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Abstract—Cryptography is an art that has been practised
through the centuries. Interest in the applications of the
knapsack problem to cryptography has arisen with the advent
of public key cryptography. The knapsack problem is well
documented problem and all research into its properties have
lead to the conjecture that it is difficult to solve. In this paper
the canonical duality theory is presented for solving general
knapsack problem. By using the canonical dual transformation,
the integer programming problem can be converted into a
continuous canonical dual problem with zero duality gap. The
optimality criterion are also discussed. Numerical examples
show the efficiency of the method.
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I. PRIMAL PROBLEMS AND MOTIVATION

Cryptography can be regarded as the practice and study of

hiding information. The primary goal is to achieve a secure

means of transmitting information across and in secure com-

munication channel. Public-key cryptography was invented

in 1976 by Whitefield Diffie, Martin Hellman and Ralph

Merkle [1]. Public-key cryptography needs two keys. One

key tells you how to encrypt (or code) a message and this

is public to anyone can use it. The other key allow you to

decrypt (or decode) the message. This decryption code is

kept kept secret (or private) so only the person who knows

the key can decrypt the message. Actually this problem can

be transfered to famous knapsack problem [1].

Let’s consider the general problem. The quadratic knap-

sack problem (QKP) [2]–[4] can be defined formally as

follows: Assume that n items are given where item i has

a positive integer weight wi. In addition we are given an

n × n nonnegative integer matrix A = {aij}, where aii
is the profit achieved if item i is selected and aij + aji
is a profit achieved if both items i and j are selected for

i < j. ci is linear profit coefficient. The (QKP) [5]–[7] calls

for selecting an item subset whose overall weight does not

exceed a given knapsack capacity d, so as to maximize the

overall profit. By introducing a binary variable xi to indicate

whether item i is selected, the problem may be formulated:

(Pq0) max Pq0(x) =
1

2
xTAx+ xT c (1)

s.t. wTx ≤ d,

x ∈ {0, 1}n,

where A = AT ∈ R
n×n is a general symmetric matrix, c

and w ∈ R
n are given vectors, d ∈ R is a given scalar

greater than zero. Let Xq = {x ∈ {0, 1}n|wTx ≤ d}.
Furthermore, if the objective function is lack of quadratic

term, the problem simplified to the following:

(Pl0) max Pl0(x) = cTx

s.t. wTx ≤ d,

x ∈ {0, 1}n.
In this paper we presents a generalized canonical duality

theory for solving these challenging problems. Canonical

duality theory [8] developed from nonconvex analysis and

global optimization [9]–[11]. It is a potentially powerful

methodology, which has been used successfully for solving a

large class of challenging problems in biology [12], network

communications [13], and engineering [14]. The rest of the

paper is arranged as follows. In section 2, we demonstrate

how to rewrite the nonconvex primal problems as a dual

problem by using the canonical dual transformation. In

section 3, we show that the obtain formulation is canonical

dual to the original problems. we illustrate the numerical

experiments. The last section presents some conclusions

II. CANONICAL DUAL TRANSFORMATION FOR

QUADRATIC KNAPSACK PROBLEM

we first rewrite the maximization problem to minimization

problem.

(Pqi) min Pqi(x) = −1

2
xTAx− xT c (2)

s.t. wTx ≤ d,

x ∈ {0, 1}n.
By the fact that the solution to the quadratic equation

xi(xi−1) = 0 must be either 0 or 1, the integer constrained

problem (�〉) can be reformulated to the following quadratic

programming problem:

(Pq) min Pq(x) = −1

2
xTAx− xT c (3)

s.t. wTx ≤ d,

x ◦ (x− e) = 0,
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where the notation s ◦ t = [s1t1, s2t2, · · · , sntn]T , denotes

the Hadamard product for any two vectors s, t ∈ R
n. e is

an n-dimensional vector with all its entry 1.

In order to apply the canonical duality theory to solve

this problem, we need to choose the following geometrically

nonlinear operator. Define

ξ = Λ(x) = [(wTx ≤ d)T , (x ◦ (x− e))T ]T

= [(ε)T , (δ)T ]T ∈ R
1+n.

