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Abstract. A new measure for network performance evaluation called topol-

ogy lifetime was introduced in [4, 5]. This measure is based on the notion of
unexpected traffic growth and can be used for comparison of topologies. We
discuss some advantages and disadvantages of the approach of [4] and suggest
some modifications to this approach. In particular we discuss how to evaluate

the influence of a subgraph to the lifetime measure and introduce the notion
of the order of a path. This notion is useful if we consider a possible extension
to the set of working paths in order to support the traffic for the time that is
needed for installation of new facilities.

1. Introduction. The ability of a telecommunication network to support the ex-
pected growth in demand is an important characteristic of the network (see, for
example, [3, 10, 11]). However, it is not enough to only consider the expected
growth: an unexpected growth can often occur due to some technological inno-
vations and the increasing popularity of the Internet (see [4] for a corresponding
discussion). A quantitative measure for telecommunications topology design was
suggested by N. Maxemchuk, I. Ouveysi and M. Zukerman in [4]. This measure
was called topology lifetime. Possible unexpected changes in the load have been
taken into account in [4]. Note that the topology lifetime measure depends not
only on topology but also on the set of working paths. In the current paper we
discuss some advantages and disadvantages of the approach proposed in [4, 5] and
its possible modifications. Two other topics are also discussed in this paper. The
first is the notion of the order of a path (a special measure for comparison of paths).
We need such a measure for the evaluation of paths that can be added to the set
of working paths, if it is necessary to support the traffic when large unexpected
changes in load arise. The second topic is the evaluation of the lifetime measure of
a sub-network of the given network. To this end, we use a modification of certain
ideas of [1, 2] for this purpose. The focus of the present paper is mainly theoretical
and we leave for further study the application of our proposed approaches to real
networks.
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2. Preliminaries. Consider a network defined by the graph G = 〈V,E〉 with the
set V of vertices (nodes) and the set E of edges (arcs, links). Our approach is
suitable for both directed and undirected topologies. For the sake of definiteness
we will consider undirected topologies, so we consider G as a non-oriented graph.
Assume that capacities ck,l ((k, l) ∈ E) are given. Since we consider an undirected
topology, it follows that ck,l = cl,k. Recall that a path p = (v, i, . . . , j, v′) between
v, v′ ∈ V is a sequence of links (v, i), (i, k), . . . , (j, v′), which does not contain cycles.
The number of links in p is called the length of p. Since the graph G is non-oriented,
a path (v, i, . . . , j, v′) coincides with the path (v′, j, . . . , i, v).

The set of all paths generated by G is denoted by P (G). We take into account
only a small subset P ∗(G) of working paths. We use the following notation:
P ∗

k,l(G) is the set of paths from P ∗(G), which contain the link (k, l);

P ∗(i, j;G) is the set of paths from P ∗(G) with the end-points i and j.
Denote by xp the amount of flow sent through a working path p. The totality

(xp)p∈P∗(G) of all flows is called a traffic generated by set of working paths P ∗(G).
We will consider only feasible traffics (xp)p∈P∗(G) . Feasibility means that xp ≥ 0
for all p ∈ P ∗(G) and
1) the total flow transmitted through each link (k, l) ∈ E does not exceed the
capacity ck,l of this link:

∑

p∈P∗

k,l
(G)

xp ≤ ck,l, (k, l) ∈ E.

2) the traffic requirement constraints are satisfied.
In order to explain 2) we assume that the present traffic demand is represented

by a finite collection T of traffic matrices T . Each T ∈ T describes the traffic
demand between all OD pairs at a certain time period. Let T = (tij). Then tij is
the traffic demand from node i to node j at the time period under consideration.
Since we consider undirected traffic, we have tij = tji. Clearly tii = 0 for all i.
Traffic (xp)p∈P∗(G) satisfies traffic requirement constraints if

∑

p∈P∗(i,j;G)

xp ≥ ti,j

for all i, j ∈ V, i 6= j and for all T = (tij) ∈ T .

3. Feasibility and growth factor of traffic matrix. Consider a traffic matrix
T ∈ T : T = (tij). Let P ∗(G) be the set of working paths. Consider the system of
linear inequalities:

∑

p∈P∗(i,j;G)

xp ≥ ti,j , i, j ∈ V, i 6= j (1)

∑

p∈P∗

k,l
(G)

xp ≤ ck,l, (k, l) ∈ E (2)

xp ≥ 0, p ∈ P ∗(G).

If this system has a solution, the matrix T is called a feasible matrix. (Sometimes
the different definition of feasibility is used, where the inequality in (1) is replaced
with the equality. However the form of feasibility which we use is more natural.)

