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A Decision Model for E-commerce-enabled Partial Market Exit 

By Siddhartha Syam and Amit Bhatnagar 

 

Struggling retail chains often try to recover profitability by closing some of their stores. 

The challenge in this strategy lies in determining how many stores to close, as store exit has 

implications for both the customers and the supply chain. After a store closes, its customers are 

lost forever to the competition, unless there is a surviving open store nearby or an electronic 

alternative such as an e-store. From the supply chain perspective, after a store closes, its 

supporting regional distribution center is left with less business, and thus reduced viability. This 

paper develops a decision support model to study the profitability of alternative retail network 

structures by varying the proportion of stores that are closed, the average price sensitivity of 

demand, the price difference between the online store and the traditional retailers, and customer 

retention rates. 

 

Introduction 

While the current slowdown in economy has different implications for different sectors of 

economy, the implication for retailers is that it invariably leads to closing of stores. In just the last 

two months of 2008, a number of venerable retail chains, such as Circuit City, Steve & Barry’s, 

Tweeter, Club Libby Lu, Whitehall Co. Jewelers, Mervyn’s, CompuUSA, etc. filed for bankruptcy 

and exited the market. Therefore, while store closing is very real, little academic research has 

been carried out to examine the different facets of store closing. 

Furthermore, the limited research on market exit (Dixit and Chintagunta 2007; Karakaya 

2000; Murto 2004; Ping 1999) has examined only two decision choices for a firm, to exit or to 

stay. In practice, there exists a third option of partial exit by a retail firm, for example, a chain 

store can close some stores, and retain others. Partial market exit as a strategy is often pursued 

by struggling retail firms to recover profitability. Consider the following instances from the last 

quarter of 2008. On January 8, 2009, after reporting a $30 million loss in the first nine months of 

2008, and with sales dropping 4.3%, Macy announced the closure of eleven stores. On 

December 10, 2008, office supply chain Office Depot said that it would shutter 112 stores over 

the next three months as part of an effort to cut costs amid a slumping economy. In November 

2008, Sears announced the closure of eight underperforming stores. Some other major retail 

chains that partially exited the market in 2008 are Sharper Image, Talbots, Eddie Bauer, Ann 

Taylor, Linens ‘n Things, Gap Inc., Foot Locker, KB Toy Works, Jasmine Sola, Zale Corp, 
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Bombay Company, Pier 1, Walt Disney Stores, Home Depot, Pep Boys, Sprint Nextel, Ethan 

Allen Interiors, Verizon, Home Depot, Lowes, etc. Partial market exit as a strategy need not be 

confined to only retail chains, but can be deployed by any member of the distribution channel. 

For instance, in 2007, Bon-Ton Department store closed one of its distribution centers and 

consolidated its merchandise processing functions into its four remaining distribution centers 

(FinancialWire 2007). Surprisingly, despite being so common, partial exit has received no 

attention from academic researchers. 

One would expect a retail chain pursuing partial market exit to close the poor performing 

stores and retain the high-performing ones. However, the choice of stores to close is complicated 

by the fact that store closing has implications for the customers of the closed store. Customers of 

closed stores suffer from a feeling of abandonment and may be forever lost to the competition 

(Johnson 2000). A retail firm can use its surviving retail stores to retain the customers of closed 

stores (see Exhibit 1). Travel to these more distant stores involves extra travel cost for the 

customers, making the distant stores less attractive than the closed store. Therefore, while 

deciding whether to close a store, it is critical to ensure that there is a surviving store within a 

reasonable distance, so as not to impose too high a travel cost on its customers. In recent years, 

this constraint has been mitigated to some extent by the emergence of the Internet which makes 

it possible for firms to retain some of the lost sales via an online store. The idea of using multiple 

channels to retain consumer loyalty has been examined by Wallace, Giese and Johnson (2004). 

Total migration from the closed store to the Internet is rare, as an Internet-based store is also not 

a perfect substitute for a bricks-and-mortar store due to factors such as shipping costs, and 

privacy and online security risks faced by consumers. Since neither the surviving stores nor the 

online store are perfect substitutes for the closed store, there is always some attrition of sales to 

the competition. As customer retention is crucial for financial success, it follows that it is 

important to minimize this attrition of customers to the competition when deciding which stores to 

close and which to leave open. Another factor that complicates the choice of stores to close is 

the implications of store closing for the supply chain that services the store. Just as stores may 

have to be closed because of insufficient sales, regional distribution centers (RDCs) may have to 

be closed because of an insufficient number of stores to service. However, if an RDC closes, the 

surviving stores that were being supported by this RDC will now have to be supported by one of 

the surviving RDCs. This increases the processing load on the surviving RDCs, in addition to 

increasing the transportation cost from the more distant RDCs to the surviving stores. It is 

important that all these consequences of store closing for the supply chain should be factored 

into a decision support model for store closing. 
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The issues that we have identified above have been incorporated into our decision 

support model which is developed to guide a retail firm in redesigning its retail network by closing 

some of its traditional stores and replacing them by an online store. Specifically, the 

integer-programming model can determine the optimal number of stores and RDCs to close. The 

model accomplishes this by establishing the combination of open stores and RDCs at which the 

system profitability is the highest. While determining the profitability of the system, we consider 

the total revenue and the various applicable logistical costs. In order to evaluate how different 

factors impact profitability, we conducted a managerial experiment by varying the proportion of 

stores that are closed, the price sensitivity of demand of products, the discount offered by the 

online retailer, and the demand retention rate. 

