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Modulation of Tyramine Signaling by 
Osmolality in An Insect Secretory Epithelium 
 

Edward M. Blumenthal 
Department of Biological Sciences, Marquette University, Milwaukee, WI 
 

Abstract 
The control of water balance in multicellular organisms depends on absorptive and secretory processes across 

epithelia. This study concerns the effects of osmolality on the function of the Malpighian tubules (MTs), a major 

component of the insect excretory system. Previous work has shown that the biogenic amine tyramine increases 

transepithelial chloride conductance and urine secretion in Drosophila MTs. This study demonstrates that the 

response of MTs to tyramine, as measured by the depolarization of the transepithelial potential (TEP), is 

modulated by the osmolality of the surrounding medium. An increase in osmolality caused decreased tyramine 

sensitivity, whereas a decrease in osmolality resulted in increased tyramine sensitivity; changes in osmolality of 

±20% resulted in a nearly 10-fold modulation of the response to 10 nM tyramine. The activity of another diuretic 

agent, leucokinin, was similarly sensitive to osmolality, suggesting that the modulation occurs downstream of 

the tyramine receptor. In response to continuous tyramine signaling, as likely occurs in vivo, the TEP oscillates, 

and an increase in osmolality lengthened the period of these oscillations. Increased osmolality also caused a 

https://doi.org/10.1152/ajpcell.00026.2005
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decrease in the rate of urine production; this decrease was attenuated by the tyraminergic antagonist 

yohimbine. A model is proposed in which this modulation of tyramine signaling enhances the conservation of 

body water during dehydration stress. The modulation of ligand signaling is a novel effect of osmolality and may 

be a widespread mechanism through which epithelia respond to changes in their environment. 

the homeostatic control of internal osmotic and ionic conditions is essential for the survival of all organisms. In 

multicellular animals, such osmoregulatory processes are largely carried out by the secretion and absorption of 

ions and water across epithelia because these tissues lie at the interface between the internal and external 

environments. To function effectively, secretory epithelia must be able to modulate their activity in response to 

changing environmental conditions, either by directly sensing such parameters as osmolality, temperature, and 

ion concentration, or by responding to hormonal signals originating in another part of the organism. Alterations 

in osmolality have been shown to have many direct effects on epithelia, including changes in ion transport 

(15, 21, 29, 49, 56), release of signaling molecules (25, 48, 53), and induction of gene expression (18, 26, 31). 

Osmoregulation in insects is accomplished through the function of the excretory system, which consists 

primarily of two epithelial organs, the Malpighian tubules (MTs) and the rectum (8, 40). The MTs are blind-

ended epithelial tubes that empty into the gut and are responsible for the production of primary urine. In the 

fruit fly Drosophila melanogaster, urine is produced by the main segments of the four MTs (16); these segments 

consist of two cell types, the principal cells and the stellate cells (50, 55). Urine secretion in Drosophila, as in 

other insects, is driven by the coupled action of a V-type proton ATPase and a proton/alkali metal antiporter in 

the apical membrane of the principal cells, resulting in the net active transport of potassium into the tubule 

lumen and the generation of a lumen-positive transepithelial potential (TEP) (3, 17, 34, 38). Chloride ions and 

water move passively into the lumen following their electrochemical and osmotic gradients, and the resulting 

urine is approximately isoosmotic with the surrounding hemolymph (28, 34, 36). The precise mechanism of 

chloride transport in the Drosophila MT remains unclear but is regulated by intracellular calcium levels in the 

stellate cells; treatment of tubules with agents that cause an increase in cytoplasmic calcium concentrations in 

the stellate cells result in a rapid increase in transepithelial chloride permeability, a depolarization of the TEP, 

and an increase in urine secretion (36). 

