠, 

(12) 

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ⩾ 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − 1∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, 𝑠𝑠, 

(13) 

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ∈ {0,1}∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, 𝑠𝑠. 

The truth table shown in Table 1 establishes the equivalency of 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 to the product of variables, 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗. 

Table 1. Truth table for variable 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 
𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − 1 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 
0 0 0 −1 0 
0 1 0 0 0 
1 0 0 0 0 
1 1 1 1 1 

 
4.2. Lagrangian approach 
Model (P) shown in the previous section is a fairly complicated 0–1 integer programming variant of the p-
median facility location model (in which exactly p facilities are open). The p-median model is an instance of 
difficult combinatorial problems known as NP-complete [24], implying that problem difficulty increases rapidly 
with size. A methodology known to perform well on these kinds of problems is Lagrangian relaxation [25], even 
though it is heuristic in nature, and has to be highly customized to the specific problem being solved. 

The essence of the Lagrangian relaxation methodology is the relaxation of complicating constraints in order to 
create a problem that is amenable to solution by relatively straightforward methods. The objective function is 
penalized in proportion to the degree of relaxation by adding the relaxed constraints to the objective function 
multiplied by coefficients called Lagrangian multipliers. This process results in a problem whose optimal 
objective value provides a lower bound on the optimal objective value of the original primal problem (P). The 
Lagrangian dual problem is to maximize the value of the lower bound by making iterative adjustments to the 
values of the multipliers. While heuristic, an effective method for doing this is the subgradient method (1) for 
which convergence results are found in Polyak [26]. The subgradient method does not guarantee monotonic 
improvement in the lower bound, but frequently progresses, over a number of iterations, to improved (i.e., 
higher) lower bounds. 

An upper bound on the optimal objective value of (P) is necessary in order to check for the degree of 
convergence of the solutions. An upper bound is available from a feasible solution, and a Lagrangian 
methodology will often generate a feasible solution either at every iteration, or at the end of a pre-specified 
number of iterations. In the case of the upper bound, it is evident that improvement follows from a lower 
objective function value. The updated upper and lower bounds are checked frequently for degree of 
convergence, and the overall procedure is terminated when acceptable convergence is attained. In the case of 
the (modified) service Model (P), the complicating constraints are (2), (4), (5), (10)–(12) since each of these has 
more than one variable associated with it. Accordingly, these constraints are relaxed in order to create a 



relatively amenable lower-bounding model. The details of the lower bounding and upper bounding routines are 
provided in the subsections that follow. 

4.3. Dual problem 
The complicating constraints (2), (4), (5), (10)–(12) are relaxed and ‘dualized’ (i.e., added to the objective 
function) after associating dual multipliers with each of them as follows: 
multipliers 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 are associated with Constraints (2), (4), (5), (10)–(12), 
respectively. The resulting Lagrangian dual problem is the following: 
Maximize: 𝜋𝜋(𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗) with dual variables 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, 
and ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 non-negative, where 𝜋𝜋(𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗) is Model (D1) shown below. In this 
model, 𝑶𝑶𝑶𝑶(𝑷𝑷) denotes the objective function of Model (P): 

Model (D1): Minimize:𝑶𝑶𝑶𝑶(𝑷𝑷) + ∑  𝑖𝑖∈𝐼𝐼 ∑  𝑖𝑖∈𝐽𝐽 ∑  𝑖𝑖∈𝐾𝐾 ∑  𝑖𝑖∈𝐿𝐿 �𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜓𝜓𝑖𝑖� + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − ∑  𝑗𝑗∈𝑆𝑆 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗�� +
∑  𝑖𝑖∈𝐽𝐽 ∑  𝑖𝑖∈𝐾𝐾 ∑  𝑖𝑖∈𝐿𝐿 ∑  𝑗𝑗∈𝑆𝑆 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗�∑  𝑖𝑖∈𝐼𝐼 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗� + ∑  𝑖𝑖∈𝐼𝐼 ∑  𝑖𝑖∈𝐽𝐽 ∑  𝑖𝑖∈𝐾𝐾 ∑  𝑖𝑖∈𝐿𝐿 ∑  𝑗𝑗∈𝑆𝑆 ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗�𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 −
𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�+ ∑  𝑖𝑖∈𝐼𝐼 ∑  𝑖𝑖∈𝐽𝐽 ∑  𝑖𝑖∈𝐾𝐾 ∑  𝑖𝑖∈𝐿𝐿 ∑  𝑗𝑗∈𝑆𝑆 ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗�𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗� + ∑  𝑖𝑖∈𝐼𝐼 ∑  𝑖𝑖∈𝐽𝐽 ∑  𝑖𝑖∈𝐾𝐾 ∑  𝑖𝑖∈𝐿𝐿 ∑  𝑗𝑗∈𝑆𝑆 ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗�𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +
𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − 1 − 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗� 

subject to: 

