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ABSTRACT 

MIXED VALENT METAL PINCER COMPLEXES AND REACTIVITY OF METAL 
COMPLEXES OF EXTENDED PINCER LIGANDS 

 

Jeewantha S. Hewage, B.Sc., M.Sc. 

 

Marquette University, 2015 

 

Historically, the study of mixed valence complexes has been critical for 
advancing our understanding of electron transfer processes in biological and abiological 
systems.  The recent use of mixed valence complexes in electrochromic materials, and 
the promise of their use in future technological or molecular electronic applications, has 
spurred further interest in this class of compound.  Previous studies by our research group 
have shown that gallium(III) or tricarbonylrhenium(I) complexes of pincer-type ligands 
with diarylamido anchors and either pyrazol-1-yl (pz) or diarylphosphino (PAr2) flanking 
donors are electroactive species with quasi reversible ligand-centered oxidations.  
Moreover, the one-electron oxidized derivative with pz flankers, [Ga(L)(L+)]2+ was found 
by both spectroscopic and electrochemical means to be a Robin Day Class II species with 
weak electronic communication occurring between pincers across the main group metal 
bridge.  Cursory electrochemical studies suggested that stronger interactions occurred on 
replacing gallium(III) with other metal centers.  This dissertation elaborates on these 
initial, prior, findings by describing more detailed synthetic protocol to various [M(L)2]n+ 
complexes where M = Ni, Co, Rh, Ir, n = 0-3 (depending on M), and where L has 
different organic groups decorating the periphery.  Electrochemical measurements and in-
depth spectroscopic analyses of oxidized and reduced forms of the complexes were used 
to better quantify the effects of metal and ligand substitution on their electronic properties 
including the extent of electronic communication in mixed valence derivatives.  Another 
goal of the work was to prepare in multimetallic pincer complexes via both covalent and 
self-assembly approaches and study their electronic properties.  Thus, the preparation and 
properties of [Re(CO)3]2(-L-L) with dinucleating pincers (L-L) is described.  Initial 
successes and difficulties with the preparation and characterization of coordination 
networks based on these pincers and those with different Lewis donors at the para- aryl 
position are outlined next.  Finally, ‘Extended Pincers’ (EP), ligands comprised of an 
N,N’-diarylformamidinate anchor with flanking pz and/or PAr2 ortho-aryl donors were 
prepared since they should support multimetallic complexes with unusual metal-metal 
bonds or reactivity due to proximity of the metal centers.  Their group 1 and group 11 
metal complexes may serve as useful reagents for future chemistry. 
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CHAPTER 1 

INTRODUCTION 

1.1. Conductive Metal Organic Frameworks.  

Porous, crystalline, metal-organic frameworks (MOFs) have gained substantial 

interest in the past few decades as promising candidates for gas sorption, separation, 

storage and catalytic applications.1-7 Many research groups have dedicated resources in 

finding means to increase porosity or selectivity in gas sorption and reactivities. There 

has been a very recent push for conducting and semiconducting MOFs because such 

materials would allow for incorporation into devices technology or even the design of 

new photocatalysts for alternative energy conversions.8-19 

Traditionally MOFs are electrically insulating and means to increase electric 

conductivity by incorporation of ions or chemical oxidants often sacrifice porosity or 

structural integrity, thus there are inherent challenges in this pursuit. A successful 

strategy for electrically conductive or semi conductive MOFs is to incorporate redox 

active groups as part of the organic framework that allows an efficient pathway for hole 

or electron hopping. Despite the field’s infancy, a number of groups recently 

demonstrated various strategies to make conducting MOFs with permanent porosity. 

Dinca and co-workers have recently reported that tetrathiafulvalene-tetrabenzoate 

(H4TTFTB) assembled MOF with Zn(NO3)2 (Figure 1.1) exhibits charge mobility 

commensurate with some of the best organic semiconductors and confirmed conductivity 

measurements.8 The carboxylate donor groups coordinated to Zn2+ to make the MOF, and 



2 
 

π-stacking of the TTFTB units facilitate charge mobility through space. They have 

further shown that the electrical conductivity of this MOF can be tuned by changing the 

metal ion.  

 

        

Figure 1.1. Left: Structure of redox active tetrathiafulvalene-tetrabenzoate ligand 
(H4TTFTB), Right: Side view of TTF stack, charge mobility and a view down the c axis 
from ref. 8.  

 
Allendorf and co-workers have reported a Cu3(BTC)2 (BTC : benzene-1,3,5-

tricarboxylic acid) derived conductive MOF, which is air stable.10 Alvaro et al. reported 

that a MOF prepared by coordination of Zn4O nodes with terephthalate linkers behaves as 

a semiconductor.9 A secondary challenge for many conducting MOFs suitable for 

alternative energy schemes is that most of the MOFs are made of hydrolytically unstable 

metal carboxylate linkages. Means to improve hydrolytic stability have been explored but 

generally limited to few metal Fe(O2C)n nodes. Thus there is an impetus to find new 

motifs that will improve hydrolytic stability to MOF structures, and at the same time 

impart desired reactivity or electronic properties to the materials.  

It is well known that metal pincer complexes exhibit remarkable stability as a 

result of the terdentate nature of the ligand. Furthermore, many pincer complexes also 
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exhibit remarkable reaction chemistry by supporting low coordination number metal 

centers, by chemical non innocence (metal ligand cooperativity) or by tunable redox 

behavior. This established behavior prompted an exploration into the possibility of 

constructing MOFs that incorporate metal pincers as either part of a linear, node, or both. 

For the development of conducting polymers and MOFs, a hypothetical structure such as 

Figure 1.2, was envisioned.  

 

Figure 1.2. Proposed coordination polymer of redox active metal pincer complexes.  

 

Here the metal pincer with redox active diarylamido units would serve as the node and 

the spacer bridge could be verified to have either redox properties, void spaces, or both. 

In this way one might anticipate e- or hole+ transfer could occur along polymer chain A 

(Figure 1.2). However, it was unknown whether it would also be possible to have 

electronic pathways across N-M-N units as in path B, Figure 1.2. Thus this study set out 
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to test such possibilities by synthesizing individual fragments and examining their 

properties. The aim was to evaluate the strength of electronic communication across 

various bridges or nodes by methods outlined in the next section. Then, studies on 

making assembles of pincer complexes such as in Figure 1.2 were explored.  

1.2. Mixed Valence Compounds. 

Mixed valence (MV) compounds are typically chemical species which have two 

or more otherwise identical redox centers with different oxidation states. These 

compounds were recognized by scientists several decades ago as the colorful compounds 

that were used as pigments in artworks (Prussian blue, PB: FeIII[FeIIIFeII(CN)6·xH2O]). 

The color results from an intervalence electron transfer process of these MV compounds 

which absorb energy from the visible light. Thus, the blue color of PB results from 

charge transfer arising from e- transfer between FeII/FeIII sites. More recently, MV 

compounds have gained increased attention in the study of electron transfer (ET) 

processes, which are fundamental to most chemical and biological systems.20-26 A recent 

trend of using redox active molecules as the basis for materials in electronic devices has 

accelerated this attention among scientists.27-38 As a consequence, the study of electronic 

communication between redox centers (in MV compounds) provides a sound foundation 

for building future molecular wires or other electronic materials. 

The role model for MV compounds is the well known Creutz-Taube ion 

[(NH3)5(μ-pyz)Ru(NH3)5]5+ (Figure 1.3.a), metals that are formally in the +2 and +3 

oxidation states, linked by a pyrazine ligand.39,40 The odd electron transverses the 

bridging organic ligand but unevenly occupies both metal sites over time.41 The 

discovery of this complex initiated investigation of other mixed valence complexes for 
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fundamental studies. The efficiency of charge delocalization in MV compounds is mainly 

dependent on the nature of the bridging ligand. If the bridge can facilitate good electronic 

communication between two metal ions, the charge would be fully delocalized over the 

entire molecule. In 1990, Reimers and Hush investigated the effect of the bridge on the 

electronic communication, using different oligovinyl-linked dipyridyl bridges shown in 

Figure 1.3.b.42 There was electronic communication between the two metal ions over the 

bridge proven by spectroscopic, electrochemical, and theoretical studies. The strength 

was highly dependent on the length of the bridge, a moderate communication for n = 0 to 

a weak communication for n = 3.  

 

 

 Figure 1.3. a) Creutz-Taube ion. b) Complexes made by Reimers and Hush to 
investigate the effect of the bridge to the charge delocalization, n = 0 – 3.42 

 

1.3. Classification of Mixed-Valence Compounds. 

The Creutz-Taube ion described above has an overall +5 charge from 

ruthenium(II) and ruthenium(III) ions. Later investigations confirmed that there is good 

electronic communication between the two metal ions, but the charge is not fully 

delocalized.39-41 Investigations by Reimers and Hush (Figure 1.3.b)42 found that the 

delocalization or localization of the extra charge is mainly dependent on the nature of the 

bridge. The delocalization and localization of the charge through the bridge of MV 
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compounds became such an important issue that Robin and Day introduced a 

classification for these systems, now referred to as the Robin-Day classification.60 MV 

systems can be classified into three categories based on the extent of electronic 

communication or electron delocalization between two redox centers; Robin-Day class I, 

II, and III. The molecules in the Robin-Day class I have essentially separate redox sites 

and they do not have any electronic interactions. In class III systems, the interaction of 

the two redox sites is so great that it has full electron delocalization. Therefore, Robin-

Day class II MV systems have moderate electron delocalization between class I and class 

III.  

 Mixed valence systems, especially Robin-day class II and class II/III borderline, 

show interesting optical properties because of the significant electronic coupling between 

two redox sites separated by a bridge.61,62 Electronic coupling between two redox-active 

subunits across the common bridge leads to an avoided crossing of the individual 

potential hypersurfaces. It results in a potential hypersurface with double minima (Figure 

1.4.b). The shape of the resulting potential energy hypersurface depends on the ratio 

between the electronic coupling parameter, Hab, and the reorganization energy, λ. This λ 

is the energy required for necessary structural adjustment of individual redox centers and 

solvents.63 The Robin-Day class II mixed-valence systems have 2Hab values larger than 0 

but smaller than the reorganization energy, λ. Intramolecular electron transfer can then 

occur by photochemical excitation from one local minimum into the excited state 

hypersurface, from which the system can relax to the ground state with an inversion of 

redox states. The underlying absorption band is called an intervalence charge transfer 

(IVCT) absorption band, which usually appears in the NIR region. 
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Figure 1.4. Potential energy curves for electron transfers in MV complexes. a) Robin-
Day class I, b) Robin-Day class II, c) Robin-Day class III. 

 

The electronic coupling element Hab, can be obtained by analysis of the IVCT 

band. The Hush relations given in the Equations 1 and 2 can be used to calculate this 

electronic coupling element of weakly to moderately delocalized systems.63,64  EOP is the 

energy of  

EOP = λ     (1) 

Hab (cm-1) = [(4.2x10-4)εmaxΔṽ1/2EOP]1/2/d   (2) 

the absorption maxima, λ is the Marcus reorganization energy, εmax is the molar 

extinction coefficient, Δṽ1/2 is the full-width-at-half-maximum in cm−1, and d is the 

separation between two redox centers in Å. Class II systems have Hab values greater than 

zero but lower than λ/2, and it is highly dependent on the solvent. The interaction of two 

redox centers of class III systems is very strong and the ground state has only a single 

minimum (Figure 1.4.c). The energy of IVCT band of class III systems is independent of 

the solvent. This is the delocalized system, and the electronic coupling element is half of 

the energy of the absorbance maxima.  
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 The Marcus reorganization energy, λ, of mixed-valence class II and class II/III 

systems is highly dependent on the nature of the solvent used in the spectroscopic 

measurements, while λ of class III systems is independent on the nature of the solvent.71 

Furthermore, the IVCT bands of class II and class II/III systems are Gaussian shaped but 

the band of class III generally is asymmetric.43,72  Data gathered from IVCT band 

analysis can be used to calculate the thermal energy barrier to electron transfer, ΔG, and 

the rate constant for electron transfer, ket using classical Marcus Theory (eqn 3 and 4).65 

ΔG = (λ-2Hab)2 / 4λ  cm-1           (3) 

ket = (2Hab
2/h)[π3 / λkBT]1/2 exp-(ΔG/kBT)      (4) 

The MV compounds can be synthesized by the comproportionation of the doubly-

oxidized derivative (both redox centers are in the oxidation state n+1), with the non-

oxidized derivative (both redox centers are in the oxidation state n) as shown in Equation 

5. A MV system can be represented as Mn+-B-M(n+1)+ where the Ms are the redox centers 

or the metal ions with different oxidation states connected by the bridge B. The 

equilibrium constant for the comproportionation of this MV compound can be written as 

Equation 6. The electrochemical properties of the compound can be used to determine 

Kcom as shown in Equation 7, where F = 96485 Cmol-1, R = 8.31441 JK-1mol-1. The value 

of ΔE depends in part on the electronic communication of the two redox centers, and 

generally the closer the redox centers or the higher the electronic delocalization, the 

higher the values for the redox potential splitting (ΔE) and Kcom. 

  Mn+  ̶ B  ̶Mn+   +  M(n+1)+ ̶ B ̶ M(n+1)+                 2 Mn+ ̶ B  ̶M(n+1)+  (5) 

Kcom = [Mn+ ̶ B  ̶M(n+1)+]2 / [Mn+  ̶ B  ̶Mn+][ M(n+1)+ ̶ B ̶ M(n+1)+]  (6) 
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Kcom = e(ΔE·F/R·T)        (7) 

Robin-Day class I MV species have non-interacting redox centers, therefore the 

oxidation of one redox center would not affect the oxidation of the other redox center and 

technically results in one two-electron oxidation or reduction wave. Consequently, the 

equilibrium constant for the comproportionation (Kcom) is very low, and it has been 

accepted that Robin-Day class I MV systems have Kcom values from zero to 102.73 Robin-

Day class III MV species have full electron delocalization over the two redox centers and 

large Kcom values greater than 106.  The Kcom value of class II species lies in between these 

two values (102 < Kcom < 106). Electrochemical measurements (cyclic voltammetry, 

differential pulse voltammetry, etc.) provide a convenient method to estimate the strength 

of the electronic communication in MV compounds, but are not sufficient to establish the 

nature of electronic communication in weakly interacting systems, as this redox potential 

splitting (ΔE) might be due to simple Coulombic interactions. In addition, resolution of 

the line width of peaks and the concentration of the electrolyte would affect the 

separation of redox waves. Therefore the electrochemical and the spectroscopic 

investigations can be used to classify mixed-valence compounds. 

Not all MV compounds have M-B-M frameworks. Therefore, purely organic MV 

compounds have replaced metal centers with redox active organic centers such as 

triarylamines,43-52 tetrathiafulvalenes,53 carbazoles,54 dihydrazines,55-56 quinones,57 nitro 

groups58 and nitrobenzene derivatives.59 Bis(triarylamine)s with phenylene or other 

bridges (Figure 1.5) are one of the most popular classes of MV compounds to have been 

studied extensively43-52 This might be due to the stability of the radical cation formed and 

convenient synthetic possibilities of bis(triarylamine)s. Lambert and co-workers have  
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Figure 1.5. Mixed-valence bis(triarylamine) compounds. R, R1: alkyl group, OMe. 

 

studied extensively electronic communication of two redox centers of bis(triarylamine)s 

with a series of compounds that have OMe as the R (Figure 1.5) and different bridges.43 

They have shown that the electron delocalization in bis(triarylamine)s with R = OMe 

(Figure 1.5 Right) is highly dependent on the nature and length of the bridge. Also there 

are inverted organometallic type L-M-L systems with redox active organic ligands 

connected by metal bridges.74-76 

1.4. Initial Studies of Electronic Communication of Mixed Valence Metal Pincer 
Complexes.  

 Our research group has been interested in metal complexes of uninegative, 

tridentate pincer ligands based on di(2-pyrazolyl-aryl) amines (Figure 1.6).66,67 These 

ligands will be described herein by shorthand notation H(X,Y): X and Y denote 

substitution at the para-aryl positions.  These ligands are redox active, because 

di(arylamine)s are electron donors. Electrochemical, EPR, and spectroscopic studies of 

gallium(III), rhenium(I) and rhodium(III) complexes of these ligands have outlined many 

properties.66,70 An investigation of the carbonylrhodium(I) chemistry of this class of 

ligand revealed that the electronic properties and the reactivity of these complexes can be 
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predictably tuned by changing the para-aryl groups (X and Y, Figure 1.6).68 Six 

membered chelate rings formed by the amido and pyrazolyl donors binding with metals  

 

Figure 1.6.  Generic depiction of a metal complex of the di(2-pyrazolyl-aryl)amino 
NNN-pincer. 

 

give structural flexibility allowing either fac- or mer- binding modes. Also, substituents 

on the pyrazole groups (R3 and R4) further control steric, electronic, and structural 

properties of complexes.68 

 As described in my M.Sc. thesis, a gallium(III) complex, [Ga(Me,Me)2]+ and 

oxidized derivatives (Figure 1.7) were prepared and studied. The cyclic voltammogram 

of [Ga(Me,Me)2]+ showed two, reversible, one-electron oxidation waves that were 

assigned as the ligand-based oxidations because gallium(III) cannot be further oxidized to 

gallium(IV). The equilibrium constant for comproportionation (Kcom = 1.62 x 103) from 

electrochemical data indicates the mono-oxidized complex is a Robin-Day Class II mixed 

valence complex. This observation was supported by means of spectroscopic studies, 

where band shape analysis of the intervalence charge transfer (IVCT) band of the 
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[Ga(Me,Me)2]2+ gave EOP 1565 nm and Hab 264 cm-1 in CH2Cl2 and EOP1444 nm and Hab 

223 cm-1 in CH3CN. The solvent dependence and small Hab indicated a Robin-Day class  

 

 

Figure 1.7. Left: Gallium(III) pincer ligand complex, Middle: mono-oxydized 
gallium(III) complex, Right: di-oxydized gallium(III) complex. 

 

II species in accord with CV measurements. The electronic communication must occur 

by hopping across the metal bridge as there are no energetically accessible orbitals in 

gallium(III).   

1.5. Overview of the Dissertation.  

 In this Dissertation, the effect of replacing gallium with other metals and of 

replacing groups about the ligand on electronic properties is explored. The transition 

metal counterparts of [Ga(Me,Me)2]2+ are expected to have greater electronic 

communication between ligands because interacting d-orbitals of transition metals must 

be energetically accessible to allow dπ-pπ interaction with the magnetic orbital on the 

ligand. Also, synthetic methods that give “linked” or dinucleating pincer ligands and their 

complexes are described. Then methods to make coordination polymers and networks 



13 
 

using numerous metal pincers are outlined. Specifically this dissertation consists of the 

following chapters. 

 Chapter 2 describes the syntheses and electronic properties of homoleptic nickel 

(II) complexes of this ligand and other related ones with different para-aryl substituents. 

In Chapter 3 the group 9 complexes were prepared to detail and quantify the increasing 

electronic communication on increasing atomic number, Z.  Chapter 4 describes syntheses 

of di-nucleating pincer ligands, where two pincer fragments are connected by phenylene 

bridges. Bis(tricarbonylrhenium(I)) complexes, [(CO)3Re(μ-L)Re(CO)3]n+ n = 0, 1,2 , 

were prepared and characterized to study effect of spacer length on electronic 

communication in singly oxidized derivatives (n = +1). 

 Chapter 5 focuses on attempts to incorporate metal pincer complexes into 1D, 2D, 

and 3D assembles. Both success and difficulties in such pursuits are described.  

Finally, Chapter 6 describes initial efforts of developing “Extended” pincer 

ligands that have formamidinate anchors which can bind multiple metals with the aid of 

different flanking donors (Figure 1.8). 

 

Figure 1.8. Generic depiction of an extended pincer ligand.  
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These ligands have diarylformamidinate anchors with either pyrazolyl or diarylphosphine 

flanking donors. The preparations of both symmetric and asymmetric derivatives are 

outlined. The group 1 and group 11 complexes are also described; these are envisioned to 

be starting materials for future studies. The coinage metal complexes provided 

opportunity to explore potential metallophilic interactions. The luminescent behavior and 

catalytic activity of various derivatives were explored.  

 

 

 

 

 

 

 

 

 



15 
 

CHAPTER 2 

HOMOLEPTIC NICKEL(II) COMPLEXES OF REDOX-TUNABLE PINCER-
TYPE LIGANDS 

The following chapter was published in: Hewage, J. S.; Wanniarachchi, S.; Morin, T. J.; 
Liddle, B. J.; Banaszynski, M.; Lindeman, S. V.; Bennett, B.; Gardinier, J. R. Inorg. 
Chem. 2014, 53 (19), 10070-10084. 

 

2.1. INTRODUCTION 

There has been long-standing interest in metal complexes of redox-active 

“noninnocent” ligands1 that persists because of the enticing prospects for advancing 

fundamental knowledge of electronic structure and bonding,2 for discovering new 

reactivity that may arise from both metal and ligand-centered electron transfer,3 or for the 

development of new technological applications that rely on electron (or hole) transfer.4 

Control over the syntheses and electrochemical properties of new classes of redox-active 

ligands and their metal complexes is important for making advances in either 

fundamental or applied areas of study. While a majority of such studies have focused on 

metal complexes of bidentate noninnocent ligands,5 those involving terdentate “pincer” 

ligands are gaining prominence.6−18 Among these, the chemical and redox noninnocence 

of metal complexes of the bis(imino)pyridine “pincer” ligand has been exploited to 

produce a number of remarkable chemical transformations.7 Metal pincer complexes with 

redox-active diarylamido anchors are also gaining popularity for their spectacular 

reaction chemistry.6,8−18  
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Figure 2.1.  Metal complexes of pyrazolyl-containing redox-active pincer ligands.  

 

We have been studying the properties of metal complexes of a new class of redox-

active pincer-type ligand that has pyrazolyl flanking donors attached to a diarylamido  

anchor, as in Figure 2.1.19 These uninegative pincer-type ligands will be described herein 

by the shorthand notation (X,Y)− that denotes the substitution at the para-aryl positions 

(X and Y, left of Figure 2.1) of the diarylamido backbone. In rhodium chemistry, 

complexes (Me,Me)Rh(L1)(L2)(L3) showed ligand-centered oxidations that occurred at 

potentials that depended on the charge of the complex and the Lever parameter (EL) of 

nonpincer ligands L1, L2, and L3.19b Also, for a series of carbonylrhodium(I) complexes, 

(X,Y)Rh(CO), the reactivity toward a given alkyl halide increased predictably with the 

electron-donating ability of the X and Y groups as indicated by the groups’ Hammett σp 

parameter.19c More recently, the homoleptic gallium(III) complex [Ga(Me,Me)2]+ was 

reported, which showed two reversible one-electron oxidations in its voltammogram.19a 

The entire valence series was structurally and spectroscopically characterized. On the 

basis of electrochemical and spectroscopic studies, the one-electron oxidized 

[Ga(Me,Me)2]2+ was found to be a Robin−Day class II species where weak electronic 

communication between oxidized and nonoxidized ligands was thought to occur via 

superexchange through the empty orbitals on gallium. It was conjectured that replacing 
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the gallium(III) center with a transition metal would greatly strengthen the electronic 

communication because the 3d-orbitals should be energetically accessible and allow for 

dπ−pπ interactions with the magnetic orbitals on the ligand. In addition to changing 

metals, we were also interested in determining whether changing the electronic properties 

(without changing the steric profile) of the redox-active pincer ligands would provide a 

means to alter the strength of electronic communication. Although we previously 

observed that changing para-aryl substituents can affect electronic properties in rhodium 

complexes, it was unclear whether this translated to first-row metals, and, more 

importantly, how much could the electronic properties be tuned. Could this tuning be 

enough to switch from a ligand- to a metal-centered redox process, or vice versa? This 

contribution discloses our first efforts in this vein, where eight new pincer ligands of the 

type H(X,Y) were prepared to allow a systematic study of the electronic properties of 12 

nickel(II) complexes, Ni(X,Y)2, with diverse para-aryl substituents. The electrochemical, 

spectroscopic properties, and computational studies on the complete valence series 

[Ni(Me,Me)2]n+ are documented. Comparison of properties between mixed-valent 

complexes [M(Me,Me)2]n+ (n = 1 for M = Ni and n = 2 for M = Ga) was made to 

elucidate the role of the metal center in mediating electronic communication. 

 

2. 2. RESULTS AND DISCUSSION 

2.2.1. Syntheses. Eight new and four known19 NNN-pincer ligands, H(X,Y), with 

pyrazolyl flanking donors attached to diarylamine anchors with different para-aryl (X- 

and Y-) substituents have been prepared by a variety of synthetic routes as summarized in  
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Scheme 2.1.  Synthesis of H(Me,Me) and H(tBuPh,tBuPh) by sequential bromination and 
amination reactions. Key:  i) 2 eq. Br2, 1:1 (v/v) CH2Cl2:MeOH, 0oC, 1 h; ii) 3.5 eq. 
pyrazole, 3.5 equiv. K2CO3, 10 mol% CuI, 40 mol% DMED, xylenes, reflux 36 h. 

 

Schemes 2.1-4. In the first method (Scheme 2.1), bromination of a diarylamine followed 

by CuI-catalyzed coupling of pyrazole was used to produce H(Me,Me) or H(tBuPh,tBuPh).  

This route is not suitable for reactions involving unsubstituted diarylamines such as 

diphenylamine (for instance, in attempts to give H(H,H)) since bromination first occurs at 

the para-aryl position of the diarylamine. Instead, a second versatile synthetic approach 

can be used whereby the arms of the pincer ligand are attached via an amination reaction 

between a 2-halo-5-Y-aryl-1H-pyrazole and a 2-(pyrazolyl)-4-X-aniline, exemplified by 

the seven derivatives in Scheme 2.2.  It is noted that the reactions in Scheme 2.2 are 

optimized routes.  The asymmetric derivatives H(X,Y) can be prepared by using the 

opposite combination of reagents (interchanging X and Y of the pyrazolyl-containing 

reagents in Scheme 2.2) but the yields were found to be lower. As shown in Scheme 2.3, 

two ligands with bromide groups at the para-aryl position of the diarylamido backbone, 

H(Br,Br) and H(Me,Br), were easily accessed by bromination reactions between N-

bromosuccinimide and either H(H,H) or H(Me,H) in CH3CN.  The use of other solvents 

for the bromination reactions was also successful but generally resulted in lower yields 

than when using CH3CN. Finally, the derivative H(Br,Br) was amenable to Suzuki 
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coupling reactions to give H(tBuPh,tBuPh) or H(CNPh,CNPh) in modest to good yields, as 

per Scheme 2.4. 

 

 

Scheme 2.2.  Convergent synthetic route to H(X,Y) ligands. 

 

 

 

Scheme 2.3.  Preparation of H(Me,Br) and H(Br,Br) by bromination reactions. 
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Scheme 2.4.  Preparation of H(tBuPh,tBuPh) and H(CNPh,CNPh) by Suzuki reactions. 

 

The one-pot reaction between NiCl2·6H2O and 2 mol equiv24 of each of the 12 

H(X,Y) ligands followed by 2 mol equiv of (NEt4)(OH) in MeOH rapidly afforded 

precipitates of “Ni(X,Y)2”; the soluble byproducts (H2O, NEt4Cl) were removed by 

filtration. If the precipitates are collected by suction filtration, washed with Et2O 

(minimal in the cases of 2, 9, and 11, vide infra), and air-dried, then samples analyze as 

either hemihydrates, hydrates, a dimethanol solvate (for Ni(Me,CO2Et)2), or are solvent-

free (Ni(Me,Br)2, 4, and Ni(Br,Br)2 , 7) as detailed in the Experimental Section. Heating 

these samples under vacuum over the course of hours is sufficient to remove solvent in 

seven of the cases (see Scheme 2.5), but solvent could not be completely removed in the 

remaining cases. Solvate molecules are retained by complexes with Lewis donor X- or Y-

groups and derivatives with hydrogen at the para-aryl position. While the former cases 

are easily understood, the reason why water is retained in the latter cases (2·0.5 H2O and 

3·0.5 H2O) is not clear, as it has not yet been possible to grow single crystals for X-ray 

structural studies.25  The yields shown in Scheme 2.5 (>80%) correspond to samples after 

washing and heating under vacuum. The characterization data were acquired from 

samples that analyzed as shown in Scheme 2.5. The Ni(X,Y)2 complexes are generally  
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Scheme 2.5. Preparation of Ni(X,Y)2 Complexes. 

 
soluble in halogenated solvents, moderately soluble in aromatic solvents, THF, acetone, 

CH3CN, and nitromethane, very slightly soluble in alcohols, but insoluble in alkanes and 

Et2O. Exceptions occur for Ni(Me,H)2·0.5 H2O, Ni(CF3,CF3)2, and Ni(tBuPh,tBuPh)2, 

which show appreciable solubility in Et2O. In these cases, the methanol precipitates were 

washed with either minimal Et2O or with hexanes to remove any inadvertent excess 

ligand prior to drying. In contrast, the Ni(X,Y)2 complexes with cyano substituents (8, 10, 

and 12) are noticeably less soluble in organic solvents than the other nine derivatives. All 

complexes appear to be air stable both in the solid state and in solution. Each of the 12 

complexes is paramagnetic with a solid-state room-temperature magnetic moment in the 

range of 2.7−3.2 μB, as expected for nickel(II) with a significant spin−orbit coupling 

contribution to the magnetic moment.26 The solids are also noticeably thermochromic 

(Figure 2.3). At room temperature, the complexes range in color from brown to yellow-

brown to orange-brown to red (Figure 2.2). However, the complexes become bright 
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orange or red (depending on the complex) upon cooling to −196 °C. The origin of the 

solid-state thermochromic behavior of these Ni(X,Y)2 complexes remains unclear but is 

likely due to the known temperature dependence of charge transfer bands.26,27 

 

 

 
Figure 2.2.  Photographs of compounds 1-12 as powders at room temperature. 

 

 

 

Figure 2.3.  Photographs of compound 4 before and after cooling to 77 K showing 
thermochromic behavior. 
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2.2.2. Solid State. The solid-state structures of six Ni(X,Y)2 derivatives have been 

determined by single-crystal X-ray diffraction. The structure of Ni(Me,CN)2 is given in 

Figure 2.4, while selected bond distances and angles are given in Table 2.1; structures of 

other complexes are given in Figures 2.5-2.9 and the crystallographic data collections are 

given in Tables 2.2-2.3. All Ni(X,Y)2 complexes have six coordinate nickel(II) with an 

average Ni−N bond distance of 2.07 ± 0.01 Å, in line with other nickel(II) complexes 

containing NiN6 kernels.28 With the exception of cis-Ni(Me,CN)2 described later, the 

nickel center in each complex resides in a compressed octahedral environment where the 

diarylamido Ni−NAr bonds are shorter (avg 2.05 ± 0.02 Å) than the pyrazolyl Ni−Npz 

bonds (avg 2.09 ± 0.02 Å). For asymmetric derivatives Ni(X,Y)2 where X ≠ Y, there are 

two possible isomers where the X groups are either cis- or trans with respect to the 

central NAr−Ni−NAr axis (left and right of Figure 2.4, respectively). In the case of 

Ni(Me,CN)2, both isomers are found in a 1:1 ratio as crystallographically independent 

molecules in the single crystal. The cis-Ni(Me,CN)2 isomer differs from all other 

structurally characterized Ni(X,Y)2 complexes in that the average Ni−NAr distance of 2.08 

± 0.01 Å is statistically identical to or slightly longer than the average of the Ni−Npz bond 

distances of 2.07 ± 0.01 Å. For the other structurally characterized asymmetric Ni(X,Y)2 

derivatives 4 and 6, the isomers cocrystallize as (superimposed) disordered pairs (Figure 

2.7). It is also noteworthy that for symmetric derivatives Ni(X,Y)2 where X = Y such as 

in 1, 3, and 10, the molecules have approximate D2 symmetry and are chiral. Because of 

the modest dihedral angle between the mean planes of the pyrazolyl and aryl rings (avg 

37 ± 3°), the tridentate ligands are nonplanar. As such, two enantiomers exist that can be 

differentiated by the relative skew of a line formed by the centroids pyrazolyl rings and a 
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line conjoining centroids of aryl rings of the same ligand (Figure 2.10). Both possible 

isomers are found in the crystal of each 1, 3, and 10. Similarly, all four isomers of the 

nominally C2-symmetric Ni(X,Y)2 complexes 4 and 6 are found in their solid state 

structures, as in Figure 2.11. 

 

   

 

Figure 2.4. Top: Structures of the two isomers (cis- isomer, left; trans- isomer, right) of 
Ni(Me,CN)2 found in the crystal with partial atom labeling.  Hydrogen atoms have been 
removed and carbon atoms of the top ligand on each complex have been colored gold for 
clarity.  Bottom: Views approximately down N1-Ni-N2 bonds showing the nearly 
coplanar amido “NArNiC2” moieties.   
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Table 2.1. Selected Distances (Å) and Angles (deg) for the Isomers of Ni(Me,CN)2. 
 
 

 

atom/bond labela   
                    Bond Distances  ( Å)  
                 trans-isomer    cis-isomer  

Ni1−N1  2.070(4)  2.050(4) 
Ni1−N2  2.082(4)  2.057(4) 
Ni1−N11  2.073(4)  2.088(4) 
Ni1−N21  2.067(4)  2.101(4) 
Ni1−N41  2.059(4)  2.082(3) 
Ni1−N61  2.084(4)  2.103(4) 

Bond Angles (deg) 
N1−Ni1−N2  179.14(15)  178.62(16) 
N1−Ni1−N11  86.86(15) 85.80(15) 
N1−Ni1−N61  90.54(14) 93.30(15) 
N2−Ni1−N61  88.63(15) 87.35(15) 
N11−Ni1−N2  92.88(17)  92.97(16) 
N11−Ni1−N61  85.91(15)  91.39(15) 
N21−Ni1−N1  87.52(15)  86.59(15) 
N21−Ni1−N2  92.77(17)  94.66(15) 
N21−Ni1−N11  174.22(17)  172.10(15) 
N21−Ni1−N61  95.46(15)  86.92(15) 
N41−Ni1−N1  92.03(15)  93.14(14) 
N41−Ni1−N2  88.79(16)  86.25(14) 
N41−Ni1−N11  91.22(16)  90.82(14) 
N41−Ni1−N21  87.66(17)  91.72(14) 
N41−Ni1−N61  176.04(15) 173.33(15) 

 

 aThose of trans-isomer have an additional “A” after the atom number; thus Ni1−N1 in 
the cis-isomer is Ni1A−N1A in the trans-isomer. 
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Figure 2.5. Molecular structure of 1 with hydrogen atoms removed for clarity. Selected 
bond distances (Å): Ni1-N1 2.0520(12), Ni1-N2 2.0377(12), Ni1-N11 2.0829(13), Ni1-
N21 2.0880(13), Ni1-N41 2.1007(13), Ni1-N61 2.0886(13). Selected bond angles (deg.): 
N1-Ni1-N11 86.56(5), N1-Ni1-N21 87.56(5), N1-Ni1-N41 95.92(5), N1-Ni1-N61 
91.90(5), N2-Ni1-N1 177.09(5), N2-Ni1-N11 95.73(5), N2-Ni1-N21 90.28(5), N2-Ni1-
N41 85.97(5), N2-Ni1-N61 86.36(5), N11-Ni1-N21 172.93(5), N11-Ni1-N41 87.94(5), 
N11-Ni1-N61 88.99(5), N21-Ni1-N41 88.77(5), N21-Ni1-N61 95.12(5), N61-Ni1-N41 
171.41(5). 

 

 

Figure 2.6. Molecular structure of crystallographically-independent units in 3·CH2Cl2 
with hydrogen atoms removed for clarity. Selected bond distances (Å): Ni1-N1 
2.0307(15), Ni1-N2 2.0364(16), Ni1-N11 2.0870(16), Ni1-N21 2.1249(16), Ni1-N41 
2.1061(16), Ni1-N61 2.0902(16), Ni2-N1A 2.0427(16), Ni2-N2A 2.0497(16), Ni2-N11A 
2.0791(16), Ni2-N21A 2.0933(16), Ni2-N41A 2.0878(16), Ni2-N61A 2.0868(16). 
Selected bond angles (deg.): N1-Ni1-N2 179.95(8), N1-Ni1-N11 86.74(6), N1-Ni1-N21 
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86.35(6), N1-Ni1-N41 92.70(6), N1-Ni1-N61 93.40(6), N2-Ni1-N11 93.26(6), N2-Ni1-
N21 93.65(6), N2-Ni1-N41 87.24(6), N2-Ni1-N61 86.66(6), N1A-Ni2-N2A 175.90(6), 
N1A-Ni2-N11A 87.53(6), N1A-Ni2-N21A 89.09(6), N1A-Ni2-N41A 89.05(6), N1A-
Ni2-N61A 94.84(6), N2A-Ni2-N11A 90.41(6), N2A-Ni2-N21A 93.23(6), N2A-Ni2-
N41A 87.61(6), N2A-Ni2-N61A 88.57(6), N11A-Ni2-N21A 174.51(6), N11A-Ni2-
N41A 95.14(6), N11A-Ni2-N61A 86.59(6), N41A-Ni2-N21A 89.12(6), N61A-Ni2-
N21A 89.39(6), N61A-Ni2-N41A 175.82(6). 

 

 

Figure 2.7. Molecular structure of 4 with both disorder components shown but with 
hydrogen atoms removed for clarity. Selected bond distances (Å): Ni1-N1 2.037(3), Ni1-
N2 2.050(3), Ni1-N11 2.088(3), Ni1-N21 2.101(3), Ni1-N41 2.087(3), Ni1-N61 
2.077(3). Selected bond angles (deg.): N1-Ni1-N2 177.86(11), N1-Ni1-N11 86.96(11), 
N1-Ni1-N21 86.23(11), N1-Ni1-N41 90.48(11), N1-Ni1-N61 95.05(11), N2-Ni1-N11 
91.82(11), N2-Ni1-N21 95.09(11), N2-Ni1-N41 87.87(11), N2-Ni1-N61 86.67(11), N11-
Ni1-N21 172.40(11), N41-Ni1-N11 94.54(11), N41-Ni1-N21 88.87(11), N61-Ni1-N11 
88.68(11), N61-Ni1-N21 88.58(11), N61-Ni1-N41 173.75(11). 
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Figure 2.8. Molecular structure of one disorder component of 6 with hydrogen atoms 
removed for clarity. Selected bond distances (Å): Ni1-N11 2.093(2), Ni1-N21 2.086(2), 
Ni1-N1 2.0464(18), Ni1-N61 2.0849(19), Ni1-N41 2.0736(19), Ni1-N2 2.0534(18). 
Selected bond angles (deg.): N21-Ni1-N11 172.96(7), N1-Ni1-N11 86.38(8), N1-Ni1-
N21 86.80(7), N1-Ni1-N61 91.57(8), N1-Ni1-N41 93.92(8), N1-Ni1-N2 179.02(8), N61-
Ni1-N11 88.31(8), N61-Ni1-N21 93.63(8), N41-Ni1-N11 89.66(8), N41-Ni1-N21 
89.06(8), N41-Ni1-N61 174.02(7), N2-Ni1-N11 94.37(8), N2-Ni1-N21 92.46(8), N2-
Ni1-N61 87.84(7), N2-Ni1-N41 86.71(7). 

 

 

Figure 2.9. Structure of 10·acetone with hydrogen atoms removed for clarity. Selected 
bond distances (Å): Ni1-N1 2.0481(17), Ni1-N2 2.0489(18), Ni1-N11 2.064(2), Ni1-N21 
2.075(2), Ni1-N41 2.0789(19), Ni1-N61 2.0858(19). Selected bond angles (deg.): N1-
Ni1-N2 179.33(8), N1-Ni1-N11 87.17(7), N1-Ni1-N21 88.84(7), N1-Ni1-N41 92.15(7), 
N1-Ni1-N61 91.47(7), N2-Ni1-N11 92.21(7), N2-Ni1-N21 91.79(7), N2-Ni1-N41 
88.09(7), N2-Ni1-N61 88.28(7), N11-Ni1-N21 175.79(7), N11-Ni1-N41 91.27(8), N11-
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Ni1-N61 87.74(7), N21-Ni1-N41 87.54(8), N21-Ni1-N61 93.70(8), N41-Ni1-N61 
176.20(7). 

 

Table 2.2.  Crystallographic Data Collection and Structure Refinement for Ni(Me,Me)2, 
1, Ni(H,H)2·CH2Cl2, 3·CH2Cl2, Ni(Me,Br)2, 4, and Ni(Me,CF3)2,6. 

 

Compound 1 3·CH2Cl2 4 6 
Formula  C40H36N10Ni C37H30Cl2N10Ni C38H30Br2N10Ni C40H34F6N10Ni 
Formula weight  715.50 744.32 845.25 823.458 
Crystal system  triclinic monoclinic triclinic triclinic 
Space group  P -1 P 21/n P -1 P -1 
Temperature [K]  100(2) 100(2) 100(2) 100(2) 
a [Å]  8.7592(2) 9.55338(11) 8.7709(3) 8.9877(2) 
b [Å]  12.8293(3) 17.50145(18) 12.8252(4) 13.0879(2) 
c [Å]  16.0382(3) 40.5845(5) 16.1692(5) 16.3390(3) 
α[°] 79.7090(10) 90.00 80.012(2) 79.7450(10) 
β[°]  84.0790(10) 93.2065(12) 83.860(2) 84.0600(10) 
γ [°] 75.7380(10) 90.00 76.027(2) 74.1850(10) 
V [Å3]  1715.33(6) 6775.02(13) 1734.24(10) 1816.60(6) 
Z  2 8 2 2 
Dcalcd. [gcm-3]  1.385 1.459 1.619 1.505 
λ[Å] (Cu or Mo K) 1.54178 1.54178 1.54178 1.54178 
µ [mm-1]  1.179 2.635 3.866 1.442 
Abs. Correction numerical multi-scan numerical numerical 
F(000)  748 3072 852 844 
θ range [°]  2.81  to 67.98 3.34 to 70.67 2.78 to 67.55 2.75to 67.91 
Reflections collected  14299  53167 14217 6167 
Indep. reflns  5860 12822 5894 6167 
T_min/max 0.6603/ 0.9034 0.63724/1.0 0.3161/ 0.8995 0.6492/0.8021 
Data/restraints/ 5860/0/464 12822/0/902 5894/4/478 6167/0/571 
Goodness-of-fit on F2  1.000 1.037 1.244 1.054 
R1a/wR2b [I>2σ(I)] 0.0308/0.0788 0.0373/0.0860 0.0454/0.0963 0.0431/0.1095 
R1a /wR2b (all data)  0.0331/0.0804 0.0467/0.0895 0.0491/0.0977 0.0447/0.1107 
Largest diff. 0.236/-0.310 0.673/-0.634 0.310/-0.348 0.620/-0.360 
a R1 = Σ||Fo| – |Fc||/Σ|Fo|  b wR2 = [Σw(|Fo| – |Fc|)2/Σw|Fo|2]1/2. 
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Table 2.3.  Crystallographic Data Collection and Structure Refinement for 
Ni(Me,CN)2·1.29 CH2Cl2, 8·1.29 CH2Cl2, Ni(CN,CN)2·2 acetone, 10·2 acetone, and 
Ni(CN,CN)2·acetone, 10·acetone.    