Extant research in market exit has employed either analytical models (Murto 2004) or 

empirical models (Dixit and Chintagunta 2007). In this paper, we developed an 

integer-programming (IP) model to study the issue of partial market exit. In the past, IP models 

have been used to study department-level promotion-mix planning (Allaway, Mason and Brown 

1987), seasonal merchandizing planning (Smith, Agrawal, and McIntyre 1998), potential 

franchise sites for their impact on distribution system revenue and on existing outlets (Ghosh and 

Craig 1991), potential retail location sites for their impact on market share (Drezner 1994), etc. 

The chief contribution of our paper to the under-researched area of market exit (Dixit and 

Chintagunta 2007) is that we consider partial market exit from a traditional channel in 

combination with entry into the online channel. Our model allows for partial market exit by all 

kinds of intermediaries in the distribution channel – retailers, distribution centers, etc. Our second 

contribution is that we identify a number of factors that would influence the level of partial exit, 

and incorporate these factors in our model. Our third point of departure from extant studies is that 

instead of treating the online and offline channels as competitive, we treat them as 

complementary in the sense that retail chains use the online channel to retain the customers of a 

closed store. The organization of the rest of the paper is as follows. The next section reviews the 

relevant literature. In ‘A general model’ section, we discuss the mathematical formulation of the 

problem and solution approach. In the following section, we present the numerical results and 

managerial analysis. This is followed by the Section ‘Concluding remarks’.  

 

Literature Review 

In this section, we review three streams of literature. The first stream of literature reviews 

the published studies on store mortality and market exit. The second stream of literature relates 

to models of competition between the traditional and online channels. The third stream of 
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literature surveys the relevant research from the supply chain area.  

Store mortality drew some interest from researchers during the first half of the last 

century (Burd 1941; Greer 1936; McGarry 1947; Phillips 1934). These studies were more in the 

nature of surveys of store mortality rates in different cities, such as Boston (Phillips 1934), 

Buffalo and Pittsburgh (1947), Seattle (Burd 1941), etc., and did not analyze in a systematic 

fashion the causes and consequences of store mortality. In a study of seventeen, 252 stores 

over a five-year period, Star and Massel (1981) found that only 33.2% survived at the end of five 

years. According to Star and Massel, this rate has remained constant since World War II. 

Therefore, it is very surprising that while store mortality is a fact of retail life, academic research 

into its causes and consequences is virtually non-existent.  

Grewal and Levy (2009) have identified the growth of the Internet and e-commerce as 

one of the four research areas with the potential for the greatest contribution to retailing research. 

Therefore, it is not surprising that a number of researchers have studied the competition between 

the traditional channel and the online channel (Ansari, Mela and Neslin 2008; Laroche et al. 2005; 

Konus, Verhoef and Neslin 2008; Chiang, Chhajed and Hess 2003; Kwon and Lennon 2009; 

Pentina, Pelton and Hasty 2009; Tang and Xing 2001). For instance, Tang and Xing (2001) 

found that online stores of multichannel retailers are unable to lower their prices because they 

have to take into account the impact that such actions will have on their brick and mortar stores 

(hereafter, they will be called BM stores). In the retail climate that we investigate, the online 

channel generally complements the traditional channel by allowing the retail chain to retain at 

least some of the customers of the closed stores. Consumer acceptance of the online channel is 

less than that of the traditional channel (Chiang, Chhajed and Hess 2003) and that is why not all 

the customers of a closed store migrate to the online store. 

Aksen and Altinkemer (2008) and Bendoly et al. (2006) have studied the issue of 

multichannel competition from the supply side. Aksen and Altinkemer (2008) studied the 

distribution logistics of a hybrid clicks and bricks model. Their location-routing model 

incorporates clicks and mortar stores to meet the demand of both walk-in and online customers, 

and a quality of service guarantee for online customers based on the timely delivery of orders. 

Bendoly et al. (2006) developed a model to investigate the total cost ramifications of inventory 

allocation strategies while maintaining customer service levels. They consider a two-echelon 

fixed period inventory system, with the goal of minimizing total cost while maintaining a service 

level goal. The conclusions of their research indicate that the proportion of a firm’s demand 

satisfied online is an important factor affecting the decision to centralize or decentralize online 

inventory. They also find that there is a threshold online demand percentage, below which 
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decentralization is the preferred strategy. 

While researchers in marketing study the problem of hybrid retailing from the demand 

side, researchers in supply chain management and operations management examine the 

problem from the supply side. Study of the role of supply chain on retailer performance is 

something new and has been recognized as one of the emerging trends in retailing research 

(Dong, Shanker and Dresner 2007; Ganesan et al. 2009). 

