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Abstract 

Marine currents have been identified as a considerable renewable energy source. Therefore, in recent years, research 
on optimising tidal stream farm layouts in order to maximise power output has emerged. Traditionally, computational 
fluid dynamics (CFD) models are used to model power output, but their computational cost is prohibitive within an 
optimisation algorithm. This paper uses surrogate models in place of CFD simulations to optimise the layout of tidal 
stream farm layouts. Surrogates are functions which are designed to emulate the behaviour of other models with 
radically reduced computational expense. Two surrogate models are applied and compared: artificial neural network 
(ANN) and k-nearest neighbours regression (k-NN). We measure their suitability by four criteria: accuracy, efficiency, 
robustness and performance within an optimisation algorithm. The results reveal that the ANN surrogate is superior 
in every criteria to the k-NN surrogate. However, the k-NN surrogate is also able to perform adequate optimisation. 
Finally, we demonstrate that optimisation relying solely on surrogate models is a viable approach, with dramatically 
reduced computational expense of optimisation. 
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1. Introduction 

Energy extraction from tidal streams has been the subject of increased research efforts over the past few years. To 
extract an economically viable amount of energy, hundreds of tidal turbines are required in arrays within a tidal farm 
[1]. In prior research (for example, [2, 3]), when optimising the layouts of such tidal farms in order to maximise power 
output, computational fluid dynamics (CFD) models have been used to calculate the energy yield and to understand 
flow interactions between individual turbines. 

However, these CFD simulations may become computationally prohibitive especially as the fidelity of the model 
and the number of devices increase. Two broad approaches are currently applied to reduce computational cost. Firstly, 
pseudo elements are used to represent turbines in the model, which reduce computational burden yet are still able to 
satisfactory reproduce flow structures. They include, for example, actuator discs [4, 5], friction elements [1, 2] and 
frozen rotors [3]. Secondly, simplified CFD models are applied, which reduce dimensionality of complex three-
dimensional (3D) flows [1, 6] and/or linearize governing flow equations [2]. In spite of the above measures, CFD 
simulations still represent a significant computational expense, even for small arrays of turbines. 

An alternative approach is proposed in this paper, which replaces 3D CFD simulations in an optimisation algorithm 
with a surrogate model. Surrogate models (metamodels) were introduced by Blanning in 1975 [7] and their foremost 
advantage is a substantially reduced computational cost in comparison with simulation models such as CFD models. 
Surrogate models do not approximate the system's mechanisms. Instead, they model the relationship between the 
inputs (i.e. decision/control variables) and the outputs (i.e. state variables) of the original model [8]. Surrogate models 
can subsequently be used as objective functions in order to calculate a solution's “fitness” in place of the original 
model in an optimisation algorithm. 

This paper is believed to be one of the first applications of the surrogate model to replace the 3D CFD simulation 
in tidal farm optimisation. Two different types of surrogate model are compared: an artificial neural network (ANN) 
and k-nearest neighbours regression (k-NN). These models are used because they have been shown to provide good 
performance in other applications with computationally intensive objective function evaluation [8, 9]. These surrogate 
models are trained on limited data produced by a 3D CFD model and compared according to four criteria: their (i) 
accuracy, (ii) efficiency, (iii) robustness and (iv) performance within an optimisation algorithm. 

2. Turbine and tidal stream farm layout 

The Momentum-Reversal-Lift (MRL) turbine [10], which is in the prototype stage, is used (Fig. 1). The MRL 
turbine has been designed for tidally reverse current conditions (i.e. estuaries). The turbine rotates around its horizontal 
axis and has three horizontally oriented blades which rotate around both turbine’s primary axis and their own blade 
axes. The diameter (D) of the prototype turbine is 0.2 m and length (L) is 0.3 m. In relation to depth of stream flow, 
the turbine is designed to operate while floating below water level and anchored to the estuary bed. 

Fig. 1. Momentum-Reversal-Lift turbine. 

A staggered tidal farm layout (Fig. 2) is used as it is hypothesised to produce higher power output [11]. A cluster 
of only four turbines arranged in three rows is represented in a 3D CFD model. This limits the simulation time so it is 
possible to generate enough data in a reasonable time frame. The model represents turbine T1 in the first row, half 
turbines T2 and T3 in the second row and turbine T4 in the third row. The model was developed as part of previous 
work [11, 12]. It implements a symmetry boundary, which intersects turbines T2 and T3, to potentially expand the 
number of devices in the lateral direction beyond the current CFD model domain. 
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Fig. 2. Layout of tidal farm CFD modelling domain. 

