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Abstract

Facility location problems are one of the commonest applications to op-
timisation. Traditionally these problems have been formulated as combina-
torial problems, where the facilities can only be placed at a finite number of
locations. However, many applications do not require this constraint, and in
such a case, continuous optimisation formulations are more accurate. How-
ever, these formulations often result in very complex problems that cannot be
solved using traditional optimisation methods. This paper looks at the use
of a global optimisation method – AGOP – for solving location problems
where the objective function is discontinuous. A real-world application is
used for testing this approach numerically.

Keywords: global optimisation, discontinuous optimisation, location prob-
lems, AGOP

1 Introduction
Location problems represent an important part in optimisation, as they have a
very broad area of practical applications: [4] lists over 3400 references on facility
location and related problems.

In [17], the following definition is given for a location problem:
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“Location problems in the most general form can be stated as follows.
A set of customers spatially distributed in a geographical area orig-
inates demands for some kind of goods or services. Customers de-
mand must be supplied by one or more facilities (. . . ). The decision
process must establish where to locate the facilities in the territorial
space taking into account users requirements and possible geograph-
ical restrictions. Each particular choice of facility site implies some
set up cost for establishing the facility, and some operational costs
for serving the customers. Issues like cost reduction, demand cap-
ture, equitable service supply, fast response time and so on, drive the
selection of facility placement.”

As a rule, location problems are generally tackled using combinatorial opti-
misation, the set of possible locations for facilities having to be finite. The paper
[17] reviews this approach to facility location problems. Its complexity increases
when the number of possible locations increases, leading to the development of
approximation algorithms.

Many applications, however, do not require such a restriction on the place-
ment of the facilities: these only have to be placed over a given area, not at special
locations. This problem configuration occurs for example in telecommunications
[16, 18], data analysis [2] or public transportation [3] problems. The classical
approach to solve these is to transform them into combinatorial problems by dis-
cretizing the search space [1, 21]. Due to the NP-hardness of the combinatorial
location problems, a solvable discretization may result in inaccurate results.

The alternative approach is to write the problem as a continuous optimisation
problem. With such an approach, the complexity of the problem depends on the
shape of the cost function, and of the search space. Often, the cost is represented
by a min-type function, which prevents the problem to be convex or smooth.

The aim of this research is to develop and test an algorithm for solving con-
tinuous location problems with discontinuous functions directly. For that purpose
we will select and modify an appropriate method: AGOP [9], whose efficacy will
be tested on a real-world application.

In this paper we present a method to solve a particular type of continuous
location problem, where the cost function is discontinuous. In section 2, the prob-
lem is presented in its general form. Possible approaches to solve are discussed
, and a modification of AGOP is presented in Section 3. Section 4 is devoted to
a case-study of a practical application, and sections 5 and 6 present respectively
numerical results and the conclusion.
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2 Special kind of Location Problem
The location problem considered in this paper can be stated as follows: given a set
of customer, find the minimal number of facilities, and a satisfactory placement
for covering their demand. For each customer, the demand is a binary function:
either the customer is satisfied, or not.

This problem can be expressed as follows:

minimise n subject to: n ∈ N; (1)

∃[xi]
n
1 : ∀j ∈ {1, . . . , J},

gj(x1, · · · , xn) ≤ 0;
(2)

where (x1, . . . , xn) ∈ Rn×m, and gj : Rn×m → R for all j ∈ {1, . . . , J}. J
represents the number of customers, m the dimension of the geographical area.
The inequality (2) is the constraint verifying that all the demand area is covered.
The functions gj represent the service provided to customer j. They may be dis-
continuous.

In the sequel it is assumed that the solution exists for a relatively small value
of n, and therefore an enumeration method can be considered. On the other hand,
the problem of finding a feasible solution satisfying (2) is a difficult one, due to
the nature of the functions gj .

The discontinuity of the functions gj arise in many practical situations: every-
where the area is subject to obstacle, the service as a function of the distance is
likely to be discontinuous. In the telecommunication problem considered further
in this paper, each function gj corresponds to one user, and measures the coverage
of this user. Below a certain threshold, the user is not covered, and the constraint
(2) is not satisfied. The functions gj are composed of two parts: gj = g1

j + g2
j .

• g1
j is a continuous, nondifferentiable, and concave function.

• g2
j is a piecewise constant function.

This model has strong applications in telecommunications, but also in other
areas such as data analysis. It can also be applied in many covering-type problems
where obstacles have to be taken into account. In order to solve problem (1)-(2),
a simple enumeration method is applied as follows:

Algorithm 1 - Algorithm for Solving Problem (1)-(2)

Step 0 Set n = 1.
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Step 1 Search for [xi]
n
1 satisfying (2).