 

A General Model 

In this section, we build a very general model of the market. The model is built from the 

perspective of a retail chain that intends to maximize its overall profit by closing some of the 

traditional BM stores and migrating the customers of the closed stores to its online store as well 

as the nearest open BM store. Since an online store is not a perfect substitute of a BM store, it is 

expected that not all customers of a closed BM store will migrate to the online store (We do not 

consider the special case of purely digital goods, where an online store is clearly superior to a 

BM store). Some of the customers of the closed BM store will travel a greater distance to the 

nearest BM store that stays open and some others will simply switch to the competition. The 

primary decision that the retailer is concerned with is the number (and, by implication, the 

proportion) of stores to close. A secondary decision is to determine the number of RDCs to close. 

The model is fairly complex and we had to make some simplifying assumptions to keep it 

tractable. These include the following: (a) the model is static rather than dynamic and does not 

consider change over time periods (b) the model is deterministic which implies that data variation 

over a single time period is small enough that the complexity of a stochastic approach is not 

warranted (c) we assume that the relevant data is fully available to the firm (d) the demand 

functions that relate price to demand are known and (e) the relevant cost functions and 

constraints of the firm have been identified.  

The retail chain has  BM stores. These  stores are supported by  RDCs that are 

also owned by the retail chain. In addition to supporting the stores, the RDCs may also sell 

directly to the customers. Each store carries  number of items. The retail chain subsequently 

withdraws NCLS number of BM stores from the market, and replaces them with an online store. 

After NCLS BM stores exit, some of the RDCs also are forced to exit and only NODC number of 

RDCs remain open. The open BM stores are indexed by , closed BM stores by , the online 

store by , and the RDCs by . 

Let  be the price of item  at closed BM store  of a chain. Some of the customers 

of this closed store will now travel to a more distant open BM store  of the chain, and 
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consequently incur an extra travel cost . This extra travel cost depends on the specific 

distance between a particular pair of stores, and is therefore indexed by the superscript . The 

travel cost can be considered to be a fixed charge per trip made by the customer. Therefore, we 

prorate this fixed cost over the expected number of items (which could be multiple copies of the 

same item or diverse items) that the customer purchases per trip. 

Referring to the expected number of items purchased as , the full price  borne by 

customers of closed store  if they shop at the more distant store  is: 

 

Some of the other customers of closed store  will migrate to the online store. Products 

purchased online have to be shipped to the buyer’s residence or site and therefore buyers incur 

a shipping charge  when they shop online. The shipping charge is generally common to 

customers at all locations (Balasubramanian 1998), but will depend on the weight of item , and 

therefore the subscript . The shipping surcharge will raise the online price  to 1 . 

Brynjolfsson and Smith (2000) empirically compared the prices for homogeneous physical goods 

(CDs and books) at online and conventional stores over fifteen months, and found that prices 

were generally lower at the Internet stores. The lower prices have been partially explained by the 

efficiencies brought about by the emerging information technologies that have led to lower costs 

of operation (Bakos 1998). The lower prices on the Web may also be due to factors on the 

demand side. Bakos (1997) shows analytically that as buyer search costs fall, price competition 

among the sellers increases, and puts downward pressure on prices. We account for the lower 

price at the online store with the discount term . Since the online price for a product is 

usually independent of where the customer is located, we compute the average price for a 

product and modify that in order to specify the online price for the product. Let the average price 

for the product over all stores be . Using this average price, we specify the online price  as, 

1 1 . 

 

Demand Functions 

We assume that  is the maximum possible demand for item  corresponding to 

the minimum sustainable price of the product at open BM store . The demand function for item 

 at open store  is modeled as a linear, decreasing function of price . Correspondingly, let 

 be the absolute value of the negative slope of the demand curve for item  at store n 

and  be the proportion of demand retained by an open BM store after the online channel is 
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available. Then demand for an item at the open BM store can be specified as: 

 

If RDCs sell directly to the customers, then the demand function  at an RDC is similar 

to the demand function of a store, except that the maximum demand is multiplied by a multiplier 

 that represents the generally higher level of sales at RDCs which, when sales are 

permitted, operate as regional superstores. If  is the proportion of demand retained by an 

open RDC when the online channel is available, then demand for an item at the RDC can be 

specified as: 

 

The demand function	 	can be set to zero to eliminate RDC sales when these are not 

permitted. 

When a BM store closes, some of its demand will be transferred to the online store, some 

of its demand to an open BM store, and the remainder will simply be lost to competitors. The 

transfer demand function  at the online store is the demand function at a (closed) 

bricks-and-mortar store based on the online transfer price multiplied by the online retention factor, 

, which is generally less than one and equal to one only in the case of perfect retention. As 

mentioned previously, we assume that at the initial stage of partial market exit most of the 

demand at the online store comes from the customers of closed stores (in an experiment 

described later, we also investigate what happens if open BM stores lose significant market 

share to the online channel). Therefore, at this stage, the online store does not draw any sales 

from the competition, and, using notation analogous to that for the demand functions for a store:  

 

To include the transfer demand from open BM stores to the online facility, we also have:  

1  

Next, the retention rate for demand transferred from a closed store to an open store is 

,which is also less than or equal to one. It should be noted that we impose the condition: 

1. This ensures that the combined demand transferred from a closed store to the 

online store and the nearby open store does not exceed the original closed store demand. The 

demand function  for an item that is transferred from a closed store to an open store is the 

demand function based on the store transfer price multiplied by the closed store retention factor: 
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As described earlier, the store transfer price includes the travel cost component prorated over 

the expected number of items the customer purchases per trip. 

