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Abstract

The general constrained polynomial programming problem (GPP) is considered in this paper. Problem (GPP) has a
broad range of applications and is proved to be NP-hard. Necessary global optimality conditions for problem (GPP)
are established. Then, a new local optimization method for this problem is proposed by exploiting these necessary
global optimality conditions. A global optimization method is proposed for this problem by combining this local
optimization method together with an auxiliary function. Some numerical examples are also given to illustrate that
these approaches are very efficient.
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1. Introduction

The general constrained polynomial programming problem (GPP) is widespread in the mathematical modeling
of real world systems for a very broad range of applications. Such applications include engineering design, signal
processing, speech recognition, material science, investment science, quantum mechanics, allocation and location
problems, quadratic assignment and numerical linear algebra [1, 2]. Since polynomial functions are non-convex, the
problem (GPP) is NP-hard, even when the objective function is quadratic and the feasible set is a simplex [3].

A classic approach for the problem (GPP) is convex relaxation methods [3, 4, 5]. Among various convex relaxation
methods, semidefinite programming (SDP) and sum of squares (SOS) relaxations are very popular. Specifically, by
representing each nonnegative polynomial as a sum of squares of some other polynomials, it is possible to relax each
polynomial inequality as a convex linear matrix inequality(LMI) [6]. Theoretically, for Lasserre’s SDP relaxation
method, it was proved that when the feasible region of (GPP) is compact, its optimal value can be approximated
within any accuracy by the sequence of SDP relaxations [7]. However, the practical solvability of SDP or SOS
relaxation method depends on the size or the degree of the polynomial programming problem. Indeed, so far the
most effective use of SDP relaxation has been for the quadratic optimization problems[6]. From a computational
point of view, by SDP or SOS relaxation method, it is hard to achieve a close approximation to the optimal value of
(GPP) without efficient methods for handling large scale semidefinite programs [7]. However, as the authors in [3]
mentioned, so far there are few efficient numerical methods for solving large scale polynomial optimization problems.
So, solving large scale SDPs still remains a computational challenge.

Recently, some researchers applied SDP relaxation methods to some special models. [8] provided approxima-
tion methods for complex polynomial optimization. In [8], the objective function takes three forms: multilinear,
homogenous polynomial and a conjugate symmeric form. The constraint belongs to three sets: the m-th roots of
complex unity, the complex unity and the Euclidean sphere. [9] established some approximation solution methods to
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solve quadratically constrained multivariate bi-quadratic optimization. [6] presented a general semidefinite relaxation
scheme for genear n-variate quartic polynomial optimization under homogeneous quadratic constraints. [2] consid-
ered approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to
homogenous quadratic constraints.

Global optimality conditions are very important in global optimization field. References [10]-[13] focus on global
optimality conditions for the problems with quadratic objective function subject to linear constraints or quadratic
constraints. Based on the so-called Positivstellensatz (a polynomial analogue of the transposition theorem for linear
systems), it is possible to formulate global necessary and sufficient conditions for problems (GPP)[14]. [15] proved
in Theorem 4.2 a sufficient conditions for global optimality in (GPP), which is a special case of global necessary and
sufficient conditions in [14]. [16] provided another necessary and sufficient global optimality conditions for (GPP).
However all these conditions are complex and difficult to check in practice since the conditions involve solving a
sequence of semidefinite programs. As it mentioned in [14], only under the idealized assumptions that all semidefinite
programs can be solved exactly, it is possible for these conditions to be checked.

In this paper, we consider the following general constrained polynomial programming problem (GPP).

(GPP) min f (x)
s.t. gt(x) ≤ 0, t = 1, · · · ,m

x ∈ X,

where f : X → R, gt : X → R, t = 1, · · · ,m, and X is a box with xi ∈ [ui, vi], i = 1, . . . , n. S = {x ∈ X|gt(x) ≤ 0, t =

1, · · · ,m} is feasible set.
In this paper, we will discuss necessary global optimality conditions for problem (GPP). These conditions are

obtained by studying Karush-Kuhn-Tucker (KKT) conditions and a necessary and sufficient condition for a point
being a global minimizer for a constrained univariate polynomial programming problem. Then a new strongly local
optimization method will be designed for problem (GPP) according to the necessary global optimality conditions.
The new strongly local optimization method improves traditional local optimization method which is based on KKT
conditions. Finally, we will design a global optimization method to solve the problem (GPP) by combining the new
strongly local optimization method and an auxiliary function. Numerical examples illustrate the efficiency of the
optimization methods proposed in the paper.

The layout of the paper is as follows. Necessary global optimality conditions for the problem (GPP) are provided
in section 2. A new strongly local optimization method and a global optimization method for the problem (GPP) are
designed in section 3. Some numerical examples for the problem (GPP) are illustrated in section 4. Conclusion is
presented in section 5.

2. Necessary Global Optimality Conditions for Problem (GPP)

In this section, we will provide necessary global optimality conditions to problem (GPP). Actually, we construct
a point set where the global minimizer lies in. We can obtain the global minimizer by comparing the function values
of all points in the set.

Firstly, we consider the following univariate polynomial optimization.

(UPP) min p(x)
s.t. qt(x) ≤ 0, t = 1, · · · ,m

x ∈ [u, v].

Let Ω = {x ∈ [u, v]|qt(x) ≤ 0, t = 1, · · · ,m}.
The problem (UPP) is interesting not only because of the inherent simplicity of the problem strture and rich

modeling capabilities, but also because this problem forms the backbone of multi-variate polynomial optimization
[17].
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For methods to solving the problem (UPP), please refer to [17]- [18] and the papers therein. [17] applies the global
optimization algorithm (GOP) which proposed for solving constrained nonconvex problems involving quadratic and
polynomial functions in the objective function and/or constraints in [19] to the special case of polynomial functions of
one variable. It illustrates the effectiveness of the algorithm. [18] presents a significant enhancement of reformulation-
linearization technique (RLT) and shows empirically that this approach yield very tight lower bounds.

