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Abstract 

 

HOON might be an elusive intermediate of atmospheric photochemical reactions of HONO or recombination of 

the parent nitrene HN and molecular oxygen. However, no reliable data on HOON structure and stability are 

available, and the nature of the O–O bond is not well understood. In this study, we used high-level single- 

[CCSD(T) and, CCSDTQ] and multireference [CASPT2, MR-AQCC] ab initio calculations to determine properties of 

HOON: geometry, harmonic and anharmonic vibrational frequencies, thermodynamic stability, and electronic 

structure. HOON has bonding minima only in the 1A′ electronic state that correspond to cis- and trans-

conformers; trans-HOON is more stable by 6.4–8.5 kJ/mol. The O–O bond in trans-HOON is unusually long, R(O–

O) = 1.89 Å, and weak, D(O–O) = 33.3 kJ/mol; however, trans-HOON might be stable enough to be identified in 

cryogenic matrices. Though the electronic structure of the NO moiety in HOON most resembles nitric oxide, 

some nitrene character as well nitrosyl cation character are also important; therefore, the current name of 

HOON, hydroperoxynitrene, is misleading; instead, we propose the name “nitrosyl O-hydroxide” or “isonitrosyl 

hydroxide”. 

Nitrous acid (HONO), produced from NO2 or soil nitrites, plays an important role in tropospheric 

chemistry.(1) Photolysis of HONO leads to hydroxyl radical OH•, which is a powerful oxidant, and nitric oxide 

NO•, which is a component of NOx smog and ozone precursor. HONO analogues X–NO (X = H, CN, or halogen 

atom) can photodissociate at the X–N bond as well;(2) the X• + NO• pair can recombine not only back to nitroso 

compound but also back to isonitrosyl species X–ON.(2b) For nitrous acid, a similar transformation can be 

hypothesized, leading to species with structural formula HOON. 

 

HOON has never been in the focus of research. To the best of our knowledge, it has not been observed 

experimentally; however, it was mentioned in a few theoretical works. In 1987, Nakamura et al.(3) performed a 

systematic analysis of HNO2 isomers and localized cis- and trans-conformers of HOON. Later, Fueno et 

al.(4) demonstrated that cis-HOON can be formed as an intermediate in the reaction of nitrogen monohydride 

NH with molecular oxygen (via isomerization of cis-HNOO) and introduced the name “hydroperoxynitrene”. Our 

recent studies(5) showed that the pathway proposed by Fueno(4) is dominant in a wide temperature range 300–

1000 K. Another process that may involve HOON is overtone excitation of HONO;(6) semiempiric direct 

dynamics simulations of this reaction involved HOON in all simulation trajectories. 

Despite its potential role in HONO photochemistry, very little is known about the electronic structure, geometry, 

and energetic characteristics of HOON, and the reported data are inconsistent. 

 



HOON can be hypothesized to be either a complex of radicals or a covalently bound nitrene-like structure. The 

value of the O–O distance is crucial to understand the nature of O–O bonding in HOON, but reported values vary 

from 1.47 to 2.03 Å,(3-6) with the correct value still unknown. For this reason, high-level calculations of the 

HOON geometry are essential. 

The thermodynamic stability of HOON has not been established: reported energies of transformation of HONO 

to HOON range from 180 to 310 kJ/mol.(3, 4, 6, 7) With the enthalpy of trans-HONO dissociation to HO• + NO• of 

206.0 kJ/mol, which was deduced from experimental enthalpies of formation,(8) the enthalpy of HOON 

dissociation on the O–O bond, D(O–O), can be estimated from −26 to +104 kJ/mol. A more accurate value is 

needed to understand stability and reactivity of HOON. 

In this study, we perform a series of high-level single-reference and multireference ab initio calculations to 

provide accurate geometry, vibrational frequencies, thermodynamic data, and electronic structure of HOON. 