I have previously shown that the biogenic amine tyramine is a potent stimulator of chloride transport and a 

diuretic agent in the Drosophila MT (7). Application of nanomolar doses of tyramine causes a rapid 

depolarization of the TEP and an increase in transepithelial chloride conductance, as shown by an increased 

sensitivity of the TEP to peritubular chloride concentration. Tyramine is synthesized in isolated tubules from 

tyrosine present in the peritubular bath through the action of the enzyme tyrosine decarboxylase in the 

principal cells. Tyramine then acts on the tubule with a pharmacology very similar to that of a cloned, G protein-

coupled tyramine receptor. The response of MTs to tyramine requires an increase in intracellular calcium levels 

in the stellate cells (6); it is likely that, like the diuretic peptide leucokinin, tyramine acts by stimulating the 

release of calcium from intracellular stores in the stellate cells (42). This study shows that the sensitivity of the 

tubule to tyramine is modulated by the osmolality of the peritubular fluid. This modulatory mechanism could 

potentially play a role in protecting the insect from dehydration stress. These data demonstrate a novel 

mechanism for the osmotic control of epithelial function and raise the possibility that such a pathway might 

function in other secretory epithelial tissues. 



MATERIALS AND METHODS 

Fly maintenance and solutions. 
Wild-type Drosophila melanogaster (Canton S) were maintained on cornmeal-molasses-agar food mixture at 

24°C on a 12:12-h light-dark cycle. All experiments were performed on posterior MTs acutely dissected from 

adult female flies 6–8 days posteclosion. 

Two solutions were used in these studies, depending on the type of experiment being performed. The first was a 

dissecting/recording saline containing (in mM) 85 NaCl, 20 KCl, 3 CaCl2, 12 MgSO4, 7.5 NaHCO3, 4 NaH2PO4, 15 

glucose, and 10 HEPES, pH 6.75. This saline was used for studies involving acute application of secretagogues. 

The second solution, SBM, was a 1:1 mixture of Schneider's Drosophila medium (Invitrogen, Carlsbad, CA) and a 

diluting saline containing (in mM) 36 NaCl, 21 KCl, 15 MgCl2, 5 CaCl2, 4.8 NaHCO3, 2 NaH2PO4, 11.1 glucose, and 

15 HEPES, pH 6.75. The composition of SBM, based on the compositions of the diluting saline and Schneider's 

medium, is the following (in mM): 36 NaCl, 21 KCl, 5.2 CaCl2, 7.5 MgSO4, 7.5 MgCl2, 4.8 NaHCO3, 1.3 KH2PO4, 3.4 

sodium phosphate, 7.5 HEPES, 0.7 α-ketoglutaric acid, 11.1 d-glucose, 0.43 fumaric acid, 0.38 malic acid, 0.42 

succinic acid, 2.9 trehalose, 2.8 β-alanine, 1.15 l-arginine, 1.5 l-aspartic acid, 0.25 l-cysteine, 0.21 l-cystine, 2.7 l-

glutamic acid, 6.15 l-glutamine, 1.67 glycine, 1.29 l-histidine, 0.58 l-isoleucine, 0.58 l-leucine, 4.5 l-lysine HCl, 

2.7 l-methionine, 0.45 l-phenylalanine, 7.4 l-proline, 1.19 l-serine, 1.47 l-threonine, 0.25 l-tryptophan, 1.38 l-

tyrosine, 1.32 l-valine, and 1,000 mg/l yeastolate. SBM, which is thought to approximate insect hemolymph in 

composition, was used for studies of chronically stimulated tubules. The osmolality of both the recording saline 

and SBM was 255–270 mosmol/kgH2O. All osmolality measurements were performed with a vapor-pressure 

osmometer (Wescor, Logan, UT). 

Electrophysiology. 
Tubules were dissected under saline and placed in a tissue culture dish, in which a 100-μl drop of 0.125 mg/ml 

poly-l-lysine had been dried (34). Where appropriate, the bathing saline was then replaced with SBM. The TEP 

was recorded immediately after dissection by impaling the tubule lumen with a sharp electrode (R > 25 MΩ) 

pulled from theta-glass and filled with 3 M KCl. Potentials were amplified (Axopatch 200B, Axon Instruments, 

Union City, CA), digitized at 100 Hz and stored online. Recording and analysis were conducted using pCLAMP 

software (Axon Instruments). The peritubular bath was continuously perfused during recording. 

