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ABSTRACT 

Jennifer L. Riffer 

In this thesis, a discrete-time observer based disturbance accommodation 

controller is designed that is capable of minimizing the effect of disturbances with known 

waveform in both the system state and measurement as fast as possible while also driving 

the state to zero. This control is achieved by designing a single control input to 

accommodate disturbances in both the system state and measurement. For controller 

design, the state and measurement equations are augmented, and a least squares 

minimization technique is used to find a control input that drives the system state and 

measurement to zero, guaranteeing deadbeat response. During the design it is assumed 

that all system and disturbance state variables are available for feedback. When this is 

not, an observer is needed. 

 When using a deadbeat controller, the only option for the observer is to also be 

deadbeat. Two types of deadbeat observers are used in this work: full-order and reduced-

order. The full-order observer generates estimates for both the system and disturbance 

state variables (measureable or not) and driving the estimation error to zero. For a faster 

time response, a reduced-order deadbeat observer was then designed. Reduced-order 

observers have a faster response because a reduced-order observer only constructs 

estimates for the un-measureable system and disturbance state variables. 

As an extension, a new model for the control input was introduced for the case 

when the feed-forward term in the measurement was not present. This involved using a 



 

 

so-called „pseudo-output‟ that allows the controller to indirectly minimize the effect of 

the disturbance in the measurement. 

Simulations show that when this control scheme is used, the system state and 

measurement are driven to zero when no disturbance. When disturbances are present, 

their effects are minimized. In all cases control action is achieved in the appropriate 

number of time steps for the given system.
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1 INTRODUCTION 

Control theory has been around for many years and, as one can expect, many 

researchers have expanded on it, some taking different paths. The paths have created two 

main types of control theory: classical and modern. One specific researcher, C. D. 

Johnson, used the modeling technique in modern control theory to develop a control 

method that greatly diminishes the effect of external disturbances with known waveform 

structures in real-time. The technique he developed is referred to as disturbance 

accommodating control theory [1]. The development of the controller proposed in this 

thesis utilizes this method. To begin, it is important to understand the general concepts of 

the tools that make this controller possible. 

 

1.1 Control Theory 

 As mentioned, there are two main types of control theory: classical and modern. 

Classical control theory is the foundation of many controllers in industry and involves 

developing such controllers as PI, PD, and PID controllers. These types of control use 

knowledge of the transfer function of a system to design the controller. Classical control 

is a very useful and effective method of control but, due to the input-output nature of the 

models used, there is no knowledge of what is happening in the internal stages of the 

system. A type of control that contains information about the internal state variables is 

modern control theory. Modern control theory uses the system model‟s differential 

equation and defines new variables that allow the model to be described by a set of 
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coupled first order differential equations. These new variables are the intermediate stages 

of the system, defined as „state variables‟ and these variables are formed into a vector 

creating the state space description of a system. There are various types of controllers that 

have been designed based on this theory including „state-feedback control‟ that, as the 

name implies, utilizes feedback of the state variables. 

 There are many objectives in controlling a system, some of which include 

stabilizing, driving a system to an operating point, optimizing a performance criterion, or 

driving a system to its equilibrium point. Whatever the reason might be, there may be 

some external forces that may disrupt the system. These disruptions are known as 

disturbances and are another reason to apply control to a system. One type of controller 

that has been proven to work effectively for disturbances that have known waveform-

types has been briefly mentioned already in this introduction and is one developed by C. 

D. Johnson. The controller to handle these disturbances is known as a disturbance 

accommodation controller (DAC).  

DAC is a technique that makes use of modern control theory. A state space 

description for the system is created along with a state space description of the 

waveform-type of the disturbance. When developing the control input, it is assumed that 

all state variables and disturbances are available (measurable) which may not be the case. 

In the case where not all of the state variables and disturbances are measured, the actual 

variables are replaced by the estimated values that are generated from an observer. In the 

end, a DAC has the ability to meet performance specifications for systems with 

disturbances of unknown magnitude and arrival time. 
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1.2 Observers 

 As previously mentioned, this DAC needs a tool that will generate estimates of 

the un-measurable state variables and disturbances. Over the years, many tools that can 

achieve this have been developed. In this thesis, the Luenberger observer is used [16]. 

This type of an observer creates an estimate of the state based on the given system and a 

term proportional to a defined output error.  

 

1.3 Deadbeat Performance 

 In the design of a state feedback controller, different performance criteria can be 

met by designing the controller gains such that the gains set the eigenvalues of the 

controlled system to desired values. The controller proposed in this thesis will make use 

of deadbeat performance that requires the eigenvalues are set to zero. Deadbeat 

performance in discrete-time systems means the system state or output will reach the 

desired value in n-steps for an n-dimensional system. Due to the rapid response by the 

controller, large overshoot in the state variables and in the measurement can be expected 

with deadbeat controllers because of large control inputs.  

 When an observer is used in combination with a controller, the observer needs to 

have a faster response than the controller so the system has accurate estimates before the 

control action is finished. However, for a deadbeat controller, the only option is to use a 

deadbeat observer because this is the fastest response.  
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1.4 Previous Work involving the use of DAC theory 

 In 1971, C. D. Johnson introduced accommodation of external disturbances in 

linear regulator and servomechanism problems [2] by making use of DAC theory. He 

discussed the modeling method for disturbances with known waveform structures and 

then discussed the different modes of accommodation: absorption, minimization and 

maximum utilization. In an overview paper on DAC theory [1], he stated, “Disturbance-

Accommodating Control Theory is a relatively new technique of modern control which 

enables one to design feedback controllers which can maintain performance 

specifications in the face of uncertain, persistent acting external disturbances.” He then 

gave a more detailed explanation of how to develop the disturbance model. He also went 

through the details of the different modes of accommodation where the absorption mode 

of accommodation uses a control input that completely cancels out the effect of the 

disturbance, the minimization mode of accommodation minimizes the effect of the 

disturbance in some specified sense, and the utilization mode of accommodation makes 

use of the disturbance to assist the controller in achieving a desired control task. He 

discussed different applications such as controlling a low-power laser designator device 

mounted in a helicopter, chemical process control, and control of machine-tool chatter. 

He also discussed different extensions, one of which is accommodation of modeling 

errors. He mentioned the disturbances experienced in aircraft maneuvering and 

navigation are suitable for DAC theory because they have “a high degree of waveform 

structure.”  

 In 1986, K. D. Reinig and A. A. Desrochers applied Johnson‟s DAC theory to 

rotating mechanical systems that experience vibrations when operating at a constant 
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speed near resonance [3]. They used the concepts of DAC theory in the continuous time 

domain and applied them similarly to the frequency domain to successfully reduce the 

effect of the vibrations on the systems. 

Also in 1986, E. Yaz extended Johnson‟s work to disturbances that have 

waveforms with nonlinear models applied to systems that also have nonlinear system 

models [4]. He made use of the minimization mode of accommodation when deriving the 

desired control input. 

In 1989, T. W. Martin and  E. Yaz generalized the discrete-time version of the 

work in [5]. They also compared the adaptive method of DAC with the nonlinear method 

of DAC and found that the adaptive method had better results if all of the design 

requirements could be met [6]. In 1990, Martin and Yaz gave conditions under which 

disturbance models with unknown parameters could be handled indicating the robustness 

property of DAC [7]. In 1992, they introduced a disturbance accommodation controller 

for continuous-time systems with various forms of nonlinearities [8]. 

In 1992, A. Azemi and E. Yaz extended DAC theory to discrete-time nonlinear 

stochastic systems. In their work, they introduced a „pseudo-output‟ that consisted of the 

current measurement and the past input [9]. By adding this pseudo-output to their control 

input equation, they accommodated disturbances not only in the system but also in the 

output. By accommodating disturbances in the output, a better estimate of the state can be 

achieved for better overall performance compared to control without the pseudo-output 

included. 
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In 2000, H. Kim and Y. Kim developed a discrete-time controller for a system 

with low frequency disturbances and unknowns in the system matrices [10]. They applied 

their controller to a satellite altitude control problem and showed desirable results. 

In 2001, I. Tshiofwe, et al. developed an LMI based disturbance reduction 

controller for systems with multiple delays in the state and in the input [11]. They 

reconstructed the state through a multiple time-delay observer that was designed using an 

LMI. Then they used part of the control signal to actively minimize the disturbance. 

In 2003, I. Tshiofwe, et al. introduced the use of a reduced order observer in the 

development of a DAC [12]. They also used a linear matrix inequality (LMI) technique to 

design their observer. For the control input, they used the minimization mode of 

accommodation. In their paper, they showed successful results of accommodation of the 

disturbance in the state variables. 

In 2003, K. Stol and M. Balas applied DAC theory to blade load mitigation in 

wind turbines with a periodic disturbance [13]. They derived the nonlinear model, 

linearized it, and developed three different types of controllers to accommodate the 

disturbances in their system. These controllers were a time-periodic DAC that used 

optimal periodic control techniques, time-invariant DAC that used a time-invariant 

version of the plant in the design of the controller, and a PID controller. Their results 

showed the periodic DAC was superior to the others. 

In 2007, Z. Gao, T. Breikin, and H. Wang introduced a model that included a 

feed-forward term in the measurement equation that allowed for direct correction of the 

measurement when there were disturbances present [14]. As mentioned previously, if 
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there are disturbances in the measurement, it is desirable to accommodate these to 

achieve better estimates from the observer. They made use of a proportional and integral 

observer for their estimates and used a control input that satisfied a given cost function. 

DAC theory has come a long way over the years. There is still plenty of room for 

more extensions and new applications are always arising. DAC is an effective way to 

minimize or utilize the disturbances present in many systems as long as the disturbance 

has a waveform structure.  

 

1.5 Scope of This Work and Main Contributions 

 This thesis proposes to expand on DAC theory applying it to linear time-invariant 

discrete-time systems that have disturbances in both the system state and in the 

measurement. The DAC that is proposed is time-optimal, reaching a minimal value as 

fast as possible. To achieve this, a deadbeat controller is first designed with the 

assumption that all variables are known. This controller will have two parts, one that will 

control the system state and one that will minimize the effect of the disturbance. The 

controller design is then followed by the design of both a full-order and reduced-order 

deadbeat observer where the estimates from the observer will be used in the controller. 

Furthermore, system conditions for the developed control technique are derived to allow 

a user to test the given system and decide if the technique will produce desirable results. 

Lastly, an extension is also proposed for systems with no control term in the 

measurement. The extension introduces a pseudo-output that, when used in the controller, 

allows for control and accommodation of disturbances in the measurement. 
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1.6 Thesis Organization 

 This thesis is comprised of four chapters.  Chapter 2 consists of a derivation of the 

deadbeat controller, full-order deadbeat observer, and reduced-order deadbeat observer 

that have been proposed.  Chapter 3 contains six case studies of two single-input, single-

output (SISO) time-invariant systems with a variety of disturbances that have known 

waveform structures and both full-order and reduced-order observers are analyzed.  

Chapter 4 discusses the conditions for systems for the proposed DAC to work. It also 

includes an extension on the proposed DAC when there is no input in the measurement 

equation and conditions for this controller to work.  Chapter 5 is a summary of the 

previous chapters and suggestions for future work. 
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2 PROPOSED CONTROL TECHNIQUE 

DACs are an effective way to minimize or eliminate the effects of disturbances on 

a system and have been in use for many years. There are different design methods that 

are covered in [1] as mentioned in the previous chapter. In this work, the “disturbance-

minimization mode of accommodation” [1] method is used. In previous work, this 

method has been used to design DACs for more restricted systems, i.e. no feed-forward 

(feed-through) term or no disturbance in the measurement (output). By introducing a 

more general system model, however, this technique can be applied to a wider range of 

systems. 

In this chapter, an observer based deadbeat DAC design technique for discrete-

time systems with known waveform-type unknown disturbances will be developed. By 

deriving this technique for discrete-time systems using the deadbeat concept, a desirable 

response will be achieved in minimum time. Two different types of closed-loop deadbeat 

observers, full-order and reduced-order, will be designed. Both observers give similar 

results that will be compared and analyzed in chapter 3. The design technique involves 

solving for the control and observer gains by using the canonical forms of the system 

matrices and then transforming the gains back to the original system‟s form. By doing 

this, it can be guaranteed that the DAC will be deadbeat. 
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2.1 Model 

Consider the following discrete-time linear time invariant system: 

 1k k k kx Ax Bu Fw     (2.1a) 

 1 1kk k ky C x Du G w    (2.1b) 

 1k k kw Ew     (2.1c) 

where nx

kx   is the state, ku   is the applied control input, nw

kw   is the state of 

the disturbance, ky   is the measured output, k  is an unknown impulse sequence 

which accounts for the system and measurement disturbances and occurs in a “sparsely 

populated” manner [1], and A, B, C1, D, E, F, G1 are real matrices of appropriate 

dimensions. The waveform of the disturbance is known (i.e. step, ramp, sinusoidal, etc.); 

however, the magnitude, arrival time, and duration of the disturbances are unknown.  

  As discussed in chapter 1, DACs are able to accommodate for these known 

waveform-type unknown disturbances. A deadbeat discrete-time controller will be 

designed to accommodate the disturbances as quickly as possible. 