The growth factor ψ∗(T ) of the traffic matrix T ( see [4]), is the largest number
ψ such that the traffic ψT = (ψti,j) is feasible. (The authors of [4] used the
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definition of feasibility with equalities in (1).) Thus ψ∗(T ) is a solution of the linear
programming problem:

maximize ψ subject to ((xp)p∈P∗ , ψ) ∈ X(T )

where X(T ) consists of all the collections ((xp)p∈P∗ , ψ) such that ψ ≥ 0, (2) holds
and ∑

p∈P∗(i,j)

xp = ψti,j , i, j ∈ V, i 6= j (3)

The number ψ∗(T ) indicates the biggest possible uniform growth of the traffic T .
The number ψ∗(T ) = min{ψ∗(T ) : T ∈ T } is the biggest possible uniform growth
of the traffic represented by the collection T .

The definition of the growth factor is based on a multiplicative approach to
traffic extension, since we consider the products of the form ψ · ti,j . One of possible
approaches to the lifetime measure is to consider an optimization problem with
constraints (3) where not only xp and ψ but also tij are variable. Such a problem
arises if we want to estimate the worst performance with the respect to a set of
matrices T . Unfortunately constraints (3) are bilinear with respect to the totality
ψ, ti,j . Currently problems of high dimension with such constraints can not be
numerically solved.

4. Unexpected traffic growth. An unexpected growth of traffic was discussed
in [4] separately for OD pairs and for nodes. First we consider OD pairs. Let T
be a traffic matrix and (i, j) be an OD pair. Assume that the traffic between i
and j increases by U . Then it is suggested in [4] to consider a new traffic matrix
T ′(U) ≡ T ′(i, j)(U) with

t′i,j = (1 + U)ti,j , t
′
j,i = t′i,j

and
t′i′,j′ = ri,jti′,j′ , (i′, j′) 6= (i, j), (i′, j′) 6= (j, i).

Here ri,j is the coefficient which provides the equality
∑

p,q∈V,

t′p,q =
∑

p,q∈V

tp,q.

Thus T ′ describes a shift in load without growth. A family of matrix T ′(i, j) cor-
responding to each OD pair (i, j) is considered in [4]. In other words it is assumed
that an unexpected growth of traffic can occur only for one pair of OD, and this
pair is unknown. The growth factor ψ∗(T

′(i, j)) is then calculated for each ma-
trix T ′(i, j) and the number Ψ∗(T,U) = min(i,j)∈V ψ∗(T

′(i, j) is considered as a
parameter that characterizes an unexpected traffic growth U corresponding to the
matrix T . If a collection T of traffic matrices T is given, then we need to apply the
described procedure for each matrix T . Then we obtain a new collection of traffic
matrices, which consists of all matrices T ′(i, j) for all T ∈ T and all i, j ∈ V, i 6= j.
The number min{Ψ∗(T,U) : T ∈ T } characterizes an unexpected traffic growth U
corresponding to collection T .

The similar approach was suggested in [4] for the case when single nodes become

active. For a particular node j we consider a matrix T̃ ≡ T (j) with

t̃ij = t̃ji = (1 + U)tij , i 6= j

and
t̃ij′ = rjtij′ , j′ 6= j, i 6= j′,
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where rj is the coefficient which provides the equality
∑

p,q∈V

t̃pq =
∑

p,q∈V

tpq.

The described approach is very interesting and can be used for comparison of
different topologies. However, this approach is based on strong enough hypotheses.
We only comment on the case of OD pairs. The construction of matrices T ′(i, j)
is based on the assumption that the uniform redistribution of the amount 2Uti,j
is carried out between all OD (i′, j′) with (i′, j′) 6= (i, j) and (i′, j′) 6= (j, i). This
uniformity does not always hold in real world networks. The assumption that an
unexpected growth can occur only for one pair of OD is also not valid in many
cases. The following situation should be also taken into account. Assume that
unexpected growth occurs for a pair (i, j) at the end of the first year. This leads
to a change of the collection T of traffic matrices. So we have a different collection
T ′ of traffic matrices in the second year and cannot use the results obtained for the
collection T . This means that we need to recalculate the lifetime measure in the
second year. However, the proposed lifetime measure is used for the evaluation of
topology design so we should not recalculate it each year. It is therefore important
to consider a modification to the construction from [4] that is not based on the two
mentioned assumptions.

We suggest the consideration of the additive approach rather than the multi-
plicative approach for the definition of the lifetime measure.