Clearly, this ia a nonlinear mapping. The canonical function

associated with this geometrical operator is

V (ξ) =

{
0 if ε ≤ 0, δ = 0,
+∞ otherwise.

Let U(x) = 1
2x

TAx + xT c, originally problem can be

rewritten in the canonical form:

P (x) = V(Λ(x))− U(x),x ∈ R
n.

Define ς = [(σ)T , (μ)T ]T ∈ S = R
1+n be the canonical

dual variable corresponding to ξ ∈ Z = {(ε, δ) : ε ≤ 0, δ =
0}. The couple (ξ, ς) forms a canonical duality pair with the

Fenchel conjugate of the function V �(ξ) defined by

V �(ς) = sup{ξT ς − V (ξ) : ξ ∈ Z}
=

{
0 if ς ≥ 0,
+∞ otherwise.

By considering that V (ξ) = ξT ς−V�(ς), the total comple-

mentarity function can be defined by

Ξ(x, ς) = 〈Λ(x), ς〉 −V�(ς)− U(x)

= −1

2
xTAx− cTx+ σ(cTx− d)

+μT (x ◦ (x− e))

=
1

2
xTG(μ)x− FT (ς)x− σd.

By the criticality condition ∇xΞ(x, ς) = 0, we obtain

G(μ)x = F(ς),

where

G(μ) = −A+ 2Diag (μ),

F (σ,μ) = c− σw − σd.

Therefore, the canonical dual problem can be formulated as

the following.

(Pd
q ) max P d

q (ς) = −
1

2
FT (σ,μ)G−1(μ)F(σ,μ)

−σd,
s.t. ς ∈ Sq,

where dual feasible space is

Sq = {ς = (σ,μ) ∈ S = R
1+n : σ ≥ 0, μ > 0}.

III. PERTURBATION FOR KNAPSACK PROBLEM

Similarly, we rewrite the maximization to minimization

problem.

(Pli) min Pl(x) = −cTx
s.t. wTx ≤ d,

x ∈ {0, 1}n.
Consider knapsack problem do not have quadratic term, one

penalty term is added. Let x = 1
2 (y + e), and a be the

penalty factor, the knapsack problem can be formulated as

(Pl) min Pl(y) = −1

2
cT (y + e)

+
1

2
a(y ◦ y − e)T (y ◦ y − e)

s.t. wT (y + e) ≤ 2d,

y ◦ y − e = 0.

Let Xl = {y ∈ {0, 1}n|wT (y + e) ≤ 2d}. We choose the

geometrically nonlinear operator

ξ = Λ(y) = y ◦ y − e,

then, the canonical function associated with this geometrical

operator is

V (ξ) =
1

2
aξT ξ.

Let ς ∈ R
n be the canonical dual variable corresponding to

ξ,

ς = ∇V(ξ) = aξ,

and the Legendre conjugate of the function V �(ξ) defined

by

V �(ς) = {ξT ς −V(ξ) : ς = ∇V(ξ)}
=

1

2
a−1ςT ς.

Thus, the total complementarity function can be defined by

Ξ(y, ς, σ,μ) = (y ◦ y − e)T ς − 1

2
a−1ςT ς − 1

2
cT (y + e)

+σ(wTy − (2d−wT e)) + μT (y ◦ y − e)

=
1

2
yT (2Diag (ς + σ))y − (

1

2
c− σw)Ty

−1

2
a−1ςT ς − eT (ς + μ)

−σ(2d−wT e)− 1/2cTe.

By the criticality condition ∇yΞ(x, ς, σ,μ) = 0, we obtain

y =
1
2c− σw

2(ς + μ)
.
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Therefore, the canonical dual function can be formulated as

the following.

