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ABSTRACT
BI-DIRECTIONAL AC-DC CONVERTER

FOR VEHICLE-TO-GRID (V2G) APPLICATIONS

Arjun Raj Prabu Andhra Sridhar

Marquette University, 2015

Electric vehicles are growing at a rapid pace in the internal combustion engine
dominated transportation sector, and bring environmental and economic benefits
to society. Electric vehicles produce nearly zero carbon emission, provided that
they are charged through renewable energy sources. Electric vehicles reduce our
dependency on foreign oil and also offer additional benefits like Vehicle-to-grid
(V2G). V2G is a technology that allows electric energy stored in the electric vehi-
cle batteries to be returned to the grid during peak demand. V2G can also pro-
vide voltage regulation, voltage shaving, reactive power compensation and dis-
tributed generation. This necessitates that an electric vehicle battery charger be
bi-directional, capable of sinking or sourcing real and reactive power. The state
of the art battery charging converter is unidirectional and has multiple stages of
power conversion.

In this thesis, a single phase, single stage, isolated, bi-directional Silicon
Carbide (SiC) AC-DC converter based on Dual Active Bridge (DAB) topology is
proposed and analyzed. Direct-quadrature axis (DQ) current control of the DAB-
based topology is implemented with phase shift modulation. Simulation results
are presented with various operating conditions showing the converter’s ability to
sink or source real and reactive power in the AC grid. Hardware and firmware
implementation of a single phase bi-directional AC-DC converter operating at 100
kHz utilizing Silicon Carbide (SiC) MOSFETs are discussed in detail. Experimental
results are shown confirming simulation results.

A single phase bi-directional AC-DC converter uses large electrolytic capac-
itors to filter ripple currents in the DC bus. Electrolytic capacitors are bulky and
are prone to failure. These electrolytic capacitors can be eliminated by rejecting the
ripple current in the DC bus. The ripple current is rejected by injecting a current
of same magnitude and opposite phase to the ripple current. A rigorous analysis
is performed on the ripple rejection technique used in single phase bi-directional
AC-DC converters. Simulation results are presented to verify the analysis.

A three phase bi-directional AC-DC converter improves the charging time
of the electric vehicles by charging the batteries at a higher power level. A three
phase, single stage, isolated, bi-directional AC-DC converter is analyzed. DQ cur-
rent control of the three phase AC-DC converter is implemented in simulation to
verify the analysis.
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3.4 Simulation results: īleg(t), īd(t) with δ = 0.1647, φi = 0 rad . . . . . . . . . 37
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CHAPTER 1

INTRODUCTION

1.1 Background

Electrification of transportation vehicles has many significant benefits economi-

cally and environmentally. Electric vehicles (EV) or Plugin Hybrid Electric Vehicles

(PHEV) have become popular in the past decade due to their high fuel economy

and reduced carbon emission. The only emission produced due to the usage of

EVs are from generating electricity to charge the EV battery pack. This emission

is significantly smaller compared to the emission produced by gasoline powered

engines.

Electric vehicles (EV) use electric motors for traction purposes and are pow-

ered solely by battery packs. Battery packs can be charged in any public charging

station or home charging station. Electric vehicles are more suitable for city driv-

ing conditions where batteries can be charged easily using an electric outlet. They

are not preferred for long distance driving, due to insufficient charging infrastruc-

ture and present battery technology.

Hybrid Electric Vehicles (HEV) are driven by electric motors and Internal

Combustion Engines (ICE). The ICE is powered by petroleum and the electric

motors are powered by battery packs. The battery packs can be charged by the

electric motor during regenerative braking and also through the ICE during mo-

toring. These battery packs cannot be charged using an electric outlet. A hybrid

car switches between the electric motor and the ICE based on the driving condi-

tion in order to reduce fuel consumption. Hybrid cars are suitable for city driving

conditions and also for long distance driving conditions.



Plug-in Hybrid Electric Vehicles (PHEV) are driven by electric motors ac-

companied by Internal Combustion Engines (ICE). The ICEs are powered by petroleum

and the electric motors are powered by battery packs. The battery packs can be

charged during regenerative braking, through the ICEs, and additionally by using

an electric outlet. PHEVs give the best fuel economy and is dependent on how

often the battery packs are charged using an electric outlet.

Another competitor to battery operated electric vehicles are hydrogen pow-

ered electric vehicles called the Fuel Cell Electric vehicle (FCEV). FCEVs use oxy-

gen from the air and compressed hydrogen to generate electric power to drive the

electric motors. It has been found that FCEVs are 12 times more expensive than

conventional gasoline powered vehicles to operate [1].

1.2 Problem statement

Electrical energy stored in the electric vehicle battery is unused while it is

parked. The stored electric energy in the battery can be returned back to the grid

for purposes of supplying power during peak load, voltage regulation, reactive

power compensation and distributed generation. There is a necessity to develop a

high power density, bi-directional, EV battery charger capable of sinking or sourc-

ing real and reactive power. However, the state of the art of EV battery chargers

are unidirectional and have multiple stages of power conversion. A single phase,

single stage, isolated, bi-directional SiC AC-DC converter is proposed and it is

analyzed with DQ current control. Simulation and hardware results are shown

confirming the analysis.

Single phase electric vehicle battery chargers require large electrolytic ca-

pacitors to filter voltage ripples in the DC bus. Bulky electrolytic capacitors are

added to the DC bus to meet ripple voltage and ripple current requirements. These

capacitors can be eliminated by rejecting the ripple current in the DC bus. The rip-



ple current is rejected by injecting a current of same magnitude and opposite phase

into the DC bus. The current is injected in the DC bus by applying an appropriate

voltage across an energy storage element through an additional half bridge. Here

in this thesis, ripple rejection in a single phase bi-directional AC-DC converter is

proposed and analyzed in detail. Simulation results are shown confirming the

analysis.

A three phase AC-DC converter can handle more power than the single

phase converter. Universal utility bi-directional AC-DC converters are useful as

they can be used with either three phase power or single phase power based on

the availability. Additionally, a three phase bi-directional SiC AC-DC converter is

proposed and analyzed with DQ current control. Simulation results are presented

verifying the analysis.

1.3 Literature review

Electric vehicle battery chargers have attracted more attention for research

in the past decade. The current architecture of a typical electric vehicle battery

charger is shown in Fig. 1.1. The battery charger converts the utility grid AC

voltage to battery pack voltage using two stage power conversion. The first stage

is an AC-DC Converter, it rectifies the AC voltage from the utility to DC voltage

at unity power factor. The second stage is an isolated DC-DC converter which

provides galvanic isolation with battery charging controls. The controls of the AC-

DC converter and the DC-DC Converter are synchronized using a common master

controller.

1.3.1 AC-DC Converter

A full bridge diode rectifier followed by a simple boost converter is com-

monly used as a front end AC-DC converter. A boost converter is chosen as it is
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Figure 1.1: Electric vehicle battery charger architecture

simple and draws a low THD (Total Harmonic Distortion) input harmonic current

from the AC grid, maintaining unity power factor. A PFC (Power factor correction)

boost converter gets bulkier as the converter power increases. An interleaved PFC

boost converter is preferred for high power front AC-DC converter. An interleaved

PFC boost converter consists of two semiconductor devices, two boost inductors

and two diodes. The required boost inductance and filter capacitance used in the

interleaved PFC boost converter is lower compared to a simple PFC boost. Losses

are lower in the interleaved PFC boost due to the smaller reactive elements used.

