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Abstract. This article investigates internet commerce security applica-
tions of a novel combined method, which uses unsupervised consensus
clustering algorithms in combination with supervised classification meth-
ods. First, a variety of independent clustering algorithms are applied to a
randomized sample of data. Second, several consensus functions and so-
phisticated algorithms are used to combine these independent clusterings
into one final consensus clustering. Third, the consensus clustering of the
randomized sample is used as a training set to train several fast super-
vised classification algorithms. Finally, these fast classification algorithms
are used to classify the whole large data set. One of the advantages of this
approach is in its ability to facilitate the inclusion of contributions from
domain experts in order to adjust the training set created by consensus
clustering. We apply this approach to profiling phishing emails selected
from a very large data set supplied by the industry partners of the Cen-
tre for Informatics and Applied Optimization. Our experiments compare
the performance of several classification algorithms incorporated in this
scheme.

1 Introduction

The applications of clustering techniques to profiling phishing emails and web
sites is an important problem in internet commerce security, which has been
actively investigated recently. Various clustering algorithms have been used in
this context by many authors. To illustrate, here we refer to just a few recent
articles on this topic [7, 15, 16, 18].

This paper investigates a novel combined method, which at the same time
uses unsupervised consensus clustering algorithms as well as supervised clas-
sification algorithms. First, a variety of independent clustering algorithms are
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applied to a randomized sample of the data. Second, several consensus functions
and sophisticated algorithms are used to combine these independent clusterings
into one consensus clustering. Third, the consensus clustering of the randomized
sample is used as a training set to train several fast classification algorithms
on the consensus clustering of the initial sample. Finally, these fast supervised
classification algorithms are used to classify the whole large data set in order to
obtain final clustering.

This approach makes it possible to apply slow and most reliable clustering
methods at the initial stages to improve the accuracy. It increases the speed of
processing the whole large data set by incorporating fast algorithms in the final
stages. It facilitates the inclusion of contributions from the domain experts to
adjust the initial training set created by consensus clustering algorithms.

Our experimental investigation applies this approach to profiling phishing
emails selected from a very large data set supplied by the industry partners
of the Centre for Informatics and Applied Optimization. Our experimental re-
sults compare the efficiency of performance of several classification algorithms
incorporated in this approach.

The number k of clusters is chosen and fixed as an input parameter for
our algorithms. The question of how to vary this number and choose the most
appropriate one for any given application is not considered in the present article.

The outcomes obtained show that this method can be used as a novel way
of combining several clustering techniques in order to classify very large data
sets of phishing emails for subsequent forensic analysis based on the resulting
individual clusters.

The paper is organised as follows. Section 2 is devoted to the preprocessing
of data and extraction of features for clustering algorithms. Section 3 outlines
unsupervised clustering algorithms applied to obtain an initial clustering ensem-
ble for a small randomized sample of the data set. Section 4 describes consensus
functions and heuristics used to combine the ensemble into one final consensus
clustering. Section 5 deals with the supervised classification algorithms trained
on the consensus clustering. Section 6 summarizes the experimental results com-
paring the efficiencies of several classification algorithms in this setting.

2 Feature Extraction

Many authors have concentrated on the applications of machine learning algo-
rithms for classification and clustering of phishing emails, since phishing repre-
sents one of the most rapidly growing and changing areas of internet commerce
security. Phishing usually involves acts of social engineering attempting to ex-
tract confidential details by sending emails with false explanations urging users
to provide private information that will be used for identity theft. The users may
be requested to reply to the email, or visit a bogus web site, where they are asked
to enter personal details, such as credit card numbers, tax file numbers, bank
account numbers and passwords. More comprehensive information concerning



phishing is presented, for example, by the Anti-Phishing Working Group [2] and
OECD Task Force on Spam [19].

We have undertaken experimental investigation of this novel approach to
clustering, outlined in Section 1, for a sample of 3276 emails randomly selected
from a very large data set of phishing messages supplied by the industry partners
of the Centre for Informatics and Applied Optimization. A flexible preprocessing
and feature extraction system has been implemented in Python for the purposes
of this investigation. It has been used to extract features concerning the content
and structure of the emails, and hyperlinks embedded in the text.