 

Compound 8·1.29 CH2Cl2 10•2 acetone 10•acetone 
Formula C41.3H32.6Cl2.6N12 C46H36N14NiO2 C43H30N14NiO 
Formula weight 847.49 875.60 817.52 
Crystal system monoclinic triclinic monoclinic 
Space group P 21/n P -1 P 21/n 
Temperature [K] 100(2) 100.0(1) 100.0(1) 
a [Å] 17.3591(3) 9.8514(2) 14.21320(17) 
b [Å] 27.8741(5) 13.9696(3) 15.60318(16) 
c [Å] 17.7477(3) 16.7096(4) 17.3945(2) 
α[°] 90.00 100.8347(18) 90.00 
β[°] 102.7148(19) 98.0479(18) 103.6602(13) 
γ [°] 90.00 91.2391(18) 90.00 
V [Å3] 8376.9(3) 2233.64(8) 3748.49(8) 
Z 8 2 4 
Dcalcd. [gcm-3] 1.344 1.302 1.449 
λ[Å] (Cu or Mo 0.7107 0.7107 0.7107 
µ [mm-1] 0.674 0.489 0.575 
Abs. Correction numerical numerical numerical 
F(000) 3491 908 1688 
θ range [°] 3.46 to 32.80 2.97 to 29.14 2.88 to 29.20 
Reflections 268199 35371 42291 
Independent Rflns 29874 10555 (RInt=0.0355) 9159 
T_min/max 0.723/0.962 0.834/0.941 0.922/0.958 
Data/restr./param. 29874/84/1111 10555/40/563 9159/0/534 
Goodness-of-fit 1.022 1.037 1.047 
R1a /wR2b 0.1005/0.2599 0.0663/0.1963 0.0476/0.1128 
R1/wR2 (all data) 0.1939/0.2906 0.0814/0.2108 0.0592/0.1201 
peak/hole / e Å-3 1.930/-0.843 1.821/-0.780 0.747/-0.792 
a R1 = Σ||Fo| – |Fc||/Σ|Fo|  b wR2 = [Σw(|Fo| – |Fc|)2/Σw|Fo|2]1/2. 
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Figure 2.10. Isomers of Ni(Me,Me)2. 

 

 

Figure 2.11. Isomers of Ni(Me,CN)2. Cis- and trans- refer to the relative disposition of 
cyano- groups with respect to the central NAr-Ni-NAr bonds. 
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It will be useful to examine a qualitative MO diagram of 1 derived from DFT 

calculations, to facilitate discussion of the electronic properties of the complexes. As 

detailed in the Experimental Section, a later section, we examined several different 

theoretical models and all gave qualitatively similar results. Figure 2.12 provides 

representative “spin-down” β-frontier orbitals of 1 obtained at the M06/def2-SV(P) level 

of theory. First, each pair of the β-HOMO(−N) (N = 0, 1) or the β-LUMO(+N) (N = 0, 1), 

although not degenerate by symmetry, are essentially energetically degenerate. These 

four frontier orbitals are mostly ligand centered with the exception of the β-HOMO that is 

weakly mixed with a nickel orbital (vide infra). There are two main types of ligand π- (or 

π*-) orbitals; those like β-HOMO(−N) (N = 0, 1) that have significant contributions from 

the nitrogen p-orbitals and those like β-LUMO(+N) (N = 0, 1) that do not. We label the 

former as πL-orbitals as per Kasha’s convention24 because these presumably involve the 

electronically active lone pair of electrons on nitrogen, whereas the latter are more 

conventional π- (or π*-) orbitals. Second, for simplicity, it is convenient to relabel the 

axes to swap the usual geometries of the dxy and dx2−y2 orbitals. Thus, the z-axis is taken 

to be coincident with the NAr−Ni−NAr vector, while the x- and y-axes bisect cis-disposed 

Ni−Npz bonds. As such, the lobes of the dxy orbital are directed along the Ni−Npz bonds 

(β-LUMO(+8), Figure 2.12) while the lobes of the d x2−y2 orbital are between these bonds 

(β-HOMO(−6), Figure 2.12). The d xz orbital is then normal to the C2NArNi planes (with a 

central amido NAr atom, see β-HOMO(0, −8, and −21) of Figure 2.12), and the dyz orbital 

resides in the C2NArNi plane (β-HOMO(−10), Figure 2.12). Thus, the dxz orbital is  
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Figure 2.12. β-Frontier orbitals of Ni(Me,Me)2 calculated at the M06/ def2-SV(P) level. 
 
 
mainly nonbonding, but there is a small amount of mixing with a πL-orbital that has out-

of-phase nitrogen px-orbitals to give a (presumably weak) dπ−pπ interaction (labeled 

dπL
ab or dπL

b, in Figure 2.12, where the superscript describes the antibonding or bonding-

type of overlap between the dxz and nitrogen px-orbitals). Moreover, the nonbonding dyz, 

d x2−y2, and dxz orbitals are degenerate (or nearly so depending on the level of theory). The 
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dxy and dz2 orbitals are extensively mixed with various π*-orbitals, but those with highest 

metal character such as β-LUMO(+8 or +10), Figure 2.12, are nearly degenerate (by 

energy considerations) with the latter being slightly higher in energy than the former. 

Thus, the calculations suggest that despite the low (D2) symmetry of 1, the complex 

behaves electronically like an isolated nickel(II) center in a NiN6 environment (i.e., with 

local octahedral symmetry) that only weakly interacts with a ligand π-system. This latter 

point will be elaborated on in a later section. 

2.2.3. Solution Properties.  The electronic absorption spectra of 1−12 are similar to each 

other. Exceptions arise from the extended π-systems in 8, 10−12 that shift bands to lower 

energy (and give higher extinction coefficients) and/or the presence of functional groups 

in 5, 8, 10, 12 that give more complex bands due to the introduction of added n−π* 

transitions. Thus, the spectrum of each compound has two main sets of bands in the 

visible to NIR region (Table 2.4 and Figure 2.13). First, there is a set of high intensity (ε 

> 10 000 M−1cm−1) variably overlapping bands in the higher-energy 300−450 nm range 

that are due to πL−π* and ligand-to-metal charge transfer (LMCT) transitions. Such 

assignments are based on energy and intensity considerations, by spectral comparisons 

between series of complexes, and by results of time-dependent density functional (TD-

DFT) calculations (Computational work). Figure 2.14 shows an overlay of the higher 

energy bands for a related series of compounds Ni(Me,Me)2, 1, Ni(Me,CF3)2, 6, and 

Ni(CF3,CF3)2, 9. The bands in the 325−425 region of the spectra of 1, 6, and 9 (and in  
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Figure 2.13.  Left:  The electronic spectrum of Ni(Me,Me)2 in CH2Cl2 with asterisks 
denoting d-d bands  Right:  Close-up view of the spectrum highlighting the d-d 
transitions.  The weak peak near 7,100 cm-1 is an instrumental artifact. 

 

 

Figure 2.14. Left: Overlay of higher energy portion of the UV−vis spectrum of 1 (blue), 
6 (violet), and 9 (red). Right: Plot showing correlation between energy (cm−1) of LMCT 
transition and the average of the Hammett σp parameter of X and Y para-aryl substituents 
in Ni(X,Y)2 complexes 1−12. 
 
 
 
most other cases) can be deconvoluted into three main Gaussian components: a band 

invariantly found at 350 nm, a band that progresses from 368 to 384 nm along the series 1 

to 6 to 9, and a band that appears as a shoulder at 413 nm in the spectrum of 1 that shifts 
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to 397 nm in 6, and to 374 in 9. The hypsochromic shift of the latter band with increasing 

electronegativity of the para-aryl substituent is a hallmark of a LMCT transition. In fact, 

the energy of this transition scales linearly with the average of the Hammett σp 

parameters30 of para-aryl substituents (X and Y) in Ni(X,Y)2 complexes, right of Figure 

2.14. TD-DFT calculations suggest the LMCT transitions in this region are between the 

ligand’s πL
n orbital (the superscript “n” refers to an in-phase combination of nitrogen p-

orbitals on a πL orbital that is nonbonding by symmetry with respect to any metal d-

orbital) and orbitals with significant dz2 or dxy character similar to β-LUMO(+8 or +10), 

Figure 2.12. The slight bathochromic shift of the middle band in the spectra along the 

series 1, 6, and 9 is suggestive of some MLCT character. TD-DFT calculations suggest 

that this band is indeed due to an admixture of dπL
ab−π* (the dπL

ab has some metal 

character) and πL
n−π* transitions, while the invariant band component is an admixture of 

ligand-based πL
n−π* and π−π* transitions. As exemplified by the overlay of spectra for 1, 

6, and 9 in the left of Figure 2.15 and as collected in Table 2.4, the second common set of 

bands in the spectra of 1−12 are lower energy bands that are of similar shape and occur in 

the normal range (500 nm < λmax < 1000 nm) for d−d transitions of many other nickel(II) 

complexes with NiN6 coordination.31 The relatively high intensity (ε ≈ 100−400 

M−1cm−1) of these lower energy bands as compared to typical d−d bands (ε ≈ 1−100 M−1 

cm−1) is suggestive of partial charge transfer character. TD-DFT calculations of 1 (right 

of Figure 2.15 and Table 2.12) support the assertion of partial charge transfer character in 

these bands. For instance, the lowest energy band is calculated to be the sum of three 

excitations (at 1033, 1051, and 1170 nm) that are each complex admixtures of transitions 

involving chiefly the five orbitals in the right of Figure 2.15. The calculated excitation at  
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Table 2.4. Summary of d−d, LMCT, and πL−π* Bands in the Electronic Absorption 
Spectra of Ni(X,Y)2 Complexes in CH2Cl2. 
 
 
  υ̅, cm−1 (ε, M−1 cm−1) 

compound  3A2g→3T2g 3A2g→3T1g(3F)  3A2g →3T1g(3P)a   LMCTb πL−π* 
Ni(Me,Me)2, 1  
 

11 470   (100)  18 400 (180)  
 

29 800  
 

24 300  
      (18 000)  

27 500 
        (22 300) 

Ni(Me,H)2, 2e  
 

11 520 (110) 18 480 (180) 
  

30 130  
 

24 600 
      (13 100) 

27 400 
        (31 800) 

Ni(H,H)2, 3e  
 

11 510 (110) 18 595 (170)  
 

30 700 
  

25 000 
      (16 000)  

24 900 
         (14 400) 

Ni(Me,Br)2, 4 
  

11 490 (120) 18 550 (210)  
 

30 560 
 

24 900 
      (16 100) 

27 100  
         (43 000) 

Ni(Me,CO2Et)2, 5e 

  
11 640 (150)  18 900 (430)c  

 
31 530  
 

25 100 
     (50 100)  

25 100  
         (50 100) 

Ni(Me,CF3)2, 6  
 

11 500 (100)  18 700 (170) 
 

31 260 
 

25 300 
      (32 000)  

26 500 
         (36 200) 

Ni(Br,Br)2, 7  
 

11 480 (140)  18 670 (250) 
  

31 210  
 

25 400 
      (23 000)  

26 800 
         (48 100) 

Ni(Me,CN)2, 8 
 

11 590 (195)d  18 800 (380)c 

  
31 280  
 

25 800  
     (57 600)  

25 800  
         (57 600) 

Ni(CF3,CF3)2, 9 
  

11 640 (120)d 18 900 (210) 
  

31 530 
  

26 700  
     (45 000)  

26 100 
         (51 500) 

Ni(CN,CN)2, 10e  
 

11 600 (170)d   na 
 

 

26 200 
      (47 000) 

24 600  
          (11 800) 

Ni(tBuPh,tBuPh)2, 11 
 

11 520 (240)  na  
 

 

24 900 
       (69 900)  

24 000 
          (91 800) 

Ni(CNPh,CNPh)2, 12e  
 

11 650 (350)  na  
   

25 100 
       (47 000) 

22 000 
          (11 000) 

 

aEstimated from Tanabe−Sugano diagram with C/B = 4.71. bOccurring as a shoulder or 
obtained by deconvolution; ε reported as found in spectrum. cFrom deconvolution of 
spectra. dFrom the average of split bands. eAs the solvate shown in Scheme 2.5. na = not 
available, masked by intense ligand-based transitions. 
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Table 2.5. Ligand Field and nephelauxetic parameters for Ni(X,Y)2 complexes. 

 

 ῡ, cm-1 (ε, M-1cm-1)  

-1 bCompound 3A2g→3T2g 3A2g→3T1g   (3F) 

 

3A2g→3T1g(3P)a Δo/Ba B    (cm-

1)b 

β    (cm-

1)c 

Ni(Me,Me)2, 1 11,470(100) 18,400 (180) 29,800 12.6 913 0.84 

Ni(Me,H)2, 2 11,520 (110) 18,480 (180) 30,130 12.3 937 0.87 

Ni(H,H)2, 3 11,510 (110) 18,595(170) 30,700 11.7 985 0.91 

Ni(Me,Br)2, 4 11,490 (120) 18,550 (210) 30,560 12.0 976 0.90 

Ni(Me,CO2Et)2, 5 11,640 (150) 18,900 (430)d 31,530 11.3 1034 0.96 

Ni(Me,CF3)2, 6 11,500 (120) 18,700 (190) 31,260 11.2 1030 0.95 

Ni(Br,Br)2, 7 11,480 (140) 18,670 (250) 31,210 11.2 1029 0.95 

Ni(Me,CN)2, 8 11,590 (195)e 18,800 (380)d 31,280 11.4 1020 0.94 

Ni(CF3,CF3)2, 9 11,640 (120)e 18,900 (210) 31,530 11.3 1034 0.96 

Ni(CN,CN)2, 10 11,600 (170)e na --- --- --- --- 

Ni(tBuPh,tBuPh)2, 11 11,520 (240) na --- --- --- --- 

Ni(CNPh,CNPh)2, 12 11,650 (350) na --- --- --- --- 

a Estimated from Tanabe Sugano diagram with C/B = 4.71.  b estimated from 15B = E(3A2g → 3T1g (3F))+E(3A2g 
→ 3T1g (3P))-30Dq.53  c β = B/(Bion = 1082 cm-1).  d from deconvolution of spectra efrom the average of split 
bands.  na = not available, masked by intense ligand-based transitions. 

 

 

 

 



39 
 

 

Figure 2.15. Left: Overlay of the lower energy portion of the UV−vis spectrum of 1 
(blue), 6 (violet), and 9 (red) in CH2Cl2. Right: Summary of results of TD-DFT 
calculations (M06/def2-SV(P)) for 1. 
 

1033 nm has the highest oscillator strength of the three components and is bolded most 

strongly in Figure 2.15. If one only considers the dominant transition (which is at best 

25−50% of the total character) of each excitation, the main component of that at the 1030 

or 1051 nm excitation is essentially a π−π* transition where the π* has significant metal 

character from dz2 and dxy orbitals. The third excitation calculated at 1170 nm originates 

from a nearly pure metal orbital (dx2−y2) to a π* orbital with partial dxy character. The less 

dominant transitions of the three excitations occur between orbitals with a diverse range 

of d-, π-, πL-, or π*- character. Finally, as with most other nickel(II) complexes with 

distorted NiN6 kernels, it is possible to evaluate the ligand field strength from the energy 
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of the d−d bands with the aid of Tanabe−Sugano diagrams because the electronic effects 

arising from distortion from octahedral symmetry are generally small or negligible in 

room-temperature solution, especially for weaker-field ligands.31 Notably the 12 current 

Ni(X,Y)2 complexes have a nearly constant 10Dq value of 11 480(60) cm−1, which is 

comparable to that found for nickel(II) complexes of other pyrazolyl-based ligands such 

as the tris(pyrazolyl)borates: Ni(Tp)2 (10Dq = 11 900 cm−1), Ni(Tp*= tris(3,5-

dimethylpyrazolyl)borate)2 (10Dq = 11 400 cm−1), or [Ni(Tpm* = tris(3,5-

dimethylpyrazolyl)-methane)2]2+ (10Dq = 11 700 cm−1).32 Importantly, the constant 

value of 10Dq regardless of ligand substitution in these complexes reflects the weakness 

of any dπ−pπ interactions, in accord with the theoretical calculations. 

2.2.4. Cyclic voltammetry. The electrochemical properties of the 12 Ni(X,Y)2 complexes 

in dichloromethane solution were measured by cyclic voltammetry. A representative set 

of voltammograms for 1 in CH2Cl2 is given in Figure 2.16, and a summary of results is 

given in table 2.6. Each complex exhibits two one-electron oxidation waves as assessed 

by comparisons of current intensities with equimolar solutions of ferrocene and by 

spectrophotometric titrations with various oxidants. With the exception of 

Ni(CN,CN)2·H2O, the oxidation waves were quasi-reversible because the ratios of current 

peak intensities were unity, but the separation between anodic and cathodic peaks was 

greater than 59 mV and increased with scan rate (Figure 2.16). For Ni(CN,CN)2·H2O, 

10·H2O, the voltammograms showed waves characteristic of adsorption processes, 

because the cathodic current peaks were  
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Figure 2.16. Overlay of cyclic voltammograms of Ni(Me,Me)2 in CH2Cl2 obtained at 
scan rates of 50 (inner), 100, 200, 300, 400, and 500 mV/s (outer). 
 

unexpectedly large but decreased on increasing scan rate or after addition of a few drops 

of CH3CN (Figure 2.17). As shown in Table 6, the first and second oxidation potentials 

for Ni(X,Y)2 complexes varied over about 700 mV by simply replacing para-aryl ligand 

substituents. There is a strong linear correlation between the average of the Hammett σp 

parameter of the four para-aryl substituents of the Ni(X,Y)2 complexes and either the 

first or the second oxidation potential (Figure 2.18) where complexes with electron-

donating groups are the easiest to oxidize. Such a trend also provides an indication that 

there is substantial ligand character to the HOMO in both Ni(X,Y)2 and their mono-

oxidized counterparts,33 a feature corroborated by DFT calculations (vide infra). The 

linear relationship between oxidation potential and Hammett σp parameter was useful for 

establishing the Hammett parameter for the C6H4-4-CN group (σp = 0.14 ± 0.03), which, 

to the best of our knowledge, was unknown. These electrochemical results also parallel  

 



42 
 

 

Figure 2.17. Cyclic voltammograms obtained for Ni(CN,CN)2 in CH2Cl2 (top) and in 
CH2Cl2 with a few drops of CN3CN added (bottom). In each case, NBu4PF6 is the 
supporting electrolyte. 
 

those from a recent report by the Heyduk group demonstrating that it was possible to tune 

the redox potential of tungsten(V) complexes of a trianionic triamido ligand over a 270 

mV range by changing groups along the ligand periphery without greatly altering the 

structures or nitrene transfer reactivity of the complexes.11a The separation between the 

two oxidation potentials of the 12 Ni(X,Y)2 complexes ranges between 200 and about 
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300 mV. Accordingly, the equilibrium constant for comproportionation (Kcom, eq 1) 

varies between 104 and 106 depending on the complex, but without any obvious trend. 

Regardless, these values indicate that, on the electrochemical time scale, the mono-

oxidized complexes [Ni(X,Y)2]+ are either Robin−Day class II or are nearing the 

Robin−Day class II/III borderline of mixed valence species.34 Because the separation of  

 

 

Figure 2.18. Correlations between oxidation potentials and the average of the Hammett 
σp parameter of para-substituents of aryl groups in Ni(X,Y)2 complexes. 
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Table 2.6. Electrochemical Data from Cyclic Voltammetry Experiments of 1−12 and 
Reference Compounds in CH2Cl2. 

 

 Eo’, V vs Ag/AgCla   

Compound E1/2,ox1 (Δ, mV) E1/2 ,ox2 (Δ,mV) Kcom
b σp(avg.)ref 

Ni(Me,Me)2, 1 0.146 (188) 0.428 (187) 6.57x105 -0.17 
Ni(Me,H)2, 2d 0.257 (154) 0.536 (156) 5.84x105 -0.085 
Ni(H,H)2, 3d 0.311 (187) 0.604 (192) 1.01x106 0.0 
Ni(Me,Br)2, 4 0.318 (163) 0.582 (165) 3.24x105 0.03 
Ni(Me,CO2Et)2, 5d 0.409 (230) 0.656 (208) 1.66x105 0.14 
Ni(Me,CF3)2, 6 0.464 (174) 0.724 (173) 2.77x105 0.185 
Ni(Br,Br)2, 7 0.500 (161) 0.751 (153) 1.94x105 0.23 
Ni(Me,CN)2, 8 0.584 (175) 0.810 (176) 7.26x104 0.245 
Ni(CF3,CF3)2, 9 0.763 (170) 1.019 (168) 2.36x105 0.54 
Ni(CN,CN)2, 10d 0.882 (232) 1.085 (208) 2.94x104 0.66 
Ni(tBuPh,tBuPh)2, 0.274 (136) 0.524 (138) 1.87x105 0.01 
Ni(CNPh,CNPh)2, 12 0.455 (153) 0.657 (151) 2.82x104 0.14c 
[Ga(Me,Me)2]+3,c 1.165 (207) 0.977(223) 1.62x103 -0.17 
Ferrocene 0.522 (180) --- --- --- 
aAverage values obtained for scan rates of 50, 100, 200, 300, 400, and 500 mV/s 
with 0.1 M NBu4PF6 as supporting electrolyte.   bKcom = e(ΔE·F/RT), T = 295 K. c 
from this work. d As the solvate listed in Scheme 1. Δ = Epa ̶  Epc. 

 

 
oxidation waves alone is insufficient to establish the strength of electronic 

communication (and hence unambiguous assignment of Robin−Day class)35 since the 

separation could be due to simple Coulombic effects rather than or in addition to 

electronic communication via superexhange or hopping mechanisms, further verification 

was established by spectroscopic and computational means. 

Ni(X,Y)2 + [Ni(X,Y)2]2+ ⇄ 2[Ni(X,Y)2]+   

Kcom = [M+]2/[(M0)][(M2+)] (1) 
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The reactions of Ni(Me,Me)2 with ferrocenium tetrafluoroborate, Fc(BF4), were 

investigated, as in Scheme 2.6, to learn more about the properties of the oxidized  

[Ni(X,Y)2]n+ (n = 1, 2) complexes. The oxidation potentials of Ni(Me,Me)2, 1 (0.15, 0.43 

V vs Ag/AgCl), are sufficiently low to permit twoelectron oxidation with the ferrocenium 

ion, Fc+ (0.52 V vs Ag/AgCl). Thus, titrations monitored by UV−visible spectroscopy 

showed that the violet dioxidized complex [Ni(Me,Me)2](BF4)2, (1)(BF4)2, was 

quantitatively formed in solution by the reaction of 1 with 2 equiv of FcBF4 in 

dichloromethane, as in the top of Scheme 2.6. On a preparative scale, the sample 

crystallizes with 2 equiv of CH2Cl2 (vide infra), but loses some solvent on drying under 

vacuum to give a species that analyzes as (1)(BF4)2·0.5CH2Cl2. Complex (1)(BF4)2, 

prepared in situ or synthetically as the solvate, is stable in air as a solid or as a solution in 

CH2Cl2 or CH3CN, but slowly decomposes over the course of hours in THF or propylene 

carbonate. The solid state structures of two solvates of (1)(BF4)2 were determined by 

single-crystal X-ray diffraction (Figure 2.19 and 2.20). A comparison of bond distances 

in the solvates with those in charge-neutral 1 shows two main structural differences. First, 

the average Ni−N distance in (1)2+ is 0.02 Å shorter than that in 1. This effect is most 

pronounced in the pyrazolyl groups where the average Ni−Npz distance is 2.065(2) Å in 

(1)2+ but is 2.090(8) Å in 1. The Ni−N distances involving the aryl amido groups exhibit 

a lesser or statistically negligible shortening on oxidation; the average Ni−NAr distance is 

2.036(2) Å in (1)2+ but is 2.045(7) Å in 1. This latter observation is opposite of that found 

for the gallium complexes where oxidation caused a lengthening of the Ga−NAr bonds 

(the Ga−Npz bonds shortened upon oxidation, however). A second difference in structures 

of (1)2+ and 1 is manifest in various intraligand C−C and C−N 
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Scheme 2.6.  Preparation of oxidized [Ni(Me,Me)2]n+ (n = 1, 2) complexes.  

 

bond distance alterations as well as a decrease in pyrazolyl-aryl dihedral angles on 

oxidation that are indicative of ortho- quinoidal distortions (Figure 2.21 and Table 2.7) 

similar to those previously observed in the oxidized ligands of [Ga(Me,Me)2]n+ (n = 2,3) 

complexes.19a 
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Figure 2.19. Structure of (1)(BF4)2·2C6H6 with benzene solvent molecules colored 
goldenrod and with hydrogen atoms removed for clarity. Selected bond distances (Å): 
Ni1-N1 2.048(3), Ni1-N2 2.020(3), Ni1-N11 2.067(3), Ni1-N21 2.052(3), Ni1-N41 
2.076(3), Ni1-N61 2.073(3). Selected bond angles (deg.): N1-Ni1-N11 86.69(12), N1-
Ni1-N21 85.65(12), N1-Ni1-N41 95.57(12), N1-Ni1-N61 93.50(13), N2-Ni1-N1 
178.25(15), N2-Ni1-N11 94.61(13), N2-Ni1-N21 93.07(13), N2-Ni1-N41 85.61(13), N2-
Ni1-N61 85.33(14), N11-Ni1-N41 90.55(12), N11-Ni1-N61 89.66(12), N21-Ni1-N11 
172.31(12), N21-Ni1-N41 89.53(13), N21-Ni1-N61 91.47(12), N61-Ni1-N41 170.93(12). 
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Figure 2.20. Structure of (1)(BF4)2·2CH2Cl2 with hydrogen atoms removed for clarity. 
Selected bond distances (Å): Ni1-N1 2.042(3), Ni1-N2 2.033(3), Ni1-N11 2.074(3), Ni1-
N21 2.066(3), Ni1-N41 2.057(3), Ni1-N61 2.053(3). Selected bond angles (deg.): N1-
Ni1-N11 86.40(11), N1-Ni1-N21 85.79(11), N1-Ni1-N41 92.68(10), N1-Ni1-N61 
95.14(11), N2-Ni1-N1 177.56(11), N2-Ni1-N11 92.83(10), N2-Ni1-N21 95.03(10), N2-
Ni1-N41 85.05(10), N2-Ni1-N61 87.15(10), N21-Ni1-N11 172.05(10), N41-Ni1-N11 
93.08(10), N41-Ni1-N21 88.77(10), N61-Ni1-N11 88.80(11), N61-Ni1-N21 90.43(11), 
N61-Ni1-N41 172.06(11). 
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Figure 2.21. Overlays of nickel complexes in 1 (orange), (1)(BF4)2·2C6H6 (cyan), and 
(1)(BF4)2·2CH2Cl2 (violet). 
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Table 2.7. Intraligand bond labeling scheme and summary of important average bond 
distances in Å (std dev.) and angles in degrees (std dev.) in 1 and (1)(BF4)2. 
 

 

  1 (1)(BF4)2·2C6H6 (1)(BF4)2·2CH2Cl2 
Avg. 
(1)(BF4)2 1-avg(1)2+ 

Ni-NAr 2.045(7) 2.038(5) 2.034(9) 2.036(12) 0.009 
Ni-Npz 2.090(8) 2.063(10) 2.067(9) 2.065(10) 0.025 
Ni-Nall 2.075 2.054 2.056 2.055 0.02 
Bond 
A 1.382(6) 1.383(4) 1.378(11) 1.381(8) 0.001 
Bond 1.416(5) 1.412(2) 1.415(5) 1.413(4) 0.002 
C 1.376(1) 1.379(5) 1.367(5) 1.373(8) 0.003 
D 1.396(2) 1.391(2) 1.394(17) 1.392(11) 0.004 
E 1.388(2) 1.390(7) 1.390(3) 1.390(5) -0.002 
F 1.393(3) 1.396(5) 1.385(7) 1.391(8) 0.002 
G 1.413(3) 1.422(4) 1.420(9) 1.421(7) -0.008 
H 1.432(6) 1.414(3) 1.423(8) 1.419(8) 0.013 
I 1.508(5) 1.510(7) 1.506(8) 1.508(8) 0 
Pz-Ar(°)a 37(6) 30(7) 27(9) 28(8) 9 
adihedral angle between mean planes of pyrazolyl ring and the aryl group to which it is 
bound 
 
 

The visible spectrum of (1)(BF4)2 (Figure 2.22) provides another experimental 

indicator that oxidation is significantly ligand-centered. The spectrum shows modestly 

intense (2000 < ε < 18 000 M−1cm−1) bands in the region of 400−900 nm that are 

characteristic of π-radical transitions similar to those found in the spectra of mono- and 

dioxidized [Ga(Me,Me)2]n+ (n = 2,3) complexes, where oxidation is exclusively ligand-
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based. The lowest energy d−d band was observed for (1)(BF4)2 (8806 cm−1, ε = 160 

M−1cm−1) but was not found in the spectrum of (1)(BF4) because it was masked by the 

IVCT band (vide infra). The room temperature (295 K) solid-state magnetic moment of 

(1)(BF4)2·0.5CH2Cl2, μeff = 4.7 μB, is close to but a little lower than μeff = 4.9−5.2 μB 

expected for an S = 2 species. In contrast to complex 1, which was EPR silent, the EPR 

spectrum of the dioxidized complex (1)(BF4)2·0.5CH2Cl2 in frozen (10 K) CH2Cl2 shows 

a 4S signal near g = 8 in both perpendicular and parallel modes (Figure 2.23) indicative 

of an S = 2 spin system. While we do not have access to a SQUID magnetometer that 

would allow for unambiguous assignment of the ground state multiplicity, the S = 2 state 

appears to be significantly populated even at 10 K. Broken-symmetry36 DFT calculations 

of (1)2+ at the M06-2X/Def2-TZVP level (computation work) suggest that lower 

multiplicity states such as the S = 1, [L(↑)−Ni(↑↑)−L(↓)]2+, and the S = 0, 

L(↓)−Ni(↑↑)−L(↓)]2+, are much higher in energy than the quintet state. 

 

 

Figure 2.22. Visible/NIR spectrum of [Ni(Me,Me)2](BF4)2·0.5CH2Cl2 in CH2Cl2. 
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Figure 2.23. X-band EPR spectrum of (1)(BF4)2·0.5CH2Cl2 in frozen (10 K) CH2Cl2 
acquired in both perpendicular (blue line) and parallel (red line) modes. The signal near 
330 mT from a paramagnetic impurity in the sample chamber is demarcated with a green 
asterisk. Instrumental parameters: parallel mode, freq = 9.387 GHz; power = 10.0 mW, 
modulation 10 G; perpendicular mode, freq = 9.632 GHz, power = 2.0 mW, modulation 
10 G. 

 

The UV−visible spectrum of (1)(BF4) (Figure 2.24) is sufficiently distinct from 

either 1 or (1)(BF4)2 to allow spectroscopic monitoring of its formation. UV−visible 

spectrophotometric titrations show that the blue-violet monooxidized complex (1)(BF4) is 

formed quantitatively by the comproportionation reaction between 1 and (1)2+ in CH2Cl2, 

as in the bottom of Scheme 2.6. On the synthetic scale, a species that analyzes as 

(1)(BF4)·0.5CH2Cl2 is isolated from the comproportionation reaction. While UV−visible 

spectroscopic monitoring indicates that reaction between 1 and 1 equiv of FcBF4 in 

CH2Cl2 affords (1)(BF4) (as in the middle of Scheme 2.6), the isolation of pure (1)(BF4) 

by this route is complicated by the need to separate ferrocene without disrupting the 

disproportionation/comproportionation equilibrium. For example, washing the mixture of 

(1)(BF4) and ferrocene with toluene or hexanes in an attempt to remove ferrocene also 

removed some 1 and contaminated the product with (1)(BF4)2 due to disproportionation 

(i.e., the reverse reaction in the bottom of Scheme 2.6). As with the dioxidized derivative, 
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(1)(BF4) is stable in air as a solid and as solutions in either CH2Cl2 or CH3CN, but 

solutions in THF or propylene carbonate degrade over the course of hours. 

The absorption spectrum of (1)(BF4) shows medium intensity bands in the visible region 

(450−900 nm, left of Figure 2.24) for π-radical transitions. In addition, a weaker intensity 

but broad band is found in the near- to mid-IR region that is absent in the spectrum of 

either 1 or (1)(BF4)2. This new band is attributed to the intervalence charge transfer 

(IVCT) transition, which is expected of a Robin−Day class II or III mixed valence 

species. Typically, band-shape analysis of the IVCT band is used to obtain information 

regarding the strength of electronic communication in mixed-valence complexes. In the 

current case, the limited spectral range of the absorption spectrometer and the difficulties 

inherent in obtaining molar absorptivity data from IR spectra hinder highly accurate band 

shape analyses, so an estimate was made by averaging multiple attempts at Gaussian fits 

of the partial band found in the NIR absorption spectral data. A summary of the data for 

(1)(BF4) and the related gallium complex, [Ga(Me,Me)2]2+, is given in Table 2.8. The use 

of the Hush relations37 in eqs 2 and 3 to estimate the electronic coupling element Hab 

revealed that there is stronger electronic communication between oxidized and 

nonoxidized ligands in (1)(BF4) than found for Ga(Me,Me)2](PF6)(SbCl6), in qualitative 

agreement with the electrochemical data. In these relations, EOP is the energy of the 

absorption maximum in cm−1, λ is the Marcus reorganization energy, εmax is the molar 

extinction coefficient, Δṽ1/2 is the full-width-at-half-maximum in cm−1, and d is the 

separation between redox centers in Å. The value of d = 4.088 was the nitrogen−nitrogen 

distance between amido groups found in the geometry-optimized structure of 

[Ni(Me,Me)2]+ from DFT calculations (M06/def2-SV(P)) and gives the upper limit for 
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the strength of electronic communication.38 Spectroscopic evidence in support of the 

assignment of (1)(BF4) as a Robin−Day class II mixed Table 2.8; valence species 

includes: (i) the solvent dependence of the IVCT band, as summarized in (ii) Gaussian 

fits of the IVCT band had an experimental Δṽ1/2 that was larger than the theoretical 

value34a,40 Δṽ1/2(HTL) = [16 ln(2)kBTλ]1/2; and (iii) the calculated values of Hab (466 

cm−1) and λ (3050) cm−1 fall within the accepted limits of 0 < Hab < λ/2 or 0 < 2Hab/λ <(1 

− [Δṽ1/2(HTL)]/2λ) for class II or class IIA species, respectively.40 The thermal energy 

barrier to electron transferΔG* = 378 cm−1 calculated using eq 4 from classical Marcus 

theory41 is lower than ΔG* = 1344 cm−1 found for the gallium complex, which is 

understandable because it was anticipated that the 3d-orbitals of the nickel center would 

engage in dπ−pπ interactions with the ligand (vide infra), whereas the 3d-orbitals in the 

gallium complex are expected to be energetically inaccessible. As such, the rate constant 

for electron transfer, ket = 6.8 × 1013 s−1, calculated using eq 5 (where Planck’s constant, h 

= 3.336 × 10−11 cm−1 s, Boltzmann’s constant, kB = 0.695 cm−1 K−1, and T = 295 K) is 

about 3 orders of magnitude greater in (1)(BF4) than in [Ga(Me,Me)2]2+. 

 

Figure 2.24.  Left: Visible/NIR spectrum of [Ni(Me,Me)2]+ in CH2Cl2.  Right:  Close-up 
view of NIR region (in cm-1 units) with one attempt at spectral deconvolution shown 
(Gaussian curves are color-shaded; the sum of curves is the red dashed line).  
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Figure 2.25. Spectroscopic titration of Ni(Me,Me)2 with Fc(PF6)  in CH2Cl2. 

 

Figure 2.26. Vis-NIR spectra from incremental addition of FcBF4 to solution of 
Ni(tBuPh,tBuPh)2 in CH2Cl2. Inset: Spectra of Ni(tBuPh,tBuPh)2(BF4) in wavenumber units. 
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EOP = λ       (2) 

Hab (cm-1) = [(4.2x10-4)εmaxΔṽ1/2EOP]1/2/d    (3) 

ΔG* = (λ-2Hab)2/4λ cm-1       (4) 

ket = (2Hab
2/h)[π3/λkBT]1/2exp-(ΔG*/kBT)   (5) 

 
Table 2.8.  Summary of IVCT band shape fitting and ET parameters of (1)(BF4) and 
[Ga(Me,Me)2](PF6)(SbCl6) in CH2Cl2 and CH3CN. 

 

 

 

2.2.5. EPR. The EPR spectra of (1)(BF4) and (11)(BF4) in frozen CH2Cl2 (10−70 K) 

were recorded. Each gave a similar rhombic spectra characteristic of an S = 3/2 species. 

The spectra of the latter complex at 70 and 10 K are shown in Figure 2.27, while the 

spectrum of (1)(BF4) is shown in Figure 2.28. 

 (1)(BF4) [Ga(Me,Me)2]2+  b 
  CH2Cl2a CH3CNa CH2Cl2 CH3CN 
EOP = λ (cm-1), Eq. 2 3050 (173) 3450 (250) 6390  6925  
εmax (M-1cm-1) 988 (14) 730 (30) 79 55 
Δṽ1/2 (cm-1) 2875 (479) 4600 (400)  5192  4900  
oscillator strengthc, fobs 1.3 (2) x10-2 1.5 (1) x10-2 1.9x10-3  1.2x10-3  
Hab (cm-1), see Eq. 3 466 (26) 539 (15) 264 223 
Δṽ1/2 (HTL)d 2633 (76) 2800 (100) 3812 3968 
Θ=Δṽ1/2/Δṽ1/2 (HTL) 1.1 (2) 1.6 (2) 1.36 1.23 
α = 2Hab/λ 0.30 (2) 0.231 (3) 0.083 0.064 
ΔG* (cm-1), see Eq. 4 378 (32) 408 (67) 1344 1515 
ket (s-1), see Eq. 5 1.4 (2) x1013 1.6(4) x1013 2.9 x1010 8.6 x109 
 a Standard deviation given in parantheses.   bsee ref 19a.  cfobs = (4.6x10-9)λmaxΔṽ1/2; dΔṽ1/2 

(HTL) = [16ln(2)kBTλ]1/2 where kB = 0.695 cm-1K-1 and T = 295 K. 
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Figure 2.27. Experimental (black line, top) and simulated (red line, bottom) X-band 
(9.632 GHz) spectrum of [Ni(tBuPh,tBuPh)2](BF4) in CH2Cl2 at 70 K (left) and 10 K 
(right). A paramagnetic impurity in the experimental spectra near 330 mT is demarcated 
with a green asterisk. The simulated spectra were obtained using greal = 2.10; D = 3.34 
cm−1, E/D = 0.245, and a D-strain of 0.5 cm−1. Signals due to ms = |±3/2⟩ and |±1/2⟩ 
transitions are marked with blue “○” and red “□”, respectively. Instrumental parameters: 
70 K, power = 5.0 mW, modulation 10 G; 10 K, power = 2.0 mW, modulation 10 G. 
 

 

 

Figure 2.28. X-Band EPR spectrum of [Ni(Me,Me)2](BF4)·0.5CH2Cl2 in CH2Cl2 at 10 K. 
Instrumental parameters: Freq. = 9.632 GHz; Power = 0.2 mW, modulation 10 G. 
 

 The spectrum of (11)(BF4) is a superposition of signals from an S = 3/2 species and a 

small paramagnetic impurity from the sample chamber (green asterisks, Figure 2.27). 

The signals from the S = 3/2 species were successfully simulated42 by using greal = 2.10, a 

zero-field splitting parameter, D, of 3.3 cm−1, and a rhombicity, E/D, of 0.245. The small 

value of D ensures that the intra doublet transitions of both the ms = |±3/2⟩ ground state 
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(blue ○, Figure 2.27) and the ms = |±1/2⟩ excited state (red □, Figure 2.27) are populated 

even at 10 K. Upon warming to 70 K, the signals due to the ms = |±1/2⟩ component (gz eff 

= 1.682, gy
eff = 5.194, gx

eff = 2.488) grow in intensity at the expense of the signals for the 

ms = |±3/2⟩ component (gz
eff = 5.682, gy

eff = 1.194, gx
eff = 1.512). Similarly, simulations 

of the spectra of (1)(BF4) afforded greal = 2.09, D = 2.3 cm−1, and E/D = 0.236. 

2.2.6. Computational. To more clearly ascertain the electronic structure of (1)(BF4), the 

cation (1)+ was studied computationally. Five salient features arose from the DFT and 

TD-DFT calculations on (1)+ and comparisons with those on its [Ni(Me,Me)2]n+ (n = 0, 2) 

relatives. First, the calculated gas-phase structures of 1 and (1)2+ produced Ni−N bond 

distances that were only 0.02 Å longer than those in the solid state, and the experimental 

structural trend of shortening Ni−Npz distances for deoxidized complexes held for the 

calculated structures, observations that give confidence to the findings for (1)+. 

Importantly, because it was not possible to grow single crystals of [Ni(Me,Me)2]+ for 

structural studies, the theoretical geometry optimization showed that (1)+ has disparate 

Ni−NAr bond distances of 2.063 and 2.025 Å and an estimated NAr···NAr distance of 

4.088 Å (this latter distance was used in the Hush analysis, vide supra). Moreover, the 

relative coplanarity of pyrazolyl and aryl rings as well the intraligand bond distances that 

show orthoquinoidal distortions indicate that the ligand with the longer Ni−NAr bond was 

oxidized, whereas the other ligand is not oxidized. That is, the nonoxidized ligand has an 

average dihedral angle close to 40°, whereas an oxidized ligand has an average dihedral 

angle near 30° (Table 2.9). Also, the ortho-quinoidal distortion in an oxidized ligand of 

(1)+ or (1)2+ is characterized by shorter C−Npz bonds and a longer C−C bond located 

between the pyrazolyl and amido nitrogens (Table 2.9, Figure 2.29) versus those bonds in 
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an unoxidized ligand. Second, despite the lack of solvated anions, the difference in 

calculated first- and second-reduction potentials, ΔE0
calc = 144 mV (M06-2X/TZVP), 

associated with the [Ni(Me,Me)2]n+ (n = 0, 1, 2) redox series was aligned with the 

experimental result, ΔE0
exp = 282 mV. Third, the second oxidation is ligand-centered as 

suggested by the β-HOMO of (1)+, which has only small contribution from the metal dxz 

as shown in the bottom of Figure 2.30. The lower symmetry of (1)+ complicates its MO 

diagram versus that of 1 or (1)2+ because it allows mixing of orbitals that is not permitted 

by the higher symmetry structures of 1 or (1)2+. This point can be illustrated by the β-

HOMO of (1)+ shown in Figure 2.30. Here, the orbital is mainly ligand-based and is 

similar to the πL
n orbital in 1 ((like β-HOMO(−1), Figure 2.12, with inphase nitrogen px 

orbitals), but the lobes of the “bottom-half” of the orbital are larger than those in the “top 

half”. The asymmetry the “distorted” πL
n orbital allows some mixing with the dxz orbital 

to give partial (π-)antibonding character to the N−Ni−N interaction, an interaction that is 

not allowed by symmetry in 1 or (1)2+. The fourth salient point from the calculations then 

is that the lowest energy electronic excitation of (1)+, β-HOMO → β-LUMO, is an 

intervalence charge transfer transition predicted to be in the NIR to IR region. This 

transition occurs at an energy that depends on solvent, which is characteristic of a 

Robin−Day class II species and is fully consistent with the experimental observations. 
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Figure 2.29. Calculated bond distances (Å) within [Ni(Me,Me)2]+. The values in black 
represent distances associated with an oxidized ligand whereas those in violet are typical 
of a non-oxidized ligand. The values in bold are C-C and C-N bonds that show greatest 
discrepency. 
 
 
Moreover, several intense (oscillator strength, f > 0.01) β-HOMO(−N) (where N ≥ 1 and 

that are essentially aryl-based π orbitals) to β-LUMO (dπL
ab) electronic (π-radical) 

transitions are predicted to be found in the far red to green regions of visible region in the 

spectra of (1)+ and (1)2+, in accord with experiment. The fifth and final point is that the 

broken symmetry calculations showed that the quartet state of (1)+ was only 1.64 

kcal/mol lower in energy than the doublet,  [L(↑↓)−Ni(↑↑)−L(↓)]+, state. Thermal 

population of the doublet state may account for the lower than expected magnetic 

moment of each (1)+ and (11)+ measured in the solid state at room temperature. 
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Table 2.9. Bond Labeling diagram and calculated (M06/Def2-SV(P)) bond distances and 
angles in Ni(Me,Me)2, [Ni(Me,Me)2]+, and [Ni(Me,Me)2]2+. Average experimental values 
are given for comparison. 
 

 

Calculated Average (std. dev.)a Experimental 
  Ni(Me,Me)2 Ni(Me,Me)2

+ Ni(Me,Me)2
2+ 1 Avg. 