The interleaved PFC boost converter has benefits such as high power density and

overall high efficiency compared to single PFC boost converter.

Zero voltage switching (ZVS) is switching a semiconductor device with zero

voltage across it. ZVS reduces switching losses significantly, thereby, allowing de-

signers to operate the converter at high frequency. High frequency operation with

ZVS improves efficiency and power density of the AC-DC converter. An inter-

leaved PFC boost converter with an auxiliary circuit to implement ZVS is shown

in [2].



1.3.2 Isolated DC-DC Converter

An isolated LLC (Inductor-Inductor-Capacitor) resonant DC-DC converter

is used in the second stage for battery charging regulation [3]. An LLC reso-

nant converter consists of a half bridge inverter, resonant tank, transformer and

a diode bridge rectifier. LLC resonant DC-DC converters provide galvanic isola-

tion through a transformer. They operate efficiently by implementing ZVS (Zero

voltage switching) in the primary circuit and ZCS (Zero current switching) in the

secondary circuit under certain operating conditions. An LLC resonant converter

can operate with a wide input voltage range. This is a necessary requirement as

this converter is connected to the output of the interleaved PFC boost converter

which has wide output voltage variation.

1.3.3 Single phase bi-directional battery charger

The transportation industry is the second largest consumer of electricity as

per the U.S. Energy Information Administration (EIA). However, 93% of the trans-

portation energy comes from petroleum [4]. Electric utility companies are keep-

ing up with the power demand due to the rise of electrification of transportation

vehicles. The rise in the number of electric vehicles is considered as extra load,

and the electric utility companies are forced to scale up the power system or in-

crease their spinning reserves. In fact, electric vehicles can be a huge benefit to

the power system as a whole. The electric energy stored in electric vehicles can be

used as reserves in the power system during peak demand. Vehicle-to-grid is one

such technology that allows stored energy from the batteries in electric vehicles to

be sent back to the power grid for peak power requirements, voltage regulation,

voltage shaving, reactive power compensation etc. Electric vehicles can also act

as Distributed Generation (DG). This necessitates electric vehicle battery charging



converters to be bi-directional and capable of sinking or sourcing real and reactive

power.

An active front end rectifier with high frequency dc link followed by a bi-

directional isolated resonant DC-DC converter is presented in [5]. The converter

topology presented above has two stage conversion enabling bi-directional power

flow. Two stage power conversion reduces the system efficiency and power den-

sity as the system scales up in size. The increased number of reactive elements due

to the multiple power stages reduces the system reliability. In addition, control

becomes complex due to the multiple stages involved.

Earlier work on a Dual active bridge (DAB) based power converter is pre-

sented in [6]. The DAB based topology has benefits over the other converters dis-

cussed previously such as the single stage power conversion, reduced number of

reactive elements, high power density and high efficiency. A universal utility in-

terface for PHEV with V2G functionality using DAB topology is presented in [7].

This converter works with both single phase power input and three phase power

input. It implements a DC bus voltage control loop and an active power control

loop. This converter lacks closed loop control to sink or source real and reactive

power from the grid. Current control of DAB based bi-directional AC-DC con-

verter is presented in [8]. The input current is controlled to sink or source real and

reactive power. The converter discussed above has significant harmonics in the

input current due to the effect of the clamp circuit.

A high power density Silicon Carbide (SiC) based single phase bi-directional

AC-DC converter with DQ current control is presented in [9]. This eliminated the

harmonics in the AC input current due to the clamp circuit. Simulation and exper-

imental results are shown in Chapter 2 confirming the analysis of a single phase

bi-directional SiC AC-DC Converter.



1.3.4 DC bus Ripple current rejection in a single phase bi-directional AC-DC
converter

Ripple current in the DC bus of a single phase bi-directional AC-DC con-

verter is significant. Large electrolytic capacitors are required on the DC bus to

filter out the ripple current in the DC bus. A high power density single phase ac-

tive rectifier with ripple current rejection is discussed in [10]. DC Ripple Current

Reduction on a Single-Phase PWM Voltage-Source Rectifier is presented in [11].

The above converters lack bi-directional power flow capability to sink or source

real and reactive power and do not provide isolation.

DC ripple current rejection in an isolated, single stage, single phase bi-

directional AC-DC converter with DQ current control is presented in Chapter 3.

The ripple current in the DC bus is rejected by injecting a current 180◦ out of phase

with the ripple current. The desired current is injected by applying an appropriate

voltage across an energy storage element using an additional half-bridge inverter.

Average inverter leg currents are derived over a switching cycle Ts and are found

to have distinct unbalanced current profile. Simulation results will show the rejec-

tion of the ripple current in the DC bus under various operating conditions.

1.3.5 Three phase bi-directional AC-DC converter

A novel three phase bi-directional AC-DC converter is presented in [7]. It

implements a complex closed loop control system to control DC bus voltage and

active power flow. It discusses a phase shift modulation strategy which induces

harmonics in the AC input current. A new modulation strategy is proposed in [12]

which overcomes the problems in [7] but lacks closed loop control to sink or source

real and reactive power.



A three phase bi-directional SiC AC-DC converter with DQ current control

is presented in Chapter 4. Analysis of the three phase bi-directional SiC AC-DC

converter is performed. Simulation results are shown verifying the converter’s

ability to sink or source real and reactive power under various operating condi-

tions.
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CHAPTER 2

SINGLE PHASE BI-DIRECTIONAL SIC AC-DC CONVERTER

2.1 Introduction

Electric vehicles (EV) play a major part in reducing the carbon footprint due to

fuel consumption in the transportation sector [13]. The stored energy in the elec-

tric vehicle batteries are unused while parked. This stored energy can be returned

back to the grid during peak demand which is known as Vehicle-to-grid (V2G) en-

ergy transfer [14]. Electric vehicles with V2G functionality offer other benefits like

voltage regulation, voltage shaving, reactive power compensation and distributed

generation. This necessitates electric vehicle battery charging converters to be bi-

directional and capable of sinking or sourcing real and reactive power.

Various bi-directional AC-DC converters based on Dual Active Bridge (DAB)

have been presented in [7,15–21]. The above converters lack closed loop control to

sink or source the real and reactive power. DQ current control of a bi-directional

AC-DC converter is presented in [22] and its experimental results are shown in [8].

The results shown in [8] have harmonic distortion in the input current ii(t) due to

a clamp circuit. This chapter focuses on the design and implementation of a high

power density, isolated, single-stage, bi-directional SiC AC-DC converter with the

elimination of the clamp circuit effects on the input current ii(t).

High power density is achieved by using Silicon Carbide (SiC) devices in-

stead of the conventional silicon devices [23–26]. Operating SiC devices at high

frequency (100 kHz) significantly reduces the size of the filter components and

generates lower switching losses compared to silicon devices. They operate at

high temperature allowing designers to choose a smaller heat sink, thus saving in

cost of the overall system design.



In this chapter, analysis of a single phase bi-directional AC-DC converter

is discussed. Simulation results are presented for various operating conditions.

Experimental results are shown to verify the simulation results.

2.2 Analysis

Analysis of a Dual Active Bridge (DAB) based bi-directional AC-DC con-

verter is presented in this section. The topology shown in Fig. (2.1) consists of

a single phase matrix converter (S1,P, S1,N, S2,P, S2,N, S3,P, S3,N, S4,P, S4,N), a sin-

gle phase inverter (S5, S6, S7, S8), a LC filter and a high frequency transformer.