Following [12], we used the term frequency–inverse document frequency word
weights, or TF-IDF weights, as features for the clustering. These weights are
defined using the following concepts and notation. Suppose that we are extract-
ing features from a data set E, which consists of |E| messages. For a word w
and a message m, let N(w,m) be the number of times w occurs in m. Suppose
that a collection T = {t1, . . . , tk} of terms t1, . . . , tk is being looked at. The
term frequency of a word w ∈ T in a message m is denoted by TF(w,m) and is
defined as the number of times w occurs in m, normalized over the number of
occurrencies of all terms in m:

TF(w,m) =
N(w,m)∑k
i=1N(ti,m)

(1)

The document frequency of the word w is denoted by DF(w) and is defined as
the number of messages in the given data set where the word w occurs at least
once. The inverse document frequency is used to measure the significance of each
term. It is denoted by IDF(w) and is defined by the following formula

IDF(w) = log

(
|E|

DF(w)

)
. (2)

The term frequency–inverse document frequency of a word w in message m, or
TF-IDF weight of w in m is defined by

TF-IDF(w,m) = TF(w,m)× IDF(w,m). (3)

We collected a set of words with highest TF-IDF scores in all messages of the
data set. For each message, the TF-IDF scores of these words in the message
were determined. These weights and additional features were assembled in a
vector. In order to determine the TF-IDF scores we used Gensim, a Python and
NumPy package for vector space modelling of text documents.

In addition we used the following features reflecting the syntactic structure
of the messages:

• number of html tags in the message;
• number of links in the message;
• number of mismatched links, where the visible link is different from the

hyperlink reference;
• number of scripts included in the message;



• number of tables in the message;
• number of embedded images;
• number of attachments to the message.

These features were assembled in an algebraic vector space model represent-
ing the data set. A number of independent initial clusterings were then obtained
for the feature vectors of the messages in the sample using the following cluster-
ing algorithms.

3 Independent Initial Clusterings

The standard k-means clustering algorithm is described, for example, in [10],
Section 3.3.2, and [24], Section 4.8. This algorithm randomly chooses k mes-
sages as centroids of clusters at the initialization stage. Every other message is
allocated to the cluster of its nearest centroid. After that each iteration finds new
centroids of all current clusters as a mean of all members of the cluster. This is
equivalent to finding the point such that the sum of all distances from the new
centroid to all other sequences in the cluster is minimal. Then the algorithm
reallocates all points to the clusters of the new centroids. It proceeds iteratively
until the centroids stabilize. The outcomes of the algorithm often depend on
the initial selection of the very first centroids. We used the following two more
advanced algorithms, which overcome this dependence.

First, we used the well-known Global k-Means algorithm, GKM, introduced
in [17]. It overcomes the dependence on the initial choice of the centroids. It
starts with just one centroid, which is taken as the mean of all points in the data
set. Then the algorithm proceeds inductively. Suppose that i centroids have been
found, for some i < k. Each of the given points in the data set is then chosen in
turn and used as an (i + 1)-st initial centroid. For each of these choices of the
additional centroids, the standard k-means algorithm is then run to partition
the data set into i + 1 clusters. After that, all of the resulting partitions are
compared with each other.

In order to evaluate each partition C, the algorithm uses the sum of squares
of the distances from all points to the centroids of their clusters in the clustering
C. This sum is denoted by GKM(C). The sum is taken over all clusters of the
partition. Each cluster contributes the summand equal to the sum of all squared
distances from all elements of the cluster to the centroid of the cluster. If a
clustering C = C1∪̇ . . . ∪̇Ci+1 is a disjoint union of the clusters C1, . . . , Ci+1,
where each cluster Cj has a centroid mj , then

GKM(C) =

i+1∑
j=1

∑
x∈Cj

||x−mj ||2. (4)

The partition which minimizes (4) is chosen as the best clustering with i + 1
clusters. The global k-means algorithm continues this process iteratively until
it finds a partition into k clusters. Notice that the Modified Global k-means



algorithm, MGKM, developed in [3], can be used to increase the efficiency of the
GKM algorithm for large data sets.

Second, we used a modification of the Multiple Start k-Means algorithm,
MSKM, considered in [3], [9] and [11]. The standard MSKM clustering algorithm
selects many random sets of initial centroids, runs the k-means algorithm for
each of them, and chooses the partition minimizing the sum-of-squares objective
function (4). The purpose of our investigation, however, is to find an optimal
consensus among versatile clusterings. We have tried to include various different
independent clusterings in the scheme. Since we have already included the global
k-means algorithm minimizing the sum-of-squares (4), adding other algorithms
concentrating on this objective function could skew the resulting outcome.