 

Logistics Elements of the Model 

The retail network model developed in this paper maximizes profit which is a function of 

revenue from sales and costs that are mainly logistical in nature. The logistical elements 

incorporated into the model are those that are considered critical in logistical network planning as 

the following references illustrate. According to Simchi-Levi, Kaminsky and Simchi-Levi (2007), 

network planning is “the process by which the firm structures and manages the supply chain in 

order to find the right balance between inventory, transportation, and manufacturing costs”. 

Further, they state that network design “includes decisions on the number, locations, and size of 

manufacturing plants and warehouses, the assignment of retail outlets to warehouses, and so 

forth”. Chopra and Meindl (2007) believe “companies must consider inventory, transportation 

and facility costs when designing their supply chain networks...total logistics costs are a sum of 

the inventory, transportation, and facility costs”.  

The relative importance of these elements and the calibration of the model are 

interrelated. The relative weight of facility (fixed and variable) costs, inventory costs, and 

transportation costs within logistics costs is very much a function of factors such as the 

technology deployed by a particular company, and the freight mode(s) and distances, and the 

types of goods involved. For instance, a firm which uses advanced automated technology in 

store and/or warehouse operations and ships goods over long distances will incur relatively high 

fixed facility and transportation costs. The calibration of the model in this paper was done based 

on the data provided by a firm with which one of the authors had an advisory relationship. While 

this data has to be disguised due to confidentiality requirements, it is possible to state that this 

firm is in the retail hardware business and mainly uses an internally owned fleet for transportation. 

Further, it uses a medium level of technology in its operations (limited use of materials-handling 

machinery in warehouses, none in stores, and no advanced robotics). We outline the basic data 

used in our study in Appendix A. The parameters and variables of the model used to describe the 

objective function and constraints are shown in Table 1.  

 

Objective Function 

The retail chain maximizes the total profit made by its BM retailers, the online retailer, and 
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RDCs. Each member of the retail chain, that is, BM retailers, the online retailer, and RDCs 

generates revenues from sales to consumers and incurs certain costs. The BM stores and RDCs 

incur fixed costs, variable costs, holding costs, and transportation costs. The online channel is 

viewed as a facilitator or intermediary between the suppliers, BM stores and RDCs. Thus it incurs 

only fixed costs and variable costs which, in the case of this study, are lower on a per unit basis 

than BM stores and RDCs. In particular, the objective function that is maximized by the retail firm 

would consist of the following terms, 

(1) Revenue of open BM stores 

∈∈

 

(2) Revenue of RDCs from direct sales to consumers. It should be noted that if direct 

sales to consumers at a RDC are not permitted, then all  are set to zero 

∈∈

 

(3) Revenue due to sales transferred from (a) closed BM stores and (b) open BM stores 

respectively to the online store  

1
∈∈ ∈∈

 

(4) Revenue due to sales transferred from closed BM stores to open BM stores 

∈∈ ,∈

 

(5) -Fixed cost at online store  

 

(6) -Fixed costs at open BM stores 

∈

 

(7) -Fixed costs at regional distribution centers 

∈

. 

(8) -Variable cost at online store  
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1
∈∈ ∈∈

 

(9)  -Variable costs at regional distribution centers. The first term captures a RDC’s 

variable costs due to direct sales to consumers and the second term captures 

variable costs due to supplying the open BM stores 

∈∈∈

 

(10)  -Variable costs at RDCs due to sales transferred from closed stores  

∈∈∈ ,∈

 

(11)  -Variable costs of current sales at open BM stores  

∈∈

 

(12)  -Variable costs at open BM stores due to sales transferred from closed BM stores  

∈∈ ,∈

 

(13)  -Holding costs of current sales at regional distribution centers  

1
2

∈∈∈

 

(14)  -Holding costs at RDCs due to sales transferred from closed BM stores  

1
2

∈∈∈ ,∈

 

(15)  -Holding costs of current sales at open BM stores 

1
2

∈∈

 

(16)  -Holding costs at open BM stores due to sales transferred from closed BM stores 

1
2

∈∈ ,∈
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(17)  -Transportation costs of current sales between RDCs and open BM stores  

∈∈∈

 

(18)  -Transportation costs between RDCs and open BM stores due to sales transferred 

from closed BM stores 

∈∈∈ ,∈

 

 

Constraints 

The objective function above is maximized subject to the following constraints: 

(1) Every open store is allocated to exactly one RDC, and closed stores cannot be allocated 

∀
∈

 

(2) Every open store is allocated to an open RDC within distance limit 

∀	 ,  

(3) Transfer from closed BM store must be to an open BM store 

∀ , ∶  

(4) Transfer from closed BM store to only one open BM store 

1	∀
∈ ,

 