Assuming the voltage drop across the filter inductor L f is zero, the input voltage

vi(t) with angular frequency ωi(t) as shown in (2.1) is applied across the single

phase matrix converter.

vi(t) = V̂i cos(ωit) (2.1)

The input current ii(t) can be controlled through the matrix converter cur-

rent im(t) [27]. The duty cycle d(t) of the converter is shown in (2.2) and it is related

to the average matrix converter current im(t) in (2.3). The average matrix converter

current im(t) shown in (2.6) is obtained by substituting (2.4) & (2.5) in (2.3). The

magnitude and the phase angle of the average matrix converter current im(t) (2.6)

can be controlled by controlling δ and φ respectively.

d(t) =
|vi(t)| n

Vd
(2.2)

īm(t) =
nδVd
4L fs

d(t) (2.3)
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Figure 2.1: Topology of a single phase bi-directional AC-DC Converter

d(t) =

∣∣V̂i cos(wit + φm)
∣∣ n

Vd
(2.4)

Kb =
n2V̂i

4L fs
(2.5)

īm(t) = Kbδ cos(wit + φm) (2.6)

From the LC filer dynamics, the input current ii(t) can be related to the ma-

trix converter current im(t) in (2.7). As seen from (2.7), it is difficult to control the

input current ii(t) due to sinusoids being involved. The two stationery reference

frame variables are obtained by delaying the actual input current ii(t) by π
2 rad.



The stationery reference frame variables (iα, iβ) are transformed into rotating ref-

erence frame variables (id, iq). The rotating reference frame variables (id, iq) are dc

quantities which can be controlled using simple PI controllers.

im(t) = L f C f
d2

dt2 ii(t) + R f C f
d
dt

ii(t) + ii(t)− C f
d
dt

vi(t) (2.7)

By substituting (2.8) into (2.7) and equating the real and imaginary compo-

nents gives imd(t) & imq as shown in (2.9) & (2.10).

X(t) = Xd(t) cos(wt)− Xq(t) sin(wt) (2.8)

imd(t) = L f C f

[
d2

dt2 iid(t)− 2ωi
d
dt

iiq(t)−ω2
i iid(t)

]
+ R f C f

[
d
dt

iid(t)−ωiiiq(t)
]
+ iid(t)− C f

d
dt

vid(t)
(2.9)

imq(t) = L f C f

[
d2

dt2 iiq(t) + 2ωi
d
dt

iid(t)−ω2
i iiq(t)

]
+ R f C f

[
d
dt

iiq(t) + ωiiid(t)
]
+ iiq(t)− C f ωivid(t)

(2.10)

Decoupling terms (2.11), (2.12) are added to (2.9) and (2.10) to indepen-

dently control iid(t) and iiq(t) [28].

idcd(t) = −2ωiL f C f
d
dt

iiq(t)−ωiR f C f iiq(t) (2.11)

idcq(t) = 2ωiL f C f
d
dt

iid(t) + ωiR f C f iid(t) (2.12)

Proportional Integral (PI) controllers are implemented to drive the steady

state error to zero between the reference input currents i∗id(t) & i∗iq(t) and the actual

input currents iid(t) & iiq(t). The PI controller’s response i∗pid(t) and i∗piq(t) are

shown in (2.13) and (2.14).
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Figure 2.2: Control diagram of a single phase bi-directional AC-DC converter

ipid
∗(t) = Kp (iid

∗(t)− iid(t)) + Ki

∫
(iid
∗(t)− iid(t)) dt (2.13)

ipiq
∗(t) = Kp

(
iiq∗(t)− iiq(t)

)
+ Ki

∫ (
iiq∗(t)− iiq(t)

)
dt (2.14)

A closed loop transfer function Gcl(s) (2.15) is obtained from the converter

equations and the control diagram as shown in Fig. 4.2. A suitable gain and band-

width is chosen in order to obtain a stable closed loop system and a good transient

response. Lastly, the values of Kp and Ki are determined.

Gcl(s) =

(
Kps + Ki

)
L f C f s3 + C f R f s2 + (1−ω2

i L f C f + Kp)s + Ki
(2.15)

From the reference currents i∗md(t) and i∗mq(t), the control variables δ∗(t) and

φ∗(t) can be calculated from (2.16) and (2.17).



Table 2.1: Simulation setup of a single phase bi-directional AC-DC converter

Filter inductance, L f 43.7µH
Filter capacitance, C f 12µF
Internal resistance of filter inductor, R f 0.1Ω
Leakage inductance of the High frequency transformer, L 7µH
Clamp capacitance, C1 6µF
DC link capacitance 1, C2 110µH
DC link capacitance 2, C3 2000µF
Input AC peak, V̂i 240

√
2V

Input AC frequency, ωi 2π60 rad
s

Switching frequency, fs 100kHz
Propositional gain, Kp 0.01
Integral gain, Ki 65
Load resistance, RL 100Ω

δ∗(t) = sgn(imd
∗(t))

1
Kb

√
imd
∗(t)2 + imq

∗(t)2 (2.16)

φ∗m(t) = tan−1
(

imq
∗(t)

imd
∗(t)

)
(2.17)

The duty cycle of the half bridges (S5, S7) and (S6, S8) are fixed at 50%. The

phase shift of the half bridges (S5, S7) and (S6, S8) are φ∗a (t) and φ∗b (t) calculated

from (2.18) and (2.19) respectively.

φ∗a (t) =
π

2

[
nV̂m

Vd
cos(wit + φ∗m(t)) + δ∗(t)

]
(2.18)

φ∗b (t) =
π

2

[
−nV̂m

Vd
cos(wit + φ∗m(t)) + δ∗(t)

]
(2.19)

2.3 Simulation

The topology shown in Fig. 2.1 is modeled in PLECS using the parameters

shown in Table 2.1. The half bridges are modulated using phase shifts φ∗a (t) and
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Figure 2.3: Simulation results: (iid, iiq) = (10, 0), (20, 0), (30, 0), (38.885, 0) A
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Figure 2.4: Simulation results: (iid, iiq) = (-10, 0), (-20, 0), (-30, 0), (-38.885, 0) A
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Figure 2.5: Simulation results: (iid, iiq) = (10, 10), (15, 15), (20, 20), (25, 25) A
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Figure 2.6: Simulation results: (iid, iiq) = (10, -10), (15, -15), (20, -20), (25, -25) A
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Figure 2.7: Simulation results: (iid, iiq) = (-10, -10), (-15, -15), (-20, -20), (-25, -25) A
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Figure 2.8: Simulation results: (iid, iiq) = (-10, 10), (-15, 15), (-20, 20), (-25, 25) A



Table 2.2: Control variables of a single phase bi-directional AC-DC converter

i∗id i∗iq δ∗ φ∗

+ + + +

+ − + −
− − − −
− + − +

φ∗a (t) based on i∗id(t) and i∗iq(t) input commands as shown in the control diagram

Fig. 4.2. All the switches and diodes used in the simulation model are ideal.

Table 2.2 shows the signs of the control variables for various input current

commands. Simulation results in Fig. 4.3 - 4.8 show the input voltage vi(t) and

various levels of input current ii(t) depicting real and reactive power sourcing

or sinking into the AC grid. Fig. 2.3 shows pure real power sourcing from the

AC grid, here the battery charger acts like a resistive load. Fig. 2.4 shows pure

real power sinking into the AC grid, here the battery charger acts like an ideal

generator. Fig. 2.5 shows real and reactive power sourcing from the AC grid, here

the battery charger acts like an inductive load. Fig. 2.6 shows real power sourcing

from the AC grid and reactive power sinking into the AC grid, here the battery

charger acts like a capacitive load. Fig. 2.7 shows real and reactive power sinking

into the AC grid, here the battery charger acts like an over excited synchronous

generator. Fig. 2.8 shows real power sinking into the AC grid and reactive power

sourcing from the AC grid, here the battery charger acts like an under excited

synchronous generator. The simulation results show the converter’s ability to sink

or source real and reactive power into the AC grid.



