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ABSTRACT 

A FAST GPU-BASED APPROACH TO BRANCHLESS DISTANCE-DRIVEN 

PROJECTION AND BACK-PROJECTION  

IN CONE BEAM CT 

 

 

DANIEL SCHLIFSKE, B.S. 

 

MARQUETTE UNIVERSITY, 2015 

 

 

Modern CT image reconstruction algorithms rely on projection and back-

projection operations to refine an image estimate in iterative image reconstruction. A 

widely-used state-of-the-art technique is distance-driven projection and back-projection. 

While the distance-driven technique yields superior image quality in iterative algorithms, 

it is a computationally demanding process. This has a detrimental effect on the relevance 

of the algorithms in clinical settings.  

 

A few methods have been proposed for enhancing the distance-driven technique 

in order to take advantage of modern computer hardware. This study explores a two-

dimensional extension of the branchless method, which is a technique that does not 

compromise image quality. The extension of the branchless method is named “pre-

projection integration” because it gets a performance boost by integrating the data before 

the projection and back-projection operations. It was written with Nvidia’s CUDA 

framework and carefully designed for massively parallel graphics processing units 

(GPUs).  

 

The performance and the image quality of the pre-projection integration method 

were analyzed. Both projection and back-projection are significantly faster with pre-

projection integration. The image quality was analyzed using cone beam CT image 

reconstruction algorithms within Jeffrey Fessler’s Image Reconstruction Toolbox. Images 

produced from regularized, iterative image reconstruction algorithms using the pre-

projection integration method show no significant artifacts.
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I. INTRODUCTION 

This section serves as an introduction to the context, goals, and organization of 

this study. First, there is a brief introduction to Computed Tomography (CT) and iterative 

image reconstruction. In this section, the key operations examined in this study, 

projection and back-projection, are explained. Then, the next section outlines the high-

level objectives of this study. Finally, the organization of this document is outlined.   

 

A. Brief Introduction to Computed Tomography 

The purpose of this section is to provide readers with enough background to 

understand the concepts of projection and back-projection. It explains data collection in 

CT and also defines terms such as X-ray source, detector, image, and sinogram. 

Furthermore, this section briefly introduces iterative image reconstruction, which 

necessitates advanced projection and back-projection. 

In CT, an X-ray tube and detector rotate around an object.  The X-ray tube emits 

X-rays, which are attenuated by the object between the tube and the detector. There are 

three main modes of data collection in CT: parallel beam, fan beam, and cone beam 

(Hsieh, 2009). All three modes are shown in Fig. 1. In parallel beam mode, the X-ray 

source is modeled as a line of equally spaced sources, each of which emits parallel beams 

of X-rays that hit a row of detector cells. The fan beam mode differs from the parallel 

beam mode in two ways. First, there is only one X-ray source, which is modeled as a 

single point. Second, the X-ray beams emitted by the source “fan-out” and thus are not 
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parallel. Finally, the third mode of data collection is the cone beam mode. It is essentially 

a 3D collection of many fan beams.  

 

 

Fig. 1. Parallel beam (left), fan beam (center), and cone beam (right) CT geometries. 

 

Data collected by the detector is stored in a sinogram. A sinogram is a 3D stack of 

data. Each piece is called a view and contains the data collected when the X-ray tube and 

detector are located at a certain angle. For any particular view, the sinogram stores the 

signal collected from the detector along its rows and channels. Image reconstruction is 

the task of using the data in the sinogram to generate an image of the radiodensity of the 

object between the X-ray source and the detector. There are two main classes of 

reconstruction algorithms: analytical and iterative.  

Analytical reconstruction algorithms are generally algorithms that are non-

iterative and require a closed-form solution (Fessler J. A., Analytical Tomographic Image 

Reconstruction Methods, 2009). These algorithms are frequently based on some variant 

of a Filtered Back-Projection (FBP) technique (Fessler J. A., Analytical Tomographic 

Image Reconstruction Methods, 2009) (Kak & Slaney, 2001). One particular example of 
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an analytical reconstruction algorithm that does not use FBP is the direct Fourier method, 

which is based on the Fourier slice theorem (Fessler J. A., Analytical Tomographic Image 

Reconstruction Methods, 2009). FBP transforms the sinogram data back into an image by 

first filtering the data in frequency space and then smearing the data back along the 

projection lines (Fessler J. A., Analytical Tomographic Image Reconstruction Methods, 

2009) (Kak & Slaney, 2001). FBP algorithms are relatively quick but generally only 

produce acceptable results when the data is uniformly spaced and closely sampled 

(Thibault J.-B. , Sauer, Bouman, & Hsieh, 2003). Despite their simplicity, certain 

analytical algorithms based on FBP have been very successful. One prominent example is 

the Feldkamp, Davis, and Kress (FDK) algorithm for cone beam CT (Feldkamp, Davis, 

& Kress, 1984). Decades after its introduction, the FDK algorithm is still being optimized 

for the latest computer hardware (Scherl, Keck, Kowarschik, & Hornegger, 2007) 

(Scherl, et al., 2007).   

Iterative reconstruction algorithms attempt to find the image that best fits the data 

that was actually acquired. They use statistical techniques, model imperfections in the 

system, and take into account the discrete acquisition of the data (Hsieh, 2009). Unlike 

analytical methods which rely solely on back-projection, iterative methods also use 

projection. In projection, the image estimate is projected onto the detector to simulate 

data acquisition. Fig. 2 shows the relationship between an image volume and a sinogram 

as well as the projection operations used to generate one from the other. Iterative 

algorithms generally perform multiple iterations of projection and back-projection in 

order to converge towards a refined image. 
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Fig. 2. An image volume (left) and a sinogram (right). The blue arrows illustrate 

projection and back-projection operations. 

 

B. Study Objectives 

The objective of this work is to explore a novel technique for projection and back-

projection in cone beam CT that significantly speeds up image reconstruction algorithms 

while not compromising the image quality. There are many different models for 

projection and back-projection, and most of today’s high quality image reconstruction 

algorithms rely on fairly sophisticated such models. Therefore, a key objective of this 

study is to focus on a model for projection and back-projection that is currently being 

used in high quality image reconstruction algorithms. Another goal of this study is to 

focus on characterizing the speed or performance of projection and back-projection for 

state-of-the-art processor technologies. Massively parallel graphics processing units 

(GPUs) are increasingly being used for computationally intensive tasks such as image 

reconstruction. Therefore, this study will focus on projector and back-projector 

performance on GPUs. Finally, the last objective of this study is to do a thorough analysis 

of the image quality effects of the techniques proposed. This analysis should examine the 
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image quality effects of new or modified operations as well as the image quality of the 

output of the entire image reconstruction algorithm. 

 

C. Organization of Thesis 

The remainder of this document is organized as follows. Section II is a survey of 

the work that has been done in the field of projection and back-projection as well as the 

optimization of those operations. Section III describes the pre-projection integration 

algorithm, which is the technique focused on in this study. Section IV contains the results 

from the study, which includes both performance results and image quality results. 

Finally, Section V is a conclusion which summarizes the key points and findings of the 

study. 
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II. RELATED WORK 

Projection and back-projection are integral to tomographic imaging modalities 

such as CT. These operations have become very sophisticated over time. As shown in this 

section, a great deal of analysis has been devoted not only to projection and back-

projection operations, but also to their application to certain algorithms and their 

efficiency on different computational platforms.   

This section is organized as follows.  First, it explores a few of the more 

noteworthy projection models. Second, it examines state-of-the-art image reconstruction 

algorithms to determine which projection models are the most prevalent. While more 

accurate models may exist, distance-driven projection emerges as the overwhelming 

favorite of most modern algorithms. Third, this section explores ways in which distance-

driven projection has been optimized for parallel computation platforms such as GPUs. 

And finally, this section examines how other projection methods such as ray-driven or 

pixel-driven have taken advantage of GPUs. While the focus of this study is distance-

driven projection, it is nevertheless useful to have an understanding of the techniques 

used to optimize other projection methods. 

 

A. Projector Models 

The pixel-driven method is popular for implementing the back-projection 

operation, especially in FBP algorithms. In pixel-driven back-projection, the output for a 

given pixel is essentially the sum along the sinusoid corresponding to that pixel in the 

sinogram (Hsieh, 2009). Because the sinogram elements do not correspond exactly to a 
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pixel, interpolation of the sinogram elements must be performed. Pixel-driven back-

projection is illustrated in Fig. 3. 

 

 

Fig. 3. Pixel-driven back-projection. The center of a pixel is mapped onto the 

detector. The values of the nearest projection data elements are interpolated to 

calculate the value of the pixel. 

 

Ray-driven projection is a frequently used model. In CT, ray-driven projection 

consists of using the attenuation values in image voxels to calculate the attenuation of an 

X-ray moving from the source to the detector (Hsieh, 2009). It produces significant 

artifacts when used for back-projection, so it is typically used as a model for projection 

only (Fessler J. A., Analytical Tomographic Image Reconstruction Methods, 2009). In 

projection, an image volume is projected onto a detector. Ray-driven projection is 

illustrated in Fig. 4. 



