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Abstract

Structural optimisation is an important field of applied mathematics, which has proved useful

in engineering projects. Reliability-based design optimisation (RBDO) can be considered a

branch of structural optimisation. Different RBDO approaches have been applied in real

world problems (e.g. vehicle side impact model, short column design, etc.).

Double-loop, single-loop, and decoupled approaches are three categories in RBDO. This

research focuses on double-loop approaches, which consider reliability analysis problems in

their inner loops and design optimisation calculations in their outer loops.

In recent decades, double-loop approaches have been studied and modified in order to im-

prove their stability and efficiency, but many shortcomings still remain, particularly regarding

reliability analysis methods.

This thesis will concentrate on development of new reliability analysis methods that can be

applied to solve RBDO problems. As a local optimisation algorithm, the conjugate gradient

method will be adopted. Furthermore, a new method will be introduced to solve a reliability

analysis problem in the polar space. The reliability analysis problem must be transformed

into an unconstrained optimisation problem before solving in the polar space. Two methods

will be introduced here and their stability and efficiency will be compared with the existing

methods via numerical experiments.

Next, we consider applications of RBDO models to electricity networks. Most of the

current optimisation models of these networks are categorised as deterministic design optimi-

sation models. A probabilistic constraint is introduced in this thesis for electricity networks.
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For this purpose, a performance function must be defined for a network in order to define

safety and failure conditions. Then, new non-deterministic design optimisation models will

be formulated for electricity networks by using the mentioned probabilistic constraint. These

models are designed to keep failure probability of the network below a predetermined and

accepted safety level.
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Chapter 1

Introduction

Optimisation is an important and broad part of applied mathematics playing a prominent

role in the current industrial world. Many optimisation models are now available for various

real world problems delivering promising results.

Non-deterministic design optimisation, as a part of optimisation, has been used in different

projects. This kind of optimisation, which is considered in this research project, is related to

safety level of engineering systems and tools.

However, the main objective in most of the non-deterministic design optimisation models

is still to minimise total cost. Typically, construction, material, operation and maintenance

costs are assumed as various parts of total cost.

In this chapter, a background of the intended topic of this research along with its appli-

cation in large scale systems are provided. Basic concepts of electricity networks as well as

motivations of this research are also given in the next sections. Finally, the main aims of this

research will be explained.

1.1 Background

In a non-deterministic design optimisation problem, total cost is often minimised, while exist-

ing uncertainties are also taken into account. One widely used non-deterministic optimisation

1



model is reliability-based design optimisation (RBDO) that is considered in this thesis.

The main features of an RBDO problem can be seen in its variables and constraints.

Variables of an RBDO problem are random and also constraints are probabilistic. Reliability-

based design optimisation (RBDO) and large scale systems will briefly be explained in the

following subsections.

1.1.1 Reliability-Based Design Optimisation

Reliability-based design optimisation (RBDO) is an optimisation model that is formulated

using random variables. The main constraint of an RBDO problem is probabilistic. De-

terministic constraints (if they exist in a model) do not have significant roles in an RBDO

problem.

RBDO is a class within non-deterministic design optimisation defining a connection be-

tween reliability and optimisation. Existing RBDO approaches can be classified into three

groups; single-loop (or mono level) approaches, double-loop (or two level) approaches and

decoupled approaches. Although many widely-used approaches are available for RBDO prob-

lems, there are still many challenges in this area, particularly in regards to stability, robustness

and efficiency of these approaches.

The main concentration of this project is on double-loop RBDO approaches. Reliability

index approach (RIA) and performance measure approach (PMA) are two commonly used

double-loop RBDO approaches. The main concern of this research is about inner loop of

performance measure approach (PMA). It must be mentioned that inner loop of PMA is

related to a reliability analysis problem.

RBDO model and its applications in large scale systems are considered in this research.