2.4 Hardware

2.4.1 Single phase matrix converter and Inverter

The single phase matrix converter consists of four bi-directional switches.

Each bi-directional switch consists of a two source-tied SiC MOSFET’s. The single

phase matrix converter is composed of switches (S1,P, S1,N), (S2,P, S2,N), (S3,P, S3,N),

(S4,P, S4,N). Bi-directional switches are capable of four quadrant operation i.e., they

block positive and negative voltages and allow current in positive and negative

directions. The single phase inverter is composed of SiC MOSFET switches S5, S6,

S7, S8. Dedicated SiC MOSFET gate drivers are used for driving these switches

which additional-ly provides optical isolation. Gate driver voltage levels used are

Vgs,on +15 V and Vgs,o f f -5 V.

2.4.2 Clamp circuit

The clamp circuit shown in Fig. 2.1 consists of a bridge rectifier connected

to the primary of the high frequency transformer. SiC schottky diodes are used in

the bridge rectifier. SiC schottky diodes are suitable for high frequency rectifica-

tion because they have essentially zero reverse recovery losses. A line frequency

diode bridge rectifier charges the polypropylene capacitor to the peak of the input

voltage V̄i. The clamp circuit applies the capacitor voltage across the primary of

the high frequency transformer during false current commutation. This protects

the matrix converter switches from high voltage spikes. A suitable resistor is con-

nected in parallel to the capacitor for voltage balancing.



Table 2.3: Hardware components of a single phase bi-directional AC-DC
converter

Components Description

SiC Mosfet switches CMF20120D, 1200V, 43A

SiC Schottky diodes C4D30120D, 1200V, 30A

SiC Gate drive optocoupler ACPL-W346, 2.5 A

Gate drive power supply RP-1212D, 1A, RP-1205S, 1A, LM2595, 1A

Clamp capacitor, C1 6 µF, Polypropylene capacitor, 450V

DC capacitor, C2 110 µF, Polypropylene capacitor, 450V, Low ESR

DC capacitor, C3 2 × 1000 µF, Aluminum capacitor, 500V, 5.43A RMS

AC filter capacitor, C f 2 × 6 µF, Polypropylene capacitor

AC filter inductor, L f 43.7µH ferrite core, µr 60, Magnetics Kool Mµ,

00K5530E060

High frequency transformer 1:1 turns ratio, ferrite core, 11 turns,

7 µH leakage inductance L, 0R49928EC

Voltage sensor LV-25P

Current sensor LTS-25 NP

Digital signal controller dsPIC33EP512MU810

2.4.3 Capacitor and Magnetic selection

A polypropylene capacitor C2 is connected to the DC bus and placed close

to the inverter switches to provide a low impedance path for the high frequency

switching current. Two 1000µF electrolytic capacitors C2 are used to meet the

ripple voltage V̂d2 (3% of V̂d) and ripple current Îd2 (13 A RMS) requirement in the

DC bus as shown in (2.20), (2.21) from [29].



Îd2 =
1
2

V̂s

V̂d
IL (2.20)

V̂d2 =
ÎL

4ωC1

V̂s

V̂d
(2.21)

A LC filter is used to filter input current harmonics from the matrix con-

verter switching [30–32]. Two 6µF polypropylene capacitors C f and a 43.7µH fer-

rite core inductor are used in the filter. A 1:1 turns ratio ferrite core based high

frequency transformer with 7 µH leakage inductance L is used.

2.4.4 Sensors

Voltages and currents in the converter are sensed using a voltage transducer

(LV-25P) and a current transducer (LTS-25 NP) respectively. The input voltage

vi(t), input current ii(t) and the clamp voltage Vclamp(t) are sensed and filtered

using a 2nd order unity gain sallen key filter with a 10 kHz cut off frequency. The

transformer primary current ip(t) is filtered using a 1st order RC differential am-

plifier at a 1 MHz cut off frequency.

2.5 Firmware

Modulation of the single phase matrix converter and the inverter are imple-

mented in a Microchip dsPIC33EP512MU810. The control loop is updated every

20µs (50 kHz). All the hardware filtered signals are simultaneously sampled and

converted using built-in 10 bit ADC peripheral and sampling is triggered by in-

verter PWM module for synchronization. The ADC signals are filtered using a 16

pt. moving average to reduce switching noise. The filtered signals are checked

for over-voltage and over-current faults. Protection is implemented by opening a

relay connected to the AC mains and disabling all the switches.



Table 2.4: Computation time of a single phase bi-directional AC-DC converter

Modules time (µs)

Moving average filter 3.2

Protection 1.0

PLL (θ) 1.5

Sin(θ),Cos(θ) 0.7

Parks transformation (αβ→ dq) 0.5

PI controller 2 x 0.5

Angle (atan2) 1.2

Magnitude (
√

x2 + y2) 1

Duty cycle calculation 1.5

Total 11.6

The input current ii(t) is delayed by π
2 rads to generate the stationary ref-

erence frame variables ii,αβ. A phase frequency detector (PFD) based PLL is im-

plemented to lock on to the phase angle of the input voltage vi(t). The station-

ary reference frame variables vi,αβ, ii,αβ are transformed to rotating reference frame

variables vi,dq, ii,dq using a DQ transformation. The control variables iid(t) and iiq(t)

are now dc values which can be easily controlled using a Proportional Integral (PI)

controller. The controller drives the steady state error between iid(t) & i∗id(t) and

iiq(t) & i∗iq(t) to zero.

The magnitude and angle of the matrix converter currents are computed us-

ing approximations [33, 34]. From equation (4.12) and (2.17), the control variables

δ∗(t) and φ∗(t) can be computed. The inverter is modulated at 100 kHz switch-



ing frequency with duty-cycle d(t) calculated from (3.19). The matrix converter is

modulated with a 50% fixed duty-cycle with four step current commutation. The

direction of transformer primary current ip(t) is detected in real time using the

in-built comparator for current commutation. An incorrect current direction will

engage the clamp circuit which introduces harmonic distortion in the input current

ii(t). Error in detecting current direction close to zero is significantly reduced by

using analog comparators. This mitigates the effect of clamp circuit acting during

false current commutation. Computation time taken for each module is tabulated

in Table 2.4



Table 2.5: Hardware setup of a single phase bi-directional AC-DC converter

Filter inductance, L f 43.7µH

Filter capacitance, C f 12µF

Leakage inductance of the High frequency transformer, L 7µH

Clamp capacitance, C1 6µF

DC link capacitance 1, C2 110µH

DC link capacitance 2, C3 2000µF

Input AC peak, V̂i 110
√

2 V

Input AC frequency, ωi 2π60 rad
s

Switching frequency, fs 100 kHz

Propositional gain, Kp 0.0039

Integral gain, Ki 0.0039

Load resistance, RL 90Ω

Figure 2.9: Hardware setup of a single phase bi-directional AC-DC converter



Figure 2.10: Hardware results: Input current ii(t)(yellow), Input voltage
vi(t)(blue)

Figure 2.11: Hardware results: Transformer primary current and voltage
ip(t)(yellow),vp(t)(blue), Inverter voltage v2(t) (magenta)



2.6 Hardware Results

Hardware results are recorded based on the conditions in Table 2.5. Fig.