 [8] 

 

Fig. 4. Ray-driven projection. The center of each detector cell is projected through the 

image. At each row, the image intensities are interpolated and added to the projection 

data. 

 

The intuitive approach to ray-driven projection is the "grid-interpolated" scheme 

(Xu, Fast implementation of iterative reconstruction with exact ray-driven projector on 

GPUs, 2010) (Xu & Mueller, A comparative study of popular interpolation and 

integration methods for use in computed tomography, 2006). In the grid-interpolated 

scheme, the image volume is sampled at many different points over a ray. Interpolation is 

performed at each point, and the values are summed up along the ray. The trapezoid rule 

is then used to calculate the line integral of the ray. The grid-interpolated method is not 

an exact method: the nonzero distance between samples and the interpolation leads to 

imperfections. 
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In 1984, Siddon published a method to calculate the exact radiological path 

through a 3D image (Siddon, 1985). He did not introduce the concept of projection based 

on "rays," but no prior publication offered an exact solution to the 3D problem that was 

both fast and consistent. For each ray, Siddon’s algorithm finds the intersections with 

voxels. For each intersection, the length of the ray within the voxel is multiplied by the 

value of the voxel. These values are then summed over the entire ray. 

De Man and Basu introduced the concept of distance-driven projection and back-

projection (De Man & Basu, Distance-driven projection and backprojection, 2002) and 

later extended it to 3D (De Man & Basu, Distance-driven projection and backprojection 

in three dimensions, 2004). Distance-driven projection is essentially a combination of 

ray-driven projection and pixel-driven techniques. In 2D distance-driven projection, pixel 

boundaries and detector boundaries are mapped to a common axis. Then, the length of the 

overlap between detector and pixel boundaries is used to determine the weight used in the 

projection of a pixel or the back-projection of a detector element. Fig. 5 shows the 

overlap created when detector boundaries are mapped to an image grid. In De Man and 

Basu’s 3D distance-driven model, a common plane is used instead of a common axis. The 

boundaries of voxels in both the transaxial and axial directions are mapped to the plane 

along with the boundaries of the detector channels and rows. The area of the overlap is 

used to determine projection weights.  
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Fig. 5. Voxel boundaries (blue) and detector boundaries (orange) are mapped onto a 

common axis in the distance-driven model. The length of the overlap determines the 

projection or back-projection weight. 

 

De Man and Basu demonstrated that there are two main advantages to distance-

driven projection. First, distance-driven projection produces fewer image artifacts than 

previous projection methods because the areas of overlap are used for projection weights 

(De Man & Basu, Distance-driven projection and backprojection in three dimensions, 

2004). Second, the distance-driven projection and back-projection operations are 

matched, or symmetric. That means that they can be used in iterative reconstruction 

algorithms where many projection and back-projection operations are done (De Man & 

Basu, Distance-driven projection and backprojection in three dimensions, 2004). 

The separable footprint method is a more recent projection model that shares 

some similarities with distance-driven projection (Long, Fessler, & Balter, 2010). In the 

separable footprint method, the footprint of a pixel onto a detector is approximated by a 

trapezoidal function in the transaxial direction and either rectangular or trapezoidal 
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functions in the axial direction, depending on the cone angle. When a trapezoidal 

function is used for both the transaxial and axial footprints, the method is called “SF-TT.” 

When a trapezoidal function is used for the transaxial footprint but a rectangular function 

is used for the axial footprint, the method is called “SF-TR.”  

The separable footprint method is effective for a two reasons. One reason is that 

its trapezoidal footprint functions are successful at modeling detector blur. Detector blur 

occurs because voxels have finite size. Fig. 6 illustrates the concept of detector blur. At 

projection angles where the transaxial voxel footprint is more triangular than rectangular, 

the separable footprint method is more accurate than the distance-driven method (Long, 

Fessler, & Balter, 2010).  

 

 

Fig. 6. A simplified, parallel beam illustration of detector blur. On the left is a projection 

angle of 45˚. Because the length of ray A within the voxel is smaller than the length of 

ray B within the voxel, the voxel’s footprint blurs, resembling a trapezoid. On the right is 

a projection angle of 90˚. Rays C and D travel the same distance through the voxel, so the 

voxel’s footprint more closely resembles a rectangle. 
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Another reason for the effectiveness of the separable footprint method is that the 

transaxial and axial footprints can then be treated as 2D separable functions. With this 

optimization, the separable footprint method can then be optimized for highly parallel 

hardware such as commercial GPUs. Wu and Fessler showed that the separable footprint 

projectors can run two to three times faster on a dual-GPU system than on a 24-thread 

CPU (Wu & Fessler, 2011). Despite its desirable characteristics, most systems tend to 

favor distance-driven approach over the separable footprints method for reasons 

discussed below.  

 

B. The Distance-Driven Method in Modern Algorithms 

When analyzing how a projection method fits into a reconstruction algorithm, one 

needs to consider a fundamental trade-off between computational complexity and 

accuracy. Neither the distance-driven nor the separable footprints methods are exact. 

Both simplify the footprint of a voxel on a detector: distance-driven uses rectangles and 

separable footprints uses trapezoids. While the separable footprints method may be 

slightly more accurate, the distance-driven method can provide sufficient accuracy to 

meet the image quality goals of an image reconstruction algorithm. Indeed, some very 

advanced iterative image reconstruction algorithms have used the distance-driven method 

with success. 

For example, Positron Emission Tomography (PET) image reconstruction is very 

similar to CT image reconstruction. One particular high-quality PET image 

reconstruction algorithm is based on Ordered Subset Expectation Maximization (OSEM) 

which uses distance-driven projectors (Manjeshwar, Ross, Iatrou, Deller, & Stearns, 
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2006). Because most PET detectors are comprised of detector blocks that contain a grid 

of crystals, the detector boundaries are not evenly spaced. The distance-driven model 

supports uneven spacing of detectors, allowing the projectors to accurately model the 

system.    

Additionally, Thibault et al. describe how they used the distance-driven method of 

De Man and Basu with some minor changes in a 3D regularized iterative reconstruction 

algorithm called "MAP-ICD" (Thibault J.-B. , Sauer, Bouman, & Hsieh, 2007). Instead 

of mapping detector boundaries onto an image plane, the algorithm projects the voxel's 

center onto a detector array and then flattens it to create 2D rectangular footprints as 

shown in Fig. 7. They found that this method produces images without artifacts related to 

projection. 
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Fig. 7. The projection of a voxel in the MAP-ICD algorithm is shown. The center of a 

voxel is projected onto a detector array and flattened to create a rectangular footprint. 

 

Therefore, while the distance-driven method may not be the most accurate 

projection method, it has been very effective in commercially successful iterative image 

reconstruction algorithms. Additionally, the simplicity of the rectangular footprints of the 

distance-driven method allows for numerous optimization opportunities. For these 

reasons, this study will focus on distance-driven projection. 

 

C. Optimizations of Distance-Driven Projectors for GPUs 

One of the first efforts at optimizing the distance-driven projectors was attempted 

on the highly parallel IBM Cell Broadband Engine (Cell BE) processor. Chevalier and 

Drapkin ported the PET distance-driven projectors to the Cell BE processor in order to 
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make Time-of-Flight PET relevant in clinical settings (Chevalier & Drapkin, 2009). The 

Cell BE processor contains a PowerPC core and eight Synergistic Processing Elements 

(SPEs), which are 128-bit vector processors. 

Chevalier and Drapkin’s first step was to vectorize the inner most loop of the 

distance-driven algorithm to take advantage of the 128-bit SPEs. Another particularly 

effective enhancement for the Cell BE was the use of double-buffering to hide the latency 

associated with moving data from the CPU to the Cell BE. With double-buffering, the 

data for a future operation is sent to the processor (in this case the Cell BE) while the 

processor is computing the data from the prior operation. Therefore, double-buffering 

minimizes the amount of time that the Cell BE is waiting for the data to execute the 

“compute” steps of the algorithm. In addition, they discovered significant performance 

improvements by changing the algorithm to work on 2D blocks of the image rather than 

on one row at a time.  This reduced the number of times the data had to be transferred to 

the Cell BE memory.  Overall, their optimized Cell BE code ran ten times faster than 

code optimized for the Intel Woodcrest CPU. 

Gross et al. also have addressed the challenge of distance-driven projection on 

GPUs (Gross, Heil, Schulze, Schoemer, & Schwanecke, 2009). However, their work 

focused on novel ways to use GPUs to map voxels onto detector grids rather than on 

optimizing the distance-driven overlap kernel. They describe how the vertex shaders and 

texture units on GPUs can be used to quickly transform the parallelogram of a voxels’s 

projection onto a detector grid into a rectangle.   

Klaus Mueller has completed a significant amount of work in the field of 

accelerating projection methods on modern GPU hardware (Mueller & Yagel, Rapid 3-D 
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cone-beam reconstruction with the simultaneous algebraic reconstruction technique 

(SART) using 2-D texture mapping hardware, 2000) (Mueller, Yagel, & Wheller, Fast 

implementations of algebraic methods for three-dimensional reconstruction from cone-

beam data, 1999). Mueller and Xu surveyed different interpolation and integration 

methods associated with projections and looked at the distance-driven model, which they 

referred to as the “box-beam-integrated” method (Xu & Mueller, A comparative study of 

popular interpolation and integration methods for use in computed tomography, 2006).  