(5) Transfer to open BM store must be from closed store within distance limit 

1 ∀ , ∶  

(6) Transfer to RDC depends on closed store to open store assignment 

∀ , , ∶  

(7) Transfer to RDC depends on open store to RDC assignment 

∀ , , ∶  

(8) Number of closed stores parameter 
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1
∈

 

(9) Number of open RDCs parameter 

∈

 

 

The number of variables (all binary) is: . Thus, as an example, 

in our managerial experiment described in the following section the model has a total of 40 stores 

and 25 warehouses. Therefore, the number of binary variables in each of our test problems is: 

25 40 25 40 1600 1600 25 2665 40,000 42,665. 

 

Solution of Model 

Integer programs are typically hard to solve, and our primal model is no exception. This 

model is NP-hard (Garey and Johnson 1979) by simple extension from the uncapacitated facility 

location model which is known to be NP-hard. Therefore, we have used a leading industrial 

strength integer program optimizer CPLEX 11.2.1 (IBM ILOG CPLEX 2009) to solve the model. 

The implementation was conducted using ILOG’s development studio for CPLEX, OPL version 

6.1 (IBM ILOG OPL Development Studio 2009). The average solution time per problem in our 

experiment was on the order of 1 min (60 s) on a PC running at 2.66 GHz with 4 GB of RAM. 

Including setup and input–output time the average time required per problem was on the order of 

5 min. 

 

Analysis and Results 

In this section, we discuss an extensive managerial experiment we conducted to 

determine the impact of important factors on the design of a hybrid retail network, and report the 

findings of the experiment. Specifically, we investigate the impact on system profitability of the 

following factors: the proportion of stores that are closed (equivalently, number of stores open 

given a fixed number of potential open locations), the average price sensitivity of demand, the 

discount offered by the online retailer, and the demand retention rate. Based upon these factors, 

we designed a randomized managerial experiment with the following characteristics:  

 

(i) four factors (identified above),  

(ii) two levels for the price sensitivity of demand factor (steep and moderate),  
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(iii) two levels for the online discount factor (high and low),  

(iv) three levels for the store proportion open factor (eight out of 40, 24 out of 40, and 36 out 

of 40), and  

(v) five levels of the demand retention rate divided equally between the online store and the 

nearest open store (100%, 80%, 60%, 40%, and 20%). 

 

The number of open RDCs was fixed at four out of 25 potential sites throughout the 

experiment (The number of open RDCs was kept fixed during the analysis, but can be varied to 

determine the optimal number of RDCs). A treatment in this experiment was viewed as a 

combination of particular levels of the four factors. Thus there were 60 (i.e., 2 × 2 × 3 × 5) 

treatments in all and we solved ten randomly generated problems per treatment in the primary 

experiment. 

In addition, the primary experiment was conducted assuming a 90% demand retention 

rate at open stores after the opening of the online store with 10% of the demand shifting to the 

online channel. For comparison purposes, we provide additional (limited to Scenario I described 

below) results for a more extreme case where the open store retention rate is 45% with 55% of 

the demand shifting online. For Scenario I, we also provide the proportions of logistics costs 

allocated to the fixed, variable, inventory holding, and transportation components respectively. 

We provide some details regarding the cost structure of the model in Appendix A (with the 

understanding that this data should be taken as a disguised rather than literal representation of 

the cost data pertaining to the hardware chain used for our analysis). 

The managerial experiment involves analyzing four major scenarios, created by 

combining different levels of price sensitivity of demand (steep and moderate) and online 

discount factor (high and low). For each of these scenarios, we determined optimal system 

profits for different combinations of number of open stores and demand retention rate. The total 

number of candidate BM stores is 40 and the actual number of open stores is varied from eight to 

24 to 36. The retention rates are varied from 50% at the nearest open store and 50% at the 

electronics store (which amounts to full retention) to 10% at the open store and 10% at the 

electronic store (which amounts to a total 20% demand retention rate). In practice, the retention 

rate can be obtained by surveying the customers. The results of the four scenarios are discussed 

below – it is seen that they have some similarities but also exhibit subtle differences.  

The analysis of the first scenario is quite representative of the experiment in general, and 

is therefore described in detail. In this scenario, both the demand price sensitivity and the 

discount factor are high. The slope of the demand function varies between products from 1 to 0.5, 
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and the discount offered by the online retailer is high, varying by product from 25% to 15%. For 

this scenario, optimal system profits are calculated for the different numbers of open stores and 

the different retention rates, and the results plotted in Fig. 1. We treat 100% retention rate as the 

benchmark solution because there is no loss of market share to the competition in this case.  

