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Abstract—Problems of data classification can be studied in
the framework of regularization theory as ill-posed problems.
In this framework, loss functions play an important role in the
application of regularization theory to classification. In this paper,
we review some important convex loss functions, including hinge
loss, square loss, modified square loss, exponential loss, logistic
regression loss, as well as some non-convex loss functions, such as
sigmoid loss, ϕ-loss, ramp loss, normalized sigmoid loss, and the
loss function of 2 layer neural network. Based on the analysis
of these loss functions, we propose a new differentiable non-
convex loss function, called smoothed 0-1 loss function, which is
a natural approximation of the 0-1 loss function. To compare the
performance of different loss functions, we propose two binary
classification algorithms for binary classification, one for convex
loss functions, the other for non-convex loss functions. A set of
experiments are launched on several binary data sets from the
UCI repository. The results show that the proposed smoothed 0-1
loss function is robust, especially for those noisy data sets with
many outliers.

Index Terms—classification; optimization; non-convex; loss
function; regularization

I. INTRODUCTION

The purpose of Supervised Learning is to learn or train a
function fS by given training set S. In this paper we consider
binary classification where the l training examples satisfy xi ∈
Rn and yi ∈ {−1, 1} for all i. By using fS we can predict the
corresponding label ynew of a new point xnew, where ynew =
1 for fS(xnew) > 0 and ynew = −1 otherwise. Most of the
discussions in this paper can be directly applied to non-linear
kernel classifiers [1]. Without losing generality, in this paper
we focus on learning linear functions fS(x) = x ·w + b for
binary classification problems from training set S. For the sake
of simplicity, we denote fS by f .

The function f actually is a linear combination of dictionary
functions coming from a dictionary H which can be large or
even infinite. When |H| is large, some regularization is needed
to control the “complexity” of the function f and the resulting
overfitting. Actually, supervised learning is commonly studied
in the framework of Regularization Theory as ill-posed prob-
lems, or through Statistical Learning Theory in the learning
from example paradigm. The connection between these two
approaches has been discussed by Evgeniou et. al. [2], [3].

Inspired by Evgeniou et. al. [2], [3], this paper focuses on
the following Tikhonov regularization framework:

min
f∈H

H[f ] =
1

l

l∑
i=1

V (f(xi), yi) + λ||f ||2K (1)

where V denotes the loss function, ∥f∥2K is the norm of
f squared measured in a Reproducing Kernel Hilbert Space

(see [4]), 1
l

l∑
i=1

V (f(xi), yi) measures the empirical error of

the corresponding f , and λ is called regularization constant
that control the tradeoff between empirical error and regular-
ization effects. In this problem, ∥f∥2K is differentiable and
cheap to compute. Contrarily, the empirical error can be non-
differentiable, non-convex, and computationally expensive to
deal with.

We can achieve different learning schemes simply by vary-
ing loss function V or the norm of f . This regularization
framework is based on the assumption that there exists an
unknown function f : X → Y that provides a labeling y ∈ Y
for a given x ∈ X . Tikhonov regularization attempts to find
this unknown function which simultaneously has small empir-
ical error on a training set and small norm in a Reproducing
Kernel Hilbert Space.

The central question of classification is how well the chosen
function generalizes, or how well it estimates the output for
previously unseen inputs [5]. To evaluate f , we define loss
function V (f(xi), yi) of a given example (xi, yi), which
measures the “goodness” of the predicted output f(xi) with
respect to the given output yi.

For binary classification, the most straightforward loss func-
tion is the 0-1 loss function:

V (f(x), y) = ⊖(−yf(x)) (2)

where ⊖(z) = 0 for z < 0 and ⊖(z) = 1 otherwise. This is
an “ideal” loss function, making as few mistakes as possible.
However, trying to optimize the 0-1 loss directly leads to non-
convex optimization problem. Moreover it is not continuous,
insensitive to the magnitude of f , and regularization of f is
meaningless. Therefore, a number of surrogate loss functions
are proposed in the literature.