(14) 

�𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1∀𝑖𝑖,𝑘𝑘, 𝑙𝑙,
𝑖𝑖∈𝐽𝐽

 

(15) 

�𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ⩽ 1∀𝑗𝑗, 𝑘𝑘, 𝑙𝑙,
𝑗𝑗∈𝑆𝑆

 

(16) 

𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ⩽ 𝜍𝜍𝑖𝑖𝑖𝑖𝑖𝑖𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖∀𝑗𝑗,𝑘𝑘, 𝑙𝑙, 𝑠𝑠, 

(17) 

𝐷𝐷𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⩽ 𝜔𝜔𝑖𝑖∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, 

(18) 

�𝜓𝜓𝑖𝑖 = 𝛩𝛩,
𝑖𝑖∈𝐽𝐽

 

(19) 

𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗,𝜓𝜓𝑖𝑖 , 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ∈ {0,1}. 

It may be observed that Model (D1) is separable by variable, and decomposes into the following four models 
minus the term ∑  𝑖𝑖∈𝐼𝐼 ∑  𝑖𝑖∈𝐽𝐽 ∑  𝑖𝑖∈𝐾𝐾 ∑  𝑖𝑖∈𝐿𝐿 ∑  𝑗𝑗∈𝑆𝑆 ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗. The lower bound is initialized to a very low value and 
stored in a counter called ‘LBinc’ (i.e., incumbent lower bound) prior to the first iteration of the solution 
procedure. The lower bound calculated at each iteration will be computed by solving the models below and 
stored in counter ‘LBiter’. This counter is initialized to zero at the beginning of each iteration. 

Model (D2): 



Minimize:�  
𝑖𝑖∈𝐽𝐽

�  
𝑖𝑖∈𝐾𝐾

�  
𝑖𝑖∈𝐿𝐿

�(𝛼𝛼𝑖𝑖𝜍𝜍𝑖𝑖𝑖𝑖𝑖𝑖𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖)𝜉𝜉 −�𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐼𝐼

�𝜓𝜓𝑖𝑖 

subject to: 

(20) 

�𝜓𝜓𝑖𝑖 = 𝛩𝛩,
𝑖𝑖∈𝐽𝐽

 

(21) 

𝜓𝜓𝑖𝑖 ∈ {0,1}∀𝑗𝑗. 

Model (D3): 

Minimize:�  
𝑖𝑖∈𝐽𝐽

�  
𝑖𝑖∈𝐾𝐾

�  
𝑖𝑖∈𝐿𝐿

�  
𝑗𝑗∈𝑆𝑆

�𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗Sc𝑖𝑖𝑖𝑖𝑖𝑖 −�  
𝑖𝑖∈𝐼𝐼

(𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 + ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗) −𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖� 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 

subject to: 

(22) 

�𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ⩽ 1∀𝑗𝑗, 𝑘𝑘, 𝑙𝑙,
𝑗𝑗∈𝑆𝑆

 

(23) 

𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ⩽ 𝜍𝜍𝑖𝑖𝑖𝑖𝑖𝑖𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖∀𝑗𝑗,𝑘𝑘, 𝑙𝑙, 𝑠𝑠, 

(24) 

𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ∈ {0,1}∀𝑗𝑗,𝑘𝑘, 𝑙𝑙, 𝑠𝑠. 

Model (D4): 

Minimize:�  
𝑖𝑖∈𝐼𝐼

�  
𝑖𝑖∈𝐽𝐽

�  
𝑖𝑖∈𝐾𝐾

�  
𝑖𝑖∈𝐿𝐿

�(𝜎𝜎𝑖𝑖𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖)𝜉𝜉 + (𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖Tc𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖Mc𝑖𝑖𝑖𝑖𝑖𝑖) + 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +��𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗
𝑗𝑗∈𝑆𝑆

�𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖

+ �(ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗)
𝑗𝑗∈𝑆𝑆

� 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

subject to: 

(25) 

�𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1∀𝑖𝑖,𝑘𝑘, 𝑙𝑙,
𝑖𝑖∈𝐽𝐽

 

(26) 

𝐷𝐷𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⩽ 𝜔𝜔𝑖𝑖∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, 

(27) 



𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙. 