 

2.2 Controller 

Designing controllers in discrete-time has many benefits. One of these benefits is 

the ability to drive a system to zero in a finite amount of time. Another benefit is the 

ability for the state to reach zero in n-steps for an n-dimensional system. The type of 
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controller that can achieve optimal time response is called a deadbeat controller and is the 

type of controller that will be used in this DAC.  

First, the state (2.1a) and output (2.1b) equations, are augmented to create a new 

system,  

 
1

11 1

0

0

k k

k k

k k

x xA F B
w u

y yC G D





        
          

       
. (2.2) 

By augmenting (2.1a) and (2.1b), a single control input can be designed to provide 

desired control to the system while accommodating the disturbance. By designing this 

controller to be deadbeat, it will accommodate the disturbances as quickly as possible. 

The control input is considered to have two parts, 

 c d

k k ku u u  . (2.3) 

One of these parts is a state control input, 
1

kc

k

k

x
u L

y 

 
  

 
, which will drive the state to 

zero, and the other part is a disturbance accommodation input, d

k d ku L w , which will 

minimize the effect of the disturbance. This defined control input is then substituted for 

ku  in (2.2), 

 
1

11 1

0

0

k k

d k

k k

x xA FB B
L L w

y yC GD D





            
               

            
 (2.4a) 

which is of the form 

     1

1     such that xn

k c c k c d k kA B L B L w   

      . (2.4b) 
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where , , , and c c kA B   are obtained by matching the two equations.  

To analyze the evolution of this system, the convolution summation for this 

system is considered, 

    
1

1

0

0

k
k k i

k c c c d i

i

A B L B L w 


 



    . (2.5) 

By making use of the Cayley-Hamilton theorem which states all matrices must satisfy 

their characteristic equation, it is seen that the evolution of the state, k , depends on the 

eigenvalues of ( )c cA B L  and the summation term. By choosing the eigenvalues of 

( )c cA B L  to be zero (for this to be a deadbeat controller) and minimizing the norm of 

 c dB L , when designing the gains  and dL L , the state variables will reach zero and 

the effect of the disturbances will be minimized in  1xn  -steps.  

The system pair ( , )c cA B  must be controllable for there to exist a controller gain 

L  that will allow the eigenvalues to be placed anywhere inside the unit circle. When the 

augmented system is controllable, a least squares minimization technique is performed. 

The system dynamic equation is minimized with respect to the controller gains, 

    
 and 
min

d
c c k c d k

L L
A B L B L w    . (2.6) 
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A completion of the squares method was used to solve for the control gains: 

 

   

   

 

 

* * * *

*

1
*

1
*

†

T T T T T T T

c c c c c c c c c c c c

T
T T T T

c c c c c c

T T T T

c c c c

T T

c c c c

T T

c c c c

d c c

A B L A B L A A A B L L B A L B B L

A A L L B B L L L B B L

L B B L L B A

L B B B A

L L B B B A

L B A





     

    

 

 

    

 

 

and 

   

   

 

 

* * * *

*

1
*

1
*

†

T T T T T T T

c d c d c d d c d c c d

T
T T T T

d d c c d d d c c d

T T T T

d c c d d c

T T

d c c c

T T

d d c c c

d c

B L B L B L L B L B B L

L L B B L L L B B L

L B B L L B

L B B B

L L B B B

L B





       

     

  

  

     

  

 

where †A  denotes the Moore-Penrose pseudo inverse of A [16]. It can be seen than the 

following control gains will satisfy the minimization condition, 

 

†

†

1

0

0
c c

AB
L B A

CD

  
      

   
 (2.7a) 

and 

 

†

†

1

d c

FB
L B

GD

  
       

   
. (2.7b) 
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For this controller to be deadbeat, the eigenvalues of ( )c cA B L  must be equal to zero 

not just a minimum value. This is condition guaranteed by designing a gain L  using the 

controllable canonical forms [15] of cA  and cB  where the eigenvalues of ( )c cA B L  are 

always zero. ( A  denotes the canonical form of A .) This result is demonstrated for a 

single input, n-dimensional system as follows: 

 

1

1

1

1 2

( )

( ( ) )

1 0 0 1 0 0
1 0 0

0 0 0
0

0

0 0 1 0 0
0 0 1 0

0 0 0

0 1

0

0 0 1

c c

T T

c c c c c c

T T

c c c c c

n

A B L

A B B B B A

I B B B B A

a a

a a







 

 

  
      
      
       
      
       
       

 
 
 
 
 
 
 


 


    

 
      

  
  






 

  



1

1 0 0

0

0 0 1 0

0 0 0

1

0

0 1 0

n na a  
 
 
 
 
 
  

 
 
 
 
 
 

 

   

    





  

  



. 

Therefore, ( ) 0  for 1,2, ,i c cA B L i n     . The gain calculated from the canonical 

forms of cA  and cB  needs to be transformed to the original form of the system using the 

transformation technique [15]: 

  
†

c cL B A   (2.8a) 
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 1

c cL LW W   (2.8b) 

where  

 2 1n n

c c c c c c c cW B A B A B A B      (2.9) 

and 

 2 1n n

c c c c c c c cW B A B A B A B     . (2.10) 

 This controller is designed assuming kx  and kw  are known; however in most 

cases, not all of the state variables are known (or measurable) and the disturbances are 

unknown. To solve this problem a closed-loop deadbeat observer is designed that will 

estimate these unknowns in a minimal amount of time. 

  

2.3 Closed-Loop Observers 

2.3.1 Full-Order Observer 

 Observers are used to take information from the control input and the 

measurement to construct an estimate of the internal state variables. A commonly used 

observer is one proposed by D. G. Luenberger [16].  

 To begin the discussion of the Luenberger observer, assume an augmented system 

model of the unknown variables: 

 
1

1 0 0

k k

k

k k

x xA F B
u

w wE





      
       
      

 (2.11a) 
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  1 1

k

k k

k

x
y C G Du

w

 
  

 
 (2.11b) 

which is can be rewritten as 

 1     such that  x wn n

k fo k fo k kA B u


       (2.11c) 

 k fo k ky C Du   . (2.11d) 

where , , , and fo fo fo kA B C   are obtained by matching (2.11a) and (2.11b) with (2.11c) 

and (2,11d), respectively. 

            Luenberger begins by defining an error signal between the actual output and the 

estimate of the output, 

 ˆ
k k ky y    (2.12) 

where 

 ˆˆ
k fo k ky C Du   . (2.13) 

Noting that the input, ku , is known in both the actual and estimated output, this term will 

cancel itself, and the output error equation can be rewritten as 

 ˆ ˆ( )k fo k fo k fo k kC C C         (2.14) 

where the state error is 

 ˆ
k k ke    . (2.15) 
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Now that the state error has been defined, it is desirable to analyze the evolution 

of this error, 

 1 1 1
ˆ

k k ke      . (2.16) 

The dynamic equation of the state estimate is obtained by using the estimate of the state 

plus a term proportional to the output error, 

 
1

ˆ ˆ

ˆ ˆ( )

k fo k fo k k

fo k fo k fo k k

A B u K

A B u KC

    

     
. (2.17) 

Now that the dynamic equations for 1k  and 1
ˆ

k  are available, the dynamic equation 

for the state error is written as 

 

1
ˆ ˆ( )

ˆ ˆ( ) ( )

( )

k fo k fo k fo k fo k fo k k

fo k k fo k k

fo fo k

e A B u A B u KC

A KC

A KC e

         

     

 

. (2.18) 

Consider the convolution summation solution for the state estimation error, 

 0( )k

k fo foe A KC e  . (2.19) 

Again, by making use of the Cayley-Hamilton theorem, it is seen that the evolution of the 

error depends on the eigenvalues of ( )fo foA KC . The system pair ( , )fo foA C  must be 

observable for there to exist an observer gain, K , which will allow the eigenvalues to be 

placed anywhere inside the unit circle. By choosing these eigenvalues to be zero, the 
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error will reach zero in ( )x wn n  steps. A least squares minimization of the error system 

matrix over K  is performed by completion of the square: 

 

 
* * * * *

*

* †

min ( )( )

( ) ( )

( )

T T T T T T T

fo fo fo fo fo fo fo fo fo fo fo fo
K

T T T T T T T T T

fo fo fo fo fo fo fo fo fo fo

T T

fo fo fo fo

T T

fo fo fo fo

A KC A KC A A A C K KC A KC C K

A A K K C C K K K C C K K C C K A C K

K C C A C

K A C C C

     

      

 

 

 

 
* †

fo foK K A C  . (2.20) 

Since ( , )fo foA C  is observable, the observable canonical forms [15] of foA  and foC  can be 

used. Similar to the controller, by finding the gain K  (which is K  solved for using foA  

and foC , the eigenvalues of ( )fo foA KC  are guaranteed to be zero. This is shown on the 

following page for a single output and n-dimensional system: 
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   

† †

1

2
†

1

1

2

1

( )

1 0 0
1 0 0

0
0

0 1 0 0 1 0 0
0

1
0 0 1

0 0

1 0 0
1 0 0

0
0

0

1

0 0

fo fo fo fo fo fo fo fo fo

n

n

n

n

A KC A A C C A I C C

a

a

a

a

a

a

a

a





    

 
   

    
    
   

      
    

 
 


 
 
 
 
  




  
  

     
  

  


 




  


   

  

 

1

2

1

1 0 0

0 0

0

0 0 1 0 0

1 0 0
0 0 0

0
0 1

0
0

1
0 0 1

0 0

0 1 0

0

1

0 0 0

n

n

a

a

a

a



    
    
    
    
     
    

 
  

   
  
  

   
   

 
 
 
 
 
 



   

      

  




  
 

   
  

  


 



  

  



. 

Therefore, ( ) 0  for 1,2, ,i fo foA KC i n     . The observer gain will then need to be 

transformed back into the original system‟s form by use of a transformation technique 

[15], 

 
†

fo foK A C  (2.21a) 

 1

o oK W W K  (2.21b) 
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where 

 
2

1

fo

fo fo

o

n

fo fo

n

fo fo

C

C A

W

C A

C A





 
 
 
 
 
 
 
 

  (2.22)  

and  

 
2

1

fo

fo fo

o

n

fo fo

n

fo fo

C

C A

W

C A

C A





 
 
 
 
 
 
 
 

 . (2.23) 

 If the system has state information in the measurement, the full-order observer is 

redundant because it reproduces all state variables not just the ones that are unknown. 

Also, the calculations of a larger order system have a longer calculation time in a digital 

controller than a smaller order system because there is more work to be done in the 

processor with the larger order system. One method of decreasing the order of the 

observer is to use a reduced-order observer that is designed to reconstruct only the 

unknown state variables, lowering the order of the augmented system created for the 

observer design and therefore decreasing the calculation time. A reduced-order observer 

will now be designed for this system using similar concepts as the full-order observer. 
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2.3.2 Reduced-Order Observer 

In general, the order of a reduced-order observer is equal to the order of the full-order 

observer minus the order of the measurement. The technique in this work is derived for 

single input single output (SISO) systems; therefore, by using a reduced-order deadbeat 

observer opposed to the full-order deadbeat observer, the response time will be reduced 

by one time sample. Using the design technique for a Luenberger reduced-order observer 

in [15] as a basis, a composite vector containing the system and disturbance state is 

defined as 

 2 2k k kz C x G w   (2.24) 

and is used to augment the measurement (2.1b) as 

 
1 1

2 2 0

k k

k

k k

y xC G D
u

z wC G

      
       

     
. (2.25) 

Similar to the technique in [7], the matrix  1 1C G  must be of full rank and the matrices 

C2 and G2 are chosen such that 
1 1

2 2

C G

C G

 
 
 

 is invertible and 

1

1 1 11 12

2 2 21 22

C G

C G


    

   
    

, 

where Ω11 has the dimension nx x ny and Ω22 has the dimension nw x (nx+nw-1).  

Keeping in mind that the goal of the observer is to reconstruct all unmeasureable 

state variables and disturbances, (2.25) is rearranged to solve for the unknown variables 

in terms of ky  and kz ,  

 

1

1 1

2 2 0

k k

k

k k

x yC G D
u

w zC G


       

        
      

, (2.26a) 
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where ky  is available but kz  is not. The vector kz  consists of the estimated state and 

disturbance variables given by the observer and (2.26a) is rewritten as 

 

1

1 1

2 2

ˆ

ˆ ˆ 0

k k

k

k k

x yC G D
u

w zC G


       

        
      

, (2.26b) 

where ˆ
kx  denotes the estimate of kx  and ˆ

kw  denotes the estimate of kw . 