Since the feasible set Ω is a compact set and is not easy to work out, we will construct a new point set Ω0 ⊂ Ω.
Let Ω1 = {u, v|qt(u) ≤ 0, qt(v) ≤ 0, t = 1, · · · ,m}, Ω2 = {x|∇p(x) = 0, qt(x) < 0, t = 1, · · · ,m, x ∈ (u, v)} and
Ω3

t = {x|qt(x) = 0, q j(x) ≤ 0, j , t, j = 1, · · · ,m, x ∈ (u, v)}, t = 1, · · · ,m. Let

Ω0 = Ω1
⋃

Ω2
m⋃

t=1

Ω3
t . (1)

Remark 1. Since p(x) and qt(x), t = 1, · · · ,m, are univariate polynomials, we suppose that the degree of p(x) is dp
and the degrees of qt(x), are dqt, t = 1, · · · ,m, respectively. We use following methods to work out these point sets Ω1,
Ω2 and Ω3

t , t = 1, · · · ,m:

1. u and v will be kept if qt(u) ≤ 0, qt(v) ≤ 0, t = 1, · · · ,m. So, |Ω1| ≤ 2;
2. Calculate all stationary points of p(x) in the interval (u, v) ({x ∈ (u, v)|∇p(x) = 0}) which will be kept if

qt(x) < 0, for all t = 1, · · · ,m. So, |Ω2| ≤ dp − 1;
3. Calculate all roots of qt(x) in the interval (u, v) ({x ∈ (u, v)|qt(x) = 0}), t = 1, · · · ,m, which will be kept if

q j(x) ≤ 0, j , t, j = 1, · · · ,m. So, |Ω3| ≤
m∑

t=1
dqt.

When it comes to finding roots of a univariate polynomial, we refer to the methods in [20] and [21]. In our implemen-
tation, we use command ‘roots’ in Matlab to calculate all roots.

Proposition 1. For the problem (UPP), let x̄ ∈ Ω. x̄ is a global minimizer of (UPP) over Ω if and only if the following
condition holds:

p(x̄) ≤ p(x), ∀x ∈ Ω0, (2)

where Ω0 is defined in (1).

Proof. ⇒ The proof is obvious since Ω0 ⊂ Ω.
⇐ We suppose that x̄ is not a global minimizer of p(x) over Ω and x∗ is a global minimizer of p(x) over Ω. So we
have p(x∗) < p(x̄).

From the condition (2), we know that x∗ ∈ Ω \ Ω0 (which means x∗ ∈ Ω and x∗ < Ω0). By x∗ < Ω1, we have

x∗ ∈ (u, v). By x∗ <
m⋃

t=1
Ω3

t , we have qt(x∗) < 0, t = 1, · · · ,m. By x∗ < Ω2, x∗ ∈ (u, v) and qt(x∗) < 0, t = 1, · · · ,m, we

have ∇p(x∗) , 0.
So, we have the following properties. Let d = −∇p(x∗). There exists an s > 0, such that

1. x∗ + sd ∈ (u, v);
2. qt(x∗ + sd) < 0, for all t = 1, · · · ,m;
3. p(x∗ + sd) < p(x∗)

So we can conclude x∗ + sd ∈ Ω and p(x∗ + sd) < p(x∗), which contradicts that x∗ is a global minimizer of p(x) over
Ω. �

By using Proposition 1, we will give necessary global optimality conditions for Problem (GPP).
Let x̄ ∈ S , Q be an invertible matrix, let

x := Qy, F(y) := f (Qy) = f (x), ȳ := Q−1 x̄,

and let (Q)i represent the ith row of Q, (Q)i j represent the entry of Q in the ith row and the jth column.
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Let Y = {y = Q−1x|x ∈ X}. For ȳ = (ȳ1, . . . , ȳn)T = Q−1 x̄, let y = (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T . Let 4k =
n∑

j=1
j,i

(Q)k jȳ j = x̄k − (Q)kiȳi = x̄k − (Q)ki(Q−1)i x̄, k = 1, · · · , n, and let

li = max
{

min
{

u1 − 41

(Q)1i
,

v1 − 41

(Q)1i

}
, · · · ,min

{
un − 4n

(Q)ni
,

vn − 4n

(Q)ni

}}
,

ri = min
{

max
{

u1 − 41

(Q)1i
,

v1 − 41

(Q)1i

}
, · · · ,max

{
un − 4n

(Q)ni
,

vn − 4n

(Q)ni

}}
.

Then we can obtain the following results:

(1) li ≤ ri,

(2) [li, ri] = {yi | (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T ∈ Y}.

Let Gt(yi) = gt(Qy) = gt(x). We have S 1
i = {li, ri|Gt(li) ≤ 0,Gt(ri) ≤ 0|t = 1, · · · ,m}, S 2

i = {yi|∇ f (Qy) =

0, gt(Qy) < 0, t = 1, · · · ,m, y = (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T , yi ∈ (li, ri)} and S 3
t,i = {yi|gt(Qy) = 0, g j(Qy) ≤ 0, j ,

t, j = 1, · · · ,m, y = (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T , yi ∈ (li, ri)}, t = 1, · · · ,m, i = 1, · · · , n. Let

S 0
i = S 1

i

⋃
S 2

i

m⋃
t=1

S 3
t,i. (3)

Let us review Karush-Kuhn-Tucker (KKT) conditions for problem (GPP).
If x̄ is a local optimal solution, then the following KKT conditions hold under some constraint qualifications: there

exist nonnegative scalars αt, t = 1, · · · ,m, βi and γi, i = 1, · · · , n, such that

[KKT ]


∇ f (x̄) +

m∑
t=1
αt∇gt(x̄) + β − γ = 0,

αtgt(x̄) = 0, t = 1, · · · ,m
β(x − v) = 0
γ(u − x) = 0

,

where β = (β1, · · · , βn)T and γ = (γ1, · · · , γn)T . See [22] for various constraint qualifications, such as Abadie constraint
qualification, linearity constraint qualification, Slater’s constraint qualification, linear independence constraint quali-
fication, Cottle’s constraint qualification, Zangwill’s constraint qualification, Kuhn-Tucker’s constraint qualification.