2.10 shows the input voltage vi(t) (blue) and the input current ii(t) (yellow) with

a reference current of iid(t) = 22A and iiq(t) = 0A. The DC bus voltage Vd is

maintained at 300 V to transfer 1 kW active power into a 90 Ω resistive load. It

is seen from the input current ii(t) that the harmonic distortion due the effect of

clamp circuit is mitigated. Experimental hardware setup is shown in Fig. 2.9. Fig.

2.11 shows the transformer primary current ip(t) (yellow), transformer primary

voltage vp(t) (blue) and the inverter voltage v2(t) (magenta).
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CHAPTER 3

DC RIPPLE CURRENT REJECTION IN A SINGLE PHASE BI-DIRECTIONAL
SIC AC-DC CONVERTER

3.1 Introduction

Single phase bi-directional AC-DC converters shown in [7–9, 15–22, 35–37] require

large electrolytic capacitors to meet the ripple current and ripple voltage require-

ments of the DC bus. Aluminum electrolytic capacitors are bulky, costly, and also

suffer from reliability issues [38–42]. Electrolytic capacitors can be eliminated by

rejecting the ripple current in the dc bus.

A dual active bridge (DAB) based bi-directional, single phase, isolated, sin-

gle stage SiC AC-DC converter with ripple current rejection in the dc bus is dis-

cussed in this chapter. A current of same magnitude and 180◦ out of phase with

the dc ripple current is injected into the dc bus to reject (eliminate) the ripple cur-

rent in the dc bus. The out of phase current is injected into the dc bus through an

energy storage element by applying an appropriate voltage across it. The desired

voltage is applied through an additional half-bridge.

In this chapter, analysis of the converter is performed including the ripple

rejection technique using the additional half-bridge. A mathematical expression

of the voltage magnitude and phase angle to be applied across the energy storage

element is derived for various operating conditions. Average inverter leg currents

are derived over a switching cycle to showcase the distinct current profile. Simu-

lation results are shown with various operating conditions to verify the analysis of

the converter with ripple rejection.
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Figure 3.1: Topology of a single phase AC-DC Converter with ripple rejection

3.2 Analysis

Analysis of a Dual Active Bridge (DAB) based AC-DC converter with ripple

current rejection in the DC bus is presented in this section. The converter shown

in Fig. 3.1 consists of a single phase matrix converter S1,P, S1,N, S2,P, S2,N, S3,P,

S3,N, S4,P, S4,N, a full bridge inverter Leg a (S5, S6), Leg b (S7, S8) and an half-

bridge inverter Leg c (S9, S10). The single phase matrix converter consists of four

bi-directional switches (S1,P, S1,N), (S2,P, S2,N), (S3,P, S3,N), (S4,P, S4,N) allowing

bi-directional power flow between the AC grid and the DC bus. The full bridge in-

verter Leg a (S5, S6) and Leg b (S7, S8) are phase shift modulated for bi-directional

power flow and the half-bridge inverter Leg c (S9, S10) is utilized for rejecting the

ripple current in the dc bus. The input voltage vi (3.1) with angular frequency ωi

is applied to the input of the matrix converter.

vi(t) = V̂i sin(wit) (3.1)

The duty cycle d of the full bridge inverter is shown in (3.2) with a control-

lable phase angle φi [22]. The average input current ii(t) is shown in (3.4) with



control variables δ and φi to control the magnitude and phase angle of the average

input current respectively.

d(t) =

∣∣V̂i sin(wit + φi)
∣∣ n

Vd
(3.2)

Kb =
n2V̂i

4L fs
(3.3)

īi(t) = Kbδ sin(wit + φi) (3.4)

The average dc bus current īd is obtained by equating the input power to the

output power (3.5) assuming a lossless system. From (3.1), (3.4) & (3.5), the average

dc bus current īd is obtained in (3.6). The average dc bus current contains a dc

component and a ac ripple component at twice the line frequency (120 Hz). Large

electrolytic capacitors are used to filter the low frequency (120 Hz) ripple current.

These bulky electrolytic capacitors can be eliminated by rejecting the ripple current

in the DC bus. The ripple current can be rejected by injecting a current 180◦ in

reference to the ripple current īd,ac(t).

īd(t) =
vi(t)īi(t)

Vd
(3.5)

īd(t) = id,dc + īd,ac(t)

=
n2V̂2

i
8L fsVd

δ [cos(φi)− cos(2ωit + φi)]
(3.6)

By applying an appropriate voltage across an energy storage element Z, a

current 180◦ in reference to the ripple current īd,ac(t) can be injected into the DC

bus. The required voltage can be generated using an half-bridge inverter leg c



(S9, S10). The energy storage element is depicted as an inductor. Note this in-

ductor can be an external inductor or one can utilize the EV’s motor windings.

The average voltage v̄z across the energy storage element with a phase angle φv is

shown in (3.8). The average current flowing through the energy storage element,

īz, is shown in (3.9).

Z = Rz + jωiLz

Ẑ =
√

R2
z + (ωiLz)2

φz = tan−1
(

ωiLz

Rz

) (3.7)

v̄z(t) = V̂z sin(ωit + φv) (3.8)

īz(t) =
V̂z

Ẑ
sin(ωit + φv − φz) (3.9)

The inverter leg a and leg b are operated with a fixed duty cycle at 50% (3.10)

and phase shift modulated [22]. The inverter leg c is operated with a duty cycle dc

(3.11) to modulate the magnitude and phase angle of the voltage v̄z applied across

the energy storage element. The average ripple rejection current īrej is the sum of

leg c current īleg,c and part of the leg b current īleg,b drawn due to Z. The average

ripple rejection current īrej is calculated from (3.12) by substituting (3.9)-(3.11) in

(3.12) to obtain (3.13).

da = db =
1
2

(3.10)

dc(t) =
1
2
− V̂z

Vd
sin(ωit + φv) (3.11)

īrej(t) = īz(t) (db − dc(t)) (3.12)



īrej(t) = irej,dc + īrej,ac(t)

=
V̂2

z

2ẐVd
[cos(φz)− cos(2ωit + 2φv − φz)]

(3.13)

By comparing the magnitude and phase angle of the ac component in (3.6)

& (3.13), the required magnitude V̂z and the phase angle φv of the voltage v̄z are

calculated and results in (3.14) & (3.15). The duty cycle of the half-bridge inverter

Leg c is calculated by substituting (3.14) & (3.15) in (3.11) and is shown in (3.16).

The duty cycle dc is the required duty cycle of the inverter Leg c to reject the ripple

current in the dc bus.

V̂z =
nV̂i

2

√
Ẑ|δ|
L fs

(3.14)

φv =


φi + φz

2
, δ > 0

φi + φz + π

2
, δ < 0

(3.15)

dc(t) =


1
2 −

nV̂i
2Vd

√
Ẑ|δ|
L fs

sin
(

ωit +
φi+φz

2

)
, δ > 0

1
2 −

nV̂i
2Vd

√
Ẑ|δ|
L fs

sin
(

ωit +
φi+φz+π

2

)
, δ < 0

(3.16)

3.3 Average modeling of inverter leg currents

Average inverter leg currents ilega, ilegb, ilegc are derived over a switch-

ing cycle Ts with ripple rejection included. The average inverter leg currents are

obtained to highlight the unbalance in the inverter leg currents. The modula-

tion inverter comprises of switches S5, S6, S7, S8 and the ripple rejection inverter

comprises of switches S7, S8, S9, S10. Initially, the average inverter leg currents

īlega,mod & īlegb,mod are obtained due to the modulation inverter without considering

the ripple rejection inverter. Later, the average inverter leg currents īlegb,rej & īlegc,rej
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Figure 3.2: Modulation of the single phase bi-directional AC-DC Converter



are obtained solely due to ripple rejection inverter without considering the modu-

lation inverter. Finally, the total average leg currents īlega, īlegb & īlegc are obtained

by summing the leg currents due to modulation inverter and rejection inverter.