Instead, we modified the MSKM algorithm and used the following Consensus
Multiple Start k-Means algorithm, CMSKM. It makes 50 random selections of
the initial centroids, runs the standard k-means algorithm, and then finds an
aggregated consensus clustering of the resulting 50 k-means clusterings. To find
the consensus clustering we used the simplest cluster-based similarity partition-
ing algorithm, CSPA, described in [9]. It places two messages in the same cluster
if they belong together to one cluster in the majority of the clusterings of the
ensemble.

Third, we used a version of hierarchical agglomerative clustering algorithm
known as the Nearest Neighbour clustering, NN, see [10], Section 3.3.7, [11] and
[24], Section 4.7. It never merges large clusters, and only amalgamates separate
messages, i.e. singleton clusters, to other clusters at each step. Given the number
k of clusters to be found, it chooses k random messages as representatives of the
clusters. For every other message m in the data set, it considers all messages
which have already been assigned to the clusters and finds the nearest neighbour
of m among these messages. The message m is then allocated to the cluster of
its nearest neighbour. This continues until all messages are allocated to clusters.
The outcome of the algorithm strongly depends on the initial random choice of
the very first representatives. This is why it is very seldom used in this form.

In order to overcome the dependence on the initial random selection, as
recommended in [9], we made 50 uniformly distributed selections of the initial
representatives, run the nearest neighbour clustering algorithm for each of them,
and then found a common consensus clustering of all the resulting clusterings, us-
ing the CSPA consensus aggregation algorithm again. Here we call the resulting
procedure the Consensus Multiple Start Nearest Neighbour clustering algorithm,
CMSNN.

Fourth, we looked at the k-Committees clustering method considered in [25]
for a data set of DNA sequences. For a very small positive integer r = 2, 3, ...,
it finds a very special set of r elements in each class, called the committee of r
representatives of the class, or simply the committee of the class. The committee
of a cluster C is defined as a set of r points x1, . . . , xr defined as a solution to
the following optimization problem:

minimize max
y∈C

(
min

i=1,...,r
||xi − y||

)
subject to x1, . . . , xr ∈ C, (5)



see [25], Section 5.

Every new message is then allocated to the class of its nearest committee
member, see [25]. The training stage of the k-committees algorithm is not scal-
able, and this is why it has not been used in practice. However, after the com-
pletion of the training, the algorithm runs fast. Our scheme makes it possible to
apply this algorithm, since it has to be trained with a fairly small initial sample
only.

In order to overcome the dependence of this algorithm on the initial choice
of starting committees, we run it for 50 randomized selections of these represen-
tatives, and for small values of r from 2 to 6 representatives in each committee.
Then we applied the CSPA consensus aggregation algorithm as above to combine
the resulting ensemble into one clustering. In the present article this procedure
is called the Consensus Multiple Start k-Committees algorithm, CMSKC.

4 Consensus Functions for Ensemble Clusterings

The process of finding the combined consensus clustering has also been divided
into two substages. During the first substage several independent initial clus-
terings were ensembled using various consensus functions. This has produced
a number of very similar consensus clusterings. During the second substage a
fairly simple and fast consensus heuristic was used to combine them all into one
common final consensus clustering.

During the first substage, given an ensemble of several independent cluster-
ings on one and the same data set, consensus functions were applied to form new
common consensus clusterings. Here we use the methods described, for example,
in [5, 20, 23]. Let us denote the data set being investigated by

D = {d1, d2, ..., dn}. (6)

The clustering ensemble on this data set will be denoted by

C = {C(1), C(2), . . . , C(k)}, (7)

where, for each clustering C(i), the whole set D is a disjoint union of the classes
in this clustering so that

C(i) = {C(i)
1 , C

(i)
2 , . . . , C

(i)
ki
}, (8)

D = C
(i)
1 ∪̇C

(i)
2 ∪̇ . . . ∪̇C

(i)
ki

(9)

for all i = 1, . . . , k.

Looking at the features described in Section 2, we applied several different
clustering algorithms outlined in Section 3 to obtain initial clusterings. The fol-
lowing consensus functions and algorithms were invoked to combine the resulting



cluster ensemble into one consensus clustering:

ALCH − Average Link Consensus Heuristic,

CBGF − Cluster-Based Graph Formulation,

CCPH − Consensus Clustering Pivot Heuristic,

HBGF − Hybrid Bipartite Graph Formulation,

IBGF − Instance-Based Graph Formulation,

KMCF − k-Means Consensus Function.