Broadly speaking, loss functions can be divided into two
categories: convex loss functions and non-convex loss func-
tions. Convex loss functions including hinge loss, square loss
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are the most commonly used. The convexity of these loss
functions are viewed as highly preferable in many publications
because of their computational advantages (unique optima,
ease-of-use, ability to be efficiently optimized by convex
optimization tools, etc.). However, the convexity also offer
poor approximations to the 0-1 loss function and lack of
robustness to outliers due to their boundlessness, which makes
the corresponding classifier liable to be dominated by outliers.
Therefore, different non-convex loss functions, such as ramp
loss function and sigmoid loss function, are proposed recently.

Hastie et al. [6] compare different convex loss functions
for SVM, LLSF, LR and AdaBoost, in a way such that the
sensitivity of those methods with respect to outliers. Fan Li and
Yiming Yang [7] make a loss function based study with respect
to eight classifiers popular in text categorization, including
SVM, linear regression, logistic regression, neural networks,
Rocchio-style, Prototypes, kNN and Nave Bayes. However, the
differences between convex and non-convex loss functions are
not discussed, and some popular non-convex loss functions,
such as ramp loss, sigmoid loss are not considered.

It would be valuable to launch a formal analysis of a
broader range of loss functions on the optimization criterion
(see Section II). The main contribution of this paper is that, in
the framework of Tikhonov regularization, we propose a new
non-convex loss function, called smoothed 0-1 loss function.
To compare the performance of different loss functions, two
binary classification algorithms are proposed. A set of exper-
iments are launched on several binary data sets from the UCI
repository. The results show that the proposed smoothed 0-1
loss function is robust, especially for those noisy data sets with
many outliers.

The organization of the remaining parts of this paper is as
follows: Section II reviews some important convex and non-
convex loss functions. In Section III we propose a new non-
convex loss function: smoothed 0-1 loss function. In Section
IV, an optimization algorithm (QSM) that suitable for both
smooth and non-smooth optimization problems are adopted,
which makes it possible to compare different loss functions
under the same framework. In Section V we develop two
binary classification algorithms for both convex and non-
convex loss functions. Section VI describes the experimental
settings and results. We summarize and make conclusion in
Section VII.

II. A REVIEW OF LOSS FUNCTIONS

In this section, we review different loss functions from the
viewpoint of convexity.

A. Convex Loss Functions

In the literature, loss functions are commonly assumed to be
convex [8]. The main advantage of this type of loss functions is
the computational simplicity, and complex global optimization
approaches can be avoided. Square loss and hinge loss are the
most commonly adopted loss functions in machine learning.

Fig. 1. The square loss V (f(x), y) = (1− y · f(x))2

1) Square Loss: Among the convex loss functions, square
loss function V (f(x), y) = (y − f(x))2 is the most inexpen-
sive one since solutions can be obtained merely through solv-
ing linear equations. This outstanding feature in computational
efficiency makes square loss an appealing tool for mining large
data sets [7].

By adopting square loss function, we can have a Regularized
Least Squares Classification (RLSC) [9] model. It is also
called Regularization networks in ([2]), and Proximal Support
Vector Machine in ([10]). To put it in the same framework as
SVMs, a simple transformation [7] is made for the square loss
for binary classification (y ∈ {−1, 1}):

V (f(x), y) = (y − f(x))2

= y2 − 2yf(x) + (f(x))2

= 1− 2yf(x) + (yf(x))2

= (1− yf(x))2 (3)

The corresponding linear system is defined as f(x) = x ·w.
Accordingly, we have the square loss function (see Figure 1),
and the regularized least squares classification model (4).

min
w,b

1

l

l∑
i=1

(1− yi(xi ·w))2 + λ||w||2 (4)

From Figure 1, we can see that high penalty are given to
those misclassified examples far from the origin, which make
the corresponding model liable to be dominated by the outliers.
Even worse, different from other loss functions, square loss
function is not monotonically decreasing, which also heavily
penalize those correctly classified examples with large positive
value of yf(x).

2) Hinge Loss: The classical SVM arises by considering
hinge loss (see Figure 2).

