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Abstract 
In this paper we present a model and solution methodology for production and inventory management 
problems that involve multiple resource constraints. The model formulation is quite general, allowing 
organizations to handle a variety of multi-item decisions such as determining order quantities, production batch 
sizes, number of production runs, or cycle times. Resource constraints become necessary to handle interaction 
among the multiple items. Common types of resource constraints include limits on raw materials, machine 
capacity, workforce capacity, inventory investment, storage space, or the total number of orders placed. For 
example, in a production environment, there may be limited workforce capacity and limits on machine 
capacities for manufacturing various product families. In a purchasing environment where a firm has multiple 
suppliers, there are often constraints for each supplier, such as the total order from each supplier cannot exceed 
the volume of the truck. We present efficient algorithms for solving both continuous and integer variable 
versions of the resource constrained production and inventory management model. The algorithms require the 
solution of a series of two types of subproblems: one is a nonlinear knapsack problem and the other is a 
nonlinear problem where the only constraints are lower and upper bounds on the variables. Computational 
testing of the algorithms is reported and indicates that they are effective for solving large-scale problems. 

Keywords 
Production and inventory management, Nonlinear optimization, Integer programming 

1. Introduction 
We present a general model for production and inventory management settings that require multiple resource 
constraints. For example, we consider production environments where the decision of interest is to determine 
the number of batches to produce (or batch sizes) for multiple items, and we also discuss multiple supplier 
environments where the decision of interest is to determine how much to order from each supplier for the case 
of multiple items. Interaction among the items leads to resource constraints. Here we consider two types of 
resource constraints: those over all items, and those over disjoint subsets of the items. Examples of resource 
constraints over all items include limits on workforce capacity, storage space, inventory investment, or the total 
number of orders placed per year. For the case of constraints on subsets of the items, examples include machine 
capacities or raw material availabilities for the manufacture of product families, and truck volume limits on the 
total order from each supplier for purchasing scenarios. Although we focus on applications of the type discussed 
above, the model is quite general and can handle any production and inventory management decision that 
exhibits the structure of the general model formulated later in the paper. 

The problems considered here are based on two primary assumptions. First, it is assumed that total costs are 
comprised of a constant term, a linear term, and a reciprocal term. Typically, these terms will represent 
inventory carrying costs and the cost of placing replenishment orders (or producing batches of product) where 
this replenishment (production) cost is independent of the size of the order (batch). A second major assumption 
is that the demand for an item is constant. Other assumptions of the model depend on whether a production or 
purchasing decision is being considered. Some of these assumptions will include a known and certain lead time; 
no stockouts; instantaneous replenishment; constant unit cost for items with no discounts; an infinite planning 
horizon; and demand, lead time, and costs are stationary (i.e., remain fixed over time). 

The formulation of the problem leads to a specially structured nonlinear optimization problem. Both continuous 
and integer variable versions of the problem are addressed. The objective function measures expected total cost 
per year and, as already mentioned, involves constant, linear and reciprocal terms. The constraints include a 
single linear constraint that involves all variables, a set of block diagonal linear constraints such that each 
variable appears in at most one of these constraints, and lower and upper bounds on the variables. Each 



constraint in the block structured set could represent a limit on production capacity for each machine, or a limit 
on the shipment volume from each supplier. We present efficient algorithms for solving continuous and integer 
problems that take advantage of the special structure of the problem. The continuous variable algorithm 
requires solving a series of box constrained nonlinear subproblems and a series of nonlinear knapsack 
subproblems. The integer problem is solved with a branch and bound algorithm. 

The paper is organized as follows. We begin by reviewing the single resource constraint literature. Then we 
present the general model with multiple resource constraints. To illustrate the general model, we formulate two 
specific applications: the number of batches problem where items are produced, and the multiple supplier order 
quantity problem where items are purchased. Efficient solution methods are developed for continuous and 
integer problems and extensive computational testing of the algorithms are reported. The last section contains 
some concluding remarks. 

2. Multiple items subject to a single resource constraint 
Production and inventory management problems with a single resource constraint have received quite a bit of 
attention in the literature [1], [2], [3], [4], [5], [6], [7]. The “classic solution technique” to the single constraint, 
multi-item model is based on the idea that re-order cycle times are independent for each item carried in 
inventory. Since all of the items carried in an inventory system will eventually peak at the same time, it is the 
focus of these approaches to ensure that the constraint is not violated at each of these critical junctures. With a 
single constraint imposed on a convex objective function, the classic solution technique identifies the optimal 
Lagrange multiplier value for the single constraint [2]. 

This classic solution technique was improved by Ziegler [7] by establishing bounds on the optimal multiplier and 
by developing an iterative scheme. Ventura and Klein [6] provided an alternative bounding algorithm. Maloney 
and Klein [2] developed an algorithm that provides effective bounds on the Lagrange multiplier needed to 
optimize the n-item inventory system. This algorithm is shown to converge rapidly from its initial bounds to the 
optimal multiplier [2]. 

In purchasing environments, because the stocks will normally run out at different times, it is only when the 
cycles are relatively “in phase” that the constraint has to be considered [8]. This observation led to an 
improvement approach for order quantity problems [3], [9], [10], [11], [12], [13], [14], [15] that assumes that, 
regardless of what individual re-order cycle times exist, a joint cycle can be determined. Within this joint cycle, 
orders of individual items are then time-phased to avoid situations where peak inventories are reached 
simultaneously (thereby violating the constraint) [2]. Comparisons between the two methods have shown that 
as the constraint restriction gets tighter, the joint cycle time approach shows greater improvement over the 
classic Lagrange multiplier method, although neither method is guaranteed to solve the problem with time 
phasing in an optimal way [4]. 