It is intended to extend RBDO applications into electricity networks, while stability and

efficiency of RBDO are enhanced simultaneously.
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1.1.2 Large Scale Systems

Non-deterministic design optimisation has been applied into different engineering projects

to develop optimal systems. Uncertainties in material properties, manufacturing conditions,

external loading conditions and analytical and/or numerical modeling can be considered in

a non-deterministic design optimisation problem.

RBDO, as a non-deterministic design optimisation model, has also been applied in dif-

ferent problems, such as durability model of a road-arm of a military tracked vehicle, a truss

with multiple failure modes, climate change, a two-bar steel frame, crash-worthiness vehicle

side impact model, etc.

A new area will be used in this thesis for RBDO application. For this purpose, electricity

power networks are considered as large scale system in which RBDO models will be applied.

Many optimisation models are available for electricity power networks, but there are still

many challenges in these problems. Although reliability related issues of these networks

are considered by using different uncertainty indices, there is no comprehensive optimisation

model for them so that their cost and reliability are considered at the same time.

The next section is dedicated to illustrate several fundamental concepts and definitions

of electricity power networks.

1.2 Basic Concepts in Electricity Networks

In this section, a number of concepts that play prominent roles in electrical engineering and

electricity networks are illustrated. These concepts can also be found with more details in

[73, 121, 130, 146]. This will be needed in Sections 2.6 to 2.8 and also Chapter 4.

Elements of an electricity power network are generally categorised as below:

1. Resistors that dissipate energy;

2. Inductors that store energy in a magnetic field;
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3. Capacitors that store energy in an electric field.

Every electricity network is modelled by using various quantities related to different no-

tions. Voltage and current magnitudes are two fundamental concepts in any network.

Generally, charge density difference between two points is considered as a voltage magni-

tude. This amount, which is denoted by V , has volt (V ) as a unit of measure.

Also, a current flow is caused by an existing force that moves electrons in a conductor. It

is common to denote current flow by I and it must be mentioned that amperes (A) is often

used as a unit of current flow.

However, voltage and current quantities, themselves, are seldom used in formulating elec-

tricity networks involving alternating currents. Instead, their effective values are often used.

These values are called root mean square (RMS) values and calculated as below:

VRMS =
Vmax√

2

IRMS =
Imax√

2

where Vmax and Imax are peak values of voltage magnitudes and current flow, respectively.

Another item that is very important in electricity networks and can be calculated by

using voltage magnitude and current flow is resistance. Resistance is denoted by R and is

measured in ohms (Ω). Resistance is obtained as below:

R =
V

I

Immediate current is equal to immediate voltage divided by resistance. In other words,

Imax is formulated as follows:

Imax =
Vmax
R

Further, current flow in a circuit consumes energy that is expended not only in consumers’

devices as loads, but also in conductors as losses or heat. This energy (power) is found as
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below:

P = I2R

where I is current and R is resistance.

Irrespective of the direction of current and due to squaring of current in the expression for

energy, energy is expended as heat in resistance of conductors even when energy is returned

from a magnetic or an electric field to source.

Power, which is a multiplication of voltage and current (i.e. P = V I), is always positive.

Energy spent in a second is the time integral or the area under the power curve over a duration

of one second.

In a time interval (period), there are generally two different tasks in a circuit: for part of

the time, energy is delivered from source to fields (electric and magnetic); for the remaining

part of the time, energy is returned. These powers are called active and reactive powers.

Active power is the average power in a circuit that is delivered to fields. This power is

measured in watts and denoted by P . Active power is formulated as below:

P = V Icos(δ) (1.1)

where V and I are the effective values of voltage and current and δ is the phase angle of

current in relation to voltage by which the current lags the voltage.

Furthermore, reactive power is the power supplying the stored energy in reactive elements.