Computational details 
We used methods of coupled cluster theory, multireference second-order perturbation theory (CASPT2),(9) and 

multireference averaged quadratic coupled-cluster (MR-AQCC)(10) theory to accurately calculate the geometry 

of HOON. 

A series of Dunning’s augmented correlation-consistent basis sets, aug-cc-pVXZ,(11) were used for all elements. 

We used a three-parameter exponential decay function for complete basis set (CBS) extrapolation of bond 

lengths in HOON, and Peterson’s three-point complete basis set extrapolation(11c) for energetic properties. 

 

𝑅(𝑋) = 𝑅CBS + 𝐵e−𝐶𝑋 

𝐸(𝑋) = 𝐸CBS + 𝐵e(−𝑋−1) + 𝐶e−(𝑋−1)
1
 

The coupled cluster theory computations with single, double, and perturbative triple excitations, 

CCSD(T),(12) were performedusing the CFOUR package.(13) Geometries were optimized using analytic 

gradients;(14) vibrational frequencies were also calculated analytically.(15) Full cubic force field calculations 

with the semidiagonal part of the quartic force field were performed to obtain fundamental frequencies using 

second-order perturbation theory starting from the harmonic-oscillator rigid-rotator approximation.(16) For 

iterative accounting for triple and quadruple excitations (CCSDT,(17) CCSDTQ(18)), the MRCC program(19) was 

employed via the CFOUR interface. In coupled cluster calculations, all-electrons correlation was accounted 

(denoted as “ae” in opposite to frozen core correlation, “fc”). A series of single-point calculations were 

performed to estimate D(O–O) in approximation to the CCSDTQ[ae]/aug-cc-pVTZ level of theory (see Supporting 

Information for details). 

Scalar relativistic effects were estimated by means of perturbation theory based on mass-velocity and Darwin 

terms (MVD1)(20) procedure, as implemented in CFOUR, with the wave function calculated at the 

CCSD(T)[ae]/aug-cc-pV5Z level of theory. 

CASPT2(9) calculations were performed in the MOLPRO program.(21) Active space (18;13) was composed of all 

valence molecular orbitals. Frozen core approximation was used in CASPT2 calculations. Geometry optimizations 

were performed using analytical gradients.(22) 

The MR-AQCC(10) computations were carried out in the Columbus program(23) with the aug-cc-pVTZ basis set. 

Test calculations with various compositions of active space (Table S1, Supporting Information) revealed the 



optimal choice: for reference CASSCF wave function, (10;8) involving all valence molecular orbitals except N–H 

bonding/antibonding and 2s shell orbitals; for MR-AQCC wave function, active space (6;5) composed of three 

pz orbitals and two peroxide bond orbitals. At the MR-AQCC level of theory, calculations were performed with 

no frozen orbitals. Geometry optimizations were performed using analytical gradients.(24) 

To calculate a minimum energy path connecting two stationary points, climbing image nudged elastic band 

method was used,(25) as implemented in the DL-FIND program.(26) ChemShell suite(27) was used to interface 

DL-FIND with MOLPRO for calculation with CASPT2 method. 

Quantum theory of atoms in molecules (AIM)(28) was employed using the AIMPAC program(29) to analyze 

CASPT2/aug-cc-pVTZ electron density. Molden2AIM code(30) was used to generate input files for AIM analysis 

from MOLPRO outputs. 

In AIM, gradient (∇ρ) and Laplacian (∇2ρ) of density are used to locate critical points of electron density. Maxima 

of electron density typically correspond to nuclear positions. Two nuclear critical points can be connected by a 

gradient path (bonding path) indicative of chemical bonding between atoms; the point of minimum ρ(r) along 

the bonding path, called a bonding critical point, characterizes the nature of the bond. Properties of special 

interest at the bond critical point are the value of electron density, which characterizes bond strength, and the 

sign of the Laplacian, which indicates whether the bonded atoms share their valence shells or not; in addition, 

an ellipticity of electron density distribution, ε = λ1/λ2 – 1, can be used to estimate double-bond character of the 

bond, where λ are eigenvalues of the Hessian of ρ that characterize decrease of electron density in directions 

orthogonal to the bonding path. Analysis of Laplacian topology also provides valuable information: local minima 

of ∇2ρ, not related to a bonding path, in practical calculations can be corresponded to the lone pair 

positions.(28) 