The error between the actual and estimated state variables in terms of kz  is 

 
2 2

ˆ

ˆ

r

k k k

k k k

e z z

C x G w z

 

  
 (2.27) 

and the error dynamic equation is 

 1 2 1 2 1 1
ˆr

k k k ke C x G w z      . (2.28) 

The update equation for the vector ˆ
kz  is given by an extension on the general reduced 

order observer dynamic equation [15], 

 1 1 2 3 1 4 5 1
ˆ ˆ

k k k k k kz K z K y K y K u K u        (2.29) 

where K1 through K5 are the reduced-order observer gains. After substitution of ˆ
kz , ky , 

and 1ky   into (2.29) and (2.29) is substituted into (2.28), the error dynamic equation can 

be written as 

 

1 1

2 1 2 2 1 3 1

2 2 3 1 4

2 2 1 2 2 1 3 1 1

3 5 1

( )

( )

( ( ))

( )

r r

k k

k

k

k

k

e K e

C A K C K C K C A x

C B K D K C B K u

C F G E K G K G K C F G E w

K D K u







   

   

     

  

. (2.30) 
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If (2.30) can be reduced to 1

r r

k ke K e , the evolution of this error can be analyzed and the 

eigenvalues of 1K  can be chosen to be zero. By setting the last four matrix coefficients 

equal to zero, the r

ke  term will be the only one remaining. After setting these coefficients 

equal to zero, four of the observer gains can be rewritten in terms of 3K  as 

    1 2 12 22 2 22 3 1 12 1 1 22( )K C A F G E K C A C F G E            (2.31a) 

    2 2 11 21 2 21 3 1 11 1 1 21( )K C A F G E K C A C F G E            (2.31b) 

 
 

  
4 2 2 11 21 2 21

3 1 1 11 1 1 21

( )

( )

K C B C A F G E D

K C B C A C F G E D

      

     
 (2.31c) 

 5 3K K D  . (2.31d) 

Now (2.31) becomes 

 
    

1 1

2 12 22 2 22 3 1 12 1 1 22( )

r r

k k

r

k

e K e

C A F G E K C A C F G E e

 

          
 (2.32) 

In (2.33), the only unknown variable is 3K  and can be written in the form 

 1 3( )r r

k o o ke A K C e    (2.33) 

where 

 2 12 2 2 22( )oA C A C F G E      (2.34a) 
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and  

 1 12 1 1 22( )oC C A C F G E     . (2.34b) 

Once again, the convolution summation solution is analyzed, 

 3 0( )r k r

k o oe A K C e   (2.35) 

and it is seen that the evolution of the error depends on the eigenvalues of 3( )o oA K C . 

The same minimization technique that was used in the full-order observer case is used for 

the reduced-order observer when the system pair  ,o oA C
 
is observable. The observable 

canonical forms of  ,o oA C  [15]  are used to calculate the initial gain that will guarantee 

the eigenvalues of 3( )o oA K C  will equal zero. The same least squares minimization of 

the error system matrix over 3K  is performed resulting in 

 †

3 o oK A C . (2.36) 

On the following page for a single output and n-dimensional system, it is displayed that 

by calculating 3K  in canonical form, deadbeat response is guaranteed: 
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

 




  
  
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
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1

2
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3

1 0 0
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0 1 0 0

1 0 0
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0
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0

1
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n

n

i o o

a

a

a

a

A K C



    
    
    
    
     
    

 
  

   
  
  

   
   

 
 
 
 
 
 

  
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 



  

  





. 

Therefore, 3( ) 0  for 1,2, ,i o oA K C i n     . The observer gain is transformed back 

into the original system‟s form by use of a transformation technique [15], 

 1

3 3o oK W W K  (2.37) 

where oW  and oW  are the observability matrices for the system and its canonical form  
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where 

 
2

1

o

o o

o

n

o o

n

o o

C

C A

W

C A

C A





 
 
 
 
 
 
  

  (2.38) 

and  

 
2

1

o

o o

o

n

o o

n

o o

C

C A

W

C A

C A





 
 
 
 
 
 
 
 

 . (2.39) 

 After designing the full-order or reduced-order deadbeat observer, the estimates 

of kx  and kw  will be available for the controller completing the DAC design. The overall 

response time for the DAC will be the time it takes for the estimates to be available with 

zero error ( ( )x wn n  steps for the full-order and ( 1)x wn n   steps for the reduced-order) 

plus the time it takes the controller to drive the system state to zero while also minimizing 

the effect of the disturbance ( ( 1)xn   steps). 

 

2.4 Conclusion 

In this chapter, an observer based deadbeat DAC design technique for discrete-

time systems with known waveform-type unknown disturbances was developed. Two 

different types of deadbeat observers, full-order and reduced-order, were introduced. It 
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was shown that the only obvious difference between the two observers was the reduced-

order observer should have a response time 1-step faster than the response time of the 

full-order observer. This technique involved solving for the control and observer gains by 

first using the canonical forms of the system matrices and then transforming the gains 

back to the original system‟s form. By doing this, it was shown that this DAC design 

technique is guaranteed to be deadbeat. In the following chapter, this technique will be 

applied to different examples and the performance will be analyzed. 
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3 CASE STUDIES 

In this chapter, the deadbeat DAC design will be applied to two case studies: (1) a 

pendulum system and (2) a magnetic levitation system. There will also be three different 

types of disturbances considered: (1) step-type disturbances, (2) ramp-type disturbances, 

and (3) sinusoidal-type disturbances. The pendulum system controller is simulated for 

each of these disturbances while the magnetic levitation controller is simulated for the 

step-type disturbance to display that the technique also works for higher order systems. 

Each of the systems acted on by step-type disturbances will have two DACs designed for 

them, one using a full-order observer and one using a reduced-order observer in order to 

compare a reduced-order observer versus the full-order observer. Only one DAC will be 

designed for the pendulum system with the ramp-type and sinusoidal-type disturbances 

that uses the reduced-order observer. 

First, models for each system are developed, linearized if necessary, put into state 

space form, and discretized. Then, a deadbeat DAC to minimize the effect of the 

disturbance in the minimal amount of time is designed for each disturbance to be 

considered. The last part needed for the DAC is the estimates from the observer; 

therefore, a deadbeat observer will then be designed following either the technique for the 

full-order observer or the technique for the reduced-order observer. Once the design of 

the observer based DAC is completed, the system response will show the effect of the 

disturbance being minimized as quickly as possible. 
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3.1 Pendulum System 

3.1.1 System and Step-Type Disturbance Model  

A pendulum, which is shown in figure 3.1, is a second order system that has many 

real world applications (i.e. an arm of a robot). 

 

Figure 3.1 Pendulum system [17] 

If the mass of the rod of the pendulum is insignificant compared to the concentrated mass 

at the end, m, the following dynamic equation is derived [17] 

 sin 0L g   . (3.1) 

For small angles 

 sin    

which reduces (3.1) to 

 0L g   . (3.2) 

From (3.2), it is seen there is no input or disturbance included in the dynamic equation. 

An input and disturbance are added to allow the system to be in a form that has all of the 

system matrices defined in (2.1) present, 
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 L g au bw    . (3.3) 

where a and b are coefficients that determine the strength of the input and disturbance 

signals, respectively. Now, for 0.5L m  with 29.8 /g m s  and with the state variables 

defined as 

 
1

2

x

x







 
 (3.4) 

resulting in the matrix vector formulation, 

        c c cx t A x t B u t F w t    (3.5) 

        c c cy t C x t D u t G w t   , (3.6) 

 
0 1 0

19.6 0 1

cx x u F w
   

     
   

  (3.7) 

  1 0 0.1 0.2y x u w   , (3.8) 

where cF  is left as a variable because it will change depending on the disturbance being 

applied. The c-superscript is used to denote the continuous time case. 

The controller technique developed in this thesis utilizes discrete-time systems, so 

this system is discretized [15] using the sampling time 0.1sT s  and written in the matrix 

vector form 

 1k k k kx Ax Bu Fw     

 1 1k k k ky C x Du G w    
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resulting in  

 
1

0.9036 0.0968 0.0049

1.8966 0.9036 0.0968
k k k kx x u Fw

   
     

   
 (3.9) 

  1 0 0.1 0.2k k k ky x u w    (3.10) 

where F  represents the discrete-time version of cF . The disturbance waveform structure 

must now be defined. 

The first disturbance to be considered is the step-type disturbance. A step input is 

a constant value starting at a given time, the step-type disturbance is developed using this 

concept. This disturbance is modeled as a constant with an unknown impulse sequence 

added to it, 

 1k k kw w     (3.11) 

where in the pendulum with step-type disturbances example, the impulse sequence is 

 

0.59, 5 ( 0.5 )

0.59 , 15 ( 1.5 )

0.8 , 25 ( 2.5 )

0.8 , 35 ( 3.5 )

0 ,

k

k t s

k t s

k t s

k t s

otherwise



  


 


  
   



. 

Using this impulse sequence, the disturbance will take the form of a step of magnitude -

0.59 turning on at 0.5 s and turning off at 1.5s following by a step of magnitude 0.8 that 

turns on at 2.5s and turns off one second later. This impulse sequence is not actually 

known, it is solely created for simulation purposes. 
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For this first order disturbance, 

 
0

1

cF
 

  
 

 

implying that the step-type disturbance will be applied to the angular velocity ( 2x ), which 

when is converted into discrete-time becomes, 

 
0.0049

0.0968
F

 
  
 

. 

 

3.1.2 Controller for Pendulum with Step-Type Disturbance 

 As described in section 2.2, an augmented system is created in order to find one 

control input for both the state and the measurement. The augmented system is 

 
1

1

0.9036 0.0968 0 0.0049 0.0049

-1.8966 0.9036 0 0.0968 0.0968

1 0 0 0.2000 0.1000

k k

k k

k k

x x
w u

y y





     
        

          
             

 

which has an open loop response shown in figures 3.2 through 3.4. In these figures, the 

solid line is the state variable or measurement and the dotted line is the disturbance. The 

moment the disturbance is present in the system oscillations begin. 
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Figure 3.2 Open loop response of pendulum angle with step-type disturbance 
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Figure 3.3 Open loop response of angular velocity of pendulum with step-type disturbance 
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Figure 3.4 Open loop response of measurement with step-type disturbance 

 The controllability of the system pair  ,c cA B  is determined by finding the 

controllability matrix, multiplying it by its transpose and determining if the resulting 

matrix has non-zero eigenvalues. If there are zero eigenvalues, the augmented system is 

not controllable. 

 
 

2

0.0001

0.0028

0.0253

c c c c c c

T

c c

W B A B A B

W W

   

 
 


 
  

 

One of the eigenvalues is close to zero and the other two are small which implies the 

system is close to being unstable; therefore, the control gains will be expected to be large. 
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The augmented system is transformed into controllable canonical form [15], 

 

1.8072 -1 0 1

1 0 0   and  0

0 1 0 0

c cA B

   
   

 
   
      

. 

The state control gains are formed by calculating the controllable canonical form gains 

(2.8a) and then using the transformation technique (2.8b); the disturbance 

accommodation control gains are also calculated using (2.7b), 

    -1.8072 1 0    -82.0495 -14.5051 0L L    

  1.5158dL   . 

As discussed in chapter 2, by following this technique, the controller will always be 

deadbeat. This is checked by looking at the eigenvalues of c cA B L , 

   8

8

0 0

1.66 10 0

1.66 10 0

c cA B L 



   
   

    
   
      

  

The eigenvalues are not exactly zero due to rounding errors in MATLAB when 

transforming the control gains from the canonical form to the original system‟s form, but 

they are very close to zero. Now that the control input, ˆ ˆ
k k d ku Lx L w  , is found, the 

estimates of kx  and kw  are needed to complete the design. In section 3.1.3, a full-order 

observer will be developed and in section 3.1.4, a reduced-order observer will be 

developed. 
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3.1.3 Full-Order Observer for Pendulum System with Step-Type Disturbance 

 Recall from section 2.3.1, similar to the controller, an augmented system is 

created which consists of the state variables to be estimated, ˆ
kx  and ˆ

kw , 

 
1

1

0.9036 0.0968 0.0049 0.0049
ˆ ˆ

-1.8966 0.9036 0.0968 0.0968
ˆ ˆ

0 0 1 0

k k

k

k k

x x
u

w w





   
      

       
         

 

  
ˆ

1 0 0.2 0.1
ˆ

k

k k

k

x
y u

w

 
  

 
 

 The observability of the system pair  ,fo foA C  is checked by finding the 

observability matrix and then finding the eigenvalues of the Gram matrix of the 

observability matrix,  T

fo foW W . The system will be observable if all these eigenvalues 

are non-zero. 

 

 

2

0.0003

0.0271

2.3594

fo

fo fo fo

fo fo

T

fo fo

C

W C A

C A

W W

 
 

  
 
 

 
 


 
  

 

Again, one of the eigenvalues is close to zero and another one is small which means two 

of the observer gains will be expected to be large. 
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The system is converted to observable canonical form [15], 

  

2.8072 1 0

-2.8072 0 1   and  C 1 0 0

1 0 0

fo foA

 
 

 
 
  

 

and the full-order observer gains result are obtained following the procedure outlined in 

section 2.3.1, equations (2.21a) and (2.21b), 

 

2.8072 -1.3249

2.8072   21.0462

1 20.6605

K K

   
   

   
   
      

. 

The eigenvalues of fo foA KC  are 

    

 

5

5

5

2.164 10 0

1.082 + 1.874i 10 0

1.082 - 1.874i 10 0

fo foA KC







    
   

      
      

. 