Since the returned energy is in reaction to cyclic establishment of fields, it is called reactive

power. This power is denoted byQ and represented as V AR (volt-amperes reactive). Reactive

power flow is obtained as following:

Q = V Isin(δ) (1.2)

It must be noted that both P and Q have the same dimensions, joules/s.
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Phase angle, which is also called power factor, can be calculated by using the following

equalities:

δ = arcsin(
Q

V I
) = arccos(

P

V I
)

Phase angle has positive and negative components. A positive angle represents power

consumption in the resistive elements. Also, a negative angle indicates stored energy in

magnetic field that is returned to the source periodically.

Energy is not delivered into the circuit during the time when the stored energy in electric

and magnetic fields is returned to the source. When energy is being returned to source,

immediate direction of current is not necessarily negative (i.e. from circuit to source). In this

case, immediate direction of current is opposite to that of voltage. This concept is shown in

the Figure (1.1).

 

 

  

Figure 1.1: Reactive Power Flow
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A phasor diagram, including various relationships in an electricity network, is shown in

the Figure (1.2).

Figure 1.2: Phasor Diagram for Complex Power Relationships

As shown in the Figure (1.2), there is another power quantity in electricity networks in

which P and Q are orthogonal components. This is apparent power or complex power and

is denoted by S. Apparent power is often defined as follows:

S = P + jQ (1.3)

Apparent power, which is also formulated as |S| =
√
P 2 +Q2, can be rewritten as below:

S = V I(cosδ + jsinδ) = V Iejδ = V I∠δ

Apparent power is measured in V A (volt-amperes) since it is nothing but a product of

effective values of voltage and current; i.e. S = V ∗ I.

Power at i th bus (injected into a network) is called the bus power and is defined as follows:

Si = SGi − SDi
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where SGi and SDi are supplied or generated power (incoming power) and drawn or load

power (outgoing power), respectively.

Figure 1.3: Three Bus System

Since SGi = PGi + jQGi and SDi = PDi + jQDi , we get:

Si = (PGi − PDi) + j(QGi −QDi)

The last equality can also be written as below:

Si = Pi + jQi

which is indeed the Equality (1.3).

A simple three bus example system is displayed in the Figure (1.3). Apparent powers as

well as supplied and drawn powers are shown in this figure.

All nodes in an electricity network, which are also called buses, are categorised into three

groups: generation nodes, load nodes and slack nodes. At each node, two quantities (out of

the four following quantities) are specified:

1. Magnitude of the voltage, |V |;

2. Phase angle of the voltage, δ;
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3. Active or real power, P ;

4. Reactive power, Q.

Active power (P ) and voltage magnitudes (|V |) indicate generation nodes. This type of

node is also called a voltage-controlled node and denoted as a P − V node.

A load node is denoted as a P −Q node, because active and reactive powers are specified

in this bus. A slack bus, which is also called a swing bus or a reference bus, is denoted as a

V − δ node where voltage magnitude and phase angle are specified.

A slack bus is often considered to provide additional active and reactive power to supply

transmission losses. If a slack bus is not specified, then a generation node, usually with the

maximum active power, is taken as the slack bus. There can be more than one slack bus in

a system.

In a network having n buses, it is obvious that there can be at most n− 1 outgoing lines

at each bus. Each line has different associated quantities such as admittance and impedance.

These two quantities are the reciprocal of each other and denoted by Y and Z, respectively;

i.e. Y ∗ Z = 1.

If a line between two buses does not exist, then its admittance is simply set to zero.

Admittance can be decomposed into real and imaginary parts as:

Y = g + ib

where g and b are conductance and susceptance, respectively.

Further, impedance of a line in an electricity network is calculated as below:

Z = r + ix

where r and x are real and imaginary impedances, respectively.
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Since Y ∗ Z = 1, we have:

Y =
1

Z
=

1

r + ix
=

1

r + ix
∗ r − ix
r − ix

=
r − ix
r2 + x2

Therefore, as Y = g + ib, it can be concluded that conductance and susceptance are

computed, respectively, as follows:

g =
r

r2 + x2

b =
−x

r2 + x2

Suppose that all admittances of different parts of a network are written in a matrix. This

matrix is called admittance matrix. In this case, angle of an element of the mentioned matrix

is calculated as follows:

θij = arctan(
bij
gij

)

where i and j indicate row and column of an admittance, respectively.