V (f(x), y) = (1− y · f(x))+ (5)

where (k)+ ≡ max(k, 0). The hinge loss has a simple but
compelling justification [9]. If yif(xi) ≥ 1 , we pay no penalty
for example i. If yif(xi) < 1, a penalty linear in the amount
we fail to satisfy the constraint will be mounted. An important
feature of the hinge loss is that it is an upper bound on the 0-
1 loss, and thus the large-margin generalization error bounds
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Fig. 2. The hinge loss V (f(x), y) = (1− y · f(x))+

bounding its value on examples not in the training set also
bounds the value of the 0-1 misclassification error [11].

Using the hinge loss, we have the following regularization
problem:

min
f∈H

1

l

l∑
i=1

(1− yif(xi))+ + λ||f ||2K (6)

If we consider f is only from linear function space and use
slack variables ξi, corresponding to the penalty we pay at data
point i, the problem becomes:

min
w,b

1
l

∑l
i=1 ξi + λ∥w∥2 (7)

s.t. yif(xi) ≥ 1− ξi i = 1, · · · , l
ξi ≥ 0 i = 1, · · · , l

where w and b is from the linear function f(x) = x ·w + b,
In SVMs, the support vectors represent the most informative

data points and compress the information contained in the
training set: for classification, only the support vectors need to
be stored, while all other training examples can be discarded.
This, along with some geometric properties of SVMs such as
the interpretation of the RKHS norm of their solution as the
inverse of the margin (Vapnik, 1998), is a key property of SVM
and might explain why this technique works well in many
practical applications [5]. However, the foundation of SVM’s
margin theory becomes much less solid in non-separable cases
[12].

3) Smoothed Hinge Loss: A difficulty with the hinge loss
is that direct optimization is difficult, due to the discontinuity
in the derivative at z = 1. Rennie and Srebro [11] proposed a
smooth version of the Hinge (smoothed hinge loss).

V (f(x), y) =

 0 if yf(x) ≥ 1
(1− yf(x))2/2 if 0 < yf(x) ≤ 1
0.5− yf(x) if yf(x) ≤ 0

(8)

Smoothed hinge loss preserves important features of the
hinge loss, and is easier to minimize by using direct derivative.

4) Modified Square Loss: Similar to hinge loss, Zhang and
Oles [13] propose a modified square loss (9) with smooth
derivative.

V (f(x), y) = max(1− yf(x), 0)2 (9)

Fig. 3. Modified square loss function, Exponential loss function, and Logistic
regression loss function

Compared with the hinge loss and the modified hinge loss,
the modified square loss is much more sensitive to outliers
and large errors.

5) Some Other Convex Loss Functions: There are some
other popular loss functions, for example, the exponential loss
function (10) used by Adaboost [14], and the log loss function
(11) employed by Logistic Regression [15] (see Figure 3).

V (f(x), y) = exp(−yf(x)) (10)

V (f(x), y) = ln(1 + exp(−yf(x))) (11)

All of the above loss functions have been used in practical
applications [16]. The common character of these loss func-
tions is that all of them are convex, which make their corre-
sponding regularization classification models easy to compute.

Unfortunately, in real application, data sets tend to be non-
linearly separable. The drawback of convex loss function
is that outliers are guaranteed to play a maximal role in
determining the decision hyperplane, or in other words, the
decision hyperplane is dominated by outliers. The reason is
outliers tend to have very large margin loss.

In the literature, there have been a few attempts to improve
the robustness of training to outliers. One attempt is a direct
approach by formulating outlier detection and removal directly
from the data sets . Most of these works focus on unsupervised
learning [17], [18], while [19] focuses on supervised case.
The other attempt sets a upper bound and make the loss stop
increase after a certain point, which is also called non-convex
loss function [20], [21], [22], [23].

B. Non-convex Loss Functions

In the literature, machine learning applications seem to
have trouble moving beyond convex loss function models,
i.e. regularized least squares classification, logistic regression,
SVMs, and exponential-family graphical models. For a new
machine learning model, convexity is viewed as a virtue. None
mention the potential computational advantages of non-convex
optimization, simply because everyone assumes that convex
optimization is easier. Most authors warn the reader about the
potentially high cost of non-convex optimization.

