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Abstract

The Moore bound constitutes both an upper bound on the order of a graph of
maximum degree d and diameter D = k and a lower bound on the order of a graph
of minimum degree d and odd girth g = 2k + 1. Graphs missing or exceeding the
Moore bound by ǫ are called graphs with defect or excess ǫ, respectively.

While Moore graphs (graphs with ǫ = 0) and graphs with defect or excess 1 have
been characterized almost completely, graphs with defect or excess 2 represent a
wide unexplored area.

Graphs with defect (excess) 2 satisfy the equation Gd,k(A) = Jn +B (Gd,k(A) =
Jn−B), where A denotes the adjacency matrix of the graph in question, n its order,
Jn the n× n matrix whose entries are all 1’s, B the adjacency matrix of a union of
vertex-disjoint cycles, and Gd,k(x) a polynomial with integer coefficients such that
the matrix Gd,k(A) gives the number of paths of length at most k joining each pair
of vertices in the graph. In particular, if B is the adjacency matrix of a cycle of
order n we call the corresponding graphs graphs with cyclic defect or excess; these
graphs are the subject of our attention in this paper.

We prove the non-existence of infinitely many such graphs. As the highlight of
the paper we provide the asymptotic upper bound of O(64

3 d3/2) for the number of
graphs of odd degree d > 3 and cyclic defect or excess. This bound is in fact quite
generous, and as a way of illustration, we show the non-existence of some families
of graphs of odd degree d > 3 and cyclic defect or excess.

Actually, we conjecture that, apart from the Möbius ladder on 8 vertices, no
non-trivial graph of any degree > 3 and cyclic defect or excess exists.

Keywords: Moore bound, Moore graph, defect, excess, Chebyshev polynomial of
the second kind, cyclic defect, cyclic excess, Pell equation.

the electronic journal of combinatorics 17 (2010), #R143 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213009361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The terminology and notation used in this paper are standard and consistent with that
used in [6]. Therefore, in this section we only settle the notation and terminology that
could vary among texts.

The vertex set V of a graph Γ is denoted by V (Γ), its edge set by E(Γ), its girth by
g(Γ), its adjacency matrix by A(Γ) and its diameter by D(Γ); when there is no place for
confusion, we drop the symbol Γ. We often use the letter n to denote the order of Γ.

The identity matrix of order n is denoted by In, while by Jn we denote the n × n
matrix whose entries are all 1’s.

For a matrix A the set formed by its r + 1 distinct eigenvalues λi with respective
multiplicities mi is called the spectrum of A and is denoted by {[λ0]

m0 , . . . , [λr]
mr}. The

characteristic polynomial
∏r

i=0(x − λi)
mi of A is denoted by Ψ(A, x). For a graph Γ, we

often write Ψ(Γ, x) rather than Ψ(A(Γ), x). We denote the eigenspace of A corresponding
to the eigenvalue λ by Eλ(A).

We call a cycle of order n an n-cycle and denote it by Cn. If a graph Γ is a union
of m vertex-disjoint cycles, we consider the multiset of their r + 1 distinct lengths li
and respective multiplicities mi, and write that the cycle structure of Γ is cs(Γ) =
{[l0]m0 , [l1]

m1 . . . [lr]
mr} with m =

∑r
i=0 mi and n =

∑r
i=0 mili.

The degree of a polynomial P is denoted by deg(P ). As it is customary, we denote
the real Chebyshev polynomial of the second kind by Um(x) [17, pp. 3-5]. Recall that the
polynomial Um(x), defined on [−1, 1], satisfies the following recurrence equations.











U0(x) = 1

U1(x) = 2x

Um+2(x) = 2xUm+1(x) − Um(x) for m > 0 and x ∈ [−1, 1]

(1)

It is known that the Moore bound, denoted by Md,k and defined below, represents
both an upper bound on the order of a graph of maximum degree d and diameter D = k
and a lower bound on the order of a graph of minimum degree d and odd girth g = 2k +1
[3].

Md,k = 1 + d + d(d − 1) + . . . + d(d − 1)k−1

=

{

1 + d (d−1)k−1
d−2

if d > 2

2k + 1 if d = 2
(2)

Non-trivial Moore graphs (graphs whose order equals the Moore bound, with k > 2 and
d > 3) exist only for D = 2 (or equivalently, for g = 5), in which case d = 2, 3, 7 and
possibly 57 [1, 10].

By virtue of the rarity of Moore graphs, it is important to consider graphs which
are somehow close to the ideal Moore graphs. Graphs of maximum degree d, diameter
D = k and order Md,k − ǫ are called (d, D,−ǫ)-graphs, where the parameter ǫ is called
defect. Graphs of minimum degree d, odd girth g = 2k + 1 and order Md,k + ǫ are called
(d, g, +ǫ)-graphs, where the parameter ǫ is called the excess.
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Figure 1: All the non-trivial known graphs with defect 2: (a) the Möbius ladder on 8
vertices, (b) the other (3, 2,−2)-graph, (c) a voltage graph of the unique (3, 3,−2)-graph,
(d) the unique (3, 3,−2)-graph, (e) a voltage graph of the unique (4, 2,−2)-graph, (f) the
unique (4, 2,−2)-graph, (g) a voltage graph of the unique (5, 2,−2) graph, and (h) the
unique (5, 2,−2)-graph.

Graphs with defect or excess 1 were completely classified by Bannai and Ito [2]; for
any degree d > 2, the only graphs of defect 1 are the cycles on 2D vertices, while the only
graphs of excess 1 are the cocktail party graphs (the complement of d/2 + 1 copies of K2,
with even d).

However, for ǫ > 2 the story is quite different. For maximum degree 2 and diameter
D > 2 the path of length D is the only (2, D,−2)-graph. For degree > 3 and diameter
D > 2 there are only 5 known graphs with defect 2, all of which are shown in Figure 1.
For degree 2 there is no graph with excess 2, while for degree d > 3 and girth 3 the
complement of the cycle Cd+3 is the only graph with excess 2. For degree > 3 and odd
girth g > 5 there are only 4 graphs with excess 2 known at present (see Figure 2).

For those familiar with the theory of voltage graphs (see [9, Chapter 2]), in Figure 1 we
present the (3, 3,−2)-graph, the (4, 2,−2)-graph and the (5, 2,−2)-graph as lifts of voltage
graphs. The (3, 2,−2)-graph takes voltages on the group Z/5Z, while the (4, 2,−2)-graph
and the (5, 2,−2)-graph take voltages on the group Z/3Z. In all cases the undirected
edges have voltage 0 and the directed edges have voltage 1.

It is worth mentioning that we gave an alternative voltage graph construction of a
graph when this construction was simpler than the selected drawing of the graph. As
principle failed for the (3, 2,−2)-graphs, we omitted their respective voltage graph repre-
sentation.

It is not difficult to see that if D = k > 2 and ǫ < 1 + (d − 1) + . . . + (d − 1)k−1, a
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(a) (b)
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Figure 2: All the non-trivial known graphs with excess 2. (a) and (b) the only (3, 5, +2)-
graphs, (c) the unique (4, 5, +2)-graph (the Robertson graph), and (d) the unique
(3, 7, +2)-graph (the McGee graph).

(d, D,−ǫ)-graph must be d-regular. Similarly, if g = 2k + 1 > 5 and ǫ < 1 + (d − 1) +
. . . + (d − 1)k−1, a (d, g, +ǫ)-graph must be d-regular.

Henceforth we consider graphs with defect or excess 2, and to avoid trivial cases, we
only analyze graphs with degree > 3 and diameter > 2 for defect 2, and graphs with
degree > 3 and girth > 5 for excess 2. Note that all these graphs must be regular.

In a graph Γ with defect 2, if there are at least 2 paths of length at most D(Γ) from
a vertex v to a vertex u, then we say that v is a repeat of u (and vice versa). In this
case we have two repeats (not necessarily different) for each vertex of Γ. Then, we define
the defect (multi)graph of Γ as the graph on V (Γ), where two vertices are adjacent iff one
is a repeat of the other. Then, the defect graph is a union of vertex-disjoint cycles of
length at least 2. Similarly, in a graph Γ with excess 2, we define the excess graph of Γ
as the graph on V (Γ), where two vertices are adjacent iff they are at distance D(Γ) (with
g(Γ) = 2D(Γ) − 1). Therefore, the excess graph is a union of vertex-disjoint cycles of
length at least 3.

Next we present the cycle structure of the defect or excess graphs of the known non-
trivial graphs with defect or excess 2.

