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Abstract: 

The cytochromes P450 (CYPs) are heme proteins responsible for the oxidation 

of xenobiotics and pharmaceuticals and the biosynthesis of essential steroid 

products. In all cases, substrate binding initiates the enzymatic cycle, 

converting ferric low spin (LS) to high-spin (HS), with the efficiency of the 

conversion varying widely for different substrates, so documentation of this 

conversion for a given substrate is an important objective. Resonance Raman 

(rR) spectroscopy can effectively yield distinctive frequencies for the ν3 “spin 

state marker” bands. Here, employing a reference cytochrome P450 
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(CYP101), the intensities of the ν3 modes (ILS) and (IHS) relative to an internal 

standard (sodium sulfate) yield relative populations for the two spin states; 

i.e., a value of 1.24 was determined for the ratio of the relative cross sections 

for the ν3 modes. Use of this value was then shown to permit a reliable 

calculation of relative populations of the two spin states from rR spectra of 

several other Cytochromes P450. The importance of this work is that, using 

this information, it is now possible to conveniently document by rR the spin 

state population without conducting separate experiments requiring different 

analytical methods, instrumentation and additional sample. 

Keywords: Cytochrome P450, Raman, spin state. 

The cytochromes P450 (CYPs) are heme-based monooxgenases 

responsible for the oxidative metabolisim of a huge number of 

relatively inert substrates, including pharmaceuticals and other 

xenobiotics, and for the biosynthesis of essential steroid products.[1-4] 

Substrate binding initiates the enzymatic cycle by triggering a crucial 

low spin (LS) to high spin (HS) state change that facilitates reduction 

to the ferrous heme intermediate that rapidly binds oxygen, which is 

then converted to the highly reactive Compound I. [5] Inasmuch as the 

efficiency of spin state conversion varies widely for different substrates 

and enzymes,[1,2,6,7] documentation of the extent of this conversion for 

a given substrate is an important experimental objective. Resonance 

Raman (rR) spectroscopy can effectively document the presence of HS 

or LS states of the ferric heme by appearance of distinctive 

frequencies observed at ~1485 and 1500 cm−1, respectively.[8-10] 

Given recent advances in producing and stabilizing these extremely 

important enzymes, [11-13] it is anticipated that applications of rR to 

these proteins will now expand considerably. The purpose of this work 

is to provide a systematic approach to utilize rR spectroscopy to 

reliably estimate spin state populations for different substrate/enzyme 

combinations. 

Cytochrome P450cam (CYP101), an ideal reference protein, 

exhibits an almost complete spin state conversion upon binding its 

natural substrate, camphor, switching from 96% LS to 95% HS, as 

documented by electronic absorption spectrophotometry, Fig. S1 

(Supporting Information).[14] The CYP101 was expressed and purified 

as published earlier;[11,15] experimental procedures, including sample 

preparation for rR measurements, are presented in Supporting 
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Information. The laser excitation lines for these studies were 406.7 

and 413.1 nm.[8-10, 16-19] 

As shown in Figure 1, the spin state change is observed as a 

shift of ν3 from 1502 cm−1 (LS) to 1488 cm−1(HS). To estimate relative 

rR cross sections for the substrate-free (SF) and substrate-bound (SB) 

samples, three samples of these two forms, each containing 0.500 M 

internal standard Na2SO4, were measured and their spectra were 

analyzed using the following peak fitting procedure. The SO4
2- bands at 

981 cm−1 (and all heme modes) were found to fit best with a 30% 

Gaussian/ 70% Lorentzian function. The average band width for the 

sulfate mode for all six spectra was 10.1 cm−1; the resulting band 

widths of the spin-marker bands were 11.5 cm−1 (1488 cm−1) and 11.3 

cm−1 (1502 cm−1). Peak areas, instead of peak heights, were used to 

calculate the relative cross sections of the spin state marker bands; 

i.e., ILS/IIS and IHS/IIS, where IIS is the intensity of the 981 cm−1 band 

of sulfate. Noting that SF CYP101 is 96 % low spin and the camphor-

bound is 95% high spin,[14] the operative relative intensities, YLS and 

YHS, values were derived by dividing the raw relative intensities by 

0.96 and 0.95 factors, respectively. The YHS/YLS ratios of the ν3 bands 

were calculated for all nine combinations derived from six samples and 

the results are presented in Table S1 of Supporting Information. The 

YHS/YLS ratio for the ν3 mode with 406.7 nm excitation line is 1.24 ± 

0.06; similar calculations for spectra measured with the 413.1 nm 

excitation line yielded a YHS/YLS ratio of 1.19 ± 0.04. Though of 

borderline significance, this smaller value is reasonable, because the 

413.1 nm line is closer to resonance with the Soret band of the LS 

sample (417 nm) (Table S1, Supporting Information). 
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Figure 1 The resonance Raman spectra of ferric CYP101 substrate-free (A) and 

substrate-bound (B). Spectra measured with 406.7 nm excitation line and normalized 
to the sulfate band at 981 cm−1. 

In order to expand potential applications of this procedure, 

these ratios were also calculated for the ν4 and ν7 modes with both 
excitation lines (Table S2, Supporting Information). These data can be 

used to normalize spectra in different regions. One can apply the 
YHS/YLS ratio of 0.21 ± 0.013 for the intense ν4 mode when normalizing 
high frequency spectra (Fig. S2, Supporting Information) and in the 

low frequency region one could utilize the 0.38 ± 0.020 ratio for ν7 
mode. 

Given that the electronic spectra of both the HS and LS states of 

the bacterial CYPs correspond well with those of mammalian CYPs,[20] 
it is reasonable to expect that the value of 1.24 derived here for 
CYP101 should be valid for spectra of mammalian CYPs. To evaluate 

this issue, the derived 1.24 value was applied to calculate the 
percentage of spin state conversion upon substrate binding of several 

mammalian cytochromes available in our laboratory; i.e., CYP2B4, 
ND:CYP3A4 and ND:CYP17.[21-25] The percentages of LS and HS states 

calculated from rR spectra (406.7 nm excitation) using the method 
presented above were compared with percentages independently 
derived from available UV-Vis data (Table1). As can be seen, the data 

match quite well for CYP2B4 with butylated hydroxytoluene (BHT), 
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CYP3A4 both SF and with erythromycin (ERY) as well as CYP17 with 
progesterone (PROG) and 17-hydroxyprogesterone (17-OH PROG). 

The value obtained here for the testosterone (TST)-bound ND:CYP3A4 
falls within the range reported for measurements with UV-visible 

spectrophotometry; as is discussed more thoroughly in several earlier 
works dealing with substrate-binding equilibria and spin state 
conversion for these systems,[22-24] the percentage LS→ HS conversion 

is not linearly related to the number of bound substrates and is further 
complicated by the fact that substrate access to enzyme also depends 

on partitioning of the substrate into the lipid bilayer of the nanodisc. 
Similar complications can also be encountered for the bromocryptine 

(BC)-bound samples of the ND:CYP3A4 system and may account for 
the slightly larger, but not unreasonable, discrepancy seen here; i.e., 
80% vs 93%.[26] 

 

Table 1  The calculated percentage of spin state populations in various 

cytochromes P450 measured with 406.7 nm excitation line and using the YHS/YLS ratio 
of 1.24 the v3 modes. The calculated data are compared with the data derived from 
UV-Vis spectra. 
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