3. Optimisation problem 

3.1. Decision variables 

The optimisation problem includes five continuous decision variables, Fb (N) for , Dx (m) and Dz (m). 
The variables Fb are the body forces on the turbines in the row. The body force is the defining parameter of 
a pseudo element in the CFD model which represents the resistance of each turbine on the flow. The turbines T2 and 
T3 are on the same row and therefore have identical body forces: F2. Dx and Dz are distances between the turbines, in 
the longitudinal and lateral direction, respectively (see Fig. 2). 

3.2. Constraints 

There are two classes of constraints. The first class of constraint is defined by fluid dynamics laws such as 
conservation of mass of flow (Eq. 1) and conservation of momentum (Eq. 2). These constraints are controlled by the 
3D CFD model. The second class represents constraints on the decision variables (Eq. 3-5). These limit the domain 
of the solution space according to lower and upper bounds based on previous work [11, 12] 

where the bar  defines the resolved scales;  is the filtered velocity;  is the fluid density;  is the filtered 
pressure;  is the Kronecker-delta;  is a constant streamwise pressure gradient;  is a kinematic viscosity; 

 is the strain rate of the resolved scales;  is the sub-grid scale Reynolds stress; g is the acceleration due to gravity; 
 is the body force; Dx and Dz are the longitudinal and lateral distances between turbines, respectively. 

3.3. Objective function 

The objective, which is to be maximised, represents a total power PT (W) extracted by all turbines from water flow, 
and is written as: 



1135 William Ogaday Willers Moore et al.  /  Procedia Engineering   154  ( 2016 )  1132 – 1139 

where PT1, PT4 and PT2, PT3 (W) is the power extracted by turbines T1, T4 and half turbines T2, T3, respectively. 

3.4. Formulation of optimisation problem 

The final single-objective optimisation problem is formulated as maximisation of a total power extracted by all 
four turbines from water flow as follows: 

4. Solution methodology 

The methodology to solve an optimisation problem (Eq. 7) is schematised in Fig. 3. The optimisation algorithm 
calls on the surrogate model to evaluate the decision variables and approximate the state variables (power output) 
which is fed to the objective function. The novelty of this method is that it relies solely on the surrogate model within 
the optimisation loop. This approach is in contrast to previous studies [8, 13], which use the original simulation model 
to continually update the surrogate model as optimisation progresses. Therefore, our surrogate models ‘stand alone’ 
and are not retrained according to the original 3D CFD model during optimisation. The benefit of this approach is 
enormously increased speed of optimisation. 

Fig. 3. Solution scheme. 

4.1. Genetic algorithm (GA) 

GAs are a class of widely applied [14] stochastic optimisation techniques which find an optimal solution by 
simulating the process evolution. They use a population of solutions, a selection criteria based upon fitness and random 
variation to create a survival of the fittest process over multiple iterations. After tuning, the parameters were selected. 
Ultimately, the GA was run with population size of 200, probability of two point crossover of 0.8, and probability of 
mutation of 0.1. The mutation operator used was Gaussian variation with a mean of zero and standard deviation of 
0.1, and was limited by the constraints in decision variables (Eq. 3-5). The algorithm was set to run for 60 iterations, 
but the optimisation often converged long before that limit. The solution space was technically infinitely large, as the 
decision variables were continuous. However, changes in the variables with magnitudes of order  do not affect 
the outcome of the simulation drastically. Finally, the optimisation was run 30 times for each surrogate in order to 
reduce the impact of the initial population on the optimal solution (the same random seeds were used per run for each 
surrogate). The GA was implemented in Python using the DEAP library [15]. 

4.2. Surrogate models 
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Two surrogate models, ANN and k-NN, are used to approximate results of the 3D CFD model of a tidal farm. We 
use the CFD model built previously by [11, 12] in OpenFOAM to generate the data needed to construct the surrogate 
models. The data was bounded and feature scaled using the constraints on the decision variables given by equations 
(3) to (5). The surrogate models were designed to produce one output value as defined by the objective function, which 
is a total power PT (W) extracted by all turbines from water flow. 