If the solution exists: stop.

Else Step 2 Set n = n + 1.

Step 3 go to step 1.

The main difficulty resides in step 1 of the algorithm 1. In order to solve this
feasibility problem we reformulate the constraint as follows:

max (0, gj(x1, · · · , xn)) = 0,∀j ∈ {1, . . . , J} (3)

Finding a solution to (3) can be reformulated as an optimisation problem such
as:

minimise
J∑

j=1

max (0, gj(x1, · · · , xn)) (4)

Problem (3) has a solution if and only if the optimal value of problems (4)
is equal to zero. The objective functions of this optimisation problem is discon-
tinuous, since functions gj are. Therefore very few optimisation methods can be
applied to solve these problems. On the other hand, due to the min-type nature
of functions gj , this function usually has a large number of local minima. As a
result, most methods that are theoretically applicable to such problems will not be
successful in solving them.

In our numerical experiments, problem (4) was preferred to other possible
formulations, because considering the average error allows one to consider all
constraints at the same time.

One evaluation of the objective function can be expensive, and therefore most
optimisation methods will fail to provide a good solution within a reasonable time.

3 Solving the problem

3.1 Overview of Possible Solver
For solving a real-world optimisation problem, the choice of the solver is crucial.
In the problem considered in the previous section, we can notice the following
issues.
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Although the problem (finding the minimum number of APs to be installed
to cover an area) is really a nonlinear integer programming problem , for each of
these numbers, the evaluation of the condition is a complex one. In this work, the
solution of this problem will be considered small enough to allow one to use an
enumeration method. On the other hand, for each evaluation of the condition, it is
necessary to solve a continuous optimisation problem.

The objective functions of these problems are discontinuous. As a result, it is
not possible to apply any of the classical methods based on local properties of the
functions (such as Newton-based or bundle methods [8, 6] and their derivatives),
nor even methods based on Lipschitz continuity (such as Branch and bounds meth-
ods [5]).

To confront the discontinuity of the functions met in telecommunications net-
work designs due to obstacles, a few authors [20, 15, 19] have used genetic algo-
rithms. Due to their heuristic nature, it is quite easy to adapt these methods for
solving the type of problem under considerations. However, genetic algorithms
are very dependant on the initial population. The complex structure of the func-
tions (these functions have a large number of local minima) results in the necessity
of having a large population size. Since even for a simple real-world problem, the
evaluation of the objective function of the problem considered in this paper is
computationally very demanding, it is very unpractical to use evolutionary algo-
rithms for real-world examples.

Other heuristic approaches, such as simulated annealing or neural networks,
present the same drawback: although these methods can be easily implemented,
they would perform poorly or be too slow on the problem at hand.

Under all these considerations, the solver used for solving this problem is
AGOP (A new Global Optimisation Algorithm - see [9, 10]). This solver finds a
good solution using a relatively small number of function evaluations. Its opera-
tion is explained in the section 3.2.

3.2 Operation of AGOP
Consider the problem:

minimise f(x) : Rn → R, s.t x ∈ B, (5)

where B is a given box constraints. AGOP must first be given a set of points, say
Ω = x1, ...., xq ⊂ Rn. Generally, a suitable choice for an initial set of points is
generated from the vertices of the box B.
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Suppose that x? ∈ Ω has the smallest value of the objective function, that is,
f(x?) ≤ f(x) for all x ∈ Ω. A possible approach has been developed for finding
possible descent direction v at the point x? (see [9] for details). An inexact line
search along this direction provides a new point x̂q+1. A local search about x̂q+1

is then carried out. This is done using the local variation method. This is an
efficient local optimisation technique that does not explicitly use derivatives and
can be applied to nonsmooth functions. A good survey of direct search methods
can be found in [7]. Letting xq+1 denote the optimal solution of this local search,
the set Ω is augmented to include xq+1. Starting with this updated Ω, the whole
process can be repeated. The process is terminated when v is approximately 0 or
a prescribed bound on the number of iterations is reached. The solution returned
is the current x?, that is, the point in Ω with the smallest cost.