However, in some sense, loss should be intuitively bounded.
We should not pay an infinite cost for misclassifying any one
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Fig. 4. ϕ-Loss and Sigmoid Loss

example. We believe that the outliers (misclassified examples
far from the classifier) are getting more attention than they
should because of the characteristics of convex loss functions.
Prior research [20], [21] shows that it is possible to achieve
an SVM classification algorithm where training errors are no
longer support vectors. Different non-convex loss functions
have been introduced.

1) Non-Smooth Non-convex Loss Functions: Mason et
al. [22] proposed heuristic Direct Optimization Of Mar-
gins(DOOM) algorithm based on sigmoid loss function (see
Figure 4),
V (f(x), y)

=


(1.2− γ)− γyf(x) if − 1 ≤ yf(x) ≤ 0

(1.2− γ)− (1.2−2γ)yf(x)
θ if 0 < yf(x) ≤ θ

γ/(1− θ)− λyf(x)
(1−θ) if θ < yf(x) ≤ 1

(12)

where θ ∈ (0, 1), and γ was fixed at 0.1, and θ plays the role
of a complexity parameter.

Shen et al. [12] proposed a non-convex loss function (see
Figure 4).

V (f(x), y) =

{
1− yf(x) if 0 ≤ yf(x) ≤ 1
1− Sign(yf(x)) otherwise

(13)
The corresponding algorithm is called “ϕ-learning”, which

choose the initial guess obtained from either an SVM or
a stochastic search. Moreover, multiple starting values are
adopted to prevent the algorithm from being trapped with a
local optimizer.

Ramp Loss (see Figure 5) is proposed by Collobert et al.
[20], [21].

V (f(x), y) = Rs(z) +Rs(−z) + const. (14)

where −1 < s ≤ 0 is a hyper-parameter to be chosen
and Rs = min(1 − s,max(0, 1 − yf(x))). Concave-Convex
Procedure (CCCP) [24] is adopted as the global optimization
method to solve the corresponding non-convex optimization
problem,

In [23], an Iterative Re-Weighted Least Squares (IRWLS)
procedure was proposed, through which the Support Vector
Classification (SVC) solution can be obtained for any convex
or non-convex loss function. However, IRWLS procedure does

Fig. 5. Ramp Loss with s=-0.3

Fig. 6. Normalized Sigmoid Loss and 2 Layer Neural Network Loss

not guarantee that the global minimum is found, instead, it
only guarantee a solution with less empirical error with respect
to the non-convex loss function. In their experiment, non-
convex Sigmoid loss function shows better performance than
the conventional SVC convex loss functions.

This type of loss functions are neither differentiable nor
continual (ϕ-loss), which makes the corresponding optimiza-
tion problem not applicable by some efficient optimization
methods, for example Quasi-Newton Methods.

2) Smooth Non-convex Loss Functions: In [25] a non-
convex normalized sigmoid cost (lost) function (15) (see
Figure 6) is introduced.

V (f(x), y) = 1− tanh(λyf(x)) (15)

An algorithm DOOM II is proposed corresponding to the
normalized sigmoid loss function.

A similar loss function is defined in 2-layer Neural New-
works [7] (see Figure 6):

V (f(x), y) = (1− 1

1 + exp(−yf(x))
)2 (16)

Krause and Singer [26] propose a quite similar loss function,
Logistic difference loss function.

V (f(x), y) = ln(1 + e−yf(x))− ln(1 + e−yf(x)−µ) (17)

The upper bound of logistic difference loss function is con-
trolled by parameter µ.

Loss functions as (15), (16), and (17) are all differentiable.
The drawback of these loss functions is that there will be
penalty for all training examples no matter whether they have
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Fig. 7. A new non-convex loss function

been correctly classified or not. In other words, the value of
these loss functions are always positive, and we cannot achieve
0 loss in any case, which can make the computation expensive
and the corresponding estimation inaccurate.