The eigenvalues for the canonical form are all zero, however, due to rounding by 

MATLAB when going through the transformation to the original system‟s form, the 

eigenvalues are not exactly zero anymore, but they are close. A third order deadbeat 

controller and third order deadbeat observer have now been designed to accommodate 

step-type disturbances on a second order pendulum system, therefore the maximum 

amount of time for the DAC to minimize the disturbance is the sum of the orders of the 

augmented systems times the sampling time, 0.6s (see section 2.2). 
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3.1.4 Simulation of Deadbeat Observer Based DAC for Pendulum with Step-Type 

Disturbance  

 

 The full-order deadbeat observer based DAC is applied to the pendulum example 

upon which step-type disturbances are acting. The simulations should show a 

minimization of the disturbance in 0.6s while the disturbance is present, where 0.6s is the 

sum of the orders of the two augmented systems times the time step used for 

discretization. Once the disturbance is no longer acting on the system, the system is 

expected to reach zero (the desired value) in 0.6s. The results from the simulation are 

shown in figures 3.5 through 3.8. Figure 3.5 shows for deadbeat control, the control input 

is large with a maximum magnitude of 59.8, but it is only active for a short period of 

time. In the figures 3.6 through 3.8, a minimization of the disturbance is achieved in 0.6s 

and once the disturbance is gone, the system is controlled to zero in 0.6s. Therefore, the 

full-order deadbeat observer based DAC is functioning just as expected. 
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Figure 3.5 Control input for full-order observer based DAC with step-type disturbance on pendulum 

system 
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Figure 3.6 Closed loop response of pendulum angle for full-order observer based DAC with step-type 

disturbance 
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Figure 3.7 Closed loop response of angular velocity for full-order observer based DAC with step-type 

disturbance 
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Figure 3.8 Closed loop response of measurement for full-order observer based DAC with step-type 

disturbance 

 

Since one objective of this work is to design the DAC to be time-optimal, a reduced-order 

observer is now designed for this system for a faster response time. 

 

3.1.5 Reduced-Order Observer for Pendulum with Step-Type Disturbance 

 Following the steps detailed in section 2.3.2, a  reduced-order observer is 

designed for the pendulum system with step-type disturbances. First, the composite 

vector is created consisting of the variables to be estimated is made, 

 
0 1 0

0 0 1
k k kz x w

   
    
   

. 
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Since kx  and kw  are not available, these variables are replaced by their estimates and the 

composite vector is augmented with the output equation resulting in 

 

1 0 0.1 0.1
ˆ

0 1 0 0
ˆˆ

0 0 1 0

k k

k

k k

y x
u

z w

   
      

       
         

. 

This equation can now be solved for ˆ
kx  and ˆ

kw , since 

1 0 0.1

0 1 0

0 0 1

 
 
 
  

 is invertible, as 

 

1
1 0 0.1 0.1

ˆ
0 1 0 0

ˆ ˆ
0 0 1 0

k k

k

k k

x y
u

w z


    

       
        

           

, 

allowing the estimates, ˆ
kx  and ˆ

kw , to be determined when ˆ
kz  is known. 

 Before the observer gains are calculated, the matrices oA  and oC  defined in 

section 2.3.2 are checked for observability using the same method discussed for the full-

order observer system, 

 

 
0.0010

0.0215

o

o

o o

T

o o

C
W

C A

W W

 
  
 

 
  
 

 

Again, one of the eigenvalues is close to zero and the other one is small which means the 

observer gains will be expected to be large. 
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The system is converted to observable canonical form [15], 

  
1.9036 1

  and  C 1 0
-0.9036 0

o oA
 

  
 

. 

The gain, 3K , is calculated and transformed  into the original system via 1

3 3o oK W W K , 

following the procedure outlined in section 2.3.2. The resulting reduced-order observer 

gains are 

 

1

2

3

4

5

-0.5000 0.1250

-1.9992 0.5000

-15.0033

-18.6686

14.5051

20.6605

1.5257

1.7652

-1.4505

-2.0660

K

K

K

K

K

 
  
 

 
  
 

 
  
 

 
  
 

 
  
 

 

where the eigenvalues of 3o oA K C  are 

  
8

3 8

0
1.253i 10

0    
-1.253i 10

0

o oA K C




 
   

         

 

A reduced-order observer based DAC consisting of a third order deadbeat 

controller and second order deadbeat observer has now been designed to accommodate 

step-type disturbances on a pendulum system, the maximum amount of time for the DAC 
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to minimize the disturbance should be the sum of the orders of the augmented systems 

times the sampling time, 0.5s. 

 

3.1.6 Simulation of Reduced-Order Deadbeat Observer Based DAC for Pendulum with 

Step-Type Disturbance 

 

 The reduced-order deadbeat observer based DAC is applied to the pendulum 

example that has step-type disturbances acting on it. It is expected that the simulations 

will show a minimization of the disturbance in 0.5s while the disturbance is present. Once 

the disturbance is no longer acting on the system, the system is expected to reach zero in 

0.5s. The results from the simulation are shown in figures 3.9 through 3.12. Figure 3.9 

shows that the reduced-order observer based DAC has a larger input than the full-order 

observer based DAC. In figures 3.10 through 3.12, the simulations show a minimization 

of the disturbance in 0.5s and once the disturbance is gone, the system is controlled to 

zero in 0.5s just as expected.  
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Figure 3.9 Control input for reduced-order observer based DAC with step-type disturbance on 

pendulum system 
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Figure 3.10 Closed loop response of pendulum angle for reduced-order observer based DAC with 

step-type disturbance 
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Figure 3.11 Closed loop response of angular velocity for reduced-order observer based DAC with 

step-type disturbance 
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Figure 3.12 Closed loop response of measurement for reduced-order observer based DAC with step-

type disturbance 
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 While it is clear that the reduced-order observer based DAC gives a faster 

response than the full-order based DAC, does it have any other benefits? This question is 

examined by looking at a co-plot of the full-order and reduced-order based DAC 

responses seen in figures 3.13 through 3.16. The figures on the following pages show that 

for this example, the only benefit is the one already known, the reduced-order observer 

based DAC is able to minimize the effects of the disturbances quicker than the full-order 

observer based DAC. 
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Figure 3.13 Control input comparison between reduced-order and full-order observer based DACs 

with step-type disturbance 
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Figure 3.14 Closed loop response of pendulum angle comparison between reduced-order and full-

order observer based DACs with step-type disturbance 
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Figure 3.15 Closed loop response of angular velocity comparison between reduced-order and full-

order observer based DACs with step-type disturbance 
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Figure 3.16 Closed loop response of measurement comparison between reduced-order and full-order 

observer based DACs with step-type disturbance 

 

For convenience, in the following examples, only the reduced-order observer based DAC 

will be used because it has a faster response. 

 

3.1.7 Ramp-Type Disturbance Model 

 A ramp-type disturbance is now being applied to the pendulum system described 

in section 3.1.1. A ramp is just a line and the equation for a line is y mx b  ; simply 

stated, it is a term changing at a constant rate plus a constant value. In discrete-time, its 

model is developed using this concept. The model of this waveform structure is 

 

1 1

1

2 2

1

1 0

1 1

k k

k

k k

w w

w w




    
     
    

 (3.12) 
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where 1

kw  is the constant term and is the same as a step-type disturbance and 2

kw  is this 

constant term plus 2

1kw   causing 2

kw  to change at a constant rate, making it a ramp-type 

disturbance. This is shown by the first four iterations of a basic example, 

 

1

0

2

0

1

0

w

w




 

 

1

1

2

1

1

1 0 1

w

w



  
 

 

1

2

2

2

1

1 1 2

w

w



  
 

 

1

3

2

3

1

1 2 3

w

w



  
. 

In this example, there is a step-type disturbance of magnitude 1.4 occurring at 1s 

and lasting until 1.7s and a ramp-type disturbance occurring at 2.3s with a slope of -2.486 

and lasting until 3s when it is completely gone (this involves a ramp with slope +2.486 

and a step of magnitude 1.7). 

For this second order disturbance, in continuous time 

 
0 0

1 0
cF

 
  
 

 

implying the step-type disturbance ( 1

kw ) will be applied to the angular velocity ( 2x ). This 

matrix is transformed into discrete-time, 
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0.0049 0

0.0968 0
F

 
  
 

 

and the ramp-type disturbance is acting on the measurement, 

  1 0 1G  . 

 

3.1.8 Controller for Pendulum with Ramp-Type and Step-Type Disturbances 

 As before, an augmented system must be created in order to find one control input 

for both the state and the measurement. The augmented system is 

 
1

1

0.9036 0.0968 0 0.0049 0 0.0049

-1.8966 0.9036 0 0.0968 0 0.0968

1 0 0 0 0.2 0.1000

k k

k k

k k

x x
w u

y y





     
        

          
             

 

which has an open loop response shown in figures 3.17 through 3.19. The figures show 

the state or measurement as the solid signal, the dashed line is the step-type disturbance 

and the dotted line is the ramp-type disturbance. When the step-type disturbance is 

present in the state, the figures show that oscillations begin. The measurement plot shows 

that the measurement follows the pendulum angle until the ramp disturbance is applied, 

then the measurement is a ramped version of the pendulum angle. Once the ramp 

disturbance is no longer applied to the measurement, the measurement follows the 

pendulum angle again. 
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Figure 3.17 Open loop response of pendulum angle for step-type and ramp-type disturbances 
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Figure 3.18 Open loop response of angular velocity for step-type and ramp-type disturbances 
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Figure 3.19 Open loop response of measurement for step-type and ramp-type disturbances 

 

 The state control portion of the controller is the same as when there was only a 

step-type disturbance since it does not rely on the matrices that were altered, E, F, and G1. 

Therefore, the control gain L remains the same as the previous case, while the 

disturbance accommodation control gain will be changed using (2.7b) given in section 

2.2.   

  -82.0495 -14.5051 0L   

  -0.4842 -1.0316dL   

Again, this technique will always place the eigenvalues at zero making this a deadbeat 

controller. 
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3.1.9 Reduced-Order Observer for Pendulum with Ramp-Type and Step-Type 

Disturbances 

 

 Following the procedure to design a reduced-order observer for the pendulum 

system with ramp-type disturbances, a fictitious vector is created consisting of the 

variables needing to be estimated, 

 

0 1 0 0

0 0 1 0

0 0 0 1

k k kz x w

   
   

 
   
      

 

where kx  and kw  are not available. These variables are replaced by their estimates and 

the composite vector is augmented with the output equation resulting in 

 

1 0 0 0.2 0.1

ˆ0 1 0 0 0

ˆˆ 0 0 1 0 0

0 0 0 1 0

k k

k

k k

y x
u

z w

   
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                
   
   

 

which, when rearranged, gives 

 

1
1 0 0 0.2 0.1

ˆ 0 1 0 0 0

ˆ ˆ0 0 1 0 0

0 0 0 1 0

k k

k

k k

x y
u

w z


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                  
     

    

 

allowing the estimates to be determined. 

 The observability for this observer system is checked and found to be satisfied.  
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The system is converted to observable canonical form [15], 

 
 

2.9036 1 0

-2.8072 0 1   and  C 1 0 0

0.9036 0 0

    

o oA

 
 

 
 
  

. 

The gain, 3K , is calculated and transformed  into the original system via 1

3 3o oK W W K , 

the resulting reduced-order observer gains are 
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5
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-2.5092 -4.3137 -0.5000

-4.3783 -8.2719 0.1276
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where the eigenvalues of 3o oA K C  are approximately equal to zero. 

The reduced-order observer based DAC consists of a third order deadbeat 

controller and third order deadbeat observer which have now been designed to 
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accommodate step-type disturbances on a pendulum system, the maximum amount of 

time for the DAC to minimize the disturbance is six time samples, or 0.6s. 

 

3.1.10 Simulation of Reduced-Order Deadbeat Observer Based DAC for Pendulum with 

Ramp-Type and Step-Type Disturbances 

 

 The reduced-order deadbeat observer based DAC is applied to the pendulum 

example that has a ramp-type disturbance on the measurement and a step-type 

disturbance on the angular velocity. It is expected that the simulations will show a 

minimization of the disturbance in 0.6s while the disturbance is present. Once the 

disturbance is no longer acting on the system, the system is expected to reach zero in 

0.6s. The results from the simulation are shown in figures 3.20 through 3.23. Figure 3.20 

is the control input where the very large magnitude between 3s and 3.5s is because when 

the ramp disturbance abruptly goes to zero, that is actually the same as a new ramp 

disturbance plus a step disturbance at the same time that causes the control to work 

harder. In figures 3.21 through 3.23, the simulations show a minimization of the 

disturbance in 0.6s and once the disturbance is gone, the system is controlled to zero in 

0.6s just as expected. The magnitude of the response when the ramp-type disturbance is 

gone is very large due to a ramp-type disturbance actually being a ramp-type disturbance 

plus a step-type disturbance at the same time. This causes the DAC to work harder 

(causing a larger overshoot in the response). 
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Figure 3.20 Control input for step-type and ramp-type disturbances 
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Figure 3.21 Closed loop response of pendulum angle for step-type and ramp-type disturbances 
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Figure 3.22 Closed loop response of angular velocity for step-type and ramp-type disturbances 
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Figure 3.23 Closed loop response of measurement for step-type and ramp-type disturbances 
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3.1.11 Sinusoidal-Type Disturbance Model 

 The development of the sinusoidal-type disturbance requires a little more detail. 