Results and discussion 

Geometry of HOON 
Calculations at the CCSD(T)/aug-cc-pVTZ level of theory revealed that only 1A′ electronic state has minima 

related to HOON, which correspond to cis- and trans-isomeric forms. In both forms the distance between oxygen 

atoms is ∼1.9 Å (Tables 1 and S2, Supporting Information), which is extraordinary long for a covalent bond. 

Minimum energy path calculations at the CASPT2/aug-cc-pVTZ level show that trans–cis isomerization barrier is 

∼12.7 kJ/mol, and the cis–trans barrier is 5.7 kJ/mol (Figure S1, Supporting Information). As the trans-isomeric 

form is more stable by 6.4–8.5 kJ/mol (Table 3, Figure S1, Supporting Information), we focus on trans-HOON in 

further discussion. 

 

Table 1. Geometry Parameters of trans-HOONa 

basis setb R(OH) R(OO) R(NO) A(OOH) A(OON) 

CCSD(T)      

D 0.976 1.948 1.144 97.4 115.0 

T 0.968 1.896 1.125 97.8 115.2 

Q 0.967 1.895 1.123 98.3 115.0 

5 0.966 1.894 1.122 98.4 114.9 

CBSc 0.966 1.894 1.122     

CASPT2      



D 0.978 1.921 1.150 96.0 116.7 

T 0.973 1.895 1.137 96.2 116.7 

Q 0.970 1.891 1.133 96.3 116.7 

5 0.969 1.889 1.133 96.4 116.7 

6 0.969 1.886 1.132 96.4 116.7 

CBSc 0.969 1.889 1.132     

MR-AQCC      

T 0.965 1.893 1.128 97.0 116.0 
aBond lengths are given in angstroms, and angles in degrees. 
baug-cc-pVXZ, X = D, T, Q, 5, or 6. 
cComplete basis set extrapolation based on three-parameter exponential decay function. 
 

Calculated geometric parameters of HOON depend on both the level of theory and the basis set. For both 

CCSD(T) and CASPT2, slow convergence to the basis set limit is observed. CCSD(T) calculations predict slightly 

longer O–O distance than CASPT2 (by ∼0.005 Å in the complete basis set extrapolation), and shorter N–O 

distance (by ∼0.010 Å). Calculations at the MR-AQCC/aug-cc-pVTZ level of theory give O–O and N–O bond 

lengths in a range between CCSD(T) and CASPT2 results. Overall, single-reference and multireference methods 

used here provide a consistent description of HOON structure, suggesting reliability of the obtained geometries. 

Vibrational Frequencies 
Harmonic and anharmonic vibrational frequencies of HOON are reported for the first time in Table 2. The most 

intense modes correspond to the N–O stretching (ν2) and rotation around the O–O bond (ν6). Comparison of IR 

bands of cis-/trans-forms (Tables 2 and S3, Supporting Information) shows that ν6(O–O torsion) and ν5(O–O 

stretching) modes are 40–70 cm–1 greater in the trans-from, which likely follows from the shorter O–O distance 

in trans-HOON. Expansion of the basis set from triple- to quadruple-ζ only slightly affects predicted positions and 

intensities of IR-bands (Table 2). Anharmonic vibrations are expectedly shifted to the low-frequency region. 