For this benchmark state, savings in fixed and variable costs are achieved by closing a 

large number of stores. In particular, the shift in demand to the electronic store does not result in 

any additional holding or material handling costs (since the electronic store simply functions as 

an intermediary between suppliers and customers) although there are some variable costs 

related to the electronic operations. At the same time, the only loss of demand at this retention 

level stems from the change in real price to the customer. This real price is the sum of the 

original store price plus the cost of shipment from the online store or the cost of travel to the 

nearest open store plus any price differentials between a closed store and the open store to 

which its customers are directed. For our data, the real price faced by the customer at the 

surviving store is generally higher than the price the customer might have received at the closed 

bricks-and-mortar store. This higher price leads to a somewhat lower level of demand, but all of 

this lower demand is retained. As a result of these conditions, the smallest number of open 

stores (eight) corresponds to the highest level of profit, followed by the medium number (24) and 

the high number (36) respectively. 

As the retention rate drops from the theoretical maximum of 100%, the fixed and variable 

costs savings resulting from closing stores are increasingly offset by the loss of revenue from the 

attrition of demand. The loss of demand is from two sources, the higher full prices at both the 

electronic and neighboring open stores and the lower retention of demand due to factors such as 

inconvenience, loss of touch-and-feel, and the like. The gap in profit between low, medium, and 

high number of open stores begins to close as retention drops from 100% to 80% to 60% (close 

to which point the high and medium number of open stores essentially have the same profit level). 

As retention drops even further, it is seen that there is a reversal of profitability between the low 

and high numbers of open stores. 

By interpolating slightly, it can be observed that a retention rate of about 50% represents 

a sort of cutoff point at which the relatively profitability of the three levels of open stores are very 

close. At this retention level, the losses in revenue from closing stores surpass the gains from 

fixed and variable cost savings. The trend continues as the level of retention drops further. While 

the difference in profits is not very high at 40% retention, it widens substantially at 20% retention 

where it clearly makes more sense to keep the high number (36) of stores open. Another 

observation is that while the differences in profits at the highest level of retention in this study 
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(100%) appear to be greater than the differences at the lowest level (20%), the differences at 

more comparative levels (no retention versus 100%) retention might be much smaller, given the 

clear trend that can be seen in the results. As a cautionary note, it is logical to expect that a very 

different cost structure (fixed, variable, holding, and transportation cost rates) might result in 

profitability gaps (between low, high, and medium number of open stores) at low retention and 

high retention rates that are different from our findings – as with most decision support models, 

specific results depend on the specific environment of the retail chain. 

In the second scenario, the demand price sensitivity is set at the low level (slope of the 

demand function varies between 0.5 and 0.01), and the online discount level is kept at the high 

level (between 25% and 15%). Optimal system profits are again determined for different 

numbers of open stores and retention rates, and the results are plotted in Fig. 2. The chart for 

Scenario 2 shows that the results are similar to those for Scenario I, with some minor differences 

stemming from the fact that the flatter demand function generally favors closing a larger number 

of stores at higher retention rates and closing a lower number of stores at lower retention rates. 

While the results are generally similar to that for Scenario I, it is seen that the small number of 

open stores (eight) corresponds to a higher profit level at 100% retention relative to Scenario I. 

Similarly, the highest number of open stores (36) results in a higher profit level relative to 

Scenario I at 20% retention. 

In the third scenario, the price sensitivity of demand is high (the slope of the demand 

function varies between 1 and 0.5), and the online discount level is low (varying between 10% 

and 1%). Optimal system profits are calculated as for other scenarios and plotted in Fig. 3. The 

transfer of demand from closed stores to neighboring open stores is at a higher full price which, 

given the higher price sensitivity, cuts into demand. This also applies to demand transfers to the 

online store and this effect is enhanced by the low online discount in this scenario. At the same 

time, higher full prices mean higher revenue per unit sold and the net effect is a tussle between 

lower units sold and higher revenue per unit. As in other scenarios, the high number of open 

stores (36) is associated with significantly higher fixed and variable processing costs. It is seen 

from Fig. 3 that, at higher retentions, it is more profitable to keep the smallest number of open 

stores. At lower retentions, the losses of sales from closing stores tends to, as in other scenarios, 

outweigh the gains from costs savings. Hence, the high number of open stores (36) is best at 

these retention rates. This scenario turns out to be similar in results to Scenario I except that 

profit is somewhat higher at the highest retention level. 

Scenario IV corresponds to low price sensitivity of demand (slope of the demand function 

varies from 0.5 to 0.01) and a low level of online discount (10–1%). This implies that full prices 
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paid by customers who are switched from closed stores to the online store are higher, but the 

impact of the higher prices is not as severe as in Scenario 2. As a result, this configuration is a 

hybrid of Scenarios 2 and 3. This explains why this scenario corresponds to the highest profit 

levels of the four scenarios discussed above. Optimal system profits are calculated as for other 

scenarios and plotted in Fig. 4. 

We also investigate a variant of Scenario I which we call Scenario V. This is because the 

model allows us to incorporate the possibility that the open store may lose some demand to the 

online store. It is interesting to investigate what happens when (either due to proactive financial 

incentives offered by the firm or a passive reaction induced by factors such as convenience of 

shopping) there is a significant migration of customers of open stores to the online channel, 

perhaps after some time has elapsed and customer awareness of the online facility has grown. 