III. SMOOTHED 0-1 LOSS FUNCTION FOR
CLASSIFICATION

According to the analysis of different convex and non-
convex loss functions, we propose a new non-convex function,
which we denote by Smoothed 0-1 Loss Function

V (ti) =

 0 ti > 1
1
4 t

3
i − 3

4 ti +
1
2 −1 ≤ ti ≤ 1

1 ti < −1
(18)

where ti = yi(w · xi + b)
A plot of this function is presented in Figure 7. The

smoothed 0-1 loss function has certain desirable properties.
• It is bounded and nonconvex. For any data point x, the

proposed loss function are bounded between 0 and 1.
The same as hinge loss and 0-1 loss, this loss function
pay no penalty for data point x when y ∗ f(x) > 1. A
classification model using this loss does not incur gain for
pushing examples far from the decision boundary. When
y∗f(x) < −1, it is the same as 0-1 loss, which makes the
corresponding classification method robust for outliers.
When 1 ≤ y ∗ f(x) ≤ −1, the loss is decreasing. It is
obvious that this loss function is a good approximation
to 0-1 loss function with compelling justification.

• It is first order differentiable. Some efficient local opti-
mization algorithms can be adopted to solve the corre-
sponding classification model. Therefore we denote this
loss function by Smoothed 0-1 Loss Function.

By incorporating smooth 0-1 loss function into Tikhonov
regularization framework (1), we can have a new linear binary
classification model.

min
w,b

1

l

l∑
i=1

V (ti) + λ||w||2 (19)

where V (ti) is defined by (18).
This is an unconstrained global optimization problem. To

solve (19), global optimization method is required. Consider-
ing the loss function is strictly bounded between 0 and 1, the

corresponding algorithm will be less sensitive to the choice
of λ. Furthermore, the degree of improvement will become
dramatic as the sample size increases, particular for noisy data
sets with many outliers. Thus the corresponding algorithm will
be more robust both with respect to the choice of parameter
λ and with respect to noisy data sets.

It is obvious that the computational complexity of the non-
convex loss based algorithms will be substantially higher
than existing convex loss function based models, for example
SVMs, we believe that the significant theoretical advantages
will make it worthwhile to pursue further computational de-
velopments.

IV. A METHOD FOR COMPARISON OF DIFFERENT LOSS
FUNCTIONS – THE QUASISECANT METHOD

Quasisecant Method (QSM) [27] is developed for solving
the following unconstrained minimization problem:

min f(x) subject to x ∈ Rn (20)

where the objective function f is assumed to be locally
Lipschitz, but not necessarily differentiable or convex. For
detailed definition of quasisecant of the function f please refer
[27].

Algorithm 1 will be adopted as the main optimization algo-
rithm for this paper. In this algorithm we denote a quasisecant
set by Vm(xk).

Algorithm 1: The Quasisecant Method
Input: Start point x0, δ > 0 and c1 ∈ (0, 1]
Output: x∗

Set k=0 ;
while 0n ̸∈ ∂f(xk) do

For given δ > 0 and c1 ∈ (0, 1], compute the
descent direction at x = xk, we get the set
Vm(xk) and an element vk such that

||vk||2 = min{||v||2 : v ∈ Vm(xk)}.

Furthermore, either ||vk|| ≤ δ or for the search
direction gk = −||vk||−1vk,

f(xk + hgk)− f(xk) ≤ −c1h||vk||.

if ||vk|| ≤ δ then
stop.

end
else

Compute xk+1 = xk + σkgk, where σk is
defined as follows

σk = argmax{σ ≥ 0 :

f(xk + σgk)− f(xk) ≤ −c2σ||vk||}.

Set k = k + 1
end

end
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Numerical experiments conducted by Bagirov and Gan-
jehlou [27] have demonstrated that the QSM algorithm per-
forms well when the objective function is nonsmooth, non-
convex. Another important feature of QSM algorithm is that
this algorithm can be applied to both smooth and non-smooth
functions, which make it possible to compare the performance
of different loss functions under the framework of Tikhonov
regularization model (1). In this paper, we adopt QSM algo-
rithm to solve the optimization problem (19).