They briefly discussed using Summed Area Tables as a way to simplify the box-beam 

integrated technique. However, they ultimately decided to explore enhanced ray-driven 

techniques. 

However, all of the previously mentioned works failed to address one of the most 

significant shortcomings of the distance-driven method. The distance-driven projection 

method contains an overlap kernel, in which the pixel and detector boundaries are 

traversed (De Man & Basu, Distance-driven projection and backprojection in three 

dimensions, 2004). The overlap kernel contains branches in its code due to different code 

paths for detector boundaries and pixel boundaries. Branch divergence is inefficient for 

Single Instruction Multiple Data (SIMD) processors like GPUs and also for pipelined 

CPUs. 

With these inefficiencies in mind, the originators of distance-driven projection, 

De Man and Basu, proposed a "branchless" approach (Basu & De Man, 2006). The 

branchless method factors the overlap kernel into three operations: integration of the 

input signal, linear interpolation of the integrated signal to obtain values at detector 
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locations, and digital differentiation of the integrated signal at the interpolated detector 

locations.  

What follows is a brief explanation of the theory behind branchless distance-

driven projection. Recall that for projection, the distance-driven method needs the 

integral of an image between the boundaries, 𝑑𝑗 and 𝑑𝑗+1, of a detector.  De Man and 

Basu represent this as shown in Eq. (1), where 𝑝(𝑥) is the image intensity at position 𝑥. 

 

 
𝑑𝑗,𝑗+1 =  

1

𝑑𝑗+1 − 𝑑𝑗
∫ 𝑝(𝑥)𝑑𝑥

𝑑𝑗+1

𝑑𝑗

 (1) 

 

They then write the 1D integral of a row of the image as P. See Eq. (2). Note that 

C, the constant of integration, is an arbitrary value, which can be chosen according to 

algorithmic convenience. The variable 𝑝𝑗 represents sample point j in the image, which is 

a pixel boundary. The intensity of pixel j is represented by 𝑝𝑗,𝑗−1.  

 

 
𝑃(𝑝𝑗) =  {

𝑃(𝑝𝑗−1) +  𝑝𝑗,𝑗−1 ∗ (𝑝𝑗 − 𝑝𝑗−1)    𝑗 > 1

𝐶                                                           𝑗 = 1
 (2) 

 

For projection, the sample points are the evenly spaced pixels. Thus, the 

difference between adjacent pixels (𝑝𝑗 − 𝑝𝑗−1) is equal to 1. Then, Eq. (2) can be 

simplified as Eq. (3) shows. 

 

 
𝑃(𝑝𝑗) =  {

𝑃(𝑝𝑗−1) +  𝑝𝑗,𝑗−1       𝑗 > 1

𝐶                                    𝑗 = 1
 (3) 
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After linearly interpolating P to obtain values of the function at detector locations 

𝑑𝑗 and 𝑑𝑗+1, the integral from Eq. (1) can be found more simply with Eq. (4). 

 

 
𝑑𝑗,𝑗+1 =  

1

𝑑𝑗+1 − 𝑑𝑗
[𝑃(𝑑𝑗+1) − 𝑃(𝑑𝑗)] (4) 

 

Their experimental results showed that the error from the branchless method 

compared to the original method was on the order of the numerical precision of the 

calculations. They also noted that the branchless method requires evenly spaced pixels 

for projection and evenly spaced detectors for back-projection. An even spacing of pixels 

is almost always the case. Additionally, in parallel beam and cone beam geometries, the 

detectors are evenly spaced. A solution is proposed for the 2D fan beam geometry case in 

which the detectors are not evenly spaced (Basu & De Man, 2006). However, since the 

focus of this study is cone beam CT, it will not be detailed here. 

The pre-projection integration method discussed in Section III is an extension of 

the branchless method. Pre-projection integration has the potential for more significant 

performance improvements because it integrates the input signal in two dimensions, not 

one. However, this also means that more elements contribute to the integral, which in 

turn creates a need to analyze and possibly mitigate any sources of precision loss. 

Additionally, several aspects of the pre-projection integration method are designed 

specifically for modern GPUs.  
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D. Optimizations of Other Projection Methods for GPUs 

The focus of this study is the optimization of distance-driven projection and back-

projection on GPUs. However, it is still useful to examine the techniques that have been 

used to optimize other projection and back-projection methods on GPUs. Some 

techniques are directly applicable to the distance-driven method. Others are indirectly 

applicable and therefore can be used to guide the optimization process.  

Due to the highly parallel architecture of GPUs, one of the most effective things 

that can be done is to divide the operation into tens of thousands of tasks (or “threads”) 

that can be computed in parallel. Modern GPUs have thousands of cores. Therefore, to 

keep the entire device busy, it is generally advisable to split the operation into as many 

small threads as possible. In addition, there should very few dependencies between 

threads. GPUs provide synchronization mechanisms and atomic operations. However, 

they are generally too slow to use. Therefore, a thread’s ability to independently execute 

its own tasks is very important. This strategy has been effectively used to accelerate the 

filtering and back-projection in both CUDA and Cell BE implementations of the FDK 

algorithm (Scherl, Keck, Kowarschik, & Hornegger, 2007) (Scherl, et al., 2007). 

Limiting memory transactions is also important when optimizing any GPU 

program. One way to limit memory transactions is to use a GPU’s on-chip registers to 

store incremental updates rather than write them to memory. Ideally, as many registers 

per thread should be used until it begins to change the multiprocessor occupancy, which 

is the amount of threads that can simultaneously run on a core. This tradeoff was nicely 

characterized for a CUDA-based FDK implementation (Scherl, Keck, Kowarschik, & 

Hornegger, 2007). Christiaens, et al. demonstrate another way to limit memory 
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transactions in their implementation of a Siddon-based projector (Christiaens, De Sutter, 

De Bosschere, Van Campenhout, & Lemahieu, 1999). Their projector was not designed 

specifically for GPUs; it was designed to achieve better cache performance on CPUs. 

Still, they show that computing the Siddon weights incrementally is preferable to storing 

them in large arrays as Siddon originally proposed.  

Another GPU optimization technique is the use of texture memory. Texture 

memory is used to store textures (sometimes called “image objects”), which originated 

from graphics programming. In most ways, texture memory behaves exactly like normal 

memory. However, some GPUs cache texture memory on chip in L1 and L2 caches but 

do not cache normal memory. The benefits of having data cached can be significant. 

However, to take full advantage of the cache, threads need to be organized for spatial 

locality. Spatial locality means that threads with neighboring indices need to read 

neighboring elements in the textures. This ensures that the elements needed have already 

been brought into the cache. This has shown to be an effective technique for projection 

in cone beam CT (Perez, Jimenez, & Thompson, 2014). 

In addition to caching, there is another benefit of Texture memory that can be 

used to give projection and back-projection a performance boost. Modern GPUs perform 

linear filtering of texture memory with devoted hardware called Texture Units (Wilt, 

2013). Consider a bilinear interpolation. A normal computer program would read in the 

four closest elements, perform the linear weighting in each direction, and calculate the 

interpolated value. With the Texture Units, a floating point value can be specified as the 

index for a texture read operation. The GPU uses dedicated hardware to linearly 

interpolate the four nearest values, which generally makes the operation very quick and 
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efficient. This technique has been effective for ray-driven projection (Xie, Hu, Chen, & 

Shi, 2015) (Perez, Jimenez, & Thompson, 2014), voxel-driven back-projection (Xie, Hu, 

Chen, & Shi, 2015), and Siddon-based projection (Xu, Fast implementation of iterative 

reconstruction with exact ray-driven projector on GPUs, 2010). Hardware-based 

interpolation provided by Texture Units has also been successfully used to speed up 3D 

OSEM PET reconstruction on GPUs (Pratx, Chinn, Habte, Olcott, & Levin, 2006). 
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III. PRE-PROJECTION INTEGRATION ALGORITHM 

In this section, the details of the Pre-Projection Integration algorithm are 

explained. First, in Section III.A, a theoretical overview of the algorithm is given by 

explaining the data integration and overlap calculation in mathematical terms. Then, in 

Section III.B, the implementation details, including design and optimization details for 

GPUs, are discussed. 

 

A. Overview 

As mentioned in Section II.B, the distance-driven model for projection and back-

projection has become the standard for iterative image reconstruction algorithms. During 

projection, the algorithm requires the sum of the intensities of the voxels that fall within 

rectangular detector boundaries. Similarly, during back-projection, the algorithm requires 

the sum of the intensities of sinogram elements that fall within rectangular voxel 

boundaries. The detector boundaries on the x-axis are 𝑑𝑗 and 𝑑𝑗+1. The detector 

boundaries on the z-axis are 𝑑𝑘 and 𝑑𝑘+1. The function p(x, z) represents the image 

intensities. Both operations consist of a 2D integral where the bounds of integration are 

the detector boundaries during projection and the voxel boundaries during back-

projection. This is shown in Eq. (5). 