Urine secretion assays. 
Urine secretion rates were measured as described previously (16). Tubules were dissected under SBM and 

placed in a 15-μl droplet of medium under mineral oil. One branch of the tubule was pulled out of the droplet 

and wrapped around a pin such that the cut end of the ureter and lower section of the other branch were out of 

the aqueous droplet. At intervals of 12–20 min, the secreted urine droplet was removed from the ureter with a 

glass rod and its diameter was measured with an ocular micrometer. The volume of the urine droplet was 

calculated assuming spherical geometry. Solution changes were made immediately before the removal of the 

urine droplet for the second interval by twice removing 12 μl of medium and replacing it with 12 μl of new 

solution. 

Data analysis. 
The response index, a measure of the TEP response to pulses of drugs, was calculated as previously described 

(7). The area under the voltage curve was calculated for a period beginning 15 s after drug application began and 

ending 15 s after drug application ended, using −10 mV as the baseline (drug area). For the same period, the 

area was calculated under a line extrapolated from the voltage trace for the 30 s immediately preceding drug 

application (control area). The response index was calculated as (control area − drug area)/control area. Records 

in which the control response to tyramine had a response index of <0.03 were discarded from further analysis. 



The average period of the TEP oscillations was calculated using a fast Fourier transform nonlinear least-squares 

algorithm as previously described (6). Records were analyzed beginning 60 s after each solution change. 

Data were plotted and tests for statistical significance were performed with the use of Origin software 

(OriginLab, Northampton, MA). 

Materials. 
Except where noted, all reagents were purchased from Sigma (St. Louis, MO). Leucokinin IV was purchased from 

Bachem (King of Prussia, PA). 

RESULTS 
Acutely isolated MTs were bathed in saline, and the TEP was recorded with a sharp electrode. Under these 

control conditions, the TEP is lumen-positive and does not vary with time. Application of tyramine caused a 

rapid and reversible depolarization of the TEP, which has been shown to result from an increase in the 

transepithelial chloride conductance (7). The magnitude of this tyramine response was sensitive to changes in 

the osmolality of the peritubular bath; an increase in osmolality (by addition of sucrose) resulted in a decrease in 

the response to tyramine, whereas a decrease in osmolality (by addition of water) resulted in an increased 

response (Fig. 1). Increasing the osmolality of the bath solution by addition of osmolytes other than sucrose 

(trehalose or sodium chloride) also decreased the tyramine response, while lowering the osmolality of the bath 

without decreasing the ionic strength (by removing sucrose that had been added to a low-osmolality saline) also 

increased tyramine sensitivity (data not shown). In the absence of applied tyramine, changes in osmolality had 

only small effects (<10 mV) on the amplitude of the TEP (Fig. 1, A and B). As shown in Fig. 1C, the sensitivity of 

the tubule to an acute application of tyramine varied smoothly as a function of peritubular osmolality, resulting 

in a >10-fold modulation of the response to 10 nM tyramine over the osmotic range tested. At higher doses of 

tyramine, hyperosmotic stimulation elicited a similar decrement in the response, whereas hypoosmotic 

stimulation had no effect (Fig. 2). This latter finding is likely the result of the highly nonlinear relationship 

between the TEP and chloride conductance; at a certain level of chloride conductance, the TEP response will 

saturate at the Nernst equilibrium potential for chloride (approximately −10 mV), and further increases in 

conductance will have no effect on the TEP. Because of this nonlinearity, it is difficult to determine precisely how 

the dose-response curve of the tubule to tyramine is affected by changes in osmolality. 