Model (D5): 

Minimize:�  
𝑖𝑖∈𝐼𝐼

�  
𝑖𝑖∈𝐽𝐽

�  
𝑖𝑖∈𝐾𝐾

�  
𝑖𝑖∈𝐿𝐿

�  
𝑗𝑗∈𝑆𝑆

((𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑊𝑊𝑀𝑀𝑖𝑖)𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 + ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 + ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗)𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 

subject to: 

(28) 

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ∈ {0,1}∀𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, 𝑠𝑠. 

The solution procedures for the subproblems are based on greedy algorithms [29] and described in procedures 
PD2, PD3, PD4, and PD5 below corresponding to models (D2), (D3), (D4), and (D5), respectively. 

Procedure PD2. 

(a) Initialize a List LD2 to {null}, and a counter D2T to zero. 

(b) For each candidate center (indexed by 𝑗𝑗), form the coefficient C2𝑖𝑖 = ∑  𝑖𝑖∈𝐾𝐾 ∑  𝑖𝑖∈𝐿𝐿 {(𝛼𝛼𝑖𝑖𝜍𝜍𝑖𝑖𝑖𝑖𝑖𝑖𝛥𝛥𝑖𝑖𝑖𝑖𝑖𝑖)𝜉𝜉 −
∑  𝑖𝑖∈𝐼𝐼 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}, and it to List LD2. 

(c) Sort List LD2 in ascending order. 

(d) Add the first 𝛩𝛩 coefficients in List LD2 to D2T and set the corresponding 𝜓𝜓𝑖𝑖 variables to 1. Set the 
remaining 𝜓𝜓𝑖𝑖 variables to 0. 

(e) Add D2T to LBiter. End the procedure. 

Procedure PD3. 

(a) Initialize a counter D3T to zero. Then, for each combination of service site (indexed by 𝑗𝑗), priority (indexed 
by 𝑘𝑘), and shift (indexed by 𝑙𝑙) do the following. 

(b) Initialize a list LD3 to {null}. 

(c) For each server category (indexed by 𝑠𝑠), form the coefficient C3𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗Sc𝑖𝑖𝑖𝑖𝑖𝑖 − ∑𝑖𝑖∈𝐼𝐼 (𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 +
ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗) − 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖. 

(d) If C3𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 < 0 and constraint (23) is not violated, add C3𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 to list LD3. 

(e) If list LD3={null}, set 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = 0 for all 𝑠𝑠 and go to the next combination at step (a). Otherwise: 
identify 𝑠𝑠∗ corresponding to Min{C3𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗} in list LD3, set 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = 1 for 𝑠𝑠 = 𝑠𝑠∗, add the corresponding coefficient 
to D3T, and set 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = 0 for all remaining 𝑠𝑠. 

(f) If every combination has been processed, add D3T to LBiter and end the procedure. Otherwise, go to the next 
combination at step (a). 

Procedure PD4. 

(a) Initialize a counter D4T to zero. Next, for each combination of district (indexed by 𝑖𝑖), priority (indexed by 𝑘𝑘) 
and shift (indexed by 𝑙𝑙) do the following. 

(b) Initialize a list LD4 to {null}. 



(c) For each service site (indexed by 𝑗𝑗), form the coefficient C4𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝜎𝜎𝑖𝑖𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖)𝜉𝜉 + (𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖Tc𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖Mc𝑖𝑖𝑖𝑖𝑖𝑖) +
𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + (∑  𝑗𝑗∈𝑆𝑆 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗)𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 + ∑  𝑗𝑗∈𝑆𝑆 (ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗). 

(d) If constraint (26) is not violated, add C4𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 to the list LD4. 

(e) Identify 𝑗𝑗∗ corresponding to Min�C4𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� in list LD4. Set 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 corresponding to 𝑗𝑗∗ = 1, and 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 for all 
remaining 𝑗𝑗. Add the coefficient corresponding to 𝑗𝑗∗ to D4T. 

(f) If every combination has been processed, add D4T to LBiter and end the procedure. Otherwise, go to the next 
combination at step (a). 

Procedure PD5. 

(a) Initialize a counter D5T to zero. Next, for each combination of district (indexed by 𝑖𝑖), service site (indexed 
by 𝑗𝑗), priority (indexed by 𝑘𝑘), shift (indexed by 𝑙𝑙), and server category (indexed by 𝑠𝑠) do the following. 

(b) Form the coefficient C5𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = (Wt𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗Wc𝑖𝑖)𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 + ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 + ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗. If C5𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 < 0, add it to D5T, 
and set 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = 1, otherwise set 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = 0. 