P d
l (ς, σ,μ) = −

1

4

( 12c− σw)2

(ς + μ)
− 1

2
a−1ς2 − eT (ς + μ)

−σ(2d−wT e)− 1

2
cTe,

and the dual feasible space Sl is defined as

Sl = {ς ∈ R
n, σ ∈ R,μ ∈ R

n| σ ≥ 0,μ > 0, ς + μ 
= 0}.
IV. OPTIMALITY CRITERION

Theorem 1 (Complementary-Dual Principle): The prob-

lem (Pd
q ) is canonically dual to the primal problem (Pq)

in the sense that (x̄, σ̄, μ̄) is a KKT point of P d(σ̄, μ̄)
over (σ,μ) ∈ Sq if and only if x̄ is a KKT point of

(Pq), where ∇xΞ(x,σ,μ) = 0. Furthermore, the following

relation holds.

Pq(x̄) = Ξ(x̄, σ̄, μ̄) = P d
q (σ̄, μ̄).

Theorem 1 shows that if x̄ is a KKT point of the primal

problem (Pq if and only if the associated (σ̄, μ̄) is a KKT

point of its canonical dual. Furthermore, they have the same

optimal function value. Thus, there is no duality gap between

the primal problem (Pq) and its canonical dual (Pd).
In order to identify the global minimizer of (Pq), we

introduce

S+
q = {(σ,μ) ∈ Sq | G(σ,μ) � 0}

Then, we have the following theorem.

Theorem 2 (Global Optimality Condition): Suppose that

(x̄, σ̄, μ̄) is a critical point of P d
q (σ,μ) If (σ̄, μ̄) ∈ S+

q ,

then (σ̄, μ̄) is a global maximizer of P d and x̄ is a global

minimizer of P on Xq , i.e.,

Pq(x̄) = min
x∈Xq

Pq(x) = max
(σ,μ)∈S+

q

P d
q (σ,μ) = P d

q (σ̄, μ̄).

Theorem 2 provides a sufficient condition for a global

minimizer of the primal problem (Pq).
Similarly, we have optimality criterion for knapsack prob-

lem with linear objective function.

Theorem 3: The problem (Pd
l ) is canonically dual to the

primal problem (Pl) in the sense that (ȳ, ς̄, σ̄, μ̄) is a KKT

point of P d(ς̄, σ̄, μ̄) over (ς, σ,μ) ∈ Sq if and only if ȳ in

R
n defined by

x̄ =
( 12c− σ̄w)

2(ς̄ + μ̄)
(4)

is a KKT point of (Pl). Furthermore, the following relation

holds.

Pl(ȳ) = Ξ(ȳ, ς̄, σ̄, μ̄) = P d
l (ς̄, σ̄, μ̄).

Proof. By introducing a Lagrange multipliers (ε, ξ) ∈
R− × R

n
−(R

n
− := {ε ∈ R| ε ≤ 0}), the Lagrangian

L : Sl × R− × R
n
− → R associated with the problem (Pd

l )
is

L(ς,σ,μ, ε, ξ) = P d
l (ς, σ,μ)− εσ − ξTμ.

It is easy to prove that the criticality conditions

∇ςL(ς, σ,μ, ε, ξ) = 0, ∇σL(ς, σ,μ, ε, ξ) = 0,

∇μL(ς, σ,μ, ε, ξ) = 0

lead to

ε = ∇σP
d
l (ς, σ,μ) = wTy − (2d−wT e),

ξ = ∇μP d
l (ς, σ,μ) = y ◦ y − e,

and the KKT conditions

0 < σ ⊥ ε = 0,

0 ≤ μ ⊥ ξ ≤ 0,

where y =
( 1
2c−σw)

2(ς+μ) . This shows that if (ς̄, σ̄, τ̄ ) is a KKT

point of the problem (Pd
l ), then ȳ is a KKT point of the

primal problem (Pl).
By using the equations (4), we have

P d
l (ς̄, σ̄, μ̄)

= −1

4

( 12c− σ̄w)2

(ς̄ + μ̄)
− 1

2
a−1ς̄2 − eT (ς̄ + μ̄)

−σ̄(2d−wT e)− 1

2
cT e

= [4y ◦ (y − e)]ς̄ − 1

2
a−1ς̄2 + 2σ̄(wTy − d)

+4μ̄T [y ◦ (y − e)]− cTy

=
1

2
a(ȳ ◦ ȳ − e)T (ȳ ◦ ȳ − e)

−1

2
cTy − 1

2
cT e+ μ̄(wTy − (2d−wTe))

+σ̄(ȳ ◦ ȳ − e)

= Pl(ȳ)

This proves the theorem. �
By introducing a useful feasible space

S+
l = {(ς, τ,σ)T ∈ Sl | ς + σ > 0},

we have the following results.