The main part of the algorithm is to determine a possible descent direction v
at each iteration. The method, used by AGOP for this aim, is based on dynamical
systems described by non-functional relationships between two scalar variables
(see [11] for details). These relationships are defined in terms of influences of
the change (increase or decrease) of one variable on the change of the other. The
forces acting from one variable on the change of the other variable are defined
by the means of influences. This allows us to define a (non-standard) dynamical
system, which provides the direction of changes of each variable at any given
point. The algorithm AGOP uses this idea to determine a descent direction v.
First, given set Ω, we define a dynamical system that describes the relationships
between the objective function and a particular variable xi, i = 1, ..., n. This
provides a vector v̄ = (v̄1, ..., v̄n), calculated at the point x∗, where the coordinate
v̄i is the force acting from xi on the increase of f . Then the vector v = −v̄ is
taken as a possible descent direction at the point x∗.

3.3 Modification of AGOP
AGOP is a global solver, and therefore can be run out of the box for finding the
solution to problem 4. However, since the calculation of the value of the objective
function is very computationally intensive, it is necessary to modify the procedure
of AGOP in order to run the program within a reasonable time.

The first modification to the algorithm makes use of the known lower bound to
the problem: the value of the function is nonnegative. What is more, the function
is zero when the solution is found. If there exists a coverage for a number n of
APs, then in many cases the set of optimisers is quite large, and as a result a
function value of zero may be found very early on by the algorithm. In such a
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case, it is not necessary to continue searching, and the algorithm can be exited.
The second modification is based on the sequence of problems that are being

solved during the execution of Algorithm 1. It also takes into consideration the
geographical nature of the problem: a solution x is structured as a set of geograph-
ical points x̄ ∈ Rm. The solution reached at iteration n−1 can be used at iteration
n. The set Ω of initial points is constructed as follows: Ω = {x1, . . . , xq}, where
xi = (x∗,n−1

0 , . . . , x∗,n−1
q−m , y1, . . . , ym), x∗,n−1 is the solution reached at iteration

n − 1, and y ∈ Rm is an initial point constructed from the boundaries of the
geographical area.

This allows to reduce the initial size of the set Ω, and therefore to acceler-
ate the execution of AGOP. Furthermore, it also generates initial points that are
potentially closer to the set of optimisers, which is reached faster.

4 Case Study
Consider the following problem: Given a building where a Wireless Network
needs to be installed, find the minimal number of antennas (Access Points - APs)
which can cover the total area where users may move. Notice that the building
can be divided into three types of areas:

• Areas where APs can be placed and users need to receive (for example
offices);

• Areas where APs can be placed, but users need not to receive (for example
stationary rooms);

• Areas where APs cannot be placed (for example elevators).

As a result, the area to cover may be quite complex, and the coverage cannot
be computed easily. Therefore, this area is discretized: potential users are placed
everywhere a user may need to access the network. Under such a configuration,
this problem can be formulated using (1)-(2).

The signal emitted by an AP xi deteriorates before reaching a potential user
uj . This can be measured by the so-called pathloss. Over a certain threshold, the
pathloss is too large, and the user cannot receive the signal.

The pathloss can be written as follows [13, 14, 12]:

p(xi, uj) = p1 + p2, (6)
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where:
p1(xi, uj) = p0 + 20 log ‖xi − uj‖2

represents the deterioration caused by the Euclidean distance ‖xi − uj‖2 between
the AP and the user, and

Q∑
t=1

δtlt

represents the deterioration caused by the obstacles. Here,

δt =

{
1 if the obstacle t is crossed by the signal;
0 otherwise,

and lt represents the loss for crossing obstacle t.
In such a case, in the formulation (1)-(2), we have:

gj(x1, . . . , xn) = − min
1≤i≤n

(p(xi, uj)),

and gmax = −pmin.
This particular problem has the following characteristics:

• The number J of functions gj is equal to the number of users. This number
can be quite large, as the final coverage may depend on the density and the
distribution of the users in the building.

• The function gj is the minimum of functions gi
j , where 1 ≤ i ≤ n. The

number of such functions to evaluate at each objective function evaluation
is therefore n× J .

• The functions gi
j depends on the number of walls separating the user from

the access point. When the number of walls in the building is large, evalu-
ating gi

j is computationally very expensive.

As a result, the evaluation of one objective function is computationally very
demanding.
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Figure 1: Layout of the design area

5 Testing and Results

5.1 Testing
In order to verify the effectiveness of the algorithm presented in section 3, we
carried out some experiments to solve the problem (1)-(2), as formulated in the
case study (Section 4). In the experiments, a real-world situation is implemented,
which can be found in [19]. This building contains 129 walls (obstacles) of
pathloss either 3 or 6. and measures 75 m x 30 m. In this building, 223 potential
users are distributed over the area. Figure 1 shows the building specifications and
the distributions of the users.