Table 2. Vibrational Modes of trans-HOON Calculated at the CCSD(T) Level of Theorya 

  aug-cc-pVTZ, harmonic  aug-cc-pVQZ, harmonic  aug-cc-pVTZ, anharmonic  

  freq int freq int freq int 

ν1 (a′) 3765.0 28.0 3771.5 29.4 3582.9 21.9 

ν2(a′) 1904.9 525.3 1908.0 529.5 1878.7 485.8 

ν3(a′) 833.7 25.9 836.2 26.5 764.7 23.8 

ν4(a′) 437.1 1.6 436.3 1.6 387.8 8.5 

ν5(a′) 305.5 5.8 308.8 6.1 265.9 1.4 

ν6(a″) 240.4 85.2 236.0 86.6 199.9 67.0 

OH•b 3746.1 10.3 3749.3 11.5 3557.7   

NO•b 2106.8 74.6 2105.9 72.7 1938.2   
aFrequencies are in cm–1, and intensities in km/mol. Experimental values for NO• are ωe = 1904.2 cm–1, ωexe = 
14.1 cm–1.(34)Experimental values for OH• are ωe = 3737.8 cm–1, ωexe = 84.9 cm–1.(35) 
bVibrational modes for separated NO• and OH•. 
 

Harmonic frequencies suggest that formation of trans-HOON would strongly affect the N–O stretching vibration, 

shifting it to the red by ∼200 cm–1 (for anharmonic frequencies, ∼60 cm–1) and increasing intensity by ∼450 

km/mol. These changes in the IR spectrum might be characteristic for experimental HOON detection. 



Thermodynamic Properties of trans-HOON 
Electronic energy of trans-HOON dissociation to HO• and NO• (Ediss) strongly depends on both dynamic and 

nondynamic electron correlation. Multireference methods MR-AQCC/aug-cc-pVTZ and CASPT2/CBS 

predict Ediss to be 43.9 and 36.3 kJ/mol, respectively. At the same time, CCSD(T)/CBS level of theory, based on a 

single reference determinant, gives a much lower value of 27.2 kJ/mol (Table 3). Basis set influence can be ruled 

out, as values of Ediss are improved by only 3.6 kJ/mol due to increase of basis set from triple-ζ up to CBS for 

either CCSD(T) or CASPT2 methods. Instead, quadruple excitations dramatically change coupled cluster results: 

at approximation to the CCSDTQ/aug-cc-pVTZ level of theory Ediss is 39.0 kJ/mol, agreeing much better with 

CASPT2 and MR-AQCC results. 

Table 3. Thermodynamics of Reactions R1–R3, kJ/mol 

basis seta ΔE(R
3) 

ΔE(R2) = 
−Ediss

b 
ΔE(R1) + 
ΔE(R2)b 

CCSD(T)    

D –6.7 –23.6 173.4 

T –8.3 –29.7 189.6 

Q –8.3 –26.8 192.8 

5 –8.4 –27.1 194.2 

CBSc –8.4 –27.2 195.0 

Approximation to CCSDTQ/aug-cc-pVTZ (See Also Table S4, Supporting 
Information) 

   

T –7.9 –39.0   

CASPT2    

D –6.4 –32.1   

T –7.1 –35.2   

Q –7.3 –36.2   

5 –7.4 –36.2   

6 –7.4 –36.3   

CBSc –7.4 –36.3   

MR-AQCC    

T –7.9 –43.9   

Corrections to Reaction Energies    

ZPEd 0.8 9.8 –8.2 

enthalpy correctiond 0.4 5.7 –6.0 

RCe 0.0 –0.1 –0.5 
aaug-cc-pVXZ, X = D, T, Q, 5, or 6. 
bIn reactions R1 and R2, data for trans-isomers of HOON and HONO are reported. ΔE(R1) + ΔE(R2) is the 
energetic effect of the HONO transformation to HOON. 
cPeterson’s three-point CBS extrapolation(11c) with data from aug-cc-pVXZ; X = T, Q, and 5 for CCSD(T), and Q, 5, 
and 6 for CASPT2. 
dZPE and enthalpy correction were calculated using CCSD(T)/aug-cc-pVQZ harmonic frequencies (ideal gas 
assumption, 1 atm, 298.15 K); enthalpy correction already includes ZPE. 
eScalar relativistic correction; CCSD(T)[ae]/aug-cc-pVTZ. 
 