In the situation we examine, 45% of customers continue to shop at open BM stores, while 55% 

gravitate online. Fig. 5 shows the results for Scenario V and Fig. 10 provides a side-by-side 

comparison of Scenario I and Scenario V. 

By comparison of the two scenarios, the following results may be noted: (i) the profit 

levels are generally higher in the 45% retention case relative to the 90% retention case. This is 

due to the fact that the online facility only incurs fixed and variable costs, but not inventory 

holding and transportation costs (ii) the highest possible number of open stores (36) corresponds 

to the highest profit at all levels of retention. The rationale for this is as follows. At low levels of 

retention, the savings in fixed and variable costs from a low number of open stores is more than 

offset by the loss of revenue from lost demand. At higher levels of overall retention, the effect of 

the low demand retention (45%) at open stores in Scenario V has an impact which is based upon 

the 55% of the demand that shifts to the online facility – which, due to the absence of associated 

holding and transportation costs – is relatively more profitable. Since a maximum of 50% of 

demand of a closed store can shift to the cheaper online facility, it turns out to be more profitable 

to keep a store open rather than closed as long as demand only shifts internal to the company 

and is not lost to external competition. On the other hand, in Scenario I, even at the highest level 

of overall retention only 10% of the demand of an open store shifts to the less expensive online 

facility and thus it is more profitable to close more stores relative to Scenario V. 

To provide a representative idea of relative costs, we provide, in Figs. 6 through 9, the 

comparative proportions of fixed, variable, inventory holding, and transportation costs for 

Scenario I at the highest (100%) and lowest (20%) of retention of demand of closed stores. For 

instance, it is observed that the proportion of variable costs is highest at the full (100%) level with 

the smallest number of open stores (eight). This combination corresponds to low fixed costs and 
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high demand correlated with high processing (variable) costs. The other observations regarding 

relative proportions of the different cost components may be explained by similar analysis. 

Finally, we report our findings regarding the impact on profitability of the expected 

number purchased parameter (enp). As defined earlier, it is the total number of items a customer 

is expected (on average) to purchase per shopping trip. The analysis discussed so far used an 

enp value of 1, which was based on the data that was provided to us. The next step was to vary 

enp from 1 to 3 to 5 and observe the effect of those changes on the optimal objective value (i.e., 

profit level). Increasing the enp decreases the travel cost per item and hence lowers the real 

price to customers when they choose to shop at a nearby open store after their local store is 

shuttered. The expected effect of the increase in enp is an increase in transfer store demand, 

and with other things constant, an increase in the profit level. Our initial analysis with higher enp 

values indicated an increase in profit as expected, but a marginal one, on the order of 0.2% for 

enp = 3 and on the order of 0.3% for enp =5. 

This result is due to the transfer price and demand functions discussed in the section on 

the general model. The specific cause is the relative sizes of the travel cost (averaging about $25 

per trip), the average price of an item (about $125), the maximum item demand per store (about 

550 on average) and the price sensitivity (averaging 0.75 for high price sensitivity). Using these 

values for the parameters, it is straightforward to compute that the approximate decrease in 

demand of an item when the average travel cost burden of about $25 is added to the average 

price is on the order of 4% for enp = 1 (there is a little variation depending on the applicable 

retention rate). The decrease is lower when enp is increased to 3 or 5 because the travel cost 

premium per item becomes smaller. The relatively small decreases in demand ultimately lead to 

the small changes in overall profitability that are observed.  

In order to determine when the enp parameter might have a bigger effect on profitability 

we created a hypothetical dataset based on our original data with the following modifications: 

maximum demand was reduced to 250 (on average), the average travel cost was increased to 

about $37 per trip ($1 per mile), and the average price was reduced to $30. This translated to a 

decrease in demand per item of about 12% for enp = 1 and somewhat smaller decreases for enp 

= 3 and enp = 5. Further computational experimentation showed that the modified data structure 

corresponded to profitability increases up to 1.65% for enp =3 and up to 2% for enp = 5. A 

reassuring finding is that changing the enp from 1 to 3 or 5 did not alter the basic pattern of 

profitability based on the number of open stores and the prevailing retention level. Our findings 

for the modified dataset are summarized in Figs. 11–14. Our primary conclusion is that the 

impact of alternate levels of the expected number of items purchased by the customer is very 
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dependent on the prevailing data structure and varies from the small (as in the case of our 

original dataset) to moderate (as with our modified dataset) to (possibly) significant in other 

cases.  

 

Concluding Remarks 

It is common in the industry for struggling retail chains to shutter some stores to alleviate 

high operating costs. This strategy is however fraught with implications for both the consumers 

and the supply chain. After a store closes, its customers may be lost forever unless they can be 

adequately served by another bricks-and-mortar store of the chain that stays open or by an 

electronic online store of the chain. However, due to travel costs, a consumer will go to another 

store only if the distance is not excessive. Therefore, while closing stores, the retail chain 

management should strive to ensure that either (i) open stores are located within reasonably 

accessible distances from customers of closed stores or (ii) offer an electronic alternative or (iii) a 

mixture of convenient open stores and an electronic store. Also, when a store closes, the 

supporting RDC is left with less business. If the number of stores supported by an RDC goes 

below a threshold level, the RDC might become economically unviable forcing it to close. This 

situation would create problems for the other surviving stores that have been supported by this 

RDC. This follows from the fact that these stores have to switch to other open RDCs, which 

would very likely increase the processing load and the transportation costs of the chain. These 

factors are taken into account in our decision support system that is designed to aid managers in 

determining how many (and which) stores to close. 