Let U be a positive number that indicates the total amount of an unexpected
traffic growth for the required period of time. Consider the system of linear inequal-
ities ∑

p∈P∗(i,j;G)

xp ≥ U + ti,j , i, j ∈ V, i 6= j (4)

∑

p∈P∗

k,l
(G)

xp ≤ ck,l, (k, l) ∈ E (5)

xp ≥ 0, p ∈ P ∗(G). (6)

Composing (4) we suppose that unexpected traffic growth U can happen in many
arcs and nodes simultaneously. This situation is more realistic than that suggested
in [4], where only a single node (or a single arc) becomes more active. Indeed, the
increase of activity in a node can lead to the increase of activity in many different
nodes. This may cause some network elements to be congested which will require
performing some dynamic rerouting [6, 7, 8, 9, 13] of the flows [12] in the network.

One of the main reasons for unexpected growth is the Internet. A server farm,
which provides a popular service can suddenly appear and then the load to the
corresponding part of network increases. However, the same reasons that lead to
appearance of this farm will also lead to appearance of different farms in different
parts of network in different years of the period of time τ under consideration. So
it is important to take into account many nodes simultaneously. Note that U is an
upper bound for the total unexpected increase of load for the time period τ for each
OD pair (i, j).

The suggested approach is pessimistic, because we assume a worst case scenario
(unexpected increase in all nodes simultaneously). We are forced to take into ac-
count arbitrary unexpected traffic growth if we do not have any forecasts. Usually
if some forecasts are known, they can narrow the area of unexpected traffic growth.
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We can either exclude unexpected growth for some links or consider them with
coefficients, less than one. This means that instead of (4) we can consider the
following: ∑

p∈P∗(i,j;G)

xp ≥ αijU + ti,j , i, j ∈ V, i 6= j (7)

where 0 ≤ αij ≤ 1. For the sake of simplicity we assume that αij = 1 for all i, j.
Note that we do not need to consider links and nodes separately.

In order to check that the system (4)-(6) is feasible it is enough to solve a linear
programming problem with an arbitrary linear objective function f and constraints
(4) - (6). The most appropriate objective function in this situation is the total
traffic:

f(X) =
∑

p∈P∗(G)

xp,

where X = (xp)p∈P∗(G). Thus we shall consider the following linear programming
problem LP(T,U):

maximize
∑

p∈P∗(G)

xp. (8)

subject to constraints (4)-(6). The system (4)-(6) is feasible if and only if the
maximum in (8) is finite. The value of this maximum is denoted by λ(T,U). If
the system (4)-(6) is unfeasible then the maximum in (8) (that is, the maximum
over the empty set) is equal to −∞, so λ(T,U) = −∞. It is easy to check that the
λ(T,U) is a decreasing and concave function of U for each T .

The number λ(T,U) indicates the greatest possible total traffic that can provide
(4) and (5) for a given matrix T . We consider this number as a certain lifetime
measure of a topology under consideration for the traffic matrix T . Let a collection
T of traffic matrices T be given. Assume that systems (4)-(6) are feasible for each
T ∈ T , then the unexpected traffic growth λ(T , U) corresponding to T can be
calculated as the minimum of λ(T,U) over the set T . We consider λ(T , U) as a
lifetime measure for the given topology, the given collection T and the given set
P ∗(G) of working paths.

Thus we suggest the use of a simple one-step procedure for the definition of
lifetime measure instead of consecutive two-step procedure from [4].

5. Extensions of the set of working paths. Let U be a number such that the
problem LP(T,U′) is feasible for U ′ < U and LP(T,U′) is unfeasible for U ′ > U .
Assume that the problem LP(T,U) is feasible and let ((xp)p∈P∗(G)) be its solution.
If all the inequalities (4) hold in the strong sense then there exists U ′ > U such that
LP(T,U′) is also feasible, which contradicts the definition of U . Hence, (4) holds
as the equality for at least one link. Links (k, l) ∈ E, where the equality holds,
indicate the bottleneck that does not permit an unexpected load greater than U .

If the load distribution that occurs due to unexpected load growth, exceeds the
network possibilities then new facilities should be installed. In order to support the
traffic for the time that is needed for installation of these facilities, the set P ∗(G)
of working paths needs to be extended. We can attract new paths that do not
contain links (k, l), where the inequality in (2) holds as the equality. It is easy to
find examples, where even a few such paths allow us to significantly increase the
capacity to handle an unexpected load.
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Clearly it is beneficial to use only fairly short paths in the telecommunication
networks. Usually the shortest path or first k shortest paths with k > 1 are con-
sidered. It is more convenient to introduce a special notion of the order of a path
and then only consider the paths with small enough orders. Using this notion
we can analyze and compare the potential useful paths for different ODs and say
for example, that it is beneficial to include new working paths only for OD pairs
(i1, j1), (i2, j2), (i3, j3) and consider first k shortest paths with k = 1 (k = 2, k = 3,
respectively) for (i1, j1) ((i2, j2), (i3, j3), respectively.)