 

 

𝑑𝑗,𝑗+1,𝑘,𝑘+1 =
1

𝑑𝑗+1 − 𝑑𝑗

1

𝑑𝑘+1 − 𝑑𝑘
∫ ∫ 𝑝(𝑥, 𝑧) 𝑑𝑧 𝑑𝑥

𝑑𝑘+1

𝑑𝑘

𝑑𝑗+1

𝑑𝑗

 (5) 
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The function 𝑝(𝑥, 𝑧) represents the image intensities, and thus is piecewise 

constant. Therefore, the double integral can be calculated as shown in Eq. (6). An 

intersection operator is used in Eq. (6) to create an overlap kernel. Essentially, all of the 

image, p(x,z), that falls within the rectangular boundary created by the detector 

boundaries 𝑑𝑗, 𝑑𝑗+1, 𝑑𝑘, and 𝑑𝑘+1 is summed. 

 

 
𝑑𝑗,𝑗+1,𝑘,𝑘+1 =

1

𝑑𝑘+1 − 𝑑𝑘

1

𝑑𝑗+1 − 𝑑𝑗
∑ ∑ 𝑝(𝑥, 𝑧) ∩ 𝑑𝑗,𝑗+1,𝑘,𝑘+1

𝑧𝑥

 (6) 

 

The overlap kernel can be computed as follows. Consider the example in Fig. 8 

below. The detector boundaries 𝑑𝑗,𝑗+1 and 𝑑𝑘,𝑘+1 are projected onto an image slice with 

pixel boundaries 𝑥 = 1 through 𝑥 = 4 and 𝑧 = 1 through 𝑧 = 4. The pseudocode on the 

right of Fig. 8 shows how the overlap kernel is traditionally computed.  There are two 

nested loops that iterate over the image coordinates containing the detector boundaries in 

both dimensions. For each image coordinate, a weight is calculated that corresponds to 

the length of the detector boundary within that particular voxel. The voxel’s intensity, 

proportional to both of those weights, is added to a sum. 
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Fig. 8. Blue detector boundaries projected onto a 2D image slice (left) and pseudocode 

for the overlap kernel (right). The overlap kernel calculates the sum of the weighted 

image intensities within the rectangular overlap region. 

 

The overlap kernel can be fairly slow on GPUs. Due to their highly parallel SIMD 

architectures, GPUs need to have all threads executing the same instructions to achieve 

peak performance. Branch divergence occurs when threads that are supposed to be 

executing the same instructions take different branches. When branch divergence occurs 

on a GPU, certain threads execute “no-op” instructions while waiting for other threads. 

This leads to longer kernel execution times.  

A branchless way to calculate the area of overlap in Eq. (5) would provide a 

significant speedup for projection and back-projection operations. In order to solve this 

problem, all of the data is integrated before the entire projection or back-projection 

operation. In effect, this creates a Summed Area Table (SAT), or “integral image” (Crow, 

1984). We use the SAT to represent the image during projection and the sinogram during 

back-projection. See Eq. (7). The bounds of integration, X and Z, are the variables of P(X, 
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Z). So, P(X, Z) represents the integral of the image intensities, 𝑝(𝑥, 𝑧), with coordinates 

less than X and Z. 

 

 

𝑃(𝑋, 𝑍) =  ∫ ∫ 𝑝(𝑥, 𝑧)𝑑𝑧 𝑑𝑥 

𝑍

0

𝑋

0

+ 𝐶 (7) 

 

Any value for the constant of integration can be chosen. For reasons discussed 

later, the mean value of the slice, µ, is the optimal value to subtract before integration.  

See Eq. (8) and Eq. (9). The variables nx and nz represent the dimensions of the 2D 

image slice. 

 

 

µ =
1

𝑛𝑥 ∗ 𝑛𝑧
 ∫ ∫ 𝑝(𝑥, 𝑧)𝑑𝑧 𝑑𝑥 

𝑛𝑧

0

𝑛𝑥

0

 (8) 

 

 

 

𝑃(𝑋, 𝑍) =  ∫ ∫[ 𝑝(𝑥, 𝑧) − µ]𝑑𝑧 𝑑𝑥 

𝑍

0

𝑋

0

 (9) 

 

The use of an SAT could substantially speed up the projection operations. An 

SAT allows for quick and efficient calculation of the sum of intensities in an arbitrary 

rectangular region of an image (Crow, 1984). SATs have existed for three decades as a 

solution to a variety of problems. Indeed, a considerable amount of work has been 

devoted to efficient SAT creation (Hensley, Scheuermann, Coombe, Singh, & Lastra, 

2005). SATs have also been applied to problems in computer vision and computer 

graphics. For example, prominent examples of SAT usage in computer vision are 
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normalized cross-correlation (Lewis, 1995) and the Viola–Jones object detection 

framework (Viola & Jones, 2001). The SAT approach can also be used to efficiently 

compute image histograms for real-time object tracking (Medeiros, Holguín, Shin, & 

Park, 2010). In computer graphics, SATs are commonly used for surface rendering 

(Lacroute & Levoy, 1994). However, to the best of our knowledge, SATs have not been 

applied to any medical imaging problems.  

The proposed pre-projection integration method uses an SAT to efficiently 

calculate Eq. (5). After integrating the data as shown in Eq. (9), the sum of the intensities 

within the area of overlap, s, can be calculated using the SAT formula illustrated shown 

in Eq. (10). Fig. 9 shows how Eq. (10) can be used to compute the area in the overlap 

region from Fig. 8. 

 

 𝑠 = 𝑃(𝑗 + 1, 𝑘 + 1) − 𝑃(𝑗 + 1, 𝑘) − 𝑃(𝑗, 𝑘 + 1) + 𝑃(𝑗, 𝑘) (10) 
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Fig. 9. The sum, s, of the intensities of an arbitrary rectangular region defined by 

boundaries j, j+1, k, and k+1 can be found by subtracting the intensities of the two light 

blue regions (defined by P(j, k+1) and P(j+1, k)) from the intensities of the dark blue 

region (defined by P(j+1, k+1)) and then re-adding the intensities of the gray region 

(defined by P(j,k)) since it was subtracted twice as part of both light blue regions. 

 

However, recall that the mean value of the image was subtracted before 

integrating the data to create an SAT. Therefore, after calculating s, the mean value of the 

image, µ, needs to be added back in proportion to the area of overlap. Then, this can be 

inserted into back into Eq. (5). The result is shown in Eq. (11). 

  

 
𝑑𝑗,𝑗+1,𝑘,𝑘+1 =

1

𝑑𝑗+1 − 𝑑𝑗

1

𝑑𝑘+1 − 𝑑𝑘
[𝑠 + µ ∗ (𝑑𝑗+1 − 𝑑𝑗) ∗ (𝑑𝑘+1 − 𝑑𝑘)] (11) 
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Unlike the overlap kernel of the traditional distance-driven implementation, Eq. 

(11) can be calculated with code that does not contain branches. All the parallel threads 

would perform the same memory operations although with different coordinates.  All 

threads would also carry out the same arithmetic operations to determine the sum of 

intensities in a voxel-detector overlap. For these reasons, the use of SATs helps distance-

driven projection achieve optimal performance on GPUs.  

Finally, note that the use of SATs is solely intended to speed up the execution of 

distance-driven projection and back-projection, not to change the final output of the 

operations. This preserves the superior image quality produced by the distance-driven 

model while substantially reducing the execution times. 

 

B. Detailed Method 

The use of pre-projection integration applies to both distance-driven projection 

and back-projection operations. However, for the sake of illustration, consider only the 

projection operation as described by De Man and Basu. Back-projection involves the 

exact same steps, but reversed with respect to the sinogram and image. The pre-

projection integration method consists of two new steps. First, the data needs to be 

integrated to convert the image volume into SATs. Second, the projector needs to use the 

SATs to calculate the sum of the voxels within the rectangular detector footprint. These 

two steps are described in detail below. 
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1.  SAT Generation 

The projection operation is given a 3D image volume as its input. An SAT must 

be generated for each 2D slice in the volume. The steps to generate an SAT on a GPU are 

listed in Algorithm 1 and then explained in detail below.  

 

Algorithm 1: SAT generation 

Input: 2D image slice 

Output: SAT 

    Place a black border around the image slice 

    Find the mean value of the image slice and subtract it from each element 

    Run parallel prefix sum 

    Run transpose 

    Run parallel prefix sum 

    Run transpose 

 

First, a black (zero-valued) border is placed around each 2D image slice. The 

black borders are necessary to perform read operations at the edges of the SATs 

(Hensley, Scheuermann, Coombe, Singh, & Lastra, 2005). There are certainly other ways 

to handle edge cases, but a black border is a simple approach that is appropriate for the 

needs of this study. 