The decision support model is an integer (specifically, binary) model. We conducted a 

managerial experiment to study the profitability of alternative retail network structures by varying 

the proportion of stores that are closed, the average price sensitivity of demand, the online 

discount offered by the retailer, and the demand retention rate. The most significant finding of 

this study is that when both the price sensitivity of demand and the online discount rate are high, 

it is more profitable to close a large number of stores at high retention rates and a low number of 

stores at low retention rates. At high retention rates, profitability rises due to savings in fixed and 

variable costs. However, at low retention rates, the savings due to reduction in fixed and variable 

costs are offset by the loss of revenue from lost customers. An interesting, and not necessarily 

intuitive, discovery is that when a high proportion of customers of open stores gravitate to the 

online channel, it may be (depending on the relative retention levels of open versus closed stores) 

most profitable to have as many stores open as possible under all conditions. This suggests an 

interesting research question: under what circumstances is it worthwhile for retail management 
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to offer financial incentives to customers to migrate from BM stores to an online channel? The 

question is not an academic one as evidenced by the proliferation of discounts for items 

purchased online found in even cursory navigation of the websites of stores such as Walmart 

and Best Buy. Finally, we evaluated the impact of varying the expected number of items 

purchased per trip per customer and found that this impact is highly dependent on the specific 

data structure of the problem, particularly the relative magnitudes of the average price of an item 

and the applicable average travel cost between an open store and a closed one. 

This study, in our opinion, has laid the groundwork for interesting future research 

involving other variants of online retailing. The most immediate model that we have in mind is 

one in which a retail chain enters the online channel for competitive purposes rather than as the 

outcome of a partial market exit strategy. The example that comes readily to mind is 

Blockbuster’s entry into online marketing as a response to Netflix’s success in marketing video 

rentals over the internet. It should be noted that in this case there are no planned store closings – 

but some closings might be forced by cannibalization between the online store and 

bricks-and-mortar establishments. In order to avoid excessive losses due to cannibalization, the 

chain will probably have to conduct an aggressive (and probably costly) advertising campaign, 

that is, be more proactive from the beginning. Another minor variant that we are interested in is 

one in which there is partial market exit as in our study with the difference that the online store is 

set up from the beginning to aggressively fight for online market share with competing chains – in 

this case also, advertising and competitor’s moves would play a major role. Finally, we also wish 

to investigate leaner supply chains which combine online retailing with not just the closing of 

bricks-and-mortar stores but the complete elimination of distribution centers. Our belief is that 

this study provides us with the foundation and framework to investigate all these models in a 

systematic fashion that incorporates all the important tradeoffs that come into play when a retail 

chain migrates to a hybrid “clicks-and-mortar” structure. 
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Appendix A. Data for Primary Results 

Note: All the data are uniformly distributed within the ranges shown, unless stated 

otherwise. 

Price: U($50, $200), Demand: U(100, 1000), Fixed Cost/unit: U($16, $18), Weight: 

U(10lbs, 100lbs).  

Transportation cost/mile/pound: U($0.001, $0.003), Variable Cost%/unit value: U(45%, 

50%), Inventory holding Cost%/unit value: U(8%, 10%).  

Online shipping charge%/unit value: U(5%, 10%), Travel surcharge/mile: U($0.3, $1), 

Variable Cost% online/unit value: U(50%, 60%).  

Online facility fixed cost: $8,000,000. 
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Exhibit 1 

 

Image unavailable due to third-party copyright restrictions. Please see definitive 

published version to view image: http://dx.doi.org/10.1016/j.jretai.2010.05.001 

 



 

Syam, Bhatnagar 25 

Figure 1: Profit under Scenario 1 
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Figure 2: Profit under Scenario 2 
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Figure 3: Profit under Scenario 3 
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Figure 4: Profit under Scenario 4 
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Figure 5: Profit under Scenario 1, 45% retention at open stores 
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Figure 6: Cost Proportions under Scenario 1: Fixed Costs 
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Figure 7: Variable Cost Proportion under Scenario 1 
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Figure 8: Holding Cost Proportion under Scenario 1 
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Figure 9: Transportation Cost Proportion under Scenario 1 
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Figure 10: Scenario 1: 90% versus 45% Open Store Retention 
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Figure 11: Percentage Increase in Optimal Objective Value (Modified Data, 

enp = 3) 
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Figure 12: Percentage Increase in Optimal Objective Value (Modified Data, 

enp = 5) 
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Figure 13: Profit by Number of Open Stores and Retention Levels (Scenario 

I, modified data, enp = 3) 
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Figure 14: Profit by Number of Open Stores and Retention Levels (Scenario 

I, modified data, enp = 5) 
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Table 1 
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