(c) If every combination has been processed, add D5T to LBiter, and end the procedure. Otherwise, return to 
step (a) for the next combination. 

The greedy procedures described above make it clear that the continuous versions of the subproblems (in which 
the binary requirements on variables are replaced by continuous ranges between 0 and 1) would naturally have 
integer solutions in which each variable has either the value 0 or the value 1. It follows that the model has the 
integrality property [27], [28] which means that the lower bound found by solving its Lagrangian relaxation will 
not be tighter than the lower bound found by solving its linear programming relaxation. Nevertheless, the 
partitioning of Model (D1) leads to subproblems that can be rapidly solved using relatively fast greedy 
algorithms outlined above. 

At the end of each iteration, LBiter is compared to LBinc. If LBiter > LBinc, then the incumbent lower bound is 
updated, i.e., LBinc = LBiter. 

4.4. Updating of dual multipliers 
The subgradients [1], [28] of the dual function 𝜋𝜋(𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗) are the following: 

𝜉𝜉1�𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜓𝜓𝑖𝑖 , 𝜉𝜉2�𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −�  
𝑗𝑗∈𝑆𝑆

𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗and 𝜉𝜉3(𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗)

= ��  
𝑖𝑖∈𝐼𝐼

𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� − 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗, 𝜉𝜉4(ɛ𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗) = (𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖),𝜉𝜉5(ɛ𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗)

= (𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗)and𝜉𝜉6(ɛ𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗) = (𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 − 1 − 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗). 

The dual multipliers are updated in a systematic manner at each iteration using these subgradients and a step 
size for which convergence results are provided in Polyak [26]. This step size is the following: 𝛤𝛤𝑖𝑖 = 𝛿𝛿𝑖𝑖(𝐼𝐼𝐼𝐼𝑏𝑏 −
𝐼𝐼𝑙𝑙𝑏𝑏)/∥ 𝜂𝜂𝑖𝑖 ∥2, where 𝛿𝛿𝑖𝑖 is a scalar between 0 and 2, and 𝜂𝜂𝑖𝑖 is the vector of subgradients at iteration 𝑖𝑖. In the 
current implementation, 𝛿𝛿𝑖𝑖 starts at 2.0, and is progressively reduced at each iteration, until a lower limit of 0.10 
is reached, when 𝛿𝛿𝑖𝑖 is restored to 2.0. 𝐼𝐼𝐼𝐼𝑏𝑏 and 𝐼𝐼𝑙𝑙𝑏𝑏 are, respectively, the incumbent upper and lower bounds. 

The identification of the optimal values of multipliers is, in general, a difficult task [29] which is why, in practice, 
most implementations resort to iterative schemes such as the one described above. Accordingly, 
let 𝛷𝛷 represent, in a general way, any of the six dual multipliers, with 𝜗𝜗 as the corresponding subgradient. Then, 



the value of the multiplier at iteration 𝑖𝑖 + 1 is the following: 𝛷𝛷𝑖𝑖+1 = 𝛷𝛷𝑖𝑖 + 𝛤𝛤𝑖𝑖(𝜗𝜗). The lower bound problem in 
the next iteration is solved by applying the updated dual multipliers. 

4.5. Primal heuristic 
The upper bound is initialized at the beginning of the solution procedure to a very high value, UBinc (incumbent 
upper bound). After each iteration of the lower bounding routine, a heuristic is used to generate a (primal) 
feasible solution from the solution to the lower bound problem, noting that the lower bound solution is 
generally not feasible for the primal Model (P). This heuristic routine has four steps, described below. 

Step 1: (a) Initialize a counter, UBiter to zero. This counter will contain the objective function value for the 
solution generated by the upper bound heuristic. Let 𝑉𝑉 be the set of open service sites at the end of the lower 
bound routine, that is, 𝑉𝑉 = {𝑗𝑗:𝜓𝜓𝑖𝑖 = 1}. 

(b) According to Constraints (1) and (2) of the primal model, for each combination of district, priority, and shift, 
exactly one 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 binary variable has to equal 1, and the service center has to be from the set of open service 
sites i.e., j∈V. 

(c) Also, Constraint (7) imposes a distance requirement on the choice of the 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 variable. A 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 variable that 
corresponds to an open service site and does not violate the distance requirement is deemed to be an eligible 
variable. 

(d) For each combination of district, priority, and shift, the upper bound routine loops through all eligible 
variables finally selecting the variable which has the smallest objective function contribution. This contribution is 
added to the counter, UBiter. 