Theorem 1. (Necessary global optimality conditions for (GPP)) Let x̄ ∈ S and Q be any invertible matrix. If x̄ is a
global minimizer of (GPP), then

[GNC]
{

[KKT ] conditions hold under some constraint quali f ications;
[NC]i : f (x̄) ≤ f (x), ∀(Q−1)ix ∈ S 0

i , ∀i = 1, · · · , n

where S 0
i is defined in (3).

Proof. If x̄ is a global minimizer of (GPP), then it is also a local minimizer of (GPP). So under some constraint
qualifications, KKT conditions hold.

Next, we prove conditions [NC]i hold. If x̄ is a global minimizer of (GPP), then f (x̄) ≤ f (x), for any x ∈ S .
Let ȳ = Qx̄. For any y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T ∈ Y , i.e., yi ∈ [li, ri], i = 1, . . . , n, let x = Qy. Then x ∈ X.

So we have f (Qȳ) ≤ f (Qy), for any yi ∈ [li, ri], i = 1, . . . , n. By using Proposition 1, we have the following conditions
[NC]i hold:

[NC]i f (x̄) ≤ f (x), ∀(Q−1)ix ∈ S 0
i , ∀i = 1, · · · , n.

�
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Remark 2. From Theorem 1, we can see that the global optimality conditions [GNC] are stronger than KKT condi-
tions, since [GNC] include KKT conditions.

Next, we take Problem 8 in section 4 for example to show [KKT ] + [NC]i, for every i = 1, · · · , n below.
We fix Q = I and choose two points x̄ = (2.3295, 3.1785)T which is a global minimizer and ȳ = (1.5996, 2.8204)T

which is a local minimizer. It is easy to check that both [NC]i and [KKT ] hold at x̄, while [KKT ] holds at ȳ, but [NC]i

does not hold at ȳ.
In fact, x̄ ∈ int(X), ∇ f (x̄) = (−1,−1)T and g1(x̄) = g2(x̄) = 0, which means x̄ ∈ S 3

t,i ⊂ S 0
i , t = 1, 2, i = 1, 2.

When i = 1 and we fix x̄2 = 3.1785, we have S 1
1 = ∅, S 2

1 = ∅, S 3
1,1 = {2.3295, 0.5179} and S 3

2,1 = {2.3295, 0.6247}.
But f ((0.5179, 3.1785)T ) = −3.6964 > f (x̄) = −5.5080 and f ((0.6247, 3.1785)T ) = −3.8033 > f (x̄) = −5.5080. So

f (x̄) ≤ f (x), for any x ∈ S 0
1 = S 1

1
⋃

S 2
1

2⋃
t=1

S 3
t,1.

When i = 2 and we fix x̄1 = 2.3295, we have S 1
2 = {0}, S 2

2 = ∅, S 3
1,2 = {3.1785} and S 3

2,2 = {3.1785}. But

f ((2.3295, 0)T ) = −2.3295 > f (x̄) = −5.5080. So f (x̄) ≤ f (x), for any x ∈ S 0
2 = S 1

2
⋃

S 2
2

2⋃
t=1

S 3
t,2.

This means conditions [NC]i, i = 1, 2, hold at x̄.
Since ∇g1(x̄) = (−8.1639, 1)T and ∇g2(x̄) = (4.6996, 1)T , we can find nonnegative scalars α1 = 0.2876 and

α2 = 0.7124 such that [KKT ] holds at x̄.

While ȳ ∈ int(X), ∇ f (ȳ) = (−1,−1)T and g1(ȳ) = g2(ȳ) = 0, which means ȳ ∈ S 3
t,i ⊂ S 0

i , t = 1, 2, i = 1, 2.
When i = 1 and we fix ȳ2 = 2.8204, we have S 1

1 = ∅, S 2
1 = ∅, S 3

1,1 = {2.2808, 1.5996, 0.4004}. f ((2.2808, 2.8204)T ) =

−5.1012, f ((1.5996, 2.8204)T ) = −4.4200 and f ((0.4004,2.8204)T ) = −3.2208. So f (ȳ) ≤ f (x), for any x ∈ S 0
1 =

S 1
1
⋃

S 2
1

2⋃
t=1

S 3
t,1 does not hold at ȳ. This means [NC]1 does not hold at ȳ.

Since ∇g1(ȳ) = (3.0723, 1)T and ∇g2(x̄) = (−5.3793, 1)T , we can find nonnegative scalars α1 = 0.7548 and
α2 = 0.2452 such that [KKT ] holds at ȳ.

3. Optimization methods for (GPP)

3.1. A New Local Optimization Method for Problem (GPP)
Definition 1. Let x̄ ∈ S and Q be an invertible matrix. x̄ is said to be a strongly local minimizer of problem (GPP)
with respect to Q iff x̄ satisfies the necessary global optimality conditions [GNC].

Definition 2. Let x̄ ∈ S and Q be an invertible matrix. x̄ is said to be a ε−strongly local minimizer of problem (GPP)
with respect to Q iff KKT conditions hold at x̄ and for any i = 1, · · · , n, either x̄ satisfies the condition [NC]i or there
exists a point X∗i ∈ S , such that X∗i satisfies the condition [NC]i when x̄ is replaced by X∗i , and | f (x̄) − f (X∗i )| ≤ ε.

Algorithm 1. Strongly or ε−strongly local optimization method for problem (GPP):(S LOM).
Step 0. Take an initial point x0 ∈ S . Let Q1 = I, Q2, · · ·, Qs, · · ·, QN be any invertible matrices given randomly, where
I is the identity matrix. Let ε be a small positive number. Let s := 1 and Q := Qs and i = 1. Let x∗ := (x∗1, · · · , x

∗
n)T

be a local minimizer or KKT point of f (x) on feasible set S starting from x0. Let x̄ := x∗ and go to step 1;
Step 1. Let ȳ = Q−1 x̄ = (ȳ1, . . . , ȳi, . . . , ȳn)T , y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and x = Qy. Calculate S 1

i , and then
check whether the condition holds:

f (x̄) ≤ f (Qy) + ε, ∀y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S 1
i .