Cyclic structure of graphs of defect 2 For the Möbius ladder on 8 vertices cs =
{[8]1}, for the other (3, 2,−2)-graph cs = {[3]2, [2]1}, for the unique (3, 3,−2)-graph
cs = {[5]4}, for the unique (4, 2,−2)-graph cs = {[6]2, [3]1}, and for the unique
(5, 2,−2)-graph cs = {[3]6, [2]3}.
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Cyclic structure of graphs of excess 2 For the only (3, 5, +2)-graphs (depicted in
Figure 2 as (a) and (b)) we have that (a) cs = {[9]1, [3]1} and (b) cs = {[8]1, [4]1},
for the unique (4, 5, +2)-graph (the Robertson graph) cs = {[3]1, [12]1, [4]1}, and for
the unique (3, 7, +2)-graph (the McGee graph) cs = {[4]6}.

For a graph Γ of degree d with adjacency matrix A, we define the polynomials Gd,m(x)
for x ∈ R:











Gd,0(x) = 1

Gd,1(x) = x + 1

Gd,m+1(x) = xGd,m(x) − (d − 1)Gd,m−1(x) for m > 1

(3)

It is known that the entry (Gd,m(A))α,β counts the number of paths of length at most
m joining the vertices α and β in Γ; see [2, 10, 20].

Regular graphs with defect ǫ and order n satisfy the equation

Gd,D(A) = Jn + B (4)

and regular graphs with excess ǫ and order n satisfy the equation

Gd,⌊g/2⌋(A) = Jn − B (5)

where Jn is the n×n matrix whose entries are all 1’s, and B is a matrix with the row and
column sums equal to ǫ. The matrix B is called the defect or excess matrix accordingly.

For Moore graphs, the matrix B is the null matrix and (x−d)Gd,D(x) is their minimal
polynomial. For graphs with defect or excess 1, B can be considered as the adjacency
matrix of a matching with n vertices [2]. For a graph Γ with defect or excess 2, the matrix
B is the adjacency matrix of the defect graph (respectively, of the excess graph). With a
suitable labeling of Γ, B becomes a direct sum of matrices representing cycles Cl of length
l > 2 (respectively, l > 3).

A(C2) =

(

0 2
2 0

)

A(Cl) =













0 1 0 . . . 0 1
1 0 1 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . .
1 0 0 . . . 1 0













The previous point about the labelling of a graph Γ is illustrated in Figure 3, where
a (3, 2,−2)-graph is labelled such that the defect matrix B displays the aforementioned
structure.

For graphs with defect or excess 2, Equation (4) has been studied for diameter D = 2
[5, 8, 18], and Equation (5) has been studied for girths 5 and 7 [4, 7, 15].

If B is the adjacency matrix of a cycle of order n (i.e. B = A(Cn)), then the solution
graphs of Equations (4) and (5) are called graphs with cyclic defect and graphs with cyclic
excess, respectively.

Among all the known non-trivial graphs with defect or excess 2, only one has cyclic
defect, the Möbius ladder on 8 vertices [8], and none has cyclic excess.
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0 1 1 1 0 0 0 0

1 0 1 0 0 1 0 0

1 1 0 0 1 0 0 0

1 0 0 0 0 0 1 1

0 0 1 0 0 0 1 1

0 1 0 0 0 0 1 1

0 0 0 1 1 1 0 0

0 0 0 1 1 1 0 0

























B =

























0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 1 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 2

0 0 0 0 0 0 2 0

























Figure 3: Labelling of a (3, 2,−2)-graph that produces the desired structure of the corre-
sponding defect matrix B.

In this paper we focus on graphs with cyclic defect or excess. Basically, we deal with
the following problems:

Problem 1 Classify the graphs of degree d > 3, diameter D > 2 and order n such that
Gd,D(A) = Jn + A(Cn).

Problem 2 Classify the graphs of degree d > 3, odd girth g > 5 and order n such that
Gd,⌊g/2⌋(A) = Jn − A(Cn).

As Problem 1 was completely settled for D = 2 in [8], from now on, we assume D > 3.
The main result of the paper is the provision of the asymptotic upper bound of

O(64
3
d3/2) for the number of graphs of odd degree d > 3 and cyclic defect or excess.

This bound turns out to be quite generous as our next results show. There are no graphs
of degree 3 or 7, for diameter > 3 and cyclic defect or for odd girth > 5 and cyclic excess,
nor any graphs of odd degree > 3, girth 5 or 9 and cyclic excess. Other non-existence
outcomes are the non-existence of graphs of any degree > 3, diameter 3 or 4 and cyclic
defect; and graphs of degree ≡ 0, 2 (mod 3), girth 7 and cyclic excess.

To obtain our results we rely on algebraic methods, specifically on connections between
the polynomials Gd,m(x) and the classical Chebyshev polynomials of the second kind [17],
on eigenvalue techniques, and on elements of algebraic number theory.

The rest of this paper is structured as follows. In Section 2 we provide some old and
new combinatorial conditions for the existence of graphs with cyclic defect. In Section
3 we present several algebraic approaches to analyze graphs with cyclic defect or excess,
while Section 4 presents the main results of the paper. Finally, Section 5 summarizes our
results and gives some concluding remarks.

2 Combinatorial conditions for graphs with cyclic de-

fect

Next we present some results about (d, D,−2)-graphs.
We denote by ΘD the graph which is the union of three independent paths of length

D with common endvertices.
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Proposition 2.1 [14, Lemma 2] Let u be a vertex of a (d, D,−2)-graph Γ. Then either:

(i) u is a branch vertex of a ΘD and every cycle of length at most 2D in Γ containing
u is contained in this ΘD; or

(ii) u is contained in one cycle of length 2D − 1 and no other cycle of length at most
2D; or

(iii) u is contained in exactly two cycles of length 2D and no other cycle of length at
most 2D.

Corollary 2.1 Let Γ be a (d, D,−2)-graph with cyclic defect. Then every vertex lies in
exactly 2 cycles of length 2D.

Corollary 2.2 The order n of a (d, D,−2)-graph with cyclic defect is a multiple of D.

Proof. By Corollary 2.1, the number of 2D-cycles in a (d, D,−2)-graph with cyclic
defect is 2n

2D
, and thus, the result follows. �

Corollary 2.3 The allowed degrees for a (d, D,−2)-graph with cyclic defect are restricted
to some congruence classes modulo D.

When D is even, d is odd.
When D is a power of an odd prime, d − 1 is a multiple of D.
When D > 4 is a power of 2, d − 1 is a multiple of D/2.

Proof. If 2|D, then 2|n. As n = Md,D − 2 = −1 + d(1 + d − 1 + . . . + (d − 1)D−1),
it follows that n ≡ d − 1 (mod d(d − 1)), which implies n ≡ d − 1 (mod 2), and thus,
2|(d − 1).

Suppose that D is a power of a prime p.
Suppose d ≡ 2 (mod p). Then, 1+(d−1)+ . . .+(d−1)D−1 ≡ D (mod p) and n ≡ −1

(mod p), which is incompatible with p|D|n.
Suppose d 6≡ 2 (mod p). By the little Fermat theorem [11, p. 105], we have that

(d − 1)p ≡ d − 1 (mod p), and thus, that (d − 1)D ≡ d − 1 (mod p). Therefore, n =

−1 + d (d−1)D−1
d−2

≡ d − 1 (mod p). Also, since n is a multiple of D, it follows that d ≡ 1
(mod p).

It remains to see what happens when d ≡ 1 (mod p) for D = pr with r > 1, that is,
d = 1+kps with k 6≡ 0 (mod p). As d = 1+kps, we have that 1+(d−1)+. . .+(d−1)D−1 ≡
d (mod ps+1). Therefore, it follows that n = 2kps (mod ps+1).

Thus, to have n ≡ 0 (mod D) it is necessary that s > r if p is odd and s > r − 1 if
p = 2. This completes the proof of the corollary. �
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3 Algebraic conditions on the existence of graphs

with cyclic defect or excess

We start this section by giving some known results.
If B is the adjacency matrix of the n-cycle then its characteristic polynomial Ψ(Cn, x)

satisfies the following

Ψ(Cn, x) = det(xIn − B) =

{

(x − 2)(x + 2)(Pn(x))2 if n is even

(x − 2)(Pn(x))2 if n is odd

where Pn is a monic polynomial of degree (n− 2)/2 if n is even and (n− 1)/2 if n is odd.
Recall that xn −1 =

∏

ℓ|n Φℓ(x), where Φℓ(x) denotes the ℓ-th cyclotomic polynomial1.