Running the 3D CFD model is computationally costly, with each simulation taking more than three days on facility 
hardware, so the final data set consists of only 329 data samples. For the purpose of surrogate model development, 
this data set was subsequently divided into training and validation (containing 300 data samples), and testing 
(containing 29 data samples) subsets. Part of the data set used was generated for previous research [13] and the 
majority was generated according to Latin Hypercube Sampling. However, due to difficulty of working with the model, 
most inputs were discrete values. A necessary consideration when dealing with surrogate models is that the original 
model is not perfect, and that optimisation might push the search into areas for which the model was not calibrated. 

4.2.1. Artificial neural network (ANN) 
ANNs have been proved to be able to successfully approximate computationally intensive simulation models in 

a variety of water resource applications [16]. They approximate functions based upon a principle of real neurological 
structures and can be represented as directed graphs including an input layer, a number of hidden layers and an output 
layer. The ANN surrogate was implemented as a feedforward multilayer perceptron in Python using the Keras library 
[17]. After systematic search, it was decided to use one hidden layer with seven neurons with the Tanh activation 
function. 

ANN training is essentially an optimisation problem to find the optimal weights in order to reduce the error in its 
approximation of a CFD model. Therefore, mean square error (MSE) was minimised in training. In this paper, full 
batch training for 10,000 epochs and a gradient-based optimisation algorithm ADAM [18] were used. ADAM 
outperformed other popular algorithms, such as stochastic gradient descent due to its ability to manage noisy data. 

4.2.2. K-nearest neighbors (k-NN) 
K-NN regression is a simple non-parametric approach to regression [19]. K-NN considers the closest k neighbours 

in the training set to a point whose value is to be approximated. The point is evaluated to be the sum of the values of 
the k-nearest points. A Python implementation in Scikit-Learn [20] was used. The value for k was set at 2, training 
data and input values were sphered to decorrelate the variables and the k-closest points were weighted by distance in 
order to improve approximation. 

4.3. Comparison of surrogate models 

The surrogate models are compared across four criteria: their (i) accuracy, (ii) efficiency, (iii) robustness and (iv) 
performance within an optimisation algorithm. These criteria are specified by the following metrics: 

Accuracy is a measure of the error in approximations of the test data by the surrogate model. MSE and the 
coefficient of determination (R2) are used as metrics to compare accuracy of surrogate models. 
Efficiency is a measure of the ability of the surrogate model approximate state variables quickly. The average 
evaluation time for 1,000 evaluations and the average optimisation time are used as metrics to compare the 
efficiency.
Robustness reflects the ability of a surrogate model to perform in a stable manner under various circumstances 
(such as different initial populations) within an optimisation algorithm. The standard deviation in the power output 
of the optimal solution over 30 optimisation runs is used to compare the robustness of the surrogate models. 
Performance within an optimisation algorithm measures the ability of a surrogate model to reach an optimal 
solution. This criteria compares the best solution found by each surrogate within optimisation. 
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5. Results 

The results for comparing the surrogate models are contained in Table 2. With respect to the first criteria, accuracy, 
the ANN surrogate outperforms k-NN for approximating the results of the CFD model in both metrics (i) MSE (lower 
is better) and (ii) R2 (closer to 1 is better). These results are supported by Fig. 4, which compares the power output 
simulated by the CFD model and the power output approximated by the surrogates. In this figure, points closer to the 
diagonal line demonstrate the ability of the surrogate to represent the CFD simulation more accurately. Fig. 4(a) and 
Fig. 4(c) show the approximations on the training data for ANN and k-NN, respectively, when performing 10-fold 
cross validation. Fig. 4(b) and Fig. 4(d) show the approximations on the test solutions by the ANN and k-NN 
surrogates, respectively.  

Similarly for efficiency, ANN outperforms k-NN as both metrics (i) time of 1,000 approximations and (ii) time to 
find an optimal solution have lower values for the ANN than the k-NN surrogate model. Advantageously, both times 
for ANN and k-NN are many orders of magnitude faster than the CFD simulation run times, which dramatically 
reduces the computational expense of the optimisation. It is worth noting that the k-NN surrogate is faster to train than 
the ANN surrogate. Because both models can be trained in a matter of seconds, this point should not overly influence 
a preference for one surrogate over the other. 

Concerning robustness, standard deviation shows a flaw in the k-NN surrogate model. Once a solution reaches 
a certain area of the solution space, it is assigned the fitness of the closest point. This means that the optimisation 
algorithm is unable to discriminate between multiple solutions within the same region. Although robustness is 
compared according to “lower is better”, it is evident that the k-NN surrogate is less robust because it is unable to 
converge on an identical solution, unlike ANN. 