Enthalpy correction to Ediss, calculated under the ideal gas assumption with CCSD(T)/aug-cc-pVQZ harmonic 

vibrational frequencies (Hcorr), is −5.7 kJ/mol at room temperature and 1 atm pressure. The contribution of scalar 



relativistic effect was found to be small, 0.1 kJ/mol, so the CCSDTQ/aug-cc-pVTZ-based estimation predicts O–O 

bond dissociation energy D(O–O) = Ediss + Hcorr = 33.3 kJ/mol. 

To calculate ΔfH°(trans-HOON), we used O–O bond dissociation energy of 33.3 kJ/mol and experimental 

enthalpies of HO• (37.4 kJ/mol)(31) and NO• (91.0 kJ/mol).(31) From reaction R2, we can deduce 

𝐷(O − O) = ∆f𝐻
o(HO•) + ∆f𝐻

o(NO•) − ∆f𝐻
o(𝑡𝑟𝑎𝑛𝑠 − HOON) 

Therefore, ΔfHo(trans-HOON) = 95.1 kJ/mol, which is 172.7 kJ/mol higher than ΔfH° of the most stable 

isomer, trans-HONO, and ∼143 kJ/mol lower than ΔfH° of cis-HNOO (238 kJ/mol as deduced from refs 5 and 31, 

see Supporting Information for details). 

Isomerization of HOON to HONO or HNOO 
A question of special interest for isonitrosyl compounds X–ON is how they transform to corresponding X–NO. 

Two pathways can be hypothesized (Figure 1a), dissociative transition (which is the case for X = H,(2a, 32) Cl,(2b, 

32a) and Br(2b)) and intramolecular isomerization. We calculated a minimum energy path (MEP) 

connecting trans-HOON and HONO on the 1A′ electronic state to establish the mechanism of isomerization of 

HOON. Ten structures along the reaction path were optimized using a climbing image nudged elastic band 

method(25) at the CASPT2/aug-cc-pVTZ level of theory. Figure 1b shows overlap of those structures, so the 

reaction path is represented as a migration of the OH fragment. The minimum energy path clearly involves 

subsequent dissociation of trans-HOON and recombination of OH• + NO• to HONO (Figure 1b). The highest point 

on the MEP is 34.0 kJ/mol higher than trans-HOON (Figure S2, Supporting Information), which is close to the O–

O bond dissociation energy of 35.2 kJ/mol, calculated at the same level of theory. Therefore, our findings 

support a dissociative transition mechanism of isomerization of trans-HOON to HONO. 

 
Figure 1. (a) Mechanisms of transformation of X–ON into X–NO, (b) overlap of structures on the minimal energy 
path connecting trans-HOON and cis-HONO (marked as 1 and 9); CASPT2/aug-cc-pVTZ. A structure with the 
highest energy (climbing image) is denoted as M. 
 

Another reaction mode of HOON might be isomerization to parent nitroso oxide cis-HNOO.(4, 5, 7, 33) In our 

previous study,(5) we found that the diamond-shaped transition state of R4lies ∼230 kJ/mol higher than the 

HO• + ON• pair, which is ∼33 kJ/mol (current results) less stable than trans-HOON. Therefore, the activation 

energy of HOON transformation to cis-HNOO is prohibitively high, ∼260 kJ/mol, and the reaction R4 is 

unfavorable. 