 
Fig. 1.Modulation of the tyramine response by osmolality. A and B: transepithelial potential (TEP) recordings of 
tubules in saline challenged by applications of 10 nM tyramine as indicated by the horizontal bars. At the arrow, 
the osmolality of the bath solution was changed by addition of sucrose (A) or water (B). C: data from recordings 
as in A and B, showing the ratio of the amplitudes of the second tyramine response over the first tyramine 
response as a function of the osmolality of the bath during the second response. n = 6–9 recordings/value, error 
bars in this and all other figures represent standard deviations. There was no significant variation among the 
groups in the amplitude of the first tyramine response, at an osmolality of 265 mosmol/kgH2O (1-way 
ANOVA, P = 0.81). In contrast, paired t-tests showed a significant difference between the first and second 
tyramine responses at all test osmolalities, except 265 and 300 mosmol/kgH2O (P values, in mosmol/kgH2O: 201, 
0.00000060; 222, 0.0076; 239, 0.014; 265, 0.96; 286, 0.0026; 300, 0.069; 319, 0.00068). 
 



 

 
Fig. 2.Effect of osmolality on the dose-response relationship of tubules to tyramine. Individual tubules were held 
in saline and challenged with two applications of tyramine, first at 264–266 mosmol/kgH2O, then at either 316–
322 mosmol/kgH2O (A) or 195–201 mosmol/kgH2O (B), as in Fig. 1. Response index values for each tyramine 
response are plotted on the y-axis. n = 4–8 tubules/point. 
 

To determine whether the changes in osmolality were acting at the level of or downstream of the tyramine 

receptor, the effect of osmolality on the response of tubules to leucokinin was examined. Leucokinin is a peptide 

diuretic agent that also stimulates chloride conductance (36, 39). The responses to tyramine and leucokinin are 

physiologically indistinguishable and exhibit cross-desensitization (6), suggesting that the two secretagogues act 

on a common signaling pathway. As shown in Fig. 3, an increase in peritubular osmolality causes a reduction in 

the leucokinin response. Also shown in Fig. 3 is the reduction in the tyramine response to a hyperosmotic 

stimulus of the same magnitude (data from Fig. 1); it is evident from this comparison that the tyramine and 

leucokinin responses are similarly modulated by changes in osmolality. This result argues that osmolality is 

acting at a common step downstream of the separate tyramine and leucokinin receptors. 



 
Fig. 3.Effect of osmolality on the response of tubules to leucokinin. Leucokinin data are from records as in Fig. 1, 
except tubules were challenged with two doses of 500 nM leucokinin IV; tyramine data from Fig. 1 are shown for 
comparison. The figure shows the ratio of the amplitudes of the second response, at either 265 or 320 
mosmol/kgH2O, to the first response at 265 mosmol/kgH2O; n = 6–9 tubules/condition. Exposure of tubules to 
hyperosmotic medium resulted in a significant decrease in the ratio of the leucokinin responses (unpaired t-
test, P = 0.0012). The initial leucokinin response amplitudes did not differ between the two groups (unpaired t-
test, P = 0.13). See Fig. 1 legend for statistics on the tyramine data. 
 

Because insect hemolymph contains significant levels of tyrosine, the tyraminergic signaling pathway of the 

tubules is likely to be constitutively activated in the intact fly (14, 41, 57). Therefore, it was of interest to 

examine the response of tubules to changes in osmolality while bathed continuously in SBM, which resembles 

hemolymph in composition and contains tyrosine. The tyrosine in the SBM is converted by the tubules into 

tyramine, and all actions of tyrosine on isolated tubules are mediated by the tyramine receptor (7). 