Let  

 1 sin( )kw A kT    (3.13) 

 2 cos( )kw A kT    (3.14) 

and consider the disturbance one step later 

 1

1 sin( ( 1) )kw A k T      (3.15) 

 2

1 cos( ( 1) )kw A k T     . (3.16) 

Using trigonometric identities, the two components of the disturbance can be written as 

 
1 2

1 2

1 1 2

1

2 1 2
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k k

k k

k k k

w w

k k k

w w

w A kT T A kT T T w T w

w A kT T A kT T T w T w

       

       





     

       

 

 

 

which results in the following equation where k , the random impulse sequence, has also 

been added, 

 

1 1

1

2 2

1

cos( ) sin( )

sin( ) cos( )

k k

k

k k

T Tw w

T Tw w

 


 




    
     

    
. (3.17) 

In (3.17), the sinusoidal functions are written in terms of the disturbance‟s radian 

frequency and the sample time, so it is noted that for sinusoidal disturbances, it is not 

sufficient to only know the waveform is sinusoidal, the radian frequency must also be 
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known. For this example, the radian frequency is chosen to be 1rad/s and as stated earlier 

the sampling time, T, is 0.1s resulting in the model, 

 
1 1

1

2 2

1

cos(0.1) sin(0.1)

sin(0.1) cos(0.1)

k k

k

k k

w w

w w




    
     

    
 

where the impulse sequence causes a sine disturbance with magnitude 3 to occur at 0.5s 

and last until 1.5s and a cosine disturbance with magnitude 3 to occur at 2.5s and last 

until 3.5s. 

 For this example, the disturbance variables are chosen to act on the same state and 

measurement as in the previous example resulting in the same values in F  where the 

state has the first disturbance state (the sine) applied and the measurement has the second 

disturbance state (the cosine) applied. 

 

3.1.12 Controller for Pendulum with Sinusoidal-Type Disturbances 

 As before, an augmented system must be created in order to find one control input 

for both the state and the measurement. The augmented system is 

 
1

1

0.9036 0.0968 0 0.0049 0 0.0049

-1.8966 0.9036 0 0.0968 0 0.0968

1 0 0 0 0.2 0.1000

k k

k k

k k

x x
w u

y y





     
        

          
             

 

which has an open loop response shown in figures 3.24 through 3.26. The figures show 

the  sine disturbance as the dashed line, the cosine disturbance as the dotted line, and the 

state or measurement as the solid line. Once the disturbance is applied to the system, the 
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figured show that the system goes into oscillations. The measurement, again, follows the 

pendulum angle until the disturbance is applied to it, and then it is a distorted version of 

the pendulum angle until the disturbance is no longer applied. 
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Figure 3.24 Open loop response of pendulum angle for sinusoidal-type disturbances 
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Figure 3.25 Open loop response of angular velocity for sinusoidal-type disturbances 
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Figure 3.26 Open loop response of measurement for sinusoidal-type disturbances 
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 The state control portion of the controller is the same as the two previous 

examples, and the only matrix in the system that has changed is the disturbance dynamic 

matrix, E; therefore the disturbance accommodation control gain is the same as when 

there was a ramp-type disturbance.   

  -82.0495 -14.5051 0L   

  -0.4842 -1.0316dL   

It is important to keep in mind, the F  matrix could have changed for this example from 

the previous one resulting in different controller gains. Also, remember this technique 

will always place the eigenvalues at zero making this a deadbeat controller. 

 

3.1.13 Reduced-Order Observer for Pendulum with Sinusoidal-Type Disturbances 

 Following the procedure to design a reduced-order observer for the pendulum 

system with sinusoidal-type disturbances, a composite vector is created consisting of the 

variables needing to be estimated, 

 

0 1 0 0

0 0 1 0

0 0 0 1

k k kz x w

   
   

 
   
      

 

where kx  and kw  are not available. These variables are replaced by their estimates and 

the composite vector is augmented with the output equation resulting in 
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1 0 0 0.2 0.1

ˆ0 1 0 0 0

ˆˆ 0 0 1 0 0

0 0 0 1 0

k k

k

k k

y x
u

z w

   
   

                
   
   

 

which, when rearranged, gives 

 

1
1 0 0 0.2 0.1

ˆ 0 1 0 0 0

ˆ ˆ0 0 1 0 0

0 0 0 1 0

k k

k

k k

x y
u

w z


    
    

                  
     

    

 

allowing the estimates to be determined. 

 The observability for this augmented system is checked and found to be satisfied. 

The system is converted to observable canonical form [15], 

 
 

0.9036 1 0

0.9801 0 1   and  C 1 0 0

0.8856 0 0

    

o oA

 
 

 
 
  

. 

After calculating the canonical form of the observer gain, 3K , this gain is transformed to 

the original system‟s form and the reduced-order observer gains are 
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 
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

 

where the eigenvalues of 3o oA K C  are approximately equal to zero. 

The reduced-order observer based DAC consists of a third order deadbeat 

controller and third order deadbeat observer have now been designed to accommodate 

step-type disturbances on a pendulum system, the maximum amount of time for the DAC 

to minimize the disturbance is six time samples, or 0.6s. 

 

3.1.14 Simulations of Reduced-Order Deadbeat Observer Based DAC for Pendulum with 

Sinusoidal-Type Disturbances 

 

 The reduced-order deadbeat observer based DAC is applied to the pendulum 

example that has sinusoidal-type disturbances acting on it. It is expected that the 

simulations will show a minimization of the disturbance in 0.6s while the disturbance is 
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present. Once the disturbance is no longer acting on the system, the system is expected to 

reach zero in 0.6s. The results from the simulation are shown in figures 3.27 through 

3.30. The control input is shown in figure 3.27. In figures3.28 through 3.30, the 

simulations show a minimization of the disturbance in 0.6s and once the disturbance is 

gone, the system is controlled to zero in 0.6s just as expected. 
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Figure 3.27 Control input for sinusoidal-type disturbances 
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Figure 3.28 Closed loop response of pendulum angle for sinusoidal-type disturbances 
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Figure 3.29 Closed loop response of angular velocity for sinusoidal-type disturbances 



67 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-24

-12

0

12

24

Time (s)

M
e
a
s
u
re

m
e
n
t 

[r
a
d
]

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3

-1.5

0

1.5

3

D
is

tu
rb

a
n
c
e

w1
k

w2
k

y
k

 

Figure 3.30 Closed loop response of measurement for sinusoidal-type disturbances 

 

3.2 Magnetic Levitation System 

3.2.1 System and Step-Type Disturbance Model 

The next example is based off a basic magnetic levitation system, which is of 

third order, seen in figure 3.31. One major application of magnetic levitation systems is 

the maglev train. 
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Figure 3.31 Magnetic levitation system [18] 

 

A basic magnetic levitation system is described by the following dynamic equations [18] 

 
2ki

My Mg
y

   

 v Ri Li  . 

These dynamic equations are put into state space form by defining the following state 

variables 

 

1

2

3

x y

x y

x i

u v










. 

The nonlinear differential equations for these state variables are 
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1 2
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1

3 3
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x x

kx
x g

Mx

R
x x u

L L



 
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





 

where 1R   , 0.01L H , 1k  , and 1M kg . This system is linearized about 

1 0.5x m  and a step-type disturbance is added to the position of the ball and the 

measurement. This step-type disturbance has the same model that is described in section 

3.1.1. The state space equations result in 

 

0 1 0 0 1

64.4 0 16 0 0

0 0 100 100 0

x x u w

     
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   
     
          

  

  1 0 0 0.1 0.2y x u w   . 

This continuous time state space description is then discretized [15] using the sample 

time 0.1sT s , 

 1

1.3397 0.1111 0.0157 0.0687 0.1111

7.1538 1.3397 0.2042 1.5731 0.3397

0 0 0 1 0

k k k kx x u w

      
     

    
     
          

 

  1 0 0 0.1 0.2k k k ky x u w   . 
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3.2.2 Controller for Magnetic Levitation with Step-Type Disturbance 

 An augmented system is created to find the control input for both the state and the 

measurement. The augmented system is 

 
1

1

1.3397 0.1111 0.0157 0 0.1111 0.0687

7.1538 1.3397 0.2042 0 0.3397 1.5731

0 0 0 0 0 1
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                      
     
     

 

which has an open loop response shown in figures 3.32 through 3.35. The figures show 

the moment the disturbance is applied to the position of the ball with no control, the ball 

goes unstable along with the velocity of the ball. The current does not change because 

without feedback, it does not realize the ball is no longer at equilibrium. 
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Figure 3.32 Open loop response of position of the ball for step-type disturbances 
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Figure 3.33 Open loop response of velocity of the ball for step-type disturbances 
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Figure 3.34 Open loop response of current for step-type disturbances 
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Figure 3.35 Open loop response of measurement for step-type disturbances 

 

 This system is controllable and is converted into controllable canonical form [15], 

 

2.6794 1.001 0 0 1

1 0 0 0 0
  and  

0 1 0 0 0

0 0 1 0 0

c cA B

   
   
    
   
   
   

. 

The state control gains are calculated using the transformation technique [15] along with 

the disturbance accommodation control gains. 

    2.6794 1.0001 0 0    10.6170 1.1346 0.1656 0L L      

  0.1496dL   

The eigenvalues are of c cA B L  are approximately zero. 
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3.2.3 Full-Order Observer for Magnetic Levitation with Step-Type Disturbance 

 An augmented system is created which consists of the variables to be estimated, 

 
1

1
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This system is observable and converted into observable canonical form [15].  

  

3.6794 1 0 0

3.6795 0 1 0
  and  C 1 0 0 0

1.002 0 0 1

0 0 0 0

fo foA

 
 

  
 
 
 

. 

The full-order observer gains result in 

 

5.1515

47.2322

0

7.3607

K

 
 
 
 
 
 

 

where the eigenvalues of fo foA KC  are approximately zero.  

A fourth order deadbeat controller and fourth order deadbeat observer have been 

designed to accommodate step-type disturbances on a magnetic levitation system, the 

maximum amount of time for the DAC to minimize the disturbance is eight time samples, 

or 0.8s. 
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3.2.4 Simulation of Full-Order Deadbeat Observer Based DAC for Magnetic Levitation 

with Step-Type Disturbance 

 

 The full-order deadbeat observer based DAC is applied to the magnetic levitation 

example that has step-type disturbances acting on it. It is expected that the simulations 

will show a minimization of the disturbance in 0.8s while the disturbance is present. Once 

the disturbance is no longer acting on the system, the system is expected to reach zero in 

0.8s. The results from the simulation are shown in figures 3.36 through 3.40. In the 

figures, the simulation shows a minimization of the disturbance in 0.8s and once the 

disturbance is gone, the system is controlled to zero in 0.8s just as expected. While the 

disturbance is present, the designed gains are only able to minimize the effect of the 

disturbance but not drive it all the way to zero. In the previous pendulum example, the 

input and disturbance were both present in the angular velocity and could be directly 

accommodated. However, in the magnetic levitation system, the control is on the current 

and the disturbance is on the position of the ball so the control input is indirectly 

accommodating the disturbance and causes error to exist while the disturbance is present. 

This error is most notably seen in figure 3.37. 
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Figure 3.36 Control input for full-order observer based DAC with step-type disturbance on magnetic 

levitation system 
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Figure 3.37 Closed loop response of position of the ball for full-order observer based DAC with step-

type disturbance 
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Figure 3.38 Closed loop response of velocity of the ball for full-order observer based DAC with step-

type disturbance 
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Figure 3.39 Closed loop response of current for full-order observer based DAC with step-type 

disturbance 
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Figure 3.40 Closed loop response of measurement for full-order observer based DAC with step-type 

disturbance 

 

 

The reduced-order observer will now be designed and applied to this example. 

 

3.2.5 Reduced-Order Observer for Magnetic Levitation with Step-Type Disturbance 

 A composite vector is created consisting of the variables needing to be estimated, 

 

0 1 0 0

0 0 1 0

0 0 0 1

k k kz x w

   
   

 
   
      

 

where kx  and kw  are not available. These variables are replaced by their estimates and 

the composite vector is augmented with the output equation resulting in 



78 

 

 

1 0 0 0.2 0.1

ˆ0 1 0 0 0

ˆˆ 0 0 1 0 0

0 0 0 1 0

k k

k

k k

y x
u

z w

   
   

                
   
   

 

which, when rearranged, gives 

 

1
1 0 0 0.2 0.1

ˆ 0 1 0 0 0

ˆ ˆ0 0 1 0 0

0 0 0 1 0

k k

k

k k

x y
u

w z


    
    

                  
     

    

 

allowing the estimates to be determined. 

 This system pair ( , )o oA C  is observable and is converted to observable canonical 

form [15]. 

  

2.3397 1 0

1.3398 0 1   and  C 1 0 0

0.0001 0 0

o oA

 
 

  
 
  

. 

The canonical form of the observer gain, 3K , is calculated and transformed into the 

original system‟s form. The reduced-order observer gains are then calculated resulting in 
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1

2

3

4

5

1.3177 0.1721 2.1234

0 0 0

0.8177 0.1158 1.3176

24.8932

0

9.8608

23.9218

0

7.3607

2.5585

1

1.4914

2.3922

0

0.7361

K

K

K

K

K

  
 


 
  

 
 


 
  

 
 


 
  

 
 


 
  

 
 


 
  

 

where the eigenvalues of 3o oA K C  are approximately zero. 

A reduced-order observer based DAC consisting of a fourth order deadbeat 

controller and third order deadbeat observer has been designed to accommodate step-type 

disturbances on a magnetic levitation system, the maximum amount of time for the DAC 

to minimize the disturbance is seven time samples, or 0.7s. 