Another solution approach is based on the use of individual cycle times that are integer multiples, or power of 
two multiples, of a base re-order cycle time. This approach provides more flexibility than seen in the joint cycle 
approach since the base re-order cycle is greater than or equal to the joint cycle [2]. The idea of the base re-
order cycle approach has been treated widely in the literature, mainly for the unconstrained problem where the 
economic advantage of joint replenishment can be realized. Various solution procedures have been 
documented [13], [16], [17]. However, the computational effort required with this approach is more extensive 
and implementation more difficult [5]. 



3. The general model with multiple resource constraints 
Many production and inventory management problems require multiple resource constraints, rather than just a 
single constraint (see the next two sections for examples). The general problem with multiple resource 
constraints will be formulated as follows. 

(1) 

(𝑃𝑃)Min�(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑖𝑖/𝑥𝑥𝑖𝑖)
𝑖𝑖∈𝑆𝑆

 

(2) 

st�𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑓𝑓(𝛼𝛼)
𝑖𝑖∈𝑆𝑆

 

(3) 

�𝑔𝑔𝑖𝑖𝑥𝑥𝑖𝑖 ≤ ℎ𝑘𝑘,𝑘𝑘 = 1, … ,𝐾𝐾
𝑖𝑖∈𝑆𝑆𝑘𝑘

 

(4) 

𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖, 𝑖𝑖 ∈ 𝑆𝑆 

(5) 

(𝑥𝑥𝑖𝑖 integer, 𝑖𝑖 ∈ 𝑆𝑆) 

Problem (P) is assumed feasible where 𝑆𝑆 is a finite set of indices for the decision variables 𝑥𝑥𝑖𝑖 ∈ 𝑆𝑆, 
and 𝑆𝑆0,𝑆𝑆1,𝑆𝑆2, … , 𝑆𝑆𝐾𝐾 are disjoint subsets of 𝑆𝑆 that form a partition of 𝑆𝑆. Let 𝑆𝑆0 denote the set of indices in 𝑆𝑆 that 
are not included in any of the block diagonal constraints in set (3). We assume that cost coefficient 𝑐𝑐𝑖𝑖 > 0 for 𝑖𝑖 ∈
𝑆𝑆, which implies that the objective function is strictly convex, and we assume that cost coefficients 𝑎𝑎𝑖𝑖  and 𝑏𝑏𝑖𝑖 ≥
0 for 𝑖𝑖 ∈ 𝑆𝑆. In addition, in the resource constraints we assume 𝑑𝑑𝑖𝑖 ≥ 0 for 𝑖𝑖 ∈ 𝑆𝑆 and 𝑔𝑔𝑖𝑖 > 0 for 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 ,𝑘𝑘 =
1, … ,𝐾𝐾. The parameters 𝑓𝑓 and ℎ𝑘𝑘 for 𝑘𝑘 = 1, … ,𝐾𝐾 are positive constants. The lower and upper 
bounds, 𝑙𝑙𝑖𝑖 and 𝑢𝑢𝑖𝑖 respectively, satisfy 0 ≤ 𝑙𝑙𝑖𝑖 < 𝑢𝑢𝑖𝑖 for 𝑖𝑖 ∈ 𝑆𝑆. Also, let α denote the Lagrange multiplier for 
constraint (2) in the continuous variable version of the problem. The above assumptions imply the continuous 
version of problem (P) is a convex program with a specially structured set of linear constraints. 

The interpretation of the decision variables, the cost terms in the objective function, and the resource 
constraints depend on the particular environment being modeled. If fractional variable values are acceptable, 
then the integer variable requirements in constraint (5) can be dropped. It is assumed that item demand rates 
are approximately constant and the cost parameters 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, and 𝑐𝑐𝑖𝑖 are time-invariant and independent of 𝑥𝑥𝑖𝑖 for 
all 𝑖𝑖. Other additional assumptions depend on the application being considered. 

To illustrate the general model, we next discuss two applications: one involves producing items belonging to 
different product families and the other involves purchasing from multiple suppliers. 

4. The number of batches problem with resource constraints 
Sundararaghavan and Ahmed [18] consider a setting where n different products are produced in a common 
facility. One of the problems addressed involves determining the minimum cost integer number of batches to 
produce for each item with a restriction on production capacity. Sundararaghavan and Ahmed assume 
processing times are independent of the batch sizes and the products are usable only after a complete batch has 



been produced. Their model is appropriate for producing many chemical products like resins, paints, inks, 
pharmaceuticals, and dyes [18]. Here, we consider the problem where the set of products 𝑆𝑆 is partitioned 
into 𝐾𝐾 product families 𝑆𝑆𝑘𝑘,𝑘𝑘 = 1, … ,𝐾𝐾. Each product family is produced on a machine with capacity 𝐺𝐺𝑘𝑘. Also, 
there is a total workforce capacity of 𝐹𝐹. 

Then, the number of batches problem can be written as follows. 