Value of impedance (as a complex number) is used to find the current flow, because

division of voltage by impedance gives not only the magnitude of the current but also its

phase relationships.

Current flow in a line is given by difference in voltage (in phasor form) at the two ends

of the line divided by the impedance of the line.

If both resistance and inductance exist in a circuit, the current lags the voltage by an

angle less than π
2 . This angle is called phase angle and calculated as follows:

δ = arctan(
ωL

R
)

where ω is angular frequency and L and R are the inductance and resistance of the circuit,

respectively.

The power balance law is another important rule in electricity networks. This law is based
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on Kirchhoff’s Laws. Kirchhoff’s Laws arise from the fact that charges cannot be destroyed.

In other words, the summation of currents at any junction (node) is zero. In other words,

currents flowing into a node and out of it must be the same.

Figure 1.4: Complex Power Flow in a Branch

Considering the Figure (1.4) and based on the Kirchhoff’s laws, the current Iij (complex,

RMS value) from i to j is given by:

Iij =
Vi − Vj
Zij

= Yij(Vi − Vj)

where Vi and Vj represent complex voltages at nodes i and j, respectively. Also, Zij and Yij

are, respectively, impedance and admittance between these nodes.

Complex power, Sij , flowing in the branch from i to j (which is the same as the injected

power at node i) is given by the product of the voltage conjugate and current as below:

Sij = Si = V ∗i Ii(= ViI
∗
i ) = V ∗i Yij(Vi − Vj)

⇒ Si = Sij = Yij |Vi|2 − YijV ∗i Vj

⇒ Si = Sij = |Yij ||Vi|2∠θij − |Yij ||Vi||Vj |∠(θij + δj − δi)
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where θij is the angle of the admittance Yij , and δi and δj are the angles of voltages at nodes

i and j.

Sj = −Sij = |Yij ||Vj |2∠θij − |Yij |Vi||Vj |∠(θij + δi − δj)

Moreover, electrical waves can be described as periodic mathematical functions. In this

case, the most general mathematical formula for a cosine signal is as below:

x(t) = Acos(ω0t+ δ)

where x is a function of time (t) and A, ω0 and δ are fixed numbers. A is called amplitude,

ω0 is radian frequency and δ is phase angle.

Obviously, x(t) is an oscillating function between −A and A with a period of 2π
ω0

. Also,

the unit of δ must be radians. If t has units of seconds, ω0 must have units of radians
second .

The above function of a signal is sometimes written in terms of sine function. In other

words, it may be given as x(t) = Asin(ω0t + δ′). In this case, this function can simply be

rewritten in terms of cosine as below:

x(t) = Asin(ω0t+ δ′) = Acos(ω0t+ δ′ − π

2
)

Radian frequency (ω0) can be replaced by cyclic frequency (f0). Hence, we will have:

x(t) = Acos(2πf0t+ δ)

where f0 must have units of sec−1.

There are generally two kinds of electrical flows: direct current (DC) and alternating

current (AC). The main difference between an AC and a DC power flows is that a true

formulation of steady-state power flow is often used for an AC power flow, while a DC power

flow is often approximated by only considering active power, and ignoring reactive power and

12



bus voltage magnitudes.

A solution to any direct current (DC) electrical circuit can be obtained by using two

parameters: voltage at nodes and current in branches. On the other hand, generators in

an alternating current (AC) electrical circuit generate a sinusoidally time varying voltage

expressed as following:

v(t) = Vmaxsin(ωt)

where ω and Vmax are radian frequency and immediate maximum value of the voltage, re-

spectively.