If this condition holds, go to step 2, otherwise set S̃ = S 1
i and go to step 4;

Step 2. Calculate S 2
i , and then check whether the condition holds:

f (x̄) ≤ f (Qy) + ε, ∀y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S 2
i .

If this condition holds, go to step 3, otherwise set S̃ = S 2
i and go to step 4;
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Step 3. Set t = 1. Calculate S 3
t,i, and then check whether the condition holds:

f (x̄) ≤ f (Qy) + ε, ∀y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S 3
t,i.

If the condition holds, set t = t +1 and repeat to check the condition until t = m and go to step 5; otherwise set S̃ = S 3
t,i

and go to step 4;
Step 4. Let ȳ∗i := argmin{ f (Qy)|y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S̃ } and ȳ∗ = (ȳ1, · · · , ȳi−1, ȳ∗i , ȳi+1 · · · , ȳn)T .
Let x̄∗ := Qȳ∗. Let x∗ = (x∗1, · · · , x

∗
n) be a local minimizer or KKT point of f (x) on S starting from x̄∗. If f (x∗) <

f (x̄) − ε, let x̄ := x∗, i := 1, s := 1 and Q := Qs, go to Step 1; otherwise go to Step 5;
Step 5. If i := n, go to Step 6; otherwise, let i := i + 1 and go to Step 1;
Step 6. Let s := s + 1. If s > N, go to Step 7; otherwise, let Q := Qs and i := 1, go to Step 1;
Step 7. Stop. x̄ is a strongly or ε−strongly local minimizer with respect to Qs, s = 1, · · · ,N.

Remark 3. In step 0 and step 4, we can apply any local optimization algorithm to get local minimizer or KKT point,
such as feasible direction methods, penalty function methods, starting from x̄. In our implementation, the optimization
subroutine ‘fmincon’ within the optimization Toolbox in Matlab is used as the local search scheme to obtain local
minimizers.
In step 1, step 2 and step 3, we need to calculate S 1

i , S 2
i and S 3

t,i, t = 1, · · · ,m. For any i ∈ {1, · · · , n}, let x̄ ∈ S ,
ȳ = Q−1 x̄ and y = (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T , where yi ∈ [li, ri]. Then f (Qy) and gt(Qy), t = 1, · · · ,m, are
univariate polynomials. So, we refer to Remark 1 to calculate these point sets.

Theorem 2. For a given initial point x0 ∈ S , we can obtain a strongly or ε−strongly local minimizer x̄ of problem
(GPP) in finite iteration times by the given strongly local optimization method (S LOM).

Proof: First, we can prove that this algorithm must stop in finite iteration times.
Let M := max{ f (x)|x ∈ S } and m := min{ f (x)|x ∈ S }. For the given Qs, there are at most n M−m

ε
iteration times from

step 1 to step 5. In fact, for the given Qs and given i, if [NC]i holds or if f (x∗) ≥ f (x̄) − ε, then we will change the i
into i + 1; only when [NC]i does not hold and f (x∗) < f (x̄) − ε, we will change i to 1 in step 4 and go to step 1. For
the same Qs, when we change i to 1, the objection function value will decrease at least ε. Hence, there are at most
M−m
ε

times to change i to 1 in step 4. The total iteration times from step 1 to step 5 are at most n M−m
ε

. Since we have
N numbers of Qs , this algorithm must stop at most Nn M−m

ε
iteration times.

Second, let L be the set of all the KKT points of problem (GPP), and let L f := { f (x) | x ∈ L}. We can prove that

(1) If L f is a finite set, then we can obtain a strongly local minimizer in finite iteration times when ε is a very small
number. In fact, let η := min{| f (x) − f (y)| | x, y ∈ L and f (x) , f (y)}. Since L f is a finite set, we have that η > 0.
When ε < η, we know that f (x∗) < f (x̄) − ε in step 4 is equivalent to f (x∗) < f (x̄). Hence, for the given Qs and
given i, if [NC]i holds, then we will change the i into i + 1; if [NC]i does not hold in step 1 or step 2 or step 3
which means that f (x̄) > min{ f (Qy)|y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S̃ }, then in step 4, we will find point
ȳ∗i such that f (Qȳ∗) = min{ f (Qy)|y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S̃ }. Hence, we have that f (x∗) < f (x̄)
since f (x∗) ≤ f (Qȳ∗) < f (x̄) and we have x∗ ∈ L. Therefore, for the given Qs and given i, if [NC]i does not hold
in step 1 or step 2 or step 3, then we can obtain a new KKT point x∗ such that f (x∗) < f (x̄) which also satisfies that
f (x∗) < f (x̄) − ε. Hence, for the given Qs, we can find a point x̄ which satisfies all the condition [NC]i, i = 1, . . . , n in
at most n M−m

ε
iteration times. Therefore, in finite times, we can obtain a strongly local minimizer of problem (GPP)

for all Qs, s = 1, . . . ,N.
(2) If L f is an infinite set, then we can obtain an ε− strongly local minimizer in finite iteration times.
By the algorithm, for the given Qs and given i, if [NC]i holds or if f (x∗) ≥ f (x̄)−ε, then we will change the i into i+1;
if [NC]i does not hold and f (x∗) < f (x̄) − ε, then in step 4, we will find point ȳ∗i such that f (Qȳ∗) = min{ f (Qy)|y =

(ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S̃ }, where ȳ∗i satisfies condition [NC]i. Since this algorithm must stop in finite
steps, the final obtained point x̄ must satisfy the following condition: for the given Qs and given i, [NC]i holds or
f (Qȳ∗) ≥ f (x∗) ≥ f (x̄) − ε, where ȳ∗i satisfies the condition [NC]i. Hence x̄ is an ε− strongly local minimizer of
problem (GPP). �
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3.2. A global Optimization Method for Problem (GPP)
In this section, we will design a global optimization method for Problem (GPP) by combining the strongly local opti-
mization method and an auxiliary function. In this paper, we use the following auxiliary function which is introduced
in reference [23]. For the detailed properties, see [23].
For any r > 0 and given c > 0, let

gr,c(t) =


c, t ≥ 0

−
2c
r3 t3 −

3c
r2 t2 + c, −r < t ≤ 0

0, t ≤ −r

, (4)

hr,c(t) =



t + r, t ≤ −r
r − 2

r3 t3 +
r − 3

r2 t2 + 1, −r < t ≤ 0

1, 0 < t ≤ 1

−
4c − 2

r3 t3 +
(6c − 3)(r + 2)

r3 t2 −
(6c − 3)(2r + 2)

r3 t+
4c−2+(6c−3)r

r3 + 1, 1 < t ≤ 1 + r
2c, t > 1 + r

. (5)