(NB)Min�(𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖 + 𝐻𝐻𝑖𝑖𝐷𝐷𝑖𝑖/(2𝑥𝑥𝑖𝑖))
𝑖𝑖∈𝑆𝑆

st�𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝐹𝐹
𝑖𝑖∈𝑆𝑆

� 𝑇𝑇𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝐺𝐺𝑘𝑘,𝑘𝑘 = 1, … ,𝐾𝐾𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖, 𝑖𝑖 ∈ 𝑆𝑆𝑥𝑥𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑘𝑘

 integer, 𝑖𝑖 ∈ 𝑆𝑆 

where 

𝑥𝑥𝑖𝑖  = the number of batches of item 𝑖𝑖 to be produced, 

𝐴𝐴𝑖𝑖   = setup cost per batch of item 𝑖𝑖, 

𝐻𝐻𝑖𝑖  = annual inventory carrying charge per unit of item 𝑖𝑖, 

𝐷𝐷𝑖𝑖  = units demanded per year for item 𝑖𝑖, 

𝑊𝑊𝑖𝑖  = workforce capacity consumed per batch of item 𝑖𝑖, 

𝐹𝐹  = total workforce capacity available, 

𝑇𝑇𝑖𝑖  = machine time consumed per batch of item 𝑖𝑖, 

𝐺𝐺𝑘𝑘  = machine time available for product family 𝑘𝑘. 

In the objective function of problem (NB), 𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖  represents yearly setup costs and 𝐻𝐻𝑖𝑖𝐷𝐷𝑖𝑖/(2𝑥𝑥𝑖𝑖) represents average 
yearly inventory holding costs. Note that cost parameter 𝑎𝑎𝑖𝑖  from problem (P) is zero. The production batch size 
for item 𝑖𝑖, 𝑞𝑞𝑖𝑖, is easily computed given 𝑥𝑥𝑖𝑖 via 𝑞𝑞𝑖𝑖 = 𝐷𝐷𝑖𝑖/𝑥𝑥𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛. 

5. The multiple supplier problem 
In purchasing there is a dichotomy between single-source and multiple-source philosophies. The debate has 
intensified in recent years as quality control and just-in-time practitioners advocate single sourcing, while 
traditional purchasing wisdom upholds the multiple-sourcing approach [19]. Many companies have a policy that 
states that purchasing must have more than one supplier approved on each item purchased [20]. Other 
companies are even more confining by having a policy of placing orders, where possible, with several suppliers 
rather than a single supplier [21]. 

Table 1 [22] includes arguments given for placing all orders for a given item with one supplier, as well as the 
arguments for diversification of suppliers. In recent years, there is a growing trend to reduce the number of 
suppliers. The main motivation of supplier reduction is that it is felt that it may be more difficult for a company 
to properly train a large number of suppliers in MRP II and JIT/TQC and achieve the quality levels required. Also, 
with fewer suppliers for an item, communications are improved, there is more opportunity for joint problem 
solving, and it is easier to get the suppliers involved earlier in the product development process [20]. Given the 
advantages of JIT, there remain situations where other factors indicate that multiple suppliers are needed. 
Required physical distance, reliability of transportation or the supplier, and seasonality are examples of such 
situations. Some products that fit these criteria are oil, natural gas, and agricultural products. See Table 1 for the 
advantages of single and multiple sourcing. 

Table 1. Advantages and disadvantages of single sourcing (Source: Leenders, Fearon, and England [22]) 



 
Advantages of single sourcing 

 
Advantages of multiple sourcing 

• The supplier may be the exclusive owner of certain 
essential patents or processes and, therefore, be 
the only possible source. 

• Knowing that competitors are getting some of 
the business may tend to keep the supplier 
more alert to the need of giving good prices 
and service. 

• A given supplier may be so outstanding in the 
quality of product or in the service provided as to 
preclude serious consideration of buying elsewhere. 

• Assurance of supply is increased. Should fire, 
strikes, breakdowns, or accidents occur to any 
one supplier, deliveries can still be obtained 
from others. 

• The order may be so small as to make it just not 
worthwhile, if only because of added clerical 
expense, to divide it. 

• Even should floods, railway strikes, or other 
widespread occurrences develop which may 
affect all suppliers to some extent, the chances 
of securing at least a part of the goods are 
increased. 

• Concentrating purchases may make possible certain 
discounts or lower freight rates that could not be 
had otherwise. 

• Some companies diversify their purchases 
because they do not want to become the sole 
support of one company, with the responsibility 
that such a position entails. 

• The supplier is more cooperative, more interested, 
and more willing to please having all the buyer’s 
business. 

• Assigning orders to several suppliers gives a 
company a greater degree of flexibility, because 
it can call on the unused capacity of all the 
suppliers instead of on only one. 

• A special case arises when the purchase of an item 
involves a die, tool, mold charge, or costly setup. 
The expense of duplicating this equipment or setup 
is likely to be substantial. 

• It has been common practice among the 
majority of buyers to use more than one 
source, especially on the important items. 

• When all orders are placed with one supplier, 
deliveries may be more easily scheduled. 

  

• The use of just-in-time production or stockless 
buying or systems contracting provides many 
advantages which are not possible to obtain unless 
business is concentrated with one or at best a very 
few suppliers. 

  

 

We present formulations for both the single and multiple sourcing problems. In the single-sourcing problem, the 
set of items 𝑆𝑆 is partitioned into 𝑘𝑘 disjoint groups 𝑆𝑆𝑘𝑘 ,𝑘𝑘 = 1, … ,𝐾𝐾. Each item from set 𝑆𝑆𝑘𝑘 is ordered from 
supplier 𝑘𝑘, and not ordered from any other suppliers. The single-sourcing problem (SS) can be formulated as 
follows. 