 

3.2.6 Simulation of Reduced-Order Deadbeat Observer Based DAC for Magnetic 

Levitation with Step-Type Disturbance 

 

 The reduced-order deadbeat observer based DAC is applied to the magnetic 

levitation example that has step-type disturbances acting on it. It is expected that the 

simulations will show a minimization of the disturbance in 0.7s while the disturbance is 
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present. Once the disturbance is no longer acting on the system, the system is expected to 

reach zero in 0.7s. The results from the simulation are shown in figures 3.41 through 

3.45. Figure 3.41 is the control input. In figures 3.42 through 3.45, the simulations show a 

minimization of the disturbance in 0.7s and once the disturbance is gone, the system is 

controlled to zero in 0.7s just as expected.  
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Figure 3.41 Control input for reduced-order observer based DAC with step-type disturbance on 

magnetic levitation system 
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Figure 3.42 Closed loop response of position of the ball for reduced-order observer based DAC with 

step-type disturbance 
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Figure 3.43 Closed loop response of velocity of the ball for reduced-order observer based DAC with 

step-type disturbance 
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Figure 3.44 Closed loop response of current for reduced-order observer based DAC with step-type 

disturbance 
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Figure 3.45 Closed loop response of measurement for reduced-order observer based DAC with step-

type disturbance 
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3.3 Conclusion 

In this chapter, several observer based deadbeat DACs have been designed. Four 

were designed for a pendulum system and two for a magnetic levitation system. Three 

different types of disturbances were considered: (1) step-type disturbances, (2) ramp-type 

disturbances, and (3) sinusoidal-type disturbances. First, each of the models were found, 

linearized, put into state space form, and discretized. Then, an observer based deadbeat 

DAC that minimized the effect of the disturbance in the minimal amount of time was 

designed for the given case. Once the design of the observer based DAC was completed 

and applied to the system, the system response showed the effect of the disturbance being 

minimized as quickly as possible. The full-order based DAC minimized the disturbance 

in  2 1x wn n   steps while the reduced-order based DAC minimized the disturbance in 

 2 x wn n  steps. In the next chapter, system conditions that must be met for this 

technique to work are developed and an extension is created for when one of the system 

conditions is not met. 
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4 CONDITIONS AND EXTENSION 

In this chapter, system conditions for the developed control technique are derived 

to allow for a user to test the given system and decide if the technique will produce 

desirable results. When one of the system conditions, namely the feed-forward term, is 

not met, an extension is derived that minimizes the effect of the disturbance on the 

measurement. The extension is then compared to the results of the original technique and 

conclusions are made. 

 

4.1 System Conditions for Proposed Control Scheme 

In chapter two, a DAC was derived which made use of the following control input 

which consists of two parts, 

 
1

k

k d k

k

x
u L L w

y 

 
  

 
, (4.1) 

where L  is the controller gain to drive the state variables to zero and dL  is the controller 

gain to minimize the disturbance.  

This control input is substituted into the system equation (2.4a), 

 
1

11 1

0

0

k k

d k

k k

x xA FB B
L L w

y yC GD D





            
               

            
, (4.2) 

where the effect of this control input should drive the state variables to zero. In general, 

the control gains can be derived by considering the minimum norm solution for 
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1

0

0

A B
L

C D

    
    
   

 and 
1

d

F B
L

G D

    
    
   

, which are given in (2.7a) and (2.7b) in chapter 

two. In order to be able to have a gain L that will place the eigenvalues of 

1

0

0

A B
L

C D

    
    
   

 at the desired values, the system pair 
1

0
,

0

A B

C D

    
    

   
 needs to be 

controllable.  

The controllability of the system pair 
1

0
,

0

A B

C D

    
    

   
 is checked by analyzing 

the controllability matrix of the system. If the determinant of the controllability matrix of 

the system is zero, the system pair is not controllable; therefore, to set conditions on the 

SISO system matrices, the determinant of the controllability matrix is analyzed. The 

controllability matrix for this augmented system is  

 2 1  x     for  n n n n

c c c c c c c c cW B A B A B A B A      (4.3) 

where 

 
( 1) x ( 1)

1

0

0
x xn n

c

A
A

C

  
  
 

 (4.4) 

 
c

B
B

D

 
  
 

 (4.5) 

which results in the following controllability matrix, 

 

2

1
1 1 1

x

x

n

c n

ABB A B A B
W

C BD C AB C A B


 
  
 

 . (4.6) 
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 Since the controllability matrix is being analyzed for conditions that will ensure it 

does not equal zero, the columns are rearranged into a form that is easily simplified. The 

column order can be rearranged without changing the overall result because the 

determinant of a matrix does not change from a nonzero value to zero by changing the 

column order in the matrix. The controllability matrix simplifies to 

 
1

A B

C D

 
 
 




 

where 

 
2 1

 x xn n
B AB A B A B

      . (4.7) 

Now, the determinant of this matrix can be analyzed, 

 

1

1

1

A B BC
D A

C D D

BC
D A

D

 
  

 

 

 






 

and if and only if the following conditions hold 

 

 

   

  1

1   0

2  0 ,  controllable

3  0

D

A B

BC
A

D



 

 

  

will 0cW  . 
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The third statement is analyzed further by considering a third order example where 

controllable canonical forms [15] of matrices A  and B are used, 

 

 11 12 13

1 2 3

1

1 2 3 11 12 13

1311 12
1 2 3

13
3

1

0

0
1 0 0

0 1 0

1
1 0 0 0 0 0

0 1 0 0 0 0

1 0 0

0 1 0

c c c
a a a

BC
A

D D

a a a c c c

D

cc c
a a a

D D D

c
a

D

 
 
    
      

 
  

     
    

       
      

 
      
 

  
 
 
 

    

This resulting term should be non-zero which implies 13
3

c
a

D
   and in general, 

 1n
n

c
a

D
  . 

Thus, it can be stated that this technique will work for systems that satisfy the following 

three conditions: 

1. 0D   

2.  0 ,  controllableA B   
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3. 11 0 n
n

cBC
A a

D D
    . 

However, for many systems there is no feed-forward term ( 0D  ) , which would imply 

this technique will not accommodate the effect of the disturbance in the measurement. 

This technique is extended in a way that allows it to work for systems that do not have a 

feed-forward term. 

 

4.2 Control Scheme for Systems with No Feed-forward Term 

Consider the following system with known waveform-type disturbances, 

 1k k k kx Ax Bu Fw     (4.8) 

 k k ky Cx Gw   (4.9) 

 1k k kw Ew    . (4.10) 

Having no feed-forward term is an issue because when a disturbance is present in the 

measurement, there is no control term to minimize the disturbance‟s effect. This issue is 

taken care of by introducing a term similar to the pseudo-output [9] introduced by A. 

Azemi and E. Yaz consisting of the current measurement and the previous control input, 

 1k k kz y u     (4.11) 

where the dynamic equation of this term is 

     1k k k kz CAx CB u CF GE w         . (4.12) 
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This dynamic equation is augmented with the system equation allowing for one control 

input to be designed which can control both the system state and the measurement 

indirectly through kz , 

 
 

1

1

0

0

k k

k k

k k

Fx xA B
u w

CF GEz zCA CB   





       
                   

. (4.13) 

 Let the control input include terms proportional to the system state, the 

disturbance, and the pseudo-output: 

 1 2k c k c k d ku L x L z L w    (4.14) 

and substitute ku  into (4.13),  

    
 

1

1 2

1

0

0

k k

c c d k

k k

Fx xA B B
L L L w

CF GEz zCA CB CB    





            
                              

. (4.15) 

The same technique in chapter two can now be used to solve for the controller gains. The 

minimum norm solution for the state and disturbance control inputs are obtained as 

  
†

1 2

0

0
c c

B A
L L

CB CA  

   
     

   
 (4.16) 

 
 

†

d

FB
L

CF GECB  

  
        

. (4.17) 

Next, as in the previous section, the controllability of the state control system is 

analyzed. The controllability matrix of the system pair 
0

,
0

A B

CA CB  

    
    

    
 is 
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2

2

x

x

n B

c n

B AB A B A
W

CB CAB CA B CA B    

 
  

 
  (4.18) 

where 

 
2

2
0

x

x

n B

n

B AB A B A

CB CAB CA B CA B    

 
 

 
  

for this system pair to be controllable. Again, the columns of this controllability matrix 

can be rearranged to allow for simplification without changing the result, 

 0
A B

CA CB  

 
 

 




 

for   defined in (4.7). The determinant is analyzed further to show what conditions must 

be met for this system to be controllable: 

 

xn

A B B CA
CB A

CA CB CB

BC
CB I A

CB


 

    

 




 
   

  

  



 






. 

From here, the second term is analyzed more by using a third order example with the 

controllable canonical form of B , 
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11 12 13

11 12 13
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0
1 0 0
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0 1 0
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  
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  

 
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 
   

  
   

         
 

 
   

   
 
 
 
 
 

 

11

1
1

1
c







 



 

This result implies 
11

0
c




 . From the given statement, it is determined that   should not 

equal zero and 11c   should not be much greater than   for this condition to hold.  

Thus it can be stated that for this formulation to work for this system the following 

conditions must be met: 

1. 0CB CB         

2. 
11

0
c




  



92 

 

3. 0A   

4.  0 ,  controllableA B  . 

The first two conditions help the user choose appropriate phi and gamma values and the 

last two conditions are on the system. If these conditions are met, the developed 

extension can be used to give more desirable results than the original technique in the 

absence of a feed-forward term. 

 

4.3 Simulations and Analysis 

A system is created with a variable feed-forward term, D , so comparisons can be 

made when this term is present versus not present, 

 
1

0.9 0.7 0 0 0

1.8 0.9 1 1 0
k k k kx x u w

     
       

     
 

    1 1 0 0 1k k k ky x Du w     

 
1

1 0

1 1
k k kw w 

 
  
 

. 

 

4.3.1 Original Technique with a Feed-Forward Term Present 

The conditions mentioned in section 4.1 are checked for this system: 

1. 0D  ? Yes, 1D  . 
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2. System pair ( , )A B  controllable? This is checked by looking at the eigenvalues of 

the matrix resulting from the product of the controllability matrix and its 

transpose, 

  
0.2135

1.9749

4.9793

T

i c cW W

 
 


 
  

. 

None of the eigenvalues are close to zero that implies this system pair is 

controllable. 

3. 1n
n

c
a

D
  ? This is determined by looking at the characteristic equation‟s 

coefficients to get 2 2.0700a   and 12 0
c

D
  . Therefore no matter what value D 

is, this condition is met. 

Now that the system has proven to meet the conditions for the given system, the original 

proposed technique in this thesis is used to develop a controller where the control input is 

 k k d ku Lx L w  . 

The simulation shown in figure 4.1 (and a zoomed in view in figure 4.2) displays 

that when the feed-forward term is present, the measurement is close to the expected 

value (zero) while the disturbance is present. The simulation shows that this controller is 

able to minimize the effect of the disturbances in the measurement with a maximum 

overshoot magnitude of 106.1 rad and a maximum error of 0.0734 rad while the 

disturbance is present. 
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Figure 4.1 (Original technique) Controller response of the measurement (solid) co-plotted with the 

disturbances when 1D   
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Figure 4.2 (Original technique) Controller response zoomed in on the measurement (solid) co-plotted 

with the disturbances when 1D   
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4.3.2 Original Technique with a Feed-Forward Term Absent 

One of the conditions for this technique is 0D   so it is expected that when the 

feed-forward term is gone, the simulation will show a worse result in the measurement. 

This result can be seen in figure 4.3 (with a zoomed in view in figure 4.4). When the 

feed-forward term is gone, the result of the measurement shows that this controller 

technique is unable to minimize the disturbance present in the measurement (keeping in 

mind the step disturbance that is minimized is present in the state and the ramp 

disturbance which is not minimized is present in the measurement).  
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Figure 4.3 (Original technique) Controller response of x1(solid) and x2 (dash-dotted) co-plotted with 

the disturbances when 0D   
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Figure 4.4 (Original technique) Controller response zoomed in on the measurement (solid) co-plotted 

with the disturbances when 0D   
 

 

To minimize the effect of the disturbance present in the measurement in the absence of a 

feed-forward term, a controller is developed using the proposed extension to the original 

controller technique.  