6. Order of a path. Different notions of the order of a path can be introduced
for estimating its quality. We consider three different notions of the order.

Let v, v′ ∈ V, v 6= v′. The length of the shortest path with the end -nodes v and
v′ is denoted by λ(v, v′). Consider now a path p = (v, . . . , vi . . . , v

′) with the same

end-nodes and the length λ(p). The number σ1(p) =
λ(p)

λ(v, v′)
indicates how many

superfluous links are contained in the path p. Note that σ1(p) ≥ 1. If σ1(p) is a
large number then the path p contains many superfluous links. We can consider
σ1(p) as the order of the path p.

The order σ1(p) is not suitable for the description of a situation, where only a
certain part of the path contains superfluous links.

Example 6.1. Consider a path p = (v1, . . . , vt, vt+1, . . . , vt+s), where (v1, . . . , vt)
is the shortest path between v1 and vt and there is link lvt,vt+s

, such that the
shortest path between v1 and vt+s is (v1, . . . , vt, vt+s). Then λ(v1, vt+s) = t+1 and

λ(p) = t+s so σ1(p) =
t+ s

t+ 1
. Assume that s is fixed. If t is large enough then σ1(p)

can be closed to 1, so accordingly, with respect to the factor σ1, the whole path p is
good enough. However the sub-path (vt, . . . , vt+s) contains many superfluous links.

In order to reflect the influence of sub-paths to the quality of a path we can
use the following construction. Consider a path p = (v0, v1, . . . , vt−1, vt) and all
sub-paths pi,j = (vi, . . . , vj) of this path. Let

σ2(p) = max
i=0,...,k−1,i<j≤t

σ1(pi,j)

The number σ2(p) can be considered as another order of a path p. This order
indicates the quality of the worst sub-path of this path. If this number is large then
the path contains a sub-path with relatively large amount of superfluous links. In
contrast with σ1(p), the number σ2(p) does not reflect the quality of the whole path.
We can consider one of the numbers σ1(p), σ2(p) or both of them for estimation of
the quality of a path. Sometimes it is convenient to consider a combination of orders
σ1(p) and σ2(p). A number

σ(p) =
1

2
(σ1(p) + σ2(p))

also can be considered as an order of the path p, which reflects the influence of a
path itself and its sub-paths. We use this characteristic as the order. The order of
a path is a convenient tool for comparison of different paths of the same length.

In the same manner we can define the order of a path in terms of the cost metric.
It is easy to find examples where k-shortest paths between different OD pairs with
the same k have different orders. In order to increase the growth factor, we can use
some additional working paths with the small order σ.
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7. Using forecast of growth of population. In order to have a more precise
lifetime measure we need to use forecasts of growth of population and migrations
flows. Usually such forecasts are known. We can assume that traffic between two
nodes is proportional to the population of these nodes with a certain coefficient of
proportionality γ which depends on different issues, in particular, on the rate of
migration. Assume the a forecast suggests that the set of nodes V can be presented
as the union of two disjoint sets V ′ and V ′′: V = V ′ ∪ V ′′. Assume that the
population of nodes v′ ∈ V ′ will grow and the population of nodes v′′ ∈ V ′′ will
remain the same. Let u be the rate of growth of population at cities i ∈ V ′ (We
assume for the sake of simplicity that both u and the coefficient of proportionality
γ do not depend on a node i ∈ V ′.) Let T be the set of current traffic matrices of
T = (tij). Then a new traffic matrix ST (u) has entries sij where

sij = γ2(1 + u)2tij , i, j ∈ V ′

sij = γ(1 + u)tij ,
i ∈ V ′, j ∈ V ′′

i ∈ V ′′, j ∈ V ′

sij = tij , i, j ∈ V ′′.

The set of matrices S = {ST (u) : T ∈ T } should be considered instead of T for the
calculation of the lifetime measure in the situation under consideration.

8. Using subgraphs. Different parts of the network have a different influence on
the lifetime measure. Thus we need to consider the developed approaches not only
for a given graph G but also for some of its subgraphs G′. In order to do this we
need to determine the restriction of the traffic matrices T to a subgraph G′. The
following definition is useful. A node i ∈ V ′ is called an outer node for G′ if there
are links (k, i) ∈ E with k /∈ V ′ and (i, j) with j ∈ V ′.