Moreover, if n and l indicate all the nodes and existing lines, respectively, it can easily

be shown that:

l ≤ n(n− 1)

2

All these basic electrical concepts and corresponding mathematical functions are used in

a wide range of research projects in this area. It is intended in this thesis to introduce new

optimisation models for electricity power networks based on these concepts.

1.3 Motivation of This Research

Many efforts have been expended to introduce new and improve efficiency of the existing

reliability-based design optimisation (RBDO) models. However, there are still many difficul-

ties in these models that have not been solved yet.

Requiring high computational efforts, limitations to dealing with a large number of de-

sign variables, sensitivity to initial design points and effects of probability distributions on

problems are the most common drawbacks of the existing RBDO approaches mentioned in

the literature.

Some of these drawbacks and other properties of RBDO approaches will be investigated

in this thesis. High computational cost and instability and inefficient behaviours of double-

loop RBDO approaches as well as effects of probabilistic constraints on various problems are
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discussed in the next chapters.

One of the main aims of this research is to improve stability of reliability analysis problems

used in inner loop of the double-loop RBDO approaches. High importance of a reliability

analysis problem comes from the fact that if this problem diverges, it is impossible to solve

the associated RBDO problem.

Another issue is to reformulate reliability analysis problems. As discussed in this thesis, a

reliability analysis problem in the inner loop of an RBDO problem can be reformulated using

polar coordinates system. This reformulation changes a constrained optimisation problem to

an unconstrained optimisation problem resulting in more robustness.

Moreover, application of RBDO in electricity power networks is another significant moti-

vation of this research. Although many optimisation models are available for these networks,

no probabilistic constraint has yet been introduced in the literature for them.

Most of the existing optimisation models developed for electricity networks are mono-

objective and just try to find the best (lowest) cost amount. Reliability relevant issues are

often considered in the existing models by merely using different safety indices.

Further, a number of multi-objective optimisation models have been developed for elec-

tricity networks, but there is a lack of RBDO formulation in the existing literature. Applying

RBDO into electricity power networks is a quite difficult task and it is one of the principal

motivations of this thesis.

All above mentioned motivations for this research project will be summarized as various

research aims in the next section.

1.4 Research Aims

In this section, main aims of the current research are briefly illustrated. As discussed in the

previous section, improvement of reliability-based design optimisation (RBDO) models are

considered in this thesis as well as their application in large scale systems.

There are many drawbacks in the existing RBDO models that have made them hard to
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solve. The main shortcomings are stability and efficiency issues. Further, as there is no

RBDO model for electricity power networks, it is intended to introduce such a model for

these networks.

Therefore, the main goals of this research can be summarised as following:

1. Improve stability of reliability analysis methods (in the inner loop of a double-loop

RBDO approach) to prevent solutions of RBDO problems from diverging.

2. Efficiency enhancement of reliability analysis problems. Efficiency can be improved by

reducing the required time or the number of required iterations for solving a problem

as well as obtaining a better solution for problem.

3. Formulate a probabilistic constraint for electricity power network as a large scale system

in order to use in a non-deterministic design optimisation problem.

4. Introduce non-deterministic design optimisation models for electricity power networks.

1.5 Organisation of the Thesis

This document is organised as follows. The existing literature will be reviewed in the next

chapter. The first five sections of literature review are dedicated to the existing literature

about reliability-based design optimisation (RBDO) and the last three sections are about

electricity power networks.

Then, two new reliability analysis methods will be introduced and illustrated in Chapter

3. Stability and efficiency of these methods will be compared with the existing reliability

analysis methods.

Chapter 4 includes an idea of how to formulate a probabilistic constraint for an optimi-

sation model of electricity power networks. Also, a new reliability-based design optimisation

(RBDO) model will be introduced in this chapter for these large scale systems.
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A conclusion of this thesis will be provided in Chapter 5. In this chapter, existing meth-

ods/models will be discussed and compared with the new methods/models introduced in this

thesis. Further, this chapter consists of a summary of future works in this area.
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Chapter 2

Literature Review

2.1 Design Optimisation

Classical optimisation algorithms try to find the best amount for an objective function such

that a set of possible constraints is satisfied. These algorithms are not concerned about

probabilistic features of a system whereas these properties (such as probability of failure) are

very important factors in all systems.