The average inverter leg currents īlega,mod & īlegb,mod due to the modulation

inverter are calculated from the current flowing through the leakage inductance

L of the transformer as shown in Fig. 3.2. Current commutation time t1 & t2 and

duty cycle are calculated from (3.17)-(3.21).

t1 =
Ts

4
(1 + δ− |d|) (3.17)

t2 =
Ts

4
(1 + δ + |d|) (3.18)

d1 =
t1

Ts/2
=

1
2
(1 + δ− |d|) (3.19)

d2 =
t2 − t1

Ts/2
= |d| (3.20)

d3 =
Ts/2− t2

Ts/2
=

1
2
(1− δ− |d|) (3.21)

Assuming 1:1 transformer turns ratio, the transformer leakage inductor cur-

rent iL rises from I0 (3.22) to I1 (3.23) from time 0 to t1 with voltage vi applied to

L. During the time t1 to t2, the current iL decrease to I2 (3.24) with voltage vi −Vd

applied to L. During the time t2 to Ts
2 , the current iL rises to I3 (3.25) with voltage vi

applied to L. During the time Ts
2 to Ts

2 + t1, the current iL decrease to I4 (3.26) with

voltage −vi applied to L. During the time Ts
2 + t1 to Ts

2 + t2, the current iL rises to I5

(3.27) with voltage −vi + Vd applied to L. During the time Ts
2 + t2 to Ts, the current

iL decreases to I0 (3.22) with voltage −vi applied to L.



I0 =
−vi + dVd

4L fs
(3.22)

I1 =
vi

4L fs
(1 + δ− |d|) (3.23)

I2 =
1

4L fs
[vi(1 + δ + |d|)− 2dVd] (3.24)

I3 =
1

2L fs
(vi − dVd) (3.25)

I4 =
1

4L fs
[vi(1− δ + |d|)− 2dVd] (3.26)

I5 =
1

4L fs
[vi(1− δ− |d| − 2d)] (3.27)

The average inverter leg currents īlega,mod & īlegb,mod due to modulation in-

verter are calculated by averaging the currents ilega,mod & ilegb,mod over a switching

cycle Ts. Substituting (3.19) - (3.27) into (3.28) & (3.29) results in the average in-

verter leg currents īlega,mod (3.30) & īlegb,mod (3.31) due to the modulation inverter.

īlega,mod(t) =
(I1 + I2) d2 + (I2 + I3) d3 + (I3 + I4) d1 + 2I0

4
(3.28)

īlegb,mod(t) =
(I2 + I3) d3 + (I3 + I4) d1 + (I4 + I5) d2 + 2I0

4
(3.29)

īlega,mod(t) =
1

16L fs

[(
1− δ2 − |d|2

)
vi + 2d (|d| − 1)Vd + 2δ|d||vi|

]
(3.30)

īlegb,mod(t) =
1

16L fs

[(
1− δ2 − |d|2

)
vi + 2d (|d| − 1)Vd − 2δ|d||vi|

]
(3.31)

The average inverter leg currents īlegb,rej (3.32) & īlegc,rej (3.33) due the ripple

rejection inverter are obtained without considering the modulation inverter. The



average inverter leg currents īlegb,rej & īlegc,rej are calculated by using db, dc & īz

from (3.10), (3.11) & (3.9) and are shown in (3.34) & (3.35).

īlegb,rej(t) = db īz(t) (3.32)

īlegc,rej(t) = dc(t)(−iz(t)) (3.33)

īlegb,rej(t) =
V̂z

2Ẑ
sin(ωit + φv − φz) (3.34)

īlegc,rej(t) =−
V̂z

2Ẑ
sin(ωit + φv − φz) +

V̂z
2

2VdẐ
cos(φz)

− V̂2
z

2VdẐ
cos(2ωit + 2φv − φz)

(3.35)

The total average leg currents īlega, īlegb & īlegc (3.36)-(3.38) are obtained by

summing the average leg currents due to modulation inverter īlega,mod & īlegb,mod

and the average leg currents due to ripple rejection inverter īlegb,rej & īlegc,rej.

īlega(t) = īlega,mod(t) (3.36)

īlegb(t) = īlegb,mod(t) + īlegb,rej(t) (3.37)

īlegc(t) = īlegc,rej(t) (3.38)

The resulting average leg current profiles are presented in (3.39)-(3.41). It is

noteworthy that all the three average leg currents īlega, īlegb and īlegc have distinct

current profiles and are unbalanced.



īlega(t) =
1

16L fs

[(
1− δ2 − |d|2

)
vi + 2d (|d| − 1)Vd + 2δ|d||vi|

]
(3.39)

īlegb(t) =
1

16L fs

[(
1− δ2 − |d|2

)
vi + 2d (|d| − 1)Vd − 2δ|d||vi|

]
+

V̂z

2Ẑ
sin(ωit + φv − φz)

(3.40)

īlegc(t) = −
V̂z

2Ẑ
sin(ωit + φv − φz) +

V̂2
z

2VdẐ
cos(φz)−

V̂2
z

2VdẐ
cos(2ωit + 2φv − φz)

(3.41)
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Figure 3.3: Simulation results: vi(t), īi(t) with δ = 0.1647, φi = 0 rad
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Figure 3.5: Simulation results: vi(t), īi(t) with δ = -0.1647, φi = 0 rad
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Figure 3.6: Simulation results: īleg(t), īd(t) with δ = -0.1647, φi = 0 rad
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Figure 3.7: Simulation results: vi(t), īi(t) with δ = 0.1647, φi = π
4 rad
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Figure 3.8: Simulation results: īleg(t), īd(t) with δ = 0.1647, φi = π
4 rad
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Figure 3.9: Simulation results: vi(t), īi(t) with δ = 0.1647, φi = -π
4 rad
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Figure 3.10: Simulation results: īleg(t), īd(t) with δ = 0.1647, φi = -π
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Figure 3.11: Simulation results: vi(t), īi(t) with δ = -0.1647, φi = π
4 rad
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Figure 3.12: Simulation results: īleg(t), īd(t) with δ = -0.1647, φi = π
4 rad
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Figure 3.13: Simulation results: vi(t), īi(t) with δ = -0.1647, φi = -π
4 rad
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Figure 3.14: Simulation results: īleg(t), īd(t) with δ = -0.1647, φi = -π
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Table 3.1: Simulation setup of a single phase bi-directional AC-DC converter with
ripple rejection

L V̂i wi fs Vd Rz Lz

7µH 240
√

2V 2π60 rad
s 100kHz 500V 0.1Ω 0.01H

3.4 Simulation

The topology shown in Fig. 3.1 is simulated in PLECS with the conditions

shown in Table 3.1. All the switches and diodes used are assumed to be ideal. The

single phase matrix converter is operated with a fixed duty cycle of 50% at 100 kHz.