(SS)Min�(𝑃𝑃𝑖𝑖𝐷𝐷𝑖𝑖 + 𝐻𝐻𝑃𝑃𝑖𝑖𝑥𝑥𝑖𝑖/2 + 𝐴𝐴𝑖𝑖𝐷𝐷𝑖𝑖/𝑥𝑥𝑖𝑖)
𝑖𝑖∈𝑆𝑆

st�𝑃𝑃𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝐹𝐹
𝑖𝑖∈𝑆𝑆

� 𝑇𝑇𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝐺𝐺𝑘𝑘
𝑖𝑖∈𝑆𝑆𝑘𝑘

,𝑘𝑘 = 1, … ,𝐾𝐾𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖, 𝑖𝑖

∈ 𝑆𝑆𝑥𝑥𝑖𝑖  integer, 𝑖𝑖 ∈ 𝑆𝑆 

where 

𝑥𝑥𝑖𝑖  = the order quantity of item 𝑖𝑖, 

𝑃𝑃𝑖𝑖  = the unit variable purchase cost of item 𝑖𝑖, 

𝐷𝐷𝑖𝑖  = units demanded per year for item 𝑖𝑖, 



𝐻𝐻  = annual inventory carrying charge as a percentage of unit purchase cost 𝑃𝑃𝑖𝑖, 

𝐴𝐴𝑖𝑖   = fixed cost of ordering item 𝑖𝑖, 

𝐹𝐹  = upper limit on inventory investment, 

𝑇𝑇𝑖𝑖  = shipping space required for each item 𝑖𝑖, 

𝐺𝐺𝑘𝑘  = shipping space allotted for each order from supplier 𝑘𝑘. 

The objective function minimizes variable purchase costs plus holding costs plus fixed ordering costs. The 
constraints set an upper limit of 𝐹𝐹 on total inventory investment and an upper limit of 𝐺𝐺𝑘𝑘 on the truck volume 
for shipments from supplier 𝑘𝑘. 

The multiple-sourcing problem (MS) can be formulated as follows. 

(MS)Min�  
𝑚𝑚

𝑗𝑗=1

�(𝑃𝑃𝑖𝑖𝑗𝑗𝐷𝐷𝑖𝑖𝑗𝑗 +𝐻𝐻𝑃𝑃𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗/2 + 𝐴𝐴𝑖𝑖𝑗𝑗𝐷𝐷𝑖𝑖𝑗𝑗/𝑥𝑥𝑖𝑖𝑗𝑗)
𝑛𝑛

𝑖𝑖=1

st�  
𝑚𝑚

𝑗𝑗=1

�  
𝑛𝑛

𝑖𝑖=1

𝑃𝑃𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗 ≤ 𝐹𝐹�  
𝑖𝑖

𝑇𝑇𝑖𝑖𝑥𝑥𝑖𝑖𝑗𝑗 ≤ 𝐺𝐺𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑙𝑙𝑖𝑖𝑗𝑗 ≤ 𝑥𝑥𝑖𝑖𝑗𝑗

≤ 𝑢𝑢𝑖𝑖𝑗𝑗, 𝑖𝑖 = 1, … ,𝑛𝑛; 𝑗𝑗 = 1, … ,𝑚𝑚𝑥𝑥𝑖𝑖𝑗𝑗 integer, 𝑖𝑖 = 1, … ,𝑛𝑛; 𝑗𝑗 = 1, … ,𝑚𝑚 

where 

𝑥𝑥𝑖𝑖𝑗𝑗   = order quantity of item i from supplier 𝑗𝑗, 𝑖𝑖 = 1, … ,𝑛𝑛; 𝑗𝑗 = 1, … ,𝑚𝑚 

𝑛𝑛  = number of items, 

𝑚𝑚  = number of suppliers, 

𝑃𝑃𝑖𝑖𝑗𝑗   = unit variable purchase cost of item 𝑖𝑖 from supplier 𝑗𝑗, 

𝐷𝐷𝑖𝑖𝑗𝑗  = units demanded per year for item 𝑖𝑖 from supplier 𝑗𝑗, 

𝐻𝐻  = annual inventory carrying charge as a percentage of unit purchase cost 𝑃𝑃𝑖𝑖𝑗𝑗, 

𝐴𝐴𝑖𝑖𝑗𝑗   = fixed cost of ordering item 𝑖𝑖 from supplier 𝑗𝑗, 

𝐹𝐹  = upper limit on inventory investment, 

𝑇𝑇𝑖𝑖  = shipping space required for each item 𝑖𝑖, 

𝐺𝐺𝑗𝑗  = shipping space allotted for each order from supplier 𝑗𝑗, 

The constraint � 𝑇𝑇𝑖𝑖𝑥𝑥𝑖𝑖𝑗𝑗 ≤ 𝐺𝐺𝑗𝑗
𝑖𝑖

 places a space limitation on each order from supplier 𝑗𝑗. This will optimize the 

shipping space and time for items ordered from each supplier. Other possible constraints could be developed 
depending on the particular space, order cost, or other limitation desired for each order from any supplier. Both 
problems (SS) and (MS) have the structure of the general problem (P). 

6. Solution methodology for the continuous problem 
To solve the continuous variable version of problem (P), we present an efficient algorithm that requires the 
solution of a series of box constrained nonlinear subproblems and a series of nonlinear knapsack subproblems. 
The box constrained subproblems are trivial to solve in closed form. We present an efficient method for solving 
the nonlinear knapsack subproblems. 