It has been reported in the existing literature that such algorithms, which ignore uncer-

tainty as a probabilistic feature of a structure, cannot ensure required safety levels, because

they do not explicitly consider failure probability of components and systems. Therefore,

optimum design obtained without considering uncertainties may result in unreliable or even

catastrophic design [26, 61, 83, 84, 115, 133, 155, 172, 173, 195, 203].

Design optimisation methods can be classified into two main groups, deterministic de-

sign optimisation (DDO) and non-deterministic design optimisation. The latter category

takes into account system uncertainties and includes four subclasses, reliability-based design

optimisation (RBDO), possibility-based design optimisation (PBDO), evidence-based design

optimisation (EBDO) and robust design optimisation (RDO) [13, 14].

Existence of uncertainties in the physical quantities requires a probability-based approach
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to design optimisation. Thus, evaluation of a probabilistic constraint in a non-deterministic

design optimisation problem is an essential step [43, 45, 173].

2.1.1 Deterministic Design Optimisation

In a deterministic design optimisation problem, the designer seeks the best values of design

variables for which an objective function is optimum and deterministic constraints are satis-

fied. A typical deterministic design optimisation problem in terms of design variable (d) can

be formulated as [24]:

Min f(d) (2.1)

s.t. g(d) ≤ 0

h(d) = 0

dL ≤ d ≤ dU

where f is an objective function, g is deterministic inequality constraint and h is deterministic

equality constraint. In this model, the design space is bounded by dL and dU . All the objective

and the constraint functions are explicit deterministic functions of the design variable (d).

It must be noted that in deterministic design optimisation, system failure, which is orig-

inated from existence of uncertainties in the system, is not taken into account. Therefore,

it is required to extend optimisation algorithms so that uncertainties can also be consid-

ered. It means that going from deterministic design optimisation to non-deterministic design

optimisation is unavoidable [14, 17, 24, 61].

Optimum designs obtained from deterministic design optimisation do not ensure target

reliability levels with the most economical solutions [13].
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2.1.2 Non-Deterministic Design Optimisation

The second category in the design optimisation is non-deterministic design optimisation that

considers probabilistic features of a system. A general non-deterministic design optimisation

problem is written as follows [14]:

Min f(x) (2.2)

s.t. Pf (x) ≤ P̃

where the probabilistic constraint includes failure probability of a system that should be

non-greater than an intended level.

The non-deterministic design optimisation methods can be categorised in three classes

as parallel-loop methods, serial-loop methods and single-loop methods [13]. The single-loop

methods merge double-loops for reliability analysis and design optimisation in a single design

loop. Also, the parallel- and serial-loop methods are more stable but less efficient than the

single-loop method [61].

In a general non-deterministic design optimisation problem, total cost often depends on

a design variable (d) and a random variable (X). Design variables are deterministic control

parameters and should be optimised for cost reduction. They are usually probabilistic param-

eters, such as mean of random variables. Random variables represent uncertainty and possible

fluctuations in a system. Each random variable is defined by a probability distribution [13].

1948 Reduction of total cost should include not only
construction cost, but also expected failure cost

1950s Development of the reliability theory

1970s Solution procedure becomes available

1980-85 Improvement of the solution procedure

1985-90 RBDO was born

Table 2.1: History of Non-Deterministic Design Optimisation

19



A general non-deterministic design optimisation problem has three goals as low total

cost, high reliability level and good structural performance. A brief history of efforts in the

non-deterministic design optimisation area is shown in the Table (2.1) [61].