Next, the mean value of each 2D slice is subtracted from each element within the 

slice. This compensates for precision loss when the values across a large image in two 

dimensions are added to create the SATs. The absolute precision of floating-point 

numbers decreases as the magnitude of the values increase. Since the magnitude of the 

values increases as they are integrated, this is a source of precision loss that would not be 

seen if the original image were used to find the sum in a rectangular area. There are a few 

ways to mitigate this. One method is to subtract the mean value from the image before 
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the SAT is created (Hensley, Scheuermann, Coombe, Singh, & Lastra, 2005), 

compensating for the subtraction of the mean when the SAT is read during projection. 

The impact of this method is analyzed in detail in Section IV.A.2. 

After the subtraction of the mean, the actual generation of an SAT is completed 

with successive parallel prefix sum operations and transpose operations (Hensley, 

Scheuermann, Coombe, Singh, & Lastra, 2005) (Nguyen, 2007). A parallel prefix sum 

operation, a transpose, another parallel prefix sum operation, and another transpose will 

generate a 2D SAT. Both the parallel prefix sum and transpose are operations that have 

previously been optimized on GPUs. 

The parallel prefix sum operation, also known as a “scan” operation, sums up the 

data along each row of an image. It is an “inclusive” operation. Therefore, each element 

in the output contains its own value plus the value of all preceding elements. The 

recursive doubling algorithm shown in Fig. 10 can be used to compute the parallel prefix 

sum operation in O(log n) time (Hensley, Scheuermann, Coombe, Singh, & Lastra, 

2005). However, the algorithm proposed by Hensley et al. is not work efficient. While the 

algorithmic complexity is O(log n), the number of addition operations that it requires is 

O(n log n). More complicated algorithms for the parallel prefix sum use balanced tree 

approaches (Nguyen, 2007). These have O(log n) complexity and require O(n) addition 

operations, making them work efficient as well. The pre-projection integration method 

uses this work efficient implementation. 
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Fig. 10. Recursive doubling algorithm for a row of eight elements. The output can be 

computed in O(log n) time, or three passes in this case. 

 

A transpose is then performed after the parallel prefix sum operation. For 

performance reasons, the transpose operation used in pre-projection integration makes 

strategic use of the local memory on a GPU. Threads work on small tiles and coordinate 

the use of local memory in order to avoid reading all values from global memory. Fig. 11 

shows the first two steps of the SAT generation: parallel prefix sum and transpose. 
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Fig. 11. The first two steps of SAT generation. A parallel prefix sum operation sums the 

data along each row in an image slice. After that, a transpose is performed to turn what 

were originally the columns of the slice into the rows. 

 

After the first transpose operation, the second parallel prefix sum operation sums 

the data along what were originally the columns of the image. Another transpose 

operation brings the image back to its original orientation. After the second transpose, the 

SAT generation is complete: each element contains the sum of all elements preceding it 

in both the vertical and horizontal dimensions. Note that this means that the sum of all 

values is located in the upper right corner of the image slice. 
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Fig. 12. The final two steps of SAT generation. After the transpose in the second step, 

another parallel prefix sum operation sums the data along what were originally the 

columns. Finally, a transpose is performed to bring the data back to the original 

orientation. 

 

This entire process must be done for each 2D image slice in the 3D image 

volume. In a simple implementation, each slice can be done sequentially. It is possible to 

parallelize the computation along the slices of the 3D image volume as well. The 

significance of the performance benefits would depend on the size of the image slices and 

the number of cores in the GPU. For many scenarios, there is enough work in a 2D image 

slice to fully utilize the GPU.  

Because SAT generation is not a step that normally takes place during projection 

or back-projection, it is crucial that the time it takes is minimal compared to the time the 

actual projection or back-projection takes. Fortunately, SAT creation on GPUs has 

already been optimized by others (Hensley, Scheuermann, Coombe, Singh, & Lastra, 
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2005) (Nguyen, 2007). The performance of the SAT generation is explored in Section 

IV.A.1.  

 

2.  Using an SAT for Overlap Calculations 

After creating the SATs, the original distance-driven projection is completed. 

However, instead of calculating the sum of an image within a detector footprint with an 

overlap kernel, the SAT is used. The steps to use a GPU to perform this calculation are 

listed in Algorithm 2 and then explained in detail below. 

 

Algorithm 2: Calculation of incremental projection updates using an SAT 

Input: SAT and coordinates of rectangular detector-voxel overlap 

Output: Incremental update for projection 

    Read the SAT values at the four corners of the overlap 

    Use Texture Units on the GPU to do bilinear interpolation 

    Calculate the area using Eq. (10) 

    Add the mean value proportional to the area 

    Share SAT reads for adjacent detector footprints 

 

In 3D distance-driven projection, the voxels and detector cells are mapped onto a 

common plane to approximate the sum in the area of overlap. Suppose we need the sum 

of the voxels over the area of overlap defined by mapping the detector onto an image 

plane as shown in Fig. 13. 
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Fig. 13. Detector boundaries (dashed red lines) mapped onto a 2D image slice. 

 

The traditional distance-driven projector would use the overlap kernel to produce 

a result. However, if an SAT is used, it can generate the value of the 2D integral with 

four image reads as shown in Fig. 14.  
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Fig. 14. Four SAT read operations (green) are required to get the sum of the voxel 

intensities in the area of overlap (red). 

 

As Fig. 14 shows, the detector boundaries usually do not line up perfectly with the 

image grid. Therefore, a bilinear interpolation of four SAT elements is necessary to get 

the value we need for each corner of the SAT. In order to efficiently do this, the 

interpolation hardware in GPU Texture Units is used. The SATs are stored as textures 

and floating point coordinates are specified for each read operation. The GPU then uses a 

Texture Unit to do bilinear interpolation of the four closest voxels. Because the work is 

done on dedicated hardware, this is much quicker than doing the interpolation manually 

with software instructions. 

While GPU Texture Units are very efficient, there is a loss of precision when they 

are used to perform linear interpolation. Modern GPUs can represent textures with 32-bit 

values compliant with IEEE 754 (IEEE Standards Committee, 2008). However, the 

coefficients used to interpolate between texture values are generally not IEEE 754 



 [37] 

compliant. For example, on modern Nvidia GPUs, the interpolation coefficients are 9-bit 

fixed point values with one bit as the sign bit and eight bits of fractional value (Wilt, 

2013). If the texture is stored in 32-bit floating point format, precision can be lost by 

interpolating the values with 9-bit fixed point coefficients. Nevertheless, using the 

Texture Units for the interpolation is preferable due to their speed. We explore the effects 

of the precision loss caused by the Texture Units in Sections IV.B.2 and IV.C.2. 

With the GPU performing bilinear interpolations, the result is easily calculated. 

The outputs from the four SAT read operations are named LL (lower left), LR (lower 

right), UL (upper left), and UR (upper right). Then, if the mean had not been subtracted 

before creating the SATs, the sum of the intensities within the rectangular detector 

boundary, s, could be calculated as shown in Eq. (12). 

 

 𝑠 =  𝑈𝑅 − 𝑈𝐿 − 𝐿𝑅 + 𝐿𝐿 (12) 

   

 

However, Eq. (12) is modified slightly to correct for the subtraction of the mean, 

µ, that was done before the SAT was created. To do this, it is necessary to know the 

length of the overlap in both the X direction (x_l) and the length of the overlap in the Z 

direction (z_l). The sum of the intensities, s, is then calculated as shown in Eq. (13). 

 

 𝑠 = (𝑈𝑅 − 𝑈𝐿 − 𝐿𝑅 + 𝐿𝐿) + (𝑥_𝑙 ∗ 𝑧_𝑙 ∗ µ) (13) 

 

Finally, the number of global memory accesses can be further reduced by sharing 

SAT reads for adjacent detectors. When detector boundaries are mapped to an image 
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plane, adjacent detectors usually have adjacent detector boundaries. Therefore, it is 

possible to do fewer than four reads per detector by sharing reads between adjacent 

detectors. Fig. 15 shows how two detector boundaries share SAT reads. The actual 

“sharing” of the SAT values can be achieved by either using GPU local memory or by 

having a thread calculate the projection of multiple sinogram elements and storing the 

values in private memory. 

 

 

Fig. 15. SAT reads (green) for adjacent detector elements (red rectangles). The two 

middle SAT values are required for the calculation for both detector elements, so they 

can be shared. 
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IV. RESULTS 

There are three main operations discussed in Section III: 1) SAT generation, 2) 

projection, and 3) back-projection. An objective of this study was to analyze these 

operations both as independent processes and as part of an image reconstruction 

algorithm. Therefore, the results in this section are presented as follows. First, Sections 

IV.A, IV.B, and IV.C contain the results of the individuals operations of SAT generation, 

projection and back-projection, respectively. The analysis for each operation is done for 

performance, which means execution time, and image quality. Then, in Section IV.D, all 

operations are analyzed together as part of an iterative image reconstruction algorithm. 