Electrophysiological responses are shown in Fig. 4. At the control osmolality, tubules exhibited pronounced 

oscillations in TEP, as previously reported (6). As the osmolality of the peritubular bath was increased, the period 

of the TEP oscillations lengthened. In contrast, there was no significant change in the period of the oscillations in 

response to a decrease in osmolality. Another assay of tubule function, the measurement of urine secretion 

rates, gave results consistent with the electrophysiological data. As shown in Fig. 5, tubules exposed 

continuously to tyrosine responded to an increase or decrease in osmolality with a decrease or increase in urine 

secretion rate, respectively. However, only the decrease in secretion rate in response to hyperosmotic 

stimulation is dependent on tyramine signaling; this is shown by the addition of the tyraminergic antagonist 

yohimbine to the bathing droplet. Yohimbine completely eliminates the electrophysiological response of the 

MTs to tyramine and blocks ∼60% of urine secretion, as previously reported (7). However, if secretion rates are 

normalized to the values at the control osmolality, it is evident in Fig. 5C that a drop in osmolality results in the 

same relative increase in secretion rate, regardless of the presence of yohimbine, whereas the decrease in 

secretion rate caused by an increase in osmolality is almost entirely blocked by yohimbine. Interestingly, the 

increase in urine secretion rate following a drop in osmolality is noticeably larger than that predicted by the 

Boyle-Van't Hoff relationship, which assumes constant ion flux and production of a urine that is isoosmotic to 

the bathing solution (Fig. 5C). In contrast, the decrease in secretion after an increase in osmolality in the 

presence of yohimbine is very close to that predicted by theory. 



 
Fig. 4.Effect of osmolality on TEP oscillations. A and B: recordings from tubules held in SBM and challenged with 
increasing (A) or decreasing (B) osmolality. C: average periods of TEP oscillations from records such as those 
shown in A and B. Individual tubules were exposed to either an increase or decrease in osmolality from the 
control value. At least 5 min of data were analyzed at each osmolality. n = 7–8 tubules for each condition. 



 

 
Fig. 5.Effect of osmolality on urine secretion rates. A and B: urine secretion rates were measured for tubules 
bathed in SBM in the presence or absence of 100 μM yohimbine. Urine droplets were collected, and secretion 
rates were calculated, at intervals of 12–20 min. Immediately preceding the second collection, the SBM in the 
bathing droplet was replaced with either SBM plus sucrose (∼310 mosmol/kgH2O) (A) or SBM plus water (∼200 
mosmol/kgH2O) (B); n = 5–7 tubules/condition. C: secretion rates from A and B are normalized to the initial 
average rate for each condition and plotted as a function of osmolality. The relative response of tubules to 
hyperosmotic shock was inhibited by yohimbine (P = 0.000084, unpaired t-test). Initial secretion rates at the 
control osmolality for each group of tubules were 2.74 nl/min (SD 0.81) (0 yohimbine, hyperosmotic), 2.78 
nl/min (SD 0.63) (0 yohimbine, hypoosmotic), 1.24 nl/min (SD 0.11) (100 yohimbine, hyperosmotic), and 1.29 
nl/min (SD 0.15) (100 yohimbine, hypoosmotic). The solid line on the graph indicates the theoretical inverse 
relationship between osmolality and secretion rate predicted by the Boyle-Van't Hoff equation (normalized rate 
= 268 mosmol/kgH2O/test osmolality). 
 

DISCUSSION 
The modulation of tyramine signaling in the Drosophila MT represents a novel effect of osmolality on the 

function of a secretory epithelium: specifically the modulation of sensitivity to an extracellular ligand. Previous 

work (25, 53) has demonstrated many other changes in epithelial function following osmotic shock, including an 

increase in the release of ATP, which then activates G protein-coupled receptors on the epithelial cells, 

activation of stretch-sensitive ion channels (12, 15, 46), which can directly cause an increase in intracellular 

calcium levels, alterations in transcellular ion transport (32, 37), and changes in paracellular conductance 



(13, 22, 58). Such effects result in rapid modulation of epithelial function by osmolality, just as in the MTs, but 

the MTs respond to changes in osmolality in a fundamentally different way then has been reported for other 

epithelia. It is intriguing to note the numerous examples of secretory epithelia that are under the control of 

biogenic amines and other hormones (2, 10, 11, 20, 30, 47, 52). The current data raise the possibility that some 

of these signaling pathways might also be modulated by osmolality just as is tyramine signaling in the MTs. 