 

4.3.3 Extension of Original Technique with Feed-Forward Term Absent 

First, the system conditions must be checked: 

1. CB  ? 0CB   so if 0   is chosen, this condition is met 

2. 
11

0
c




 ? For this system 11 1c  , so if  and    are chosen such that 0




 , this 

condition is met 
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3. 0A  ? The determinant of A is 2.0700 

4. System pair ( , )A B  controllable? This was shown to be met in section 4.3.1. 

Now, let 

 
1

1








 

in the technique described in section 4.2. This controller is then substituted into the given 

system equation and the simulation is displayed in figure 4.5 (figure 4.6 is a zoomed in 

view). In figure 4.6, it is seen that the maximum error while the disturbance is present has 

been reduced from 1.2 rad to 0.7903 rad. 
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Figure 4.5 (Extension) Controller response of the measurement (solid) co-plotted with the 

disturbances when 0D  , 1  , and 1 
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Figure 4.6 (Extension) Controller response zoomed in on the measurement (solid) co-plotted with the 

disturbances when 0D  , 1  , and 1 
 

 

 

 Now, larger values for  and    are used. Let 

 
10

10








 

and apply the controller to the given system. The simulation of the controller response 

using these new values for   and   is shown in figure 4.7 with a zoomed in view in 

figure 4.8. In figure 4.7, it is seen that the maximum overshoot value increased slightly 

from 19.75 rad to 21.8 rad. Figure 4.8 shows that larger values for  and    decrease the 

maximum error while the disturbance is present. 
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Figure 4.7 (Extension) Controller response of the measurement (solid) co-plotted with the 

disturbances when 0D  , 10  , and 10   
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Figure 4.8 (Extension) Controller response zoomed in on the measurement (solid) co-plotted with the 

disturbances when 0D  , 10  , and 10 
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Since increasing the values of  and    showed improvement, their values are 

raised once more. Let 

 
50

50








 

in the extension technique and apply the controller to the given system. The simulation of 

the controller response using these new values for   and   is shown in figure 4.9 with a 

zoomed in view in figure 4.10. The figures show improvement again; figure 4.9 shows a 

slight increase in the maximum overshoot from 21.8 rad to 21.84 rad; and figure 4.10 

shows a decrease from 0.4048 rad to 0.3974 rad in the maximum error while the 

disturbance is present. 
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Figure 4.9 (Extension) Controller response of the measurement (solid) co-plotted with the 

disturbances when 0D  , 50  , and 50   
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Figure 4.10 (Extension) Controller response zoomed in on the measurement (solid) co-plotted with 

the disturbances when 0D  , 50  , and 50 
 

 

 

As both  and    are increased higher than 50, no further improvement is seen. 

 Different ratios for  and    were then considered where the sums of the absolute 

error in the measurement are compared and are shown in a table in Figure 4.11. In this 

table, the best results are seen with a phi to gamma ratio of 1.4 resulting in a sum of the 

absolute error in the measurement of around 67.7. 
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phi gamma 

Absolute Error 

Summation 

 

phi gamma 

Absolute Error 

Summation 

1 1 70.5048 

 

1 1 70.5048 

1 5 69.5534 

 

2 1 69.7531 

1 10 69.6061 

 

5 1 104.2981 

1 50 69.6958 

 

5 5 68.3968 

5 5 68.3968 

 

7 5 67.8185 

5 10 69.0107 

 

10 5 81.7388 

5 100 69.6498 

 

10 10 68.2663 

10 10 68.2663 

 

15 10 67.8311 

10 50 69.4253 

 

20 10 83.6286 

10 100 69.5746 

 

50 50 68.2229 

50 50 68.2229 

 

70 50 67.6217 

50 100 68.9733 

 

80 50 70.4477 

100 100 68.2216 

 

100 100 68.2216 

    

140 100 67.6202 

    

160 100 70.4617 

 

Figure 4.11 Sum of the absolute value of the error in the measurement with varied phi and gamma 

values 

 

 

 A simulation using the phi to gamma ratio of 1.4 is shown in Figure 4.12. This 

figure shows at the initial presence of the ramp, the controller is transient and once this 

transience is finished the maximum magnitude of the error while the disturbance is 

present is 0.08505. 
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Figure 4.12 (Extension) Controller response zoomed in on the measurement (solid) co-plotted with 

the disturbances when 0D  , 14  , and 10   

 

4.4 Conclusion 

In this chapter, system conditions for the control technique developed in chapter two 

were derived by analyzing the controllability matrix of the augmented system. When one 

of the conditions, namely the feed-forward term being non-zero, is not met, an extension 

was developed that improved the results given by the original technique. This extension 

made use of a „pseudo-output‟ that consisted of the current measurement and the past 

input. The pseudo-output made it possible for the controller to indirectly minimize the 

effect of the disturbance in the measurement. 
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5 CONCLUSION AND FUTURE WORK 

5.1 Summary 

 In this thesis, a discrete-time observer based deadbeat disturbance accommodating 

controller was designed that is capable of minimizing the effect of disturbances with 

known waveform structures in both the system state and the measurement as fast as 

possible. This was achieved by designing a single control input to accommodate 

disturbances in both the state and the measurement. To do this, it was necessary to 

augment the state and measurement equations. Once this augmented system was created, 

a least squares minimization technique was used along with completion of the squares to 

find a control input which would drive the system and measurement to zero (the desired 

value). The method that was used to design the control input also guarantees a deadbeat 

response when the controllable canonical forms [15] of the system matrices are used. 

Throughout the design of the controller, the assumption was made that all state variables 

and disturbances were known and directly available for feedback to the controller. This is 

never the case, however, which leads to the necessity of an observer. 

 When using a combination of an observer and a controller, the observer‟s 

response should be faster than the controller‟s response so accurate estimated values are 

being used in the controller. When using a deadbeat controller, the only option for the 

observer is to also be deadbeat. Two types of deadbeat observers were used in this work: 

full-order and reduced-order. The full-order deadbeat observer that was designed drives 

the estimation error to zero in minimal time. Minimum response time is achieved because 

of the deadbeat characteristic added to the design. The time response expected for 

deadbeat action is the number of time samples equal to the order of the system. Knowing 
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this, a reduced-order deadbeat observer was then designed which has a response time 

faster than the full-order deadbeat observer because a reduced-order observer only 

generates estimates for the un-measureable state variables and disturbances, reducing the 

overall order of the observer. 

In an extension, a new model for the control input was introduced for the case 

when the feed-forward control term in the measurement was not present. This extension 

of the original technique involved using a so-called „pseudo-output‟ that allows the 

controller to indirectly minimize the effect of the disturbance in the measurement. 

 

5.2 Conclusion 

The combination of the observer and control input create an observer based 

disturbance accommodating controller. This DAC was applied to two different systems, a 

pendulum system and a magnetic levitation system, with a variety of disturbances being 

applied. Each system was put into state space form in continuous-time and was then 

converted into discrete-time. A model for the specific waveform structure was developed. 

First, the pendulum system had a step-type disturbance applied to it and both a 

full-order and reduced-order deadbeat observer based DAC were designed and compared. 

The simulations showed the reduced-order observer based DAC had a faster response 

time as expected. This result lead to focusing on the reduced-order observer based DAC 

for the remaining cases involving the pendulum system. After the step-type disturbance 

was applied, step-type and ramp-type disturbances were applied followed by a sinusoidal-

type disturbance. The simulations showed the reduced-order deadbeat observer based 
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deadbeat DAC was able to minimize the effect of disturbances in both the state and the 

measurement in a minimal amount of time. 

Next, the magnetic levitation system had the same step-type disturbance applied 

to it and, again, both a full-order and reduced-order deadbeat observer based DAC were 

designed. The simulations showed similar results to those seen with the pendulum 

system. The reduced-order observer based DAC showed a faster response than the full-

order observer based DAC; however, the reduced-order observer based DAC had a larger 

steady state error while the disturbance was present than the full-order observer based 

DAC. 

Lastly, an extension was developed which improved the minimization of 

disturbances in the measurement when there is no feed-forward term present. To show 

this improvement, a full-order observer based DAC was designed which used the control 

input proposed in the extension. The simulations showed this extension improved the 

minimization of disturbances in the measurement compared to the original technique 

when the feed-forward term is not present. Furthermore, a small study was done on the 

effect of the ratio between  and    where it was found that the most desirable results 

were seen with a phi to gamma ratio of 1.4. 

 

5.3 Future Work 

 This work brings out new ideas in the area of discrete-time DAC theory. One of 

the main objectives of this work was to achieve a minimal response time, but a trade off 

was large input magnitudes. One way to extend this work would be to set a hard limit on 
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the magnitude of the control input while also striving to achieve a minimum response 

time. Another way to reduce the control input would be to minimize the energy, which 

would place a soft constraint on the input. 

 The technique developed in this work was only applied to second and third order 

systems but can be applied to systems of any order. In addition, other disturbances with a 

waveform structure could be applied to the systems that fit the conditions for this 

technique, such as an exponential disturbance. 

 Furthermore, this technique was developed for linear, time-invariant, single input 

single output, deterministic systems. A new technique which uses this work as a basis can 

be developed for certain classes of nonlinear, multiple input, multiple output, time-

invariant, or stochastic systems. 

 Also, it was seen that  and    in the extension have values that give a better 

result than others, so  and    can be analyzed further to be able to choose their optimal 

values for the best performance in both the system state and the measurement. 
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APPENDIX A: MATLAB Code and Simulink Diagrams 

A1. MATLAB code for Full-Order Observer Based DAC for Pendulum System with 

Step Disturbance  

 

First, using simulink, generate the disturbance: 

 

0 1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

Signal 1

Time (sec)

step_disturbance/Signal Builder1 : Group 1

. 

 

Then simulate the code: 

 
clear w 
%Generates step-type disturbance 
%   (Note the final time may need to be changed) 
for i=1:51 
    w(:,i)=[yout(i,1)];     %w=step 
end 

 
%Clearing variables (note w is not included) 
clear t x y u Xs_hat Xs e k error 
%Closing all figures 
close all 

  
%Continuous-time system matrices 
A=[0 1;-9.8/.5 0];B=[0;1];C1=[1 0];D=0.1;F=[0;1];G1=[0.2];e=[1]; 
%Dimensions of x, w, and y, respectively 
nx=2;nw=1;ny=1; 
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%M-Matrix to discretize A and B (When the dimension of  
%     A changes, more zeros will need to be added) 
M1=[A B;0 0 0]; 
%Intermediate variable for discretization 
N1=expm(M1*0.1); 
%M-Matrix to discretize F (When the dimension of  
%     A and F change, more zeros will need to be added) 
M2=[A F;[0 0 0]]; 
%Intermediate variable for discretization 
N2=expm(M2*0.1); 

  
%Choosing appropriate sections of N1 and N2 for 
%   the discretized matrices 
a=N1(1:nx,1:nx);b=N1(1:nx,(nx+1));f=N2(1:nx,(nx+1):(nx+nw));             
%Discrete measurement matrices remain the same 
c1=C1;d=D;g1=G1; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%****************OBSERVER****************% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Augmented system for observer design-Ao matrix (depending on  
%  the dimension of a and e more zero may be needed) 
Ao=[a f;0 0 e]; 
%Augmented system for observer design-Co matrix 
Co=[c1 g1]; 
%Obtaining transfer function 
[numo,deno]=ss2tf(Ao,[b;0],Co,1); 
%Generating observable canonical form of Ao (depending on the  
%     dimension of Ao, Ao_bar's rows of 1's and 0's will need 
%     to be modified) 
Ao_bar=[-[deno(2:(nx+nw+1))'],[1;0;0],[0;1;0]];  
%Observable canonical form of Co  
%     (zeros may need to be added when dimensions change) 
Co_bar=[1 0 0]; 
%Observability matrix for (Ao,Co) pair 
Wo=obsv(Ao,Co); 
%Observability matrix for (Ao_bar,Co_bar) pair 
Wo_bar= obsv(Ao_bar,Co_bar); 
%Observer gain in canonical form 
K_bar=Ao_bar*Co_bar'*pinv(Co_bar*Co_bar'); 
%Tranformation to original system's form 
K=inv(Wo)*Wo_bar*K_bar;    

                                                
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%****************CONTROLLER****************% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Augmented system for controller design-Ac matrix (depending on  
%  the dimension of a more zero may be needed) 
Ac=[a [0;0];c1 0]; 
%Augmented system for observer design-Bc matrix 
Bc=[b;d]; 
%Obtaining transfer function 
[numc,denc]=ss2tf(Ac,Bc,[1 0 0],1); 
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%Generating controllable canonical form of Ac (depending on the  
%     dimension of Ac, Ac_bar's rows of 1's and 0's will need 
%     to be modified) 
Ac_bar=[-denc(2:4);1 0 0;0 1 0]; 
%Controllable canonical form of Bc  
%     (zeros may need to be added when dimensions change) 
Bc_bar=[1;0;0]; 
%Controllablilty matrix for (Ac,Bc) pair 

Wc=ctrb(Ac,Bc); 