In order to generate the results in this section, the geometry of a cone beam X-ray 

CT system was simulated. The system has an arc detector with 𝑁𝑠 = 888 detector 

channels and 𝑁𝑡 = 32 detector rows. There are 𝑁𝛽 = 984 views over 360˚. The size of 

each detector cell is ∆𝑠 = 1.024 mm by ∆𝑡 = 1.099 mm. The source to detector distance is 

𝐷𝑠𝑑 = 946.75 mm and the source to rotation center distance is 𝐷𝑠0 = 538.52 mm. A 

quarter detector offset in the s direction was also used. The 3D image volume has 

dimensions of 𝑁𝑋 , 𝑁𝑌, and  𝑁𝑍, the sizes of which vary according to the experiment. The 

experiments were carried out on a 64-bit Linux workstation with two 4-core Intel Xeon 

CPUs and an Nvidia Tesla K20 workstation graphics card. 

 

A. SAT Generation 

SAT generation was analyzed for both performance and precision loss. The 

performance analysis characterizes how quickly a stack of 2D SATs can be generated 
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from both a 3D image volume and a 3D sinogram. Then, the precision loss analysis 

characterizes the factors that contribute to precision loss in SATs. 

 

 

1.  SAT Generation Performance 

A simple SAT generator was implemented with CUDA. Generating an SAT on a 

GPU is a problem that has previously been solved and optimized (Nguyen, 2007). It was 

possible to create a simple SAT generation program by slightly modifying Nvidia’s 

sample parallel prefix sum and transpose kernels. It was also necessary to create a kernel 

(“Subtract mean”) that found the mean value of each slice and subtracted it from all 

elements in the slice. 

For projection, the SAT generation step consists of generating a 2D SAT for each 

slice in the volume. A 48x512x512 volume is used in this experiment, so an SAT is 

generated in each 48x512 slice of the 512-slice volume. As previously mentioned, it is 

convenient to put a black (zero-valued) border around each 2D slice so that texture reads 

outside the slice return zero. This enables reconstruction of image pixels at the edges of 

the slice. The size of the volume thus becomes 50x514x512. Additionally, the parallel 

prefix sum kernel requires the dimensions to be powers of two, so the 50x514x512 

volume is padded to be 64x1024x512. The generation of the SATs for the entire 

64x1024x512 volume takes about 12 milliseconds, excluding memory transfers to and 

from the GPU device. However, all other operations of the reconstruction algorithm 

would also be performed on the GPU, and hence the memory transfers would have to 

occur anyway. Table 1 below shows the execution times for the individual kernels in the 

SAT generation process. 
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Table 1. SAT kernel execution times for a 64x1024x512 dataset representing the image 

volume. 

 

Operation 
Execution Time 

(milliseconds) 

Subtract mean 2.57 

Parallel prefix sum 1 1.85 

Transpose 1 2.82 

Parallel prefix sum 2 1.76 

Transpose 2 2.83 

Total 11.8 

    

For back-projection, the SAT generation step consists of generating an SAT for 

each 32x888 slice in the 984-slice sinogram. Again, a black border around each 2D slice 

is used for convenience, increasing the size of the sinogram to 34x890x984.  

Additionally, the SAT needs to be padded to get dimensions that are powers of two, so 

the sinogram dimensions increase to 64x1024x984. The generation of the SATs for the 

entire 64x1024x984 volume takes about 20 milliseconds, excluding memory transfers to 

and from the GPU device. Again, since all other operations of the reconstruction 

algorithm would also be performed on the GPU, the memory transfers would have to 

occur anyway. Table 2 below shows the execution times for the individual kernels in the 

SAT generation process. 
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Table 2. SAT kernel execution times for a 64x1024x984 dataset representing the 

sinogram. 

 

Operation 
Execution Time 

(milliseconds) 

Subtract mean 2.55 

Parallel prefix sum 1 3.56 

Transpose 1 5.38 

Parallel prefix sum 2 3.38 

Transpose 2 5.51 

Total 20.4 

 

2.  SAT Precision Loss 

In addition to the calculation of performance results, an analysis of precision loss 

from SAT generation was performed. Note that this experiment does not involve any 

projection steps. The inputs were square images of the Shepp-Logan phantom (Shepp & 

Logan, 1974). Gaussian noise was added to the images to make them more realistic. A 

variety of image matrix sizes were used. To quantify how much precision is lost, an SAT 

is generated from the image. Then, the original image is simply recreated using the SAT. 

The SAT error is the difference between the recreated image and the original. It is 

important to note that recreating the original image does not require the use of any 

interpolation.  

The loss of precision that occurs when generating SATs is attributed to the fact 

that the absolute precision of floating-point numbers is lost as the magnitude of the values 

increase. Specifically, floating-point numbers of greater magnitude have less absolute 

precision than floating-point numbers of smaller magnitude. See Fig. 16.  
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Fig. 16. 32-bit floating-point precision as a function of its magnitude. As the magnitude 

of a floating-point value increases, absolute precision is lost. 

 

 

When the values of an image are accumulated to generate an SAT, precision is 

lost because the values being manipulated have greater magnitude than they did before 

they were accumulated. Therefore, the relationship between the maximum value in the 

SAT and the maximum SAT error is examined. Fig. 17 shows two plots. The first shows 

the maximum SAT error as a function of the maximum value in the SAT. The second is a 

subset of the 32-bit floating-point precision from Fig. 16. The correlation of the two plots 

demonstrates that the maximum SAT error is on the order of the precision of the 

maximum value in the SAT. 
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Fig. 17. Maximum Error from SAT as a Function of the Maximum Value in the SAT. 

The maximum error from an SAT is on the order of the precision of the maximum value 

in the SAT. 

 

As stated previously, in order to mitigate the error caused by using SATs, the 

mean value of the image can be subtracted before creating the SAT. This has two effects. 

First, it reduces the maximum value from the SAT, which therefore reduces the 

maximum error as shown in Fig. 17. Second, it decreases the average error from the SAT, 

which can be more important than the maximum error. The average error from the SAT is 

data dependent and therefore cannot be as easily characterized as the maximum error in 

the SAT. Still, Fig. 18 shows how the average error is proportional to the area of the 

SAT.  It also shows how the slope of that relationship changes when the mean is 

subtracted. 
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Fig. 18. Average SAT Error as a Function of its Area. As the area of an SAT increases, 

its average error also increases. However, the subtraction of the mean before creating the 

SAT has a substantial impact on the average SAT error. 

 

Subtracting the mean before creating the SAT also has another useful effect.  It 

prevents the error from accumulating in the corner of the image. Fig. 19 shows the 

original image, a 512x512 Shepp-Logan phantom with a mean of 0.1233, on the left and 

a difference image on the right that comes from using an SAT to recreate the original 

image. The histogram of the difference image was stretched to allow visualization of the 

error. The error increases monotonically from the origin (top left) to the end of the table 

(bottom right). The average error is 2.5 ∗ 10−4. 
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Fig. 19. Shepp-Logan phantom (left) and difference image (right) after recreating it from 

an SAT. The histogram of the difference image was stretched to allow visualization of 

the error. 

 

Fig. 20 shows how subtracting the mean value prevents the error from 

accumulating towards the corner of the image. Again, note that the histogram of the 

difference image has been stretched to allow visualization of the error. The error is 

distributed over the entire image, not just in one corner. This method also decreases the 

mean of the error by a factor of 2.5 (from 2.5 ∗ 10−4 to 1.0 ∗ 10−4). 
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Fig. 20. Shepp-Logan phantom (left) and difference image (right) after recreating it from 

an SAT with the mean subtraction method. The histogram of the difference image was 

stretched to allow visualization of the error. 

 

B. Projection 

Within the context of projection, the pre-projection integration method was 

analyzed in terms of performance and image quality. The execution times for projection 

were measured for three versions of the projector: a single-threaded CPU version, a GPU-

optimized version, and the pre-projection integration version. To verify the image quality 

of the pre-projection integration projector, its output was compared with the output of the 

GPU-optimized projector. 

 

1.  Projection Performance 

A single-threaded CPU version of the distance driven projector served as the 

baseline. The GPU-optimized version of the projector was written in CUDA and was 

highly optimized for the Nvidia Tesla K20. Private memory (in the form of registers) was 
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used for the projection sums in order to limit global memory transactions. However, 

using a large number of registers per thread meant that the threadblock size needed to be 

smaller in order to maximize the kernel occupancy. The image data was stored as a 

texture in order to take advantage of the texture caching on Nvidia GPUs. Finally, in 

order to get a high L1 cache hit rate on texture reads, the kernel was configured to prefer 

texture memory over local memory. This means that the GPU decreased the amount of 

local memory available in order to increase the amount of L1 cache available. The 

threads in the threadblock were also organized in order to maximize the spatial locality of 

the texture reads, further improving the L1 cache hit rate. 

After optimizing it for the K20, the projector was enhanced with the pre-

projection integration method. Table 3 shows the execution time for various 

implementations of the distance-driven projector.  Fig. 21 shows the projection execution 

times from Table 3. Finally, Fig. 22 shows how the speedup from the pre-projection 

integration increases from 2.5x to 4.4x as the image size increases from 128x128x12 to 

1152x1152x108. 
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Table 3. Distance-driven projection execution times. The duration of the SAT generation 

for the pre-projection integration method is omitted because it is negligible. 