 

Electronic Structure of trans-HOON 
The CASPT2/aug-cc-pVTZ wave function of trans-HOON can be expressed as 

Ψ = 77%𝛹1
[(10𝑎′)2(2𝑎′′)2] + 14%𝛹1

[(10𝑎′)0(11𝑎′)2(2𝑎′′)2] 



with weights of other configurations less than 1.5% each. The a′ frontier orbitals have occupancies of 1.67 and 

0.36 (Figure 2); these values differ from those expected for a singlet biradical, so both wave function 

composition and orbital occupancies suggest emerging O–O covalent bonding in trans-HOON. Absence of a 

minimum in the triplet state further supports the idea that HOON is more than a van der Waals complex of two 

radicals. Indeed, the a′ frontier orbitals represent a 3-center 4-electron σ-conjugated system (Figure 2, Top) that 

can be considered as nxy(O) + πxy(ON) or σ(OO) + nxy(N) combination. Most of the binding of the NO and OH 

moieties arises from the latter pattern. 

 
Figure 2. CASPT2/aug-cc-pVTZ natural orbitals of trans-HOON at an isovalue of 0.05 and their occupancies: top 
row, 3-center 4-electron system formed by a′ orbitals; bottom row, valence orbitals of a″ symmetry. 
 

Topological analysis revealed a bond critical point (BCP) between oxygen atoms (Figure 3). Electron density at 

the BCP ρBCP(O–O) = 0.09 au, indicating the bond is much weaker than other peroxide bonds: for instance, in 

hydrogen peroxide ρBCP(O–O) = 0.27 au at the same level of theory. Ellipticity of the electron density at the 

critical point, εBCP(O–O) = 0.113, is significantly higher than the corresponding value in hydrogen peroxide, 0.047, 

thus suggesting partial π-character of the O–O bond, which forces HOON to be planar. The Laplacian of the 

electron density is negative at the BCP; therefore, valence shells are not shared between the NO and OH 

fragments. This case is typical for ionic bonds or bonds formed by strongly electronegative atoms (like F–F).(28) 

 
Figure 3. Contour maps of ∇2ρ, calculated for CASPT2/aug-cc-pVTZ electronic densities. Red points indicate local 
minima of ∇2ρ around nitrogen atom, which can be related to lone pair positions. Solid lines indicate negative 
values of ∇2ρ. 
 

The name of hydroperoxynitrene, first introduced for HOON by Fueno,(4) implies its nitrene character. Hence, 

HOON could be a biradical either with both unpaired electrons localized at the p-orbitals of nitrogen atom or 

with a closed-shell molecule with an empty p-orbital on the N atom (Scheme 1). As the biradical structure would 

have A″ symmetry, whereas HOON has A′ symmetry, it can be excluded from the further consideration. 

Therefore, the nitrogen atom would have a lone pair in the plane of the molecule and an empty p-orbital out of 

the plane. Then, overlap of the empty orbital pzN with a pz orbital of the neighbor oxygen atom would form a πz-

NO bond. A similar orbital population can be found in the singlet state of hydroxynitrene NOH,(32c) where 

nitrene character is well-established. 

Scheme 1 



 

Due to the weakness of the O–O bond, HOON can also be considered a complex of HO with ON, either a pair of 

radicals or ions. Hydroxyl radical has an electron affinity of 1.83 eV,(36) whereas the ionization energy of nitric 

oxide is 9.26 eV,(37) so OH + NO is thermodynamically more stable as a radical pair. However, the ionic pair 

representation is still relevant, because the 3-center 4-electron system (Figure 2) pulls electron density to OH, 

creating a partial positive charge (0.15 au) on the NO moiety. 

We compared the topology of the electronic density of the NO fragment in HOON with that in NOH, NO•, and 

NO+ to establish the chemical nature of HOON. Parameters under comparison include the NO bond length R(N–

O), AIM charges on nitrogen (q(N)) and oxygen (q(O)) atoms, and the properties of the N–O BCP: value of 

electron density ρBCP(N–O), Laplacian of electron density ∇2ρBCP(N–O), and ellipticity of electron density εBCP(N–

O). 