Ni-NAr 2.061(1) 2.044(19) 2.060(1) 2.045(7) 2.036(12) 
Ni-Npz 2.108(1) 2.082(6) 2.072(1) 2.090(8) 2.065(10) 
Ni-Nall 2.092 2.07 2.068 2.075 2.055 
Bond 
A 1.373 1.37 1.367 1.382(6) 1.381(8) 
Bond 1.419 1.417 1.418 1.416(5) 1.413(4) 
C 1.384 1.383 1.381 1.376(1) 1.373(8) 
D 1.404 1.404 1.404 1.396(2) 1.392(11) 
E 1.391 1.395 1.4 1.388(2) 1.390(5) 
F 1.400 1.396 1.39 1.393(3) 1.391(8) 
G 1.418 1.424 1.429 1.413(3) 1.421(7) 
H 1.425 1.421 1.417 1.433(6) 1.419(8) 
I 1.499 1.496 1.493 1.508(5) 1.508(8) 
Pz-
Ar(°)a 41(1) 34(3) 32(1) 37(6) 28(8) 
abond distances in Å; bdihedral angle between the mean plane of a pyrazolyl 
ring and that of the aryl group to which it is bound 
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Figure 2.30. Frontier orbitals of [Ni(Me,Me)2]+ with the calculated energies of the 
intervalence charge transfer band (TD-DFT, M06/Def2-SV(P)). 
  

2.3. SUMMARY AND CONCLUSIONS 

We used four synthetic approaches to prepare eight new and four known pincer-

type ligands that have pyrazolyl flanking donors attached to a diarylamine anchor. The 12 

pincer variants differ only by the para-aryl substituents of the anchor, substituents that 

dominate the electronic properties of the ligands. As we will report in due course, the 

synthetic methods reported here are useful because they allow access to a variety of 

pincer ligands that have different flanking donors and diverse electronic properties. In the 

current case, we used the 12 ligands to prepare a series of charge-neutral nickel(II) 

complexes, Ni(X,Y)2, via a simple, high yielding, one-pot reaction that only required 

filtration for purification of the very poorly soluble desired product. A survey of the 

electrochemistry of the complexes showed that the first and second oxidation potentials 

varied linearly over a remarkable 700 mV range with the average of the Hammett σp 

parameters of the ligand’s para-aryl substituents. Such a finding may be useful for 
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“custom-designing” future reagents for redox-titrations or synthetic single-electron 

transfer reactions. Importantly, it was found that the oxidation waves were ligand-based 

regardless of para-aryl substituents. This finding was aided by the detailed spectroscopic 

and computational studies of the singly and doubly oxidized complexes [Ni(Me,Me)2]n+ 

(n = 1, 2). These studies showed that the unpaired electron(s) on the ligand and those on 

the nickel center remain essentially uncoupled; the magnetic and EPR spectral data for 

[Ni(Me,Me)2](BF4)2 and [Ni(Me,Me)2](BF4) are consistent with S = 2 and S = 3/2 

species, respectively. The magnetic orbitals on the oxidized ligands (essentially the 

amido nitrogen px-orbitals directed between molecular axes) are orthogonal to those 

partly filled orbitals on the metal (dz2 and dxy that are directed along the Ni−NAr bonds), 

which allows ferromagnetic-type interactions. A comparison of the spectroscopic 

properties of mono-oxidized complex [Ni(Me,Me)2](BF4) and the previously known 

monooxidized gallium(III) complex [Ga(Me,Me)2]2+ afforded insight into the potential 

role that a bridging metal center can play in mediating electronic communication between 

its bound unoxidized and oxidized ligands. Such information will be important for 

making astute decisions about the future design of molecular wires based on covalent or 

noncovalent assemblies of metal complexes of redox-active pincer complexes. In this 

vein, the gallium(III) complex [Ga(Me,Me)2]2+ was previously found to be a Robin−Day 

class II mixed valence species with weak electronic coupling likely occurring via 

superexchange across the metal bridge facilitated by the energetically accessible empty 

orbitals. It was originally anticipated that the replacement of gallium with a transition 

metal would ensure much stronger electronic communication because the metal dorbitals 

would allow for dπ−pπ interactions with the ligand’s π-system. The electrochemical and 



64 
 

spectroscopic studies indeed demonstrated electronic communication exists between 

oxidized and unoxidized ligands in the mono-oxidized nickel complex [Ni(Me,Me)2]+. 

However, both the nickel and the gallium complexes are Robin−Day class II(A) mixed 

valence compounds; the late first-row transition metal only modestly strengthened the 

communication between ligands as compared to the diamagnetic p-block metal. The 

theoretical studies revealed that the dπ−pπ interaction in the nickel complex arises from 

partial mixing of energetically mismatched ligand and (mainly) nonbonding dxz orbitals. 

It is noted that nickel has the highest spectroscopic electronegativity (1.88 Pauling units) 

and one of the lowest d-orbital energies (−12.93 eV) of the first row transition metals.43 

Because the energies of the 3d-orbitals in gallium(III) are expected to be much lower than 

those in nickel(II), there was no dπ−pπ interaction (β-HOMO, Figure 2.12). For 

complexes of the type [M(Me,Me)2]n+, the strength of the dπ−pπ interaction is expected 

to scale with an increase in d orbital energies until an energetic match is made with the 

nearly degenerate set of (noncomplexed) ligand orbitals: the symmetric (nonbonding) 

combination, πL
n (like β-HOMO(−1), Figure 2.12), and its asymmetric counterpart that 

participates in the dπ−pπ interaction. Better energetic matches with the ligand are 

expected to occur with the early transition metals, or with second row and third row 

metals. For such complexes, it is also expected that one electron-oxidation should lead to 

species that traverse the Robin−Day class II/III border. A future report will detail the 

effects of replacing metals on the strength of electronic communication and on the 

relative stability of electronic states in oxidized homoleptic pincer complexes. We will 

also detail our endeavors at making assemblies from these electroactive units. 
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2.4 EXPERIMENTAL 

General Considerations.  The compounds  CuI, tBuONO, CuBr2, CuI, M2CO3 (M = Na, 

K, Cs), N-Bromosuccinimide (NBS), Pd(acetate = OAc)2, 2,2'-Bis(diphenylphosphino)-

1,1'-binaphthyl (BINAP), 1-bromo-2-fluorobenzene, pyrazole, N,N’-

dimethylethylenediamine (DMED), (Fc = ferrocenium)(BF4), 4-cyanophenylboronic 

acid, 4-tert-butylphenylboronic acid, anhydrous DMF, NiCl2·6H2O  and the 1.47 M [25% 

(w/w)] solution of (NEt4)(OH) in CH3OH were purchased commercially and used as 

received.  The compounds HN(p-biphenyltBu)2,
16 1-(2-bromophenyl)-1H-pyrazole 

(BrPhpz),5 H(pzAnX) (X = Me, H, CN, or CO2Et; see Scheme 4.2),5 H(Me,Me),4 

H(Me,H),5 H(Me,CF3),5 H(CF3,CF3),5 and Pd(PPh3)4
17 were prepared according to 

literature procedures.  Dioxane, Et2O, and THF were dried over sodium/benzophenone 

ketyl.  Toluene, p-xylene, CH2Cl2, and CH3CN were dried over CaH2.  Solvents used in 

reactions were distilled under argon prior to use.   

Physical Measurements.  Midwest MicroLab, LLC, Indianapolis, Indiana 45250, 

performed all elemental analyses.  Melting point determinations were made on samples 

contained in glass capillaries using an Electrothermal 9100 apparatus and are 

uncorrected.  1H, 13C, and 19F NMR spectra were recorded on a Varian 400 MHz 

spectrometer.  Chemical shifts were referenced to solvent resonances at  H 7.27, C 77.23 

for CDCl3.  Abbreviations for NMR and UV-Vis  br (broad), sh (shoulder), m (multiplet), 

ps (pseudo-), s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), sept (septet).  

Electrochemical measurements were collected under a nitrogen atmosphere for samples 

as 0.1 mM solutions in CH2Cl2 with 0.1 M NBu4PF6 as the supporting electrolyte.  A 

three-electrode cell comprised of an Ag/AgCl electrode (separated from the reaction 
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medium with a semipermeable polymer membrane filter), a platinum working electrode, 

and a glassy carbon counter electrode was used for the voltammetric measurements.  Data 

were collected at scan rates of 50, 100, 200, 300, 400, and 500 mV/s.  With this set up, 

the ferrocene/ferrocenium couple had an E1/2 value of +0.52 V in CH2Cl2 at a scan rate of 

200 mV/s, consistent with the literature values.18  Solid state magnetic susceptibility 

measurements were performed using a Johnson-Matthey MSB-MK1 instrument.  

Diamagnetic corrections were applied using tabulated values of Pascal’s constants.19 

Electronic absorption (UV-Vis/NIR) measurements were made on a Cary 5000 

instrument.  EPR spectra were obtained on both solid powder samples and as solutions 

~0.2 mM in 1:1 CH2Cl2:toluene mixtures using a Bruker ELEXYS E600 equipped with 

an ER4116DM cavity resonating at 9.63 GHz, an Oxford instruments ITC503 

temperature controller and a ESR-900 helium flow cryostat. The spectra were recorded 

using 100 kHz field modulation unless otherwise specified. 

2.4.1 Ligand Precursor Syntheses.  

2-Bromo-5-cyanophenyl-1H-pyrazole, Br-CNPhPz.   A deep green solution of 2.4 mL 

(20.0 mmol) tBuONO and 2.23 g (10.0 mmol) CuBr2 in 30 mL CH3CN was purged with 

argon 20 min, then 1.85 g (10.0 mmol) H(pzAnCN) was added as a solid.  After the 

resulting violet solution had been heated at reflux 2 h, the mixture was added to 100 mL 

distilled H2O.  The resulting brown precipitate was collected by filtration and then was 

further purified by column chromatography on silica gel.  Elution with 3:1 hexanes ethyl 

acetate (Rf  0.50) afforded 1.94 g (78%) of the desired compound as a pale yellow solid, 

after removing solvent and drying under vacuum.  Mp, 114-116 oC.  1H NMR (CDCl3): 

δH 7.93 (d, J = 2.4 Hz, 1 H, H5pz), 7.87 (d, J = 2.0 Hz, 1 H, H3pz), 7.85 (d, J = 8.3 Hz, 1 
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H, Ar), 7.79 (d, J = 1.3 Hz, 1 H, Ar), 7.55 (dd, J = 8.3, 1.3 Hz, 1 H, Ar), 6.53 (dd, J = 2.4, 

2.0 Hz, 1 H, H4pz).  13C NMR (CDCl3): δC 142.1, 140.9, 135.3, 132.2, 131.6, 131.4, 23.6, 

117.2, 112.8, 107.7.  IR (KBr) νCN 2233 cm-1. 

2-Iodo-5-methylphenyl-1H-pyrazole, I-MePhPz.  A solution of 3.18 g (46.1 mmol) 

NaNO2 in 45 mL H2O was slowly added to a cold (0oC) solution of 5.32 g (30.7 mmol) 

H(pzAnMe) in 100 mL 7 M H2SO4.  After the solution had been stirred 15 min at 0oC, a 

solution of 7.65 g (46.1 mmol) KI in 25 mL H2O was added slowly.  After complete 

addition, the reaction mixture was heated at 80oC for 45 min using an external oil bath.  

The product mixture was neutralized with a 7 M KOH (aq) solution and then was 

extracted with three 50 mL portions of ethyl acetate.  The combined organic fractions 

were dried over MgSO4 and solvent was removed by rotary evaporation to leave a dark 

oily residue.  The residue was subjected to column chromatography on silica gel.  Solvent 

was removed from the second band (Rf  0.47) when eluting the column with 6:1 

hexanes:ethyl acetate to give 5.91 g (68%) of the desired product as a brown oil of 

sufficient purity to be used successfully in subsequent coupling reactions.  1H NMR 

(CDCl3): δH 7.77 (d, J = 8.1 Hz, 1 H, Ar), 7.71 (d, J = 1.7 Hz, 1 H, H3pz), 7.69 (d, J = 2.4 

Hz, 1 H, H5pz), 7.22 (d, J = 2.2 Hz, 1 H, Ar), 6.93 (dd, J = 8.1, 2.2 Hz, 1 H, Ar), 6.43 

(dd, J = 2.4, 1.7 Hz, 1 H, H5pz), 2.32 (s, 3 H, CH3).  13C NMR (CDCl3): δC 143.2, 140.8, 

139.7, 139.6, 131.24, 131.17, 129.0, 106.6, 89.9, 20.9. 

3-bromo-4’-(1,1-dimethylphenyl)-N-(3-Bromo-4’-(1,1-dimethylphenyl)-[1,1’-

biphenyl]-4-yl)-[1,1’-biphenyl]-4-amine, HN(Br-biphenyltBu)2.  A solution of 0.45 

mL (7.83 mmol) Br2 dissolved in 30 mL of a 1:1 (v/v) mixture of MeOH:CH2Cl2 was 

added dropwise (1 mL/min) to a cold (0 oC), magnetically stirred solution of 1.69 g (3.91 
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mmol) HN(p-biphenyltBu)2 in 150 mL of a 1:1 (v/v) mixture of MeOH:CH2Cl2.  After 

the resulting orange solution had been stirred 1 h at 0 oC, 150 mL of a saturated Na2S2O3 

solution was added whereupon the orange color disappeared.  The aqueous and organic 

layers were separated.  The aqueous layer was extracted with two 25 mL portions 

CH2Cl2.  The combined organic layers were dried over MgSO4, filtered and solvent was 

removed by vacuum distillation to leave a dark oil.  The oil was subject to flushed 

through a short pad of silica gel using 4:1 hexanes:CH2Cl2 (Rf 0.65) as an eluent.  

Removal of solvent by vacuum distillation gave 1.66 g (70%) of the desired product as a 

colorless crystalline solid.  Mp, 138-140 oC.  1H NMR (CDCl3) δH 7.86 (d, J = 2 Hz, 2 H), 

7.47 (m, 12 H, Ar), 6.56 (br s, 1 H, NH), 1.39 (s, 18 H, CH3).  13C NMR (CDCl3) δC  

150.5, 138.9, 136.6, 135.7, 131.6, 126.7, 131.6, 126.7, 126.4, 125.9, 118.1, 114.6, 34.7, 

31.5. 

2.4.2 Ligand Syntheses.  

H(H,H).  A Schlenk flask charged with 3.18 g (20.0 mmol) H(pzAnH), 4.45 g (20.0 

mmol) BrPhpz, 7.80 g (23.9 mmol) Cs2CO3 was deoxygenated by three evacuation and 

argon back-fill cycles.  Next, 15 mL dry, argon-purged dioxane was added by syringe and 

then 0.762 g (4.00 mmol) CuI was added as a solid under an argon blanket.  After the 

reaction mixture had been heated at reflux for 15 h under argon, it was cooled to room 

temperature.  Dioxane was removed by vacuum distillation.  The solid residue was 

dissolved in a mixture of 50 mL ethyl acetate and 100 mL H2O.  The aqueous and organic 

layers were separated.  The aqueous fraction was extracted with three 30 mL portions of 

ethyl acetate.  The combined organic fractions were dried over MgSO4, filtered, and 

solvent was removed under vacuum by rotary evaporation to leave a brown oily residue.  
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The residue was then subjected to column chromatography on silica gel.  A beige solid 

mixture (4.5 g) of the desired product along with a trace of H(pzAnH) was obtained by 

collecting the second band (Rf 0.56) when eluting with 8:1 hexanes:ethyl acetate and 

removing solvent under vacuum.  The H(pzAnH) impurity was removed by washing with 

EtOH in the following manner.  A 20 mL aliquot of absolute EtOH was added to the 4.5 

g beige solid mixture, the mixture dissolved on heating to reflux 2 min.  The orange 

solution was cooled to room temperature which deposited 3.81 g (63 %) colorless crystals 

of pure H(H,H) that were collected by filtration and dried under vacuum.  An additional 

crop of crystals (0.300 g, 5 %) was obtained by cooling the mother liquor to -30 oC for 15 

h, filtering, and drying under vacuum.  Total yield of pure H(HH) as colorless prism 

crystals: 4.11 g (68 %).  Mp, 124 - 126 oC.  1H NMR (CDCl3): δH 8.77 (s, 1 H, NH), 7.72 

(d, J = 2 Hz, 2 H, H5pz), 7.71 (d, J = 2 Hz, 2 H, H3pz), 7.46 (dd, J = 8, 1 Hz, 2 H, Ar), 

7.32 (dd, J = 8, 1 Hz, 2 H, Ar), 7.23 (td, J = 8, 1 Hz, 2 H, Ar), 6.96 (td, J = 8, 1 Hz, 2 H, 

Ar), 6.44 (pst, J = 2 Hz, 2 H, H4pz).  13C NMR (CDCl3): δC 140.8, 137.1, 130.4, 130.1, 

128.4, 125.5, 121.1, 118.7, 106.9. 

H(Me,Br).  A solution of 0.548 g (3.08 mmol) NBS in 20 mL CH3CN was added 

dropwise to a cold (0 oC) solution of 0.971 g (3.08 mmol) H(Me,H) in 20 mL CH3CN.  

After the mixture had been stirred at 0oC 2 h, a 10 mL aliquot of saturated aqueous 

Na2S2O3 solution was added.  The aqueous and organic layers were separated.  The 

aqueous layer was extracted with three 10 mL portions ethyl acetate.  The combined 

organic layers were washed with a saturated aqueous Na2CO3 solution, and then were 

dried over MgSO4, filtered, and volatiles were removed under vacuum to leave an oily 

residue.  The residue was subjected to column chromatography on silica gel using 4:1 
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hexanes:ethyl acetate as the eluent.  The desired product (0.969 g, 80%) was isolated as a 

colorless solid after removing solvent from the band near the solvent front (Rf 0.8).  Mp, 

105 – 107 oC.  1H NMR (CDCl3): δH 8.70 (s, 1 H, NH), 7.79 (d, J = 1.6 Hz, 1 H, pz), 7.73 

(d, J = 2.4 Hz, 1 H, pz), 7.71 (d, J = 2.4 Hz, 1 H, pz), 7.69 (d, J = 1.7 Hz, 1 H, pz), 7.43 

(d, J = 2.2 Hz, 1 H, Ar), 7.32 (d, J = 8.3 Hz, 1 H, Ar), 7.27 (dd, J = 8.8, 2.2 Hz, 1 H, Ar), 

7.21 (s, 1 H, Ar), 7.19 (d, J = 6.7 Hz, 1 H, Ar), 7.08 (dd, J = 8.1, 1.5 Hz, 1 H, Ar), 6.47 

(pst, J = 2.1 Hz, 1 H, pz), 6.41 (pst, J = 2.3 Hz, 1 H, pz), 2.35 (s, 3 H, CH3).  13C NMR 

(CDCl3): δC 141.1, 140.7, 137.1, 133.2, 132.3, 131.4, 131.1, 130.3, 130.1, 130.0, 129.0, 

127.8, 126.0, 120.6, 118.6, 111.1, 107.2, 106.9, 20.8. 

H(Me,CO2Et).  In an argon-filled drybox, a Schlenk flask was charged with 1.02 g (4.39 

mmol) H(pzAnCO2Et), 1.72 g (5.27 mmol) Cs2CO3, 0.059 g (0.26 mmol) Pd(OAc)2, and 

0.109 g (0.176 mmol) BINAP.  The flask was removed from the drybox and was attached 

to a Schlenk line.  A solution of 1.50 g (5.27 mmol) I-MePhPz in 20 mL toluene was 

purged with argon 20 min and then was transferred via cannula to the reaction flask 

containing aniline, base, and catalyst.  After the reaction mixture had been heated at 

reflux 3 d, toluene was removed by vacuum distillation.  The residue was dissolved in a 

biphasic mixture of 50 mL distilled water and 50 mL ethyl acetate.  The organic and 

aqueous phases were separated.  The aqueous phase was extracted with two 50 mL 

portions ethyl acetate.  The combined organic layers were dried over MgSO4, filtered, 

and solvent was removed by rotary evaporation to leave an oily residue.  The residue was 

subjected to column chromatography on silica gel using 4:1 hexanes:ethyl acetate as the 

eluent.  The desired product 1.24 g (73%) was obtained as a pale yellow gum after 

removing solvent from the third band (Rf 0.4).  1H NMR (CDCl3): δH 9.15 (s, 1 H, NH), 
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7.94 (d, J = 2.5 Hz, 1 H, pz), 7.83 (d, J = 8.5 Hz, 1 H, Ar), 7.79 (d, J = 2.5 Hz, 1 H, pz), 

7.77 (d, J = 2.1 Hz, 1 H, pz), 7.71 (d, J = 3.0 Hz, 1 H, pz), 7.67 (s, 1 H, Ar), 7.44 (d, J = 

8.3 Hz, 1 H, Ar), 7.27 (s, 1 H, Ar), 7.26 (d, J = 8.1 Hz, 1 H, Ar), 7.14 (d, J = 8.2 Hz, 1 H, 

Ar), 6.51 (pst, J = 3.1 Hz, 1 H, pz), 6.39 (pst, J = 3.0 Hz, 1 H, pz), 4.34 (q, J = 7.1 Hz, 2 

H, CH2), 2.38 (s, 3 H, Ar-CH3), 1.37 (t, J = 7.1 Hz, 3 H, Et-CH3).  13C NMR (CDCl3): δC 

166.1, 142.6, 141.1, 140.8, 133.9, 132.7, 131.9, 130.3, 130.2, 130.0, 129.0, 127.6, 126.5, 

126.1, 122.7, 120.9, 114.6, 107.1, 107.0, 60.9, 20.9, 14.6.  IR (KBr) νCO 1706 cm-1. 

H(Br,Br).  A solution of 1.20 g (6.76 mmol) NBS in 45 mL CH3CN was added dropwise 

to a cold (0 oC) solution of 1.02 g (3.38 mmol) H(H,H) in 30 mL CH3CN.  After 

complete addition, the mixture was stirred at 0 oC until the solution noticeably darkened 

(ca. 1 h).  Then, 50 mL of a saturated Na2S2O3 solution was added.  The biphasic mixture 

was poured into 100 mL H2O and the layers were separated.  The aqueous layer was 

extracted with three 50 mL portions ethyl acetate.  The combined organic layers were 

washed with 20 mL of saturated Na2CO3 solution, dried over MgSO4, and filtered.  

Solvent was removed by vacuum distillation to leave an oily residue that was subjected to 

column chromatography on silica gel using 6:1 hexanes:ethyl acetate as the eluent.  The 

desired product (1.26 g, 82 %) was isolated as a colorless solid after removing solvent 

from the second band (Rf 0.62).  Mp, 95-97 oC.  1H NMR (CDCl3): δH 9.04 (s, 1 H, NH), 

7.73 (m, 4 H, pz), 7.48 (d, J = 2.2 Hz, 2 H, Ar), 7.33 (dd, J = 8.8, 2.2 Hz, 2 H, Ar), 7.27 

(d, J = 8.8 Hz, 2 H, Ar), 6.47 (pst, J = 2.1 Hz, 2 H, pz).  13C NMR (CDCl3): δC 141.1, 

135.6, 131.1, 130.0, 127.9, 120.1, 112.7, 107.4.  

H(Me,CN).  Under an argon atmosphere a Schlenk flask was charged with 0.759 g (4.12 

mmol) H(pzAnCN), 1.61 g (4.94 mmol) Cs2CO3, 0.0585 g (0.261 mmol) Pd(OAc)2, 0.135 
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g (0.217 mmol) BINAP.  A solution of 1.29 g (4.53 mmol), I-MePhPz in 15 mL dry 

toluene was purged with argon 15 min and then was transferred via cannula to the flask 

containing the base and catalyst mixture.   The reaction mixture was heated at reflux 48 h 

under argon.  After cooling to room temperature toluene was removed by vacuum 

distillation.  The solid product mixture was dissolved in a biphasic mixture of 50 mL H2O 

and 50 mL ethyl acetate.  The aqueous and organic layers were separated.  The aqueous 

layer was extracted with two 50 mL portions of ethyl acetate.  The combined organic 

layers were dried over MgSO4, filtered, and volatiles were removed under vacuum by 

rotary evaporation.  The remaining brown oil was subjected to column chromatography 

on silica gel using 1:2 Et2O:hexane.  A 0.719 g (51%) sample of pure H(Me,CN) as a 

colorless solid was obtained after removing solvent from the second band (Rf 0.52) and 

drying under vacuum.  Mp, 93-94 oC.  1H NMR (CDCl3): δH 9.31 (s, 1 H, NH), 7.80 (d, J 

= 1.4 Hz, 1 H, pz), 7.74 (d, J = 1.9 Hz, 1 H, pz), 7.70 (d, J = 2.4 Hz, 1 H, pz), 7.65 (d, J = 

1.4 Hz, 1 H, pz), 7.51 (d, J = 1.9 Hz, Ar), 7.40 (d, J = 8.1 Hz, 1 H, Ar), 7.38 (dd, J = 8.6, 

1.9 Hz, 1 H, Ar), 7.28 (d, J = 1.4 Hz, 1 H, Ar), 7.23 (d, J = 8.7 Hz, 1 H, Ar), 7.16 (dd, J = 

8.2, 1.8 Hz, 1 H, Ar), 6.53 (dd, J = 2, 1 Hz, 1 H, pz), 6.39 (dd, J = 2, 1 Hz, 1 H, pz), 2.39 

(s, 3 H, CH3).  13C NMR (CDCl3): δC 142.7, 141.5, 140.9, 134.9, 133.1, 132.5, 131.0, 

130.2, 129.8, 129.1, 128.5, 127.8, 126.1, 123.4, 119.2, 115.2, 107.6, 107.2, 101.0, 21.0.  

IR (KBr) νCN 2225 cm-1. 

H(CN,CN).   A Schlenk flask was charged with 0.755 g (4.10 mmol) H(pzAnCN), 1.017 

g (4.10 mmol) Br-CNPhPz, 1.603 g (4.92 mmol) Cs2CO3 and then was deoxygenated by 

three evacuation and argon back-fill cycles.  Next, 15 mL of argon-purged, dry dioxane 

was added by syringe and then 0.156 g (0.820 mmol) CuI was added under an argon 



73 
 

blanket.  After the reaction mixture had been heated at reflux 15 h under argon, it was 

cooled to room temperature and dioxane was removed by vacuum distillation.  The 

resulting solid was dissolved in a biphasic mixture of 50 mL H2O and 50 mL ethyl 

acetate.  The aqueous and organic fractions were separated.  The aqueous fraction was 

extracted with three 30 mL portions ethyl acetate.  The combined organic fractions were 

dried over MgSO4, filtered and volatiles were removed under vacuum with the aid of a 

rotary evaporator.  The resulting brown oil was subjected to column chromatography on 

silica gel using 1:1 ethyl acetate:hexanes.  The desired product was obtained as a 

yellowish solid after removing solvent from the second band (Rf 0.37).  Recrystallization 

by cooling a boiling absolute ethanol solution to room temperature over the course of 

hours and then to -30 oC overnight afforded 0.72 g (50%) H(CN,CN) as pale yellow 

crystals.  Mp, 178-180 oC.  1H NMR (CDCl3): δH 10.32 (s, 1 H, NH), 7.79 (d, J = 1.9 Hz, 

2 H, H3pz), 7.77 (d, J = 2.5 Hz, H5pz), 7.64 (d, J = 1.6 Hz, 2 H, Ar), 7.56 (s, 2 H, Ar), 

7.55 (d, J = 1.6 Hz, Ar), 6.55 (dd, J = 2.5, 1.9 Hz, 2 H, H4pz).  13C NMR (CDCl3): δC 

141.8, 139.5, 132.2, 130.5, 130.1, 128.8, 118.9, 118.3, 108.1, 104.9.  IR (KBr) νCN 2226 

cm-1. 

H(tBuPh,tBuPh).  Method A.  In an argon-filled drybox, a Schlenk flask was charged with 

0.408 g (0.889 mmol) H(Br,Br), 0.475 g (2.67 mmol), 4-tert-butylphenylboronic acid, 

and 0.206 g (0.178 mmol) Pd(PPh3)4.  The flask was removed from the drybox and 

attached to a Schlenk line.  A solution of 30 mL C6H6 and 10 mL absolute ethanol was 

purged with argon 15 min and was transferred to the reaction flask under argon via 

cannula.  Next, 10 mL of an argon-purged 2 M aqueous Na2CO3 solution was transferred 

via cannula to the reaction flask.  After the magnetically-stirred biphasic mixture had 
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been heated at 80oC for 16 h with the aid of an external oil bath, the mixture was cooled 

to room temperature and poured into 100 mL H2O.  The aqueous and organic fractions 

were separated.  The aqueous layer was extracted with two 50 mL portions ethyl acetate.  

The combined organic layers were dried over MgSO4 and filtered.  The oily residue that 

was obtained after removing solvents under vacuum was subjected to column 

chromatography on silica gel using 1:6 ethyl acetate:hexanes as the eluent.  The desired 

product (0.383 g, 76%) H(tBuPh,tBuPh) was obtained as a colorless solid after removing 

solvent from the second band (Rf 0.45) and drying under vacuum 1 h.  

Method B.  A Schlenk flask charged with 2.61 g (4.41 mmol) HN(Br-biphenyltBu)2 1.06 

g (15.4 mmol) pyrazole, 2.16 g (15.4 mmol) K2CO3 and 0.19 mL (0.16 g, 1.8 mmol) 

DMED was deoxygenated by three evacuation and argon back-fill cycles.  A 10 mL 

aliquot of dry, distilled, and argon-purged p-xylenes was added by syringe.  Then, 0.0840 

g (0.441 mmol) CuI was added under an argon blanket.  After the resulting mixture had 

been heated at reflux 3 d under argon, the mixture was cooled to room temperature.  Then 

30 mL each H2O and CH2Cl2 were added to dissolve the solids.  The aqueous and organic 

layers were separated.  The aqueous layer was extracted with three 25 mL portions 

CH2Cl2.  The combined organic layers were dried over MgSO4 and filtered.  Volatiles 

were removed under vacuum to give a dark oil.  The oil was subjected to flash 

chromatography on silica gel.  First, elution with hexanes removed residual xylene.  

Then, elution with 8:1 hexane:ethyl acetate afforded 1.22 g (49 %) of H(tBuPh,tBuPh) as a 

colorless solid after removing solvent from the second band (Rf 0.39) and drying under 

vacuum.   Mp, 138-140 oC.  1H NMR (CDCl3): δH 8.94 (s, 1 H, NH), 7.78 (d, J = 2.4 Hz, 

2 H, H5pz), 7.77 (d, J = 1.7 Hz, 2 H, H3pz), 7.59 (d, J = 6.4 Hz, 2 H, Ar), 7.58 (s, 2 H, 
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Ar), 7.53 (d, J = 8.5 Hz, 4 H, Ar), 7.51 (dd, J = 8.7, 2.2 Hz, 2 H, Ar), 7.47 (d, J = 8.5 Hz, 

4 H, Ar), 6.49 (dd, J = 2.4, 1.7 Hz, 2 H, H4pz), 1.37 (s, 18 H, CH3).  13C NMR (CDCl3): 

δC 150.4, 140.9, 137.2, 136.0, 134.1, 130.7, 130.2, 126.8, 126.4, 126.0, 123.8, 119.0, 

107.0, 34.7, 31.6. 

H(CNPh,CNPh).  In an argon-filled drybox, a Schlenk flask was charged with 0.252 g 

(0.548 mmol) H(Br,Br), 0.242 g (1.64 mmol), 4-cyanophenyl boronic acid, and 0.127 g 

(0.110 mmol) Pd(PPh3)4.  The flask was removed from the drybox and attached to a 

Schlenk line.  A solution of 15 mL C6H6 and 5 mL absolute ethanol was purged with 

argon 15 min and was transferred to the reaction flask under argon via cannula.  Next, 5 

mL of an argon-purged 2 M aqueous Na2CO3 solution was transferred via cannula to the 

reaction flask.  After the magnetically-stirred biphasic mixture had been heated at 80oC 

for 16 h with the aid of an external oil bath, the mixture was cooled to room temperature 

and poured into 100 mL H2O.  The aqueous and organic fractions were separated.  The 

aqueous layer was extracted with three 50 mL portions ethyl acetate.  The combined 

organic layers were dried over MgSO4 and filtered.  The oily residue that was obtained 

after removing solvents under vacuum was subjected to column chromatography on silica 

gel using 1:1 ethyl acetate:hexanes as the eluent.  The product which eluted in the pale 

pink-orange band (Rf 0.39) was recrystallized from absolute ethanol to give 0.146 g 

(53%) H(CNPh,CNPh) as a yellow solid.  Mp, 200-202 oC.  1H NMR (CDCl3): δH 9.28 (s, 1 

H, NH), 7.82 (d, J = 2.4 Hz, 2 H, H5pz), 7.79 (d, J = 1.7 Hz, 2 H, H3pz), 7.73 (d, J = 8.4 

Hz, 4H, Ar), 7.68 (d, J = 8.4 Hz, 4 H, Ar), 7.62 (d, J = 8.9 Hz, 2 H, Ar), 7.61 (d, J = 2.2 

Hz, 2 H, Ar), 7.53 (dd, J = 8.9, 2.3 Hz, 2 H, Ar), 6.53 (dd, J = 2.4, 1.7 Hz, 2H, H4pz).  
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13C NMR (CDCl3): δC 144.2, 141.3, 137.0, 132.9, 132.2, 130.9, 130.2, 127.2, 127.1, 

124.2, 119.2, 119.1, 110.9, 107.4.  IR (KBr) νCN 2227 cm-1. 

2.4.3 Nickel Complex Syntheses. 

Ni(Me,Me)2, 1  An emerald green solution of 1.06 g (3.22 mmol) H(Me,Me) and 1.23 g 

(1.61 mmol) NiCl2·6H2O in 15 mL MeOH was heated at reflux 10 min.  Then, 0.70 mL 

of a 1.47 M (1.61 mmol) solution of (NEt4)(OH) in MeOH was injected to the hot 

reaction mixture by syringe.  The solution became dark forest green immediately upon 

mixing and within one minute copious orange-brown solid precipitated.  After the 

orange-brown suspension had been heated at reflux 30 min, the mixture was allowed to 

cool to room temperature.  The insoluble portion was collected by filtration, was washed 

with two 5 mL portions Et2O, and was dried under vacuum to leave 1.10 g (95% yield) of 

1 as a brown-orange solid.  Mp, 350oC dec. to black liq. Anal. Calcd. (found) for 

C40H38N10Ni:  C, 67.15 (66.07); H,5.07 (5.16); N,19.58 (19.15). µeff (solid, 295 K) = 2.9 

µB.  UV-Vis (CH2Cl2) λmax, nm (ε, M-1cm-1):  368 (51,600), 415 (21,200), 467 sh (640), 

543 (180), 791 sh (77), 872 (123).  Crystals suitable for single crystal X-ray diffraction 

were grown by layering a CH2Cl2 solution with MeOH and allowing solvents to diffuse. 

Except where noted, the following compounds were prepared in a similar manner where 

the heating time, amount of solvent, and subsequent work-up procedure were identical to 

that described for 1.  The amounts of ligand, nickel salt, and base that were used varied in 

the preparation of each complex and are given below along with the yield and 

characterization data. 
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Ni(Me,H)2•0.5H2O, 2•0.5H2O.  A mixture of 0.447 g (1.42 mmol) H(Me,H), 0.169 g 

(0.709 mmol) NiCl2·6H2O, and 1.4 mmol (NEt4)(OH) (0.97 mL of a 1.47 M solution in 

MeOH) gave 0.406 g (87%) 2 as a yellow-brown powder.  Mp, >350oC. Samples that 

were collected and washed as above but then were air-dried rather than heated under 

vacuum analysed as 2•1.5CH2Cl2•0.5H2O C39.5H36Cl3N10NiO0.5:  C, 57.59 (57.70); 

H,4.40 (4.67); N,17.00 (17.05).  µeff (solid, 295 K) = 2.7 µB.  UV-Vis (CH2Cl2) λmax, nm 

(ε, M-1cm-1):  243 (50,500), 365 (31,800), 408 sh (14,000), 456 sh (640), 541 (180), 791 

sh (77), 868 (110). 

Ni(H,H)2•H2O, 3•H2O.  A mixture of 0.204 g (0.675 mmol) H(H,H), 0.0803 g (0.338 

mmol) NiCl2·6H2O, and 0.68 mmol (NEt4)(OH) (0.46 mL of a 1.47 M solution in MeOH) 

gave 0.183 g (82%) 3 as a tan solid.  Mp, >350oC.  Anal. Calcd. (found) C36H30N10NiO:  

C, 63.83 (63.57); H,4.78 (4.91); N,20.68 (20.49).  µeff (solid, 295 K) = 3.2 µB.  UV-Vis 

(CH2Cl2) λmax, nm (ε, M-1cm-1):  243 (48,000), 364 (30,100), 401 (14,400), 447 sh (760), 

538 (166), 798 sh (77), 872 (113).  Crystals suitable for single crystal X-ray diffraction 

were grown by layering a CH2Cl2 solution with hexane and allowing solvents to diffuse. 

Ni(Me,Br)2, 4.  A mixture of 0.343 g (0.869 mmol) H(Me,Br), 0.103 g (0.435 mmol) 

NiCl2·6H2O, and 0.87 mmol (NEt4)(OH) (0.59 mL of a 1.47 M solution in MeOH) gave 

0.355 g (97%) 4 as an orange-brown solid.  Mp, 320oC dec. to black liq.  Anal. Calcd. 

(found) for C38H30N10Br2Ni:  C, 54.00 (53.69); H, 3.58 (3.67); N, 16.57 (16.37). µeff 

(solid, 295 K) = 2.8 µB.  UV-Vis (CH2Cl2) λmax, nm (ε, M-1cm-1):  247 (59,300), 369 

(43,000), 410 sh (15,500), 460 sh (725), 539 (214), 794 sh (72), 870 (120).  Crystals 

suitable for single crystal X-ray diffraction were grown by layering a CH2Cl2 solution 

with hexane and allowing solvents to diffuse. 
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Ni(Me,CO2Et)2•2MeOH, 5•2MeOH.  A mixture of 0.500 g (1.29 mmol) H(Me,CO2Et), 

0.153 g (0.645 mmol) NiCl2·6H2O, and 1.29 mmol (NEt4)(OH) (0.88 mL of a 1.47 M 

solution in MeOH) gave 0.526 g (98%) 5 as a dark orange solid.  Mp, 330oC dec. to black 

liq.  Anal. Calcd. (found) for C46H48N10NiO6:  C,61.69 (61.34); H, 5.40 (5.13); N, 15.64 

(15.78). µeff (solid, 295 K) = 2.8 µB. IR (KBr) νC=O 1699 cm-1.  UV-Vis (CH2Cl2) λmax, 

nm (ε, M-1cm-1):  240 (53,500), 300 (9,800), 356 sh (17,400), 399 (50,100), 490 sh (510), 

529 (430), 798 sh (122), 869 (154). 

Ni(Me,CF3)2, 6.  A mixture of 0.489 g (1.28 mmol) H(Me,CF3), 0.152 g (0.638 mmol) 

NiCl2·6H2O, and 1.28 mmol (NEt4)(OH) (0.87 mL of a 1.47 M solution in MeOH) gave 

0.417 g (97%) 6 as an orange-brown solid.  Mp, 345oC dec. to black liq. Anal. Calcd. 

(found) for C40H30N10F6Ni:  C, 58.35 (57.98); H, 3.67 (3.72); N, 17.01 (16.88). µeff (solid, 

295 K) = 2.9 µB.  UV-Vis (CH2Cl2) λmax, nm (ε, M-1cm-1):  246 (54,700), 377 (36,200), 

453 sh (570), 536 (190), 798 sh (78), 871 (120).  Crystals suitable for single crystal X-ray 

diffraction were grown by layering a CH2Cl2 solution with hexane and allowing solvents 

to diffuse. 

Ni(Br,Br)2, 7.  A mixture of 0.242 g (0.526 mmol) H(Br,Br), 0.0625 g (0.263 mmol) 

NiCl2·6H2O, and 0.529 mmol (NEt4)(OH) (0.36 mL of a 1.47 M solution in MeOH) gave 

0.219 g (85%) 7 as an orange-brown solid.  Mp, >350oC.  Anal. Calcd. (found) for 

C36H24N10Br4Ni:  C, 44.35 (44.43); H, 2.48 (2.59); N, 14.37 (14.22).µeff (solid, 295 K) = 

3.0 µB.  UV-Vis (CH2Cl2) λmax, nm (ε, M-1cm-1):  247 (63,400), 373 (48,100), 463 sh 

(650), 536 (250), 788 sh (78), 873 (140). 
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Ni(Me,CN)2, 8.  A mixture of 0.302 g (0.887 mmol) H(Me,CN), 0.105 g (0.443 mmol) 

NiCl2·6H2O, and 0.89 mmol (NEt4)(OH) (0.61 mL of a 1.47 M solution in MeOH) gave 

0.288 g (88%) 8 as an orange-brown solid.  Mp, >350oC.    A sample that was collected 

and washed with ether but then was air dried rather than heated under vacuum analyzed 

as 8•0.5H2O. Anal. Calcd. (found) for C40H31N12NiO0.5:  C, 64.36 (64.40); H, 4.19 (4.07); 

N, 22.52 (22.31). µeff (solid, 295 K) = 2.9 µB.  IR (KBr) νCN 2206 cm-1.  λmax, nm (ε, M-

1cm-1):  238 (75,500), 293 sh (13,300), 388 (57,600), 473 sh (580), 520 (410), 790 sh 

(130), 877 (195).  X-ray quality crystals of 8 were grown by layering hexanes over a 

CH2Cl2 solution and allowing solvents to diffuse 2 d. 

Ni(CF3,CF3)2, 9.  A mixture of 0.413 g (0.943 mmol) H(CF3,CF3), 0.112 g (0.472 mmol) 

NiCl2·6H2O, and 0.94 mmol (NEt4)(OH) (0.64 mL of a 1.47 M solution in MeOH) gave 

0.410 g (93%) 9 as a dark orange solid.  Mp, >350oC.  Anal. Calcd. (found) for 

C40H24N10F12Ni:  C,51.09 (51.14); H, 2.68 (2.73); N, 14.72 (14.89). µeff (solid, 295 K) = 

3.1 µB.  λmax, nm (ε, M-1cm-1):  244 (56,000), 282 sh (11,100), 347 sh (23,600), 382 

(51,500), 448 sh (670), 527 (210), 794 sh (55), 880 (120). 

Ni(CN,CN)2•0.5H2O, 10•0.5H2O.  Owing the relatively lower solubility of the ligand in 

MeOH versus other ligands, the mixture of 0.240 g (0.682 mmol) H(CN,CN), 0.0810 g 

(0.341 mmol) NiCl2·6H2O, and 0.68 mmol (NEt4)(OH) (0.46 mL of a 1.47 M solution in 

MeOH) was heated at reflux 6h and was filtered hot.  After washing with Et2O and 

drying under vacuum 0.222 g (86%) 10 as an orange-brown solid was obtained.  Mp, 

>350oC.  Anal. Calcd. (found) for C40H25N14NiO0.5:  C, 62.52 (62.60); H, 3.28 (3.34); N, 

25.52 (25.56). µeff (solid, 295 K) = 3.2 µB.  IR (KBr) νCN 2214 cm-1.  λmax, nm (ε, M-1cm-

1):  242 (99,200), 303 (22,300), 346 (27,300), 407 (118,000), 491 (930), 512 (982), 792 
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sh (81), 841 (159) , 893 (160).  A mixture of X-ray quality dark red-brown blocks of 

10·2acetone and red prisms of 10·acetone were grown by layering an acetone solution 

with hexane and allowing solvents to diffuse over 1d. 

Ni(tBuPhPh,tBuPhPh)2, 11.  A mixture of 0.339 g (0.599 mmol) H(tBuPh,tBuPh), 0.0712 g 

(0.300 mmol) NiCl2·6H2O, and 0.60 mmol (NEt4)(OH) (0.41 mL of a 1.47 M solution in 

MeOH) gave 0.339 g (95%) 11 as an orange-brown solid.  Mp, 345oC dec. to black liq.  

Anal. Calcd. (found) for C76H76N10Ni:  C, 76.82 (76.68); H, 6.45 (6.51); N, 11.79 (11.85). 

µeff (solid, 295 K) = 2.8 µB.  λmax, nm (ε, M-1cm-1):  250 (91,800), 290 sh (29,300), 331 

(24,800), 371 sh (33,300), 417 (91,800), 491 sh (720), 535 (800), 791 sh (150), 866 

(235). 