Let

Fq,r,c,x∗ (x) = q(exp(−
‖x − x∗‖2

q
)gr,c

(
f (x) − f (x∗)

)
+ hr,c

(
f (x) − f (x∗)

)
), (6)

where x∗ is the current local minimum.
In the following, we will introduce a global optimization method to find a global minimizer of problem (GPP). The
procedure of this global optimization method in the following consists of three phase circle:
Phase 1: (Strongly Local Search) Start from a given feasible point xk and use strongly local minimization method
Algorithm 1 to search for a strongly local minimizer x∗k.
Phase 2: (Local Search) Construct an auxiliary function Fq,r,c,x∗k (x). Find a KKT point or a local minimizer x̄q,r,c,x∗k of
the function Fq,r,c,x∗k (x) over feasible set S .
Phase 3: (Global Search) If x̄q,r,c,x∗k is better than x∗k, then let k := k + 1, xk := x̄q,r,c,x∗k and return to Phase 1. Otherwise,
stop the iteration process and return the incumbent local optimal solution x∗k as a global optimal solution to the original
problem.

Algorithm 2. Global optimization method for problem (GPP):(GOM).
Step 0. Set M := 1010, µ := 10−10 and k0 := 2n. Set An×n := In×n and Bn×2n := [A,−A]. Let r0 := 1, c0 := 1, q0 := 105

and δ0 := 1
2 . Let k := 1, i := 1 and r := r0. Let x0

1 be an initial point and x∗0 := x0
1, then go to Step 1;

Step 1. Use the strongly or ε−strongly local optimization method (S LOM) to solve problem (GPP) starting from x0
k .

Let x∗k be the obtained strongly or ε−strongly local minimizer of problem (GPP). If f (x∗k) ≥ f (x∗0), then go to step 6;
otherwise let q := q0, c := c0, r := r0, δ := δ0, i := 1 and x∗0 := x∗k, k := k + 1, then go to Step 2;
Step 2. Let Bi indicate the ith column of B and x̄∗k := x∗0 + δBi. If x̄∗k < S , go to Step 3. Otherwise, if f (x̄∗k) < f (x∗0),
then set x0

k+1 := x̄∗k and x∗0 := x̄∗k, k := k + 1 and go to Step 1; else go to Step 4;
Step 3. If δ < µ, go to Step 8; otherwise, let δ = δ

2 and go to Step 2;
Step 4. If f (x∗0) ≤ f (x̄∗k) ≤ f (x∗0) + 1, then go to Step 5; otherwise let δ = δ

2 go to Step 2;
Step 5. Let

Fq,r,c,x∗0 (x) = q(exp(−
‖x − x∗0‖

2

q
)gr,c

(
f (x) − f (x∗0)

)
+ hr,c

(
f (x) − f (x∗0)

)
).

Solve the problem:

min Fq,r,c,x∗0 (x) (7)
s.t. x ∈ S .
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by a local search method starting from the initial point x̄∗k. Let x̄q,r,c,x∗k be the local minimizer obtained. Then set
x0

k+1 := x̄q,r,c,x∗k , k := k + 1 and go to Step 1;
Step 6. If q < M, then increase q (in the following examples, let q := 10q), then go to Step 5; otherwise go to Step 7;
Step 7. If c < M, then increase c (in the following examples, let c := 10c), and let q := q0, then go to Step 5; otherwise
go to Step 8;
Step 8. If i < k0, then let i := i + 1, q := q0, c := c0, δ = δ0, go to Step 2; otherwise go to Step 9;
Step 9. If r > µ, then decrease r (in the following examples, let r := r

10 ). Randomly select an orthogonal matrix An×n

and set Bn×2n := [A,−A]. Let i := 1, q := q0, c := c0, δ = δ0 and go to Step 2; otherwise, stop and x∗0 is the obtained
global minimizer or approximate global minimizer of problem (GPP).

4. Numerical examples

In this section, we apply our two Algorithms: strongly local optimization method (SLOM) and global optimization
method (GOM) to fifteen test problems. Table 1 shows summary information of the fifteen test problems. These test
problems include Problems 1, 6-9 and 14 from the book [1], 10-12 form the paper [5] and 2-5, 13, 15 from the web
site below:
http : //www − optima.amp.i.kyoto − u.ac. jp/member/student/hedar/Hedar f iles/TestGO f iles/Page422.htm.
For the detailed information of these problems, see the appendix in the end.

Table 1: Test problems for polynomial programming problems with polynomial constraints

Number of Global minimizer Optimal value
problems x∗ f (x∗)

5.1 (0.5, 0, 3) −4
5.2 (1, · · · , 1, 3, 3, 3, 1) −15
5.3 (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 24.3062091

1.430574, 1.321644, 9.828726, 8.280092, 8.375927)
5.4 (14.095, 0.84296) −6961.81388
5.5 (2.330499, 1.951372,−0.4775414, 4.365726, 680.6300573

−0.6244870, 1.038131, 1.594227)
5.6 (5, 1, 5, 0, 5, 10) −310
5.7 (78, 33, 29.9953, 45, 36.7758) −30665.5387
5.8 (2.3295, 3.1783) −5.5079
5.9 (579.3167, 1359.943, 5110.071, 182.0174, 7049.3307

295.5985, 217.9799, 286.4162, 395.5979)
5.10 †1 −575.5928
5.11 †2 −1.0178
5.12 †3 −153.6180
5.13 ±(1/20.5, 1/2) 0.75
5.14 (40.71751, 1.470) −16.73889
5.15 (1/n0.5, · · · , 1/n0.5) −1

†1 = −(0.4034, 0.4274, 0.4486, 0.4674, 0.4839, 0.4983, 0.5107, 0.5211, 0.5296, 0.5363, 0.5410, 0.5437, 0.5444,
0.5430, 0.5393);
†2 = −(0.2418, 0.2208, 0.2085, 0.2000, 0.1934, 0.1882, 0.1838, 0.1800, 0.1767, 0.1738, 0.1712, 0.1688, 0.1667,
0.1647, 0.1629, 0.1612);
†3 = −(-0.3642, 0.3955, 0.5042, 0.5589, 0.5892, 0.6049, 0.6109, 0.6104, 0.6057, 0.5991, 0.5828, 0.5173, 0.5193,
0.5306, 0.5459, 0.5619, 0.5763, 0.5869, 0.5919, 0.5896).