 

Image Size 
Number of 

Voxels 

Projection Execution Time (seconds) 

 

Single-

Threaded 

CPU 

GPU-

Optimized 

Pre-Projection 

Integration 

128x128x12  1.97E+05 15.4 0.28 0.11 

256x256x24 1.57E+06 43.5 0.66 0.24 

384x384x36 5.31E+06 89.4 1.17 0.41 

512x512x48 1.26E+07 162.7 1.98 0.61 

640x640x60 2.46E+07 242.9 2.99 0.85 

768x768x72 4.25E+07 360.4 4.24 1.14 

896x896x84 6.74E+07 513.8 5.81 1.47 

1024x1024x96  1.01E+08 742.8 7.79 1.85 

1152x1152x108 1.43E+08 935.9 10.16 2.30 

 

 

Fig. 21. A comparison of the projection execution times when using the GPU-optimized 

method and the pre-projection integration method. 
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Fig. 22. Projection speedup from pre-projection integration. For smaller image sizes, the 

pre-projection integration method is 2.5x faster than the GPU-optimized method. For 

larger image sizes, the pre-projection integration method is 4.4x faster. 

 

2.  Projection Image Quality 

The output of the pre-projection integration projector was compared with the 

GPU-optimized projector. The input image was a 512x512 version of the Shepp-Logan 

phantom, replicated 48 times to make 48 image slices. Fig. 23 shows a row of the 

sinogram from the pre-projection integration projector and the same row of the sinogram 

from the GPU-optimized projector. There are no visible differences.  The image 

histograms are shown in Fig. 24. The differences in the image histograms are negligible. 

For example, the histogram of the sinogram produced by the pre-projection integration 

projector has a maximum value that is 0.004 larger than that of the sinogram produced by 
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the GPU-optimized projector. Additionally, the mean value of the sinogram slice is 

exactly the same in the pre-projection integration and GPU-optimized output. 

 

 

Fig. 23. A row of the sinogram from the pre-projection integration projector (left) and the 

GPU-optimized projector (right).  

 

 

Fig. 24. Histograms for the sinogram slices shown in Fig. 23. Pre-projection integration is 

on the left and GPU-optimized is on the right. 
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In order to get a more detailed analysis of the image quality of the pre-projection 

integration projector, a difference image is required. Fig. 25 shows the pre-projection 

integration sinogram row subtracted from the GPU-optimized sinogram row. The 

histogram for that difference image is shown in Fig. 26. The difference ranges from about 

-0.06 to 0.05.  These values are orders of magnitude smaller than the mean value of the 

sinogram slice, 10.616. 

 

 

Fig. 25. A row of the pre-projection integration sinogram subtracted from the same row 

of the GPU-optimized sinogram. The histogram has been stretched to enhance the 

visualization of the error.  
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Fig. 26. Histogram of the difference sinogram in Fig. 25. 

 

A close visual inspection of the difference between the sinogram row generated 

by the pre-projection integration projector and the sinogram row generated by the GPU-

optimized projector in Fig. 25 shows some aliasing artifacts. While the minimum and 

maximum differences are very small compared to the mean values in the sinogram, it is 

still important to understand the root cause of any artifact. The aliasing artifacts are a 

result of using the limited precision hardware interpolation provided by the GPU’s 

Texture Units. It is likely that this is due to the quantization of the interpolation 

coefficients which are represented in the Texture Units as 9-bit fixed point numbers. A 

version of the pre-projection integration projector was written that manually performs the 

bilinear interpolation of the SAT reads with software. This projector produces output that 

does not contain the aliasing artifacts. Fig. 27 contains the same difference image from 

Fig. 25, but software was used to do bilinear interpolation instead of hardware. Fig. 28 

shows a histogram of the image in Fig. 27. The histogram shows that, in addition to 

eliminating the aliasing artifacts, the software interpolation also decreases the error by an 

order of magnitude.  
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Fig. 27. A row of the pre-projection integration sinogram subtracted from the same row 

of the GPU-optimized sinogram. In this figure, the pre-projection integration version uses 

a software-based interpolation method instead of the hardware-based Texture Unit 

method. The histogram has been stretched to enhance the visualization of the error. 

 

 
Fig. 28. Histogram of the difference image in Fig. 27 
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C. Back-Projection 

Similar to projection, the pre-projection integration back-projector was analyzed 

in terms of both performance and image quality. The execution times for back-projection 

were measured for three versions of the back-projector: a single-threaded CPU version, a 

GPU-optimized version, and the pre-projection integration version. To verify the image 

quality of the pre-projection integration back-projector, its output was compared with the 

output of the GPU-optimized back-projector. 

 

1.  Back-Projection Performance 

The performance analysis of the back-projector was carried out in a way similar 

to that of the projector. A single-threaded CPU version of the distance driven back-

projector served as the baseline. Like the GPU-optimized projector, the GPU-optimized 

back-projector was written in CUDA and was highly optimized for the Nvidia Tesla K20. 

The threadblock size was tuned to maximize the kernel occupancy. The sinogram data 

was stored as a texture in order to take advantage of the texture caching. As was the case 

with the projector, the kernel was configured to prefer texture memory over local 

memory in order to get a high L1 cache hit rate on texture reads. Additionally, the threads 

in the threadblock were organized in order to maximize the spatial locality of the texture 

reads, further improving the L1 cache hit rate. 

After optimizing for the K20, the back-projector was then enhanced with the pre-

projection integration method. Table 4 shows the execution time for various 

implementations of the distance-driven back-projector. Fig. 29 shows the execution times 
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from Table 4. Fig. 30 shows how the speedup from the pre-projection integration back-

projector decreases from 5.3x to 1.2x as the image size increases from 128x128x12 to 

1152x1152x108. While the speedup decreases as the image size increases, the pre-

projection integration method still provides a speedup of at least 20%. 

 

Table 4. Distance-driven back-projection execution times. The duration of the SAT 

generation for the Pre-projection Integration method is omitted because it is negligible. 

 

Image Size 
Number of 

Voxels 

Back-Projection Execution Time (seconds) 

 

Single-

Threaded 

CPU 

GPU-

Optimized 

Pre-Projection 

Integration 

128x128x12  1.97E+05 15.0 0.21 0.04 

256x256x24 1.57E+06 43.3 0.47 0.19 

384x384x36 5.31E+06 89.5 1.23 0.67 

512x512x48 1.26E+07 162.5 2.30 1.49 

640x640x60 2.46E+07 242.8 4.22 3.34 

768x768x72 4.25E+07 360.0 6.59 5.12 

896x896x84 6.74E+07 516.3 10.04 7.97 

1024x1024x96  1.01E+08 739.0 14.52 11.75 

1152x1152x108 1.43E+08 936.6 20.53 17.05 



 [57] 

 
Fig. 29. A comparison of the back-projection execution times when using the GPU-

optimized method and the pre-projection integration method. 
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Fig. 30. Back-projection speedup from pre-projection integration. For smaller image 

sizes, the pre-projection integration method is 5.3x faster than the GPU-optimized 

method. For larger image sizes, the pre-projection integration method is 1.2x faster. 

 

2.  Back-Projection Image Quality 

The output of the pre-projection integration back-projector was compared with the 

GPU-optimized back-projector. The input was a 32x888x984 projection of the Shepp-

Logan phantom and the output was a 512x512x48 image volume. Fig. 31 shows a slice of 

the image from the pre-projection integration back-projector and the same slice of the 

image from the GPU-optimized back-projector. There are no visible differences. The 

image histograms are shown in Fig. 32. The histograms show almost no differences in the 

distribution or range of the data. For example, the difference of the mean value for each 

image slice is 0.134. This is five orders of magnitude smaller than the mean value of the 

GPU-optimized image slice, 1.1957 ∗ 104. The differences in the minimums and 

maximums are also similarly negligible. 
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Fig. 31. A slice of the image from the pre-projection integration back-projector (left) and 

the GPU-optimized back-projector (right). 

 

 

 
Fig. 32. Histograms for the image slices shown in Fig. 31. Pre-projection integration is on 

the left and GPU-optimized is on the right. 

 

Similar to the image quality analysis done for the pre-projection integration 

projector, a difference image is used to get a better understanding of the image quality of 

the pre-projection integration back-projector. Fig. 33 shows the pre-projection integration 

image slice subtracted from the GPU-optimized image slice. The histogram for that 
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difference image is shown in Fig. 34. The difference, which ranges from -4.4 to 4.8, is 

four orders of magnitude smaller than the mean value of the image slice.  

 

 
Fig. 33. A slice of the pre-projection integration image subtracted from the same row of 

the GPU-optimized image. The histogram has been stretched to enhance the visualization 

of the error. 
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Fig. 34. Histogram of the difference image in Fig. 33. 