Step 2: (a) Constraints (3) and (4) imply that for each 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 variable equal to 1, exactly one 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 binary variable 
has to equal 1. For each combination of center, priority, and shift, a number of 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 variables may be eligible, 
with eligibility defined as not violating Constraints (5) and (6). 

(b) The upper bound routine first determines, for each such combination, whether or not a 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 variable is equal 
to 1. If so, it identifies the set of eligible 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 variables. Finally, it loops through all the eligible 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 variables, 
choosing exactly one depending on which contributes the least service cost to the primal objective function. The 
contribution is added to the counter UBiter. 

Step 3: The heuristic loops through each combination of district, site, priority, shift, and server category. For 
each combination, if 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 are both equal to 1, then the corresponding waiting cost is added to the 
counter UBiter. 

Step 4: The objective function contribution corresponding to all the open service centers, that is, corresponding 
to 𝑗𝑗 ∈ 𝑉𝑉, are added to the heuristic objective function counter, UBiter. At this point, no primal constraint is 
violated, and the objective function value of the heuristic provides an upper bound to the optimal objective 
function value of the primal problem. If UBiter < UBinc, then UBinc = UBiter. 

The convergence between the incumbent upper and lower bounds is conducted at the end of each iteration. If 
either (i) the convergence is less than a pre-specified value or (ii) the number of iterations is equal to the 
maximum permitted number, the solution procedure is terminated. Otherwise, a new iteration is started, which 
generates a new set of lower and upper bounds. Fig. 3 summarizes the Lagrangian methodology deployed in this 
paper. 

 



 

Fig. 3. Lagrangian methodology for system design. 

5. Computational study and managerial implications 
The focus of the computational study conducted for this paper is understanding the policy implications of key 
managerial and environmental parameters. A managerial parameter is within management's control, while an 
environmental parameter is determined in the short run by exogenous factors. These implications are discussed 
after a description of the general parameters of the study. The data for the study are simulated, based on 
uniform distributions between assumed minimum and maximum values of the relevant parameters. For 
instance, at the base level of capacity, the number of available servers, for each combination of service site, 
shift, and order priority, is distributed uniformly between two and six servers. The assumed values for data 
parameters are provided in the Appendix. 

The managerial implications of the results found in this study are analyzed after a brief discussion of the solution 
times and the computational gaps (between upper and lower bounds) associated with problems of varying size. 
This establishes an approximate correspondence between the size of a problem and the expected solution time 
and precision. The computational times and gaps reported in Table 2 are the averages for 10 problems for each 
configuration, solved on a Windows XP personal computer with 1 Gbyte of memory, and a processing clock 
speed of 3.2 GHz. The problem size is varied by changing (i) the number of service districts, (ii) the required 
number of service sites, and (iii) the number of candidate centers while keeping the number of shifts per day 
fixed at three, the number of server categories fixed at three (high, medium, and low), and the number of order 
priority levels also fixed at three for each problem. The service distance limit for this set of problems is 40 miles. 



Table 2. Computational times and bounds 
Number of Required number Number of Average gap % between Average comp. 
districts of facilities candidate centers lower and upper bounds time (s) 
40 10 40 0.825 0 
60 15 60 0.900 0 
100 25 100 0.946 4 
150 40 150 0.887 10 
200 50 200 1.152 72 
250 60 250 1.506 145 

 

The average computational times shown provide a measure of confidence that large versions of the service 
system problem can be solved in reasonable time. The largest problems solved in this study, with 250 service 
districts, 60 service sites, and 250 candidate centers were solved with average time about two and a half 
minutes corresponding to a maximum of 20 iterations in the Lagrangian methodology. The average gaps 
between upper and lower bounds are also reasonable, averaging 1.5% for the largest problem category 
investigated and close to 1% for other categories. 

From a managerial perspective, it is more interesting and often more important to evaluate alternative 
scenarios that are dependent on key managerial policies and the service environment. The system design factors 
investigated in this paper are: (i) the service distance limit between sites and districts; (ii) system configuration, 
particularly the number of service sites relative to the numbers of service districts and candidate centers; (iii) 
concentration of capacity and (iv) economies of scale. Concentration and centralization represent quandaries 
that underlie the design of all production systems, whether in services or manufacturing. The service distance 
limit is important when service time (in particular, response time) is critical—these include emergency response 
services such as police, fire-fighting, and ambulatory services. Service response times are usually strongly 
correlated with the distances between service districts and the sites to which they are assigned. The level of the 
scale economies parameter is an important environmental parameter. It is dependent on the system technology 
and is not generally fully within management's short-run control. The managerial experiment examines the 
implications of alternative values of the scale economies parameter. 