All these consensus clustering algorithms have been compared for numerous data
sets in [5, 6, 20]. Here we include only a brief summary of these methods, and
refer to [1], [5] and [9] for more details.

Average Link Consensus Heuristic, ALCH, is an agglomerative clustering
algorithm described in [9]. It starts off with a partition where every element
belongs to its own separate singleton cluster. For each pair of elements i, j,
the proportion pij of the initial consensus clusterings which cluster i and j in
different clusters is determined. Then the algorithm finds two clusters with the
smallest average distance and merges them together into one new cluster. This
is repeated until the two closest clusters have average distance greater than the
set threshold τ = 1/4.

Cluster-Based Graph Formulation, CBGF, is a graph-based consensus func-
tion. It defines a complete weighted undirected graph on the set of vertices
consisting of all the given clusters. The weight of each edge of this graph is de-
termined by a measure of similarity of the clusters corresponding to the vertices.
Namely, for two clusters C ′ and C ′′ the weight of the edge (C ′, C ′′) can be set
equal to

w((C ′, C ′′)) =
|C ′ ∩ C ′′|
|C ′ ∪ C ′′|

, (10)

known as the Jaccard index or Jaccard similarity coefficient, see [21], Chapter 2.
In order to ensure that clusters which have a lot of elements in common are
grouped together, the edges with lowest weights are then eliminated by applying
a graph partitioning algorithm. Each element is then allocated to the new final
cluster where it occurs most frequently.

Consensus Clustering Pivot Heuristic, CCPH, is an agglomerative clustering
algorithm described in [1]. It chooses a pivot element i uniformly at random
from the unclustered elements. It finds all elements j such that the proportion
pij of the given initial clusterings in the ensemble, which cluster i and j in
different clusters, does not exceed the threshold value τ = 1/2, and places all of
these elements j in the same cluster with i. This continues until all elements are
clustered.

Hybrid Bipartite Graph Formulation, HBGF, is a consensus function based on
a bipartite graph. It has two sets of vertices: clusters and elements of the data set.
A cluster C and an element d are connected by an edge in this bipartite graph if



and only if d belongs to C. (The weights associated to these edges may have to be
chosen as very large constants if the particular graph partitioning algorithm does
not allow zero weights and can handle only complete graphs.) An appropriate
graph partitioning algorithm is then applied to the whole bipartite graph, and
the final clustering is determined by the way it partitions all elements of the
data set. We used METIS graph partitioning software described in [14].

Instance-Based Graph Formulation, IBGF, is also a consensus function based
on a complete undirected weighted graph. Vertices of the graph are all elements
of the data set. The edge (d′, d′′) has weight given by the formula

w((d′, d′′)) =
∑

i=1,...,k; Ci(d′)=Ci(d′′)

1/k,

where Ci(x) stands for the cluster containing x in the i-th clustering. This means
that w((d′, d′′)) is the proportion of clusterings where the clusters of d′ and
d′′ coincide. Then IBGF applies an appropriate graph partitioning algorithm
to divide the graph into classes. These classes determine clusters of the final
consensus clustering.

k-Means Consensus Function, KMCF, relies on the standard k-means algo-
rithm to produce final clustering. A complete explanation of this method is given
in [23]. KMCF uses the set of all clusters in all clusterings of the ensemble as

features for its feature vectors. For each element d ∈ D and each cluster C
(i)
j , the

C
(i)
j -th component of the feature vector of d is set to 1 if d belongs to C

(i)
j , and

it is set to 0 otherwise. The standard k-means clustering algorithm is then used
to cluster this set of feature vectors in order to find the consensus clustering.

During the second substage all the resulting consensus clusterings described
above have been combined into one common consensus clustering using a very
simple Majority Rule heuristic described in [9]. It is also known as the quote rule,
see [8]. The Majority Rule is an agglomerative clustering algorithm, which starts
with a partition where every element belongs to a separate singleton cluster.
For each pair of elements i and j it computes the proportion pij of the initial
consensus clusterings which cluster i and j in different clusters. If pij is less than
a threshold value τ , then the current clusters containing i and j are combined
together into one cluster. In our problem we used τ equal to the half of the total
number of the consensus clusterings being combined.

5 Supervised Classification Algorithms

The resulting consensus clustering described in Section 4 was used to train the
following fast supervised classification algorithms.

First, we used the k-means classification algorithm considered, for example,
in [25] for a data set of DNA sequences. It finds the centroids of all clusters in the
training set, and then allocates every new message to the cluster of its nearest



centroid (see [4], Chapter 4 and Section 10.4.3, [24], Chapter 4, and [22]). We
have incorporated this method into our scheme, because it is very fast.