Consider the following Lagrangian dual of the continuous version of problem (P) with respect to constraint (2). 



(𝐷𝐷)Max𝜃𝜃(𝛼𝛼)st𝛼𝛼 ≥ 0. 

In problem (D), θ(α) is defined as follows. 

𝜃𝜃(𝛼𝛼) = Min�(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑖𝑖 𝑥𝑥𝑖𝑖⁄ )
𝑖𝑖∈𝑆𝑆

+ 𝛼𝛼 ��  
𝑖𝑖∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖 − 𝑓𝑓� st �  
𝑖𝑖∈𝑆𝑆𝑘𝑘

𝑔𝑔𝑖𝑖𝑥𝑥𝑖𝑖 ≤ ℎ𝑘𝑘,𝑘𝑘 = 1, … ,𝐾𝐾𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖, 𝑖𝑖 ∈ 𝑆𝑆. 

For a given α, note that 𝜃𝜃(𝛼𝛼) decomposes into one box constrained convex subproblem and 𝐾𝐾 convex knapsack 
subproblems. The box constrained subproblem is of the following form. 

(PB)Min �(𝑎𝑎𝑖𝑖 + (𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖)𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑖𝑖/𝑥𝑥𝑖𝑖)
𝑖𝑖∈𝑆𝑆0

− 𝛼𝛼𝑓𝑓st𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖, 𝑖𝑖 ∈ 𝑆𝑆0. 

Problem (PB) is trivial to solve with optimal solution 𝑥𝑥𝑖𝑖PB for 𝑖𝑖 ∈ 𝑆𝑆0 given below. 

𝑥𝑥𝑖𝑖PB = �
𝑙𝑙𝑖𝑖 if (𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖))0.5 ≤ 𝑙𝑙𝑖𝑖

(𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖))0.5 if 𝑙𝑙𝑖𝑖 < (𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖))0.5 < 𝑢𝑢𝑖𝑖
𝑢𝑢𝑖𝑖 if (𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖))0.5 ≥ 𝑢𝑢𝑖𝑖.

 

The 𝐾𝐾 convex knapsack subproblems are of the following form. 

(𝑃𝑃𝑘𝑘)Min �(𝑎𝑎𝑖𝑖 + (𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖)𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑖𝑖/𝑥𝑥𝑖𝑖)
𝑖𝑖∈𝑆𝑆𝑘𝑘

st �  
𝑖𝑖∈𝑆𝑆𝑘𝑘

𝑔𝑔𝑖𝑖𝑥𝑥𝑖𝑖 ≤ ℎ𝑘𝑘𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖, 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘. 

In the next section we present a method for solving the knapsack problems (P1), (P2), … ,  (P𝐾𝐾). 

Because 𝑐𝑐𝑖𝑖 > 0 for all 𝑖𝑖 ∈ 𝑆𝑆,𝜃𝜃(𝛼𝛼) has a unique optimal solution for each α. Therefore, the objective function of 
the dual problem (D) is concave and differentiable [23, Section 6.3]. The optimal value of α can be obtained by 
performing a simple line search. Each trial value of α requires solving the subproblem (PB) and 
the 𝐾𝐾 subproblems (𝑃𝑃1), … , (𝑃𝑃𝐾𝐾). Let 𝛼𝛼∗ denote the optimal value of α. The optimal solution 
to (PB) and (𝑃𝑃1), … , (𝑃𝑃𝐾𝐾) with 𝛼𝛼 = 𝛼𝛼∗ provides the optimal solution to the continuous variable version of 
problem (P). 

Performing a line search to obtain 𝛼𝛼∗ requires as input lower and upper bounds on 𝛼𝛼∗. Therefore, we next 
present a result in Proposition 1 below that provides an upper bound on 𝛼𝛼∗. Zero can be used as a lower bound 
on 𝛼𝛼∗. Consider the following relaxation of problem (P) where constraint sets (3), (5) have not been included. 

(PR)Min�(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑖𝑖/𝑥𝑥𝑖𝑖)
𝑖𝑖∈𝑆𝑆

st�  
𝑖𝑖∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑓𝑓(𝛾𝛾)𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖 , 𝑖𝑖 ∈ 𝑆𝑆. 

Let 𝛾𝛾∗ ≥ 0 denote the optimal value of the Lagrange multiplier γ for the knapsack constraint in problem (PR). 

Proposition 1 

𝛼𝛼∗ ≤ 𝛾𝛾∗ 

Proof 

Consider the following expression for xi written as a function of the multiplier 𝛾𝛾 for problem (PR). 

(6) 



𝑥𝑥𝑖𝑖PR(𝛾𝛾) = �
𝑙𝑙𝑖𝑖 if (𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛾𝛾𝑑𝑑𝑖𝑖))0.5 ≤ 𝑙𝑙𝑖𝑖

(𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛾𝛾𝑑𝑑𝑖𝑖))0.5 if 𝑙𝑙𝑖𝑖 < (𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛾𝛾𝑑𝑑𝑖𝑖))0.5 < 𝑢𝑢𝑖𝑖
𝑢𝑢𝑖𝑖 if (𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛾𝛾𝑑𝑑𝑖𝑖))0.5 ≥ 𝑢𝑢𝑖𝑖.

 

Based on the Karush–Kuhn–Tucker (KKT) conditions, Eq. (6) is one of a set of necessary and sufficient conditions 
for an optimal solution to the convex problem (PR) [24]. Therefore, the above expression for 𝑥𝑥𝑖𝑖PR(𝛾𝛾), 𝑖𝑖 ∈ 𝑆𝑆, must 
be satisfied in an optimal solution to problem (PR). 