The cyclotomic polynomial Φℓ(x) is an integer polynomial, irreducible over the field Q[x] of
polynomials with rational coefficients, and self-reciprocal (that is, xφ(ℓ)Φℓ(1/x) = Φℓ(x)).
A consequence of Φℓ(x) being irreducible over Q[x] and self-reciprocal is that the degree
of Φℓ(x) is even for ℓ > 2.

Using the previous facts on cyclotomic polynomials, we obtain the following factoriza-
tion of Pn(x): Pn(x) =

∏

36ℓ|n fℓ(x), where fℓ is an integer polynomial of degree φ(ℓ)/2

satisfying xφ(ℓ)/2fℓ(x + 1/x) = Φℓ(x). Also, fℓ is irreducible over Q[x]. In particular, we
have that f3(x) = x + 1, f4(x) = x, f6(x) = x − 1, f5(x) = x2 + x − 1, f8(x) = x2 − 2,
f12(x) = x2 − 3, f7(x) = x3 + x2 − 2x − 1, f9(x) = x3 − 3x + 1.

More concretely,

Spec(B) =

{

{[2]1, [2 cos (2π
n
× 1)]2, . . . , [2 cos (2π

n
× n−2

2
)]2, [−2]1} if n is even

{[2]1, [2 cos (2π
n
× 1)]2, . . . , [2 cos (2π

n
× n−1

2
)]2} if n is odd

(6)

It is also very well known that Spec(Jn) = {[n]1, [0]n−1}.
Considering Equations 4 and 5, we obtain that the eigenspace En(Jn) equals both the

eigenspace Ed(A) and the eigenspace E2(B). Furthermore, for each eigenvalue λ ( 6= d)
of A, we have that Gd,D(λ) is an eigenvalue µ ( 6= 2) of B. In this case, we say that the
eigenvalue λ is paired with the eigenvalue µ. Therefore, for each eigenvalue µ ( 6= 2) of B,
the eigenspace Eµ(B) contains the eigenspace of the eigenvalue of A paired with µ.

Proposition 3.1 Let A be the adjacency matrix of a (d, D,−2)-graph of order n. If n is
even, then A has a simple eigenvalue λ such that λ is an integer root of the polynomial
Gd,D(x) + 2.

Proof. Consider Equations (4) and (6). If n is even, −2 is a simple eigenvalue of B,
and the eigenspace of −2 is spanned by the vector u = (1,−1, 1,−1, . . .)T . Let λ be the

1Φℓ(x) =
∏φ(ℓ)

m=1(x − ξm), where {ξ1, ξ2, . . . , ξφ(ℓ)} denotes all ℓth primitive roots of unity, and φ(ℓ)
denotes the Euler’s totient function, that is, the function giving the number of positive integers 6 ℓ and
relatively prime to ℓ.
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simple eigenvalue of A which is a root of Gd,D(x) + 2. Then, u is also an eigenvector of
A, implying that λ must be integer. �

Let Γ be a graph with cyclic defect. If we substitute y = Gd,D(x) into Ψ(Cn, y)/(y−2),
we obtain a polynomial F (x) of degree (n−1)×D such that n−1 of its roots are eigenvalues
of A, and thus, F (A)u = 0 for each eigenvector u of A orthogonal to the all-1 vector j.

Setting Fℓ,d,D(x) := fℓ(Gd,D(x)) we have

F (x) =























(Gd,D(x) + 2)
∏

ℓ | n
ℓ>3

(Fℓ,d,D(x))2 if n is even

∏

ℓ | n
ℓ>3

(Fℓ,d,D(x))2 if n is odd.

Observation 3.1 For each polynomial fℓ(x), where ℓ|n and ℓ > 3, the kernel of fℓ(B),
denoted by ker(fℓ(B)), is formed by the direct sum of the eigenspaces associated with the
roots of fℓ(x), and thus, ker(fℓ(B)) is a φ(ℓ)-dimensional space on Q[x].

Since A commutes with B, we have that ker(fℓ(B)) is stable under the multiplication
by A. Furthermore, as B −Gd,D(A) is null on ker(fℓ(B)), it follows that Fℓ,d,D(A) is null
on ker(fℓ(B)) and that ker(Fℓ,d,D(A)) is φ(ℓ)-dimensional on Q[x].

Consider a factor H(x) of Fℓ,d,D(x). The kernel of H(A) is stable under the multi-
plication by B, since B − Gd,D(A) is null on ker(fℓ(B)). Thus, its dimension on Q[x] is
either 0, or φ(ℓ)/2 or φ(ℓ).

Hence, corresponding to the factor fℓ(x) of the minimal polynomial of B, the polyno-
mial Fℓ,d,D(x) has either 2 factors of degree φ(ℓ)/2 or one factor of degree φ(ℓ).

By using Observation 3.1, we obtain our first simple necessary condition on the exis-
tence of graphs with cyclic defect.

Proposition 3.2 For D > 3 and ℓ > 3 such that ℓ|n, if there is a (d, D,−2)-graph with
cyclic defect, then Fℓ,d,D(x) must be reducible over Q[x].

Proof. Recall that deg(Fℓ,d,D) = D × φ(ℓ)
2

. If Fℓ,d,D(x) is irreducible over Q[x], then
all its roots must be eigenvalues of A. However, by Observation 3.1, only φ(ℓ) roots of
Fℓ,d,D(x) can be eigenvalues of A, a contradiction for D > 3. �

Note that deg(Fℓ,d,D) = D iff φ(ℓ) = 2, and that φ(ℓ) = 2 iff ℓ ∈ {3, 4, 6}. Thus, we
have the following useful corollary.

Corollary 3.1 Let n be the order of a graph with cyclic defect and diameter D > 3.
Then,

(i) if n ≡ 0 (mod 3) then Gd,D(x) + 1 must be reducible over Q[x].

(ii) if n ≡ 0 (mod 4) then Gd,D(x) must be reducible over Q[x].

(iii) if n ≡ 0 (mod 6) then Gd,D(x) − 1 must be reducible over Q[x].
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Proof. Knowing that f3(x) = x + 1, f4(x) = x, and f6(x) = x − 1, the result follows
from Proposition 3.2. �

For n ≡ 0 (mod 4) we can even prove a result slightly stronger than the one of
Corollary 3.1.

Note that if n ≡ 0 (mod 4) then d ≡ 1 (mod 2). As n ≡ 0 (mod 4), 0 is an eigenvalue
of B with multiplicity 2. The vectors u = (1, 0,−1, 0, 1, . . .)T and v = (0, 1, 0.− 1, 0, . . .)T

form a basis of E0(B). As A and B commute, Au ∈ E0(B) and Av ∈ E0(B). Therefore,
we have that

Au = αu + βv and Av = δu + γv (7)

for some α, β, δ, γ ∈ Z

Define a matrix M , called the restriction of A on ker(B), as

(

α δ
β γ

)

. Note that

the characteristic polynomial Ψ(M, x) of M is the polynomial having as roots the two
eigenvalues of A paired with the eigenvalue 0 of B.

Let us consider u + v + j, where j is the all-1 vector. All components of this sum are
even. Thus, since all entries of A are integers, A(u + v + j) = (α + δ)u + (β + γ)v + dj
has only even components. Consequently, d + α + δ and d + β + γ are even.

As A is symmetric, uT Av = vTAu (recall that if M1 and M2 are matrices then
(M1M2)

T = MT
2 MT

1 ). Then, it follows that uT Av = uT (δu + γv) = n
2
δ and that

vT Au = vT (αu + βv) = n
2
β, since uTu = n

2
, vT v = n

2
and uTv = 0. Thus, β = δ

and α + γ ≡ 0 (mod 2).
In this way, we have obtained the following proposition.

Proposition 3.3 Let A be the adjacency matrix of a graph with cyclic defect. If n ≡ 0
(mod 4) then the restriction of A on the kernel of B has an even trace. �

Corollary 3.2 For D = 2 the characteristic polynomial of the restriction of A on the
kernel of B (i.e. x2 + x + 1 − d) must be reducible over Q[x]. �

The previous results on graphs with cyclic defect can be readily extended to cover
graphs with cyclic excess. Therefore, we limit ourselves to give the results.