Alternative scenarios are evaluated using two broad criteria: the service proportion as measured by the 
proportion of demand met and total cost, made up of (i) primary cost elements such as fixed costs, service costs, 
and waiting costs, and (ii) the cost of lost service, discussed below. Alternative centralization/decentralization 
policies, which correspond to different numbers of service sites and varying average site capacity, generally 
exhibit variation in the service proportion. This is because a greater number of sites and/or higher site capacity 
could allow a larger number of users to access the system, given a particular service distance limit. At the same 
time, smaller numbers of service sites and/or smaller average site capacity are usually associated with lower 
primary costs because of lower fixed costs, service costs, etc. This study examines the effects of both forms of 
centralization: (i) reducing the number of service sites while keeping average site capacity constant and (ii) 
increasing the average capacity of a smaller number of service sites. Similarly, a larger service distance limit is 
expected to meet a higher proportion of demand, given a fixed number of open facilities. Finally, varying values 
of the scale economies parameter corresponds to different technologies deployed by the firm, which in turn 
should have implications for centralization policy. This issue is investigated using three alternative values of the 
scale economies parameter. 

In order to investigate these managerial issues with the model and methodology developed in this paper, a 
modeling artifact has to be introduced. This is necessitated by Constraints (1)–(6) of Model (P) which, as 
explained next, force the system to provide sufficient capacity to meet all demand. First, Constraints (1) and (2) 



require that any combination of district, priority, and shift should be assigned to one open center. Constraints 
(3) and (4) imply that one server category (for the corresponding priority and shift) in the selected center should 
serve the assigned demand combination. Finally, Constraints (5) and (6) require the server category chosen to 
have sufficient capacity to meet the demand corresponding to the assigned demand combination. Since this is 
true for every demand combination, capacity has to suffice to meet demand for the model as a whole. 

In order to examine the impact of shortfalls in capacity corresponding to the alternative system design policies 
without violating Constraints (1)–(6), all demand that cannot be met by the set of ‘real’ service sites is allocated 
to a ‘dummy’ or ‘artificial’ service site. This artifact is similar in concept to the ‘dummy’ supply node idea often 
used to solve ‘unbalanced’ transportation problems with the ‘balanced’ transportation model. The only cost 
corresponding to these allocations is the cost of lost service, simply the product of a specified lost service 
penalty and the number of users whose demand for service is not satisfied. The lost service penalty per user is 
sometimes a precise figure such as lost federal government funding per user (in the case of the VHA) or an 
estimated figure that serves as a proxy for lost goodwill, lost sales, etc. 

The effects of alternative centralization and service distance policies are investigated for a service configuration 
involving 60 service districts, 60 candidate centers, three priority levels, three shifts, and three server categories. 
The total demand for service is the same in all scenarios (corresponding to the demand in the 60 districts), which 
allows the comparison of alternative policies using service proportion and cost criteria. The experiment 
investigates several combinations of scenarios in which the service distance limit is progressively reduced from 
80 to 10 miles in increments of 20 miles and the number of open service sites is progressively reduced from 60 
to five depending on the centralization level. The cost and service effects of alternative levels of the scale 
economies parameter and centralized capacity are also evaluated. 

The results reported in Table 3, Table 4, Table 5, Table 6 are the averages obtained from all the scenarios 
investigated in this study as follows. The scenarios correspond to four factors which are distance limit, system 
configuration, centralization of capacity, and scale economies. This results in a total of 3000 solved problems 
obtained as follows: 5 (distance limits) ×5 (configurations) ×4 (capacity levels) ×3 (scale 
parameters) ×10 (problems/combination). The averages for any particular level of a given factor are generated 
by holding the factor level constant and including all possible combinations of the other factors. For instance, 
the average results for the 80 mile distance limit reported in Table 3 are the averages from the ‘slice’ of 600 
problems that are found in the master set of 3000 solved problems when only problems with the distance limit 
of 80 miles are selected. The intent is to avoid any bias which might occur if results for a factor level are 
confined to a smaller subset of solved problems. Unfortunately, considerations of space and clarity preclude the 
reporting of results for every possible combination. 