We also need the following Lagrangean relaxation of the continuous version of problem (P) where we have 
dualized constraint set (3) with nonnegative multipliers 𝛽𝛽1, … ,𝛽𝛽𝐾𝐾. 

(PL)Min�(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑔𝑔𝑖𝑖𝑥𝑥𝑖𝑖)
𝑖𝑖∈𝑆𝑆

−�  
𝐾𝐾

𝑘𝑘=1

𝛽𝛽𝑘𝑘ℎ𝑘𝑘st�  
𝑖𝑖∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑓𝑓(𝛼𝛼)𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖, 𝑖𝑖 ∈ 𝑆𝑆 

In problem (PL), 𝛽𝛽𝑖𝑖 = 𝛽𝛽𝑘𝑘 for all 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 ,𝑘𝑘 = 1, … ,𝐾𝐾,𝛽𝛽𝑖𝑖 = 0 for all 𝑖𝑖 ∈ 𝑆𝑆0, and, as in the continuous version of 
problem (P), α denotes the multiplier for the knapsack constraint in problem (PL). Again based on the KKT 
conditions, the following expression 𝑥𝑥𝑖𝑖PL(𝛼𝛼) written as a function of 𝛼𝛼 ≥ 0 is one of a set of necessary and 
sufficient conditions for an optimal solution to the convex problem (PL). 

(7) 

𝑥𝑥𝑖𝑖PL(𝛼𝛼) = �
𝑙𝑙𝑖𝑖 if (𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑔𝑔𝑖𝑖))0.5 ≤ 𝑙𝑙𝑖𝑖

(𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑔𝑔𝑖𝑖))0.5 if 𝑙𝑙𝑖𝑖 < (𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑔𝑔𝑖𝑖))0.5 < 𝑢𝑢𝑖𝑖
𝑢𝑢𝑖𝑖 if (𝑐𝑐𝑖𝑖/(𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑔𝑔𝑖𝑖))0.5 ≥ 𝑢𝑢𝑖𝑖.

 

We now prove the proposition by considering the two cases 𝛼𝛼∗ = 0 or 𝛼𝛼∗ > 0. Case (i): 𝛼𝛼∗ = 0. The 
inequality 𝛼𝛼∗ ≤ 𝛾𝛾∗ is trivially true in this case. Case (ii): 𝛼𝛼∗ > 0. Assuming the 𝛽𝛽𝑖𝑖’s are at their optimal values, 
complementary slackness and Eqs. (6), (7) imply 𝑓𝑓 = ∑  𝑖𝑖∈𝑆𝑆 𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖PL(𝛼𝛼∗) ≤ ∑  𝑖𝑖∈𝑆𝑆 𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖PR(𝛼𝛼∗). 
Because � 𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖PR(𝛾𝛾) 𝑖𝑖∈𝑆𝑆 is a nonincreasing function of 𝛾𝛾, the inequality ∑  𝑖𝑖∈𝑆𝑆 𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖PR(𝛼𝛼∗) ≥ 𝑓𝑓 implies we must 
have 𝛼𝛼∗ ≤ 𝛾𝛾∗.  □ 

Therefore, obtaining the upper bound γ∗ on 𝛼𝛼∗ requires solving one continuous nonlinear knapsack problem of 
the form of (PR). 

7. A method for solving the knapsack subproblems 
In this section we present an algorithm for solving the nonlinear knapsack subproblems (𝑃𝑃𝑘𝑘),𝑘𝑘 = 1, … ,𝐾𝐾 and 
problem (PR). The method, hereafter referred to as the multiplier search algorithm, solves the nonlinear 
knapsack problem via a one-dimensional search for the optimal Lagrange multiplier of the knapsack constraint. 
It requires finding the root of one nonlinear equation and is described briefly here. For more details, see 
Bretthauer et al. [1]. 

In problem (𝑃𝑃𝑘𝑘), let λ denote the nonnegative Lagrange multiplier for the knapsack constraint ∑  𝑖𝑖∈𝑆𝑆𝑘𝑘 𝑔𝑔𝑖𝑖𝑥𝑥𝑖𝑖 ≤ ℎ𝑘𝑘, 
let 𝑤𝑤𝑖𝑖 denote the Lagrange multiplier for 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖, and let 𝑣𝑣𝑖𝑖 denote the Lagrange multiplier for 𝑥𝑥𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖. Consider 
the following expressions for 𝑥𝑥𝑖𝑖 ,𝑤𝑤𝑖𝑖, and 𝑣𝑣𝑖𝑖 written as a function of 𝜆𝜆. 

𝑥𝑥𝑖𝑖(𝜆𝜆) = 𝑚𝑚𝑎𝑎𝑥𝑥{𝑚𝑚𝑖𝑖𝑛𝑛((𝑐𝑐𝑖𝑖/((𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖) + 𝜆𝜆𝑔𝑔𝑖𝑖))0.5,𝑢𝑢𝑖𝑖), 𝑙𝑙𝑖𝑖}for all 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 

𝑤𝑤𝑖𝑖(𝜆𝜆) = 𝑚𝑚𝑎𝑎𝑥𝑥{−(𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖) + 𝑐𝑐𝑖𝑖/𝑢𝑢𝑖𝑖
2
− 𝜆𝜆𝑔𝑔𝑖𝑖 , 0}for all 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 



𝑣𝑣𝑖𝑖(𝜆𝜆) = 𝑚𝑚𝑎𝑎𝑥𝑥{(𝑏𝑏𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑖𝑖) − 𝑐𝑐𝑖𝑖/𝑙𝑙𝑖𝑖
2

+ 𝜆𝜆𝑔𝑔𝑖𝑖, 0}for all 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘. 