Ni(CNPh,CNPh)2•H2O, 12•H2O. This procedure differs slightly from the others because of 

the relatively low solubility of the ligand in MeOH.  A few drops of benzene were added 

to completely dissolve a turbid mixture of 0.146 g (0.289 mmol) H(CNPh,CNPh) and 

0.0343 g (0.144 mmol) NiCl2·6H2O in 25 mL EtOH.  The resulting solution was then 

heated at reflux and 0.29 mmol (NEt4)(OH) (0.20 mL of a 1.47 M solution in MeOH) was 

added by syringe.  After heating the resulting orange suspension at reflux 6h, the 

insoluble product was collected by filtration, was washed with Et2O (2 x 5 mL) and was 

dried under vacuum overnight to give 0.136 g (88%) of 12 as an orange brown solid.  

Mp, >350oC.  Anal. Calcd. (found) for C64H42N14NiO:  C, 71.06 (71.34); H, 3.91 (4.01); 

N, 18.13 (18.46). µeff (solid, 295 K) = 2.5 µB.  IR (KBr) νCN 2222 cm-1.  λmax, nm (ε, M-

1cm-1):  257 (89,100), 313 sh (16,700), 398 (47,000), 454 (110,000), 543 sh (2,100), 793 

sh (280), 866 (360). 
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2.4.4 Chemical Oxidations. 

[Ni(Me,Me)2](BF4)2, (1)(BF4)2.  A solution of 0.128 g (0.468 mmol) FcBF4 in 10 mL 

CH2Cl2 was added to a solution of 0.168 g (0.234 mmol) 1 in 20 mL CH2Cl2.  To ensure 

quantitative transfer, the flask originally containing the ferrocenium solution was washed 

with an additional 5 mL CH2Cl2 solution and the washings were transferred via cannula 

to the reaction mixture. After the resulting violet solution had been stirred 30 min at room 

temperature, solvent was removed under vacuum.  The violet solid was washed 

sequentially with four 10 mL portions of toluene and one 10 mL portion hexane, and then 

was dried under vacuum for 12 h to leave 0.185 g (89%) of (1)(BF4)2 as a violet solid. 

Mp, >350oC.    µeff (solid, 295 K) = 4.7 µB.  UV-Vis (CH2Cl2) λmax, nm (ε, M-1, cm-1), 312 

(16132), 364 (21494), 527 (5921), 603 (3560), 760 (17456).  X-ray quality crystals of 

(1)(BF4)2·2CH2Cl2 were grown by layering hexanes over a CH2Cl2 solution and allowing 

solvents to diffuse over 20 h.  

[Ni(Me,Me)2](BF4), (1)(BF4).  Under an argon atmosphere, a solution of 0.1013g 

(0.1139 mmol) (1)(BF4)2 in 10 mL CH2Cl2 was added via cannula transfer to a solution 

of 0.0815g (0.1139 mmol) 1 in 10 mL CH2Cl2.  After the resulting blue-violet solution 

had been stirred 30 min at room temperature, solvent was removed under vacuum and 

then was dried under vacuum for 12 h to leave 0.153 g (84%) of (1)(BF4) as a blue-violet 

solid.  Mp, >350oC.  µeff (solid, 295 K) = 3.7 µB.  UV-Vis (CH2Cl2) λmax, nm (ε, M-1, cm-

1), 348 (21300), 506 (1955), 576 (2661), 756 (5332).  An attempt to grow single crystals 

by layering a CH2Cl2 solution with benzene and allowing solvents to diffuse 1 d, 

produced violet needles of (1)(BF4)2·C6H6  by disproportionation  
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[Ni(tBuPh,tBuPh)2](BF4), (11)(BF4).   Under an argon atmosphere, a solution of 0.0459 g 

(0.168 mmol) FcBF4 in 20 mL CH2Cl2 was added via cannula transfer to a solution of 

0.200 g (0.168 mmol) 11 in 20 mL CH2Cl2.  After the resulting green solution had been 

stirred 1h at room temperature, solvent was removed under vacuum.  The green solid was 

washed sequentially with one 10 mL portion of toluene, three 10 mL portions hexane, 

and then was dried under vacuum for 2 h to leave 0.150 g (70%) of (11)(BF4) as a green 

solid.  Mp, >350oC. µeff (solid, 295 K) = 2.5 µB.  UV-Vis (CH2Cl2) λmax, nm (ε, M-1, cm-

1), 254 (96300), 350sh (34600), 404 (55200), 602 (5900), 725sh (5800), 854 (16200). 

2.5 CRYSTALLOGRAPHY. 

X-ray intensity data from a brown prism of 1, a brown needle of 3·CH2Cl2, a 

brown plate of 4, a red block of 6, a brown needle of 8·1.29 CH2Cl2, a brown block of 

10·2 acetone, a red prism of 10·acetone, a violet needle of [Ni(Me,Me)2](BF4)2·2CH2Cl2, 

(1)(BF4)2•2CH2Cl2, and a violet needle of (1)(BF4)2•·2C6H6 were collected at 100.0(1) K 

with an Oxford Diffraction Ltd. Supernova diffractometer equipped with a 135 mm Atlas 

CCD detector using Mo(Kα) radiation for 8·1.29 and both solvates of 10 but using 

Cu(Kα) for the other experiments.  Raw data frame integration and Lp corrections were 

performed with either CrysAlis Pro (Oxford Diffraction, Ltd.)20 or SAINT+ (Bruker).21  

Final unit cell parameters were determined by least-squares refinement of 9389, 28800, 

6900, 9976, 51210, 15532, 18121, 15224, and 8870 reflections of 1, 3·CH2Cl2, 4, 6, 

8·1.29 CH2Cl2, 10·2 acetone, 10·acetone, (1)(BF4)2•2CH2Cl2, and (1)(BF4)2•·2C6H6, 

respectively, with I > 2(I) for each.  Analysis of the data showed negligible crystal 

decay during collection in each case.  Direct methods structure solutions, difference 

Fourier calculations and full-matrix least-squares refinements against F2 were performed 
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with SHELXTL.22  An empirical absorption correction using spherical harmonics, 

implemented in SCALE3 ABSPACK scaling algorithm was applied to the data for 

3·CH2Cl2 while numerical absorption corrections based on gaussian integration over a 

multifaceted crystal model were applied to the data for the remaining crystals.  Hydrogen 

atoms were placed in geometrically idealized positions and included as riding atoms.  The 

X-ray crystallographic parameters and further details of data collection and structure 

refinements are given in Tables 2.1-3 and 2.10. 

Computational Work.  
 
General Considerations. DFT calculations were performed with either M06 or M06-2X 

meta-hybrid GGA functionals44 because these have been found to be useful for affording 

accurate solutions to a wide variety of computation problems at low computational 

expense.45,46  Geometry optimizations used the combination of the M06 functional and 

the def2-SV(P) double-zeta basis set47 because we previously found (and find again here) 

that this method provides excellent agreement (within 0.2 Å) with solid state structures. 

Solvent (dichloromethane and acetonitrile) effects were accounted for by using the 

polarizable continuum model IEFPCM,48 as implemented in Gaussian 09.49 Analytical 

vibrational frequency calculations were carried out to verify that optimized geometries 

were stationary points. Time-dependent DFT methodology was used for excitation 

energy calculations.50 For instances where improved accuracy of SCF energies and 

thermodynamic parameters was warranted such  
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Table 2.10.  Crystallographic Data Collection and Structure Refinement for 
[Ni(Me,Me)2](BF4)2·2CH2Cl2, (1)(BF4)2•2CH2Cl2 and [Ni(Me,Me)2](BF4)2·2C6H6, 
(1)(BF4)2•·2C6H6. 
 
 

Compound (1)(BF4)2•2CH2 (1)(BF4)2•2C6H6 
Formula C42H40B2Cl4F8N C52H48B2F8N10Ni 
Formula weight 1058.97 1045.33 
Crystal system monoclinic monoclinic 
Space group P 21/c C c 
Temperature [K] 100.0(1) 100.0(1) 
a [Å] 24.8291(6) 9.2835(2) 
b [Å] 9.5433(2) 25.5403(7) 
c [Å] 20.5730(5) 20.4839(6) 
α[°] 90.00 90.00 
β[°] 108.734(3) 98.748(3) 
γ [°] 90.00 90.00 
V [Å3] 4616.52(19) 4800.3(2) 
Z 4 4 
Dcalcd. [gcm-3] 1.524 1.446 
λ[Å] (Cu K) 1.5418 1.5418 
µ [mm-1] 3.407 1.272 
Abs. Correction numerical numerical 
F(000) 2160 2160 
θ range [°] 3.76 to 73.76 4.09 to 73.78 
Reflections 38581 17439 
Independent Rflns 9154 8984 (RInt=0.0447) 
T_min/max 0.336/0.868 0.738/0.962 
Data/restr./param. 9154/0/608 8984/2/662 
Goodness-of-fit 1.049 1.037 
R1a /wR2b 0.0639/0.1830 0.0596/0.1618 
R1/wR2 (all data) 0.0732/0.1949 0.0632/0.1672 
peak/hole / e Å-3 1.254/-0.809 1.254/-0.809 
a R1 = Σ||Fo| – |Fc||/Σ|Fo|  b wR2 = [Σw(|Fo| – |Fc|)2/Σw|Fo|2]1/2. 

 

as in broken-symmetry calculations51 or the determination of reduction potentials, the 

optimized structures were subject to single-point energy calculations using the def2-

TZVP basis set47 that had the polarization functions on hydrogen removed (for 

computational time-saving reasons). The calculation of reduction potentials at the double-

zeta quality def2-SV(P) level followed Truhlar’s methodology52 and used 
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recommendations outlined recently by Rulíšek.46 For estimation of reduction potentials at 

the triple zeta level, which would be prohibitively costly on our computational cluster, 

the zero-point energy and thermal corrections for each 1, (1)+, and (1)2+ were taken from 

the calculations performed at the def2-SV(P) level and were applied to the SCF energies 

obtained from single point calculations at the def2-TZVP level. 

 

Table 2.11. Summary of SCF energies and thermochemical data from theoretical 
calculations (M06/Def2-SV(P)). 

 

Ni(Me,Me)2 [Ni(Me,Me)2]+ [Ni(Me,Me)2]2+ 

multiplicity 3 4 5 
<S2> 2.0081/2.000 3.7907/3.7508 6.0774/6.0025 

ESCF (hartree) -3598.484935 -3598.314711 -3598.131557 

E+ZPE (hartree) -3597.797706 -3597.626693 -3597.442173 
H (hartree) -3597.753662 -3597.582026 -3597.397927 
G (hartree) -3576.87396 -3597.704346 -3597.517799 
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Table 2.12. TDDFT/TDA Excitation Energies and Transitions of Ni(Me,Me)2, 1 in 
CH2Cl2 (PCM). 
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CHAPTER 3 

ELECTRONIC COMMUNICATION IN HOMOLEPTIC GROUP 9 METAL 
PINCER-TYPE COMPLEXES 

3.1. INTRODUCTION 

 The concept of electronic communication through molecular bridges gets 

attention in chemistry because electron transfer is a feature of many biological and 

chemical systems.1-7 The bridge plays a very important role in mediating electronic 

communication between two ends. Mixed-valence compounds may delocalize their 

electron density through or over the bridge between redox centers, and, therefore, the 

bridge plays a central role in the properties of mixed-valence compounds.   

 In previous chapters, the preparation of the redox-active di(2-pyrazolyl-p-

tolyl)amine, H(Me,Me)8-11 ( Figure 3.1.a) has been described. The redox-active nature of 

this ligand and its metal complexes was established by the examination of the features of 

gallium(III) (Figure 3.1.b), nickel(II) (Figure 3.1.c), rhenium(I), and rhodium(III/I) 

complexes.8-11 The electrochemical and spectroscopic data of gallium(III) complexes 

proved a weak electronic communication between redox active motifs over the 

diamagnetic metal bridge. The mono-oxidized complex was assigned to be a Robin-Day 

Class II mixed-valence compound by both electrochemical and spectroscopic methods.8 

As we described in chapter 2 the substitution of Ni(II) in the place of Ga(III) modestly 

increased the electronic communication of two ligands over the metal bridge in singly 

oxidized derivative increasing the electronic coupling element Hab = 466(26) cm-1 vs 264 

cm-1 in CH2Cl2. The small Hab and solvent dependent IVCT band indicates [Ni(Me,Me)]+ 
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is a  Robin-Day class II mixed valence system. Nickel(II) has the highest spectroscopic 

electronegativity and the lowest d-orbital energy of 1st row transition metals. Therefore, 

the energetic mismatch of magnetic orbitals of the ligands with the metal dxz orbital 

might be one reason for the poor strength of any dπ-pπ interaction. 

 

 

Figure 3.1.a) di(2-pyrazolyl-p-tolyl)amine, H(CH3,CH3) ligand,  b) Homoleptic Ga(III) 
complex of H(CH3,CH3) ligand,  c) Homoleptic Ni(II) complexes of H(X,Y) ligands  
with different X and Y groups. 

 

In this chapter we will further probe the effects of changing metal bridges on 

electronic communication in mixed valent [M(Me,Me)]n+ species by examining group 9 

complexes, both +2 and +3 oxidation states are available these metals. Also, d-orbitals 

should raise in energy and become more diffuse on increasing Z, so it must be expected 

to strengthen electronic communication with Z. It may then be possible to transverse 

Robin-Day classes and obtain a class III mixed valence derivative. Metal bridged class III 

mixed valence species not yet been reported in the literature. 
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3.2. RESULTS AND DISCUSSION 

3.2.1. Syntheses.  

Homoleptic group 9 metal complexes of H(Me,Me)10 (Figure 3.1.a), have been 

synthesized by three different synthetic strategies (Schemes 3.1 – 3.3). First, 

Co(Me,Me)2, 1, a yellow solid, precipitated immediately in high yield (82%) from one 

pot reaction between solutions of anhydrous CoCl2, 2 mol equivalents of H(Me,Me) in 

degassed MeOH, followed by addition of 2 mol equivalents of (NEt4)(OH) in MeOH 

(Scheme 3.1). The compound 1 is best stored in a dry-box under an argon atmosphere, as 

it oxidizes slowly in air, even as a solid; solutions are more sensitive. Compound 1 is 

soluble in CH2Cl2 and THF but insoluble in MeOH, EtOH, Et2O, and hexanes. The 

complex is paramagnetic with μeff = 4.2, in line with expectation for a high spin d7 

cobalt(II) complex. Complex 1 was oxidized using one equivalent of AgPF6 in THF to 

give [1](PF6) in a high yield (95%) (Scheme 3.1). By using AgBF4 as the oxidizing agent, 

[1](BF4) was synthesized in high yield (92%), which permits an investigation of the 

effect of counter ions on structural and electronic properties.   

The synthesis of [Rh(Me,Me)2](PF6), [2](PF6), was started with the previously-

reported (NEt4)[Rh(Me,Me)Cl3]·H2O precursor.12  An acetonitrile solution of 

(NEt4)[Rh(Me,Me)Cl3]·H2O was refluxed for 15 hours with equimolars of H(Me,Me), 

(NEt4)(OH), and 3 equivalents of TlPF6 to yield a desired red product [2](PF6), which 

was purified by chromatography using a neutral alumina column (Scheme 3.2). The yield 

of this reaction was moderate (65%) compared to the overall yield of the cobalt reaction 

(78%). The one-pot reaction of commercially available RhCl3·H2O with 2 mol 
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equivalents of H(Me,Me), 2 mol equivalents of (NEt4)(OH), and 3 mol equivalents of 

TlPF6 in acetonitrile gave the same product, but the yield was lower (42%) than the two-

step synthesis.  

[3](PF6) was obtained in poor yields after longer reaction times. The long reaction 

time is reasonable because 3rd row transition metal ions are more kinetically inert than 

their 1st row counterparts. Thus as shown in Scheme 3.3, the desired yellow-green 

complex [Ir(Me,Me)2](PF6), [3](PF6), was synthesized by the reaction between 

IrCl3·3H2O, H(Me,Me), (NEt4)(OH), and TlPF6 by refluxing in EtOH for four days. The 

product was isolated with a low yield (18 %) after collecting the third band of the neutral 

alumina column. The unreacted ligand (42%) was collected as the first fraction. The low 

yield is due to a number of competing side products formed. The identity of side products 

could not be established owing to the complicated NMR spectra. Attempts were carried 

out to synthesize this complex following a similar two-step procedure used for [2](PF6), 

but a lower overall yield (6%) was obtained versus the one-pot method.  

By using the strong oxidant, (NO)BF4, partially and fully oxidized derivatives 

were prepared. Thus, equimolar mixtures of [M(Me,Me)2]+(X-) (X = BF4, or PF6) with 

(NO)BF4 in CH3CN gave the respective [1](BF4)2, [2](PF6)(BF4) and [3](PF6)(BF4). The 

reaction of [M(Me,Me)2]+(X-) with two equivalent (NO)BF4 in CH3CN gave [1](BF4)3, 

[2](PF6)(BF4)2 and [3](PF6)(BF4)2. These oxidized complexes were stored in an argon 

filled dry-box as they were air and moisture sensitive.  
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Scheme 3.1. Preparation of [Co(Me,Me)2]X, [1]X complexes. ( X = null or PF6 and BF4). 

 

 

Scheme 3.2. Preparation of  Rh(Me,Me)2PF6, [2](PF6) complex. 
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Scheme 3.3. Preparation of Ir(Me,Me)2PF6, [3](PF6) complex. 

 

3.2.2. Structures.  

The solid state structures of 1, [1](BF4), [1](PF6), [2](PF6), [3](PF6), and [1](BF4)2 

have been determined by single-crystal X-ray diffraction. Single crystals of 1, suitable for 

X-ray diffraction, were grown by layering hexanes on top of a CH2Cl2 solution in an 

argon-filled dry-box and allowing solvents to diffuse. The compound crystallizes in the 

triclinic crystal system with P-1 space group. The structure is shown in Figure 3.2, while 

X-ray crystallographic parameters and further details of data collection are given in Table 

3.1-3. The cobalt center resides in a compressed octahedral geometry with six nitrogen 

atoms. Two of these nitrogen atoms are from the central amido groups of the two ligands, 

and others are from pyrazolyl rings, which give two types of Co-N bonds. The bonds 

associated with the diarylamido portion of the ligand, Co−NAr , have an average bond 

length of 2.030(12) Å, which is shorter than the average length of Co−Npz bonds, 

2.140(13) Å. All bond distances are given in Table 3.3. The amido nitrogens are linear 

across the cobalt center, separated by 4.060(12) Å. These nitrogen atoms have planar 

geometry with a 360 sum of angles about each atom. Diarylamido NC2 moieties are 
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nearly coplanar across the cobalt atom, this geometry allows p-orbitals, containing the 

lone pair of electrons, of amido nitrogens to be roughly parallel to each other.  

 

 

Figure 3.2.  Solid state structure of 1, Hydrogen atoms have been omitted for clarity. 

 

The structures of [1](X = BF4, PF6) are similar to each other. Both crystallize in a 

monoclinic crystal system and the P21/c space group. The only difference is the counter 

ion, indicated by formula [1](BF4) and [1](PF6). The PF6
- of [1](PF6) is completely 

disordered, while BF4
- ion of [1](BF4) is ordered. The structural geometry of the cation 

[1]+  in each is similar to 1, but with differences in the bond lengths of the CoN6 kernels. 

In [1]+, the average Co-NAr bond lengths are slightly longer than the average Co-Npz bond 

length, whereas the average Co-NAr bond length of 1 was shorter than that of Co-Npz 

(Table 3.1). The comparison of these bond distances between 1 and [1]+ (Table 3.1, 3.3 
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and 3.4) show Co-N distances consistent with Co(III) and longer than in 1 with Co(II) as 

expected.  

Table 3.1. Average M-N bond distances group 9 metal complexes. 

   Bond Distance ( Å) 

Complex 1 [1](BF4) [1](PF6) [1](BF4)2 [2](PF6) [3](PF6) 
M-NAr (avg) 2.030(12) 1.936(14) 1.944(7) 1.922(4) 2.041(3) 2.025(8) 
M-Npz (avg) 2.140(13) 1.925(14) 1.922(6) 1.917(4) 2.025(3) 2.020(8) 

  

 The single crystals of Rh(Me,Me)2PF6· CH2Cl2, [2](PF6)·CH2Cl2 were grown by 

layering hexanes on a CH2Cl2 solution of the complex and allowing solvents to diffuse. It 

also shows similar structural features to the cobalt complexes of this ligand. The central 

rhodium atom has an RhN6 octahedral geometry, which is composed of two types of Rh-

−N bonds from two central amido nitrogen atoms of two ligands and four pyrazolyl 

nitrogen atoms. The difference of these two bond lengths is negligible since average bond 

length of Rh−NAr is 2.041(3) Å, while the average bond length of Rh−Npz is 2.025(3) Å. 

But there is a significant increase in these two bond lengths compared to analogue cobalt 

complexes. All bond distances are shown in Table 3.4., while the comparison of Rh-N 

bonds is given in Table 3.1. 

 The iridium complex, [3](PF6), was crystallized in a P21/c space group with a 

toluene-solvent molecule, [3](PF6)·C7H8, after diffusion of toluene into a solution of the 

compound in CH2Cl2. The structure of the metal complex is similar to the other structures 

described above, where the average Ir−NAr and Ir−Npz bond lengths are comparable to 

those of [2](PF6) (Table 3.1). 
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Table 3.2. Crystallographic data collection and structure refinement of 1 and 
[1](BF4)·CH2Cl2. 

 

Compound 1 [1](BF4)·CH2Cl2 
Empirical formula C40H36CoN10 C41H38BN10F4Cl2Co 
Formula weight 715.72 887.45 
Temperature/K 100.00(10) 100.00(10) 
Crystal system triclinic monoclinic 
Space group P-1 P21/c 
a/Å 8.8487(2) 11.83315(15) 
b/Å 12.8919(4) 17.2910(3) 
c/Å 15.9144(5) 19.1406(2) 
α/° 79.470(3) 90 
β/° 83.986(2) 90.7655(10) 
γ/° 75.165(3) 90 
Volume/Å3 1722.17(9) 3915.94(9) 
Z 2 4 

ρcalcg/cm3 1.38 1.505 
μ/mm-1 0.544 0.64 
F(000) 746 1824 
Crystal size/mm3 0.3607 × 0.1264 × 0.0934 0.5531 × 0.4175 × 0.0774 
Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data collection/° 5.7 to 59.16 5.44 to 58.94° 
Reflections collected 27156 
Independent reflections 8473 (Rint = 0.0277) 9908 (Rint = 0.0380) 
Data/restraints/parameters 8473/0/464 9908/0/536 
Goodness-of-fit on F2 1.038 1.042 

Final R indexes [I>=2σ (I)] R1 = 0.0343, wR2 = 0.0792 
R1 = 0.0400, wR2 = 
0.0953 

Final R indexes [all data] R1 = 0.0423, wR2 = 0.0839 
R1 = 0.0534, wR2 = 
0.1039 

Largest diff. peak/hole / e Å-3 0.33/-0.41 0.67/-0.79 
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Table 3.3. Selected bond lengths of 1, and                                                                                                              
[1](BF4)·CH2Cl2 and [1](BF4)2·3CH2Cl2. 

 

L1 : C1-C20, L2: C21-C40 

  1 (Å) [1](BF4)·CH2Cl2 (Å) [1](BF4)2·3CH2Cl2 (Å) 
Bond L1 L2 L1 L2 L1 L2 
A 1.386(18) 1.383(19) 1.392(2) 1.392(2) 1.403(6) 1.376(6) 

A' 1.398(19) 1.390(18) 1.390(2) 1.398(2) 1.378(6) 1.395(6) 

B 1.413(2) 1.410(2) 1.409(3) 1.407(3) 1.415(7) 1.425(7) 

B' 1.412(2) 1.409(2) 1.412(2) 1.411(2) 1.414(7) 1.417(7) 

C 1.380(2) 1.379(2) 1.383(3) 1.385(2) 1.383(7) 1.377(8) 

C' 1.380(2) 1.384(2) 1.379(2) 1.379(3) 1.377(7) 1.374(7) 

D 1.394(2) 1.399(2) 1.393(3) 1.401(3) 1.392(8) 1.408(8) 

D' 1.395(2) 1.393(2) 1.401(3) 1.398(3) 1.389(7) 1.398(7) 
E 1.383(2) 1.385(2) 1.386(3) 1.385(3) 1.380(7) 1.399(7) 
E' 1.389(2) 1.390(2) 1.386(3) 1.390(3) 1.383(7) 1.396(7) 
F 1.401(2) 1.395(2) 1.391(2) 1.393(3) 1.397(6) 1.377(7) 
F' 1.394(2) 1.393(2) 1.397(2) 1.401(2) 1.396(7) 1.384(7) 

G 1.414(2) 1.416(2) 1.405(2) 1.412(2) 1.391(7) 1.421(6) 

G' 1.411(2) 1.410(2) 1.404(2) 1.400(2) 1.399(6) 1.405(7) 
H 1.509(2) 1.509(2) 1.512(3) 1.509(2) 1.520(7) 1.485(8) 

H' 1.509(2) 1.510(2) 1.505(2) 1.512(3) 1.507(7) 1.499(7) 

I 1.430(19) 1.433(19) 1.422(2) 1.421(2) 1.430(6) 1.411(6) 

I' 1.428(18) 1.429(19) 1.423(2) 1.430(2) 1.423(6) 1.420(6) 

M-Namido 2.036(12) 2.024(12) 1.937(15) 1.936(14) 1.917(4) 1.926(4) 

M-Npz(avg) 2.136(13) 2.144(12) 1.929(15) 1.920(14) 
 
1.921(4) 

 
1.913(4) 
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Table 3.4. Selected bond lengths of [1](PF6)·ace,                                           
[2](PF6)·CH2Cl2,and [3](PF6)·C7H8 complexes. 

 

L1 : C1-C20, L2: C21-C40 

  [1](PF6)·ace (Å) [2](PF6)·CH2Cl2 (Å) [3](PF6)·C7H8 (Å) 

Bond L1 L2 L1 L2 L1 L2 

A 1.398(14) 1.390(10) 1.376(5) 1.394(5) 1.406(13) 1.384(12) 

A' 1.390(10) 1.341(10) 1.404(5) 1.382(5) 1.391(12) 1.399(12) 

B 1.405(10) 1.404(10) 1.417(6) 1.403(6) 1.421(15) 1.412(13) 

B' 1.415(9) 1.428(10) 1.399(6) 1.409(6) 1.416(14) 1.430(13) 

C 1.412(12) 1.376(11) 1.372(6) 1.380(6) 1.351(17) 1.394(14) 

C' 1.370(11) 1.355(11) 1.378(6) 1.378(6) 1.390(13) 1.394(14) 

D 1.362(12) 1.386(11) 1.400(6) 1.386(8) 1.410(2) 1.385(14) 

D' 1.396(12) 1.406(11) 1.396(7) 1.403(6) 1.405(14) 1.418(14) 

E 1.393(12) 1.399(10) 1.390(6) 1.378(7) 1.390(2) 1.407(13) 

E' 1.390(9) 1.396(10) 1.385(7) 1.383(6) 1.398(13) 1.390(14) 

F 1.440(15) 1.389(10) 1.392(5) 1.396(6) 1.380(15) 1.407(12) 

F' 1.397(11) 1.395(12) 1.4.4(6) 1.402(6) 1.376(13) 1.392(14) 

G 1.357(14) 1.405(10) 1.409(5) 1.396(6) 1.377(14) 1.402(12) 

G' 1.410(11) 1.426(12) 1.396(6) 1.411(5) 1.402(13) 1.411(13) 

H 1.532(14) 1.509(11) 1.505(6) 1.509(7) 1.530(2) 1.501(14) 

H' 1.500(11) 1.490(12) 1.510(6) 1.508(6) 1.487(13) 1.509(14) 

I 1.434(11) 1.421(8) 1.433(5) 1.428(6) 1.413(13) 1.406(12) 

I' 1.428(8) 1.429(9) 1.431(5) 1.427(5) 1.438(12) 1.422(12) 

M-Namido 1.948(9) 1.941(5) 2.046(3) 2.036(3) 2.025(8) 2.047(8) 

M-Npz(avg) 1.907(6) 1.936(5) 2.022(3) 2.027(3) 2.088(8) 2.019(8) 
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It was possible to obtain X-ray quality crystals of [1](BF4)2·3CH2Cl2 after diffusing  

hexanes into the CH2Cl2 solution of the complex. Bond distances of this complex are 

listed in Table 3.3. Both [1](BF4) and [1](BF4)2 reside with similar structural parameters 

except the torsion angles of pyrazolyl groups. The torsion angle of pyrazolyl NC bonds of 

the [1](BF4)2 is higher (67.21 ) than that of the [1](BF4) (36.35). 

3.2.3. Cyclic Voltammetry.  

The electrochemical properties of [1](BF4), [2](PF6), and [3](PF6) were studied by 

cyclic voltammetry. Voltammetric measurements were obtained in dichloromethane 

using [N(Bu)4]PF6 as the supporting electrolyte and potentials were measured against 

Ag/AgCl reference electrode. The cyclic voltammograms of each of these compounds 

shows two reversible one-electron oxidation waves; the cobalt and rhodium derivatives 

also show a single one-electron reduction wave. 

 Figure 3.3 shows a portion of the overlaid cyclic voltammogram (CV) obtained at 

a scan rate of 100 mV/s for a dichloromethane solution of each [1](BF4), [2](PF6), and 

[3](PF6). While the potential of the first oxidation wave decreases from [1](BF4) to 

[3](PF6), the second potential is almost constant around 1 V vs Ag/AgCl. Thus, the 

difference between two oxidation potentials (ΔE) increases down group 9 (Figure 3.3). 

The potential differences (ΔE = E2 – E1) (Table 3.5) between the two waves are 283, 402, 

and 557 mV for complexes [1]+, [2]+, and [3]+ gives rise to Kcom values 6.84 x 104, 7.38 x 

106, 3.28 x 109, respectively. Thus, according to electrochemistry, [1]2+ would be a class 

II Robin-Day mixed valence species, similar to [Ni(Me,Me)2]+ (Table 3.5). The rhodium 

complex, [2]2+can be classified as being at the Robin-Day class II/III borderline. 
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Interestingly, [3]2+ would be Robin-Day class III mixed valence species by the accepted 

conventions. 

M(Me,Me)2 + [M(Me,Me)2]2+               2[M(Me,Me)2]+ 

 Kcom = [[M(Me,Me)2]+]2 / [M(Me,Me)2][[M(Me,Me)2]2+]                         (1) 

 

Table 3.5. Electrochemical data from cyclic voltammetry experiments of compound 1-3 
and reference compounds in CH2Cl2. 

 

 E0 , V vs Ag/AgCla   
 Compound 

 
E0

ox1(Epa - Epc, mV) 
 

E0
ox2(Epa - Epc, mV) 

 
ΔE (mV) 
 

  Kcom
b 

 
[Ga(Me,Me)2

+]27 

 
0.977(223) 1.165(207) 188 1.62 x 103 

Ni(Me,Me)2
28 

 
0.146(188) 
 

0.428(187) 282 6.57 x 104 
 

Co(Me,Me)2
+, [1]+ 

 
0.716(070) 
 

0.999(142) 
 

283 6.84 x 104 
 

Rh(Me,Me)2
+, [2]+ 

 
0.620(140) 
 

1.022(151) 
 

402 7.38 x 106 
 

Ir(Me,Me)2
+, [3]+ 

 
0.390(204) 
 

0.947(204) 557 3.28 x 109 
 

 
aAverage values obtained for scan rates of 50, 100, 200, 300, 400, and 500 mV/s with 0.1 
M  NBu4PF6 as supporting electrolyte.   bKcom = e(ΔE·F/RT), T = 295 K.  

 

The separation of oxidation waves alone is not sufficient to quantify the electronic 

communication of these types of systems because for weakly coupled systems the 

separation of waves may be due to simple Coulombic effects rather than, or in addition 

to, electronic communication. The resolution of waves in CV measurements is poor. For 

strongly coupled systems solvent effects are important for distinguishing between class II 
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and class III. Therefore, further evaluation of Robin-Day classification by spectroscopic 

methods is preferred as outlined earlier.  

 

Figure 3.3. Overlay of cyclic voltammograms (CVs) of dichloromethane solutions of 
each metal complexes, [1](BF4), [2](PF6), and [3](PF6) at a scan rate of 100 mV/s. 
[N(Bu)4](PF6) was used as the supporting electrolyte. 

 

3.2.4. Spectroscopic Analysis. 

The UV/visible spectra of 1 and [1](BF4) are shown in Figure 3.4. Both show two 

strong absorbance bands centered at 337 nm and 391 nm, which would be assigned to 

ligand centered charge transfer transitions. In addition to that, complex 1 in CH2Cl2 

shows a moderately weak intensity band (ε = 4182 M-1cm-1) at 462 nm, and the complex 

[1]+ shows a more red-shifted band at 712 nm (ε = 1384 M-1cm-1) which gives it its green 

color. The visible range of these two spectra is shown if Figure 3.4.b. Complex 1 shows a 

weak intensity band at 722 nm (ε = 108 M-1cm-1), which can be assigned to the d-d 
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transitions. The bands for d-d transition of [1](BF4) are likely obscured by other more 

intense bands. 

 

 

Figure 3.4. a) UV-Visible spectra of 1 and [1](BF4) in CH2Cl2. b) Visible region of 1 and 
[1](BF4) in CH2Cl2. 

 

 An overlay of UV-Visible spectra of [M(Me,Me)]+ in CH2Cl2 is shown in Figure 

3.5 and absorbance data is given in Table 3.6. The spectra show high intensity bands 

below 350 nm that are likely π-π* transitions on the basis of energy and intensity 

considerations. Each complex shows medium intensity bands (ε = 5000 -15,000 M-1cm-1) 

in the 350 – 500 nm range. These transitions would be assigned to a LMCT or MLCT 

transitions by comparing the data gathered from spectroscopy and DFT calculations for 

the previously-reported Ni(II) complexes of the same ligand9.  

 UV-Visible spectra of 1, [1](BF4), [1](BF4)2, and [1](BF4)3 in CH2Cl2 are shown 

in Figure 3.6 and peak data are found in Table 3.6. [1](BF4)2 and [1](BF4)3 shows 

medium intensity bands in the visible region for π-radical transitions. The mixed-valence 
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derivative, [1](BF4)2, shows a weaker intensity broad band in the near- to mid-IR region 

which was assigned to the IVCT transition.   

 

Figure 3.5. UV-vis-near IR spectrum of [1](BF4) (blue), [2](PF6) (red-dotted), and, 
[3](PF6) (green-dashed) in CH2Cl2.  

 

  

Figure 3.6. UV-Visible spectra of cobalt complexes in CH2Cl2. 
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 UV-Visible spectra of rhodium complexes in CH2Cl2 are shown in Figure 3.7 and 

absorbance data of these spectra are found in Table 3.6. Similar to the cobalt complexes, 

oxidized derivatives show π radical transitions in the visible region. The IVCT band of 

[2](PF6)(BF4) is appeared at 2572 nm.  

Figure 3.8 is shown the UV-Visible spectra of iridium complexes. Characteristic π 

radical transitions of oxidized derivatives are appeared at visible range. The IVCT band 

of [3](PF6)(BF4) is appeared  at 1686 nm.  

 

 

Figure 3.7. UV-Visible spectra of rhodium complexes in CH2Cl2. 
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Figure 3.8. UV-Visible spectra of iridium complexes in CH2Cl2. 

 

Table 3.6. UV-Visible absorbance data of various group 9 complexes from this study in 
CH2Cl2. 

 

Complex λmax, nm (ε, M-1cm-1) 
1 722 (108), 466 (4180), 388 (19945), 346 (41055) 
[1](BF4) 714 (1384), 392 (13109), 337 (23385) 
[1](BF4)2 812 (4506), 544 (3105), 387 (14225), 331 (20357) 
[1](BF4)3 804 (10021), 559 ( 6369), 367 (18755), 326 (18988) 
[2](PF6) 453 (7651), 392 8826), 332 ( 18212) 
[2](PF6)(BF4) 744 (4000), 482 (7918), 376 (13479), 323 (21555) 

[2](PF6)(BF4)2 
2572 (3246), 953 (1796), 737 ( 5885), 697 (5606), 544 (4569), 
469 (5872), 368 (13336) 

[3](PF6) 1405 (414), 613 (266), 417 (13492), 399 (14774) 
[3](PF6)(BF4) 1686 (9733), 654 (2176), 539 (3549), 400 (13969) 

[3](PF6)(BF4)2 
914 (16764), 680 (6140), 600 ( 7938), 517 (6227), 367 
(14170), 235 (74601) 
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The low energy bands of the dichloromethane solution of each singly oxidized 

complex, which could be assigned to the IVCT transitions, are shown in Figure 3.9. 

These bands were deconvoluted to find a Gaussian shaped, lowest energy peak to assign 

IVCT transitions. The deconvoluted spectra are shown in Figure 3.11, while data 

gathered after deconvolution of each spectrum is given in the Table 3.7. Moreover, non-

oxidized or doubly oxidized complexes do not show any absorption peaks from the mid-

IR to near-IR region, and therefore these peaks could be unambiguously assigned for the 

IVCT transitions. Typically, band shape analysis of the IVCT band is used to obtain 

information regarding the strength of electronic communication of mixed-valence 

complexes. In the case of complex [1](BF4)2, the limited spectral range of the absorption 

spectrometer (Figure 3.6) and the difficulties inherent in obtaining molar absorptivity 

data from IR spectra hinder highly accurate band shape analysis, therefore an estimate 

was made by the partial band found in the IR region (Figure 3.10 and 3.11.a). The IVCT 

bands of both of the other complexes, [2](PF6)(BF4) and [3](PF6)(BF4) were found in the 

mid to near IR region, therefore complete Gaussian fits were made to find the IVCT band 

(Figure 3.11). 

 The Gaussian shape of the IVCT band and the indication of a Robin-Day Class 

II/III species from the analysis of Kcom suggest that the Hush relations20 (equation 2) can 

be used to estimate the strength of electronic communication of cobalt and rhodium 

complexes.  The description of the Hush relations is found in chapter 1.  

Hab (cm-1) = [(4.2 x 10-4)εmaxΔν̅1/2EOP]1/2/d            (2) 
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Figure 3.9. IVCT band of [1](BF4)2, [2](PF6)(BF4) and [3](PF6)(BF4) in CH2Cl2. 

 

 

Figure 3.10. Close-up view of NIR region (in cm-1 units) of [1](BF4)2 in CH2Cl2.  

 

For the consistency among various compounds the adjusted N-N distance of [M]+ 

was used as the distance of two redox centers (d, eqn 2) of mixed-valence complexes. 

The inter-amido nitrogen distance of mixed-valence complex of 1, [1](BF4)2, is 3.843(4) 

Å. The Hab for [1](BF4)2 is 301 cm-1. Examination of bond distances of cobalt complexes 
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shows that N-N distance decreases by 4.6% on going from 1 (HS d7) to 1+(LS d6) and 

only by 0.8% further on continuing to 12+. It is noted that if one were to use N-N distance 

for [1]+ of 3.873(14) Å then Hab would be 298 cm-1, not significantly different than that 

using the actual crystallographic distances in [1]2+ 3.843(4) Å. The solid state N-N 

distances of [1]+, [2]+, and [3]+ could be used to calculate Hab values, respectively (Table 

3.7). Alternatively, an estimation of the N-N distances in [2]2+ and [3]2+ could be made in 

accord with the observations in distances for [1]+ and [1]2+, by applying a 1% contraction. 

Then dadj for [M]2+ would be 0.99 x N-N distance of [M]+. The Hab calculated using this 

approximation is not greatly different from the uncorrected one. For consistency the 

adjusted distance is used. Furthermore, electrochemical data revealed that the mixed  

 

Table 3.7. Adjusted d (Å) and Hab (cm-1) in CH2Cl2. 

Complex da (Å) Hab (cm-1) dadj
b (Å) Hab(adj) (cm-1) 

[1]+ 3.873(14) 298(1) 3.834(14) 301(1) 
[1]2+ 3.843(4) 301(1) 
[2]+ 4.082(3) 457(1) 4.041(3) 461(1) 
[3]+ 4.072(8) 2918(6)c 4.072(8) 2918(1)c 

 

a Measured N-N distance from solid state structure. b dadj = d x 0.99. c [3]2+ is Robin-Day 
class III MV compound. Hence 2Hab = λ.  
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Figure 3.11. IVCT band shape fitting: a) [1](BF3)2 . b) [2](PF6)(BF4),  c) [3](PF6)(BF4). 
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Table 3.8. Summary of IVCT band shape fitting and ET parameters of [1](BF4)2, 
[2](PF6)(BF4) and [3](PF6)(BF4) in CH2Cl2 and CH3CN. 

 

  [1](BF4)2 [2](PF6)(BF4) [3](PF6)(BF4) 
  CH2Cl2 CH3CN CH2Cl2 CH3CN CH2Cl2 CH3CN 
Eop = λ (cm-1) 3090(85) 2986(89) 3856(32) 3808(28) 5836(12) 5854(13) 

εmax (M-1cm-1) 951(6) 1097(7) 6822(7) 6169(12) 7550(9) 6268(8) 

Δν1/2 (cm-1) 1082(12) 1248(11) 315(4) 296(3) 372(3) 319(3) 

d (Å ) 3.834(14) 3.834(14) 4.041(3) 4.041(3) 4.072(8) 4.072(8) 

Hab (cm-1), see ch 1 301(6) 340(7) 461(5) 423(4) 2918(6) 2927(6) 

ΔG* (cm-1), see eq 3 501 445 558 576 0 0 

ket (s-1), see eq 4 3.3x1012 5.6x1012 5.2x1012 4.1x1012 2.6x1015 2.6x1015 
 

valence complex of iridium, [3](PF6)(BF4), is a Robin-Day class III system, and 

spectroscopic data further confirms it as the absorbance maxima of the low energy band 

is solvent independent or slightly dependent (Table 3.7). Therefore, Equation 2 cannot be 

used to calculate the electronic coupling element of this complex, and the relation Hab = 

λ/2 has been used to calculate it. 

The values of the electronic coupling element, Hab, found for [1](BF4)2 and 

[2](PF6)(BF4) in CH2Cl2 and CH3CN reveal the solvent dependence of IVCT band, which 

is expected for Robin-Day Class II or II/III borderline mixed valence systems21,22 (Table 

3.8). The third row mixed valence complex of the series, [1](BF4)2, has the lowest 

electronic coupling element of these group 9 complexes, and it is even lower than that of 

the previously reported Ni(Me,Me)2
+.9 The electronic coupling element of the cobalt 

complex is 301(6) cm-1, while in the same row Ni(Me,Me)2
+ had 466(26) cm-1. The 

mixed-valence nickel complex has a divalent metal center, while the cobalt analogue is 
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trivalent. This low electron density of cobalt(III), compared to nickel(II) might be a 

reason for this difference in the electronic communication. Furthermore, the d-orbitals of 

Co(III) expected to be lower energy giving greater mismatch in energy with high energy 

p orbitals of nitrogens. However, this value ( Hab = 301(6) cm-1) falls within the accepted 

limit of 0 < Hab < λ/2 for Robin-day class II species. The mixed valence rhodium 

complex has a higher electronic coupling element, Hab = 461 (5) cm-1, which is similar to 

the [Ni(Me,Me)2]+ and could be assigned to the Robin-Day Class II/III borderline. The 

iridium complex, [3](PF6)(BF4) has fully delocalized electronic status, hence it is a 

Robin-Day class III species. 

The thermal energy barriers to electron transfer, ΔG*, calculated from Classical 

Marcus theory23 (eq 3), are also found in Table 3.8. The corresponding rate constants for 

electron transfer ket are found to be on the order of 1012 s-1 for the cobalt and rhodium 

complexes and 1015 s-1 for the iridium complex from equation 4, where temperature, T = 

295 K, Planck’s constant, h = 3.336 x 10-11 cm-1s, and the Boltzmann’s constant kB  = 

0.695 cm-1K-1. These ket values of [1](BF4)2 and [2](PF6)(BF4) are about 2 order of 

magnitudes greater than that of the corresponding Ga(III) complex and 1 order of 

magnitude lower than that of the Ni(II) complex.8,9 

ΔG* = (λ-2Hab)2 / 4λ  cm-1         ( 3) 

ket = ( 2Hab
2/h)[π3 / λkBT]1/2 exp-(ΔG*/kBT)     (4) 

3.2.5. EPR Spectroscopy.  

The EPR spectra of 1, [1](BF4)2, [2](PF6)(BF4), and [3](PF6)(BF4) in frozen 

CH2Cl2 are given in Figures 3.12 – 3.15, respectively. The complexes, [1](BF4)3, 
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[2](PF6)(BF4)2, and [3](PF6)(BF4)2 were EPR silent. The EPR spectrum of 1 displays an 

intense peak at g = 6.0, as well as some weak features at high field (Figure 3.12). The 

former signal is indicative of a high spin S = 3/2 system expected for high spin d7 

cobalt(II). EPR spectra of [1](BF4)2, [2](PF6)(BF4), and [3](PF6)(BF4) were simulated and 

shown in Figures 3.13-15. 