Proposition 3.4 Let A be the adjacency matrix of a (d, g, +2)-graph of order n. If n is
even, there is a simple eigenvalue λ of A such that λ is an integer root of the polynomial
Gd,⌊g/2⌋(x) − 2. �

Let Γ be a graph with cyclic excess. Substituting y = −Gd,⌊g/2⌋(x) into Ψ(Cn, y)/(y−
2), we obtain a polynomial F ∗(x) of degree (n−1)×⌊g/2⌋ such that F ∗(A)u = 0 for each
vector u orthogonal to the all-1 vector. Setting F ∗

ℓ,d,⌊g/2⌋(x) := fℓ(−Gd,⌊g/2⌋(x)) we have
that

F ∗(x) =























(−Gd,⌊g/2⌋(x) + 2)
∏

ℓ | n
ℓ>3

(F ∗
ℓ,d,⌊g/2⌋(x))2 if n is even

∏

ℓ | n
ℓ>3

(F ∗
ℓ,d,⌊g/2⌋(x))2, if n is odd.
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Proposition 3.5 For g > 7 and ℓ > 3 such that ℓ|n, if there is a (d, g, +2)-graph with
cyclic excess and order n then F ∗

ℓ,d,⌊g/2⌋(x) must be reducible over Q[x].

Corollary 3.3 Let n be the order of a graph with cyclic excess. Then,

(i) if n ≡ 0 (mod 3) then Gd,⌊g/2⌋(x) − 1 must be reducible over Q[x].

(ii) if n ≡ 0 (mod 4) then Gd,⌊g/2⌋(x) must be reducible over Q[x].

(iii) if n ≡ 0 (mod 6) then Gd,⌊g/2⌋(x) + 1 must be reducible over Q[x].

Proposition 3.6 Let A be the adjacency matrix of a graph with cyclic excess. If n ≡ 0
(mod 4) then the restriction of A on the kernel of B has even trace. �

Corollary 3.4 For g = 5 and odd d, the characteristic polynomial of the restriction of A
on the kernel of B (i.e. x2 + x + 1 − d) must be reducible over Q[x]. �

3.1 Relations between the polynomials Gd,m(x) and Um(x)

To establish some relations between the polynomials Gd,m(x) and Um(x), we make use of
their respective generating functions (ordinary power series)

P (x, t) =
1 + t

1 − xt + (d − 1)t2
and Q(x, t) =

1

1 − 2xt + t2
.

It is convenient to introduce q :=
√

d − 1 > 0. Then, it follows that

P (x, t
q
) =

∑

m=0 q−mGd,m(x)tm = 1+t/q
1−xt/q+t2

Q( x
2q

, t) =
∑

m=0 Um( x
2q

)tm = 1
1−xt/q+t2

Thus,

Gd,m(x) = qmUm(
x

2q
) + qm−1Um−1(

x

2q
) (8)

Equation (8) allows us to establish some bounds for the eigenvalues of a graph with cyclic
defect (Proposition 3.7).

Proposition 3.7 For a graph of degree d > 3, diameter D > 2 and cyclic defect, if β is
real and |β| 6 2, then the roots of Gd,D(x) + β are real and belong to the open interval
(−2

√
d − 1, 2

√
d − 1).

Proof. Set q :=
√

d − 1, and notice that qD > 2, with equality only when D = 2 and
d = 3.

From Equation (1) observe that UD(1) = D + 1 and UD(−1) = (−1)D(D + 1). Then,
using Equation (8) we obtain that

Gd,D(2q) = (D + 1)qD + DqD−1 > 2,
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and that

Gd,D(−2q) = (−1)D((D + 1)qD − DqD−1) has the sign of (−1)D and absolute value > 2.

We compute Gd,D(2q cos(tπ/D)) for 1 6 t 6 D − 1. Since UD−1(cos(tπ/D)) = 0, it
follows that

Gd,D(2q cos(tπ/D)) = qDUD(cos(tπ/D)) = qD sin(t(D + 1)π/D)

sin(tπ/D)
= (−1)tqD.

Hence, for any |β| < 2, d > 3 and D > 2, with the exception of β = 2, D = 2 and
d = 3, each of the D open intervals (2q cos((t+1)π/D), 2q cos(tπ/D)) with 0 6 t 6 D−1
contains a root of Gd,D(x) + β (by the Intermediate Value Theorem).

In the case β = 2, D = 2 and d = 3, the roots of G3,2(x) + 2 are 0 and −1, which
belong to (−2

√
2, 2

√
2). �

By virtue of Proposition 3.7, we can assume that every eigenvalue ( 6= d) of A has the
form 2q cos α with q :=

√
d − 1 and 0 < α < π. In this case

Gd,m(2q cos α) =
q sin (m + 1)α + sin mα

sin α
qm−1, with sin α 6= 0 (9)

As a corollary of Proposition 3.7, we obtain a very useful necessary condition on the
existence of graphs with cyclic defect and even order.

Corollary 3.5 If n ≡ 0 (mod 2) then a graph with cyclic defect must have an integer
eigenvalue λ such that |λ| < 2q and Gd,D(λ) = −2.

Proof. The corollary follows immediately from Propositions 3.1 and 3.7. �

Extending Proposition 3.7 and Corollary 3.5 to graphs with cyclic excess, we obtain the
following assertions.

Proposition 3.8 For a graph of degree d > 3, odd girth g > 5 and cyclic excess, if β is
real and |β| 6 2, then the roots of Gd,⌊g/2⌋(x) + β are real and belong to the open interval

(−2
√

d − 1, 2
√

d − 1). �

Corollary 3.6 If n ≡ 0 (mod 2) then a graph with cyclic excess must have an integer
eigenvalue λ such that |λ| < 2q and Gd,⌊g/2⌋(λ) = 2. �

4 Results on graphs with cyclic defect or excess

4.1 Graphs of diameter 4 and cyclic defect, and graphs of girth
9 and cyclic excess

Here we basically prove the non-existence of graphs of degree d > 3, diameter 4 and cyclic
defect, or graphs of degree d > 3, girth 9 and cyclic excess. Our proof is decomposed
into three parts. We first show that the polynomial Gd,4(x) has an integer root, then we
find those values of d making the existence of this root possible. Finally we show that for
none of these values of d the polynomial Gd,4(x) ± 2 has an integer root (contradicting
Propositions 3.1 and 3.4).
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Theorem 4.1 There is no regular graph of degree d > 3, diameter 4 and cyclic defect,
nor any regular graph of odd degree d > 3, girth 9 and cyclic excess.

Proof. Considering graphs of diameter 4 and cyclic defect, from Corollary 2.3 it follows
that d ≡ 1 (mod 2) and that n ≡ 0 (mod 4), while for regular graphs of odd degree
d > 3 and cyclic excess it follows that n ≡ 0 (mod 4). Set a := d − 1, then Ga+1,4 =
x4 +x3−3ax2−2ax+a2. By Corollary 3.1 (for cyclic defect) and Corollary 3.3 (for cyclic
excess) the polynomial Ga+1,4(x) must be reducible over Q[x], and thus, it must have a
factor of degree at most 2. We first claim that for a > 1 Ga+1,4(x) must have an integer
root.

Claim 1. for a > 1 Ga+1,4(x) must have an integer root.
Proof of Claim 1. We proceed by contradiction, assuming that there is a factor-

ization of Ga+1,4(x) into factors of degree 2 irreducible over Q[x]. Then, from the roots
x1, x2, x3, x4 of Ga+1,4(x) we can obtain two sets, say {x1, x2} and {x3, x4}, such that
x1 + x2, x1x2, x3 + x4 and x3x4 are all integers.

Using Viète’s formulas we obtain that

σ1 := x1 + x2 + x3 + x4 = −1

σ2 := x1x2 + x1x3 +1 x4 + x2x3 + x2x4 + x3x4 = −3a

σ3 := x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = 2a

σ4 := x1x2x3x4 = a2

Therefore, we can compute the coefficients of the equation p(y) = y3 − b1y
2 + b2y − b3

with the 3 roots y1 = x1x2 + x3x4, y2 = x1x3 + x2x4 and y3 = x1x4 + x2x3; indeed, we
have that

b1 = σ2 = −3a

b2 = σ1σ3 − 4σ4 = −2a − 4a2

b3 = σ2
2σ4 + σ2

3 − 4σ2σ4 = 5a2 + 12a3

Thus, we have to find integer solutions for p(y) = y3 + 3ay2 − 4ya2 − 12a3 − 2ay −
5a2 = 0. Discarding the uninteresting solution y = a = 0, we may write p(y)/a2 as
(y−2a)u(u+1)−2u−1 = 0, where u := 2+y/a is rational and y−2a 6= 0. This equation
in u has discriminant (y − 2a − 2)2 + 4(y − 2a) = (y − 2a)2 + 4, which can be a perfect
square only if y − 2a = 0, a contradiction. Therefore, p(y) cannot have integer roots, and
the claim follows. �

Since Ga+1,4(x) must have an integer root, we search the integer pairs (x, a) such that
Ga+1,4(x) = 0.