The matrix converter applies vi for the first 5µs interval and then applies −vi for

the next 5µs interval. The half-bridge leg a and leg b operate at a fixed 50% duty

cycle with phase shift modulation [22]. The magnitude V̂z and the phase angle

φv are calculated from (3.14), (3.15) and the half-bridge inverter leg c is operated

with duty cycle dc (3.16). Various operating conditions at different δ and φi are

simulated in order to confirm ripple current rejection in the DC bus.

The simulation results in Fig. 3.3 & 3.4 illustrate active power transfer from

the AC grid to the DC bus with δ = 0.1647 and φi = 0 rad. The input voltage,

input current, average leg currents, and average dc bus current are shown in Fig.

3.3 and 3.4. In this case, the battery charger acts like a resistive load consuming

active power from the AC grid.

The simulation results in Fig. 3.5 & 3.6 display active power transfer from

the DC bus to the AC grid with δ = −0.1647 and φi = 0 rad. The input voltage,

input current, average leg currents, and average dc bus current are shown in Fig.

3.5 & 3.6. In this case, the battery charger acts like an ideal generator to supply

active power to the AC grid.



The simulation results in Fig. 3.7 & 3.8 depict active power transfer from the

AC grid to the DC bus and reactive power supplied to the AC grid with δ = 0.1647

and φi =
π
4 rad. The input voltage, input current, average leg currents, and average

dc bus current are shown in Fig. 3.7 & 3.8. In this case, the battery charger acts like

a capacitive load to consume active power from the AC grid and supply reactive

power to the AC grid.

The simulation results in Fig. 3.9 & 3.10 present active power transfer from

the AC grid to the DC bus and reactive power supplied by the AC grid with δ =

0.1647 and φi = −π
4 rad. The input voltage, input current, average leg currents,

and average dc bus current are shown in Fig. 3.9 & 3.10. In this case, the battery

charger acts like an inductive load to consume active power from the AC grid and

consume reactive power from the AC grid.

The simulation results in Fig. 3.11 & 3.12 show active power transfer from

the DC bus to the AC grid and reactive power supplied to the AC grid with δ =

−0.1647 and φi =
π
4 rad. The input voltage, input current, average leg currents,

and average dc bus current are shown in Fig. 3.11 & 3.12. In this case, the battery

charger acts like an over excited synchronous generator to generate active power

and supply reactive power to the AC grid.

The simulation results in Fig. 3.13 & 3.14 show active power transfer from

the DC bus to the AC grid and reactive power supplied by the AC grid with δ =

−0.1647 and φi = −π
4 rad. The input voltage, input current, average leg currents,

and average dc bus current are shown in Fig. 3.13 & 3.14. In this case, the battery

charger acts like an under excited synchronous generator to generate active power

and consume reactive power from the AC grid.

The average dc bus current at various operating conditions is mostly DC

while the average leg currents have distinct current profiles and are unbalanced.
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CHAPTER 4

THREE PHASE BI-DIRECTIONAL SIC AC-DC CONVERTER

4.1 Introduction

A bi-directional battery charger capable of sinking or sourcing real or reactive

power with V2G functionality is presented in [15–21]. A bi-directional three phase

AC-DC converter with complex closed loop control was proposed in [7] which

adds significant line frequency harmonics to the input current. A new modulation

strategy was proposed in [12] which overcame the problems in [7], however, it

lacks closed loop control. In this chapter, a DQ current control to sink or source real

and reactive power in the AC grid is presented. The modulation of the three phase

bi-directional AC-DC converter is discussed. Simulation results are are shown to

verify the analysis.

4.2 Analysis

DQ current control of the Dual Active Bridge (DAB) based three phase AC-

DC converter is briefly analyzed in this section. The converter shown in Fig. 4.1

consists of a LC filter circuit to filter input current harmonics. The source phase

voltages va(t), vb(t), vc(t) with an angular frequency ωi are shown in (4.1).

va(t) = V̂ cos(wit)

vb(t) = V̂ cos(wit−
2π

3
)

vc(t) = V̂ cos(wit−
4π

3
)

(4.1)

The voltage drop across the filter inductor is assumed negligible, therefore

the matrix converter phase voltages vma(t), vmb(t), vmc(t) are approximately equal

to the source phase voltages va(t), vb(t), vc(t) (4.2).
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Figure 4.1: Three phase bi-directional AC-DC Converter topology

vma(t) = V̂m cos(wit)

vmb(t) = V̂m cos(wit−
2π

3
)

vmc(t) = V̂m cos(wit−
4π

3
)

(4.2)

The average matrix converter currents ima(t), imb(t), imc(t) are related to the

duty cycles da(t), db(t), dc(t) (4.3) respectively as shown in (4.4). An additional

controllable phase angle φm is added to control the angle of im(t) as shown in (4.5).

da(t) =
|vab(t)| n

Vd

db(t) =
|vbc(t)| n

Vd

dc(t) =
|vca(t)| n

Vd

(4.3)



īma(t) =
nδVd
4L fs

da(t)

īmb(t) =
nδVd
4L fs

db(t)

īmc(t) =
nδVd
4L fs

dc(t)

(4.4)

By substituting (4.5) in (4.4), the average currents īma(t), īmb(t), īmc(t) are

shown in (4.7) with a constant gain Kb (4.6). The variables δ and φm control the

magnitude and angle of īma(t), īmb(t), īmc(t) respectively.

da(t) =

√
3
∣∣V̂m cos(wit + π

6 + φm)
∣∣ n

Vd

db(t) =

√
3
∣∣V̂m cos(wit− π

2 + φm)
∣∣ n

Vd

dc(t) =

√
3
∣∣V̂m cos(wit− 7π

6 + φm)
∣∣ n

Vd

(4.5)

Kb =
n2V̂m

4L fs
(4.6)

īma(t) = Kbδ cos(wit + φm)

īmb(t) = Kbδ cos(wit−
2π

3
+ φm)

īmc(t) = Kbδ cos(wit−
4π

3
+ φm)

(4.7)

A relation between the average matrix converter currents ima(t), imb(t), imc(t)

are expressed in terms of the source currents ia(t), ib(t), ic(t) with the LC filter cir-

cuit in (4.8) respectively. The equation shown in (4.9) is used to transform a three

phase signal into two dc quantities in a rotating reference frame with θ rad. The

control variables are now dc values which is easier to control.
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ima(t) = L f C f
d2

dt2 ia(t) + R f C f
d
dt

ia(t) + ia(t)− C f
d
dt

va(t)

imb(t) = L f C f
d2

dt2 ib(t) + R f C f
d
dt

ib(t) + ib(t)− C f
d
dt

vb(t)

imc(t) = L f C f
d2

dt2 ic(t) + R f C f
d
dt

ic(t) + ic(t)− C f
d
dt

vc(t)

(4.8)

 yd

yq

 =

 cos θ cos(θ − 2π
3 ) cos(θ + 2π

3 )

− sin θ − sin(θ − 2π
3 ) − sin(θ + 2π

3 )




xa

xb

xc

 (4.9)

Proportional-Integral (PI) controllers are implemented to track the reference

currents i∗d(t) & i∗q(t) with the actual currents id(t) & iq(t). The steady state error

between the reference and the actual currents are driven to zero. The equations

(4.10) & (4.11) are the PI controller responses i∗pid(t) & i∗piq(t).

ipid
∗(t) = Kp (id

∗(t)− id(t)) + Ki

∫
(id
∗(t)− id(t)) dt (4.10)



Table 4.1: Simulation setup of a three phase bi-directional AC-DC converter

V̂ ωi fs Vd L f C f L

120
√

2V 2π60 rad
s 33.33kHz 500V 100µH 30µF 7µH

ipiq
∗(t) = Kp

(
iq
∗(t)− iq(t)

)
+ Ki

∫ (
iq
∗(t)− iq(t)

)
dt (4.11)

The control variables δ∗(t) & φ∗(t) can be calculated from the reference cur-

rents i∗md(t) & i∗mq(t) as shown in (4.12) & (4.13).