With regard to performance, while the k-NN model predicts a higher power output for its optimal solution, the 
power output is identical to the best solution in the training set. That means, in conjunction with the superior accuracy, 
that the optimal solution found by ANN is much more reliable. Hence, without further validation, the ANN surrogate 
is better in performance than the k-NN surrogate. 

In summary, ANN is a superior surrogate to k-NN in every metric and criteria. 

Table 2. Comparison of surrogate models. 

Criteria Accuracy Efficiency Robustness Performance 

Metrics  MSE R2 Time of 1,000 
approximations (s)*

Time to find an optimal 
solution (s)** 

Standard 
deviation 

Optimal solution 
found PT (W)*** 

Artificial neural 
network (ANN) 

3.465 0.928 0.002 0.236 0.185 36.846

k-nearest
neighbours (k-NN) 

9.236 0.839 0.192 0.590 0.065 37.465

Note: *Average over 100 times. **Average over 30 optimisation runs. ***The best solution found in 30 optimisation runs. 

6. Discussion 

We have demonstrated that optimisation relying solely on surrogate models (in place of CFD simulations) is 
a viable approach. The benefits are that after the initial training of a surrogate model, optimisation is not gated by the 
simulation time of a CFD, thus the optimisation itself is trivially fast compared to one CFD simulation. Furthermore, 
because the training data can be produced independently of itself, the training simulations can be run completely in 
parallel. This is in contrast to an optimisation process requiring validation within each generation, because each 
validation is dependent on previous generations, so it is strictly sequential with optimisation time growing as a product 
of CFD simulation time and the number of generations. Another advantage is that unlike in previous studies [13] the 
optimisation process used is completely automated, which is not possible when using the CFD model for validation 
as it requires manual validation. 
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Fig. 4. Approximation of total power extracted PT (W) by surrogate models. 

The drawbacks of this approach are mostly related to the accuracy of the surrogate models. By definition, the GA 
is not finding the optima in the CFD simulation, but in the ANN or k-NN model. Correspondingly, accuracy has 
a direct impact on the ability of the surrogates to perform well. 

The ANN surrogate model was identified as superior in every criteria to the k-NN surrogate model. Most 
importantly, the optimal solution found by ANN was the most reliable. The disadvantage of k-NN is that it is unable 
to discriminate effectively between different solutions. In contrast, the ability of the ANN surrogate to do so allows 
the optimisation to converge towards an optimal solution, as each genetic variation, through mutation or crossover, 
creates a change in fitness. 

Further research could include an application to a more realistic case study. However, a new CFD model would be 
required. Currently, we use a model which represents a cell of turbines with mirrored boundary conditions in the 
lateral direction. It also has fixed water velocity and constant depth. An advanced CFD model could include velocities 
matching the tidal range, real estuary bathymetry and the capability to represent the whole farm. Then the ability of 
the proposed methodology using surrogate models could be evaluated in a more industry applicable situation. The 
authors also recommend future studies analyse the use multiple objectives to diversify the selection and produce more 
varied solutions. 

7. Conclusion 

This paper compared two surrogate models, ANN and k-NN, by their ability to replace 3D CFD simulations in 
optimisation of tidal stream farm layout. The optimisation problem maximised the total power extracted by turbines 
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from water flow. The solution methodology integrated an optimisation algorithm (GA) with a surrogate model, either 
ANN or k-NN, which were subsequently compared. Due to computational expense of a 3D CFD model, the surrogate 
models were developed using a limited amount of data generated a priori by the CFD model. 

Two surrogate models were compared by four criteria: their accuracy, efficiency, robustness and performance 
within an optimisation algorithm. This comparison revealed that the ANN surrogate model is superior in each criteria 
to the k-NN surrogate model, because it is able to approximate a 3D CFD model more accurately, efficiently and 
robustly. Furthermore, the ANN surrogate consistently converged on an optimal solution while k-NN was unable to 
discriminate between similar solutions. Ultimately, we demonstrated that optimisation relying solely on surrogate 
models is a viable approach, with dramatically reduced computational expense per optimisation iteration. 

Recommendations for future research include an application of the proposed methodology using surrogate models 
(in place of CFD simulations) to a more realistic case study and implementation of multiple objectives into an 
optimisation model. 
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