Bretthauer et al. [1] show that, for any nonnegative 𝜆𝜆, the above expressions for 𝑥𝑥𝑖𝑖(𝜆𝜆),𝑤𝑤𝑖𝑖(𝜆𝜆), and 𝑣𝑣𝑖𝑖(𝜆𝜆) satisfy 
all of the KKT conditions of the nonlinear knapsack problem (𝑃𝑃𝑘𝑘) except the knapsack constraint ∑ 𝑔𝑔𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖∈𝑆𝑆𝑘𝑘 ≤
ℎ𝑘𝑘 and the following complementary slackness condition. 

(8) 

𝜆𝜆 �� 𝑔𝑔𝑖𝑖𝑥𝑥𝑖𝑖 − ℎ𝑘𝑘
𝑖𝑖∈𝑆𝑆𝑘𝑘

� = 0. 

Thus, determining the optimal solution to problem (𝑃𝑃𝑘𝑘) requires finding a nonnegative 𝜆𝜆 value, call it 𝜆𝜆∗, that 
yields a solution also satisfying the knapsack constraint and the above complementary slackness condition. Once 
we know 𝜆𝜆∗ we can easily calculate the optimal decision variable values by substituting 𝜆𝜆∗ into the equations 
for 𝑥𝑥𝑖𝑖(𝜆𝜆),𝑤𝑤𝑖𝑖(𝜆𝜆), and 𝑣𝑣𝑖𝑖(𝜆𝜆) for 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘. 

Let 𝑔𝑔(𝜆𝜆) = � 𝑔𝑔𝑖𝑖𝑥𝑥𝑖𝑖(𝜆𝜆)𝑖𝑖∈𝑆𝑆𝑘𝑘
. Because each 𝑥𝑥𝑖𝑖(𝜆𝜆) is a nonincreasing function of 𝜆𝜆,𝑔𝑔(𝜆𝜆) is also a nonincreasing 

function of 𝜆𝜆. We now present an algorithm for determining the optimal Lagrange multiplier value 𝜆𝜆∗. 

Algorithm for 𝜆𝜆∗ 

(1) Set 𝜆𝜆 = 0. If 𝑔𝑔(𝜆𝜆) ≤ ℎ𝑘𝑘, then terminate with 𝜆𝜆∗ = 0. 

(2) Otherwise, from 𝜆𝜆∗ ≥ 0 and Eq. (8), we know 𝜆𝜆∗ > 0 and 𝑔𝑔(𝜆𝜆) = ℎ𝑘𝑘. Solve the single nonlinear 
equation 𝑔𝑔(𝜆𝜆) = ℎ𝑘𝑘 for the one unknown variable 𝜆𝜆. Set this value of 𝜆𝜆 equal to 𝜆𝜆∗. 

Assuming problem (𝑃𝑃𝑘𝑘) is feasible, the algorithm clearly returns a nonnegative value for 𝜆𝜆∗ that satisfies the two 
remaining KKT conditions ∑ 𝑔𝑔𝑖𝑖𝑥𝑥𝑖𝑖 ≤ ℎ𝑘𝑘𝑖𝑖∈𝑆𝑆𝑘𝑘  and 𝜆𝜆�∑ 𝑔𝑔𝑖𝑖𝑥𝑥𝑖𝑖 − ℎ𝑘𝑘𝑖𝑖∈𝑆𝑆𝑘𝑘 � = 0. 

8. Solution methodology for the integer problem 
We solve the integer problem (P) with a standard branch and bound algorithm [25]. Each subproblem in the 
branch and bound tree is of the form of the continuous relaxation of (P). The continuous subproblems differ 
only in the lower and upper bounds on the variables, and are solved with the algorithm presented in the 
previous two sections. 

Table 2. Problem (SS)—Problem Set A, continuous variables 
Number of Number of Variables per Average solution 
variables constraints constraint time (CPU seconds) 
 100 5 20 <0.1 
 200 5 40 <0.1 
 400 5 80 <0.1 
1,000 5 200 0.1 
 200 20 10 <0.1 
1,000 20 50 <0.1 
10,000 5 2000 0.8 
25,000 5 5000 1.8 

 

Table 3. Problem (SS)—Problem Set B, continuous variables 
Number of Number of Variables per Average solution 



variables constraints constraint time (CPU seconds) 
 100 5 20 <0.1 
 200 5 40 <0.1 
 400 5 80 <0.1 
1,000 5 200 0.1 
 200 20 10 <0.1 
1,000 20 50 <0.1 
10,000 5 2000 0.9 
25,000 5 5000 1.8 

9. Computational results 
Here we describe the computational testing done to evaluate the performance of the algorithm. Both 
continuous and integer variable problems for the single-sourcing problem (SS) described in Section 5 were 
generated. Twenty problems of each size were solved, except for the last two rows of Table 4 where ten 
problems of each size were solved. Also, the integer problems were solved to within 0.05% of optimality, except 
where noted in the tables. That is, the branch and bound algorithm terminates when (UB𝑡𝑡 − LB𝑡𝑡)/UB𝑡𝑡 ≤
0.0005, where LB𝑡𝑡 and UB𝑡𝑡 denote lower and upper bounds on the optimal objective value of the problem at 
iteration 𝑡𝑡 of the algorithm. The algorithms were implemented in Fortran 90 (733 MHz Pentium II desktop 
computer, 192 MB), and solution times do not include input or output operations. 