V. BINARY CLASSIFICATION ALGORITHMS

We have hypothesized that classifier designed with the
smoothed 0-1 loss function (18) should be more robust than
convex loss functions, for example the square loss function
(3), and the hinge loss function (5). Moreover computational
complexity of the classification algorithm based on smoothed
0-1 loss function should be better than non-smooth loss
functions, such as the ramp loss function (14), and more
accurate than smooth non-convex loss functions, for example
the normalized sigmoid loss function (15). To test this, a set
of binary classification algorithms are developed.

A. Algorithm for Convex Loss Function Based Binary Classi-
fication

For convex loss function based classification algorithm, the
selection of the start point (w0, b0) is not important. Based on
the Quasisecant algorithm, we propose an algorithm for convex
loss function based binary classification. In this algorithm we
set (w0, b0) = 0n.

Algorithm 2: Algorithm for Convex Loss Function
Based Binary Classification

Input: Training set, Λ
Set start point (w0, b0) = 0n ;
foreach λ ∈ Λ do

Apply Algorithm 1 for the computation of the
optimization problem (1), where V (f(x), y) are
corresponding convex loss function ;
Denote the optimal solution by (w∗, b∗) ;

end

B. Algorithm for Non-Convex Loss Function Based Binary
Classification

A good start point (w0, b0) is vital for algorithm for non-
convex loss function based binary classification. In this paper,
we select start point by algorithm 2 with hinge loss for the
following reasons: (i) it is computational expensive to select
a list of fixed start points; (ii) random start points are also
computational expensive, moreover it is not reliable and not
comparable for different results with random start points.

Algorithm 3: Algorithm for Non-Convex Loss Func-
tion Based Binary Classification

Input: Training set, Λ
Calculate a classifier (w0, b0) by Hinge Loss as a
start point ;
foreach λ ∈ Λ do

Apply Algorithm 1 for the computation of the
optimization problem (1), where V (f(x), y) are
corresponding non-convex loss function ;
Denote the optimal solution by (w∗, b∗) ;

end

TABLE I
CHARACTERISTICS OF THE USED DATA SETS.

Data set Number of Instances Number of Attributes
liver-disorders 345 6
diabetes 768 8
heart 270 13
australian 690 14
vote 435 16

VI. NUMERICAL EXPERIMENTS

In this section, we investigate the classification performance
of different loss functions in the framework of Tikhonov
regularization. These loss functions are: smoothed 0-1 loss
function (18), hinge loss function (5), square loss function (3),
ramp loss function (14), and normalized sigmoid loss function
(15).

For illustration, we make experiment comparison on the
following benchmark data sets: liver-disorders, diabetes, heart
disease, Australian, and vote (see Table I) from UCI repository
[28]. Considering that there are only a small number of data
points provided in these binary data sets, we randomly break
a data set into ten equal sized subsets, and then considering
the 10 train-test splits obtained by taking nine of the subsets
as training and the remaining one as test set.

To evaluate the effectiveness, classification accuracy are
used as performance evaluation metrics. λ are selected from
a list of points evenly distributed in [0, 2]. Figure 8 illustrates
the effectiveness of the smoothed 0-1 loss function based
algorithm on liver data set. It is easy to find that Tikhonov
regularization parameter λ plays an important role in control-
ling the overfitting problem. When λ is small, the calculated
classifier can fit the training data very well, with over 74%
accuracy. However, this classifier performs very bad on the test
set. By increasing λ, the training accuracy decreases sharply,
while the test accuracy increases accordingly. The experiment
on the ramp loss function based classification algorithm shows
similar trend (see Figure 9). The reason is that the classifier
w has been smoothed by increasing λ and therefore less
overfitting the training set. With the λ keeps increasing, the
training and test accuracy decrease simultaneously when the
w dominate the empirical risk model.