The discriminant x2(5x2+8x+4) of the equation Ga+1,4(x) = x4+x3−3ax2−2ax+a2 =
0 in a is a perfect square iff 5x2 + 8x + 4 = t2; multiplying this equation by 5 and setting
z := 5x + 4, we obtain

z2 − 5t2 = −4 (10)

the electronic journal of combinatorics 17 (2010), #R143 13



Equation (10) is closely related to the well-known Pell equation2 (namely, Z2 −PT 2 = 1,
where Z, P, T ∈ Z).

The infinitely many solutions (zm, tm) of Equation (10) are given by zm = ±L4m+3

and tm = ±F4m+3, where Lm and Fm denote the mth Lucas number and mth Fibonacci
number, respectively; see [19, p. 64]. For all integers m the recurrence equations of the
Lucas and the Fibonacci numbers can be defined as follows.

{

L0 = 2, L1 = 1

Lm+2 = Lm+1 + Lm

{

F0 = 0, F1 = 1

Fm+2 = Fm+1 + Fm

(11)

If we set ϕ := 1+
√

5
2

(the so-called golden ratio), then L4m+3 = ϕ4m+3 − ϕ−(4m+3) and

F4m+3 = (ϕ4m+3 + ϕ−(4m+3))/
√

5. In order to retain integer values for x, we have that
xm = (−4 + L4m+3)/5, and thus, that am = xm(3xm + 2 ± tm)/2.

Set rm := ϕ4m+3, then xm = (rm − 1/rm − 4)/5 and tm = (rm + 1/rm)/
√

5.
We first rule out the existence of graphs of diameter 4 and cyclic defect.
Claim 2. There is no regular graph of degree d > 3, diameter 4 and cyclic defect.
Proof of Claim 2. For the aforementioned values of am, by Proposition 3.1, the

polynomial Gam+1,4(x) + 2 must have an integer root. Our goal now is to prove that this
is not the case.

From the two possible values for am take am = xm(3xm + 2 + tm)/2.
Note that for any two integer values u and v, (Gam+1,4(u)−Gam+1,4(v))/(u− v) is an

integer. Suppose that um is an integer root of Gam+1,4(x) + 2, then, for um and xm we
have that

Gam+1,4(um) − Gam+1,4(xm)

um − xm
=

−2

um − xm

is an integer, which implies that um − xm = sm = ±2 or ±1.
As a result, it follows that

H(rm) := r3
m(Gam+1,4(um) + 2) = r3

m(Gam+1,4(xm + sm) + 2) = 0.

Note that H(rm) is a polynomial in rm of degree 6.
Investigating the real roots of H(rm) for each value of sm, we see that their absolute

values lie between 0.05 and 9. But, since rm := ϕ4m+3, we have that for m > 1, the
values of rm are at least 29, and that for m 6 −3, the values of rm lie between 0 and
0.01. For m = −2 it can be easily verified that am = 3, which contradicts the fact that
a ≡ 0 (mod 2). We have excluded the values of m = −1, 0 because they give the trivial
solution am = 0.

Therefore, for am = xm(3xm + 2 + tm)/2, there is no integer value of um that makes
Gam+1,4(um) + 2 zero.

Analogously, for am = xm(3xm + 2 − tm)/2, the absolute values of the real roots of
H(rm) for each value of sm lie between 0.12 and 19. For m = −2, observe that rm < 0.1.
Consequently, there is no integer value of um that makes Gam+1,4(um) + 2 zero. �

2While this equation is widely known as the Pell equation, there is no evidence that John Pell posed
it. It seems that Euler was the causer of this confusion. See [12, p. 4] for more information.
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Claim 3. There is no regular graph of odd degree d > 3, girth 9 and cyclic excess.
Proof of Claim 3. In this case we proceed as in Claim 2, then

H(rm) := r3
m(Gam+1,4(um) − 2) = r3

m(Gam+1,4(xm + sm) − 2) = 0,

and H(rm) is a polynomial in rm of degree 6.
For am = xm(3xm + 2 + tm)/2, the absolute values of the real roots of H(rm) for each

value of sm lie between 0.05 and 8. For m = −2, observe that am = 3, a contradiction.
Consequently, there is no integer value of um that makes Gam+1,4(um) − 2 zero.

Finally, for am = xm(3xm + 2 − tm)/2, the absolute values of the real roots of H(rm)
for each value of sm lie between 0.12 and 17. Consequently, there is no integer value of
um that makes Gam+1,4(um) − 2 zero. �

The theorem follows from Claims 2 and 3. �

4.2 Further non-existence results

Theorem 4.2 There is no regular graph of degree d > 3, diameter 3 and cyclic defect.

Proof. From Corollary 2.3 it follows that d − 1 ≡ 0 (mod 3) and that n ≡ 0 (mod 3).
In this case we see that −1 is an eigenvalue of B with multiplicity 2. Thus, Gd,3(x) + 1 =
x3 +x2−(d−1)(2x+1)+1 must have factors of degree at most 2, and therefore an integer
root λ congruent to 1 modulo 3. Since d > 1, we see that 2λ + 1 divides λ3 + λ2 + 1,
and thus, 2λ + 1 divides 9 (because 8(λ3 + λ2 + 1) − 9 = (2λ + 1)(4λ2 + 2λ − 1)) and
λ ∈ {−5,−2,−1, 0, 1, 4}. However, from these values only λ = 4 is congruent to 1 modulo
3.

For λ = 4 and D = 3, we have that d = 10 and n = 909. By Proposition 3.2 the
polynomialf9(G10,3(x)) must be reducible over Q[x] (see also Observation 3.1). However,

f9(G10,3(x)) = x9 + 3x8 − 21x7 − 74x6 + 114x5 + 597x4 + 160x3 − 1488x2 − 1920x − 701

from where we obtain that f9(G10,3(x)) is irreducible over Q[x]. �

Theorem 4.3 There is no regular graph of odd degree d > 3, diameter D ≡ 0 (mod 6),
and cyclic defect.

Proof. Since 6|D, by Corollary 2.2, the order n of these graphs is a multiple of D,
implying that n is a multiple of 3 and 4. In this case, by Proposition 3.1 the polynomial
Gd,D(x) + 2 should have an integer root λ. On the other hand, from 6|D it follows that
d ≡ 1 (mod 6). Set

Gd,D(x) + 2 = xD + xD−1 + (d − 1)q(x) + 2,

where q(x) is a polynomial of degree D − 2. Thus, λD + λD−1 + 2 should be congruent to
0 modulo 6. But no integer λ satisfies 3|(λD + λD−1 + 2). �

Theorem 4.4 There is no regular graph of odd degree d > 3, girth 5 and cyclic excess.
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Proof. In this case Equation (5) takes the form A2 +A− (d−1)In = Jn−B. If d is odd
then n = d2 + 3 ≡ 0 (mod 4). By Proposition 3.4, there is a simple integer eigenvalue λ
of A satisfying

λ2 + λ − (d − 1) = 2. (12)

As 4|n, 0 is an eigenvalue of B with multiplicity 2. Therefore, the eigenvalues of A
paired with 0 satisfy the equation

x2 + x − (d − 1) = 0. (13)

Denote by λ1 and λ2 the roots of Equation (13). If both are eigenvalues of the restriction
of A on ker(B), the trace is −1 (see Corollary 3.4). Therefore, only one of them can be
an eigenvalue, say λ1, implying that λ1 has multiplicity 2 and is an integer.

The discriminant of Equation (13) is 4d − 3 and, like the discriminant 4d + 5 of
Equation (12), must be a perfect square. The only pair of perfect squares differing by 8
is {1,9}, implying d = 1, contradicting the hypothesis d > 3. �

Theorem 4.5 There is no regular graph of degree d ≡ 0, 2 (mod 3), girth 7, and cyclic
excess.