There has been one previous report of osmotic modulation of the period of an oscillatory signal. Reetz and 

coworkers (45) observed that in cultured rat astrocytes, ATP induced calcium oscillations through the activation 

of a P2 purinergic receptor, and the frequency of these oscillations was sensitive to osmolality. As in 

the Drosophila MTs, hypertonic media reduced the frequency of the oscillations, although the astrocyte 

responses were more variable than those of the MTs. No mechanism or functional consequence of this 

modulation was proposed. 

The mechanism through which osmolality acts on tyramine and leucokinin signaling in the MTs remains 

unknown; however, the data are most easily explained by an effect on either inositol trisphosphate production 

or intracellular calcium dynamics. In the Drosophila MT, leucokinin stimulates the production of inositol 

trisphosphate and release of calcium from intracellular stores in the stellate cells (42). Tyramine, because it 

displays cross-desensitization with leucokinin, is presumed to act on the same pathway (6). The subsequent rise 

in intracellular calcium levels triggers either an increase in the chloride conductance of the stellate cells or an 

increase in paracellular chloride conductance. Generally speaking, changes in osmolality could act either on the 

first part of this pathway, between receptor activation and calcium release, or on the second part, between 

calcium release and the increase in chloride conductance. However, the current study shows that in the 

continuous presence of tyrosine, changes in osmolality alter the period of the TEP oscillations; these oscillations 

are hypothesized to reflect oscillations in intracellular calcium levels due to periodic release from and reuptake 

into intracellular stores (6). An effect of osmolality on oscillation period is most easily explained by a change in 

either inositol trisphosphate levels or calcium dynamics; a direct effect of osmolality on chloride conductance 

would more likely alter the amplitude of the TEP oscillations and not the period. Changes in osmolality are 

known to affect intracellular calcium dynamics in many systems (24), and modulation of inositol trisphosphate-

mediated calcium release has been demonstrated (9, 23). Future experiments measuring intracellular calcium 

levels will be needed to test this hypothesis directly. 

Although the effects of tyramine have not been reported in the MTs of any other insect species, leucokinin 

signaling has been extensively studied in the MTs of the mosquito Aedes aegypti (4). Leucokinin increases 

transepithelial chloride conductance in the MTs of both Aedes and Drosophila; however, the mechanistic details 

of the pathway appear to differ significantly between the two species. In Aedes, stellate cells are not involved in 

leucokinin signaling, and the resulting chloride conductance is entirely paracellular (39, 60). Nonetheless, in 

both Aedes and Drosophila MTs, leucokinin causes production of inositol trisphosphate and an increase in 

intracellular calcium levels (59), and Aedes MTs can also display oscillations in chloride conductance (5). It will be 

extremely interesting, therefore, to see whether leucokinin signaling in the Aedes MT is also modulated by 

peritubular osmolality. 

It is noteworthy that whereas the response of the MT to acute applications of tyramine was modulated by both 

increases and decreases in osmolality, when the tyraminergic signaling pathway was continuously activated, the 

MT responded only to hyperosmotic stimulation. This asymmetric response to changes in osmolality was seen 

both electrophysiologically, where a drop in osmolality had no effect on the TEP oscillations, and with urine 

secretion, where inhibition of tyramine signaling by yohimbine did not affect the response of the MTs to a drop 

in osmolality. Without a direct knowledge of the biochemical pathways responsible for tyramine signaling and 

the TEP oscillations, one cannot provide any explanation for this difference. However, it is plausible that there 

exists a lower limit on the period of the TEP oscillations, possibly due to kinetic constraints on processes such as 



calcium release from and reuptake into intracellular stores, such that an increase in the effective concentration 

of tyramine caused by a drop in the osmolality would not result in any further acceleration of the oscillations. 