δ∗(t) = sgn(imd
∗(t))

1
Kb

√
imd
∗(t)2 + imq

∗(t)2 (4.12)

φ∗m(t) = tan−1
(

imq
∗(t)

imd
∗(t)

)
(4.13)

The duty cycle of the half bridges (S5, S7) and (S6, S8) are fixed at 50%. The

phase shift of the half bridges (S5, S7) and (S6, S8) are φ∗1(t) and φ∗2(t) and are

calculated from (4.14), (4.15) and (4.16).

φ∗a1(t) =
π

2

[√
3nV̂m

Vd
cos(wit +

π

6
+ φ∗m(t)) + δ∗(t)

]

φ∗a2(t) =
π

2

[
−
√

3nV̂m

Vd
cos(wit +

π

6
+ φ∗m(t)) + δ∗(t)

] (4.14)

φ∗b1(t) =
π

2

[√
3nV̂m

Vd
cos(wit−

π

2
+ φ∗m(t)) + δ∗(t)

]

φ∗b2(t) =
π

2

[
−
√

3nV̂m

Vd
cos(wit−

π

2
+ φ∗m(t)) + δ∗(t)

] (4.15)

φ∗c1(t) =
π

2

[√
3nV̂m

Vd
cos(wit−

7π

6
+ φ∗m(t)) + δ∗(t)

]

φ∗c2(t) =
π

2

[
−
√

3nV̂m

Vd
cos(wit−

7π

6
+ φ∗m(t)) + δ∗(t)

] (4.16)
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Figure 4.3: Simulation results: va(t) & ia(t) for (id, iq) = (15,0) A
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Figure 4.5: Simulation results: va(t) & ia(t) for (id, iq) = (-15,0) A
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Figure 4.6: Simulation results: vab,bc,ca(t) & ia,b,c(t) for (id, iq) = (-15,0) A
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Figure 4.7: Simulation results: va(t) & ia(t) for (id, iq) = (15,15) A
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Figure 4.9: Simulation results: va(t) & ia(t) for (id, iq) = (15,-15) A
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Figure 4.11: Simulation results: va(t) & ia(t) for (id, iq) = (-15,15) A
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Figure 4.12: Simulation results: vab,bc,ca(t) & ia,b,c(t) for (id, iq) = (-15,15) A



t (s)
0.35 0.36 0.37 0.38 0.39 0.4

v a
(t
)
(V

)

-200

-100

0

100

200

i a
(t
)
(A

)

-50

-40

-30

-20

-10

0

10

20

30

40

50

va(t) (V)
ia(t) (A)

Figure 4.13: Simulation results: va(t) & ia(t) for (id, iq) = (-15,-15) A

t (s)
0.35 0.36 0.37 0.38 0.39 0.4

i a
;b
;c
(t

)
(A

)

-20

0

20
ia(t)
ib(t)
ic(t)

t (s)
0.35 0.36 0.37 0.38 0.39 0.4

v a
b;
bc

;c
a
(t

)
(A

)

-400
-200

0
200
400

vab(t)
vbc(t)
vca(t)

Figure 4.14: Simulation results: vab,bc,ca(t) & ia,b,c(t) for (id, iq) = (-15,-15) A



4.3 Simulation

The topology shown in Fig. 4.1 is modeled in PLECS using the parameters

shown in Table 4.1. The matrix converter is operated such that vab(t) is applied

to the transformer for the first cycle of fs, vbc(t) is applied to the transformer for

the second cycle of fs and vca(t) is applied to the transformer for the third cycle

of fs. The half bridges are modulated using phase shifts φ∗1(t) and φ∗2(t) based

on i∗d(t) and i∗q(t) input commands as shown in the control diagram Fig. 4.2. All

the switches and diodes used in the simulation model are ideal. Fig. 4.3, Fig. 4.5,

Fig. 4.7, Fig. 4.9, Fig. 4.11 and Fig. 4.13 depicts the source phase voltage va(t)

and source current ia(t) for phase A and Fig. 4.4, Fig. 4.6, Fig. 4.8, Fig. 4.10, Fig.

4.12 and Fig. 4.14 depicts the source line to line voltages vab(t), vbc(t), vca(t) and

source currents ia(t), ib(t), ic(t) for (id, iq) = (15,0), (-15,0), (15,15), (15,-15), (-15,15),

(-15,-15). The simulation results confirm the converter ability to sink or source real

and reactive into the AC grid.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In the first chapter of this thesis, various types of electric vehicles have been

discussed along with their advantages and disadvantages based on battery charg-

ing convenience and suitability of driving. Vehicle-to-grid (V2G) technology inte-

gration into the electric vehicle’s on-board battery chargers has been discussed in

detail. Literature review of the state of the art of on-board battery chargers reveals

that the current charger topology is a two stage power conversion system and it

also lacks bi-directional power flow capabilities.

This thesis focuses on three problem statements. Firstly, a single phase, sin-

gle stage, isolated, bi-directional Silicon Carbide (SiC) AC-DC converter based on

Dual Active Bridge (DAB) topology is proposed and analyzed. Secondly, a rigor-

ous analysis is performed on the ripple rejection technique used in single phase

bi-directional AC-DC converters. Finally, a three phase, single stage, isolated, bi-

directional AC-DC converter is proposed and analyzed.

5.1 Single phase bi-directional SiC AC-DC converter

In the second chapter of this thesis, analysis of the modulation used for dual

active bridge based single phase AC-DC converter was performed and a mathe-

matical relationship between the average matrix converter current im(t) and con-

trol variables δ∗(t) and φ∗(t) was derived. Hardware description and firmware

computation timing are discussed in detail. Hardware results for active power

transfer from the AC grid into the DC bus was shown confirming the simulation

results and analytical predictions. Hardware results for other operating conditions

can be obtained in future work.



5.2 DC ripple current rejection in a single phase bi-directional SiC AC-DC
Converter

In the third chapter of this thesis, analysis of the ripple current rejection in

a dual active bridge based AC-DC converter was discussed in detail. In order to

cancel the ripple current, an additional half-bridge operating with a duty cycle dc,

was added in combination with an energy storage element. A mathematical ex-

pression for the duty cycle dc was derived in terms of the control variables δ and

φi. An average mathematical model for inverter leg currents īlega, īlegb, and īlegc

was developed to highlight the distinct unbalanced inverter leg currents. Simu-

lation results were presented confirming the dc bus ripple current rejection with

various operating conditions. Hardware results confirming the dc ripple rejection

technique with DQ current control can be obtained in future work.

5.3 Three phase bi-directional SiC AC-DC converter

In the fourth chapter of this thesis, a brief analysis of the modulation tech-

nique used for a dual active bridge based three phase AC-DC converter is dis-

cussed. Mathematical relationships between the matrix converter currents imd(t),

imq(t), and control variables δ(t), φ(t) were derived. Simulation results were shown

for various operating conditions confirming the analysis. Experimental results

with sinking or sourcing real and reactive power including the THD analysis of

the input current ia(t) and efficiency calculations can be obtained in future work.
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