 

Figure 3.12. X-band (9.424 GHz) EPR spectrum of 1 in CH2Cl2 at 30 K. 

 

 

Figure 3.13. X-band (9.39 GHz) EPR spectrum of [1](BF4)2 in CH2Cl2 at 77 K. 
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Figure 3.14.  X-band (9.42 GHz) EPR spectrum of [2](PF6)(BF4) in CH2Cl2 at 77 K. 

 

 

Figure 3.15.  X-band (9.42 GHz) EPR spectrum of [3](PF6)(BF4) in CH2Cl2 at 77 K. 

 

EPR spectrum of [1](BF4)2 shows a rhombic spectrum at g = 2.012 indicative of S = ½ 

species. It was simulated with gx,y,z = 2.031, 2.004, 1.978; A = 103.92, 73.12, 110 (mT) 

and Astrain = 230, 110, 230. Similarly, the spectrum for [2]2+ gave a rhombic spectrum 

near g = 2.006 (S = ½) and was simulated with gx,y,z = 2.016, 2.006, 1.997; A = 35.035, 
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35, 38.75 (mT) and Astrain = 190, 40, 190. The spectrum of [3](PF6)(BF4) at 77 K was 

simulated with gx,y,z = 2.092, 2.031, 1.94; A = 80, 56.78, 80 (mT) ; gstrain = 0.03, 0, 0.03 

and Astrain = 222.71, 0, 200. 

3.3. CONCLUSION 

 As illustrated in this and previous chapters, the concept of assembling organic 

redox centers using transition metal ions as a bridge is very important for the 

development of molecular wires or conducting materials for the future design of efficient 

electronic materials. The quantification of the electronic communication of such redox 

centers over a metal ion and the investigation of the effect of the metal ion on the 

electronic communication would be crucial to design such materials with predicted 

properties. In order to address the role of the metal ion in the electronic communication, 

isostructural Co(III), Rh(III), and Ir(III) complexes of the NNN pincer-type ligand have 

been synthesized using three different synthetic techniques. The single crystal X-ray 

diffraction experiments reveal that these three complexes have similar structural 

geometries. As expected cobalt derivatives have shorter M-N bonds than either Rh or Ir. 

The distances of rhodium and iridium derivatives are nearly identical owing to lanthanide 

and relativistic contraction for iridium. 

 The electronic communication of two redox centers over the metal bridge was 

investigated using cyclic voltametry and spectroscopy. Dichloromethane solutions of 

complexes [1](BF4), [2](PF6), and [3](PF6)  showed two reversible one electron 

oxidations. These findings show that the electronic communication of redox active 

pincer-type ligands over the metal bridge of homoleptic complexes can be coarse tuned 
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without greatly changing spacer size (compared to organic systems). The delocalization 

of the unpaired electron is determined by the spatial overlap of the ligand and metal 

frontier orbitals, and, hence the relative energies of these orbitals. The iridium complex 

shows the highest value of electronic communication of this group, and it is a Robin-Day 

class III mixed-valence compound the first of this kind (LML). This high electron 

delocalization is likely due to the enhanced metal-ligand orbital overlap caused by the 

radial expansion of the 5d orbitals in iridium arising as a secondary consequence of 

relativistic core orbital contraction.  

3.5 EXPERIMENTAL  

General Considerations.  

The compounds CoCl2, IrCl3·3H2O, AgPF6, AgBF4, Cs2CO3, TlPF6, N(Bu4)PF6 

and NOBF4 were purchased commercially and used as received. The compounds 

H(Me,Me)10,11 and (NEt4)[Rh(Me,Me)Cl3]·H2O12 were prepared according to literature 

procedures. Solvents were dried by conventional means and distilled under nitrogen prior 

to use. 

Physical Measurements.  

Midwest MicroLab, LLC, Indianapolis, Indiana 45250, performed all elemental 

analyses. Melting point determinations were made on samples contained in glass 

capillaries using an Electrothermal 9100 apparatus and are uncorrected. 1H,13C, 19F, and 

31P NMR spectra were recorded on a Varian 400 MHz spectrometer. Chemical shifts 

were referenced to solvent resonances at δH 7.27, δC 77.23 for CDCl3, δH 5.33, δC 53.84 

for CD2Cl2 or δH1.94, δC118.9 for CD3CN and δH 2.05, δC 29.84 for acetone-d6, while 
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those for 19F and 31P NMR spectra were referenced against external standards of 

CFCl3(δF 0.00 ppm) and 85% H3PO4(aq)  (δP 0.00 ppm), respectively. Abbreviations for 

NMR and UV−Vis data: br (broad), sh (shoulder), m (multiplet), ps (pseudo-), s (singlet), 

d (doublet), t (triplet), q (quartet),   p (pentet), sept (septet). Electrochemical 

measurements were collected under a nitrogen atmosphere for samples as 0.1 mM 

solutions in CH3CN and in CH2Cl2, each with 0.1 M NBu4PF6 as the supporting 

electrolyte. A three-electrode cell comprised of an Ag/AgCl electrode (separated from the 

reaction medium with a semipermeable polymer membrane filter), a platinum working 

electrode, and a glassy carbon counter electrode were used for the voltammetric 

measurements. Data were collected at scan rates of 50, 100, 200, 300, 400, and 500 mV/s. 

With this set up, the ferrocene/ferrocenium couple had an E1/2 value of +0.53 V in 

CH3CN and +0.41 V in CH2Cl2 at a scan rate of 200 mV/s, consistent with the literature 

values.39 Solid state magnetic susceptibility measurements were performed using a 

Johnson-Matthey MSB-MK1 instrument. Electronic absorption (UV−Vis/NIR) 

measurements were made on a Cary 5000 instrument. Emission spectra were recorded on 

a JASCO FP-6500 spectrofluorometer. EPR spectra were obtained on both solid powder 

samples and as solutions ∼0.2 mM in 1:1 CH2Cl2/toluene mixtures using a Bruker 

ELEXYS E600 equipped with an ER4116DM cavity resonating at 9.63 GHz, an Oxford 

instruments ITC503 temperature controller and a ESR-900 helium flow cryostat. The 

spectra were recorded using 100 kHz field modulation unless otherwise specified. 
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Co(Me,Me)2, 1. 

A solution of 1.062 g (3.43 mmol) of H(Me,Me) and 0.223 g (1.715 mmol) of CoCl2 in 

15 mL of degassed MeOH was heated at reflux under argon atmosphere for 10 mins.  

Next, 2.4mL of a 1.47 M (3.43 mmol) solution of (NEt4)(OH) in MeOH was injected into 

the hot reaction mixture by syringe. A yellow solid precipitated immediately and the 

mixture was heated at reflux for 1 hour for the completion of the reaction. The mixture 

was allowed to cool room temperature and insoluble portion was collected by vacuum 

filtration, was washed with 5 mL of MeOH and two portions of Et2O,  and was dried 

under vacuum to leave 1.015 g (82 % yield) of 1 as a yellow solid. Mp > 300 0C 

(decomposed). μB = 4.2. UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 466 (4180), 388 (19945), 346 

(41055). Crystals suitable for single-crystal X-ray diffraction were grown by layering a 

CH2Cl2 solution with hexanes and allowing solvents to diffuse.  

[Co(Me,Me)2](PF6), [1](PF6). 

The green solution of 0.172 g (0.241 mmol) of 1 and 0.061 g (0.241 mmol) of AgPF6 in 

20 mL THF was stirred for 2h. THF was evaporated by vacuum distillation and the 

remaining green solid was extracted with 15mL (x 2) CH2Cl2 and filtered through a small 

pad of Celite. The volatile components were removed by vacuum distillation to leave 

0.198 g (95 % yield) [1](PF6) as a green solid. Mp = 143-145 0C (decomposed). 1H 

NMR: (acetone , 293K) δH: 8.35 (d, 4H, J = 3 Hz, 3pz), 7.66 (d, 4H, J =  8 Hz, 6 Ar), 

7.18 (s, 4H, 3Ar), 7.02 (d, 4H, J = 2Hz, 5pz), 7.01 (d, J = 2Hz, H, Ar), 6.34 (dd, J = 3, 2 

Hz, 4pz), 2.23(s, 12H, p-Me)  ppm. 13C NMR: (acetone, 293K) δC: 145.2, 144.9, 132.4, 

130.1, 129.1, 128.5, 127.4, 120.3, 109.5, 19.6  ppm. 19F NMR: (acetone, 293K)  δF -151.6 
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ppm. UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 712 (790), 388 (8400), 340(15000). Crystals 

suitable for single-crystal X-ray diffraction were grown by layering an acetone solution 

with hexanes and allowing solvents to diffuse for 12h. 

[Co(Me,Me)2](BF4), [1](BF4). 

The green solution of 0.208 g (0.291 mmol) of 1 and 0.057 g (0.291 mmol) of AgBF4 in 

20 mL THF was stirred for 12h. THF was evaporated by vacuum distillation and the 

remaining green solid was extracted with 15mL (x 2) CH2Cl2 and it was filtered through 

a small pad of Celite. The solvents were removed by rotary evaporation and dried under 

vacuum to leave 0.214 g (92 % yield) [1](BF4) as a green solid. Mp = 212-215 0C 

(decomposed). 1H NMR: (acetone , 293K) δH  8.36 (dd, J = 2.80, 0.93 Hz, 4H), 7.66 (d, J 

= 7.65 Hz, 4H), 7.19 (d, J = 1.28 Hz), 7.03 (dd, J = 2.54 , 0.94 Hz, 4H), 7.02 (dd, J = 

7.65, 1.56 Hz), 6.34 (t, J = 2.69 Hz), 2.23 (s, 12H) ppm. 13C NMR: (acetone, 293K)  δC 

146.1, 142.9, 133.3, 131.0, 130.1, 129.5, 128.4, 121.2, 110.4, 20.51 ppm. 19F NMR: 

(acetone, 293K)  δF 156.63 ppm. UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 714 (1384), 392 

(13109), 337 (23385). Crystals suitable for single-crystal X-ray diffraction were grown 

by layering a CH2Cl2 solution with hexanes and allowing solvents to diffuse for 12h. 

[Rh(Me,Me)2](PF6), [2](PF6). 

A solution of 0.502 g (0.731 mmol) of (NEt4)[Rh(Me,Me)Cl3]·H2O, 0.241 g ( 0.731 

mmol) of H(Me,Me), 0.766 g ( 2.194 mmol) of TlPF6 and 0.50 mL of a 1.4685 M (0.734 

mmol) methanolic solution  of (NEt4)(OH) in 15 mL CH3CN was heated at reflux for 15 

hours. Then the mixture was allowed to cool to the room temperature and filtered through 

a short pad of Celite. The organic fractions were evaporated and 0.429 g (65% yield) the 
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desired product as a red brown solid was isolated by a column chromatography in 

alumina (Rf  = 0.4) by eluting with 40:1 dichloromethane/methanol as a red band and 

removing solvents. Mp = 225 - 227 0C (decomposed). 1H NMR: (acetone, 293K) δH : 

8.44 (dd, J = 2.84, 0.79 Hz, 4H), 7.54 (d, J = 8.38 Hz, 4H), 7.21 (dd, J = 2.44, 0.68 Hz, 

4H), 7.17 (d , J = 1.2 Hz, 4H), 7.04 (dd, J = 8.43, 1.19 Hz, 4H), 6.42 (t, J = 2.67 Hz, 4H), 

2.22 (s, 12H) ppm. 13C NMR: (acetone, 293K) δC 143.6, 142.9, 132.6, 131.5, 129.7, 

128.5, 125.1, 123.0, 108.9, 19.5 ppm. 19F NMR: (acetone, 293K) δF -78.8 ppm. 31P NMR: 

(acetone, 293K) δP -144.26 (sept, J = 112.0 Hz) ppm. UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 

453 (7651), 392 (8826), 332 (18212). Crystals suitable for single-crystal X-ray diffraction 

were grown by layering a CH2Cl2 solution with hexanes and allowing solvents to diffuse 

for 12h. 

[Ir(Me,Me)2](PF6), [3](PF6). 

A solution of 0.358 g (1.015 mmol) IrCl3·3H2O, 0.668 g (2.030 mmol) of H(Me,Me) and 

1.40 mL of 1.4685 M ( 2.056 mmol) methanolic solution of (NEt4)(OH) in 30 mL of 

ethanol was heated at reflux for 12 hours and then was allowed to cool to room 

temperature. After cooling 1.0690 g (3.120 mmol) of TlPF6 was added and the mixture 

was heated at reflux for three days. Then it was allowed to cool to room temperature and 

was filtered through a short pad of celite. The filtrate was concentrated onto a small pad 

of alumina and was packed onto a fresh alumina column. Organic impurities were 

removed by elution with Et2O and 0.180 g (18% yield) of the desired product as a yellow 

solid was isolated by eluting with ethyl acetate: methanol 10: 1 and removing solvents 

from the yellow band (Rf = 0.42). Single crystals were grown by slow diffusion of 

toluene into a concentrated dichloromethane solution. Mp = 210-213 0C (decomposed). 
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1H NMR: (acetone, 293K) δH 8.44(d, J = 3 Hz, 4H, 3pz), 7.52 (d, J = 8 Hz, 4H), 7.25 (d, 

J = 2 Hz, 4H), 7.16 (s, 4H, Ar), 7.00 (d, J = 8 Hz, 4H), 6.43 (dd, J = 3, 2 Hz, 4H), 2.22 (s, 

12H) ppm. 13C NMR: (acetone, 293K) δC 142.7, 142.3, 131.5, 129.8, 129.5, 128.5, 125.8, 

123.3, 108.3, 19.2 ppm. UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 1405 (414), 613 (266), 417 

(13492), 399 (14774). Crystals suitable for single-crystal X-ray diffraction were grown 

by layering a toluene solution with hexanes and allowing solvents to diffuse. 

[Co(Me,Me)2](BF4)2, [1](BF4)2. 

A mixture of 0.0554 g (0.069 mmol) of [1](BF4) and 0.0081 g (0.069 mmol) of (NO)BF4 

in 20 mL of degassed CH3CN was stirred under argon which was immediately turned to 

the red/purple. After the purple solution had been stirred for 1 hour, solvents were 

removed under vacuum. The resulting black/brown residue was washed with two 5 mL 

portions of degassed Et2O and was dried under a vacuum for several hours to leave 

0.0505 g (83% yield) of [1](BF4)2. μB = 2.09, UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 812 

(4506), 544 (3105), 387 (14225), 331 (20357). 

[Rh(Me,Me)2](PF6)(BF4), [2](PF6)(BF4). 

A mixture of 0.0509 g (0.056 mmol) of [2](PF6) and 0.0066 g (0.056 mmol) of (NO)BF4 

in 20 mL of degassed CH3CN was stirred under argon which was immediately turned to 

the red/brown. After the solution had been stirred for 1 hour, solvents were removed 

under vacuum. The resulting black/blue residue was washed with two 5 mL portions of 

degassed Et2O and was dried under a vacuum for several hours to leave 0.049 g (92% 

yield) of [2](PF6)(BF4). μB = 2.05, UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 744 (4000), 482 

(7918), 376 (13479), 323 (21555). 
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[Ir(Me,Me)2](PF6)(BF4), [3](PF6)(BF4). 

A mixture of 0.0547 g (0.055 mmol) of [3](PF6) and 0.0064 g (0.055 mmol) of (NO)BF4 

in 20 mL of degassed CH3CN was stirred under argon which was immediately turned to 

the red/brown. After the solution had been stirred for 1 hour, solvents were removed 

under vacuum. The resulting black/blue residue was washed with two 5 mL portions of 

degassed Et2O and was dried under a vacuum for several hours to leave 0.0446 g (75% 

yield) of [3](PF6)(BF4). μB = 1.93, UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 1686 (9733), 654 

(2176), 539 (3549), 400 (13969). 

[Co(Me,Me)2](BF4)3, [1](BF4)3. 

A mixture of 0.061 g (0.076 mmol) of [1](BF4) and 0.0178 g (0.152 mmol) of (NO)BF4 

in 20 mL of degassed CH3CN was stirred under argon which was immediately turned to 

the purple. After the purple solution had been stirred for 1 hour, solvents were removed 

under vacuum. The resulting black/brown residue was washed with two 5 mL portions of 

degassed Et2O and was dried under vacuum for several hours to leave 0.0696 g (94% 

yield) of [1](BF4)3. μB = 2.88, UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 804 (10021), 559 

(6369), 367 (18755), 326 (18988). 

The following two compounds were prepared similarly. 

[Rh(Me,Me)2](PF6)(BF4)2, [2](PF6)(BF4)2. 

A mixture of 0.055 g (0.061 mmol) of [2](PF6) and 0.0142 g (0.122 mmol) of (NO)BF4 in 

20 mL of degassed CH3CN was stirred under argon which was immediately turned to the 

blue color. After the blue solution had been stirred for 1 hour, solvents were removed 
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under vacuum. The resulting black/blue residue was washed with two 5 mL portions of 

degassed Et2O and was dried under a vacuum for several hours to leave 0.0527 g (80% 

yield) of [2](PF6)(BF4)2. μB = 2.67, UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 2572 (3246), 953 

(1796), 737 (5885), 697 (5606), 544 ( 4569), 469 (5872), 368 (13336). 

[Ir(Me, Me)2](PF6)(BF4)2, [3](PF6)(BF4)2. 

A mixture of 0.0691 g (0.0695 mmol) of [3](PF6) and 0.0162 g (0.139 mmol) of (NO)BF4 

in 20 mL of degassed CH3CN was stirred under argon which was immediately turned to 

the blue color. After the blue solution had been stirred for 1 hour, solvents were removed 

under vacuum. The resulting black/blue residue was washed with two 5 mL portions of 

degassed Et2O and was dried under vacuum for several hours to leave 0.0702 g (86% 

yield) of [3](PF6)(BF4)2. μB = 2.87, UV-Vis (CH2Cl2): nm (ε, cm-1M-1) 914 (16764), 680 

(6140), 600 (7938), 517 (6227), 367 (14170), 235 (74601). 
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CHAPTER 4 

INTRAMOLECULAR ELECTRONIC COMMUNICATION OF RHENIUM 
OLIGOMERIC PINCER-TYPE COMPLEXES 

4.1. INTRODUCTION 

 Organic mixed-valence compounds have been studied extensively for the 

potential applications of electronic and optical materials or for model to study 

fundamental intramolecular electron transfer processes.1-5 The redox centers in many of 

organic mixed-valence compounds are comprised of organoamines.6-11 Although other 

functional groups such as imides,12 quinones,13 nitro14,15 and hydrazines16,17 have also 

been extensively studied. The popularity of triarylamine based radicals is due in part to 

facile synthesis and to the stability of the radical cations.  

 Lambert et al. has synthesized and studied the electronic properties of a series of 

compounds where two triarylamine groups are linked by various organic bridges.7 Two 

bis(triarylamine) complexes linked by different phenylenes are shown in Figure 4.1. The 

mono-oxidized bis(triarylamine) is a mixed valence compound since it has a neutral 

redox center and a oxidized redox center. Therefore, the electronic communication of 

these two centers could be occurred through the bridge. After the investigation of electron 

communication of two redox centers by the means of electrochemistry and spectro-

electrochemistry, the bis(triarylamine) compound, which has a phenyl spacer, has been 

assigned to the Robin-Day class III mixed valence system. The bridge of two phenyl 

groups has not allowed delocalizing of the charge over two redox centers that much like 

the one phenyl group spacer and it has been assigned to the Robin-Day class II mixed 
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valence system. In this way, they have studied the mixed-valence properties of 

bis(triarylamines) as the function of the bridge and have shown that the nature of the 

bridge plays very important role in the electronic communication of two redox centers.  

 

 

Figure 4.1. Two bis(triarylamine) complexes studied by Lambert et al.7 

 

 Mixed-valence properties of bis(diaryl)amines are not studied that much 

compared to the bis(triarylamine) derivatives. It might be due to the irreversible oxidation 

of diarylamines. Binding of metal ions to the diarylamine positions may stabilize the 

radicals and would permit a reversible oxidation. The redox active di(2-pyrazolyl-p-

tolyl)amine ligand, H(Me,Me), which we have described in previous chapters, is a diaryl 

amine based pincer-type ligand. It have the ability to bind with metal ions in tridentate 

manner and redox properties of the ligand were investigated. Therefore, we were set to 

synthesize ditopic pincer ligands by connecting two mono-topic pincer ligands over 

phenylene bridges. This would results in dinucleating pincer ligands, which have two 

diarylamines linked over the phenylene bridges. Metal complexes of these ligands would 

provide reversible ligand centered oxidations and the stability to the mixed-valence 

complexes. 
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 This chapter outlines the synthesis of three ditopic pincer ligands H2(L1), H2(L2), 

and H2(L3) with one, two, and three phenylene rings between amido nitrogens.  We also 

detail the bimetallic tricarbonyl derivatives and oxidized derivatives of these rhenium 

complexes to probe electronic properties. 

4.2. RESULTS AND DISCUSSION 

The three dinucleating pincer-type ligands were prepared by the pathways 

summarized in Schemes 4.1-4.3. The ligand H2(L1),  was synthesized by coupling two 

equivalents of pyrazole to 1,4-dibromo-2,5-difluorobenzene followed by Pd2(dba)3 

catalyzed coupling of two equivalents of H(pzAnCH3),18 Scheme 4.1. This reaction only 

gave low yield (19%) of the product, but was the best among the other alternations 

(solvent, catalyst, reaction time, temperature) that were explored. A different procedure 

was followed to synthesize H2(L2), Scheme 4.2. The Pd2(dba)3 catalyzed coupling 

reaction between p-toluidine and 4,4’-Diiodobiphenyl yielded 98% of the diarylamine 

intermediate, I2A, which was then subjected bromination using four molar equivalents 

bromine liquid in DMF to yield 92% of the desired tetra-brominated compound, I2B. The 

target H2(L2) was obtained a moderate yield by CuI catalyzed amination reaction of I2B 

with pyrazole. The final ligand, H2(L3) was synthesized in a high yield by the Suzuki 

coupling reaction between H(Me,Br)19 and 1,4-phenylenediboronic acid (Scheme 4.3). 

Finally the model mono-nucleating ligand, H(L4), with CH3 and Phenyl groups in the 

para-aryl positions, was synthesized by the Suzuki coupling of H(Me,Br) with phenyl 

boronic acid. 
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Scheme 4.1. Synthesis of H2(L1). (i) 2.2 eq NaH, Δ, DMF; (ii) 2.5 eq tBuONa, 8 mol% 
DPPF, 4 mol% Pd2(dba)3, toluene, Δ. 

 

 

 

Scheme 4.2. Synthesis of H2(L2). (i) 3 eq. tBuONa, 2 mol% P(tBu)3, 2 mol% Pd2(dba)3, 
toluene, Δ; (ii) Br2(l), DMF;  (iii) 7 eq Hpz, 7 eq. K2CO3, 35 mol% DMED, CuI, xylene, 
Δ. 
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Scheme 4.3. Synthesis of H2(L3).  (i) 20 mol% Pd(PPh3)4, Na2CO3. 

 
Schemes 4.4 - 4.6 shows the preparative routes to bis-tricarbonylrhenium(I) 

complexes of these ditopic pincer ligands. The complex [Re(CO)3]2(μ-L1)), 1 was 

synthesized by the reaction of H2(L1) with 2 equivalents of each Re(CO)5Br and NEt4OH 

in refluxing toluene as represented in Scheme 4.4. The desired product, 1, was obtained 

by filtration as a yellow insoluble solid. Following a similar procedure, the other two 

rhenium complexes, [Re(CO)3]2(μ-L2), 2 and [Re(CO)3]2(μ-L3), 3 were prepared. The 

model compound Re(CO)3(Me,Ph), 4 was synthesized by using a 1:1:1 ratio of H(L4): 

Re(CO)5Br: NEt4OH . As 4 is slightly soluble in toluene, toluene was evaporated by 

vacuum distillation and the product was purified by washing with MeOH. The complexes 

1-3 are soluble in DMF, DMSO, and slightly soluble in CH2Cl2 but insoluble in most 

other organic solvents. The complex 4 is soluble in CH2Cl2, acetone, and acetonitrile. 
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Scheme 4.4. Synthesis of [Re(CO)3]2(μ-L1), 1. i) toluene, Δ, 10 mins. ii) 2 eq NEt4OH, 
Δ, 12 h. 

 

 

 
Scheme 4.5. Synthesis of [Re(CO)3]2(μ-L2), 2. i) toluene, Δ, 10 mins. ii) 2 eq NEt4OH, 
Δ, 12 h. 
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Scheme 4.6. Synthesis of [Re(CO)3]2(μ-L3), 3. i) toluene, Δ, 10 mins. ii) 2 eq NEt4OH, 
Δ, 12 h. 
 

The solid state structure of 2 and 4 were determined. The single crystals of model 

compound, 4, were grown layering hexanes on top of CH2Cl2 solution of the complex 

(Figure 4.2). It has a distorted octahedral metal center with the ligand binding in a fac-κ3 

manner. This binding mode as well as Re-N bond distances and angles are similar to 

those reported for (CO)3Re(Me,Me), 5 (Table 4.1).20-21 The X-ray quality single crystals 

of 2·1.6DMF·2Et2O were grown by layering Et2O on a DMF solution of the complex and 

allowing solvents to diffuse. The structure is shown in Figure 4.3, bond lengths and 

angles are are given in Table 4.1, while structure refinement data is listed in Table 4.2.  

The complex has approximate inversion symmetry. Each pincer part of the ligand is 

bound in the fac-κ3 N-manner via the central amido nitrogen and two pyrazolyl nitrogens 

to each rhenium atom. The torsion angle of Re1NAmido- Re2NAmido is 180 (2) 0 indicate 

that the rhenium atoms are on opposite sides of the mean plane of the bridging ligand. 

The bonding geometry of two rhenium centers is nearly the same; those are associated 

with two types of Re-N bonds, Re-NAr and Re-Npz. The average bond distance of Re-NAr 
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(2.161(2) Å) is somewhat longer than the average bond length of Re-Npz (2.157 (2) Å). 

The amido nitrogen is nearly planar and ∑ ’s about N5 is 358 (6)0.  The rhenium-carbon 

bond lengths of carbonyls are not identical but are nearly the same with an 1.921(3) Å 

average bond length. Further, the two rings of the central biphenyl moiety are twisted 

from coplanarity with a 200 dihedral angle. It was not yet proven possible to grow 

suitable-sized X-ray quality crystals of either 1 or 3; crystals formed from different 

solvent systems but were usually too small and those were seemingly large enough did 

not diffract at higher angles. 

 

 

 

Figure 4.2. Molecular structure of 4 determined by X-ray crystallography. 
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Figure 4.3. Structure of [Re(CO)3]2(μ-L2)·1.6DMF·2Et2O (2.1.6DMF· 2Et2O). 

 

Table 4.1. Average bond distances and inter atomic angles of 2, 4, and 5. 

 

 
 2·1.6DMF·2Et2O 4 5 
Re-Namido (Avg),Å  2.160 (2) 2.157 (3) 2.163 (3) 
Re-Npz (Avg), Å 2.157 (2) 2.168 (3) 2.161 (3) 
Re-C (avg), Å 1.962 (3) 1.917 (3) 1.928 (4) 

 N Amido 3560 (6) & 3590 (6) 356 0 (6) 356 0 (6) 
tol – tol 23.70 (3)& 25.20 (3) 24 0 (3)  

 

 

 

 



131 
 

Table 4.2. Crystallographic data collection and structure refinement for 
2·1.6DMF·2Et2O and 4. 

 

Compound 2·1.6DMF·2Et2O 4 
Empirical formula C50.40603H45.21809N11.59397O8Re2 C28H20N5O3Re 
Formula weight 1313.79 660.69 
Temperature/K 100.00(10) 100.00(10) 
Crystal system Triclinic triclinic 
Space group P-1 P-1 
a/Å 11.2495(2) 9.7304(2) 
b/Å 14.7960(3) 11.5214(4) 
c/Å 15.4484(3) 12.5751(4) 
α/° 90.1200(15) 70.534(3) 
β/° 94.8715(15) 72.056(3) 
γ/° 106.7428(17) 67.271(3) 
Volume/Å3 2452.49(8) 1199.62(6) 
Z 2 2 

ρcalcmg/mm3 1.779 1.829 
μ/mm-1 4.999 5.107 
F(000) 1286 644 

Crystal size/mm3 0.3044 × 0.088 × 0.0581 
0.3796 × 0.1549 × 
0.0218 

Radiation MoKα, (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 
collection 

5.76 to 59.04° 5.9 to 58.96 

Index ranges -15 ≤ h ≤ 15, -20 ≤ k ≤ 20, -
21 ≤ l ≤ 20 

-13 ≤ h ≤ 13, -15 ≤ k ≤ 
15, -16 ≤ l ≤ 17 

Reflections collected 46563 26564 
Independent reflections 12205 [Rint = 0.0319, Rsigma = 

0.0327] 
6099 [Rint = 0.0523, Rsigma = 
0.0510] 

Data/restraints/parameters 12205/23/703 6099/0/335 
Goodness-of-fit on F2 1.059 1.043 
Final R indexes [I>=2σ (I)] R1 = 0.0244, wR2 = 0.0496 R1 = 0.0304, wR2 = 

0.0550 
Final R indexes [all data] R1 = 0.0319, wR2 = 0.0532 R1 = 0.0389, wR2 = 

0.0582 
Largest diff. peak/hole / e 
Å-3 

1.45/-1.20 1.43/-1.08 

aR = ||Fo|-||Fc||/|Fo|.  dwR= [w(|Fo
2|-|Fc

2|)2/w|Fo
2|2]1/2 
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 The IR spectra of each rhenium complex 1-4 measured in KBr pellets, are given 

in Figure 4.4 while data are presented in Table 4.3. All four spectra show the 

characteristic spectral pattern for three C-O stretching bands for fac-Re(CO)3 units. 

Further, the data are all nearly identical and in very good agreement with fac-

Re(CO)3(Me,Me), 5.20,21Change in para-aryl substituents does not seem to impact the 

metal center CO stretch in contrast to Rh(I) derivatives.22 

 

 

 
Figure 4.4. Solid state KBr pellet IR spectra of the new complexes, 1-4. 
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Table 4.3. KBr pellet IR spectroscopic data for various Re(CO)3 complexes. 

 

Compound ν C-O cm-1 Average ν C-O, cm-1 

1 2013, 1900, 1884 1932 

2 2015, 1901, 1882 1933 

3 2013, 1901, 1876 1930 

4 2017, 1911, 1874 1934 

5 2013, 1901, 1876 1930 
 

 
The electrochemical properties of four rhenium complexes were measured by 

cyclic voltammetry, and representative cyclic voltammograms are found in Figure 4.5, 

while data are summarized in Table 4.4. Compound 4 shows a quarsireversible one 

electron oxidations near +0.706 V versus Ag/AgCl (ΔE>>59 mV and ΔE = Epa-Epc 

increases as a function of scan rate). The electrochemical behavior of 4 is similar to that 

reported for 5, which has the oxidation at +0.651 V versus Ag/AgCl in DMF. The redox 

potentials of these two complexes increase with the average σp of the para-aryl 

substituents. The potentials at which this redox process occurs for both rhenium(I) 

complexes are conspicuously low for a heavily metal-centered oxidation. For instance, 

the anodic one-electron oxidation of CpRe(CO)3
0/+ was identified at +1.16 V versus 

Ag/AgCl,23,24 and this metal-centered oxidation of Cp ligand occurs at much higher 

potentials. Since the oxidation of H(L4) or H(L5) is irreversible but becomes reversible in 

4 or 5; the metals clearly are important to the redox behavior. Moreover, the one-electron 

oxidized 5, 5+, was demonstrated to contain a mainly ligand-centered radical, with 

significant metal character, by IR, EPR experiments, and a theoretical (DFT) study.20,21  
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 Complex 1 and 2 show two one-electron oxidation waves assessed by 

comparison of current intensities with equimolar solutions of ferrocene. The third 

complex, 3, exhibits a single two-electron oxidation wave, while the model compound 4 

shows one one-electron oxidation. All of these oxidations were quasi-reversible because 

the ratios of current peak intensities were the same, but the separation between anodic 

and cathodic peaks were greater than 59 mV and increased with the scan rates (Table 

4.4). Compound 1, which has only one phenyl group spacer, in between two redox-active 

amide groups, shows two well separated oxidation waves, while 2 shows two oxidation 

waves, which overlap each other, but are clearly visible.  

According to the data summarized in Table 4.4, the separation between the two 

oxidation potentials in 1 is 292 mV and in 2 is 119 mV; the separation between two 

oxidation waves decreases with increasing bridge length. Similarly, the first oxidation 

potentials of 1 and 2 increase with the length of spacer in between two redox centers.  

The appearance of a single two-electron oxidation in the compound 3, indicates that a 

three-phenyl group spacer does not permit any electronic communication between two 

redox-active centers in the CV time scale. The redox potential of model compound, 4, 

further shifts to a higher potential indicating the electron deficiency nature of redox 

center compared to other complexes.  
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Figure 4.5. Cyclic voltammograms of 1, 2, 3, and 4 in DMF obtained at a scan rate 100 
mV/s. N(Bu)4PF6 was used as the supporting electrolyte and Ag+/AgCl as the reference 
electrode. 
 

Table 4.4. Electrochemical data from cyclic voltammetry experiments of 1 - 5 in DMF.  
 

  
E0 , V vs Ag/AgCla 

   
Compound 
 

E0
ox1 (Epa – Epc  mV) 

 
E0

ox2 (Epa – Epc  mV) 
 

Kb
com 

 
 1 0.300  (72) 0.592 (63) 9.55 x 105 
 2 0.443  (53) 0.562 (54) 1.10 x 102 
 3 0.626  (66)  -  - 
 4 0.706  (94)  -  - 
 5 0.651  (64) 

 

aAverage values of (Epa + Epc )/2 obtained for scan rates of 50, 100, 200, 300, 400, and 
500 mV/s with 0.1 M NBu4PF6 as supporting electrolyte. b Kcom = e(ΔE·F/RT) , T = 295 K.   
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[Re(CO)3]2(μ-L)  +  [Re(CO)3]2(μ-L)]2+               2 [[Re(CO)3]2(μ-L)]+             (1) 

Kcom = [[[Re(CO)3]2(μ-L)]+] 2 / [[Re(CO)3]2(μ-L)] [[Re(CO)3]2(μ-L)]2+                 (2) 

   The comproportionation constants calculated from the electrochemical data are 

found in Table 4.4, reveals that the former complex, 1 (Kcom = 9.6 x 105) is at the Robin-

Day Class II/III borderline, 2 (Kcom = 1.1 x 102) is Class I/II borderline, and 3 is Class I 

on the electrochemical time scale.25 It is noted that a somewhat related, but purely 

organic, derivatives with two dianisylamine [(p-MeOC6H4)2N] moieties connected by the 

para-phenyl, and para-biphenyl spacers are known, and their monooxidized derivative of 

one phenyl linked compound is a Robin-Day Class III and the other one is Class II 

species.7  It is noted that the electrochemical properties of linked diarylamines, which are 

more closely related to 1-3, are not known. The other physicochemical techniques with 

very different time scales can lead to quite different conclusions. Therefore the separation 

of oxidation waves alone is insufficient to establish the strength of the electronic 

communication, and further verification of Robin-Day class in 1+-3+ was attempted by 

spectroscopic means. 

In order to investigate IVCT band of mixed-valence derivatives, oxidized 

complexes were synthesized. Accordingly, doubly oxidized derivatives were prepared by 

chemical oxidation with NOBF4 (Scheme 4.7). The oxidation potentials of all three 

rhenium complexes are low enough to permit two-electron oxidation with NOBF4 (1.65 

V vs Ag/AgCl) in CH2Cl2. The reaction of each complex with two equivalents of NOBF4 

in CH2Cl2 (as a suspension) gave solutions for the corresponding doubly oxidized 

1(BF4)2, 2(BF4)2 and 3(BF4)2. It is noted that each of the non-oxidized 1, 2, and 3 is 
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insoluble in CH2Cl2, but oxidized versions are soluble. These derivatives are 

paramagnetic and EPR silent in CH2Cl2 at 77 K. Also, for the comparison of spectral 

features 4 was oxidized to 4(BF4) with one equivalent of NOBF4.Unfortunately it has not 

yet been possible to grow single crystals of these oxidized derivatives that on suitable for 

X-ray diffraction.   

The IR spectra (KBr pellet) of 2 and 22+ are shown in Figure 4.6. On oxidation, 

there was a shift to higher frequency for the C-O stretching bands, reflecting lower 

capacity for metal-CO backbonding and increased strength of the CO bond. The change 

in average energy of the C-O stretching, ΔνCO(avg), increases by 14 cm-1 for 1 to 12+, 14 

cm-1 for 2 to 22+, 21 cm-1 for 3 to 32+ and 24 cm-1 for 4 to 4+. The IR streching frequency 

increase for the complex 5 upon oxidation was 41 cm-1 in KBr pellet. For comparison 

with a more heavily metal centered oxidation, rhenium-centered oxidation would be 

expected to have νCO(avg) increase on the order of ΔνCO(avg), for CpRe(CO)3 to 

CpRe(CO)3
+ , about 100 cm-1.24 

 

Scheme 4.7. Preparation of oxidized 1n+  , Top: n = 2, Bottom: n = 1. 
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Figure 4.6.  IR spectra of 2 and 2·(BF4)2. 
 
 
 The electronic spectrum of each 1- 4 and 5 in CH2Cl2 shows single visible band 

near 380 nm, that gives rise to the yellow color of the complexes. The UV/visible/NIR 

spectra of 1(BF4)2 , 2(BF4)2 and 3(BF4)2 and 4(BF4) are shown in Figure 4.7. The spectra 

of doubly oxidized 2 and 3 complexes shows modestly intense (2000 < ε < 18 000 M-

1cm-1) lowest energy band in the region of 400-1000 nm that characteristic of π-radical 

transitions (π(HOMO-n) to π(SOMO)) similar to those found in the spectra of previously 

described mono- and di-oxidized [Ga(Me,Me)2]+ complexes.26 The π-radical band in 12+ 

has a much lower intensity compared to 22+ or 32+ and shows a red shift along the series 

1(BF4)2 (λmax = 524 nm) > 2(BF4)2 (λmax = 638 nm) > 3(BF4)2 (λmax = 793 nm). 

Dichloromethane solutions of these solutions have distinct colors, purple colored 1(BF4)2, 

blue colored 2(BF4)2, green colored 3(BF4)2, and green/blue colored 4(BF4). 

 

ν̅  ( cm-1) 
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Figure. 4.7. UV-Visible spectra of doubly oxidized 1, 2, and 3, and 4(BF4) in CH2Cl2. 

 

The comproportionation reactions (eq 1 and Scheme 4.7) were used to prepare 1+, 

2+, and 3+.  The X-band (9.65 GHz) EPR spectra of 1(BF4)2, 2(BF4)2, 3(BF4)2, 1(BF4), 

2(BF4), and 3(BF4) at 77 K and 293 K were recorded in CH2Cl2. The EPR spectra of 

1(BF4) showed an isotopic signal at g = 2.00 , both at 293 K and 77 K. Rhenium has two 

EPR active isotopes, 185Re (37.4 %) and 187Re (62.6%) ; both have I = 5/2. EPR spectrum 

of 1+ shows small hyperfine interaction between the electronic spin of the 185/187 Re 

nuclei. It might be due to the rapid interchange of the spin in-between two redox active 

centers, which would not detect any coupling with rhenium in the EPR time scale or the 

signal might be the averaged. In contrast to that, EPR spectra of 2(BF4) and 3(BF4) at 

room temperature show well-resolved signals due to the hyperfine interaction between 

the electron spin and two rhenium nucleic. On the other hand EPR spectra of these two 
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complexes at 77 K show broad peaks due to the quadrupolar interactions with rhenium 

nuclei. 

 Room temperature EPR spectra of 1(BF4), 2(BF4) and 3(BF4) were simulated 

successfully. The mono-oxidized 1 shows an isotropic EPR spectrum at room 

temperature that could be adequately simulated with g = 2.0052, aN1 = 0.71 mT, aN2 = 

0.75 mT, aRe1 = 0.18 mT and aRe2 = 0.17 mT. The mono-oxidized complex 2 shows well 

resolved eleven lines spectra at g = 2.0027, which is close to the free electron value. The 

electron spin couples to two nitrogen atoms and two rhenium atoms, adequately 

simulated with aN1 = 3.21 mT, aN2 = 0.91 mT, aRe1 = 0.21mT and aRe2 = 1.52 mT. 

 

Figure 4.8. Experimental (top) and Simulated (bottom) X-band (9.49 GHz) EPR spectra 
of 1(BF4)  in CH2Cl2 at 293 K. 
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Figure 4.9. Experimental (top) and Simulated (bottom) X-band (9.49 GHz) EPR spectra 
of 2(BF4) in CH2Cl2 at 293 K. 

 

 

 

Figure 4.10. Experimental (top) and Simulated (bottom) X-band (9.46 GHz) EPR spectra 
of 3(BF4) in CH2Cl2 at 293 K. 

 

The room temperature X-band EPR spectrum of 3(BF4) (Figure 4.10) is isotopic, 

centered at g = 2.0135. The hyperfine coupling was simulated using aN1 = 0.32 mT, aN2 = 

3.24 mT, aRe1 = 0.5 mT and aRe2 = 1.77 mT. The uneven coupling constants are in line 
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with those of 2(BF4). As these radicals show hyperfine coupling with rhenium nuclei, a 

small amount of spin density is located unevenly on both metals. Hyperfine coupling was 

not observed in the EPR spectra of 1(BF4), perhaps due to the rapid exchange on the EPR 

time scale. Attempts to observe doubly oxidized derivatives by EPR spectroscopy were 

not fruitful.   

The comproportionation reactions to form 1+, 2+, and 3+ were probed by 

spectroscopic titrations of neutral rhenium complexes with doubly-oxidized derivatives. 

Upon the addition of sub-stoichiometric amounts of doubly oxidized 12+ into the yellow 

solution of 1 in CH2Cl2, new bands at 820 nm, 539 nm and 417 nm grew at the expense 

of the band at 386 nm for 1 until one equivalent was reached (Figure 4.8). The two higher 

energy bands are assigned to the π-radical transition, while the band at 820 nm is 

assigned as the valence charge transfer (IVCT) transition.  

Similar spectral changes were observed for the titration of 2 with 22+ (Figure 

4.12). However the disappearance of the band at 401 nm 2 was observed concomitantly 

with the growth of new bands near 1126 nm and 533 nm (π-radical) and 1335 nm 

(IVCT). Similarly, the IVCT band at 2204 nm and π-radical bands at 555 nm and 403 nm 

appeared at the expense of the broad spectrum of 3 during the course of titration (Figure 

4.13). By the comparison of the data for three titrations, it is noted that the intensity of 

bands for 2+ are much higher than for 1+ or 3+. The same observation was made  
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Figure 4.11. Spectrophotometric titration of 1 with 12+ in CH2Cl2. Inset: Absorbance vs 
mol. equi. of 12+ added at 820 nm. 

 

 

Figure 4.12. Spectrophotometric titration of 2 with 22+ in CH2Cl2. Inset: Absorbance vs 
mol. equi. of 22+ added at 1340 nm. 
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Figure 4.13. Spectrophotometric titration of 3 with 32+ in CH2Cl2. Inset: Absorbance vs 
mol. equi. Of 32+ added at 820 nm. 

 

repeatedly on authentically pure samples and we currently have no satisfacting 

explanation as to the origin of the enhanced intensity. 