Proof. Such a graph has an order multiple of 3. Therefore, the polynomial Gd,3(x) − 1
has a factor of degree 1 or 2, and thus, an integer root λ. Since d is an integer, 2λ + 1
divides λ3+λ2−1, and thus, divides 7 (because 8(λ3+λ2−1)+7 = (2λ+1)(4λ2+2λ−1)).
The possible values for λ are −4, −1, 0 and 3, and the corresponding values for d are 8, 2,
0 and 6. The orders for the interesting degrees 6 and 8 are 189 = 33 · 7 and 459 = 33 · 17,
respectively. But in both cases, substituting y = −Gd,3(x) in f9(y) = y3−3y+1, we obtain
an irreducible polynomial F ∗

9,d,3(x) of degree 9, contradicting Proposition 3.5. Thus, none
of these graphs exists. �

4.3 Computational explorations of graphs of small odd degree
with cyclic defect or excess

In this section we show how to use Corollaries 3.5 and 3.6, and the software MapleTM[16]
in order to prove the non-existence of graphs of small degree with cyclic defect or excess.
Specifically, we analyze the existence of an integer root in the polynomials Gd,k(x)± 2 for
3 6 k 6 20000 and small degrees. Cubic graphs with cyclic defect or excess are considered
in Subsection 4.4.1, while the case of g = 5 for all graphs of odd degree and cyclic excess
was dealt in Subsection 4.2. In this subsection we assume d > 5 and g > 7.

Theorem 4.6 For 3 6 D 6 20000 there is no graph of degree 5, diameter D and cyclic
defect. Furthermore, for 7 6 g 6 40001, g odd, there is no graph of degree 5, girth g and
cyclic excess.

Proof. For 3 6 k 6 20000 we analyze the polynomial G5,k(x) = ±2, for x ∈ Z and
−4 6 x 6 4. For x = −4,−2,−1, 0, 2, 3, 4, we have that G5,k(x) ≡ 0 (mod 4) if k > 3.
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For 3 6 k 6 20000 G5,k(−3) only takes the values ±2 for k = 3, 7, and in these cases
G5,k(−3) = 2. However, as the order of such graphs is a multiple of 4. By Corollary 3.1,
both G5,3(x) and G5,7(x) must be reducible over Q[x], but they are not.

For 3 6 k 6 20000 G5,k(1) takes the values ±2 only for k = 4, and then G5,4(1) =
−2. But, n ≡ 0 (mod 4) and G5,4(x) is irreducible over Q[x], contradicting Corollary
3.1. �

Theorem 4.7 For any D > 3 there is no graph of degree 7, diameter D and cyclic defect.
Furthermore, for any g > 7, g odd, there is no graph of degree 7, girth g and cyclic excess.

Proof. Since 2
√

6 < 5, it suffices to look at G7,k(x) for x ∈ Z and −4 6 x 6 4. Indeed,
G7,3(x) 6= ±2 for −4 6 x 6 4; for any k > 4 and x = −4,−3,−2, 0, 1, 2, 4, we have
that G7,k(x) ≡ 0 (mod 4); and for k > 3 and x = −1, 3, it follows that G7,k(x) ≡ 0
(mod 6). �

Theorem 4.8 For 3 6 D 6 20000 there is no graph of degree 9, diameter D and cyclic
defect. Furthermore, for 7 6 g 6 40001, g odd, there is no graph of degree 9, girth g and
cyclic excess.

Proof. Since 2
√

8 < 6, it suffices to look at the values of G9,k(x) for x ∈ Z and −5 6

x 6 5. For k > 3 and x ∈ {−5,−4,−2,−1, 0, 2, 3, 4}, the value G9,k(x) is a multiple
of 4. For 3 6 k 6 20000 and x = −3, 1, 5, we have that G9,k(x) never takes the values
±2. �

Theorem 4.9 For 3 6 D 6 20000 there is no graph of degree 11, diameter D and cyclic
defect. Furthermore, for 7 6 g 6 40001, g odd, there is no graph of degree 11, girth g and
cyclic excess.

Proof. Since 2
√

10 < 7, it suffices to look at G11,k(x) for x ∈ Z and −6 6 x 6 6.
First, for k = 3, G11,3(x) does not take the values 2 or −2. Then, for k > 4 and
x ∈ {−6,−4,−3,−2, 0, 1, 2, 4, 5, 6}, we have that G11,k(x) is a multiple of 4, while for
k > 3 and x = −5,−1, G11,k(x) is a multiple of 10. Finally, for 4 6 k 6 20000 G11,k(3)
never takes the values ±2. �

Theorem 4.10 For 3 6 D 6 20000 there is no graph of degree 13, diameter D and cyclic
defect. Furthermore, for 7 6 g 6 40001, g odd, there is no graph of degree 13, girth g and
cyclic excess.

Proof. Since 2
√

10 < 7, it suffices to look at the values of G13,k(x) for x ∈ Z and
−6 6 x 6 6. For k > 4 and x = −6,−5,−4,−2,−1, 0, 2, 3, 4, 6, we have that G13,k(x) is
a multiple of 4, while for k > 3 and x = −3, 5, the polynomial G13,k(x) is a multiple of
6. For 3 6 k 6 20000 and x = 1, G13,k(x) does not take the value 2 or −2. Finally, the
polynomial G13,3(x) never takes the values ±2 for −6 6 x 6 6. �

This approach is likely to work for graphs of higher degrees and larger diameters or
girths, but its application quickly becomes monotonous and uninteresting.

However, the aforementioned non-existence results of graphs of odd degree with cyclic
defect or excess motivated us to unveil a deeper phenomenon, namely, the finiteness of
such graphs (see Subsection 4.4).
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4.4 Finiteness of graphs of odd degree with cyclic defect or ex-
cess

In this section we prove the most important results of the paper, namely, the finiteness
of all graphs of odd degree d > 5 and cyclic defect or excess (see Theorem 4.11), and the
non-existence of cubic graphs with cyclic defect or excess (see Theorem 4.12).

The idea behind the proof of Theorem 4.11 is the following. For any odd degree d > 5
graphs of diameter k and cyclic defect, or graphs of girth 2k +1 and cyclic excess have an
order multiple of 4, implying that the polynomial Gd,k(x) must have an algebraic integer
of degree at most 2 as a root. Making use of Equation (9) and the fact that any eigenvalue
λ( 6= d) has the form 2

√
d − 1 cos α (with 0 < α < π), we show that cos α must be an

algebraic integer of degree at most 4. We then note that if, for a given d and an eigenvalue
λ, Equation (9) has at least two values of k, then α must be rational. In the case of α
being rational and cosα being an algebraic integer of degree at most 4, we verify that,
for d > 5 and all the possible values of cosα, the polynomial Gd,k(2

√
d − 1 cos α) has no

algebraic integer of degree at most 2 as a root. This last result implies that for a given d
the number of different eigenvalues λ of Equation (9) represents an upper bound for the
number of graphs of degree d and cyclic defect or excess. Finally, we proceed to provide
an asymptotic bound for the number of such eigenvalues, knowing that they are algebraic
integers of degree 2 lying between −2

√
d − 1 and 2

√
d − 1.

Theorem 4.11 There are finitely many graphs of odd degree d > 5 and cyclic defect
or excess. Furthermore, an asymptotic bound for the number of such graphs is given by
O(64

3
d3/2).

Proof. For graphs of diameter D = k and cyclic defect, and graphs of girth g = 2k + 1
and cyclic excess, if its degree d is odd then its order n is a multiple of 4, which implies, by
Corollary 3.1 (for cyclic defect) and Corollary 3.3 (for cyclic excess), that the polynomial
Gd,k(x) must be reducible over Q[x].

From Propositions 3.7 and 3.8 it follows that an eigenvalue λ ( 6= d) of such graphs has
the form 2q cos α with 0 < α < π and q :=

√
d − 1, and that λ lies between −2q and 2q.

In this case, because of Equation (9) the equation Gd,k(2q cos α) = 0 implies that

q sin((k + 1)α) + sin(kα) = 0. (14)

Also, by Observation 3.1, such an eigenvalue is an algebraic integer of degree at most 2.
We first claim the following.
Claim 1. For a given eigenvalue λ = 2q cos α, the number cos α is an algebraic integer

of degree at most 4.
Proof of Claim 1. Because of Equation (8), we can expressed Equation (14) as

sin α (qUk(cos α) + Uk−1(cos α)) = 0.

Then, as sin α 6= 0, it follows that

qUk(cos α) + Uk−1(cos α) = 0 (15)
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From Equation (15) it follows that (d − 1)U2
k (cos α) − U2

k−1(cos α) is a polynomial of
degree 2k with integer coefficients, having cosα as a root. Therefore, cosα is an algebraic
integer of degree at most 2k.

To see that cos α is in fact an algebraic integer of degree at most 4, we need the
following facts from algebraic number theory (i) if µ is an algebraic number of degree ρ
then 1/µ is also an algebraic number of degree ρ, and (ii) if µ and υ are algebraic numbers
of degree ρ and ̺, respectively, then µυ is an algebraic number whose degree divides ρ̺.