We need point out here that because the Liver-disorder
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Fig. 8. Training and test accuracy of Liver-disorder data set calculated by
Smoothed 0-1 Loss Function Based Binary Classification Algorithm

Fig. 9. Training and test accuracy of Liver-disorder data set calculated by
Ramp Loss Function Based Binary Classification Algorithm

data set is a highly noisy data set, the test accuracy are
not stable with respect of λ. For low noisy data sets, for
example, Australian data set (see Figure 10), the training and
test accuracy are quite consistent with the selection of λ.
Moreover, because of the low noisy condition, best prediction
accuracy is achieved when regularization parameter is quite
small (λ = 0.005).

The average results of the 10 fold train-test splits are
reported in Table II. From this comparison, we can see that
nonconvex loss function based algorithms can achieve better
generalization accuracy compared to convex loss function
based algorithms. The overall training accuracy of nonconvex
loss function based algorithms are better than convex loss
function based algorithms, which shows that the nonconvex
loss function can fit training examples better.

Fig. 10. Training and test accuracy of Australian data set calculated by
Smoothed 0-1 Loss Function Based Binary Classification Algorithm

TABLE III
COMPARISON OF AVERAGE TRAINING TIME OVER 20 RUNS (SEC.)

Data Set Convex NonConvex
Square Hinge Smoothed 0-1 Ramp Normalized Sigmoid

liver 0.031 0.437 0.531 0.812 0.625
diabetes 0.047 2.593 2.858 3.281 3.578
heart 0.062 5.047 5.188 5.703 5.250
australian 0.046 5.187 5.562 6.921 5.891
vote 0.047 1.109 2.250 2.078 2.843

Particularly, the smoothed 0-1 loss function can achieve
better generalization accuracy on noisy data sets, for example
liver-disorders and diabetes, which support our hypothesis in
Section III.

Table III presents the average CPU time (in seconds) over
20 runs for one overall training phase (e.g. data loading,
error computing, and optimization). As expected, among five
classification algorithms, square loss function based algorithm
is the fastest one. Except for the vote data set, smoothed 0-
1 loss function based algorithm is the quickest among the
nonconvex loss function (e.g. ramp and normalized sigmoid
loss functions) based algorithms.

VII. CONCLUSION

Based on the analysis of some popular loss functions with
respect to their convexity, continuity and differentiability, we
propose a smoothed 0-1 loss function for binary classification.
The new proposed loss function has some desirable properties:
such as (i) it is an ideal approximation of 0-1 loss function; (ii)
it is first order derivative. On the bases of Quasisecant method,
we employ two binary classification algorithms for convex and
non-convex loss functions, and compare the performance of
different loss functions. We conduct experiments on several
binary data sets for binary classification from UCI repository.
The results show that non-convex loss function outperforms
convex loss functions and our new proposed smoothed 0-1
loss function works well on noisy data sets.
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACY FOR BOTH TRAINING AND TEST SETS

Smoothed 0-1 Loss Hinge Loss Square Loss Ramp Loss Normalized Sigmoid Loss
Smooth, Nonconvex Nonsmooth, Convex Smooth, Convex Nonsmooth, Nonconvex Smooth, Nonconvex

Train (%) Test (%) Train (%) Test (%) Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)
liver 73.34% 72.62% 71.08% 71.45% 70.60% 69.90% 72.98% 72.62% 73.40% 72.62%
diabetes 78.90% 77.98% 77.18% 77.06% 77.33% 77.22% 77.42% 76.66% 78.79% 76.92%
heart 85.93% 84.07% 85.76% 84.44% 85.68% 85.19% 85.51% 83.70% 86.91% 83.70%
australian 88.71% 86.23% 87.21% 85.65% 87.65% 87.39% 86.31% 85.51% 87.79% 85.36%
vote 96.76% 94.23% 94.46% 94.23% 94.97% 94.21% 94.56% 94.23% 97.34% 94.23%

Future studies should include develop corresponding the-
ories such as generalization and convergence rate. We will
also extend the smoothed 0-1 loss function based binary
classification algorithm to multiclass or even multilabel data
classification, and perform experiments on large data sets.
Efficient global optimization methods that suitable for the
smoothed 0-1 loss function should also be explored exten-
sively.
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