The mono-oxidized complexes were also prepared on the synthetic scale by the 

comproportionation reaction in CH2Cl2 using 1:1 mixture of non-oxidized: doubly 

oxidized complex (Scheme 4.7). The same complexes were also prepared independently 

using 1:1 mixture of NOBF4 and either 1, 2, or 3. While there was no significant 

difference in products by two methods, the comproportionation reaction is more 

convenient because the required mass of NOBF4 was very low for the other method as 

difference of molar masses between NOBF4 and either 1-3 made it difficult to measure 

small masses of the former. Also (1-3)+ have greater solubility than NOBF4 in many 

solvents. 
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  IVCT bands of 1+, 2+, and 3+ are shown in Figure 4.14-4.17. The energy of 

IVCT bands increases with decreasing length of the spacer (Figure 4.14). Each IVCT 

band has a characteristic shape that can be fit as the sum of three increasing energy, 

decreasing intensity and overlapping Gaussian bands that are separated by ~500 cm-1 

(1+); ~1400 cm-1 (2+); and ~1200 cm-1 (3+) that may be part of a vibrational progression. 

The lowest energy of the three bands was used in Hush relations to extract Hab and other 

parameters in Table 4.5.27,28 EOP decreases with increasing length of spacer being 

11,900(16) cm-1 for 1+
, 7442 (9) cm-1 for 2+, and 4363(30) cm-1 for 3+. 

  

 

Figure 4.14. IVCT bands of singly oxidized rhenium complexes in CH2Cl2. 
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Figure 4.15. Deconvolution of IVCT band of 1(BF4).  Parameters for curve fitting: (λmax 

(cm-1), Δν1/2 (cm-1), ε (M-1cm-1)): Curve 1 (11900, 900, 6938), Curve 2(13570, 882, 4180), 
Curve 3(15000, 600, 1000), Curve 4(18542, 2839, 3970). 
 

 

 

 
Figure 4.16. Deconvolution of IVCT band of 2(BF4). Parameters for curve fitting: (λmax 

(cm-1), Δν1/2 (cm-1), ε (M-1cm-1)): Curve 1 (7442, 563, 43904), Curve 2( 8901, 560, 
20735), Curve 3 (10290, 917, 5269). 
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Figure 4.17. Deconvolution of IVCT band of 3(BF4). Parameters for curve fitting: (λmax 

(cm-1), Δν1/2 (cm-1), ε (M-1cm-1)): Curve 1 (4362, 482, 4580), Curve 2 (5567, 800, 3499), 
Curve 3 (7150, 500, 732), Curve 4 (9000, 1000, 5000). 
 

The value of d for 2+ was estimated from the crystallographic data of 2. As the first 

approximation the value of d was selected as the intra ligand NAryl-NAryl distance. It was 

also assumed that the distance did not significantly contract on oxidation. The d values 

for the other two complexes were estimated using appropriate bond lengths measured by 

the crystal structure of 2 to save as a reasonable limit for maximum Hab. Thus, for 3, three 

C1···C4 distances of phenyl group (3 x 3.184 Å) plus two C-C bonds (2 x 1.483 Å) and 

two N-C bonds (2 x 1.394 Å) gives 17.20 Å NAryl-NAryl distance.  Similarly, 6.60 Å NAryl-

NAryl distance was obtained for 1. IVCT band analysis data for these three complexes are 

given in Table 4.5.  
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Table 4.5.  Summary of IVCT band shape fitting and ET parameters of 1(BF4), 2(BF4), 
3(BF4). 
 

 1(BF4) 2(BF4) 3(BF4) 

EOP = λ (cm-1), Ch. 1 11900 (± 16 ) 7442 (± 9) 4363 (± 30) 

εmax (M-1cm-1) 6938 (± 4) 43904 (± 2) 4580 (± 6) 

Δṽ1/2 (cm-1) 900 (± 7) 563 (± 3) 482 (± 4) 

d (Å) 6.60 11.90 17.20 

Hab (cm-1), see Ch. 1 846 ( ± 5 ) 739 (± 4) 116 (± 4) 
α = 2Hab/λ  0.14  0.20  0.05 
ΔG* (cm-1), see Ch. 1  2189  1194  977 

ket (s-1), see Ch. 1  3.53 x 109  4.35 x 1011  4.03 x 1010 
 

  

The obtained Hab values for these mono-oxidized complexes fall in a wide range from 

116(4) cm-1 to 846(5) cm-1. This increase in the series also was reflected by the oxidation 

potential splitting ΔE, as determined by the cyclic voltammetry. In the cyclic 

voltammetric time scale complex 3 showed zero splitting and it shows very low 

electronic coupling element, 116 cm-1 in the spectroscopic time scale. The mono-oxidized 

complex 2 shows Hab = 739 cm-1 electronic coupling element. The mono-oxidized 

complex 1 has the highest value (Hab = 846 cm-1), which is consistent with the highest ΔE 

of cyclic voltammetry.  These all three complexes are in the Robin Day Class II mixed 

valence complexes according to the Marcus-Hush model as their 2Hab values are smaller 

than λ.29 Proper assignments to the Robin-day classes cannot be made as the solvent 

dependency of this IVCT was not measured. The complexes (1-3)+ decomposed in 

acetonitrile, DMF and THF preventing measurements. While the current complexes show 

lesser electronic communication with increasing of spacer as with other systems 
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(Organic).7,30-32 The current ones fall off much more quickly. Future theoretical studies 

may provide better clues as to the origin of the increased damping effect in these areas of 

complexes.  

4.3. CONCLUSIONS 

Bimetallic tricarbonylrhenium(I) complexes of three dinucleating pincer-type ligands 

were successfully synthesized and characterized. The spacer-between the redox active 

ends of these oligomeric ligands ranged from one to three phenylenes. The electronic 

properties of these three complexes were probed by cyclic voltametric and spectroscopic 

studies. The electronic communication drastically diminished in strength with the size of 

the spacer.  

The equilibrium constants for comproportionation (Kcom) were calculated by using 

the oxidation potential splitting. Complex 1 has large Kcom value, 9.55 x 105, which is the 

upper limit of Robin-Day class II (1 x 106 ) mixed valence compounds. Therefore, it can 

be assigned to the Robin-Day class II(A) mixed-valence compound. Complex 2 belong to 

the Robin Day Class II, while complex 3 does not show any electronic communication in 

the cyclic voltammetric time scale.  

The electronic coupling element, Hab, of mono-oxidized complexes was determined 

by analyzing their intervalence charge transfer (IVCT) bands. Hab for 1+, 2+, and 3+ are 

846 cm-1, 739 cm-1, and 116 cm-1, respectively. Those are within expected limit for the 

Robin-Day class II ( 0 < Hab < λ). The limited solubility and limited stability of mixed-

valence (1-3)+ solvents other than CH2Cl2 prevented the investigation of solvent 

dependence to the NIR transition; giving uncertainty to 1+.  Of importance, it was found 
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that evaluation of strength of electronic communication needs to be probed by multiple 

methods since electrochemistry indicated compound 3 as class I, whereas class II 

behavior was observed by NIR spectral analysis.  

These ligands should viable to support long range intramolecular charge transport in 

assemblies or polymeric chains. Future works of Dr. Gardinier’s lab will focus on 

making discrete heterometallic derivatives by putting different metals in one at a time or 

on making metallo polymers.  

4.4 EXPERIMENTAL 

 General Considerations.  The compounds  CuI, M2CO3 (M = Na, K, Cs), NaH, 

tBuONa, MgSO4, Na2S2O3, NaHCO3, NOBF4,  N-Bromosuccinimide (NBS), Bromine 

liquid, Pd2(dba)3, 1,1’-Bis(diphenylphosphino)ferrocene (DPPF), 1,4-dibromo-2,5-

difluorobenzene, pyrazole, N,N’-dimethylethylenediamine (DMED), 1,4-

phenylenediboronic acid, 4,4’-Diiodobiphenyl, p-toluidine, tri-t-butylphosphine, 

bromine, anhydrous DMF  and the 1.47 M [25% (w/w)] solution of (NEt4)(OH) in 

CH3OH were purchased commercially and used as received.  The compounds  

H(pzAnCH3)18 H(Me,Br)19, Re(CO)5Br33  and Pd(PPh3)4
34 were prepared according to 

literature procedures.  Diethyl Ether (Et2O) was dried over sodium/benzophenone ketyl.  

toluene, p-xylene and CH2Cl2 were dried over CaH2.  Solvents used in reactions were 

distilled under argon prior to use.   

Physical Measurements.  Midwest MicroLab, LLC, Indianapolis, Indiana 45250, 

performed all elemental analyses.  Melting point determinations were made on samples 

contained in glass capillaries using an Electrothermal 9100 apparatus and are 
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uncorrected.  1H and 13C NMR spectra were recorded on a Varian 400 MHz spectrometer.  

Chemical shifts were referenced to solvent resonances at  H 7.27, C 77.23 for CDCl3 

and H 8.05 (s), 2.95(q) and 2.75(q) for DMF.  Abbreviations for NMR and UV-Vis  br 

(broad), sh (shoulder), m (multiplet), ps (pseudo-), s (singlet), d (doublet), t (triplet), q 

(quartet), p (pentet), sept (septet).  Electrochemical measurements were collected under a 

nitrogen atmosphere for samples as 0.1 mM solutions in DMF with 0.1 M NBu4PF6 as the 

supporting electrolyte.  A three-electrode cell comprised of an Ag/AgCl electrode 

(separated from the reaction medium with a semipermeable polymer membrane filter), a 

platinum working electrode, and a glassy carbon counter electrode was used for the 

voltammetric measurements.  Data were collected at scan rates of 50, 100, 200, 300, 400, 

and 500 mV/s.  With this set up, the ferrocene/ferrocenium couple had an E1/2 value of 

+0.55 V in DMF at a scan rate of 200 mV/s, consistent with the literature values.18 

Electronic absorption (UV-Vis/NIR) measurements were made on a Cary 5000 

instrument. Infrared spectra were recorded on samples as KBr pellet using Magna-IR 560 

spectrometer. EPR spectra were obtained as solutions ~0.2 mM in CH2Cl2 using a Bruker 

ELEXYS E600 equipped with an ER4116DM cavity resonating at 9.63 GHz, an Oxford 

instruments ITC503 temperature controller and a ESR-900 helium flow cryostat. The 

spectra were recorded using 100 kHz field modulation unless otherwise specified. 

 

 

IA1. 

IA1 
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A solution of 5.000g(18.39 mmol) 1,4-Dibromo-2,5-difluorobenzene 2.759g (40.45 

molo, 2.2 eq) H-pyrazole and 0.971g (40.45 mmol, 2.2 eq) NaH on 60 mL of DMF were 

heated at reflux for 40 mins. The mixture was then poured into 100 mL DI water and the 

resulting white precipitate was filtered under vacuum and washed with 3 x 50 mL DI 

water. The product was dried under vacuum to yield 4.589 g (68% yield) IA1. Mp, 176-

178 0C. 1H NMR (CDCl3): δH 7.96 (dd, J = 2.5, 0.5 Hz, 2H, H5pz), 7.94 (s, 2H, Ar), 7.79 

(dd, J = 1.8, 0.5 Hz, 2H, H3pz), 6.52 (dd, J = 2.5, 1.8 Hz, 2H, H4pz) ppm. 13C NMR 

(CDCl3): δC 141.89, 139.93, 132.77, 131.54, 116.79, 107.51, 29.91ppm. 

 

H2(Me, μ-Ph, Me), H2(L1). 

In an argon-filled drybox, a Schlenk flask was charged with 1.005 g (2.73 mmol) IA1, 

1.184 g (6.8 mmol, 2.5 eq) H(pzAnCH3), 0.787 g (8.19 mmol, 3 eq) tBuONa, 0.121 g 

(0.22 mmol, 8 mol%) DPPF, and 0.100 g (0.11mmol, 4 mol%) Pd2(dba)3. The flask was 

removed from the drybox and was attached to a Schlenk line. Then, 20 mL of toluene that 

was previously purged with argon 20 min, was transferred via cannula into the reaction 

flask.  After the reaction mixture had been heated at 80 0C 4 days, toluene was removed 

H2(L1) 
IA1 
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by vacuum distillation.  The residue was dissolved in a biphasic mixture of 50 mL 

distilled water and 50 mL ethyl acetate.  The organic and aqueous phases were separated.  

The aqueous phase was extracted with two 50 mL portions ethyl acetate.  The combined 

organic layers were dried over MgSO4, filtered, and solvent was removed by rotary 

evaporation to leave an oily residue.  The residue was subjected to column 

chromatography on silica gel using 6:1 hexanes:ethyl acetate as the eluent.  The desired 

product 0.199 g (19%) was obtained as a white solid after removing solvent from the 

fourth band (Rf  = 0.26). Mp, 193-194 0C. 1H NMR (acetone): δH 8.95 (s, 2 H, NH), 8.03 

(d, J = 2.4 Hz, 2 H, H5pz), 7.99 (d, J = 2.4 Hz, 2 H, H5pz), 7.74 (br s, 4 H, pz), 7.39 (s, 

2H, Ar),7.30 (d, J = 8.3 Hz, 2 H, Ar), 7.25 (d, J = 1.6 Hz, 2 H, Ar), 7.08 (dd, J = 8.3, 1.8 , 

2H, Ar), 6.47 (t, J = 2.0 Hz, 2 H, H3pz), 6.46 (t, J = 2.0 Hz, 2 H, H3pz), 2.30 (s, 6 H, Ar-

CH3).  13C NMR (acetone): δC 141.42, 141.17, 135.47, 131.40, 131.36, 131.18, 131.11, 

131.07, 130.89, 129.72, 126.31, 119.61, 116.61, 107.63, 107.40, 20.51. 

 

I2A. 

In an argon filled drybox, a schlenk flask was charged with 4.004 g (9.84 mmol) 4,4’-

Diiodobiphenyl, 2.644 g (24.68 mmol, 2.5 eq) p-toluidine, 2.844 g (29.6 mmol, 3 eq) 

NaOtBu, 0.6 mL (2mol%) tri-t-butylphosphine and 0.181 g (0.20mmol, 2 mol%) 

Pd2(dba)3. The schlenk flask was removed from the drybox and 40 mL of deoxygenated 

toluene was added via cannula transfer. After the reaction mixture had been heated at 

reflux 15h under argon, solvents were removed by vacuum distillation. The resulting 

I2A 
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solid was washed with 150 mL DI water and three 50 mL portions Et2O and was vacuum 

dried to afford 3.529 g (98% yield) of desired product. Mp, 238-239 0C. 1H NMR 

(DMSO-d6): δH 8.09 (s, 2H, NH), 7.45 (d, J = 8.6 Hz, 4H), 7.06 (broad s, 8H), 7.00 (d, J 

= 8.4 Hz, 4H), 2.23 (6H, s) ppm. 13C NMR (DMSO-d6): δC 142.6, 140.7, 131.0, 129.6, 

128.6, 126.4, 117.5, 116.3, 20.3 ppm. 

 

I2B. 

A solution of 0.25 mL (4.85 mmol, 4 eq) Br2 in 10 mL DMF was added drop wise to a 

cold (0 oC) solution of 0.4384 g (1.21 mmol) I2A in 10 mL DMF.  After complete 

addition, the mixture was stirred at 0 oC for 1 h and then was allowed reach room 

temperature and stirred total 4 hrs. Then, 10 mL of a saturated aqueous Na2S2O3 solution 

was added.  The biphasic mixture was poured into 100 mL dilute NaHCO3 and the solid 

formed was separated by gravity filtration. The pale brown solid was further washed with 

100mL DI water and vacuum dried to afford 0.755g (92% yields) of desired product. Mp, 

198-199 oC.  1H NMR (CDCl3): δH 7.74 (d, J = 2.1 Hz, 2H), 7.44 (br s, 2H), 7.35 (dd, J = 

8.5, 2.1 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.5 Hz, 2H), 7.07 (dd, J = 8.1, 1.5 

Hz, 2H), 6.36(s, 2H, NH), 2.32 (s, 6H, CH3)ppm. 13C NMR (CDCl3): δC 139.96, 137.21, 

133.79, 133.59, 133.28, 131.00, 129.03, 126.29, 119.87, 116.75, 115.49, 113.70, 20.65 

ppm. 

 

I2B I2A 
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H2(L2). 

A Schlenk flask charged with 1.504 g (2.21 mmol) I2B, 1.055 g (15.50 mmol, 7eq) 

pyrazole, 2.140 g (15.50 mmol) K2CO3 and 0.50 mL (0.4g, 4.58 mmol) DMED was 

deoxygenated by three evacuation and argon back-fill cycles.  A 20 mL aliquot of dry, 

distilled, and argon-purged p-xylenes was added by syringe.  Then, 0.200 g (1.05 mmol) 

CuI was added under an argon blanket.  After the resulting mixture had been heated at 

reflux 2 d under argon, the mixture was cooled to room temperature.  Then the solvent 

was evaporated by vacuum distillation and resulted solid was dissolved in a biphasic 

mixture of 50 mL ethyl acetate and 50 mL  H2O.  The aqueous and organic layers were 

separated.  The aqueous layer was extracted with three 25 mL portions ethyl acetate.  The 

combined organic layers were dried over MgSO4 and filtered.  Volatiles were removed 

under vacuum to give a dark oil.  The oil was subjected to flash chromatography on silica 

gel.  First, elution with hexanes removed residual xylene.  Then, 3:1 hexane:ethyl acetate 

was used to remove unreacted and partially reacted starting materials and finally 0.830 g 

(63.4 %) of H2(L2) as a pale brown solid was collected after eluting with 1:1 hexanes : 

ethyl acetate (Rf = 0.53). Mp, 85-86oC. 1H NMR (CDCl3): δH 7.74 (m, 8H), 7.50 (s, 2H), 

7.40 (s, 4H), 7.39 (d, J = 6.6Hz, 2H), 7.20 (s, 2H), 7.09 (d, J = 8.1 Hz, 2H), 6.47, (t, J = 

1.9 Hz, 2H, pz), 6.42 (t, J = 1.9 Hz, 2H, pz), 2.35 (s, 6H, CH3) ppm. 1H NMR (acetone): 

δH 9.27 (s, 2H, NH), 8.14 (dd, J = 2.5, 0.4 Hz, 2H, pz), 7.99 (dd, J = 2.4, 0.4 Hz, 2H, pz), 

I2B H2(L2) 
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7.79 ( d, J = 1.9 Hz, Ar), 7.75 (d, J = 1.8 Hz, Ar), 7.73 (d, J = 2.3 Hz, pz), 7.59 (dd, J = 

8.6, 2.3 Hz, 2H, Ar), 7.43 (d, J = 8.6 Hz, 2H, Ar), 7.41 (dd, J = 8.3, 1.9Hz, 2H, Ar), 6.51 

(t, J = 2.1Hz, 2H, pz), 6.47 (t, J = 2.1Hz, 2H, pz), 2.33 (s, 6H, CH3) ppm. 13C NMR 

(CDCl3): δc 140.85, 140.66, 136.77, 133.70, 132.08, 131.64, 131.06, 130.22, 130.00, 

128.95, 127.38, 126.27, 125.87, 123.19, 120.18, 117.88, 106.89, 106.80, 20.75 ppm. 

 

H2(L3). 

A degassed mixture of 35 mL benzene and 11 mL of ethanol was added into a Schlenk 

flask containing 1.217 g (3.09  mmom, 2.5 eq)  H(Me,Br), 0.205g (1.23 mmol) 1,4-

phenylenediboronic acid and 0.028 g (0.25 mmol, 20 mol%) Pd(PPh3)4. Then 15 mL of 

degassed aqueous 2M Na2CO3 solution was added by cannula and the mixture was heated 

at 80 0C for 15h. Then the organic layer was separated and the aqueous layer was washed 

with two 20 mL aliquots ethyl acetate. The combined organic fractions were dried with 

anhydrous MgSO4 filtered, and evaporated to leave a brown solid. The solid was washed 

with two 20 mL portions of ethanol, 20 mL of Et2O and was dried under vacuum to yield 

0.757g (87%)  H2(L3) as a pale yellow. Mp, 235-236 0C. 1H NMR (CDCl3): δH 8.26 (s, 

2H, NH), 7.78 (d, J = 2.4 Hz, 2H), 7.76 (d, J = 1.85 Hz, 2H), 7.73 (d, J = 2.4 Hz, 2H), 

7.70 (d, J = 1.8 Hz, 2H), 7.60 (s, 4H, Ar), 7.59 (d, J = 2.1 Hz, 2H), 7.48 (dd, J = 8.6, 2.1 

Hz, 2H), 7.42 (dd, J = 8.6, 1.9 Hz, 4H), 7.20 (d, J = 1.8 Hz, 2H), 7.10 (dd, J = 8.2, 1.7 

Hz, 2H), 6.48 (t, J = 2.4Hz, 2H), 6.42 (t, J = 2.3 Hz, 2H), 2.35 (s, 6H) ppm. 13C NMR 

H(Me,Br
) 

H2(L3) 
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(CDCl3): δC 140.9, 140.7, 138.6, 137.3, 133.6, 132.6, 131.8, 131.3, 130.3, 130.1, 129.9, 

129.0, 127.0, 126.8, 126.0, 123.7, 120.5, 117.7, 107.0, 106.9, 20.8 ppm. 

 

H(Me,Ph), H(L4). 

In an argon-filled dry box, a Schlenk flask was charged with 0.797 g (2.022 mmol) 

H(Me,Br), 0.370 g (3.034 mmol) phenyl boronic acid, and 0.2336 g (0.202 mmol) 

Pd(PPh3)4. The flask was removed from the drybox and attached to a Schlenk line. A 

solution of 30 mL C6H6 and 10 mL absolute ethanol was purged with argon 15 min and 

was transferred to the reaction flask under argon via cannula. Next, 10 mL of an argon-

purged 2 M aqueous Na2CO3 solution was transferred via cannula to the reaction flask. 

After the magnetically-stirred biphasic mixture had been heated at 80 0C for 16 h with the 

aid of an external oil bath, the mixture was cooled to room temperature and poured into 

100 mL H2O. The aqueous and organic fractions were separated. The aqueous layer was 

extracted with two 50 mL portions ethyl acetate. The combined organic layers were dried 

over MgSO4 and filtered. The oily residue that was obtained after removing solvents 

under vacuum was subjected to column chromatography on silica gel using 4 :1 ethyl 

acetate : hexanes as an eluent to obtain desired product (0.6298g , 80%) H(Me, Ph) as a 

colorless solid after removing solvents and drying under vacuum 1 h. Mp, 81-82 0C. 1H 

NMR (CDCl3): δH 7.77 (dd, J = 2.4, .05 Hz, 1H, pz), 7.75 (dd, J = 1.8, 0.5 Hz, 1H, pz), 

7.73 (dd, J = 2.4, 0.5 Hz, 1H, pz), 7.70 (dd, J = 1.8, 0.5 Hz, 1H, pz), 7.58-7.53 (m, 3H, 

H(Me,Br) H(L4) 
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Ar), 7.47-7.39 (m, 6H, Ar and NH), 7.31 (tt, J = 7.3, 1.9 Hz, 1H, Ar), 7.20 (d, J = 1.5 Hz, 

1H, Ar), 7.09 (dd, J = 8.3, 1.9 Hz, 1H, Ar), 6.48 (t, J = 2.1 Hz, 1H, pz), 6.42 (t, J = 2.1 

Hz, 1H, pz), 2.35 (s, 3H, CH3) ppm. 13C NMR (CDCl3): δC  140.8, 140.6, 137.1, 133.6, 

133.2, 131.7, 131.1, 130.2, 130.0, 129.7, 128.9, 127.1, 126.9, 126.6, 125.9, 123.8, 120.3, 

120.4, 117.6, 106.84, 106.77, 20.7 ppm. 

Synthesis of Rhenium complexes 

 

[Re(CO)3]2(μ-L1), 1. 

A solution of 0.184 g (0.33 mmol) H2(L1) and 0.270 g (0.66 mmol, 2 eq) Re(CO)5Br in 

25 mL of toluene was heated at reflux 10 min. Then 0.46 mL of 1.47 M (0.66 mmol) 

NEt4OH in methanol was injected to the hot reaction mixture by syringe. The solution 

became yellow immediately upon mixing and a yellow solid soon precipitated. The 

mixture was heated at reflux for 12 h, then was allowed to cool room temperature. The 

insoluble portion was collected by filtration, was washed with 2 x 15mL MeOH, 15 mL 

Et2O and was dried under vacuum to leave 0.211g (58%) of desired product as yellow 

powder. Mp, >350 0C. Anal. Calcd. (Found) for Re2C38N10H26O6: C, 41.83 (41.81); H, 

2.40 (2.60); N, 12.84 (12.46). IR(KBr) νCO 1886, 1897, 2013 cm-1.1H NMR (DMF-d7): δH 

1 H2(L1) 
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8.82 (dd, J = 2.8, 0.7 Hz, 2H, pz), 8.65 (dd, J = 2.4, 0.8 Hz, 2H, pz), 8.62 (dd, J = 2.4, 0.7 

Hz, 2H, pz), 8.55 (dd, J = 2.8, 0.7 Hz, 2H, pz), 8.07(s, 2H), 8.02 (d, J = 8.8 Hz, 2H), 7.42 

( d, J = 1.4Hz, 2H), 7.15 (dd, J = 8.8, 1.8 Hz, 2H), 6.81(t, J = 2.5 Hz, 2H, pz), 6.77 (t, J = 

2.5 Hz, 2H, pz), 2.32 (s, 6H) ppm. UV-Vis λmax, nm (ε, M-1cm-1), CH2Cl2: 813 (776), 387 

(18118), 227 (55308). 

Except where noted, the following compounds were prepared in a similar manner where 

the heating time and subsequent work-up procedure were identical to that described for 

the above complex. The amounts of ligand, rhenium salt, base and solvent were used 

varied in the preparation of each complex and given below along with the yield and 

characterization data. 

 

[Re(CO)3]2(μ-L2), 2. 

A mixture of 0.127g (0.20 mmol) H2(L2), 0.164g (0.40 mmol) Re(CO)5Br and 0.28 mL 

1.47 M (0.40 mmol) NEt4OH in 10 mL toluene gave 0.211g (89%) 2 as a yellow powder. 

Mp, 260-261 0C (Decomposed). Anal. Calcd. (Found) for Re2C44N10H30O6: C, 45.28 

(45.54); H, 2.59 (2.78); N, 12.00 (11.84). IR(KBr) νCO 1882, 1905, 2013 cm-1. 1H NMR 

(DMF-d7): δH 8.74 (d, J = 2.7Hz, 2H,pz), 8.64 (d, J = 2.4Hz, 2H,pz), 8.62 (d, J = 2.26 Hz, 

2 H2(L2) 
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2H, pz), 8.61 (d, J = 2.6 Hz, 2H,pz), 7.98 (d, J = 8.3Hz, 2H, Ar), 7.96 (d, J = 8.8 Hz), 2H, 

Ar), 7.74 (dd, J = 8.8, 2.1 Hz, 2H, Ar), 7.45 (s, 2H, Ar), 7.28 (dd, J = 8.3, 1.7 Hz, 2H, 

Ar), 7.21 (s, 2H, Ar), 6.82 (t, J = 2.5Hz, pz), 6.77 (t, J = 2.4Hz, 2H, pz), 2.37 (6H, CH3) 

ppm. UV-Vis λmax, nm (ε, M-1cm-1), CH2Cl2: 402 (22433), 238 (36349). 

 

[Re(CO)3]2(μ-L3), 3. 

A mixture of 0.115 g (0.163 mmol) H2(L3), 0.132 g (0.33 mmol, 2eq) Re(CO)5Br and 

0.22 mL 1.47M (0.33 mmol) NEt4OH in 10 mL toluene gave 0.121 g (60%) compound as 

a yellow powder. Mp, 330 0C (Decomposed). Anal. Calcd. (Found) for Re2C50N10H34O6: 

C, 48.30 (48.66); H, 2.76 (2.95); N, 11.27 (11.10). IR(KBr) νCO 1876, 1901, 2013 cm-1. 

1H NMR (DMF-d7): δH 8.94 (dd, J = 2.7, 0.7 Hz, 2H, pz), 8.82 (dd, J = 2.4, 0.7 Hz, 2H, 

pz), 8.79 (br d, J = 2.6 Hz, 4H, pz), 8.16 (d, J = 6.2 Hz, 2H, Ar), 8.15 (s, 2H, Ar), 8.14 (d, 

J = 5.5 Hz, 2H, Ar), 8.04 (s, 4H, Ar), 7.87 (dd, J = 8.9, 2.2 Hz, 2H, Ar), 7.62 (d, J = 1.9 

Hz, 2H, Ar), 7.48 (dd, J = 8.5, 1.8 Hz, 2H, Ar), 6.99 (t, J = 2.5Hz, 2H, pz), 6.92 (t, J = 

2.5Hz, 2H,pz), 2.55 (s, 6H) ppm. UV-Vis λmax, nm (ε, M-1cm-1), CH2Cl2: 403 (3737), 227 

(5684). 

H2(L3) 3 
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[Re(CO)3](L4), 4. 

A mixture of 0.201 g (0.514 mmol) H(Me,Ph), 0.2087 g (0.514 mmol) Re(CO)5Br and 

0.35 mL 1.47 M (0.514 mmol) NEt4OH in 15 mL toluene was heated at reflux 12h. 

Toluene was evaporated in vacuum and the residue was washed with two 10 mL portions 

of methanol. The product was dried under vacuum to yield 0.252 g (74%) 4 as a yellow 

powder. Mp, 251-252 0C (Decomposed). Anal. Calcd. (Found) for Re2C50N10H34O6: C, 

50.90 (51.26); H, 3.05 (3.11); N, 10.60 (10.87). IR (KBr) νCO 1874, 1911, 2017. 1H NMR 

(DMF-d7): δH: 8.77 (d, J = 2.3 Hz, 1H, pz), 8.65 (d, J = 1.9 Hz, 1H, pz), 8.64-6.6 (m, 2H, 

pz), 8.00 (d, J = 6.7 Hz, 1H, Ar), 7.98 (d, J = 6.9 Hz, 1H, Ar), 7.94 (d, J = 2.0 Hz, 1H, 

Ar), 7.8 (d, J = 7.5 Hz, 2H, Ar), 7.65 (dd, J = 8.9, 2.0 Hz, 2H, Ar), 7.49-7.42 (m, 3H, Ar), 

7.30 (t, J = 7.3 Hz, 2H, Ar ), 6.82 (t, J = 2.4 Hz, 1H, pz), 6.76 (t, J = 2.4 Hz, 1H, pz), 2.38 

(s, 3H) ppm. 1H NMR (acetone-d6): δH: 8.50 (d, J = 2.7 Hz, 1H, pz), 8.42 (d, J = 2.2 Hz, 

1H, pz), 8.37(d, J = 2.5 Hz, 2H, pz), 7.96 (d, J = 4.8 Hz, 1H, Ar), 7.94 (d, J = 5.3 Hz, 1H, 

Ar), 7.78 (d, J = 2.2 Hz, 1H, Ar), 7.71 (br d, J = 7.4 Hz, 2H), 7.57 (dd, J = 8.8, 2.3 Hz, 

1H, Ar), 7.44-7.38 (br t, 2H), 7.35 (d, J = 1.4 Hz, 1H, Ar), 7.29-7.24 (m, 2H, Ar), 6.72 (t, 

J = 2.5 Hz, 1H, pz), 6.52 (t, J = 2.5 Hz, 1H, pz), 2.37 (s, 3H) ppm. 13C NMR (DMF-d7): 

δC: 197.3, 195.9, 195.8, 147.8, 146.2, 144.6, 144.1, 139.9, 132.8, 132.2, 132.1, 129.8, 

129.2, 129.1, 128.9, 128.7, 126.7, 126.1, 125.9, 124.8, 121.5, 121.3, 116.6, 108.43, 

108.42, 20.0 ppm. 13C NMR (acetone-d6): δC: 197.5, 196.4, 196.1, 148.4, 147.0, 144.6, 

H(Me,Ph) 4 
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144.1, 140.7, 132.8, 132.7, 132.2, 130.3, 129.8, 129.6, 129.5, 129.4, 127.1, 126.7, 126.5, 

125.1, 122.3, 121.8, 117.2, 108.8, 108.7, 20.5 ppm. 

Oxidation of Rhenium complexes 

[Re(CO)3]2(μ-L1)(BF4)2, 1(BF4)2. 

In an argon filled drybox, a Schlenk flask was charged with 0.0298g (0.027 mmol) 1 and 

0.0064 g (0.055 mmol, 2eq) NOBF4. The flask with starting materials was taken out and 

attached to vacuum/Argon line. A 20 mL aliquot of argon-purged CH2Cl2 was added to 

reaction mixture, immediately giving a green color solution that turned to purple within 

30 min stirring. The purple solution was stirred for two hours and solvent was evaporated 

by vacuum distillation. The residue was washed with two 10 mL portions of dry distilled 

Et2O and dried to give 0.0297 g (86%) 1(BF4)2 as a black/purple. Mp, > 350 0C dec. μeff 

(solid, 295 K) = 2.95 μB, IR (KBr) νCO 1897, 1920, 1955 cm-1. UV-Vis (CH2Cl2): cm-1 (ε, 

M-1 cm-1) 18749 (517), 29126 (713), 44334 (3014). 

Except where noted, the following oxidized complexes were prepared in a similar manner 

where the stirring time, the amount of solvent and subsequent work-up procedure were 

identical to that described for the above complex. The amounts of non-oxidized rhenium 

complex and NOBF4 varied in the preparation of each complex and given below along 

with the yield. 

[Re(CO)3]2(μ-L2)(BF4)2, 2(BF4)2. 

A mixture of 0.0353g  (0.030 mmol) 2 and 0.0071g (0.061 mmol) NOBF4 yielded 

0.0341g (84%) of 2(BF4)2 as a blue/black solid. Mp, > 350 0C dec. μeff (solid, 295 K) = 
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2.86μB,  IR (KBr) 1914, 1936, 2028 cm-1. UV-Vis (CH2Cl2): cm-1 (ε, M-1 cm-1) 15280 

(45600), 18108 (31000), 44117 (230675). 

[Re(CO)3]2(μ-L3)(BF4)2, 3(BF4)2. 

A mixture of 0.0345g  (0.0.028 mmol) 3 and 0.0065g (0.056 mmol) NOBF4 yielded 

0.0329g (84%) of 3(BF4)2 as black solid. Mp, > 350 0C dec. μeff (solid, 295 K) = 2.68μB, 

IR (KBr) 1914, 1938, 2034 cm-1. UV-Vis (CH2Cl2): cm-1 (ε, M-1 cm-1) 12245 (149000), 

44117 (54700). 

[Re(CO)3](L4)(BF4), 4(BF4). 

A mixture of 0.0343g  (0.0.052 mmol) 4 and 0.0061g (0.052 mmol) NOBF4 yielded 

0.030g (77%) of 4(BF4) as a purple solid. Mp, > 350 0C dec. IR (KBr) 1906, 2033 cm-1. 

UV-vis (CH2Cl2): nm (ε, M-1 cm-1)  773 (1812), 627 (1165), 395 (5339). 

[Re(CO)3]2(μ-L1)(BF4), 1(BF4). 

Under an argon atmosphere, a green/brown solution of  0.0173 g (0.0159 mmol) of 1 and 

0.0201 g (0.0159 mmol) of 1(BF4)2 in 20 mL of CH2Cl2 was stirred for 2 h. Solvent was 

removed under vacuum and then was dried at room temperature under vacuum for 12h to 

leave 0.0312 g (83 %) of 1(BF4)2 as a brown solid. Mp, > 350 0C, IR (KBr) νCO 1910 (br), 

2021. UV-Vis (CH2Cl2): cm-1 (ε, M-1 cm-1) 12026 (8010), 18255 (4080), 23746 (55022). 

[Re(CO)3]2(μ-L2)(BF4), 2(BF4). 

Under an argon atmosphere, green/brown solution of 0.0232 g (mmol) of 2 and 0.0266 g 

(mmol) of 2·(BF4)2 in 20 mL of CH2Cl2 was stirred for 2 h. Solvent was removed under 

vacuum and then was dried further at room temperature under vacuum for 12h to leave 
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0.0361 g (72 %) of 2(BF4)2 as a brown solid. Mp, > 350 0C, μeff (solid, 295 K) = 1.55μB, 

IR (KBr) νCO 1901 (broad), 2012. UV-Vis (CH2Cl2): cm-1 (ε, M-1 cm-1) 7420 (44300), 

8746 (24000), 14778 (3550), 18710 (35600), 27108 (7700). 

[Re(CO)3]2(μ-L3)(BF4), 3(BF4). 

Under an argon atmosphere, green/brown solution of  o.0238 g (mmol) of 3 and 0.0271 g 

(mmol) of 3(BF4)2 in 20 mL of CH2Cl2 was stirred for 2 h. Solvent was removed under 

vacuum and then was dried at room temperature under vacuum for 12h to leave 0.0401g 

(79 %) of 3(BF4)2 as a brown solid. Mp, > 350 0C, μeff (solid, 295 K) = 1.49μB, IR (KBr) 

νCO 1892, 1920, 1940, 2021. UV-vis (CH2Cl2): cm-1 (ε, M-1 cm-1) 4529(6440), 13025 

(2110), 18255 (5720), 24590 (1870). 
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CHAPTER 5 

COORDINATION POLYMERS AND METAL-ORGANIC FRAMEWORKS 
BASED ON REDOX-ACTIVE PINCER COMPLEXES 

5.1. INTRODUCTION 

 Coordination polymers and 3D coordination polymers or metal-organic 

frameworks (MOFs) are currently attracting considerable attention because they are 

promising materials for many potential applications such as hydrogen storage, carbon 

capture, separation, and catalysts.1-23 Mixed metal-organic frameworks (MMOFs) or 

mixed metal coordination polymers (MMCPs) are an interesting sub class of these 

materials, having two types of metal ions that may have both structural and functional 

roles in the network structure.20,21 A useful strategy to MMOFs is self assembly of 

metalloligands (metal containing building blocks with divergent lewis donors) that can 

bind to a second metal (Figure 5.1).   

 

Figure 5.1. Metal containing building blocks with divergent lewis donors. 

In this chapter, initial exploration to form coordination networks using either 

heteroleptic or homoleptic pincer complexes(Figure 5.1.a and b, respectively) is 
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described. The preparation of new ligands with carboxylate ester and pyridyl groups 

along with their discrete nickel(II) and rhodium(III) complexes is reported first. The 

successful approach along with challenges encountered. The use of these metallo ligands 

to prepare mixed metal polymers and networks is described. 

5.2. RESULTS AND DISCUSSION 

Four different pyrazolyl-containing pincer-type ligands with Lewis donors at the 

para- aryl positions were prepared since these ‘bifunctional’ derivatives can be 

envisioned to give high dimensional materials. The H(CN,CN) ligand was synthesized by 

the amination reaction between H(pzAnCN) and Br-CNPhPz using CuI as the catalyst as 

described in a previous chapter.  Similarly, the diester ligand, H(CO2Et,CO2Et), was 

prepared from the corresponding diarylamine as in the top of Scheme 5.1. The pyridine 

containing, H(4py,4py) and H(3py,3py) were synthesized by the Suzuki coupling 

reactions of H(Br,Br) ligand with 3- or 4-pyridine boronic acid respectively (the synthesis 

of H(py,py) is shown in the bottom of Scheme 5.1). 

The self-assembly of the organic ligand H(CN,CN) with AgPF6 was first 

explored. After a solution of H(CN,CN) in acetone was carefully layered with an acetone 

solution of AgPF6 and solvents were allowed to diffuse, X-ray quality colorless needles 

formed within 1d. The single crystal X-ray structure (Figure 5.3) revealed that the 

crystals had a composition {Ag[H(CN,CN)]}(PF6). The asymmetric unit contains two 

ligands, two silvers, one well-ordered and one disordered PF6
- anion (top of Fig. 5.2). 
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Scheme 5.1. Synthesis of HN(CO2Et,CO2Et)2, HN(3py,3py) and HN(4py,4py).  Key: i) 
3.5 eq K2CO2, 3.5 eq 1-H-Pyrazole, 10 mol% CuI, 40 mol% DMED ; ii) 20 mol% 
Pd(PPh3)4, 2 M  Na2CO3, 30 mL C6H6, 10 mL EtOH, Δ 800C, 12H. 

 

  The coordination geometry about each silver is a distorted AgN4 tetrahedron 

where the nitrogen atoms come from four different ligands. Two of these nitrogen atoms 

(N1 and N11) are from pyrazolyl groups while the other two (N3, N6) are from 

cyanophenyl groups (Middle left of Fig 5.2). Two Ag-Npz bonds are nearly same with 

average bond distance 2.342 Å (Ag-N1 and Ag-N11) other Ag-N(CN) bonds differ by 

0.129 Å from each other (Ag-N3 = 2.223 Å and Ag-N6 = 2.352 Å). Each ligand binds 

four different silver centers in a unidentate manner, using two pyrazolyl nitrogen donors 

and the two nitrogens from the cyano groups to form a very distorted (μ4-L)Ag4  
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Figure 5.2. Top: Asymmetric unit of {Ag[H(CN,CN)]}(PF6); Middle Left: View of 
coordination environment about silver. Middle Right: View of ligand environment.  
Bottom Left: View of 2x2x2 supercell with some PF6 anions removed to show channels 
along a- direction. Bottom Right: View of 2x2x2 supercell down the b- axis where AgN4 
tetrahedra are shown in pink and PF6 anions are shown as green octahedra. 
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tetrahedron (middle right of Fig. 5.2). As a result, a three-dimensional network is formed 

that has large channels along the a- direction that are filled with PF6
- anions (Bottom left 

of Fig. 5.2). 

 The self-assembly of H(4py,4py) with Zn(NO3)2 was also studied. X-ray 

diffraction quality single crystals of {Zn[H(4py,4py)](NO3)2(DMSO)}·DMSO as yellow 

needles were obtained after a DMSO solution of H(4py,4py) ligand was layered with 1 

equivalent of Zn(NO3)2 in ethanol and solvents were allowed diffuse slowly at room 

temperature over the course of 1 day. The asymmetric unit contains one zinc, one 

H(4py,4py) ligand, two nitrates and two DMSO molecules (Figure 5.3a). One of the 

nitrates is bound to zinc in a bidentate fashion (Zn-O4 2.254 Å, Zn-O5 2.267 Å) whereas 

the second nitrate is bound to zinc in a monodentate fashion (Zn-O1 2.107 Å). Also, one 

of the DMSO molecules is disordered over two nearby positions where each disorder 

component is bound to zinc(II) through the oxygen atom (Zn-O1 2.042 Å, Zn-O1a 2.334 

Å). The second DMSO molecule is well-ordered but is a solvate molecule that is not 

bound to zinc. The coordination sphere of zinc is completed by binding to two pyridyl 

groups of two different ligands (Zn-N7 2.046 Å, Zn-N6 2.077 Å) thereby giving rise to a 

distorted ZnO4N2 octahedron (Figure 5.3b). Thus, the ligand bridges zinc centers binding 

the metals in a unidentate fashion through pyridyl groups (Figure 5.3c). As a result, a 1D 

coordination polymer is formed that propagates along the [101] direction. Two chains 

related by a 21 screw axis are stacked along the b- direction via a combination of π-π 

(Ct(Aryl)-Ct(aryl) 3.529 Å), CH···N, and CH···O interactions, as in Figure 5.3e. The 

polymers are connected in the third dimension by a longer and presumably weak CH···O 

interaction between a pyridyl hydrogen (meta- to the nitrogen) and an oxygen atom of the  
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(a)   (b)    (c) 

 

(d) 

 

(e)      (f) 

 

Figure 5.3 (a) Asymmetric unit of {Zn[H(4py,4py)](NO3)2(DMSO)}·DMSO with one of 
the disordered Zn-bound DMSO molecules removed for clarity. (b) View of coordination 
sphere around zinc, with hydrogens removed. (c) View of local environment around 
ligand.  (d) View down b-axis of one chain. (e) View down b-axis of two chains (f)View 
of molecular packing diagram down b-axis showing six neighboring chains. 
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nitrate that is bound in a bidentate manner to Zn (C11H11···O6, 2.558 Å, 125o). The 

result is a porous structure with channels along the b-direction that are filled with 

disordered and partially populated solvent molecules. These were excluded from the 

structure solution by using the SQUEEZE program. Attempts will be made by our group 

to determine the quantity of solvent by other means (elemental analyses, TGA, NMR) 

and to complete the characterization of the above two compounds during future 

(repeated) preparations of the compounds in our lab.  