Another set of experiments with 183 potential users distributed over the area
has been conducted. The effect of reducing the users is that some rooms do not
contain any potential user anymore. This set of experiments is carried out in order
to observe the effect of the distribution of users on the number of APs necessary
to cover the area.

The experiments were carried on the VPAC supercomputer “Brecca” [22].
The threshold for the pathloss has been varied. Results are presented in tables

1 and 2.

5.2 Results
In [19], the same problem has been solved using a different approach, based on
genetic algorithms. Our result show that the method presented here is superior
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Pth Num. APs tt(sec.) Num. PL. eval.
115 1 2.74 5.6× 105

114 2 12.48 2.4× 106

105 2 12.78 2.4× 106

100 2 14.51 2.7× 106

95 2 20.48 3.5× 106

92 3 48.57 7.1× 106

90 3 48.55 6.9× 106

80 4 125.87 1.3× 107

75 6 407.27 3.3× 107

70 8 701.24 5.1× 107

65 14 2241.29 1.2× 108

Table 1: Results of the experiments for various values of the threshold, for 223
potential users

Pth Num. APs tt(sec.) Num. PL. eval.
115 1 1.01 2.1× 105

114 1 1.45 3.0× 105

105 2 10.00 1.9× 106

104 2 11.15 2.1× 106

100 2 12.78 2.5× 106

95 2 11.41 2.2× 106

92 2 11.27 2.1× 106

90 2 20.64 3.4× 106

82 3 41.97 6.1× 106

80 3 41.43 6.1× 106

75 5 146.45 1.4× 107

70 6 285.82 2.5× 107

65 9 777.29 5.4× 107

Table 2: Results of the experiments for various values of the threshold, for 183
potential users
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to the approach from [19] in this particular building: for a threshold of 80dB, it
found a coverage with 4 APs instead of 5, and for a threshold of 100dB, the same
amount of 2 APs were found.

From the point of view of time complexity, the results are satisfactory: in most
cases, the solution was found within reasonable delay. Only when the number of
APs becomes larger, the time necessary to solve the problem increases. From that
viewpoint, a few observations can be made:

• The threshold has an influence on the processing time: although for Pth =
114 and for Pth = 95 the same number of APs (meaning the same number
of optimisation problems, of the same dimensions have been solved), the
program needed nearly 1.5 more Path Loss evaluations to find the solution.
This is due to the fact that a larger threshold means that more locations allow
full coverage. This shows that it is very efficient to take into account the
lower bound of the problem in AGOP, which stops as soon as the solution
has been found.

• The time complexity is very dependent on the number of APs necessary to
cover the area. This is due to the enumeration part of the method: the more
APs are necessary, the more optimisation problems need to be solved. What
is more, only the last problem resolution can be quickened by the technique
described on the previous item.

• The number of users does influence both the result and the running time.
However, the running time is only slightly increased when the number of
APs is the same. This means that the potential users should well cover the
area, otherwise there may be some inaccuracies. In an area covered with
obstacles, the discontinuity of the objective function results in needing the
users to be distributed densely enough, but also this distribution takes into
account the possible effect of every obstacle. On the other hand, if the
number of users is extremely large, the program may need more time to
solve. This observation is particularly true when the threshold is low (many
APs are needed): for Pth = 65, the number of APs varies from 14 to only 9
when we remove only 40 potential users.
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6 Conclusion and Further Research
In this paper, we have presented a novel approach to solve a particular type of
location problem. This problem consists of minimising the number of facilities
necessary to cover a certain demand, where this coverage depends on their loca-
tion (namely their distance from the customers). No assumption was made on the
coverage of the demand, which can be discontinuous as a function of the distance.

To tackle this problem, a sequence of continuous optimisation problems with
discontinuous objective functions are solved. The global optimisation software
AGOP has been modified to take into account the particularities of these problems.
In particular, the modifications have been devised in order to accelerate the search
of a solution, using information obtained during the resolution of the previous
problems.

A particular application to this type of problems arising in the design of wire-
less telecommunication networks has been presented, and numerical experiments
have been carried out on a particular instance from a real-world situation.

These experiments have shown that in most cases, the algorithm outperforms
other approaches, while solving within an acceptable amount of time. This is due
to the very good performance of AGOP for solving the sequence of problems. It
is also shown that the number of customers has little influence on the performance
of the algorithm, which depends much more on the number of APs needed (that
is on the demand threshold).