As λ = 2q cos α is an algebraic number of degree at most 2 and q is an algebraic
number of degree 2, by the previous facts, cosα is an algebraic number of degree at most
4. �

Claim 2. For a given odd degree d > 5 and an eigenvalue λ, there is only one value
of k satisfying Equation (14).

Proof of Claim 2. We proceed by contradiction, assuming that for a given odd
degree d > 5 and an eigenvalue λ (−2q < λ < 2q), there are at least two values k1 and
k2 for which Equation (14) holds. Observe that in this case α = πr/s, where r, s ∈ N.
Indeed, assuming that sin kα 6= 0 (for otherwise α = π/2+pπ with p ∈ N), Equation (14) is
equivalent to cot kα = (−1/q−cos α)/ sinα (since sin(k+1)α = sin kα cos α+sin α cos kα).
If there are two values k1 and k2 for which Equation (14) holds, then

cot k1α = cot k2α = −1/q + cos α

sin α

Then, as cotx is a function with period π, we have that (k1 − k2)α = πp, where p ∈ Z.
In other words, α/π is rational.

Therefore, for 0 < α < π we have three cases according to the degree of cosα; see [13].

(i) If 2 cos α is an algebraic integer of degree 1, then cosα ∈ {−1/2, 0, 1/2}.

(ii) If 2 cos α is an algebraic integer of degree 2, then

cos α ∈ {−
√

3/2,−(1 +
√

5)/4,−
√

2/2, (1 −
√

5)/4, (−1 +
√

5)/4,
√

2/2}

∪{(1 +
√

5)/4,
√

3/2}

(iii) If 2 cosα is an algebraic integer of degree 4, then α = 2πr/s with r ∈ N and
s ∈ {15, 16, 20, 24, 30}, or equivalently,

α ∈ {π/15, π/12, π/10, π/8, 2π/15, 4π/15, 3π/10, 3π/8, 5π/12, 7π/15, 8π/15}

∪{7π/12, 5π/8, 7π/10, 11π/15, 13π/15, 7π/8, 9π/10, 11π/12, 14π/15}

We analyze each case in order, that is, for the aforementioned values of cos α we look for
the values of odd d and k satisfying Equation (15), or equivalently,

−q =
Uk−1(cos α)

Uk(cos α)
.
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To do this task we sometimes rely on the software MapleTM[16].
Case (i) cos α ∈ {−1/2, 0, 1/2}.
For cos α = −1/2 and k ≡ 1 (mod 3), we have that −q = −1, and thus, d = 2; for

cos α = 0 and k ≡ 0 (mod 2), we have −q = 0; and for cos α = 1/2 and k ≡ 1 (mod 3),
we have −q = 1. Therefore, there are no feasible values for d and k.

Case (ii) cos α ∈ {−
√

3/2,−(1+
√

5)/4,−
√

2/2, (1−
√

5)/4, (−1+
√

5)/4,
√

2/2, (1+√
5)/4,

√
3/2}.

The only viable value of −q is −
√

2, which implies that d = 3. This case occurs when
cos α = −

√
2/2 and k ≡ 2 (mod 4).

Case (iii) α = 2πr/s with r ∈ N and s ∈ {15, 16, 20, 24, 30}.
In this case it can be verified that the only feasible values of α are 5π/12 (cos 5π/12 =

(−1 +
√

3)/(2
√

2)) and 11π/12 (cos 11π/12 = (−1 −
√

3)/(2
√

2)). For these values of
cos α, we have that d = 3 (−q = −

√
2) when k ≡ 9 (mod 12).

As a result, when α/π is rational there is no odd degree d > 5 satisfying Equation
(14), and thus, the claim follows. �

Claim 2 also tells us that, for a given odd degree d, the number of distinct eigenvalues
λ is an upper bound for the number of graphs of degree d and cyclic defect and excess.

Recall that, since characteristic polynomials have integer coefficients, if λ is an eigen-
value, so is its conjugate λ∗.

Claim 3. Let λ be an eigenvalue of a graph of odd degree and cyclic defect or excess,
such that |λ| < 2q and |λ∗| < 2q. Then, the number of such eigenvalues lying in (−2q, 2q)
is O(64

3
d3/2).

Proof of Claim 3. We first state a very well known fact about the ring Rr of
integers of Q(

√
r), where r is a square-free integer (see [19, Theorem 1 on pp. 35]): if

r ≡ 2, 3 (mod 4) then Rr = {a + b
√

r|a, b ∈ Z}, while if r ≡ 1 (mod 4) then Rr =
{(u + v

√
r)/2|u, v ∈ Z} with u ≡ v (mod 2).

By virtue of the previous fact and as |λ| < 2q and |λ∗| < 2q, we can assume that λ
has the form either a +

√
b with a, b ∈ N or (a +

√
b)/2 with a, b ∈ N, a ≡ 1 (mod 2) and

b ≡ 1 (mod 4). In the former case it follows that 0 6 a 6 2q and 1 6 b 6 (2q− a)2, while
in the latter we have that 0 6 a 6 4q and 1 6 b 6 (4q − a)2.

An asymptotic bound can be obtained from the remark that the number of pairs (a, b)
such that 0 6 a 6 s and that 1 6 b 6 (s − a)2 is at most (s + 1)3/3. Indeed,

s2 + (s − 1)2 + . . . + (s − ⌊s⌋) 6 ⌈s⌉2 + (⌈s⌉ − 1)2 + . . . + (⌈s⌉ − ⌊s⌋)2

=
⌈s⌉(⌈s⌉ + 1)(2⌈s⌉ + 1)

6

<
(s + 1)3

3
.

The lemma follows from considering the bounds for a and b. �

Note that the representation of a number λ is not unique; for instance, the numbers
1 +

√
9 and 2 +

√
4 represent the same λ. However, this detail only makes our bound

rougher.
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A more careful counting shows that 64
3
d3/2 is indeed an upper bound for the number

of algebraic integers of degree 2 lying in (−2
√

d − 1, 2
√

d − 1). As a way of illustration,
see that for d = 3 there are 38 < 64

√
3 algebraic integers between −2

√
2 and 2

√
2 while

for d = 5 there are 112 < 512/3 algebraic integers lying in (−4, 4).
The proof of Theorem 4.11 follows immediately from Claims 1, 2 and 3. �

4.4.1 Finiteness of cubic graphs with cyclic defect or excess

Theorem 4.11 did not settle the finiteness of cubic graphs with cyclic defect or excess. In
this subsection we take care of this case.

The proof of Theorem 4.12 first exploits the fact that for a cubic graph of diameter
k and cyclic defect, or a cubic graph of girth 2k + 1 and cyclic excess, the polynomial
G3,k(x) ± 2 must have an integer root ρ between −2

√
2 and 2

√
2. In this direction we

prove that ρ = −1, and in this case, G3,k(−1) = 2 and k ≡ 2 (mod 4), thus ruling out the
existence of graphs with cyclic defect. As the order n of cubic graph with cyclic excess is
a multiple of 4, G3,k(x) has an algebraic root of degree at most 2. In addition, if k ≡ 2
(mod 4) then n ≡ 0 (mod 3), so G3,k(x) ± 1 must also have algebraic roots of degree 1
or 2. Recall that all these algebraic integers lie on the interval (−2

√
2, 2

√
2). The next

step of the proof is to settle that x = −2 is the only algebraic integer of degree at most 2
for which the polynomial G3,k(x) = 0, where k ≡ 2 (mod 4). The conditions that k ≡ 2
(mod 4), G3,k(−2) = 0 and G3,k(−1) = 2 greatly narrow down the numbers x that could
make G3,k(x) = 1; we then prove that the only such numbers are x = (−1 ±

√
5)/2 and

x = (−3 ±
√

5)/2. The proof ends when we prove that, in fact under all the previous
conditions, for x = (−1 ±

√
5)/2 x = (−3 ±

√
5)/2 the polynomial G3,k(x) 6= 1.

Theorem 4.12 For D > 3 there is no graph of degree 3, diameter D and cyclic defect.
Furthermore, for odd g > 5 there is no graph of degree 3, girth g and cyclic excess.

Proof. Suppose, for the sake of contradiction, that there is at least a cubic graph of
diameter D = k > 3 and cyclic defect, and at least a graph of girth g = 2k + 1 > 5 and
cyclic excess.

Relying on Corollaries 3.5 and 3.6, next we discard the values of k > 3 and x ∈
{−2,−1, 0, 1, 2} for which G3,k(x) is different from 2 or −2.

Note that G3,k(2), G3,k(0), G3,k(−2) are multiples of 4 if k > 4 and that G3,k(1) ≡ 0
(mod 4) if k > 2; this can be checked easily by induction.