 In an effort to determine whether a metalloligand approach is viable for the newly 

prepared bifunctional pincer ligands, attempts were made to first prepare homoleptic 

Ni(X,X)2 complexes. At the outset, was not known if the strong donor properties of 

pyridyl groups, for instance, would interfere with our previously described synthetic 

route to the nickel derivatives.  Gratifyingly, the one-pot reaction between NiCl2.6H2O 

and two mol equivalents of each of four H(X,X) ligands and (NEt4)(OH) in MeOH 

afforded high yields of the desired nickel complexes (Scheme 5.2). The structures of 

Ni(3py,3py)2 and Ni(CO2Et,CO2Et)2 were determined by single crystal X-ray diffraction 

and views of the complexes are given in Figure 5.4. As with the previous Ni(X,Y)2 

complexes, the metal center resides in a compressed NiN6 octahedron where the average 

Ni-NAr distance (2.052 Å in Ni(3py,3py)2 and 2.054 Å in Ni(CO2Et,CO2Et)2) is shorter 

than the average Ni-Npz distance (2.089 Å in Ni(3py,3py)2 and 2.064 Å in 

Ni(CO2Et,CO2Et)2). The physical, electrochemical, and spectroscopic properties of these 

derivatives are in accord with other complexes of this type (Table 5.1 and 5.2). It is noted 

that the compound Ni(CO2Et,CO2Et)2 was prepared because this species is anticipated to 

be a useful precursor to the carboxylic acid Ni(CO2H,CO2H)2 or the tetracarboxylate 
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tetraanion.  These latter species may either be obtained directly by hydrolysis or could be 

formed in-situ via solvothermal reactions during the preparation of MOFs. A preliminary 

reaction (Scheme 5.3) of Ni(CO2Et,CO2Et)2 with excess KOH in a THF:MeOH mixture 

resulted in the precipitation of an orange solid that was insoluble in all organic solvents 

but was soluble in water.   

 

 

Scheme 5.2. Preparation of Ni(X,X)2 complexes. 

 

.  

Figure 5.4. X-ray structures of Ni(3py,3py)2 (Left) and Ni(CO2Et,CO2Et)2 (Right). 
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Scheme 5.3. Preparation of carboxylate derivative from Ni(CO2Et,CO2Et)2.  

 

Table 5.1. Electrochemical data from cyclic voltammetry experiments of Ni(3py,3py)2, 
Ni(4py,4py)2 and Ni(CO2Et,CO2Et)2 with other Ni complexes of Chapter 2. 

 

 Eo’, V vs Ag/AgCla 
Compound E1/2,ox1/ V  E1/2 ,ox2 / mV 
Ni(Me,Me)2 0.146 (188) 0.428 (187) 
Ni(Me,H)2, 0.257 (154) 0.536 (156) 
Ni(H,H)2,  0.311 (187) 0.604 (192) 
Ni(Me,Br)2, 0.318 (163) 0.582 (165) 
Ni(Me,CO2Et)2 0.409 (230) 0.656 (208) 
Ni(Me,CF3)2 0.464 (174) 0.724 (173) 
Ni(Br,Br)2 0.500 (161) 0.751 (153) 
Ni(Me,CN)2 0.584 (175) 0.810 (176) 
Ni(CF3,CF3)2 0.763 (170) 1.019 (168) 
Ni(CN,CN)2 0.882 (232) 1.085 (208) 
Ni(tBuPh,tBuPh) 0.274 (136) 0.524 (138) 
Ni(CNPh,CNPh)2,  0.455 (153) 0.657 (151) 
Ni(3py,3py)2 0.354 (129) 0.569 (133) 
Ni(4py,4py)2 0.502 (213) 0.701( 215) 
Ni(CO2Et,CO2Et)2 0.695 (226) 0.927 (145) 
Ferrocene 0.522 (180) --- 

 

aAverage values obtained for scan rates of 50, 100, 200, 300, 400, and 500 mV/s with 
0.1 M NBu4PF6 as supporting electrolyte in CH2Cl2.  
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Table 5.2. Elecronic absorption data of lowest energy d-d spectra of Ni(X,Y)2 complexes 
in CH2Cl2. 

 

Compound ῡ, cm-1 (ε, M-1cm-1) 
            3A2g→3T2g 

Ni(Me,Me)2    11,470 (120) 

Ni(Me, H)2    11,520 (110) 

Ni(H, H)2    11,510 (110) 

Ni(Me, Br)2    11,490 (120) 

Ni(Me,CO2Et)2    11,640 (150) 

Ni(Me,CF3)2    11,500 (120) 

Ni(Br,Br)2    11,480 (140) 

Ni(Me,CN)2    11,590 (195) 

Ni(CF3,CF3)2    11,640 (120) 

Ni(CN,CN)2    11,600 (170) 

Ni(3py,3py)2    11,862 (310) 

Ni(4py,4py)2    11,890 (159) 

Ni(CO2Et,CO2Et)2    11,919 (272) 
 

 

 An inspection of experimental and calculated structures of various Ni(X,Y)2 

derivatives reveals that these compounds may provide ideal platforms for the 

construction of three-dimensional solids. For instance, if donor groups are attached to 

para-aryl positions (Figure 5.5) they would be essentially aligned in one plane and could 

afford connectivity in two dimensions. The addition of donor groups at the 4-pyrazolyl 

positions would afford connectivity in the third dimension (right of Fig. 5.5). Greater 

structural diversity may be expected if donor groups are located at other positions such as 

shown in Figure 5.6 for Ni(3py,3py).   
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Figure 5.5.  View of a model Ni(X,Y)2 complex showing relative disposition of para-aryl 
and 4-pyrazolyl groups. 

 

 

Figure 5.6. Two possible conformers of Ni(3py,3py)2 illustrating potential connectivity 
patterns. 

 

  Based on this idea, initial attempts were made to prepare MMCPs and MMOFs by 

layering solutions of the Ni(CN,CN)2 metalloligand with solutions of silver(I) salts. In 

each of the cases described below, large crystals (minimum dimension 0.5 mm per side) 
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were obtained in numerous attempts under different crystallization conditions (solvents, 

anions, temperature, stoichiometry, concentration) but none of the crystals diffracted at 

high angles and all also exhibited twinning and disorder. Thus, the diffraction data were 

only of sufficient quality to establish connectivity but not metrical parameters. Future 

efforts will be directed at growing well-behaved (nicely diffracting) crystals by changing 

donor groups, metals, trying new solvent combinations, and adding substituents to the 

pyrazolyl to promote better packing. Regardless, a description of findings for the current 

system is given below. The structure of the crystals obtained by layering THF solutions 

of Ni(CN,CN)2 and AgBF4 and allowing solvents to diffuse shows layers of 4,4-

connected nets (Figure 5.7).  

 The cationic sheets of ({Ag[Ni(CN,CN)2]}+)n are stacked on top of each other, 

presumably by van der Waals interactions, and give channels along the b- direction that 

are filled with anions as well as disordered (partially populated) solvent. On the other 

hand, the structure determined from crystals obtained after layering equimolar solutions 

of Ni(CN,CN)2 and AgOTf (and allowing solvents to diffuse) showed two identical 

interpenetrating three-dimensional 4,4-networks where bridging triflate aions afforded 

connectivity in the third dimension of each network.  A view of one of the two 

interpenetrating networks of {Ag(OTf)[Ni(CN,CN)2]} is given on the left of in Figure 

5.8. The second similar network fills the void-space of the first network. 
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Figure 5.7. Views of the sheet structure in [Ni(CN,CN)2](AgBF4)·xTHF. 

 

 

Figure 5.8. View of one part of the interpenetrating 3D network in 
Ag(OTf)[Ni(CN,CN)2]. 

 

 Although we obtained large crystals in each case, we could not get the complete 

X-ray diffraction data to establish the structure. It suffered either disordered structure or 

did not diffract at higher angles. These homoleptic metal complexes have D2 symmetry 
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and hence are chiral (Figure 5.9). Unsuccessful X-ray crystallographic refinements 

indicated that both isomers are superimposed at the same site. This disorder combined 

with disorder in solvents and anions positions lead to the difficulties in structural 

solutions. Attempts were made to obtain coordination polymer of silver with nickel 

complexes of 4-pyridyl and 3-pyridyl derivatives. DMF solution of nickel complexes 

were layered on top of the DMF solution of silver salts in order to get crystals. But it 

resulted in silver metal instead of coordination polymers. The electron rich nickel 

complex has reduced silver(I) to silver metal. Therefore, charge neutral nickel pyridyl 

complexes are not good precursors to prepare MMOFs with silver salts. Differences in 

solubility of charge neutral Ni(X,Y)2 complexes and metal salts also provides difficulties 

in obtaining MMOFs. Metal salts tend to be are insoluble in solvents for Ni(X,Y)2 and 

vice versa. There were very limited choice for solvents, and often solvates of starting 

materials rather than desired products were obtained.  

 Good success has been achieved using heteroleptic rhodium(III) pincers. The 

[Rh(Me,Me)(4py,4py)(PF6) was synthesized according to Scheme 5.4. The H(4py,4py) 

ligand was reacted with equal molar amount of previously reported 

(NEt4)[Rh(Me,Me)Cl3]·H2O 25 in acetonitrile, followed by three equivalents of TlPF6 and 

one equivalent of base, NEt4OH. 
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Figure 5.9. Stereo isomers of M(MeMe)2 complex. 

 

 

Scheme 5.4. Synthesis of Rh(Me,Me)(4py,4py)(PF6) 

  

The X-ray quality crystals of [Rh(Me,Me)(4py,4py)][Zn(DMSO)4](NO3)2 as 

orange needles were obtained after a DMSO solution of [Rh(Me,Me)(4py,4py)](PF6) 
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complex was layered with one molar equivalent of Zn(NO3)2 in ethanol and solvents 

were allowed diffuse slowly at room temperature for 7 days. This complex is a 

heterometallic coordination polymer. The asymmetric unit contains one rhodium 

complex, one zinc, four DMSO, and two nitrate ions (Figure 5.10). Rhodium has an 

octahedral RhN6 geometry with nearly identical two Rh-NAr bonds and four Rh-Npz  

bonds (avg. 2.032 (4) Å) and four Rh-Npz bonds (avg. 2.016 (3) Å). The NAr-Rh-NAr bond 

is linear and two C-NAr-C planes are parallel to each other. The zinc center has an 

octahedral geometry, being bound to two 4-pyridyl nitrogens (from two rhodium 

complexes) and to four oxygen atoms from DMSO molecules. The trans-Zn-N bond 

distances (2.109(4)) Å are identical.  

   

Figure 5.10. Asymmetric unit of [Rh(Me,Me)(4py,4py)][Zn(DMSO)4](NO3)2. 
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Figure 5.11. View of the local environment around the rhodium complex.  

 

 

 

Figure 5.12. Views of the propagation of the coordination chain along b-direction. 

( a ) 

( b ) 
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Trans Zn-O bonds of four Zn-O bonds are similar to each other. Zn-O1 bonds (Zn-O1, 

Figure 5.10) bonds have 2.190(8) Å bond distances, while Zn-O2 bonds have 2.103(5) Å. 

Thus, the rhodium complexes bridge zinc centers to give a zigzag chain, which 

propagates along the b-axis (Figure 5.12). The crystal packing of this coordination 

polymer is shown in Figure 5.13. The hydrogen atoms of exo-methyl groups of rhodium 

complex have weak interactions with both oxygens of DMSO and π-cloud of pyridine 

rings. These CH···π and CH···O weak interactions help assemble neighbor chains in to a 

sheet structure Figure 5.13.  

 

Figure 5.13. Crystal packing of [Rh(Me,Me)(4py,4py)][Zn(DMSO)4](NO3)2. 
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5.3. FUTURE DIRECTIONS 

Initial attempts to make MMOFs and MMCPs posed unexpected challenges, but 

these also lead to promising results. Although layering of solution of Ni(X,X)2 (X is a 

lewis donor) and some metal salts produce large crystals (~ 1 mm) that appeared single to 

the naked eye, attempts of diffraction revealed that they were poorly diffracting, 

twinning, disordered, or all of above. If one can make coordination polymers by 

separating the enantiomers, it may solve one source of disorder.  

The charge neutral nickel(II) complexes are insoluble in most of the polar 

solvents, but most of the metal salts are soluble in polar solvents. If one can make ionic 

metallo-ligands instead of charge neutral nickel complexes, it would answer the solubility 

issue. Furthermore, silver(I) salts might not be a good choice to make MMOF with this 

electron-rich complexes, because the DMF solution of Ni(4py,4py)2 resulted in Ag metal 

instead of a silver bound coordination polymer. Mono-cationic 

[Rh(Me,Me)(4py,4py)](PF6) made successful 1D coordination polymer with redox silent 

Zn2+. Therefore zinc salt might be a good source to make 2D or 3D coordination 

polymers with electron rich-metalloligands.  

Furthermore, if one modifies these ligands by substituting other donor groups in 

4-pyrazolyl positions, donor capability of these ligands would be extended. Instead of 

sticking on central metal, nickel, further approaches of various metals for these 

metalloligands could be investigated. It would resolve the solubility issue and reduce the 

power of this electron-rich nature of charge neutral nickel complexes. One can expand 

this scope further designing of new ligands with different donors. It is possible to make 
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fixed donor groups on para-aryl positions as shown in Figure 5.14.b-c. It will shorten the 

contacts of metal centers, resulting in MMOFs with higher conductivity compared to 

longer contacts. Proposed pincer ligands are shown is Figure 5.14. 

 

 

Figure 5.14. Proposed pincer type ligands for future MOFs. D is a donor group (pz, PPh2, 
SCH3,O-, OCH3…etc). 

 

 The ultimate goal of this project is to make conductive MMOFs or MMCPs. 

Therefore conductivity measurements of synthesized polymers should be measured. It 

can be achieved by growing these CPs on indium tin oxide (ITO) or fluorine doped tin 

oxide (FTO) plates. The bulk conductivity of powder can be measured using the four 

probe method. 

5.4. EXPERIMENTAL 

Materials. CuI, anhydrous Na2CO3, Cs2CO3, Zn(NO3)2, 3-pyridine boronic acid, 4-

pyridine boronic acid, Ethyl 4-iodobenzoate, Ethyl 4-aminobenzoate were purchased 

from commercial sources and used without further purification. The compounds 

Pd(PPh3)4,24  HN(CO2Et)2, (NEt4)[Rh(Me,Me)Cl3]·H2O25 were prepared by literature 

methods. Solvents used in the preparations were dried by conventional methods and were 

distilled under nitrogen prior to use. 
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Physical measurements. 1H, 13C and 31P NMR spectra were recorded on a Varian 400 

MHz spectrometer.  Chemical shifts were referenced to solvent resonances at δH 7.26 and 

δC 77.16 for CDCl3, δH 5.32 and δC 53.84 for CD2Cl2, δH 2.05 and δC 29.84 for acetone-

d6. Melting point determinations were made on samples contained in glass capillaries 

using an Electrothermal 9100 apparatus and are uncorrected.   

Ligand Precursor Synthes 

HN(2-Br-4 –C6H4CO2Et)2 

N

CO2Et

Br Br

EtO2C

HiN

CO2EtEtO2C

H

i) 2 eq N-Bromosuccinimide, CH3CN, 0oC
 

A solution of 0.575g (3.23 mmol, 2 eq) N-Bromosuccinimide dissolved in 30 mL of 

CH3CN was added dropwise (1 mL/min) to a cold (0 0C ), magnetically stirred solution of 

0.5058g (1.61 mmol) Benzoic acid, 4,4'-iminobis-, diethyl ester in 20 mL CH3CN. After 

complete addition, the white precipitate was isolated by filtration to give 0.646g (85%) of 

the desired product. Mp: 158-159 0C. 1H NMR (CDCl3): δH 8.29 (s, 2H, Ar), 7.94 (d, J = 

8.4Hz, 2H, Ar), 7.40 (d, J = 8.5 Hz, 2H, Ar), 7.05 (s, 1H, NH), 4.37 (q, J = 7.1 Hz, 4H, 

CH2), 1.40 (t, J = 7.0 Hz, 6H, CH3). 13C NMR (CDCl3): δC 165.2, 142.7, 134.9, 130.1, 

125.1, 116.4, 113.6, 61.3, 14.4. 
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Ligand Synthesis 

H(CN,CN)    

NH2

CN

N
N

+
Br

CN

N
N

N

CN

N NN N

NC

Hi

 

i)1.2 eq Cs2CO3, 20 mol% CuI, Dioxane, Δ 15h 

A Schlenk flask charged with 0.755 g (4.10 mmol) H(pzAnCN), 1.017 g (4.10 mmol) Br-

CNPhPz, 1.603 g (4.92 mmol) Cs2CO3 was deoxygenated by three evacuation and argon 

back-fill cycles.  Next, 15 mL of argon-purged, dry dioxane was added by syringe and 

then 0.156 g (0.820 mmol) CuI was added under an argon blanket.  After the reaction 

mixture had been heated at reflux 15 h under argon, it was cooled to room temperature 

and dioxane was removed by vacuum distillation.  The resulting solid was dissolved in a 

biphasic mixture of 50 mL H2O and 50 mL ethyl acetate.  The aqueous and organic 

fractions were separated.  The aqueous fraction was extracted with three 30 mL portions 

ethyl acetate.  The combined organic fractions were dried over MgSO4, filtered and 

volatiles were removed under vacuum with the aid of a rotary evaporator.  The resulting 

brown oil was subjected to column chromatography on silica gel using 1:1 ethyl 

acetate:hexanes as the eluent.  The desired product was obtained as a yellowish solid after 

removing solvent from the second band (Rf = 0.37).  Recrystallization by cooling a 

boiling absolute ethanol solution to room temperature over the course of hours and then 

to -30 oC overnight afforded 0.72 g (50%) of H(CN,CN) as pale yellow crystals.  Mp: 

178-180 oC.  1H NMR (CDCl3): δH 10.32 (s, 1 H, NH), 7.79 (d, J = 1.9 Hz, 2 H, H3pz), 
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7.77 (d, J = 2.5 Hz, H5pz), 7.64 (d, J = 1.6 Hz, 2 H, Ar), 7.56 (s, 2 H, Ar), 7.55 (d, J = 1.6 

Hz, Ar), 6.55 (dd, J = 2.5, 1.9 Hz, 2 H, H4pz).  13C NMR (CDCl3): δC 141.8, 139.5, 

132.2, 130.5, 130.1, 128.8, 118.9, 118.3, 108.1, 104.9.  IR (KBr) νCN 2226 cm-1. 

H(3py,3py) 

N

Br Br

N NN N
+

N

B
OHHO

i
H
N

N NN N

N N
xs

 

i) 20 mol% Pd(PPh3)4, 2 M Na2CO3, 30 mL C6H6, 10 mL EtOH, Δ 800C, 12H 

In an argon-filled dry box, a Schlenk flask was charged with 0.707g (1.54 mmol) 

H(Br,Br), 0.568g (4.62 mmol) pyridine 3-boronic acid, and 0.356g (0.308 mmol) 

Pd(PPh3)4. The flask was removed from the drybox and attached to a Schlenk line. A 

solution of 30 mL C6H6 and 10 mL absolute ethanol was purged with argon 15 min and 

was transferred to the reaction flask under argon via cannula. Next, 10 mL of an argon-

purged 2 M aqueous Na2CO3 solution was transferred via cannula to the reaction flask. 

After the magnetically-stirred biphasic mixture had been heated at 80 0C for 16 h with the 

aid of an external oil bath, the mixture was cooled to room temperature and poured into 

100 mL H2O. The aqueous and organic fractions were separated. The aqueous layer was 

extracted with two 50 mL portions ethyl acetate. The combined organic layers were dried 

over MgSO4 and filtered. The oily residue that was obtained after removing solvents 

under vacuum was subjected to column chromatography on silica gel using 2 :1 ethyl 

acetate : hexanes to remove first two spots and then used 10:1 ethyl acetate : methanol as 

an eluent to obtain desired product (0.589 g , 84%) H(3py,3py) as a colorless solid after 
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removing solvents and drying under vacuum 1 h. Mp: 59-60 0C.  1H NMR (CDCl3): δH 

9.12 (s, 1H, NH), 8.86 (d, J = 1.8Hz, 2H, H5pz), 8.58 (dd, J = 4.8, 1.4 Hz, 2H, Ar), 7.87 

(dt, J = 7.9 , 2.3 Hz, 2H, Ar), 7.82 (dd, J = 2.4, 0.5 Hz, 2H, Ar), 7.78 (dd, J = 1.9, 0.5 Hz, 

2H, Ar), 7.63 (d, J = 8.5Hz, 2H, Ar), 7.59 (d, J = 2.1 Hz, 2H, H3pz), 7.51 (dd, J = 8.4, 2.2 

Hz, 2H, Ar), 7.37 (dd, J = 8.2, 5.0 Hz, 2H, Ar), 6.51 (t, J = 2.4 Hz, 2H, H4pz). 13C NMR 

(CDCl3): δC 148.5, 147.9, 141.2, 136.6, 135.5, 134.0, 132.3, 130.9, 130.2, 128.7, 127.0, 

123.9, 119.3, 107.3. 

H(4py,4py).   

N

Br Br

N NN N
+

N

B
OHHO

i N
N NN N

N N

H
xs

 

i) 20 mol% Pd(PPh3)4, 2 M Na2CO3, 30 mL C6H6, 10 mL EtOH, Δ 800C, 12H 

In an argon-filled dry box, a Schlenk flask was charged with 0.707g (1.54 mmol) 

H(Br,Br), 0.568g (4.62 mmol) pyridine 4-boronic acid, and 0.356g (0.308 mmol) 

Pd(PPh3)4. The flask was removed from the drybox and attached to a Schlenk line. A 

solution of 30 mL C6H6 and 10 mL absolute ethanol was purged with argon 15 min and 

was transferred to the reaction flask under argon via cannula. Next, 10 mL of an argon-

purged 2 M aqueous Na2CO3 solution was transferred via cannula to the reaction flask. 

After the magnetically-stirred biphasic mixture had been heated at 80 0C for 16 h with the 

aid of an external oil bath, the mixture was cooled to room temperature and poured into 

100 mL H2O. The aqueous and organic fractions were separated. The aqueous layer was 

extracted with two 50 mL portions ethyl acetate. The combined organic layers were dried 
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over MgSO4 and filtered. The oily residue that was obtained after removing solvents 

under vacuum was subjected to column chromatography on silica gel using 2 :1 ethyl 

acetate : hexanes to remove first two spots and then used pure methanol as an eluent to 

obtain desired product H(4py,4py) as a colorless solid after removing solvents and drying 

under vacuum 1 h. (0.3019g , 43%) .Mp, 102-103 0C.  1H NMR (CDCl3): δH 9.34 (s, 1H, 

NH), 8.65 (br s, J = 4.8 Hz, 4H), 7.81 (br s, J = 12.2 Hz, 4H), 7.62 (m, 6H), 7.50 (br s , J 

= 4.8 Hz, 4H), 6.50(br s, 2H, pz). 13C NMR (CDCl3): δC 150.4, 146.7, 141.2, 137.2, 

132.1, 130.9, 130.8, 130.1, 128.7, 126.7, 123.8, 120.9, 119.1, 107.3. 

H(CO2Et, CO2Et)2  

N

CO2Et

N NN N

EtO2C

HiN

CO2Et

Br Br

EtO2C

H

 

i) 3.5 eq K2CO3, 3.5 eq 1-H-Pyrazole, 10 mol% CuI, 40 mol% DMED 

A mixture of 0.6463 g (1.37 mmol) HN(2-Br-4-C6H4CO2Et)2, 0.3269 g (4.80 mmol, 3.5 

equiv) pyrazole, 0.6635 g (4.80 mmol, 3.5 equiv) K2CO3, 0.1 mL (0.548 mol, 40 mol %) 

DMED, and 10 mL of distilled xylenes was purged with argon 15 min.  Then, 0.026 g 

(0.137 mmol, 10 mol %) CuI was added as a solid under argon and the mixture was 

heated at reflux for 36 h under nitrogen.  After cooling to room temperature, 100 mL of 

H2O was added and the mixture was extracted with three 50 mL portions of ethyl acetate.  

The combined organic layers were dried over MgSO4, filtered, and solvent was removed 

by rotary evaporation to give an oily residue that was purified by column 
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chromatography on silica gel.  Elution using 8:1 hexanes:ethyl acetate (Rf = 0.4) afforded 

0.276 g (45 %) of H(CO2Et, CO2Et)2 as sticky glue , after removing solvent and drying 

under vacuum. 1H NMR(CDCl3): δH 9.96 (s, 1H, NH), 8.01 (d, J = 1.7Hz, 2H, H5pz), 

7.94 (d, J = 9.6 Hz, 2H, Ar), 7.79 (d, J = 2.1 Hz, 2H, pz), 7.76 (s, 2H, Ar), 7.57 (d, J = 

8.8 Hz, 2H, Ar), 6.49 (br s, 2H, pz), 4.36 (q, J = 7.2 Hz, 4H, CH2), 1.36 (t, J = 7.3 Hz, 

6H, CH3), 13C NMR (CDCl3): δC 165.7, 141.2, 140.0, 131.5, 130.2, 129.8, 126.7, 123.5, 

117.8, 107.3, 61.2, 14.4. 

Metal Complex Synthesis 

Ni(3py,3py)2, 1. 

 The solution of 0.449 g (0.987 mmol) H(3py,3py) and 0.117 g (0.493 mmol) NiCl2.6H2O 

in  15 mL MeOH was heated at reflux 10 min and it formed orange solution immediately. 

Then, 0.70 mL of a 1.47 M (0.99 mmol) solution of (NEt4)(OH) in MeOH was injected to 

the hot reaction mixture by syringe. The solution became dark brown and an orange-

brown solid precipitated. After the orange-brown suspension had been heated at reflux 30 

min, the mixture was allowed to cool to room temperature. The insoluble portion was 

collected by filtration, was washed with 5 mL MeOH, then 5 mL of Et2O, and was dried 

under vacuum to leave 0.526 g (72% yield) of Ni(3py,3py)2 as a red-brown solid. Mp,  

>3500C.  Anal. Calcd. (found) for C56H40N14Ni:  C, 69.50 (63.70); H, 4.17 (4.31); N, 

20.26 (17.42). µeff (solid, 295 K) = 3.3 µB.  UV-Vis (CH2Cl2) λmax, nm (ε, M-1cm-1):  248 

(71,670), 418 (78,587), 528 (1272), 844 (389).               
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 The following compound was prepared in a similar manner where the heating time, 

amount of solvent, and subsequent work-up procedure were identical to that described for 

Ni(3py,3py)2.  

Ni(4py,4py)2, 2. 

 A mixture of 0.220 g (0.484 mmol) H(4py,4py), 0.058 g (0.24 mmol) NiCl2.6H2O, and 

0.49 mmol (NEt4)(OH) (0.33 mL of a 1.47 M solution in MeOH) gave 0.183 g (78%) 

Ni(4py,4py)2 as a red-brown solid.  Mp: >3500C.  Anal. Calcd. (found) for C56H40N14Ni:  

C, 69.50 (68.42); H, 4.17 (4.23); N, 20.26 (19.62).µeff (solid, 295 K) = 3.0 µB.  UV-Vis 

(CH2Cl2) λmax, nm (ε, M-1cm-1):  534 (1730), 843 (310). 

Ni(CN,CN)2, 3. 

Owing the relatively lower solubility of the ligand in MeOH versus other ligands, the 

mixture of 0.240 g (0.682 mmol) H(CN,CN), 0.0810 g (0.341 mmol) NiCl2·6H2O, and 

0.68 mmol (NEt4)(OH) (0.46 mL of a 1.47 M solution in MeOH) was heated at reflux 6h 

and was filtered hot.  After washing with Et2O and drying under vacuum 0.222 g (86%) 3 

was obtained as an orange-brown solid.  Mp: >350oC.  Anal. Calcd. (found) for 

C40H24N14Ni:  C, 63.26 (59.56); H, 3.19 (3.23); N, 25.82 (24.28).µeff (solid, 295 K) = 3.2 

µB.  IR (KBr) νCN 2214 cm-1.  λmax, nm (ε, M-1cm-1):  242 (99,200), 303 (22,300), 346 

(27,300), 407 (118,000), 491 (930), 512 (982), 792 sh (81), 841 (159) , 893 (160).   

Ni(CO2Et, CO2Et)2, 4. 

 A mixture of 0.276 g (0.612 mmol) H(CO2Et, CO2Et)2 , 0.074 g (0.306 mmol) 

NiCl2.6H2O, and 0.612 mmol (NEt4)(OH) (0.42 mL of a 1.47 M solution in MeOH) gave 
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0.236 g (67%) Ni(CO2Et, CO2Et)2 as a red-brown solid. Mp: >3500C.  Anal. Calcd. 

(found) for C48H44N10O8Ni:  C, 60.84 (58.43); H, 4.68 (4.43); N, 14.78 (14.09). µeff 

(solid, 295 K) = 2.9 µB.  IR (KBr) νCO 1699 cm-1. UV-Vis (CH2Cl2) λmax, nm (ε, M-1cm-1):  

244 (62,714), 316 (15,793), 344 (21881), 417 (79413), 515 (1180), 839 (272), 887 (271). 

Rh(Me,Me)(4py, 4py)(PF6), 5. 

A solution of 0.157 g ( 0.229 mmol) of(NEt4)[Rh(Me,Me)Cl3]·H2O, 0.241 g ( 0.229 

mmol) of H(4pr,4py), 0.240 g ( 0.687 mmol) of TlPF6 and 0.16 mL of 1.4685 M ( 0.0.229 

mmol) of methanolic solution of NEt4OH in 15 mL CH3CN was heated in refluxing for 

15 h. Then it was allowed to cool to room temperature and filtered through a short pad of 

celite. The organic fractions were evaporated and 0.140 g (59% yield) of the desired 

product as a red/brown solid was isolated after column chromatography on neutral 

alumina by eluting with 10:1 dichloromethane/methanol collecting the red band (Rf = 

0.6). Mp: 236 - 238 0C (decomposed). . 1H NMR(CDCl3): δH  8.7(d, J = 2.7 Hz, 2H, pz), 

8.56 (br d, J = 5.4 Hz,, 4H, pz), 8.47 (d, J = 2.8 Hz, 2H, pz), 7.90 (d, J = 9.0 Hz, 2H), 

7.88 (s, 2H), 7.77 (dd, J = 8.7, 2.1 Hz, 2H), 7.68 (br d, J = 6.0 Hz, 4H), 7.58 (d, J = 8.2 

Hz, 2H), 7.32 ( dd, J = 11.5, 2.4 Hz, 4H), 7.20 (s, 2H), 7.06 (d, J = 8.3 Hz, 2H), 6.51 (t, J 

= 2.8 Hz, pz, 2H), 6.51 (t, J = 2.8 Hz, 2H, pz), 6.44 (t, J = 2.8 Hz, 2H, pz), 2.23 (s, 6H).  

Attempts to prepare coordination polymers (CPs) and mixed metal organic 

frameworks (MMOFs). 

H(CN,CN)2•AgPF6.  A solution of 0.010 g (0.013 mol) H(CN,CN) in 2 mL of acetone 

was layered with a solution of 0.007 g (0.026 mmol) AgPF6 in 4 mL THF and solvents 

were allowed to diffuse over 3d, to give AgPF6H(CN,CN) yellow needles.   
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H(4py,4py)• Zn(NO3)2.  A solution of 0.010 g (0.021 mmol) H(4py,4py) in 2mL DMSO 

was layered with 0.065 g (0.021 mmol) Zn(NO3)2·6H2O in 4 mL EtOH and solvents were 

allowed to diffuse over 1day to give Zn(NO3)2[H(4py,4py)] pale yellow needles.  

Ni(CN,CN)2•AgBF4. A solution of 0.020 g (0.026 mmol) Ni(CN,CN) in 2 mL of acetone 

was layered with a solution of 0.010 g (0.052 mmol) AgBF4 in 4 mL THF and solvents 

were allowed to diffuse over 3d, to give Ni(CN,CN)2:AgBF4 yellow needles. 

Ni(CN,CN)2 •AgOTf. A solution of 0.020 g (0.026 mmol) Ni(CN,CN)2 in 2 mL of THF 

was layered with a solution of 0.014 g (0.054mmol) AgOTf in 4 mL THF and solvents 

were allowed to diffuse over 1d to give Ni(CN,CN)2:AgOTf red brown blocks.  

Rh(Me,Me)(4py,4py)(PF6)•Zn(NO3)2. A solution of 0.0098 g (0.0095 mmol) 

[Rh(Me,Me)(4py,4py)](PF6) in 2 mL of DMSO was layered with a solution of 0.0031 g 

(0.010 mmol) Zn(NO3)2 in 4 mL of EtOH and solvents were allowed to diffuse over 7d to 

give Rh(Me,Me)(4py,4py)·Zn(DMSO)4(NO3)2 orange needles.  

5.5 CRYSTALLOGRAPHY. 

X-ray intensity data from a long brown prism of Ni(3py,3py)·1.5 CH2Cl2, a yellow 

needle of Ni(CO2Et,CO2Et)2·0.5CH2Cl2 were collected at 100.0(1) K with an Oxford 

Diffraction Ltd. Supernova diffractometer equipped with a 135 mm Atlas CCD detector 

using Mo(Kα) radiation.  Raw data frame integration and Lp corrections were performed 

with either CrysAlis Pro (Oxford Diffraction, Ltd.)20 or SAINT+ (Bruker).21   Analysis of 

the data showed negligible crystal decay during collection in each case.  Direct methods 

structure solutions, difference Fourier calculations and full-matrix least-squares 

refinements against F2 were performed with SHELXTL.22  Hydrogen atoms were placed 



194 
 

in geometrically idealized positions and included as riding atoms.  The X-ray 

crystallographic parameters and further details of data collection and structure 

refinements are given in Table 5.3. 

 

Table  5.3.Crystallographic Data Collection and Structure Refinement for Ni(3py,3py)2, 
1·1.5 CH2Cl2, Ni(CN.CN)2·acetone, 3.acetone, Ni(CO2Et,CO2Et)2, 4·0.5 CH2Cl2. 

 

Compound 1·1.5 CH2Cl2 3·acetone 4·0.5 CH2Cl2 
Formula C57H41Cl3N14Ni C43H30N14NiO C48H44Cl0.5N10NiO8 
Formula weight 1043.11 817.52 960.61 
Crystal system triclinic monoclinic monoclinic 
Space group P-1 P 21/n C2/c 
Temperature [K] 99.95(10) 100.0(1) 100.00(10) 
a [Å] 9.7474(3) 14.21320(17) 50.0642(8) 
b [Å] 14.7610(5) 15.60318(16) 11.16515(14) 
c [Å] 18.6394(6) 17.3945(2) 16.41104(19) 
α[°] 95.027(3) 90.00 90.00 
β[°] 103.898(3) 103.6602(13) 96.1625(12) 
γ [°] 104.064(3) 90.00 90.00 
V [Å3] 2494.77(14) 3748.49(8) 9120.3(2) 
Z 2 4 8 
Dcalcd. [gcm-3] 1.389 1.449 1.399 
λ[Å] (Cu or Mo 0.7107 0.7107 0.7107 
µ [mm-1] 1.888 0.575 1.332 
Abs. Correction numerical numerical numerical 
F(000) 1078.0 1688 4003.0 
θ range [°] 6.24 to 147.74° 2.88 to 29.20 7.1 to 147.76° 
Reflections 24773 42291 44705 
Independent Rflns 9791[Rint = 9159 9119[Rint = 0.0263] 
T_min/max  0.922/0.958 0.834/0.941 
Data/restr./param. 9791/3/680 9159/0/534 9119/6/650 
Goodness-of-fit 1.067 1.047 1.031 
R1a /wR2b 0.0611/ 0.1827 0.0476/0.1128 0.0340/ 0.0913 
R1/wR2 (all data) 0.0658/ 0.1880 0.0592/0.1201 0.0376/ 0.0946 
peak/hole / e Å-3 1.52/-0.73 0.747/-0.792 0.72/-0.41 
a R1 = Σ||Fo| – |Fc||/Σ|Fo|  b wR2 = [Σw(|Fo| – |Fc|)2/Σw|Fo|2]1/2. 
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CHAPTER 6 

SYNTHESIS AND CHARACTERIZATION OF COINAGE METAL 
COMPLEXES OF FUNCTIONALIZED N,N’-DIARYLFORMAMIDINATES 

6.1. INTRODUCTION 

 The study of multi-nuclear, coinage metal complexes has gained considerable 

attention because the properties of group 11 metals are quite different compared to the 

other metals. The mono-cationic group 11 metals have closed-shell d10 electronic 

configuration. Sometimes these complexes associate to give interactions in which metal-

metal distances are shorter than the sum of their van der Waals radii.1-10 These metal-

metal interactions often bestow in unusual luminescence properties and chemical 

reactivity to the complex.5,23 There has been interest in developing ligands that can 

support or vary the proximity and hence the strength of the metallophilic interactions. In 

group 11 chemistry a given multinucleating ligand can promote molecules in a number of 

ways (many times unexpectedly); Figure 6.1. 

 

Figure 6.1. Ligand supported dinuclear silver complexes from reference 4. 
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 The anionic amidinate ligands are known to support metal-metal interactions.1-6 

Further, amidinates have multiple coordination modes leading to various molecular 

arrangements (Figure 6.2). These amidinate ligands are isoelectronic with the well known  

 

 

Figure 6.2. Metal binding coordination modes of amidinates. M: metal, R: organic group.  
a ) Chelating, κ. b) Bridging-Chelating (symmetric), μ-κ.  c) Bridging, μ.  d)   Bridging- 
Chelating (asymmetric). 

 

carboxylate ligands, which also exhibit diverse binding modes. Cotton et al. first 

synthesized the N,N’-di-p-tolylformamidinato disilver(I) (Ag2(form)2) complex shown in 

Figure  6.3.a,1 and thereafter numerous coinage metal amidinate complexes have been 

synthesized.1-6 The Ag2(form)2 complex (Figure 6.3.a) has short Ag···Ag contacts, where 

inter atomic distance is 2.705(1) Å. Since diarylformamidinates are N,N’ donors, 

introducing additional donor groups to the ortho-aryl positions provides possibilities for 

making extended pincer ligands, where the added donors can stabilize a central M2 

fragment anchored by NCN moiety. Such complexes with sulfur and oxygen donor 

flanking donor groups have reported by Archibald and co-workers (Figure 6.3.b-c).2 
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Figure 6.3.  a) First disilver diformamidinate (Ag2(form)2) complex synthesized by 
Cotton et al. at 1988.1 b) thioether and c) methylether functionalized N,N’-
diphenylformamidinate silver(I) dimers.2 

 

The silver complex, which has sulfur flanking donors has 2.801 Å silver-silver inter 

atomic distance while oxygen donor complex has 2.780 Å.  Yamaguchi and co-workers 

have prepared a series of such extended pincer ligands with phosphorous flanking 

donors.25 Their bimetallic palladium and platinum complexes, which have metal-metal 

interactions, were studied for potential metal-metal cooperativity in catalytic reactions.  

 

 

Figure 6.4. Diarylformamidinate ligand with ortho-aryl donor groups. R is an alkyl or 
hydrogen. 

 

Previous studies by He and co-workers on various mono and dinuclear silver(I) 

complexes indicated that those with Ag···Ag interactions are active catalysts for olefin 
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aziridination reactions while others are not.23 Perez and co-workers has shown that 

mononuclear silver(I) scorpionate complex can efficiently catalyze this reaction 

however.29 In each cases, the potential of silver(I) formamidinate complexes to act as 

catalysts has not been explored. These types of ligands provide good platform to 

synthesize multi-nuclear metal complexes and here we document the synthesis of multi-

nuclear silver complexes of three extended pincer ligands. Therefore potentials of 

silver(I) formamidinate complexes for the catalytic activity of this reaction will be 

described to determine whether or not such catalytic reactivity can be used to gauge of 

metallophilic interactions.    

 Further, substitution of phosphino donor groups into the ortho-aryl provides hard 

and soft binding sites to the ligand (Figure 6.5). Having different donor sites in a ligand 

may permit preferentially binding of metal ions based on Pearson’s Hard-Soft acid/base 

preferences. Therefore, self sorting ability of the ligand toward different group 11 

complexes was examined.  

 

Figure 6.5. Hard and soft donor sites of PNNP ligand.  
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6.2. RESULTS AND DISCUSSION 

6.2.1. Ligand Syntheses. 

Three N,N’-diarylformamidinate ligands that have various donor groups at the 

ortho aryl positions were prepared. The protonated ligands are labeled according to their 

donor sets H(NNNN), H(PNNP), and H(PNNN). H(NNNN) has pyrazolyl flanking 

donors. When the flanking donors are diarylphosphines, the ligand is H(PNNP). Finally, 

the unsymmetrical species with a pyrazolyl and a diarylphosphine flanking donor set is 

H(PNNN). The ligand, H(NNNN) was synthesized by heating the mixture of two 

equivalents of H(pzAnMe)13 with one equivalent of triethylorthoformate in the presence of 

a catalytic amount of acetic acid for 4 hours (Scheme 6.1). The ligand could be purified 

by washing with hexanes, because all impurities including starting materials are soluble 

in hexane; the ligand is insoluble. The synthesis of H(PNNP) was carried out similarly, 

but two equivalents of H(DPPAntBu) was used as a starting material (Scheme 6.2). The 

purification of this ligand was more complicated as it is soluble in the most of organic 

solvents and it decomposes on silica or alumina gels preventing purification by column 

chromatography. Therefore it was used “as formed” for the ensuing reactions; the 

resulted metal complexes can be purified easier. The asymmetric formamidinate 

H(PNNN) was prepared in two steps. In a manner similar to Eisen30, the reaction between 

equimolar amounts of H(pzAnMe) and triethylorthoformate gave hexane soluble an 

intermediate IA (Scheme 6.3). This intermediate was then reacted with H(DPPAnMe) to 

give the desired H(PNNN) (Scheme 6.4). 
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Scheme 6.1. Preparation of H(NNNN). i) catalytic amount of acetic acid, Δ , 4 hours. 

 

 

Scheme 6.2. Preparation of H(PNNP). i) catalytic amount of acetic acid, Δ , 4 hours. 

 

 

Scheme 6.3. Preparation of IA. i) catalytic amount of acetic acid, Δ , 3 hours. 

 

 

Scheme 6.4. Preparation of H(PNNN). i) catalytic amount of acetic acid, Δ , 4 hours. 
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6.2.2. Alkali Metal Complexes. 

 

 

 

Scheme 6.5. Preparation of alkali metal complexes, 1 and 2.  

  

Alkali metal complexes were prepared and characterized since they can be 

starting materials to other complexes. The complexes M(NNNN) M = Na+, K+ were 

prepared by the reaction between H(NNNN) and either NaH or KOtBu, as appropriate, 

Scheme 6.5. The complexes M(PNNP) and M(PNNN) were prepared in-situ by similar 

methods but were not isolated because they were used successfully in preparation and 

purification of silver complexes, vide infra.  

The yellow plates of THF solvated 1 were grown by layering hexanes on top of 

the THF solution of 1 and allowing solvents to diffuse for 24 h. The asymmetric unit is 

shown in Figure 6.6 and consists of two ligands, two Na, and two THF molecules. One 

sodium is bound two chelating ligands with four nearly identical Na-N bonds that 

average 2.427(3) Å. The two ligands are nearly perpendicular having an 850 angle  
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Figure 6.6. Asymmetric unit of the structure of 1.  

 

between NCN planes. The two N-C bonds of each ligand are also identical with average 

bond length of 1.327(3) Å. The second sodium is coordinated to four different pyrazole 

nitrogen atoms from four ligands (avg. 2.548(3) Å) and with one solvent molecule to give 

a 2D sheet structure, as shown in Figure 6.7. The second THF solvate molecule is located 

between stacked sheets. 

 

Na1 
Na2 
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Figure 6.7. Crystal packing of 1.  