A number of points may be improved in the current algorithms:

• The enumeration method is not very efficient when the number of APs is
large. Using approximation algorithms to estimate roughly the number of
APs needed may accelerate the current method;

• Experiments have shown that a large portion of the computing time is spent
on solving problems that are not very interesting: if the solution of the
problem is a quite high number of APs, then much time is spent on solving
cases for a lower number of APs. The use of the suggestion from the point
above may reduce this effect, but it may also be of interest to analyse the
problem more deeply, to improve the search method.

• Although the number of users does not have a strong influence on the effi-
ciency of the method, this may still become an issue when the number of
APs is larger. Experiments have shown, however, that if the users are not
adequately distributed over the area, the results can be highly inaccurate. In
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order to accelerate the algorithm while still obtaining satisfactory results,
it may be interesting to use a method similar to the ε-cleaning procedure
presented in [2] for reducing the number of customers, while still reaching
accurate results. Such a method would allow one to specify a density of
potential users high enough to ensure that every obstacle is taken into ac-
count, while having an automatic tool that generates a smaller set of users
representative of the problem. This is achieved because each potential user
is within a reasonable range (that is distance, but also considering obstacles)
of a representative user.
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[8] C. Lemar échal. “Nonsmooth Optimization and Descent Methods,” Techni-
cal Report RR-78-004, International Institute for Applied System Analysis,
Laxemburg, Austria, 1978.

13



[9] M. Mammadov, “A New Global Optimization Algorithm Based on a Dy-
namical Systems Approach,” in Proceedings International Conference
on Optimization: Techniques and Applications - ICOTA6, Ballarat, Aus-
tralia, 2004. Also in Research Report 04/04, University of Ballarat, 2004.
http://www.ballarat.edu.au/ard/itms/publications/researchPapers.shtml

[10] M. Mammadov, A. M. Rubinov, and J. Yearwood, “Dynamical Systems
Described by Relational Elasticities with Applications,” in Continuous Op-
timization: Current Trends and Applications, V.Jeyakumar and A.Rubinov
(eds), Springer, 2005.

[11] M. Mammadov, J. Yearwood, and L. Aliyeva , “Multi Label Classification
and Drug-reaction Associations Using Global Optimization Techniques,”
in Proceedings of the 6th International Conference on Optimization: Tech-
niques and Applications -ICOTA6, Ballarat, Australia, December 2004.

[12] R. Morrow, Wireless Network Coexistence, McGraw-Hill, USA, 2004.

[13] K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks: A
Unified Approach, Prentice - Hall, New Jersey-USA, 2002.

[14] M. A. Panjwani, A. L. Abbott, and T. S. Rappaport, “Interactive Compu-
tation of Coverage Regions for Wireless Communication in Multifloored
Indoor Environments,” IEEE Journal Selected Areas in Communications,
vol. 14, pp. 420 - 430, 1996.

[15] B. S. Park, J. G. Yook, and H. K. Park, “The Determination of Base Station
Placement and Transmit Power in an Inhomogeneous Traffic Distribution
for Radio Network Planning,” in Proceedings of IEEE 56th Vehicular Tech-
nology Conference, Vol.4, 2002, pp. 2051 - 2055.

[16] R. Rodrigues, G. Mateus, and A. Loureiro, “Optimal Base Station Place-
ment and Fixed Channel Assignment Applied to Wireless Local Area
Projects,” in Proceeding IEEE International Conference on Networks,
September 1999, pp. 186 - 192.

[17] M.P. Scaparra and M.G. Scutell‘a, Facilities, Locations, Customers: Build-
ing Blocks of Location Models. A Survey. Technical Report TR-01-18, Uni-
versit‘a Di Pisa.

14



[18] H. D. Sherali, C. M. Pendyala, and T. S. Rappaport, “Optimal Location of
Transmitters for Micro-Cellular Radio Communication System Design,”
IEEE Journal Selected Areas in Communications, vol. 14, pp. 662 - 673,
1996.

[19] K. S. Tang, K. F. Man, and K. T. Ko, “Wireless LAN Design using Hier-
archical Genetic Algorithm,” in Proceedings of the 7th International Con-
ference on Genetic Algorithm , 1997, pp. 629 - 635.

[20] K. S. Tang, K. F. Man, and S. Kwong, “Wireless Communication Network
Design in IC Factory,” IEEE Transaction on Industrial Electronics, vol. 48,
pp. 452 - 458, 2001.

[21] M. Unbehaun and M. Kamenetsky, “On the Deployment of Picocellular
Wireless Infrastructure,” IEEE Wireless Communication Magazine, vol.
10, pp. 70 - 80, 2003.

[22] Victorian Partnership for Advanced Computing. http://www.vpac.org

15