Second, we used the simplest and fastest nearest neighbour classification
algorithm. It utilizes the clusters of the training set, called the prototypes or
exemplars, see [4], Chaper 4, and [24], Section 6.4. The algorithm allocates every
new message to the class of its nearest exemplar.

Finally, we used the k-committees classification algorithm considered in [25]
for a data set of DNA sequences, see also [13]. For a very small positive integer
r, it also finds a committee of the class. The committee of C is again defined as a
set of points x1, . . . , xr, which are found as a solution to the optimization prob-
lem (5). The committees have to be found only for the small training set created
by the consensus clustering. Training stage of the k-committees algorithm is not
scalable. In our scheme the algorithm only has to be trained on the relatively
small training set, and this is why it can be incorporated in the scheme. In order
to classify new messages after the training, the algorithm allocates every new
message to the class of its nearest committee member, and can be executed very
fast, since the number of the representatives in each committee is a very small
and fixed positive integer.

6 Experimental Results

We have carried out experimental investigation of the novel approach to cluster-
ing for a sample of 3276 emails randomly selected from a very large data set of
emails supplied by the industry partners of the Centre for Informatics and Ap-
plied Optimization. All of these emails have already been classified as phishing
messages by the information security group of our industry partners. Many of
these emails contain both text and hyperlinks and include HTML script, tables
and images.

A flexible preprocessing and feature extraction system has been implemented
in Python for the purposes of this investigation. It has been used to extract
features concerning the content and structure of the emails, and hyperlinks em-
bedded in the text as described in Section 2.

First, we found combined consensus clustering for the whole data set, fol-
lowing the procedure described in Section 4. Second, this clustering was used
as a benchmark to determine the accuracy of the performance of several clas-
sification algorithms incorporated into the scheme. We used ten times tenfold
cross validation to evaluate the accuracy of our multistage scheme. Each of the
ten times, the data set was divides into ten equal parts, nine parts were used
as a training set, and one part was used as a testing set. We run the combined
consensus clustering procedure on the training set to prepare input for train-
ing as described in Section 4. After that the supervised classification algorithms
described in Section 5 were trained on the training set obtained. Our experi-
mental results compare the efficiency of the performance of these classification
algorithms presented in Section 5 after their training on the initial consensus
clustering data.



We used ten times tenfold cross validation to evaluate the accuracy of these
algorithms. The accuracy of their performance was then evaluated in compari-
son with the combined overall total consensus clustering obtained previously. It
is defined as the percentage of the messages in the test set which are classified
correctly. This was repeated ten times, and the average accuracy was then cal-
culated for each algorithm. The results of our experiments are summarized in
Table 1.

Accuracy of classification algorithms
w.r.t. consensus clustering

Algorithm Number of clusters
5 10 15 20

k-means 66.50 60.07 57.69 52.28
k-committees with r = 2 76.11 72.56 68.12 61.12

r = 3 83.23 77.44 73.24 70.58
r = 4 88.05 83.66 80.05 74.84
r = 5 91.35 87.86 80.07 78.49
r = 6 93.55 86.21 84.98 78.44

Nearest Neighbour 88.75 81.47 77.25 73.45

Table 1. Ten times tenfold cross validation.
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8 Conclusion

This article looked at a novel method for profiling phishing emails. First, a mul-
titude of independent clustering algorithms were used to a randomized sample of
the messages. Second, several consensus functions and sophisticated algorithms
were applied to combine these independent clusterings into one final consensus
clustering. Third, several fast supervised classification algorithms were trained
on the consensus clustering of the randomized sample. Finally, these fast clas-
sification algorithms classified the whole data set. This approach facilitates the
inclusion of contributions from domain experts via adjusting the training set
created by consensus clustering. We applied this approach to a set of phishing
emails provided by the industry partners of the Centre for Informatics and Ap-
plied Optimization. The experimental results show that the nearest neighbour
and the k-committees algorithms achieve much better accuracy in this scheme,



compared with the k-means algorithm, and the k-committees algorithm outper-
forms the nearest neighbour on the average. It has also been demonstrated that
the scheme can be used in practice. If required, then it has the potential to
facilitate the inclusion of contributions form domain experts for adjusting the
training set produced by consensus clustering algorithms. Another advantage of
our approach is in its ability to combine highly accurate consensus clustering
techniques with fast and simple classification algorithms in one scheme.
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