For k = 3 the polynomial G3,3(x) has no factor of degree 1 or 2 to be used with the
eigenvalue 0 of the matrix B = C24 (see Corollary 3.1). Therefore, there are no cubic
graphs of diameter 3 (for cyclic defect) or girth 7 (for cyclic excess).

For k > 4 we can check by induction that G3,k(−1) ≡ 2 (mod 16) if k is even and that
G3,k(−1) ≡ 10 (mod 16) if k is odd. Therefore, from now on we can assume G3,k(−1) = 2
and k ≡ 0 (mod 2). As a consequence, there is no cubic graph of diameter k > 4 and
cyclic defect.

We now concentrate on cubic graphs of girth 2k + 1 > 9 and cyclic excess, for k ≡ 0
(mod 2).
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Computing modulo 32 we see that the value G3,k(−1) = 2 can be attained only if k ≡ 2
(mod 4). In this case, these graphs have an order multiple of 4 and 3, and therefore, we
must add the conditions that G3,k(x) and G3,k(x) ± 1 have algebraic roots of degree 1 or
2.

Henceforth, together with the integers −2, 0, 1 and 2, we analyze the set of the 38
algebraic integers of degree 2 between −2

√
2 and 2

√
2. These numbers are as follows:

±√
u for u ∈ {2, 3, 5, 6, 7}, ±1 ± √

u for u ∈ {2, 3}, (±1 ± √
u)/2 for u ∈ {5, 13, 17, 21}

and at last (±3 ±
√

5)/2.
We now prove the following.

Claim 1. Among all the algebraic integers of degree at most 2 in the interval
(−2

√
2, 2

√
2), the polynomial G3,k(x) with k ≡ 2 (mod 4) takes 0 only for x = −2.

Proof of Claim 1. The function G3,k(−2) in k is null for k ≡ 2 (mod 4).
The polynomial G3,k(x) never takes the value 0 for x = 0, 1, 2, because G3,k(0) = −2k/2,

|G3,k(2)| = 2k/2+1 and G3,k(1) ≡ 4 (mod 8). These assertions can be proved by induction.
The value G3,k(x) = 0 is also obtained several times for x = −1 ±

√
3, but only if

k ≡ 9 (mod 12).
The function G3,k(±

√
2)/2k/2 in k is periodic and never null for k ≡ 2 (mod 4); the

same happens for 1 ±
√

3 and ±
√

6.
Consider the algebraic integers x := a + b

√
r of degree 2 and odd norm N(x)3 in the

algebraic extension4 Q(
√

r)/Q. Then, if x + 1 does not belong to the principal ideal5

generated by 2 in the ring Rr of algebraic integers, then the polynomial G3,k never enters
into that ideal, and thus, never vanishes. This is the case for the numbers ±

√
3, ±

√
7,

±1 ±
√

2, (±1 ±
√

5)/2,(±3 ±
√

5)/2, (±1 ±
√

13)/2, and (±1 ±
√

21)/2.
For the numbers (±1+

√
17)/2 we note that for k > 6 the number G3,k((−1+

√
17)/2)

has the form a + b
√

17 with a ≡ b ≡ 1 (mod 2), and that for k > 10 the number
G3,k((−1 −

√
17)/2) has the form 4(a + b

√
17) with a ≡ b ≡ 1 (mod 2). Furthermore,

G3,6((−1 −
√

17)/2) = 8. Therefore, we have ruled out all the numbers (±1 ±
√

17)/2.
Note that if G3,k(x) 6= 0 then G3,k(x

∗) 6= 0.
Finally, observe that for k > 6 the number G3,k(

√
5) has the form a + b

√
5 with

a ≡ b ≡ 1 (mod 2). This leaves the numbers ±
√

5 out. This completes the proof of the
claim. �

We finalize the proof of the theorem by showing the following two claims.

Claim 2. Provided that k > 6 with k ≡ 2 (mod 4), G3,k(−2) = 0 and G3,k(−1) = 2,
the only numbers x that could make G3,k(x) = 1 are x = (−1 ±

√
5)/2 and x = (−3 ±√

5)/2.

Proof of Claim 2. Set x := a + b
√

r, then to have simultaneously G3,k(−2) = 0,
G3,k(−1) = 2 and G3,k(x) = 1 we must have that −G3,k(−2) + G3,k(x) = 1 and that

3The norm N of quadratic number x is N(x) = xx∗.
4A field extension L/K is called algebraic if every element of L is algebraic over K.
5An ideal is a subset I of the ring Rr of algebraic integers that forms an additive group and has the

property that if β ∈ Rr and α ∈ I then βα ∈ I. The principal ideal generated by α with α ∈ Rr is defined
as {αβ|β ∈ Rr}.
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G3,k(−1)−G3,k(x) = 1. Since the coefficients of G3,k(x) are integers, the former condition
means that x + 2 divides 1 in the ring of integers of Q(

√
r), while the latter condition

implies that x + 1 divides 1 in the aforementioned ring.
These conditions also imply that the norms of x+2 and x+1 in the algebraic extension

Q(
√

r)/Q must be 1 or −1. Thus, only the numbers (−1±
√

5)/2 and (−3±
√

5)/2 satisfy
both conditions. �

Claim 3. For k > 6 with k ≡ 2 (mod 4), the polynomials G3,k((−1 ±
√

5)/2) and
G3,k((−3 ±

√
5)/2) never take the value 1.

Proof of Claim 3. We first consider the value (−3 +
√

5)/2, and claim that for

k = 2t + 4 with t ∈ N, the values G3,k(
−3+

√
5

2
) are never integers.

Observe that G3,2t+4(x) = (x2−4)G3,2t+2(x)−4G3,2t(x) and that G3,2((−3+
√

5)/2) =
−
√

5. As N(((−3+
√

5)/2)2−4) ≡ 1 (mod 4) and N(−
√

5) ≡ −1 (mod 4), by induction6,
we obtain that N(G3,2t+4((−3 +

√
5)/2)) ≡ −1 (mod 4), which is not the norm of an

integer. Recall that the norm of integers is congruent to 0 or 1 modulo 4. This approach
also rules out the value (−3 +

√
5)/2.

The values of G3,2t+2((−1 +
√

5)/2) are never 1 for t > 0. Indeed, computing modulo
4 in the ring of integers of Q(

√
5)7, we see that G3,2t+2((−1+

√
5)/2) ≡ −1 (mod 4) if t is

multiple of 3, that G3,2t+2((−1+
√

5)/2) ≡ −3+
√

5
2

if t ≡ 1 (mod 3), and that G3,2t+2((−1+√
5)/2) ≡ −3−

√
5

2
if t ≡ 2 (mod 3). This approach also shows that G3,2t+2((−1 −

√
5)/2)

is never 1 for t > 0. This completes the proof of the claim. �

Combining Claims 1, 2 and 3 the theorem follows. �

An immediate corollary of Theorem of 4.12 is the finiteness of cubic graphs with cyclic
defect or excess (Corollary 4.1), settling, in this way, the finiteness of all graphs of odd
degree and cyclic defect or excess.

Corollary 4.1 For k > 2, apart from the Möbius ladder on 8 vertices, there is no cubic
graph of diameter k and cyclic defect nor any cubic graph of girth 2k+1 and cyclic excess.

5 Concluding remarks

Using a number of algebraic approaches, we proved the non-existence of infinitely many
graphs with cyclic defect or excess, and the finiteness of graphs of odd degree and cyclic
defect or excess. While substantial progress in this direction was made through algebraic
approaches, definitive solutions to Problems 1 and 2 still seem to be elusive, mainly due
to the complexity of the theoretical problems that emerged during our investigation. For
instance, the approach which ruled out the existence of cubic graphs with cyclic defect
or excess may work for higher degrees, but the complexity of the analysis also increases
considerably.

6We implicitly use the fact that for algebraic integers α, β N(αβ) = N(α)N(β).
7In the ring of the integers Rr of Q(

√
r), we say that α divides β, denoted by α|β, if β/α ∈ Rr, and

that α ≡ β (mod γ) if γ|(α − β).
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The condition of having cyclic defect or excess imposes heavy constraints on the struc-
ture of graphs with defect or excess 2, so we firmly believe that the Möbius ladder on 8
vertices is the only such graph, and accordingly, conjecture it.

Conjecture 5.1 Apart from the Möbius ladder on 8 vertices, there is no graph with cyclic
defect or excess.

Furthermore, we think combinatorial approaches have unexplored potential to deal with
Problems 1 and 2, so future research should not underestimate them.
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