Table 4. Problem (SS)—Problem Set A, integer variables 
Number of Number of Variables per Average no. of Average solution 
variables constraints constraint nodes in tree time (CPU seconds) 
75 5 15 266 1.1 
100 5 20 30 0.2 
125 5 25 201 1.4 
150 5 30 41 0.4 
200 5 40 21 0.2 
400 5 80 33 0.9 
1000 5 200 10 0.5 
200a 20 10 3293 42.1 
1000a 40 25 899 45.6 

aPercent of optimality for termination = 0.07% (rather than 0.05% as in other problems). 

The parameters for Problem Set A were uniformly distributed values from the following intervals: 𝑃𝑃𝑖𝑖 ∈
[10,20],𝐷𝐷𝑖𝑖 ∈ [50,100],𝐴𝐴𝑖𝑖 ∈ [20,40],𝑇𝑇𝑖𝑖 ∈ [10,20], 𝑙𝑙𝑖𝑖, and 𝑢𝑢𝑖𝑖 ∈ [5,25], and 𝐻𝐻 = 0.10. Problem Set B was 
generated from the following intervals: 𝑃𝑃𝑖𝑖 ∈ [10,15],𝐷𝐷𝑖𝑖 ∈ [25,100],𝐴𝐴𝑖𝑖 ∈ [125,400],𝑇𝑇𝑖𝑖 ∈ [10,15], 𝑙𝑙𝑖𝑖 and 𝑢𝑢𝑖𝑖 ∈
[5,25], and 𝐻𝐻 = 0.10. The constraint right hand sides were generated last to guarantee problem 
feasibility. Table 2, Table 3 present the computational results for the continuous variable versions of Problem 
Sets A and B, respectively. Table 4, Table 5 report the results for the integer variable Problem Sets A and B. The 
number of constraints refers to the number of block diagonal constraints K. 

Table 5. Problem (SS)—Problem Set B, integer variables 
Number of Number of Variables per Average no. of Average solution 
variables constraints constraint nodes in tree time (CPU seconds) 
100 5 20 2467 14.6 
400 5 80 7876 236.0 

 



The computational results for the continuous version of problem (SS) were very similar between Problem 
Sets A and B. In both cases, we were able to solve large-scale problems with up to 25,000 variables in less than 
an average of 2 CPU seconds per problem. However, as can be seen in Table 4, Table 5, the integer version of 
Problem Set B was much more difficult than the integer version of Problem Set A. 

Also, the results in Table 4 suggest that, at least for the problems solved, increasing the number of constraints 
while holding the number of integer variables constant seems to increase problem difficulty quite a bit (see the 
200 variable problems with 5 and 20 constraints, and the 1000 variable problems with 5 and 40 constraints). 
Therefore, we performed further testing to determine how the number of integer variables and the number of 
constraints impact problem difficulty. In Table 6, we fix the number of integer variables at 200, and vary the 
number of block diagonal constraints from 5 to 40. In Table 7, we fix the number of block diagonal constraints at 
10 and vary the number of integer variables from 50 to 500. Problem parameters were generated from the same 
intervals as in Problem Set A. Fifteen problems of each size were solved to within 0.1% of optimality. 

Table 6. Problem (SS)—Problem Set A, fixed number of integer variables 
Number of Number of Variables per Average no. of Average solution 
variables constraints constraint nodes in tree time (CPU seconds) 
200 5 40  15 0.2 
200 10 20  157 2.6 
200 20 10 3,079 44.6 
200 25 8 44,432 662.5 
200 40 5 253,990 2766.4 

 

Table 7. Problem (SS)—Problem Set A, fixed number of constraints 
Number of Number of Variables per Average no. of Average solution 
variables constraints constraint nodes in tree time (CPU seconds) 
50 10 5 1327 4.5 
100 10 10 293 2.0 
200 10 20 157 2.4 
300 10 30 84 1.9 
400 10 40 25 0.7 
500 10 50 336 13.6 

 

The results in Table 6 indicate that, for a fixed number of integer variables, increasing the number of block 
diagonal constraints causes a large increase in the number of nodes in the branch and bound tree and solution 
time. In Table 7, for a fixed number of constraints, increasing the number of integer variables seems to actually 
decrease the number of nodes in the tree (except for the 500 variable problems). But by looking at all the results 
in Table 6, Table 7 together, they suggest that the number of variables per block diagonal constraint can have a 
large impact on the number of nodes and solution time. In both Table 6, Table 7, the number of nodes and 
solution time increased as the number of variables per constraint decreased, except for a couple of values 
in Table 7. 

10. Concluding remarks 
We have presented a model and solution methodology for resource constrained production and inventory 
management problems. The model is quite general, but we focused on multi-item settings where either the 
number of production runs or order quantities were the decision of interest. The model can also handle 
production environments where the decision variables represent production batch sizes or cycle times. Resource 



constraints on such things as inventory investment, machine capacity, and truck volume were shown to have a 
special structure, and efficient methods for solving the resulting nonlinear optimization problems were 
presented. Extensive computational testing indicated that the algorithm is able to solve large-scale problems in 
reasonable computing time. 
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