Table 3. Distance limit results 
Dist. limit Primary cost Lost serv. cost Total cost Relative cost (%) Service (%) Relative serv. (%) 
80 37 281 8709 45 990 100.00 78.91 100.00 
60 36 853 10 879 47 731 103.79 73.66 93.35 
40 35 661 12 414 48 075 104.53 69.92 88.60 
20 34 179 18 859 53 038 115.32 54.33 68.85 
10 34 716 28 683 63 399 137.85 30.48 38.62 

Table 4. System configuration results 
Config. Primary cost Lost serv. cost Total cost Relative cost (%) Service (%) Relative serv. (%) 
60–60–60 60 975 9180 70 155 176.79 77.67 100.00 
60–30–60 49 300 12 359 61 659 155.38 69.94 90.05 
60–20–60 37 908 14 578 52 486 132.27 64.62 83.20 
60–10–60 23 468 19 061 42 529 107.18 53.94 69.45 



60–05–60 17 139 22 543 39 682 100.00 45.50 58.58 
Table 5. Centralization results 

Cap. level Primary cost Lost serv. cost Total cost Relative cost (%) Service (%) Relative serv. (%) 
1x 60 975 9180 70 155 164.87 77.67 100.00 
2x 40 603 13 463 54 066 127.06 67.30 86.65 
3x 32 375 16 693 49 069 115.32 59.58 76.71 
4x 21 618 20 934 42 551 100.00 49.40 63.60 

Table 6. Scale economies results 
Scale parm. Primary cost Lost serv. cost Total cost Relative cost (%) Service (%) Relative serv. (%) 
0.80 25 676 16 427 42 102 100.00 60.18 95.92 
0.85 35 825 15 391 51 216 121.65 62.74 100.00 
0.90 45 714 15 908 61 622 146.36 61.47 97.98 

 

In these tables, the first column indicates the problem category, the second column shows the primary cost for 
the category, the third column provides the lost service cost, the total cost and relative (to the minimum) total 
cost are shown in columns four and five, and the sixth and seventh columns contain the service proportion and 
relative (to the maximum) service proportion, respectively. 

Table 3 summarizes the effects of alternative service distance limits, ranging from 80 to 10 miles. It shows that a 
service distance limit of 10 miles corresponds to the highest total cost and the lowest proportion of demand 
met. In contrast, a service limit of 80 miles corresponds to the lowest cost and the highest service proportion. 
Other service limits show a progressive increase of cost and a progressive decrease of service as the service limit 
is reduced from 80 miles. While the results appear to favor relatively longer service distance limits, two 
important caveats should be kept in mind. First, specialized service systems such as emergency systems often 
need to impose additional service response time restrictions that favor shorter distance limits. Model (P) 
provides a very useful device for evaluating the likely cost and service impact of time restrictions. Secondly, the 
results for a given scenario are significantly impacted by the level of the lost service penalty relative to other 
costs. Again, Model (P) provides the decision-maker with the capability to evaluate alternative scenarios 
involving varying relative levels of the lost service penalty. 

The results corresponding to alternative system configurations are provided in Table 4. It is seen that the 60 
service site system (all systems have 60 service districts and 60 candidate centers) is associated with the highest 
service proportion, about 78%. However, the total cost is also the highest for this configuration. The table also 
shows that the five service site configuration provides the lowest total cost and the lowest service level. Overall, 
the service–cost tradeoff appears to tilt in favor of the 20 center system. This follows from the observations that 
the 20 site system is (i) about 32% costlier than a five center system and serves about 25% more users and (ii) 
about 44% cheaper than a 60 site system while serving about 17% more users. 

Table 5 shows the results corresponding to problems which have different levels of average service site capacity 
combined with a varying number of service sites. In effect, each problem category represents a level of capacity 
concentration. The first category corresponds to the base capacity level, with the number of servers varying 
between two and five for each combination of site, priority, and shift, with corresponding levels of site capacity 
(the Appendix provides details). The base category is tested on configurations with 60 service sites only. The 
second category doubles the number of servers and the site capacity and it is applied to configurations with 30 
and 20 service sites. The third and fourth category represent high degrees of capacity concentration, three and 
four times, respectively, as the base level. The third category is tested with configurations with 20 and 10 service 
sites, while the fourth is applied to configurations with 10 and five service sites. The results in Table 5 indicate 
that category one is best from a service proportion standpoint, while category four performs best with respect 



to cost. Categories two and three provide intermediate values for both cost and service and appear to be good 
choices if extremes with respect to either criteria are to be avoided. 