Both NO• and NOH have two minima of ∇2ρ that correspond to lone pairs around nitrogen atoms, whereas 

NO+ has only one. The nitrogen lone pairs in NOH are well developed and can be easily distinguished from those 

in NO•. As lone pairs significantly differ in reference species, we introduced several parameters to quantitatively 

compare the lone pairs with trans-HOON. We found local minima of ∇2ρ (red points in Figure 3) and used values 

of electron density at those points ρ(n1) and ρ(n2), and distance between them R(n1–n2) as descriptors. 

Table 4 shows that trans-HOON has similarities with all reference species: NOH, NO•, and NO+. The bond length 

between N and O atoms, ρBCP(N–O), ∇2ρBCP(N–O), and R(n1–n2) are closest to those of NO•, which suggests a 

radical-pair character. However, ρBCP(N–O) in trans-HOON are higher than in NO•, ∇2ρBCP(N–O) is lower, and R(N–

O) is shorter, which can only be explained by admitting some nitrosyl cation character of the NO moiety. 

Another evidence for nitrosyl cation character in trans-HOON is a substantial positive charge (0.15 au) on the NO 

moiety. At the same time, the ellipticity εBCP(N–O) in trans-HOON is between that in NOH and NO•, implying 

some nitrene character of trans-HOON. Moreover, molecular nature of HOON is suggested by the CASPT2 wave 

function composition with one dominating configuration, occupancies of frontier natural orbitals that differ 

significantly from unity, and topological analysis that reveals bonding path between oxygen atoms. 

Table 4. Properties of the NO Fragment in Various Compounds, Calculated with CASPT2/aug-cc-pVTZ 

  X1A′ trans-HOON X2Π NO• X1Σ+ NO+ 1A′ HON 

R(N–O), Å 1.138 1.159 1.071 1.265 

ρBCP(N–O), au 0.612 0.587 0.744 0.433 

∇2ρBCP(N–O), au –2.116 –2.101 –2.742 –1.073 

ε(N–O) 0.16 0.08 0.00 0.31 

q(O), au –0.37 –0.41 –0.26 –0.60 

q(N), au 0.52 0.41 1.26 0.07 

ρ(n1), au 0.54 0.53 0.59 0.73 

ρ(n2), au 0.53 0.53   0.66 

R(n1–n2), Å 0.66 0.67   0.72 



Thus, our analysis suggests that HOON is best represented by a combination of three resonance structures with 

major contribution from a radical-pair structure, followed by a significant contribution from a nitrene structure, 

and a small admixture of ion-pair character (Scheme 2). 

Scheme 2 

 

Conclusions 
Sophisticated ab initio calculations show that HOON has minima only at the 1A′ electronic state, where it can 

exist as the cis- or trans-isomeric form. The trans-form is more stable and is characterized by R(O–O) = 1.89 

Å, D(O–O) = 33.3 kJ/mol, and ΔfH° = 95.1 kJ/mol. Because of a relatively high dissociation energy, HOON might 

be a candidate for matrix isolation. 

Topological analysis of the electronic density suggests that the NO moiety in HOON is most similar to nitric 

oxide, although some nitrene character is also present, as well as nitrosyl cation character. Therefore, the name 

“hydroperoxynitrene” does not correctly describe the nature of HOON, and we propose the name “nitrosyl O-

hydroxide” or “isonitrosyl hydroxide” instead. 

We envision that HOON might be a parent representative of a class of compounds with the −OON group. It is 

possible that some substituents might strengthen the O–O bond thus stabilizing the −OON group. On the other 

hand, formation of the −OON group might be considered as a way to fix nitric oxide NO• and perturb its 

electronic structure, involving it in usually unfavorable chemical reactions. For example, photolysis of alkyl 

nitrite, which leads to, among other products, HN, might involve the −OON group, which could promote H-atom 

abstraction from the α-carbon atom by nitric oxide. The effect of substituent on the electronic structure and 

chemical reactivity of the −OON group is an object of our future studies. 
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