Let G′ = 〈V ′, E′〉 be a subgraph of G. Denote by V ′′ the complement to V ′:
V ′′ = V \ V ′. We now classify all paths from P ∗(G) with respect to G′, namely we
consider three classes of paths.
1) Paths p, which do not go through G′. This means that p does not contain links
from E′. Note that some nodes of p can belong to V ′, in such a case these are outer
nodes of V ′.
2) Paths p, which go through G′ once. We say that a path p goes through G′ once
if p has the form

p = (v, . . . , i, . . . , j, . . . , u), (9)

where i, j ∈ V ′, i 6= j and the path p′ = (i, . . . , j) is located in G′ (the latter means
that p′ consists of links, which belong to E′). It is possible that v = i and/or j = u.
If v 6= i, then i is an outer node and the path (m, . . . , i) does not go through G′; if
j 6= u then j is an outer node and (j, . . . , u) does not go through G′. If v = i and
j = u then p is a path with the end-nodes i and v, which is located in G′. Thus an
arbitrary path, which is located in G, is going through G′ once.
3) Paths p, which go through G′ more than once. This means that p contains more
than one piece of the form (iα, . . . , jα) with iα 6= jα, which is located in G′.

The analysis of paths, which go through G′ more than once is difficult. The
simplest way to handle these paths is to divide them into parts which go through
G′ once and examine these parts separately. Thus we can assume that the set P ∗(G)
contains only paths that either do not go through G′ or go through G′ once. We
use the following notation:
P ∗

G′(G) is the set of all working paths p ∈ P ∗(G) going through G′ once.
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P ∗
G′(i, j;G) is the set of all working paths of the form (9) with fixed i, j ∈ V ′.
If nodes i, j ∈ V ′ are not outer nodes of G′ then PG′(i, j;G′) coincides with the

set P (i, j;G′) of all paths of G′ with the end-nodes i and j.
Let U be a size of an unexpected growth in traffic and let (x̄p)p∈P∗ be the set of

paths such that ((x̄p)p∈P∗(G) is a solution of problem LP(T,U). Let G′ = 〈V ′, E′〉
be a subgraph of the graph G and let i, j ∈ V ′, i 6= j . Consider a total flow yij ,
which should be transmitted from the node i to the node j through paths from
P ∗(G′), which go through G′ once:

yi,j =
∑

p∈P∗

G′
(i,j;G))

x̄p.

We also put yii = 0. Consider the matrix Y = (yij)i,j∈V . Clearly Y is symmetric,
yij ≥ 0 and yii = 0 for all i so we can consider Y as a traffic matrix for the
undirected traffic corresponding to the subgraph G′.

If i and j are not outer nodes of V ′ then P ∗
G′(i, j;G) coincides with P ∗(i, j;G′),

hence the boundary conditions yi,j coincides with traffic demands tij . If i is an
outer node and j is not an outer node, then yi,j is the total flow on the paths
p = (v, . . . , i, . . . , j), which go from either end-nodes v outside G′ or i through G′

once to j. If both i and j are outer nodes, then yi,j is the total flow, on the paths
p = (v, . . . , i, . . . , j, . . . , u), which go once through G′. (Here either v /∈ V ′ or v = i
and either u /∈ V ′ or u = j.)

The matrix Y depends on a traffic matrix T , subgraph G′ and a flow (x̄p). We
can consider a procedure suggested in Section IV and calculate the number λ(Y,U)
for the given matrix Y . Since V ′ is smaller than V , the calculation of λ(Y,U) is
simpler than the calculation of λ(T,U).

9. Conclusions. We have discussed some issues related to lifetime measures for
telecommunication networks. Such measures are important for comparing networks.
A lifetime measure should take into account not only the expected growth in demand
but also unexpected traffic growth.

We demonstrated some advantages and disadvantages of the topology lifetime
measure that was introduced in the pioneering paper [4]. In particular, we showed
that this measure is based on strong enough hypotheses. We introduced a more
realistic lifetime measure and discussed its properties.

Lifetime measures depend not only on the topology of the network but also on
the set of working paths. Sometimes this set should be extended (for example, we
need to extend this set in order to support the traffic for the time that is needed for
installations of new facilities). It is convenient to use special measure for comparing
paths in order to choose new working paths. We suggest a possible measure (the
order of a path) for comparing paths and discuss its properties.

We show that forecasts of growth of population and migration flows can be used
in the definition of lifetime measures.

Different parts of the network have a different influence on the lifetime measure,
so it is important to examine the restriction of a given traffic to some parts of the
network. We suggest an approach to such an examination.
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