There are equalities involved in Problem 13-15. We can use our algorithms to solve them by converting equalities
hs(x) = 0, s = 1, · · · , l into equivalent inequalities hs(x) ≤ 0, s = 1, · · · , l and −hs(x) ≤ 0, s = 1, · · · , l.
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For our experiments, we use the optimality gap mentioned in [24] is:

GAP = | f (x) − f (x∗)|

where x is a heuristic solution obtained by our method and x∗ is the optimal solution. We then say that a heuristic
solution x is optimal if:

GAP ≤
{
ε f (x∗) = 0
ε × | f (x∗)| f (x∗) , 0

In our experimentation we set ε = 0.001 as the same of that in [24].
In the table below, some common statistics are included. We randomly select 30 initial points for every problem. The
suc.rate(success rate) means the success times out of 30. The best is the minimum of the results, the worst indicates
the maximum of the results, and then it follows the mean, median and st.dev.(standard deviation). We also record the
av.it.(average iteration times) and av.CPU(average CPU time) (in seconds). In some way, these statistics are able to
evaluate the search ability and solution accuracy, reliability and convergence as well as stability.

Table 2: Results of algorithms SLOM and GOM for (GPP)

Problem statistic SLOM GOM

1 suc.rate 30/30 30/30
best −4.0000 −4.0000

worst −4.0000 −4.0000
mean −4.0000 −4.0000

median −4.0000 −4.0000
st.dev. 2.7262e − 006 2.7262e − 006
av.it. 1 1

av.CPU 0.1125 0.1125
2 suc.rate 30/30 30/30

best −15.0000 −15.0000
worst −15.0000 −15.0000
mean −15.0000 −15.0000

median −15.0000 −15.0000
st.dev. 8.9121e − 006 8.9121e − 006
av.it. 1.2333 1.2333

av.CPU 0.2125 0.2125
3 suc.rate 30/30 30/30

best 24.3062 24.3062
worst 24.3062 24.3062
mean 24.3062 24.3062

median 24.3062 24.3062
st.dev. 4.9274e − 006 4.9274e − 006
av.it. 1 1

av.CPU 0.1156 0.1156
4 suc.rate 30/30 30/30

best −6.9618e + 003 −6.9618e + 003
worst −6.9618e + 003 −6.9618e + 003
mean −6.9618e + 003 −6.9618e + 003

median −6.9618e + 003 −6.9618e + 003
st.dev. 8.0994e − 004 8.0994e − 004
av.it. 1 1

av.CPU 0.0776 0.0776

continue goes here. . . 9



Problem statistic SLOM GOM

5 suc.rate 30/30 30/30
best 680.6301 680.6301

worst 680.6301 680.6301
mean 680.6301 680.6301

median 680.6301 680.6301
st.dev. 5.3698e − 006 5.3698e − 006
av.it. 1 1

av.CPU 0.1552 0.1552
6 suc.rate 26/30 30/30

best −310.0000 −310.0000
worst −184.0000 −310.0000
mean −293.2000 −310.0000

median −310.0000 −310.0000
st.dev. 43.5640 5.9702e − 006
av.it. 36.7667 37.8333

av.CPU 5.5177 6.0469
7 suc.rate 30/30 30/30

best −3.0666e + 004 −3.0666e + 004
worst −3.0666e + 004 −3.0666e + 004
mean −3.0666e + 004 −3.0666e + 004

median −3.0666e + 004 −3.0666e + 004
st.dev. 4.4270e − 004 4.4270e − 004
av.it. 1 1

av.CPU 0.0807 0.0807
8 suc.rate 30/30 30/30

best −5.5080 −5.5080
worst −5.5080 −5.5080
mean −5.5080 −5.5080

median −5.5080 −5.5080
st.dev. 9.9335e − 007 9.9335e − 007
av.it. 127.5333 127.5333

av.CPU 7.7375 7.7375
9 suc.rate 29/30 30/30

best 7.0492e + 003 7.0492e + 003
worst 8.7331e + 003 7.0492e + 003
mean 7.1054e + 003 7.0492e + 003

median 7.0492e + 003 7.0492e + 003
st.dev. 307.4294 1.0895e − 006
av.it. 17.6000 17.6000

av.CPU 4.3823 4.3823
10 suc.rate 30/30 30/30

best −575.5925 −575.5925
worst −575.5925 −575.5925
mean −575.5925 −575.5925

median −575.5925 −575.5925
st.dev. 1.9967e − 006 1.9967e − 006
av.it. 19 19

av.CPU 83.0062 83.0062

continue goes here. . .