 

However, similar to the difference sinogram in Fig. 25, the difference image in 

Fig. 33 shows aliasing artifacts when inspected visually. Although the magnitude of these 

artifacts is very small, it is important to understand their source. Again, it turns out that 

the cause is the quantization of the interpolation coefficients by the low precision 

hardware interpolation of the GPU’s Texture Units. A version of the pre-projection 

integration back-projector was written that manually performs the bilinear interpolation 

of the SAT reads with software. This projector produces output that does not contain the 

aliasing artifacts. Fig. 35 contains the same difference image from Fig. 33, but software 

was used to do bilinear interpolation instead of hardware. Fig. 36 shows a histogram of 

the image in Fig. 35. The histogram shows that, in addition to eliminating the aliasing 

artifacts, the software interpolation also decreases the error by an order of magnitude. 
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Fig. 35. A slice of the pre-projection integration image subtracted from the same row of 

the GPU-optimized image. In this figure, the pre-projection integration version uses a 

software-based interpolation method instead of the hardware-based Texture Unit method. 

The histogram has been stretched to enhance the visualization of the error. 

 

 

Fig. 36. Histogram of the difference image in Fig. 35. 



 [63] 

D. Iterative Image Reconstruction with Pre-Projection Integration 

An important question raised in Section IV is whether the level of error 

introduced by the pre-projection integration method is acceptable. In order to determine 

the answer, the pre-projection integration method was tested within an iterative image 

reconstruction algorithm. The GPU-optimized and pre-projection integration 

projector/back-projector pairs were implemented within Jeffrey Fessler’s Image 

Reconstruction Toolkit (IRT) (Fessler J. A.). Note that while the pre-projection 

integration projector and back-projector are implemented in CUDA, the IRT runs in 

MATLAB. Therefore, in order to run the projectors/back-projector pairs within the IRT, 

they needed to be compiled as MATLAB Executable (MEX) programs. Fortunately, 

MATLAB provides mechanisms to create MEX functions that run CUDA code. 

A Penalized Weighted Least-Squares (PWLS) algorithm was chosen to evaluate 

the pre-projection integration and GPU-optimized projector/back-projector pairs (Fessler 

J. A., Penalized weighted least-squares image reconstruction for positron emission 

tomography, 1994). The algorithm uses a Preconditioned Conjugate Gradient (PCG) 

method with a circulant pre-conditioner (Fessler & Booth, Conjugate-gradient 

preconditioning methods for shift-variant PET image reconstruction, 1999). The input 

data came from ideal projections of the 3D Shepp-Logan phantom, so the true image was 

known. Three iterations of the algorithm were run. The results from the pre-projection 

integration projector/back-projector pair were compared to the results from the GPU-

optimized projector/back-projector pair. Fig. 37 shows a slice from the image volumes 

produced using the two different methods for projection and back-projection. The 

contrast of the Shep-Logan phantom image is fairly low (Gonzalez & Woods, 2008). 
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Therefore, the histograms of the images in Fig. 37 are stretched to enhance visualization. 

The images are indistinguishable by visual inspection. Fig. 38 shows the image 

histograms for the slices in Fig. 37. The histogram statistics are nearly equivalent as well. 

 

 

Fig. 37. Slices from image volumes created by the PWLS-PCG algorithm. The pre-

projection integration method was used to create the slice on the left and the GPU-

optimized projectors were used to create the slice on the right. 

 

 

Fig. 38. Histograms for the image slices in Fig. 37. The pre-projection integration method 

is on the left and the GPU-optimized is on the right. 
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A difference image was then created by subtracting the image created by the pre-

projection integration projector/back-projector pair from the image created by the GPU-

optimized projector/back-projector pair. This difference image is shown in Fig. 39 and 

the histogram is shown in Fig. 40. The difference image consists of low intensity noise 

inside the phantom. However, it shows a few ring artifacts where the edges of the 

phantom are located. The intensity of the ring artifact is small. In addition, both the GPU-

optimized and pre-projection integration images show similar ring artifacts when 

compared to the true image. Fig. 41 shows two difference images: the true image minus 

the image created by the GPU-optimized method and the true image minus the image 

created by the pre-projection integration method. Because both of these difference images 

contain ring artifacts, it is likely not something that is introduced by the pre-projection 

integration method. Rather, it is likely that the PWLS-PCG algorithm is very sensitive to 

round-off errors while trying to preserve edges. 
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Fig. 39. GPU-optimized output minus pre-projection integration output. The histogram 

has been stretched to enhance the visualization of the error. 
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Fig. 40. Histogram of the difference image in Fig. 39. 

 

 

Fig. 41. True image minus pre-projection integration output (left) and true image minus 

GPU-optimized version (right). Note that both contain ring artifacts where the edge of the 

Shepp-Logan phantom is located. The histogram has been stretched to enhance the 

visualization of the error. 

 

Finally, recall that Sections IV.B.2A and IV.C.2 highlighted the potential issue of 

using the low precision hardware interpolation of the GPU’s Texture Units. Therefore, a 

difference image was created that shows the difference between pre-projection 

integration with software interpolation and pre-projection interpolation with hardware 
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interpolation. The difference image is shown in Fig. 42 and the histogram of that 

difference is shown in Fig. 43. The difference image is almost completely low intensity 

noise with no visible aliasing artifacts in either. This indicates that the image quality 

effects of low precision hardware interpolation can be mitigated when the projector and 

back-projector are used within an image reconstruction algorithm with regularization. 

 

 

Fig. 42. Image showing the difference in the PWLS-PCG output image for software 

interpolation and hardware interpolation. The histogram has been stretched to enhance 

the visualization of the error. 
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Fig. 43. Histogram for the difference image in Fig. 42. 
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V. CONCLUSION 

In this study, a novel technique called pre-projection integration was investigated 

with the goal of speeding up distance-driven projection and back-projection in cone beam 

CT. GPU-based projection and back-projection code was first enhanced with the pre-

projection integration method. The pre-projection integration method also requires an 

additional step, SAT generation, which was implemented and characterized. Both the 

performance and image quality of the pre-projection integration method were carefully 

analyzed. Finally, the pre-projection integration method was tested within a regularized 

image reconstruction algorithm. 

The pre-projection integration method has the potential to substantially decrease 

the execution times of regularized iterative image reconstruction algorithms for cone 

beam CT. Iterative image reconstruction makes use of projection and back-projection 

operations. Many different models for projection and back-projection have been studied. 

The focus of this study, however, is distance-driven projection and back-projection due to 

their high image quality and prevalence in modern iterative image reconstruction 

algorithms. 

In the distance-driven model, both projection and back-projection involve the 

overlap kernel in which the sum of the elements within a region defined by detector or 

image boundaries is computed. Although the overlap kernel accounts for a significant 

portion of the overall projection and back-projection execution time, it has seen very little 

optimization. The pre-projection integration technique seeks to minimize the amount of 

time the overlap kernel takes when executed on GPUs while maintaining the high image 

quality of the distance-driven model. It uses SATs to quickly get the sum of the 
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intensities in a region defined by detector or image boundaries. It also takes advantage of 

the ultra-fast hardware interpolation provided in a GPU’s Texture Units. 

The performance boost that pre-projection integration can deliver depends on the 

size of the CT detector and the image being reconstructed. GPUs perform at the highest 

level when memory accesses are limited. Using SATs for projections means that a 

constant, small number of global memory accesses are required. This can substantially 

reduce the number of reads needed. For example, images that have small voxels would 

typically require many reads to ascertain all values. Using pre-projection integration 

requires only four reads, even if the detector shadow falls upon tens of voxels. However, 

images that have larger voxels would not require as many reads in the traditional 

implementation. Thus, using pre-projection integration would save fewer reads. The 

speedup that pre-projection integration offers to projection increases from 2.5x to 4.4x as 

the image size increases. Conversely, the speedup that pre-projection integration offers to 

back-projection decreases from 5.3x to 1.2x as the image size increases. Still, both offer a 

speedup of over 4x for certain image sizes. 

After verifying that the pre-projection integration method can deliver a substantial 

performance boost, it was necessary to verify that it does not have any adverse image 

quality effects. There are two main sources of error introduced by the pre-projection 

integration method: SAT error and hardware interpolation error. Both were carefully 

considered in this study. The SAT error was mitigated by subtracting the mean of the 

image before the integration step. The error introduced by the low precision hardware 

interpolation of the GPU Texture Units was not mitigated directly. However, using the 

IRT, it was shown that the aliasing artifacts produced by the hardware interpolation are 
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mitigated indirectly by the regularized image reconstruction algorithm. Therefore, it is 

clear that the pre-projection integration method is a very promising technique for cone 

beam CT iterative image reconstruction algorithms.  

Future studies could investigate a number of things related to pre-projection 

integration. First, the pre-projection integration method could be characterized on 

different hardware. AMD GPUs and Intel Coprocessors might treat texture interpolation 

differently, which could have an effect on performance and image quality. The pre-

projection integration method could also be tested with different cone beam CT systems 

that have more detector cells. This could make the back-projection performance more 

favorable. Additionally, the SAT error could be further reduced by breaking up an image 

into smaller pieces and creating smaller SATs for each. That would require the handling 

of edge cases if a detector footprint overlapped with more than one SAT. Finally, the 

distance-driven method with pre-projection integration could be compared to the 

separable footprints method with regard to both performance and image quality. The 

tradeoff between performance and image quality would be very helpful for the design of 

future image reconstruction algorithms that require both quick execution and superior 

image quality. 
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