Theorem 4: Suppose that the vector (ς̄, σ̄, μ̄) is a critical

point of the canonical dual function (Pd
l ) and

x̄ =
( 12c− σ̄w)

2(ς̄ + μ̄)
.

If (ς̄, σ̄, μ̄) ∈ S+
a , then (ς̄, σ̄, μ̄) is a global maximizer of

P d
l on S+

l , the vector ȳ is a global minimizer of Pl on Xl,

and

Pl(ȳ) = min
y∈Xl

Pl(y) = max
(ς ,σ,μ)∈S+

l

P d
l (ς, σ,μ)

= P d
l (ς̄, σ̄, μ̄).
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Proof. By Theorem 3, we know that vector (ς̄, σ̄, μ̄) ∈ Sl is a

KKT point of the problem (Pd) if and only if ȳ =
( 1
2c−σ̄w)

2(ς̄+μ̄)

is a critical point of the problem (Pl), and

P (ȳ) = P d(ς̄, σ̄, μ̄).

By the fact that the canonical dual function P d(ς, σ,μ)
is concave on S+

l , the critical point (ς̄, σ̄, μ̄) ∈ S+
l is a

global maximizer of P d(ς, σ,μ) over S+
l . This proves the

statement (5). �

V. NUMERICAL SIMULATION

All computational results presented in this section are pro-

duced by Matlab. And the original problem we considered

is (Pli).

Example 1. A 4-dimensional knapsack problem
Let c = {16, 54, 18, 52},w = {13, 10, 9, 10}, d = 29. By

solving the dual problem, we have

ς = (0.2781, 0.0061,−3.3285, 0.0082),
σ = 0.9279,

μ = (1.7529, 8.8549, 0.6531, 8.3526).

and (ς, σ,μ) ∈ S+
l , By Theorem 4, we know that

(x1, x2, x3, x4) = {0, 1, 1, 1}

is a global minimizer.

It’s easy to verify that

P (x̄) = P d(ς̄, σ̄, τ̄) = −124.

Example 2. A 5-dimensional knapsack problem
Let c = {24, 13, 23, 15, 16},w = {12, 7, 11, 8, 9}, d =

26. By the canonical dual method, we can find out the global

minimizer of problem Pl(x) is

(x1, x2, x3, x4, x5) = {0, 1, 1, 1, 0}

is a global minimizer with optimal value of -51.

Example 3. High-dimensional knapsack problem
Consider problem (Pli) with n = 100,200, 300, 500,

1000. Their coefficients are generated randomly with uni-

form distribution. For each problem, ci ∈ (1, 50), wi ∈
(1, 50), for i = 1, · · · , n. The right hand sides of the

linear constraints ”d” is chosen such that the feasibility

of the test problem is satisfied. More specifically, we let

wi < d <
∑d

i=1 wi.

We then construct the canonical problem of these prob-

lems. It is solved by using the interior-point method from

the Optimization Toolbox within the Matlab environment.

The specifications of the personal notebook computer used

are: Window 7 Enterprise, Intel(R), Core(TM)(2.50 GHZ).

Table 1 presents the numerical results.

Table I
NUMERICAL RESULTS FOR LARGE SCALE KNAPSACK PROBLEMS

Dimension of the problem CPU time

100 6.45

200 9.39

300 14.10

500 49.65

1000 182.31

VI. CONCLUSIONS

Knapsack problem has been widely used in public key

environment The difficulty of the knapsack problem provide

a basic for secret and secure communication. Due the its

hardness, we consider the problem, we consider the problem

from the point of view of duality. By using the canonical

dual transformation developed, the integer programming

problem can be converted into a continuous canonical dual

problem with zero duality gap. The analytical solution is

also obtained. Several numerical examples are provided to

show the efficiency of the method.
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