10



Problem statistic SLOM GOM

11 suc.rate 7/30 30/30
best −1.1078 −1.1078

worst −0.0108 −1.1078
mean −0.2692 −1.1078

median −0.0144 −1.1078
st.dev. 0.4706 1.6607e − 014
av.it. 138.6000 143.4000

av.CPU 1.1422e + 003 1.6737e + 003
12 suc.rate 30/30 30/30

best −153.6180 −153.6180
worst −153.6180 −153.6180
mean −153.6180 −153.6180

median −153.6180 −153.6180
st.dev. 7.5214e − 007 7.5214e − 007
av.it. 25 25

av.CPU 43.1750 43.1750
13 suc.rate 30/30 30/30

best 0.7500 0.7500
worst 0.7500 0.7500
mean 0.7500 0.7500

median 0.7500 0.7500
st.dev. 6.2234e − 009 6.2234e − 009
av.it. 1 1

av.CPU 0.0849 0.0849
14 suc.rate 30/30 30/30

best −16.7389 −16.7389
worst −16.7389 −16.7389
mean −16.7389 −16.7389

median −16.7389 −16.7389
st.dev. 5.8438e − 007 5.8438e − 007
av.it. 1 1

av.CPU 0.0734 0.0734
15 suc.rate 30/30 30/30

best −1.0000 −1.0000
worst −1.0000 −1.0000
mean −1.0000 −1.0000

median −1.0000 −1.0000
st.dev. 8.2074e − 007 8.2074e − 007
av.it. 25 25

av.CPU 8.1156 8.1156

It is shown from table 2 that GOM successfully solves all number of test problems and is very efficient and stable.
As a local optimization method, SLOM can also be considered as a competitive algorithm with producing impressive
results.
Next, we try to compare our GOM method with the other two methods: Interior Point Method and solver GloptiPoly 3.
In our implementation, we execute the command ‘fmincon’ with algorithm of interior-point in Matlab. Solver Glop-
tiPoly 3 is a Matlab/SeDuMi add-on for SDP-relaxations of minimization problems over multivariable polynomial
functions subject to polynomial or integer constraints [25, 26].
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Table 3: Comparisons between GOM, Interior-Point and GloptiPoly 3
for (GPP)

Problem statistic GOM Interior Point GloptiPoly 3

1 suc.rate 30/30 30/30 30/30
order= 4

best −4.0000 −4.0000 −4.0000
worst −4.0000 −4.0000 −4.0000

2 suc.rate 30/30 29/30 30/30
order= 2

best −15.0000 −15.0000 −15.0000
worst −15.0000 −12.6562 −15.0000

3 suc.rate 30/30 30/30 30/30
best 24.3062 24.3062 24.3062

worst 24.3062 24.3062 24.3062
4 suc.rate 30/30 30/30 30/30

best −6.9618e + 003 −6.9618e + 003 −6.9618e + 003
worst −6.9618e + 003 −6.9618e + 003 −6.9618e + 003

5 suc.rate 30/30 30/30 30/30
order= 3

best 680.6301 680.6301 680.6301
worst 680.6301 680.6301 680.6301

6 suc.rate 30/30 3/30 30/30
order= 2

best −310.0000 −310.0000 −309.9998
worst −310.0000 −152.0000 −309.9998

7 suc.rate 30/30 30/30 0/30
best −3.0666e + 004 −3.0666e + 004 -

worst −3.0666e + 004 −3.0666e + 004 -
8 suc.rate 30/30 21/30 30/30

order= 4
best −5.5080 −5.5080 −5.5079

worst −5.5080 −4.0537 −5.5079
9 suc.rate 30/30 23/30 0/30

best 7.0492e + 003 7.0492e + 003 -
worst 7.0492e + 003 1.6855e + 004 -

10 suc.rate 30/30 2/30 0/30
best −575.5925 −575.5925 -

worst −575.5925 2.9359e + 005 -
11 suc.rate 30/30 0/30 0/30

best −1.1078 68.6441 -
worst −1.1078 674.2090 -

12 suc.rate 30/30 3/30 0/30
best −153.6180 −153.6180 -

worst −153.6180 −19.9575 -
13 suc.rate 30/30 30/30 30/30

order= 3
best 0.7500 0.7500 0.7500

worst 0.7500 0.7500 0.7500

continue goes here. . .
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Problem statistic GOM Interior Point GloptiPoly 3

14 suc.rate 30/30 30/30 30/30
best −16.7389 −16.7389 −16.7389

worst −16.7389 −16.7389 −16.7389
15 suc.rate 30/30 4/30 0/30

best −1.0000 −1.0000 -
worst −1.0000 −5.5063e − 023 -

In the table 3, we can see that Interior Point Method can solve Problem 1, 3-5, 7, 13-14 successfully. For Problem 2,
8-9, Interior Point Method performs not bad and the success rate is over 2/3. However for Problem 6, 10-12 and 15,
Interior Point Method only succeeds less than 5 times out of 30 or even fails all 30 times for Problem 11.
When we use GloptiPoly 3 to solve non-convex polynomial programming problems, it may not return the global
optimum but a lower bound. The default order in GloptiPoly 3 is such that twice the order is greater than or equal to
the maximal degree occurring in the polynomial expressions of the original optimization problem. More importantly,
the series of optima of SDP-relaxations of increasing orders converges monotonically to the global optimum [25].
However, the computational time increase quickly with the relaxation order and the computer may return ‘out of
memory’ when the order is big enough.
In the table 3, we use the solver GloptiPoly 3 to solve Problem 1-15. We run GloptiPoly 3 30 times for each problem
with fixed relaxation order. First, we use the default order to calculate it. If it fails, we increase the order so that the
problem can be solved. For example, for Problem 1, GloptiPoly 3 fails to solve it until the order equals to 4. If a
problem cannot be solved by the solver GloptiPoly 3 with increasing orders from default order to the order making it
out of memory, then success rate is 0/30. From the above table, we can see GloptiPoly 3 solves Problem 1-6, 8, 13-14
successfully. For the rest problems, GloptiPoly 3 failed, and return ‘out of memory’.
For the large scale Problem 10-12, the regularization methods for SOS relaxations in large scale polynomial optimiza-
tion provided in [5] gave global or approximate global optimal values. By our method GOM, we got the same results
with those in [5].
Note, all computations in the paper were implemented on a Microsoft Windows XP Desktop of 3.46GB memory and
2.99GHz CPU frequency.