The results with respect to varying levels of the scale economies parameter are presented in Table 6. Three 
levels of the scale economies parameter are compared, representing various levels of increasing returns to 
scale. This reflects situations where higher levels of centralization lead to fixed and overhead cost savings to a 
greater or smaller degree, at least for the capacity ranges being considered. As noted earlier, the scale economy 
parameter is viewed as an environmental parameter (at least in the short run) that reflects the technology 
deployed. Technologies corresponding to decreasing or constant returns to scale can be captured by a negative 
or unitary value of the scale economies parameter. Table 6 shows that the lowest level of the parameter 
corresponds to the lowest total cost by a significant margin. It also indicates that service proportions are about 
the same for the three parameter values investigated. The cost results are subject to a caveat though—because 
this study views technology as constant in the short run, the differences in initial investment costs between 
technologies are not incorporated in the model. The fixed and overhead costs in the model reflect the costs 
corresponding to various levels of priority or severity rather than technology. Thus, Model (P) would have to be 
modified to a small degree in order to capture differences between the costs of sophisticated versus simpler 
technologies. 

Table 3, Table 4, Table 5, Table 6 represent different analytical perspectives that assist managers in decision-
making. Managers can focus on perspectives that are of high importance in a particular context. As is generally 
the case with decision support systems, management may have to incorporate additional information that is not 
contained in Model (P), depending on the particular service environment. For instance, budgetary limitations 
and/or service response time restrictions may limit the choices available to management. The analysis 
summarized in Table 3, Table 4, Table 5, Table 6 provides the decision-maker with information regarding the 
tradeoffs that are an inevitable part of system design, and helps him/her to have a better understanding of the 
cost/service ramifications associated with alternative designs. 

6. Conclusions 
This paper has presented a comprehensive model for formulating the service system design problem and a 
methodology for solving the model based on Lagrangian relaxation. This model is a variant of both the p-median 
and the location set covering models. It is shown that the methodology can solve fairly large instances of the 
problem in reasonable computing times. 

The model incorporates several features that are commonly encountered in service networks. These include 
multiple levels of servers, order priority levels, service districts, work shifts, service sites, and candidate centers. 
Service demand is based on the Poisson distribution, and service times are exponentially distributed. The model 
includes a wide range of relevant costs such as fixed and overhead costs, waiting costs, traveling costs, service 
costs, and processing costs. It incorporates service capacity limits at service sites and economies of scale that are 
applied to fixed and overhead costs. The cost of lost sales (or lost service) is included in the analysis by means of 
a modeling artifact. 

An extensive managerial experiment is conducted to study the implications of alternative policies with respect 
to key managerial parameters such as the maximum service distance limit and the levels of system centralization 
and concentration. The implications of varying levels of economies of scale are also discussed. This experiment is 
described in detail in Section 5. It is seen that the system parameters have significant implications for the key 
evaluation criteria used in this study which are system cost and the system service proportion which is the 
proportion of service demand met. 



While the model developed in this study provides important insights for managerial decision-making, its 
limitations provide some direction for future research in service system design. Ideas for extending the current 
research include incorporation of (i) service response time restrictions; (ii) modeling of dispersed capacity 
systems such as police patrols; (iii) general service time distributions; (iv) finite queues at service facilities and (v) 
initial investment costs of alternative technologies. It is believed that the current model provides a solid 
foundation for a managerial decision support system for analyzing service system design problems, and also for 
the inclusion of additional complexities and nuances as listed above. 

Appendix A. Data parameters 
Data for this study are simulated on the basis of uniform distributions. The ranges for these distributions are as 
follows: 

•Number of servers at center/priority/shift: U(2,6) for the base case, multiples of two, three, and four of the 
base case for cases 2x,3x, and 4x in Table 5. 

•Service rate per server at center/priority/shift: U(6,9) for priority one, 90% and 81% of U(6,9) for priority two 
and three, respectively. 

•Arrival rate at district/priority/shift: U(3,5) for priority one, 90% and 81% of U(3,5) for priority two and three, 
respectively. 

•Processing cost per unit at center/priority/shift: U($20,$40). 

•Staffing cost per unit at center/priority/shift: U($10,$20). 

•Transportation cost per customer for district/center/priority: U($10,$20) for priority one, 90% and 81% 
of U($10,$20) for priority two and three, respectively. 

•Lost service cost per unit: $25 000 per lost unit. 

•Fixed cost per unit capacity: U($4,$10) for priority one, 90% and 81% of U($4,$10) for priority two and three, 
respectively. 

•Overhead cost per unit capacity: U($2,$8) for priority one, 90% and 81% of U($2,$8) for priority two and three, 
respectively. 
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