 
%Controllablilty matrix for (Ac_bar,Bc_bar) pair 
Wc_bar=ctrb(Ac_bar,Bc_bar); 
%State control gain in canonical form 
L_bar=-pinv(Bc_bar)*Ac_bar; 
%Transformation to original system's form 
L=L_bar*Wc_bar*inv(Wc); 
%Disturbance minimization gain 
Ld=-pinv([b;d])*[f;g1]; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%****************Simulation****************% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Final simulation time (seconds) 
ftime=5.1; 
%Sampling time 
T=0.1; 
%Number of sampling points 
kf=ceil(ftime/T); 
%Initial conditions in the state (x) and the augmented state 
%   estimate (Xs_hat=[x_hat;w_hat]) 
x(:,1)=[0;0]; 
Xs_hat(1:(nx+nw),1)=[0;0;0]; 

  
for k=1:kf-1; 
    %Control input (for open loop simulation let equal to 0) 
    u(k)=[L(1:nx),Ld]*Xs_hat(:,k); 
    %State equation 
    x(:,k+1)=a*x(:,k)+b*u(:,k)+f*w(:,k); 
    %Measurement equation 
    y(:,k)=c1*x(:,k)+d*u(:,k)+g1*w(:,k); 
    %Observer estimate update equation 
    Xs_hat(:,k+1)=([a f;0 0 e]-K*[c1 

g1])*Xs_hat(:,k)+[b;0]*u(:,k)+K*y(:,k)-K*[d]*u(:,k); 
end 

  
t=T*[0:kf-1]; 
ty=T*[0:kf-2]; 
%Sets all signals as black for default 
set(0,'DefaultAxesColorOrder',[0 0 0]); 
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figure(1) 
%Plots the state and disturbance on the same plot with 
%   different y-axes 
[AX,H1,H2] = plotyy(t,x(1,:),t,w,'plot');xlabel('Time (s)'); 
%Y-axis labels 
set(get(AX(1),'Ylabel'),'String','Pendulum Angle [rad]'); 
set(get(AX(2),'Ylabel'),'String','Disturbance'); 
%Setting the axes line thickness 
set(AX(1),'LineWidth',2.5); 
set(AX(2),'LineWidth',2.5); 
%Defining the y-scale for the disturbance 
set(AX(2),'Ylim',[-1 1],'Ytick',[-1 -.5 0 .5 1]); 

%Setting the state to be a solid line and 2.5 points thick 
set(H1,'LineStyle','-','LineWidth',2.5); 
%Setting the disturbance to be a dashed line, 1.5 points thick 
%   and to be a dark gray 
set(H2,'LineStyle','--','LineWidth',1.5,'Color',[.5 .5 .5]); 
%Legend for disturbance and state 
legend('w_k','x1_k'); 

  
%The rest of the plots are generated similarly to what is shown  

  
%NOTE: when a larger dimension system is used, plots will 
%   need to be added so all state variables are plotted 

 

A2. MATLAB Code for Reduced-Order Observer Based DAC for Pendulum System 

with Step Disturbance  

 

First simulation the calculation for the gains: 

 
clear t x y u Xs_hat Xs error k err z z_hat 
%Sampling time 
T=0.1; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%****************GAIN CALCULATIONS****************% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Dimensions of x, w, and y, respectively 
nx=2;nw=1;ny=1; 
%Continuous-time system matrices 
A=[0 1;-9.8/.5 0];B=[0;1];C1=[1 0];D=.1;F=[0;1];G1=[.2];e=[1]; 
%M-Matrix to discretize A and B (When the dimension of  
%     A changes, more zeros will need to be added) 
M1=[A B;0 0 0]; 
%Intermediate variable for discretization 
N1=expm(M1*0.1); 
%M-Matrix to discretize F (When the dimension of  
%     A and F change, more zeros will need to be added) 
M2=[A F;[0 0 0]]; 
%Intermediate variable for discretization 
N2=expm(M2*0.1); 
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%Choosing appropriate sections of N1 and N2 for 
%   the discretized matrices 
a=N1(1:nx,1:nx);b=N1(1:nx,(nx+1));f=N2(1:nx,(nx+1):(nx+nw));             
%Discrete measurement matrices remain the same 
c1=C1;d=D;g1=G1; 
%Composite vector's coefficient matrices 
c2=[0 1;0 0];g2=[0;1]; 
%Creating matrix that is used to solve for estimates 
O=inv([c1 g1;c2 g2]); 
%Partitioning O into the defined omega matrices 
omega11=O(1:nx,1:ny); 

omega12=O(1:nx,(ny+1):(nx+nw)); 
omega21=O((nx+1):(nx+nw),1:ny); 

omega22=O((nx+1):(nx+nw),(ny+1):(nx+nw)); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%****************OBSERVER****************% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Defined Ao matrix calculation 
Ao=c2*a*omega12+(c2*f+g2*e)*omega22; 
%Defined Co matrix calculation 
Co=c1*a*omega12+(c1*f+g1*e)*omega22; 
%Obtaining transfer function 
[numo,deno]=ss2tf(Ao,[1;0],Co,1); 
%Generating observable canonical form of Ao (depending on the  
%     dimension of Ao, Ao_bar's rows of 1's and 0's will need 
%     to be modified) 
Ao_bar=[-[deno(2:3)'],[1;0]]; 
%Observable canonical form of Co  
%     (zeros may need to be added when dimensions change) 
Co_bar=[1 0]; 
%Observability matrix for (Ao,Co) pair 
Wo=obsv(Ao,Co); 
%Observability matrix for (Ao_bar,Co_bar) pair 
Wo_bar=obsv(Ao_bar,Co_bar); 
%Observer gain K3 in canonical form 
K3_bar=Ao_bar*Co_bar'*pinv(Co_bar*Co_bar'); 
%Transformation of K3 
K3=inv(Wo)*Wo_bar*K3_bar; 
%Calculation of all other observer gains dependent on K3 
K5=-K3*d; 
K2=c2*a*omega11-K3*c1*a*omega11+c2*f*omega21+g2*e*omega21-

K3*(c1*f+g1*e)*omega21; 
K1=c2*a*omega12-K3*c1*a*omega12+c2*f*omega22+g2*e*omega22-

K3*(c1*f+g1*e)*omega22; 
K4=c2*b-K2*d-K3*c1*b; 

 

 

 

 

 

 

  



115 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%****************CONTROLLER****************% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Augmented system for controller design-Ac matrix (depending on  
%  the dimension of a more zero may be needed) 
Ac=[a [0;0];c1 0]; 
%Augmented system for observer design-Bc matrix 
Bc=[b;d]; 
%Obtaining transfer function 
[numc,denc]=ss2tf(Ac,Bc,[1 0 0],1); 
%Generating controllable canonical form of Ac (depending on the  
%     dimension of Ac, Ac_bar's rows of 1's and 0's will need 
%     to be modified) 
Ac_bar=[-denc(2:4);1 0 0;0 1 0]; 
%Controllable canonical form of Bc  
%     (zeros may need to be added when dimensions change) 
Bc_bar=[1;0;0]; 
%Controllablilty matrix for (Ac,Bc) pair 
Wc=[Bc Ac*Bc Ac*Ac*Bc]; 
%Controllablilty matrix for (Ac_bar,Bc_bar) pair 
Wc_bar=[Bc_bar Ac_bar*Bc_bar Ac_bar*Ac_bar*Bc_bar]; 
%State control gain in canonical form 
L_bar=-pinv(Bc_bar)*Ac_bar; 
%Transformation to original system's form 
L=L_bar*Wc_bar*inv(Wc); 
%Disturbance minimization gain 
Ld=-pinv([b;d])*[f;g1]; 
 

 

Then simulate the block diagram shown on the following page: 

 

 NOTE: The gain blocks must be changed to handle matrices, this is done by simply 

double clicking the gain block and changing the property to Matrix(K*u) (u vector) 
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The subsystem block changes depending on the system. For the pendulum system with a 

step disturbance (the same step disturbance shown in A1), the following subsystem was 

used 

 

 
 

Once the system has been simulated, the following plots are created: 
 
clc 
clear y u x x_hat w w_hat 
%Assigning variable names for the outputs from simulink 
for i=1:50 
    y(:,i)=[yout(i,1)]; 
    u(:,i)=[yout(i,2)]; 
    x(:,i)=[yout(i,3);yout(i,4)]; 
    x_hat(:,i)=[yout(i,5);yout(i,6)]; 
    w(:,i)=[yout(i,7)]; 
    w_hat(:,i)=[yout(i,8)]; 
end 

 
%Plots are generated similarly to what is shown in A1 

 

 

A3. Subsystem for Reduced-Order Observer Based DAC for Pendulum System with 

Step and Ramp Disturbances  

 

The subsystem including the step and ramp disturbances is shown on the following page: 
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where the disturbance signals are: 
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A4. Subsystem for Reduced-Order Observer Based DAC for Pendulum System with 

Sinusoidal Disturbances  

 

The simulink subsystem is 

 
 

 

where the sine and cosine are of magnitude 3 and frequency of 1 rad/s. The signal block 

consists of pulses that allow the sine and cosine to „turn on‟ and „turn off‟ and are shown: 
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A5. Subsystem for Reduced-Order Observer Based DAC for Magnetic Levitation 

System with Step Disturbance 

 

The subsystem is shown where the disturbance is the same as the disturbance in A1: 
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A6. MATLAB Code for Pseudo-Output Method DAC for a System with Step and Ramp 

Disturbances:  

 

First simulate the disturbance: 

 
where 

0
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Controller_ROobserver_general/Subsystem/1-step, 2-ramp : Group 1
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0

0.5
Signal 2

Time (sec)  
 

Then run the following code: 

 
clear w 
for i=1:10 

   %Generates disturbances such that w1=step, w2=ramp 

    w(:,i)=[yout(i,2);yout(i,1)];   
end 

 
close all 
clear t x y u Xs_hat Xs error k err L L_bar phi gamma z ty 
 

%Sampling time 
T=0.1; 
%Discrete-time system 
a=[.9 .7;-1.8 .9];b=[0;1];c1=[1 0];d=0;f=[0 0;1 0];g1=[0 1];e=[1 0;1 

1]; 
%Dimensions of x, w, and y, respectively 
nx=2;nw=2;ny=1; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%****************OBSERVER****************% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Augmented system for observer design-Ao matrix  
Ao=[a f;[0 0;0 0] e]; 
%Augmented system for observer design-Co matrix 
Co=[c1 g1]; 
%Obtaining transfer function 
[numo,deno]=ss2tf(Ao,[1;0;0;0],Co,0); 
%Generating observable canonical form of Ao  
Ao_bar=[-[deno(2:5)'],[1;0;0;0],[0;1;0;0],[0;0;1;0]]; 
%Observable canonical form of Co  
Co_bar=[1 0 0 0]; 
%Observability matrix for (Ao,Co) pair 
Wo=obsv(Ao,Co); 
%Observability matrix for (Ao_bar,Co_bar) pair 
Wo_bar= obsv(Ao_bar,Co_bar); 
%Observer gain in canonical form 
K_bar=Ao_bar*Co_bar'*pinv(Co_bar*Co_bar'); 
%Transformation to the original system's form 
K=inv(Wo)*Wo_bar*K_bar; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%****************CONTROLLER****************% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%NOTE:When the extension is used the first four 
%%%%  lines are used, when the original technique 
%%%%  is being used (to compare) the second 
%%%%  four lines are used (comment out the set not used) 

  
%%%%%%%%%%FIRST SET OF FOUR%%%%%%%%%% 
%Define phi and gamma 
phi=50;gamma=50; 
%Augmented system using pseduo-output-Ac matrix 
Ac=[a [0;0];phi*c1*a 0]; 
%Augmented system using pseduo-output-Bc matrix 
Bc=[b;gamma+phi*c1*b]; 
%Augmented system using pseduo-output-Fc matrix 
Fc=[f;phi*(c1*f+g1*e)]; 
 

%%%%%%%%%%SECOND SET OF FOUR%%%%%%%%%% 
% %Define phi and gamma 
% phi=0;gamma=0; 
% %Augmented system using actual output-Ac matrix 
% Ac=[a [0;0];c1 0]; 
% %Augmented system using  actual output-Bc matrix 
% Bc=[b;d]; 
% %Augmented system using actual output-Fc matrix 
% Fc=[f;g1]; 

  
%Obtaining transfer function 
[numc,denc]=ss2tf(Ac,Bc,[1 0 0],0); 
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%Generating controllable canonical form of Ac 
Ac_bar=[-denc(2:4);1 0 0;0 1 0]; 
%Controllable canonical form of Bc 
Bc_bar=[1;0;0]; 
%Controllablilty matrix for (Ac,Bc) pair 
Wc=ctrb(Ac,Bc); 
%Controllablilty matrix for (Ac_bar,Bc_bar) pair 
Wc_bar=ctrb(Ac_bar,Bc_bar); 
%State control gain in canonical form 
L_bar=-pinv(Bc_bar)*Ac_bar; 
%Transformation to original system's form 
L=L_bar*Wc_bar*inv(Wc); 
%Disturbance minimization gain 
Ld=-pinv(Bc)*Fc; 

  
%Final simulation time (seconds) 
ftime=10; 
%Number of sampling points 
kf=ceil(ftime/T); 
%Initial conditions in the state (x), the augmented state 
%   estimate (Xs_hat=[x_hat;w_hat]), and the pseudo-output (z) 
x(:,1)=[0;0]; 
Xs_hat(1:4,1)=[0;0;0;0]; 
z(:,1)=0; 
for k=1:kf-1; 
    %Control input) 
    u(k)=[L(1:2),Ld]*Xs_hat(:,k)+L(3:3)*z(k); 
    %State equation 
    x(:,k+1)=a*x(:,k)+b*u(:,k)+f*w(:,k); 
    %Measurement equation 
    y(:,k)=c1*x(:,k)+d*u(:,k)+g1*w(:,k); 
    %Observer estimate update equation 
    Xs_hat(:,k+1)=(Ao-K*Co)*Xs_hat(:,k)+[b;0;0]*u(:,k)+K*y(:,k)-

K*d*u(:,k); 
    %Pseudo-output update equation 
    

z(k+1)=[phi*c1*a,phi*(c1*f+g1*e)]*Xs_hat(:,k)+(phi*c1*b+gamma)*u(k); 
end 

  
%Plots are generated similarly to what is shown in A1 
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