 

 The structure of the pale yellow needles of 2, which were grown by layering 

hexanes on top the THF solution of complex and allowing solvents to diffuse for 24h, 

was determined crystallographically. Complex 2 has a complicated polymeric structure as 

a result of association of different dimeric κ(NNN) units and a portion of polymeric 

structure is shown in Figure 6.8. The formamidinate group has a semi-bridging role in 

forming centrosymmetric dimers in crystals and each amidinato nitrogen interact with 

potassium atoms (Figure 6.8). The interatomic distance of two potassium atoms is 

3.599(1) Å. The average bond length of K-NAm is 2.984(3) Å, which is longer than the 

average K-Npz bond legth (2.843(3) Å). This pyrazole comes from a neighboring dimer. 
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Two C-NAm bonds of each ligand is similar with 1.318(3) Å. The dimers, in turn, are 

connected in chains along the x-axis via coordination through pyrazole side groups 

(Figure 6.8 and Figure 6.10). The crystal packing is depicted in the Figure 6.9. The chains 

propagate along the direction of the x-axis leaving spacious channels between them. The 

channels are filled by partially populated THF molecules.  

 

Figure 6.8. Dimeric structure of 2·THF. Inter atomic distance of potassium is 3.599 Å. 
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Figure 6.9. Crystal packing of 2·THF. 

 

 

Figure 6.10. The chain of 2·THF is propagated through the interaction of each 
potassiums with neighboring pyrazole groups. 
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6.2.3. Silver Complexes. 

6.2.3.1. Ag(NNNN), 3 

 

Scheme 6.6. Synthesis of Ag(NNNN), 3. i) THF, stir room temperature, 12 h. 

 

The complex Ag(NNNN), 3, was prepared by the reaction of AgOTf and 

Na(NNNN) in THF. Complex 3 is soluble in chlorinated solvents and THF but is 

insoluble in hexanes, pentane, and diethyl ether. Crystals suitable for single crystal X-ray 

diffraction were grown by layering hexanes on top of CH2Cl2 solution of 3 and allowing 

solvents to diffuse for 12 h. 

 The solid state structure of 3 shows a dimeric motif (Figure 6.11).2,17,18 The eight-

membered Ag2(NCN)2 ring of this dimer is essentially planar. It has an inversion center 

through the midpoint of the Ag···Ag interaction. Each silver atom is coordinated with two 

amidinate nitrogen donors, one from each ligand. In addition to these Ag-NAm bonds 

there is a weak Ag···Npz interaction with a pyrazolyl nitrogen of one ligand. The other 

pyrazole is not interacting with silver (Figure 6.11). Both silver atoms are identical by 

symmetry. The Ag1-N6 bond distance is 0.014(2) Å shorter than that of the Ag1-N5 bond 

(2.164(2) Å). The Ag-Npz distance (2.496(2) Å) is longer than the Ag-NAm bond. This 
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distance is much more shorter than the average Ag··S interaction (2.865(2) Å) of Figure 

6.3.b and Ag··O interaction (2.757 (5) Å) of Figure 6.3.c. Two silver atoms have a short 

inter-atomic distance of 2.782 (4) Å. The silver-silver interatomic distance (2.872 (5) Å) 

is 0.658 Å shorter than the sum of the van der Waals radii of silver (3.440 Å) that is 0.262 

Å longer than the sum of ionic radii ( 2.520 Å).19 This Ag···Ag short interaction is  

 

 

Figure 6.11. Thermal ellipsoid plot of 3. Hydrogen atoms have been omitted for clarity. 

 

shorter than most of the other dimetallic silver complexes reported, but it is 0.077 Å 

longer than that of Ag2(form)2 2.705 (1) Å (Figure 6.3.a).1 The weak interactions between 

the pyrazolyl nitrogen atoms and silver in 3 might be the reason for the longer Ag··Ag 

separation in 3 versus Ag2(form)2. The similar types of dinuclear silver complexes, which 

have sulfur and oxygen donors on ortho-aryl positions respectively (Figure 6.3), also 

show the elongated Ag···Ag interactions compared to the analogue complex, which does 
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not have a donor group at ortho-aryl positions.2 This asymmetric ligand environment 

(two pyrazole flanking donors are not symmetric in the solid structure) does not exist in 

the solution. The 1H NMR spectrum of 3 in CDCl3 shows symmetric ligand environment 

and does not show two sets of peaks for pyrazole protons. Other characterization will be 

described later. 

6.2.3.2. Ag(PNNP), 4. 

 

Scheme 6.7. Synthesis of Ag(PNNP), 4. i) THF, stir at room temperature, 12 h. 

 

Complex 4 was prepared following a similar procedure described for 3 (Scheme 

6.7). The analytically pure yellow complex can be isolated by washing the crude mixture 

with diethyl ether. All impurities, including the unreacted ligand, could be removed from 

the product at this stage. Therefore this complex could be used as a pure reagent for 

future reaction chemistry. Single crystals suitable for X-ray diffraction were grown by 

layering pentane on top of the CH2Cl2 solution of 4.  
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Figure 6.12.  X-ray crystallographic structure of 4. Ag···Ag inter-atomic distance is 
3.254(3) Å. 

 

The structure of 4 shows it to be a dimer in the solid state (Figure 6.12). Unlike 3, 

eight membered Ag2(NCN)2 ring in 4 is not planar. Two ligands are nearly perpendicular 

to each other with a 92 angle between mean NCN planes. The structure has a 2-fold 

symmetry axis along the Ag···Ag vector. Each silver atom is four coordinate (μ-κN;κP), 

with a distorted tetrahedral AgN2P2 coordination environment, with one nitrogen and 

phosphorous from each ligand. The silver-silver interatomic distance of 3.254(3) Å is 

longer than that in complex 3 (2.782(4) Å). The two Ag-NAm bonds distances are 

different ( Ag1-N1 = 2.321(2) Å  and Ag1 -N2 = 2.355(2) Å). Both Ag-P bond distances 

are identical at 2.465(6) Å. 

If this structure persist in the solution, 1H NMR and 31P NMR should show symmetric 

resonance pattern for the ligands. The characteristic 31P NMR pattern of this type of 

Ag
1 

Ag2 

N
1 

N2 

N1 
N2 
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complex is two doublets (coupling with 109Ag and 107Ag) with coupling constants in 

range of 400 – 550 Hz. The 31P NMR of 4 shows two types of phosphorus resonances at 

room temperature, as shown Figure 6.13. There are two ligands and two silver atoms in 

the dimeric form and therefore it has four phosphorus atoms, two from each ligand. The 

middle resonance of 31P NMR spectrum at room temperature integrates into one, while 

the summation of the outer two resonances integrates to one. It indicates that there are 

two types of phosphorus atoms present in the solution in equal amounts. If two out of 

four phosphorous atoms, likely one from each ligand, are bound to silver atoms, the 

NMR peak for those phosphorous atoms would be appeared as the two outer signals and 

it appears as a triplet in the room temperature NMR.  The other two phosphorus atoms 

are exchanging very fast and the time-averaged signal appears as the middle signal 

(Figure 6.13). This rapid exchange is lowered when the sample temperature is decreased. 

Then the 31P NMR shows the characteristic set of doublet resonances, which is expected 

for chemically equivalent phosphorous bound to a silver atom (Figure 6.13).  Silver has 

two naturally occurring NMR active (I= ½) isotopes. One of these two is 107Ag, and its 

natural abundance is 52%, while the rest is 109Ag. These two isotopes give two doublets 

in 52:48 ratio, and we can see that pattern in the low temperature 31P NMR of 4 (Figure 

6.13 : Left-top).  The low temperature NMR has 370 Hz (1J109Ag-P) and 327 Hz (1J107Ag-P) 

coupling constants, those are much lower than the other silver complexes with two 

phosphorous atoms bound to the silver such as 473 Hz for [Ag(PL)(PPh3)][OTf],14 
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Figure 6.13. Left: 31P NMR of 4 at 293 K and 193 K, Right: Overlay of spectra 31P NMR 
of 4 in CD2Cl2 acquired at different temperatures. lb = line broadening.   

 

Figure 6.14.  Overlay of spectra 1H NMR of 4 in CD2Cl2 acquired at different 
temperatures. 

H
z 

Hz 

Hz 
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Figure 6.15. Rapid exchange of two phosphorous atoms.  

 

496 Hz for [(p-tolyl3P)2Ag]PF6,15 507 Hz for [(Ph3P)2Ag](PF6), and 432 Hz for 

[(tBu3P)2Ag](NO3).16 This is one possibility to explain the structure of 4 in solution, 

further experiments need to be done to establish the structure with solid evidences. High 

temperature NMR and 2D NMR experiments would permit to identify the structure and it 

will be done by the group near the future. 

6.2.3.3. Ag(PNNN), 5. 

 

Scheme 6.8. Synthesis of Ag(PNNN) ligand, 5.  i). THF, stir at room temperature. 
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Complex 5 was prepared by stirring Na(PNNN) with 3 equivalents AgOTf in 

THF, shown in Scheme 6.8. Attempts to prepare a dinuclear complex were unsuccessful, 

5 was obtained in all cases. Compound 5 is soluble in chlorinated solvents and THF, but 

insoluble in Et2O and hexanes. Crystals of 5 for X-ray diffraction were grown by layering 

hexanes on top of a CH2Cl2 solution and the structure is shown in Figure 6.16. Two 

ligands are oriented in head-to-tail arrangement and those are bound through three silver 

atoms. Silver atoms have distorted tetrahedral coordination geometry. The inter silver 

distances are disperate with Ag1···Ag2 2.906 (8) Å and Ag2-Ag3 is 2.871(8) Å. Both are 

longer than that in 3. The Ag-NAm bonds are similar to each other and average 2.147(8) 

Å.  Ag-P bond length is 2.358(7) Å, that is shorter than the Ag-P bond length of 4 

(2.465(6) Å). 31P NMR of 5 in CD2Cl2 shows characteristic doublet resonance for silver 

bound phosphorus, which appears at 0.47 ppm with J = 551 (J109Ag-P) Hz.  

 

Figure 6.16.  Views of the molecular structure of 5. Hydrogen atoms have been omitted 
for clarity. 

 

 

Ag1 Ag2 Ag3 
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6.2.4. Preparation of tetra nuclear complexes. 

Syntheses of tetrametallic complexes are shown in Scheme 6.9. Analytically pure 

4 was used as the starting material in the syntheses of [M2Ag2(PNNP)2](X2) (M = Ag, X 

= OTf for 6 and M = Cu, X = PF6 for 7). Compounds 6 and 7 were prepared by mixing 4 

with an equivalent of AgOTf or [Cu(CH3CN)4](PF6), respectively. The solid state 

structure of 6 consists of a dicationic tetranuclear silver(I) complex (Figure 6.17). Four 

donor positions of each ligand are bound with silver atoms. There are two types of silver 

atoms, those that are bound with nitrogen atoms and those that are bound with 

phosphorous atoms.  Each of the two middle silver atom is bound with two amidinate 

nitrogens, one from each ligand, and the outer two silver atoms each is bound with two 

phosphorus donor groups, one from each ligand.  The Ag-NAm bond lengths are similar to 

each other with average distance 2.169(4) Å, which is shorter than the average Ag-NAm of 

4 (2.338(17) Å). Average Ag-P bond distance is (2.421(11) Å) also shorter than 4 

(2.465(6) Å). Triflate ions are bridging with two silver atoms via oxygen atoms and Ag-O 

average bond distance is 3.002(4) Å. Two outer silver atoms are located on the either side 

of the mean plane of two central silver atoms, forming a zigzag chain. Two ligands are 

nearly perpendicular to each other forming 105 angle between NCN planes of each 

ligand. The outer two Ag-Ag bond distances are identical and longer than the middle Ag-

Ag bond. The inter atomic Ag1-Ag2 distance of the outer bond is 3.002(4) Å, while the 

inner Ag1-Ag1 bond distance is 2.850(6) Å. The inner Ag1-Ag1 bond length is 0.068 Å 

longer than the Ag-Ag bond found in 3 and 0.404 Å longer than 4. 
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Scheme 6.9. Syntheses of tetra nuclear complexes, 6, 7, 8.. i) AgOTf, THF. ii) 
AuCl(SC4H8),THF. iii) [Cu(CH3CN)4](PF6), THF/ACN. 

 

 

Figure 6.17. Structure of 6. Hydrogen atoms and counter ions have been omitted for 
clarity. 

Ag1 
Ag1 

Ag2 Ag2 
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The 31P NMR spectrum of 6 in CD2Cl2 at 253 K shows characteristic doublet due 

to one bond coupling with Ag-107/109 nuclei (Figure 6.18).  The coupling constant 

1J109AgP = 551 Hz (253 K) is in line with other complexes with two phosphorus bound to 

silver such as [(p-tolyl3P)2Ag](PF6) (1J109AgP 507 Hz).15 

 

 

Figure 6.18. Overlay of 31P NMR of 6 in CD2Cl2 acquired at different temperatures. 

 

The solid state structure of the copper silver mixed metallic complex 

[AgCu(PNNP)](PF6), 7 is shown in Figure 6.19. Single crystals were grown by layering 

hexanes on CH2Cl2 solution of complex 7. Two ligands are parallel to each other and 

bound by two silver atoms and two copper atoms. Two copper atoms have taken the place 

of silver atoms and silver is bound with phosphorous donors. It is in line with the 

expected properties of this PNNP ligand, which were that harder copper should bind with 

hard nitrogen donor, while the softer metal silver should bind with soft donor, 

phosphorous. Four metals are in a zigzag pattern and it does not have a Ag···Ag 
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interaction and the interatomic distance of Cu···Cu is 2.582(6) Å. Two Ag-P bond lengths 

are similar to each other with 2.430(2) Å and Cu-N bond distances are slightly different 

to each other (Cu1-N1 = 1.894(1) Å and Cu1-N2 = 1.920(1) Å). The 31P NMR spectrum 

of 7 in CD2Cl2 at 293 K shows characteristic doublet due to one bond coupling with Ag-

107/109 nuclei (1J109AgP = 563 Hz K). 

 

Figure 6.19. Views of the structure 7. H atoms have been omitted for clarity. 

 

  Equivalent molar amounts of complex 6 and AuCl(SC4H8) were stirred in THF 

for 12 h to prepare 8 (Scheme 6.9). Crystals suitable for single crystal X-ray diffraction 

were grown by layering pentane on top of the CH2Cl2 solution of 8 and structure is shown 

in Figure 6.20. Complex 8 is a dinuclear tetrameric complex which has two ligands, two 

silver(I), two gold(I), and two counter ions triflate. As we expected more harder silver is 

bound with amidinato nitrogen while soft metal gold is bound with phosphorous atom. 

Four metal atoms are not in a linear arrangement but in a zigzag arrangement like 

complex 6. Despite the complex 6, two ligands are parallel each other and eight 

membered Ag2(NCN)2 ring is planer. The Ag···Ag interatomic distance of this complex is 

2.569 (4) Å, the shortest Ag···Ag interaction that we found in this study. The average 

Ag1 Ag1 Cu1 Cu1 

N1 

N2 

P1 

P2 
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Ag···Au distance is 2.912 (10) Å.  The 31P NMR shows a doublet (J = 6.3 Hz) at 35.2 

ppm. This small coupling constant is due to the long range coupling with a silver atom. 

 

 Figure 6.20. Views of the structure 8. H atoms have been omitted for clarity.  

  

6.2.5.  Spectroscopy.  

 Dichloromethane solutions of these silver complexes are luminescent in room 

temperature. Absorbance and emission spectra of these complexes were measured and 

representative absorbance and emission spectra of 4 and 6 in CH2Cl2 are shown in Figure 

6.21 where data are given in Table 6.1. Complex 4 shows strong emission at 460 nm 

when excited 394 nm in CH2Cl2 at ambient temperature. Similarly, complex 6 was  

 

Ag1 Au1 
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Figure 6.21. a) UV-Visible (blue) and emission (red) spectra of 4 in CH2Cl2. b) UV-
visible (blue) and emission (red) spectra of 6 in CH2Cl2. 
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Table 6.1. Excitation and emission wave lengths of silver complexes. 

 

Compound λ Excitation ( nm ) λEmission ( nm) Absorbance λmax
nm (ε, M-1cm-1) 

3 300 413 310 (49524) 

4 394 460 394 (10013), 276 (9745) 

5 328 396 328 (37506), 268 (72450) 

6 332 400 332 (2564) 

8 310 439 310 (19883) 
 

excited at 332 nm and it gave its emission peak at 400 nm. Excitation and emission wave 

lengths of remaining complexes are given in Table 6.1. The small stokes shift between 

excitation and emission seem to indicate fluorescence emission. The photo physical 

properties will need to be investigated more fully in the future.  

Silver(I) complexes have been traditionally used in the stoichiometric oxidation of 

organic and inorganic substrates. However, silver metal nano particles are now being 

used as efficient catalysts for alkene epoxidations in industry.21,22  Recently, He et al. 

showed that bimetallic silver(I) complexes, that have strong silver-silver interactions can 

be used as catalysts for olefin aziridination (Scheme 6.10).23 Therefore, we investigated 

the potential of the current complexes (3, 4, and 6) to act as catalysts for aziridination of 

styrene with PhI=NTs (Scheme 6.10). A reaction was observed when 3 was used as a 

catalyst but not in other cases. While TLC monitoring indicated reaction had occurred, 

only very low yield (3.4 %) of product was isolated, therefore the reaction is not catalytic.  
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Scheme 6.10. Silver(I) promoted olefin aziridination. 

 

Figure 6.22. 1H NMR of isolated product, 2-Phenyl-1-(toluene-4-sulfonyl)-aziridine in 
CDCl3. 

A portion of 1H NMR spectrum of the isolated product is shown in Figure 6.22 for 

convenience in the future investigation of the catalytic activity of these complexes. The 

observation of a reaction for 3 but not other potential catalysts (4 and 6) may be related to 

the fact that 3 has the shortest Ag···Ag distance and that the pyrazolyl franking donors 

have a greater propensity for dissociation versus phosphorous.31 Future screenings will 

involve examining the catalytic activity of Ag(OTf), 5, 8, Ag2(form)2
1 and reported 

catalysts as controls.    
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6.3. CONCLUSIONS 

Three new N,N’-Diaryllformamidinate ligands were synthesized that had either 

pyrazolyl or diphenylphosphino groups substituted at the ortho position of each aryl ring 

where the ligands exhibited diverse binding nodes. The M(NNNN) (M = Na, K) 

complexes neither shows metal-metal interactions. On the other hand, Ag(NNNN) had μ-

κN, κN’ (Figure 6.2.c) binding mode which also showed very short inter silver contacts. 

Ag(PNNP) gave μ-κP,κN binding mode and had a very large inter silver separation of 

3.254(3) Å. Only Ag3(PNNN) could be isolated from the reaction of Na(PNNN) and 

AgOTf. In this structure Ag-Ag distances are 2.871(8) Å and 2.906(8) Å.  

The (PNNP)- ligand indeed has the ability to sort univalent group 11 metals on the 

basis of their Pearson’s hardness with the softest metal binding to the softest phosphorous 

in tetrametallic complexes (μ4-κP, κN, κN, κP). 

 Preliminary investigation of the catalytic activity of the silver only complexes (3, 

4, and 6) for the aziridination of olefins showed that only 3 with the shortest Ag-Ag 

separation and weakest donor set gave any reaction (albeit in low yield). Future repeated 

investigations of these and other formamidinates will determine the utility of this class of 

compounds in similar reactions. 

6.4. EXPERIMENTAL  

General Considerations.  

The compounds CH(OC2H5)3, Cs2CO3, I2, N,N’-DMED, CuI, Ag2SO4, KOtBu, 

NaH, HAuCl4, AgOTf, tetrahydrothiophene, [Cu(CH3CN)4](PF6), pyrazole, 4-tert-
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butylaniline, glacial acetic acid, styrene and HPPh2 were purchased commercially and 

used as received. The compounds H(pzAnMe),13 Pd(PPh3)4,26 PhI=NTs27 and 

AuCl(SC4H8)28 were prepared according to a literature procedures. Solvents were dried 

by conventional means and distilled under nitrogen prior to use. 

Physical Measurements.  

Midwest MicroLab, LLC, Indianapolis, Indiana 45250, performed all elemental 

analyses. Melting point determinations were made on samples contained in glass 

capillaries using an Electrothermal 9100 apparatus and are uncorrected. 1H, 13C, 19F, and 

31P NMR spectra were recorded on a Varian 400 MHz spectrometer. Chemical shifts 

were referenced to solvent resonances at δH 5.33, δC 53.84 for CD2Cl2, δH 7.26, δC 77.23 

for CDCl3, δH 1.94, δC118.9 for CD3CN and δH 2.05, δC 29.84 for acetone-d6, while those 

for 19F and 31P NMR spectra were referenced against external standards of CFCl3(δF 0.00 

ppm) and 85% H3PO4(aq)  (δP 0.00 ppm), respectively. Abbreviations for NMR and 

UV−Vis br (broad), sh (shoulder), m (multiplet), ps (pseudo-), s (singlet), d (doublet), t 

(triplet), q (quartet),   p (pentet), sept (septet). Electronic absorption (UV−Vis/NIR) 

measurements were made on a Cary 5000 instrument. Emission spectra were recorded on 

a JASCO FP-6500 spectrofluorometer.  

 

H(IAntBu). 
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To a 250 mL Schlenk flask charged with I2 (8.367 g, 33.0 mmol), Ag2SO4 (5.38 g, 17.26 

mmol), and 150 mL of ethanol, was added 4-tert-butylaniline (5.0  mL, 31.39 mmol) all 

in one portion. A yellow solid (AgI) began to precipitate out of solution almost 

immediately.  The suspension was stirred at room temperature for 4 hours, then was 

filtered through Celite and ethanol was removed under reduced pressure.  The remaining 

reddish oil was dissolved in 50 mL of CH2Cl2 and washed with 50 mL of DI water. After 

separation, the organic layer was dried over MgSO4, filtered, and concentrated in vacuo.  

The remaining red oil was purified on a column of silica gel by eluting with 

hexane/dichoromethane (1:1).  The second fraction contains the desired product, after 

concentration of eluent, as a red oil (Rf = 0.43, mass = 6.39 g, yield = 74%).  1H NMR 

(CDCl3) δH: 7.62 (d, J = 2.2 Hz, 1 H, aromatic H), 7.17 (dd, J = 2.3, 8.4 Hz, 1 H, 

aromatic H), 6.71 (d, J = 8.3 Hz, 1 H, aromatic H), 4.07 (br s, 2 H, amine-H’s) 1.26 (s, 9 

H, t-Bu H’s) ppm. 13C NMR (CDCl3) δC: 144.25, 143.51, 135.80, 126.67, 114.74, 84.71, 

33.97, 31.54 ppm. 

 

H(IAnMe). 

A similar procedure to that above was followed but the following amounts of reagents 

were used. 3.000 g (27.998 mmol) of p-toluidine , 7.461 g (29.40 mmol) of I2 yielded 

3.499 g (54 %) of the desired product as a black liquid after purification by a silica gel 

column using 10:1 hexanes: ethyl acetate, as the eluent (Rf  = 0.37). 1H NMR (CDCl3) 
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δH:7.48 (d, J = 1.2 Hz, 1 H), 6.95 (dd, J = 8.1, 2 Hz, 1 H), 6.70 (d, J = 8.1 Hz, 1 H), 3.91 

(s, 2 H, NH2), 2.21 (s, CH3) ppm. 13C NMR (CDCl3) δC: 145.3, 140.7, 130.0, 128.7, 

117.8, 83.8, 20.4 ppm. 

 

H(DPPAntBu). 

A 100 mL Schlenk flask was charged with Cs2CO3 (15.602 g, 47.888 mmol) and a stir 

bar before being evacuated, backfilled with argon, and taken into the glove box.  

Diphenylphosphine (5.00 mL, 28.733 mmol) and Pd(PPh3)4 (0.1383 g, 0.5 mol%) were 

added, then the Schlenk flask was removed from the glove box. Meanwhile, argon gas 

was bubbled through another Schlenk flask containing 2-iodo-4-tert-butylaniline (6.588 

g, 23.994 mmol), N,N’-dimethylethylenediamine (0.86 mL, 35 mmol%), and 50 mL 

toluene.  The toluene solution was then cannula transferred into the Schenk flask 

containing the remaining reagents. Quantitative transfer was assured by rinsing with 5 

mL of toluene. The reaction mixture was heated at reflux for 15 hours, during which time 

a white solid precipitated.  The mixture was then brought to room temperature, filtered 

through Celite, and the solvent was removed under reduced pressure.  The remaining 

brownish solid was dissolved in DI water (50 mL) in a separtory funnel and extracted 

using three 50 mL portions ethyl acetate. The organic fractions were combined, dried 

over MgSO4, filtered, and solvents removed in vacuo.  The remaining yellowish solid is 

purified on a column of silica gel eluting with hexane/dichloromethane (2:1) to remove 
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impurities with high Rf values before switching to pure CH2Cl2 to elute the desired 

product as a pale yellow solid after concentration (Rf = 0.26, mass = 6.52 g, yield = 

82%). 1H NMR (CDCl3) δH: 7.34 (m, 10 H, phenyl H’s), 7.20 (dd, J = 2.3, 8.3 Hz, 1 H, 

aromatic H), 6.79 (dd, J = 2.3, 6.5 Hz, 1 H, aromatic H), 6.67 (dd, J = 5.5, 8.3 Hz, 1 H, 

aromatic H), 3.25 (br s, 2 H, NH2), 1.10 (s, 9 H, CH3) ppm. 13C NMR (CDCl3) δC:  

147.38 (d, J = 19.1 Hz), 141.37 (d, J = 2.4 Hz), 135.80 (d, J = 8.2 Hz), 133.75 (d, J = 

18.7 Hz), 131.50 (d, J = 4.5 Hz), 128.87, 128.65 (d, J = 7.1 Hz), 127.50, 118.99 (d, J = 

8.3 Hz), 115.35 (d, J = 3.0 Hz), 34.11, 31.42 ppm. 31P NMR (CDCl3) δP:  -18.96 ppm. 

 

H(DPPAnMe). 

The above procedure was followed except 1.832 g (8.214 mmol) of 2-iodo-4-

methylbenzenamine, 5.353 g (16.429 mmol) Cs2CO3, 1.72 mL (9.988 mmol) 

diphenylphosphine , 0.30 mL (35 mol%) N,N’-DMED, and 0.0475 g (0.5 mol%) 

Pd(PPh3)4 were used to give 1.603 g (70% yield) of desired product as colorless  solid 

after purification by silica gel chromatography (10:1, hexanes:ethyl acetate as the eluent, 

Rf = 0.6).  1H NMR (CDCl3): δH (7.37-7.29) (m , 10 H, Ph), 7.00 (dd, J = 7.9, 1.9 Hz, 1 

H), 6.67 (dd, J = 8.0, 5.5 Hz, 1 H), 6.59 (dd, J = 5.9, 1.8 Hz, 1 H), 3.58 (br s, NH2), 2.11 

(s, 3 H) ppm. 13C NMR (CDCl3): δC 135.6, 135.5, 134.6, 133.8 (d, J = 19 Hz), 131.4, 

128.9, 128.7 (d, J = 6.7 Hz), 128.4, 116.1, 20.7 ppm. 31P NMR (CDCl3) δP -19.96 ppm. 
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IA. 

A mixture of 1.534 g (8.868 mmol) H(pzAnMe), 1.47 mL (8.868 mmol) of CH(OC2H5)3 

and 30 μL of glacial acetic acid was heated at reflux for 1 hour. Then the condenser was 

removed and a distillation head was attached. Ethanol was removed by distillation (2 

hrs). After cooling, the brown residue was extracted with 3 x 10 mL hexanes. Hexanes 

were removed with aid of a rotary evaporator to give 1.364 g (66 %) of desired product as 

a brown oil. 1H NMR (CDCl3): δH 8.03 (dd, J = 2.4, 0.6 Hz, 1 H), 7.67 (dd, J = 1.8, 0.5 

Hz, 1 H), 7.66 (s, 1 H), 7.53 (d, J = 1.5 Hz, 1 H), 7.07 ( dd, J = 8.2, 2.3 Hz, 1 H), 6.84 (d, 

J = 8.0 Hz, 1 H), 6.38 ( dd, J = 2.4, 1.8 Hz, 1 H), 4.25 (quartet d, J = 7.1, 0.7 Hz, 2 H), 

2.37 (s, CH3), 1.31 (d, J = 7.1 Hz, 4 H) ppm. 13C NMR (CDCl3): δc 159.1, 140.6, 147.8, 

133.4, 131.2, 129.9, 128.8, 124.8, 123.2, 106.4 42.3, 20.9, 20.7 ppm. 

 

H(NNNN). 

A mixture of 2.104 g (12.137 mmol) H(pzAnMe), 1.01 mL (6.072 mmol) of CH(OC2H5)3 

and 35 μL of glacial acetic acid was heated at reflux for 2 hours. Then the condenser was 
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removed and a distillation head was attached. Then the mixture was heated for additional 

2 hours during which time EtOH was completely removed by distillation. After cooling, 

the brown residue was washed with 3 x 10mL hexanes,10 mL diethyl ether, and then 

dried under vacuum to give 1.900 g (88%) of H(NNNN) as a off-white solid. M.p.: 110-

111 0C. 1H NMR (CDCl3): δH 9.30 (br s, NH), 7.94 (s, 2 H), 7.90 (s, 1 H), 7.72 (s, 2 H), 

7.34 (s, 2 H), 7.20 (br, 2 H), 7.07 (d, J = 7.9 Hz, 2 H), 6.42 (2 H), 2.36 (s, 6 H) ppm. 13C 

NMR (CDCl3): δC 147.6, 140.7, 133.6, 131.1 (br), 128.8, 124.7 (br), 120.0 (br), 106.8. 

20.9 ppm. 

 

H(PNNP). 

As above, a mixture of 1.167 g (3.500 mmol) H(DPPAntBu), 0.29 mL (1.75 mmol) of 

CH(OC2H5)3 and 20 μL of glacial acetic acid was heated at reflux for 2 hours. Then the 

condenser was removed a distillation head was attached and the mixture was heated 2 hrs 

until EtOH has distilled. After cooling to room temperature, 1.114 g of product 

contaminated with trace of H(DPPAntBu) that could not be separated was collected as pale 

yellow solid. The H(PNNP) is soluble in all organic solvents including heptanes, 

hexanes, and Et2O and was successfully used in the reactions to make alkali metal and 

silver salts. 31P NMR (CDCl3) (293 K): δP -17.5 (br, line width at half maximum = 324 

Hz) ppm. 
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H(PNNN). 

A mixture of 0.859 g (3.747 mmol) of IA, 1.092 mL (3.747 mmol) of 2-

diphenylphosphino-4-methylaniline and 20 μL of glacial acetic acid was heated at reflux 

for 2 hours. Then the condenser was removed and a distillation head was attached. Then 

it was heated for additional 2 hours. After cooling to room temperature, 1.460 g of 

product contaminated with trace amount of H(DPPAnMe) was collected as pale yellow 

solid. The mixture components were equally soluble in all organic solvents including 

heptanes, hexanes, and ether. Therefore, the mixture was used directly without further 

purification. 31P NMR (CDCl3): δP -14.9 (br, line width at half maximum = 230 Hz) ppm. 

Na(NNNN), 1. 

A solution of 0.168 g (0.415 mmol) H(NNNN) in 10 mL of THF was transferred into a 

suspension of 0.010 g (0.417 mmol) of NaH in 10 mL of THF. The flask originally 

contained ligand was washed with 5 mL of THF and the washing were transferred into 

the solution mixture to ensure the qualitative transfer of the ligand. The resulting yellow 

solution was stirred 2 hrs and THF was evaporated by vacuum distillation. The vacuum 

dried 0.131 g (84% yield) of 1 as a pale yellow solid was obtained. M.p.:103-104 0C. 1H 

NMR (CD3CN): δH 8.32 (s, 1 H), 7.97 (d, J = 2.3 Hz, 2 H, pz), 7.51 (d, J = 1.6 Hz, 2 H, 
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pz), 7.15 (s, 2 H), 6.98 (br s, 4 H), 6.29 (t, J = 2.2 Hz, 2 H, pz), 2.27 (s, 6 H) ppm. 13C 

NMR (CD3CN): δC 140.6, 137.4, 133.4, 133.1, 130.5, 129.6, 126.8, 121.1, 106.7, 20.7 

ppm. 

Crystals suitable for single crystal X-ray diffraction were grown by layering THF 

solution with pentane and allowing solvents to diffuse over 15 h. 

K(NNNN), 2. 

A solution of 0.167 g (0.467 mmol) H(NNNN) in 10 mL of THF was transferred into a 

solution of 0.052 g (0.467 mmol) of KtOBu in 10 mL of THF. The flask originally 

containing H(NNNN) was washed with 5 mL of THF and it was transferred into the 

reaction mixture to ensure the qualitative transfer of the ligand. After stirring 2 hrs, THF 

was evaporated by vacuum distillation to give 0.152 g (83% yield) of 2 as a pale yellow 

solid. M.p.: 98-99 0C. 1H NMR (CD3CN): δH 8.23 (s, 1 H), 8.04 (d, J = 2.4 Hz, 2 H, pz), 

7.60 (d, J = 1.7 Hz, 2 H, pz), 7.22 (s, 2 H), 7.0-7.17 (br m, 4 H), 6.37 (t, J = 2.0 Hz, 2 H, 

pz), 2.29 (s,6 H) ppm. 13C NMR (CD3CN): δC 141.4, 140.7, 133.2, 130.3, 130.0, 126.5, 

125.7, 120.9(br), 106.8, 20.9 ppm. 

Crystals suitable for single crystal X-ray diffraction were grown by layering THF 

solution with pentane and allowing solvents to diffuse over 15 h. 

Ag(NNNN), 3. 

A solution of 0.307 g (0.859 mmol) H(NNNN) in 10 mL of THF was transferred into a 

suspension of 0.021 g (0.859 mmol) of NaH in 10 mL of THF. The flask that originally 

contained H(NNNN) was washed with 5 mL of THF and the washing was transferred 
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into the reaction mixture. The solution of Na(NNNN) was stirred for 30 mins and then 

was cannula transferred into the solution of 0.221 g (0.859 mmol) of AgOTf in 10 mL 

THF. To ensure quantitative transfer of reagents, an additional 5 mL portion of THF was 

added to the “Na(NNNN)” flask and the washing was added to the reaction mixture. 

After the suspension had stirred 1 hour a turbid mixture formed which was stirred 12 h to 

ensure the completion of the reaction. Then, THF was evaporated by vacuum distillation, 

and the remaining solid was extracted with 2 x 20 mL dichloromethane. Dichloromethane 

was removed by vacuum distillation to give 0.364 g (92 % yield) of 3 as a colorless solid. 

M.p: 232-233 0C. Anal. Calcd for C22H21AgClN6: C 51.06, H 3.99, N 16.62. Found: C 

51.53, H 4.01, N 16.74. 1H NMR (CDCl3): δH 7.66 (s, 1 H), 7.61 (d, J = 2.1 Hz, 2 H, pz), 

7.12 (s, 2 H), 7.07 (br, 4 H), 6.86 (d, J = 8.1 Hz, 2 H), 6.22 (t, J = 1.0 Hz, 2 H, pz), 2.30 

(s, 6 H) ppm. 13C NMR (CDCl3): δC 163.4, 144.2, 140.5, 133.0, 132.8, 131.8, 129.7, 

127.1, 124.3, 106.3, 20.7 ppm.  

Crystals suitable for single crystal X-ray diffraction were grown by layering 

dichloromethane solution with hexanes and allowing solvents to diffuse over 15 h. 

Ag(PNNP), 4. 

A solution of 2.014 g (2.976 mmol) H(PNNP) in 20 mL of THF was transferred into the 

suspension of 0.072 g (2.976 mmol) NaH in 20 mL of THF. The flask originally 

containing H(PNNP) was washed with 10 mL of THF and the washing was transferred 

into the solution mixture. After strring for 30 mins, a clear solution formed that was 

cannula transferred into a solution of 0.765 g (2.976 mmol) AgOTf in 20 mL THF. To 

ensure quantitative transfer of reagents, an additional 10 mL portion of THF was added to 
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the flask and the washing was added to the reaction mixture. After the mixture had been 

stirred for 12 h, THF was evaporated by vacuum distillation, and the remaining solid was 

extracted with 2 x 20 mL dichloromethane. Dichloromethane was evaporated in the 

rotary evaporator and the remained solid was washed with 20 mL of Et2O. The yellow 

Et2O insoluble solid was vacuum dried to give 1.756 g (75 % yield) of 4.  M.p: 282- 283 

0C (Decomposed). Anal. Calcd for C45H45AgN2P2: C 68.97, H 5.79, N 3.57. Found: C 

69.26, H 6.00, N 3.74. 1H NMR (CD2Cl2): δH 9.50 (s, 1 H), 7.32 (s, br, 4 H), 7.22-7.02 

(m, 10 H), 6.92 (t, J = 7.1 Hz, 4 H), 6.70 (m, 8 H), 1.17 (s, 18 H) ppm. 13C NMR 

(CD2Cl2): δC 159.7, 154.8, 142.4, 136.4, 134.4, 133.8, 132.2, 128.5, 128.4, 124.4, 116.1, 

34.5, 31.6 ppm. 31P NMR (CD2Cl2) (193 K): δP -16.42 (d, J109AgP = 370 Hz; J107AgP = 327 

Hz).  Crystals suitable for single crystal X-ray diffraction were grown by layering 

dichloromethane solution with pentane and allowing solvents to diffuse over 15 h. 

Ag(PNNN), 5. 

A solution of 0.8837 g (1.862 mmol) H(PNNN) in 20 mL of THF was transferred into the 

suspension of 0.0447 g (1.863 mmol) NaH in 20 mL of THF. The flask originally 

containing H(PNNN) was washed with 10 mL of THF and the washing was transferred 

into the solution mixture. After stirring for 30 mins, a clear solution formed that was 

cannula transferred into a solution of 1.4385 g (5.599 mmol) AgOTf in 20 mL THF. To 

ensure quantitative transfer of reagents, an additional 10 mL portion of THF was added to 

the flask and the washing was added to the reaction mixture. After the mixture had been 

stirred for 12h, THF was evaporated by vacuum distillation, and the remaining solid was 

extracted with 2 x 20 mL dichloromethane. Dichloromethane was evaporated in the 

rotary evaporator and the remained solid was washed with 20 mL of Et2O. The white 
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Et2O insoluble solid was vacuum dried to give 1.0989 g (54% yield) of 5 as a colorless 

solid.  M.p: 238-239 0C (Decomposed). 1H NMR (CD2Cl2): δH 7.86 (d, J = 2.4 Hz, 1 H), 

7.68-7.56 (br s, 4 H), 7.50 (dd, J = 16.32, 12.2 Hz, 1 H), 7.40-7.28 (br s, 7 H), 7.26 (d, J 

= 8.1 Hz, 1 H), 7.13 (d, J = 8.1 Hz, 1 H), 7.03 (s, 1 H), 6.94 (dd, J = 7.8, 5.4 Hz, 1 H), 

6.77 (d, J = 8.1 Hz, 1 H), 6.60-6.54 (m, 2 H), 2.36 (s, 3 H), 2.17 (s, 3 H) ppm. 13C NMR 

(CD2Cl2): δC 194.4, 152.1 (d, J = 8 Hz), 143.4, 141.9, 134.8 (br), 134.5 (d, J = 7.9 Hz), 

134.1, 133.1, 132.8 (d, J = 6.7 Hz), 132.5, 132.1, 131.8, 130.3, 129.5 (d, J = 11.1 Hz), 

127.0, 125.6 (d, J = 4.5 Hz), 125.4, 124.7, 124.3, 107.6, 21.1, 20.7 ppm. 31P NMR 

(CD2Cl2) (293 K): δP 0.47 (d, J109AgP = 551 Hz; J107AgP = 492 Hz) ppm. 

Crystals suitable for single crystal X-ray diffraction were grown by layering 

dichloromethane solution with hexanes and allowing solvents to diffuse over 15 h. 

[Ag2(PNNP)](OTf), 6. 

A mixture of 0.276 g (0.352 mmol) Ag(PNNP), 4, and 0.091g (0.352 mmol) AgOTf was 

dissolved in 20 mL of THF and stirred 2 h at room temperature. THF was then removed 

by vacuum distillation. The white solid residue was washed with 10 mL  Et2O and 

vacuum dried to give 0.293 g (80% yield) of 6 as a white solid.  M.p.: 220 0C 

(Decomposed). Anal. Calcd for C51H57Ag2F3N2O3P2S: C 55.05, H 5.16, N 2.52. Found: C 

54.16, H 4.92, N 2.66. 1H NMR (CD2Cl2): δH 7.5-7.35 (m, 20 H), 7.32 (dd, J = 8.1, 2.0 

Hz, 2 H), 6.87 (s, 1 H), 6.78 (m, 2 H), 6.11 (s, 2 H), 1.1 (s, 18  H) ppm. 13C NMR 

(CD2Cl2): δC 167.0, 151.5, 148.2, 134.7 (br), 131.9, 130.8, 129.9 (br), 126.1, 123.2, 37.9, 

31.3 ppm. 31P NMR (CD2Cl2) (293 K): δP 0.6 (d, J = 498 Hz) , (253 K) 0.6 (dd, J = 551, 

492 Hz) ppm. 
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Crystals suitable for single crystal X-ray diffraction were grown by layering 

dichloromethane solution with hexanes and allowing solvents to diffuse over 15 h. 

[AgCu(PNNP)](PF6), 7. 

A solution of 0.1208 g (0.154 mmol) of 4 in 10 mL of THF was cannula transferred into 

the solution of 0.0336g (0.105 mmol) Cu(CH3CN)4(PF6) in 10 mL of acetonitrile. The 

resulting solution was stirred for 15 h, then solvent was evaporated to yield 0.0705 g of 7 

contaminated with starting material 4. Crystals of 7 suitable for single crystal X-ray 

diffraction were grown by layering dichloromethane solution with hexanes and allowing 

solvents to diffuse over 15 h. 1H NMR (CD2Cl2): δH 7.75 (t, J = 7.1 Hz, 2 H), 7.68-7.56 

(m, 6 H), 7.55-7.45 (m, 8 H), 7.38-7.3 (m, 4 H), 7.28 (dd, J = 8.5, 2.3 Hz, 2 H), 6.7 (t, J = 

4Hz, 2 H), 6.21 (s, 1 H), 5.7 (dt, J = 8.1, 3.0 Hz, 2 H), 1.1 (s, 18 H) ppm. 31P NMR 

(CD2Cl2) (293 K): δP 2.33 (d, J109AgP = 563 Hz; J107AgP = 490 Hz). 

[AgAu(PNNP)](OTf), 8. 

A mixture of 0.1089 g (0.105 mmol) of 6 and 0.0336g (0.105 mmol) AuCl(SC4H8) was 

stirred in 20 mL of CH2Cl2 for 15 h. The soluble part was separated from a white 

precipitate (AgCl) by filtration. Solvents were removed by vacuum distillation to give 

0.0705 g of product contaminated with the starting material 6. Compound 8 was 

crystallized by layering pentane on top of CH2Cl2 solution. 1H NMR (CD2Cl2): δH 7.86 (t, 

J = 6.3 Hz, 2 H), 7.73 (t, J = 7.5 Hz, 4 H), 7.68-7.46 (m, 14 H), 7.33 (d, J = 8 Hz, 2 H), 

6.71 (t, J = 6.8 Hz, 2 H), 5.57 (d, 7.6 Hz, 2 H), 1.1 (s, 18 H) ppm. 31P NMR (CD2Cl2) 

(293 K): δP 35.2 (d, J = 6.3 Hz) ppm. 19F (CD2Cl2): δF -79 ppm. 
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Crystals suitable for single crystal X-ray diffraction were grown by layering 

dichloromethane solution with pentane and allowing solvents to diffuse over 15 h. 

Investigation of Catalytic Activity. 

In a dry 100 mL Schlenk flask, a suspension of PhI=NTs (0.186 g, 0.5 mmol), metal 

complex (0.02 mmol), 4 Å activated molecular sieves (0.5 g), and styrene (2.5 mmol, 5 

equiv.) in CH3CN was stirred for 12 hrs at room temperature under argon. The reaction 

mixture was filtered through a short pad of Celite and the filter cake was washed with 25 

mL CH2Cl2. The combined filtrates were concentrated under reduced pressure and 

aziridine was collected by a silica column using 4:1 hexane:EtOAc as the eluent  (Rf = 

0.52).  
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