5. Conclusion

We study a necessary and sufficient condition to a point being a global minimizer for a constrained univariate polyno-
mial programming problem. Necessary global optimality conditions for a general constrained polynomial program-
ming problem (GPP) are provided based on this necessary and sufficient condition. A new local optimization method
is designed according to these necessary global conditions which improve the traditional local optimization method
(based on KKT conditions). A new global optimization method is designed by combining the new local optimization
method and an auxiliary function. The numerical examples illustrate that our methods are efficient and stable.
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6. Appendix

Problem 1

min f (x) := −2x1 + x2 − x3

s.t. x1 + x2 + x3 ≤ 4
x1 ≤ 2
x3 ≤ 3
3x2 + x3 ≤ 6
x1, x2, x3 ≥ 0
xT BT Bx − 2rT Bx + ‖r‖2 − 0.25‖b − v‖2 ≥ 0

where

B =

 0 0 1
0 −1 0
−2 1 −1


b = [3, 0,−4]
v = [0,−1,−6]
r = [1.5,−0.5,−5]
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Problem 2

min f (x) := 5
4∑

i=1

xi − 5
4∑

i=1

x2
i −

13∑
i=5

xi

s.t. 2x1 + 2x2 + x10 + x11 − 10 ≤ 0
2x1 + 2x3 + x10 + x12 − 10 ≤ 0
2x2 + 2x3 + x11 + x12 − 10 ≤ 0
−8x1 + x10 ≤ 0
−8x2 + x11 ≤ 0
−8x3 + x12 ≤ 0
−2x4 − x5 + x10 ≤ 0
−2x6 − x7 + x11 ≤ 0
−2x8 − x9 + x12 ≤ 0
xi ≥ 0, i = 1, · · · , 13
xi ≤ 1, i = 1, · · · , 9, 13
xi ≤ 100, i = 10, · · · , 12.

Problem 3

min f (x) := x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + ...

4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7 + ...

7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45;
s.t. 4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0

10x1 − 8x2 − 17x7 + 2x8 ≤ 0
−8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0
5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0
0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0
x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0
−3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0
−10 ≤ xi ≤ 10, i = 1, · · · , 10.

Problem 4

min f (x) := (x1 − 10)3 + (x2 − 20)3

s.t. −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
(x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0
13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100.

Problem 5

min f (x) := (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + ...

10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7;

s.t. v1 + 3v22 + x3 + 4x2
4 + 5x5 − 127 ≤ 0

7x1 + 3x2 + 10x2
3 + x4 − x5 − 282 ≤ 0
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23x1 + v2 + 6x2
6 − 8x7 − 196 ≤ 0

2v1 + v2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

−10 ≤ xi ≤ 10, i = 1, · · · , 7
where v1 = 2x2

1, v2 = x2
2.

Problem 6

min f (x) := −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2

−(x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2

s.t. (x3 − 3)2 + x4 ≥ 4
(x5 − 3)2 + x6 ≥ 4
x1 − 3x2 ≤ 2
−x1 + x2 ≤ 2
x1 + x2 ≤ 6
x1 + x2 ≥ 2
0 ≤ x1 ≤ 6
0 ≤ x2 ≤ 8
1 ≤ x3 ≤ 5
0 ≤ x4 ≤ 6
1 ≤ x5 ≤ 5
0 ≤ x6 ≤ 10.

Problem 7

min f (x) := 37.293239x1 + 0.8356891x1x5 + 5.3578547x2
3 − 40792.141

s.t. −0.0022053x3x5 + 0.0056858x2x5 + 0.0006262x1x4 − 6.665593 ≤ 0
0.0022053x3x5 − 0.0056858x2x5 − 0.0006262x1x4 − 85.334407 ≤ 0
0.0071317x2x5 + 0.0021813x2

3 + 0.0029955x1x2 − 29.48751 ≤ 0
−0.0071317x2x5 − 0.0021813x2

3 − 0.0029955x1x2 + 9.48751 ≤ 0
0.0047026x3x5 + 0.0019085x3x4 + 0.0012547x1x3 − 15.699039 ≤ 0
−0.0047026x3x5 − 0.0019085x3x4 − 0.0012547x1x3 + 10.699039 ≤ 0
78 ≤ x1 ≤ 102
33 ≤ x2 ≤ 45
27 ≤ x3 ≤ 45
27 ≤ x4 ≤ 45
27 ≤ x5 ≤ 45.

Problem 8

min f (x) := −x − y

s.t. y ≤ 2x4 − 8x3 + 8x2 + 2
y ≤ 4x4 − 32x3 + 88x2 − 96x + 36
0 ≤ x ≤ 3
0 ≤ y ≤ 4.
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Problem 9

min f (x) := x1 + x2 + x3

s.t. −1 + 0.0025(x4 + x6) ≤ 0
−1 + 0.0025(−x4 + x5 + x7) ≤ 0
−1 + 0.01(−x5 + x8) ≤ 0
100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0
x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0
x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0
li ≤ xi ≤ ui, i = 1, · · · , 8

where l = 10 × (10, 100, 100, 1, 1, 1, 1, 1)
u = 1000 × (10, 10, 10, 1, 1, 1, 1, 1).

Problem 10

min
∑

1≤i< j<k≤n

(i + j)xix jxk + ( j + k)x2
i x2

j x
2
k

s.t. x4
1 + · · · + x4

n ≤ 1
where n = 15.

Problem 11

min
∑

1≤i< j<k≤n

xix jxk(1 + xi + x j + xk) + ix6
i + jx6

j + kx6
k

s.t. x4
1 + · · · + x4

n
2
≤ 1

s.t. x4
n
2 +1 + · · · + x4

n ≤ 1

where n = 16.

Problem 12

min
∑

1≤i< j<k≤ n
2

ixix jxk + jx n
2 +ix n

2 + jx n
2 +k + kxix jxk x n

2 +ix n
2 + jx n

2 +k

s.t. x4
1 + · · · + x4

n
2
≤ 1

x4
n
2 +1 + · · · + x4

n ≤ 1

where n = 20.

Problem 13

min f (x) := x2
1 + (x2 − 1)2

s.t. x2 − x2
1 = 0

−1 ≤ xi ≤ 1, i = 1, 2.

Problem 14

min f (x) := −12x1 − 7x2 + x2
2

s.t. −2x4
1 + 2 − x2 = 0

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3.
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Problem 15

min f (x) := (
√

n)n
n∏

i=1

xi

s.t.
n∑

i=1

x2
i − 1 = 0

0 ≤ xi ≤ 1, i = 1, · · · , n
where n = 20.
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