Whatever the mechanism, it seems likely that in the intact fly, where the tubule is bathed continuously in a 

hemolymph that contains tyrosine, the modulation of tyramine signaling causes a drop in urine secretion when 

hemolymph osmolality rises but is not functionally important when hemolymph osmolality falls. The increase in 

urine secretion that does occur following a drop in osmolality is greater than that predicted by the Boyle-Van't 

Hoff relationship, meaning either that the rate of ion flux across the epithelium is not constant or that the urine 

does not remain isoosmotic to the bathing solution. A similar result was reported for the New Zealand alpine 

weta, in which the flux rates of both potassium and chloride were greatly enhanced by peritubular 

hypoosmolality (33). This increase in flux was hypothesized to occur, at least in part, due to a drop in 

intracellular chloride activity, thereby reducing the electrochemical gradient opposing the movement of chloride 

across the basolateral membrane. In the MTs of Rhodnius, in contrast, the rate of ion flux appears to be 

invariant across a wide range of peritubular osmolality (27). Thus the Drosophila MTs seem to behave more like 

those of the alpine weta, and further studies of urine composition and osmolality as well as intracellular ion 

activities are necessary to identify the mechanisms underlying the response of the MTs to hypoosmolality. 

What is the role of the osmotic modulation of MT function in the intact fly? One hypothesis is that it allows for 

enhanced survival under dehydration stress. Under normal conditions, there is a high flux of water through the 

insect excretory system, with the large majority of the water that is secreted by the main segments of the 

tubules being reabsorbed, primarily in the rectum but also in the lower tubules and anterior hindgut (8, 35). It 

has been hypothesized that this flux is important in the diuretic clearance of toxins from the hemolymph (40). 

During desiccation stress, Drosophila can lose a large percentage of their total body water; this water loss is 

associated with a loss of hemolymph volume and an increase in hemolymph osmolality (1, 19). Indeed, 

dehydrated Drosophila can tolerate increases of >15% in their hemolymph osmolality (1); such an increase is 

more than sufficient to inhibit tyramine signaling in the MTs. In the intact fly, the tyramine signaling pathway 

should be constitutively active due to the relatively high concentration of tyrosine in the hemolymph (14, 41). 

Thus, as a fly becomes dehydrated, tyramine signaling should decrease, leading to a reduction in the rate of 

urine secretion by the tubules. This, in turn, will reduce the flux of liquid moving into the rectum. I hypothesize 

that a decreased flow of liquid into and through the rectum will result in a more efficient reabsorption of water 

into the hemolymph and concentration of the feces. The argument that downregulation of urine secretion by 

the MTs is an important step in water retention is strengthened by the observation that MT antidiuresis has 

been observed in other insect species under dehydration stress (51, 54). Thus the sensitivity of the tubule to 

osmolality would result in an excretory system that combines a high resting flux of water with an enhanced 

ability to conserve water during dehydration stress. 

A final question is why the control of MT secretion rate by osmolality is indirect, acting through the modulation 

of the frequency of tyramine-dependent TEP oscillations. One possible explanation stems from an analysis of the 

control of the salivary gland in the blowfly Calliphora erythrocephala (43). In that epithelium, secretion is 

stimulated by serotonin; serotonin causes oscillations in the TEP of the isolated salivary gland, and the frequency 

of the oscillations increases with serotonin concentration. Rapp and colleagues (44) demonstrated that the 

conversion of an analog parameter (serotonin concentration) into the frequency domain allowed for a more 

stable control of secretion rate in the presence of small fluctuations in serotonin levels. Similarly, in 

a Drosophila MT that is constitutively activated by tyramine, the conversion of osmotic information into the 

frequency domain would then allow for a more stable control of excretory function in the presence of small 

fluctuations in hemolymph osmolality. This modulatory pathway provides an example of the unexpected 

complexity of insect renal function and its regulation. 
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