An adaptive-loop method has been proposed for the non-deterministic design optimisation

[191]. This method, which has been developed by using an integrated framework, involves

different phases including deterministic design optimisation, parallel-loop method and single-

loop method.

Deterministic design optimisation speeds up the non-deterministic design optimisation

process. The parallel-loop method maintains the numerical stability of the non-deterministic

design optimisation. Also, single-loop method completes the non-deterministic design opti-

misation after confirming numerical convergence [191].

In non-deterministic design optimisation, a performance function is often formulated

to define a probabilistic constraint. Suppose that xi and G(x1, x2, ..., xn) are a random

variable and the corresponding system performance function, respectively. It is assumed

that system fails if G(x1, x2, ..., xn) < 0 and remains safe if G(x1, x2, ..., xn) > 0. In this

case, G(x1, x2, ..., xn) = 0 indicates failure surface that is also called limit-state function

[13, 14, 17, 47, 61].

Thus, a performance function G(x1, x2, ..., xn) divides the entire space into three sub-

spaces as below:

1. G(x1, x2, ..., xn) > 0 shows safety region;

2. G(x1, x2, ..., xn) < 0 displays failure region;

3. G(x1, x2, ..., xn) = 0 indicates failure surface or limit-state function;

One question arises here as why do we need to define another random variable? The

confusing point, which may result in the mentioned question, is that since (x1, x2, ..., xn) is

a random variable, G(x1, x2, ..., xn) (as a performance function) is also a random variable

(because it is a function of a random variable).
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However, the reason to define a performance function for every system is that we have to

determine safety and failure regions for every system (based on the above numeric points).

In this case, if we do not define system performance function, and determine safety and

failure regions by only the original random variable, then we will have (x1, x2, ..., xn) < 0

and (x1, x2, ..., xn) > 0 as failure and safety conditions, respectively, for all systems. But

it is obvious that these conditions cannot be the same for all systems. Hence, we need to

formulate a performance function for every system.

If xi was a random variable, then probability of failure of a system (Pf ) can generally be

formulated in a non-deterministic design optimisation problem as follows [14, 17, 61]:

Pf = P [G(x1, x2, ..., xn) < 0] = FG(0, 0, ..., 0)

⇒ Pf =

∫ ∫
...

∫
G(x1,x2,...,xn)<0

f(x1, x2, ..., xn)d(x1, x2, ..., xn) (2.3)

xLi ≤ xi ≤ xUi i = 1, 2, ..., n

where Pf is system failure probability, G(x1, x2, ..., xn) is the defined performance function,

F is the cumulative distribution function (CDF) and f(x1, x2, ..., xn) is the joint probability

density function (JPDF). Also, the random space is bounded by lower and upper bounds

((x1, x2, ..., xn)L and (x1, x2, ..., xn)U , respectively).

This equation can rarely be used because the performance functionG(x1, x2, ..., xn) cannot

be written as a simple linear function of normally distributed variables. These difficulties

require the use of some approximate integration methods, like first order reliability method

(FORM), second order reliability method (SORM) and Monte Carlo simulation (MCS) [61,

110, 193].

Furthermore, the least square (LS) method, the moving least square (MLS) method and

the weighted least square (WLS) method are very useful tools for reconstructing responses

(functions) using some sets of points [7, 132, 134, 157].

Two well-known reliability analysis problems are explained in the next section. These
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problems are often used to evaluate a probabilistic constraint.

2.2 Reliability Analysis Problems

Evaluating a probabilistic constraint in a non-deterministic design optimisation problem con-

sists of calculating an integration, often a multiple integral. This integration is very difficult

and sometimes impossible to solve [61]. Thus, some approximate probability integration

methods have been proposed to evaluate probabilistic constraints. These methods include

moment methods (such as first-order reliability method (FORM) and second-order reliability

method (SORM)) and also sampling-based methods (like Monte Carlo simulation (MCS))

[119, 170, 200].

In sampling-based methods, which usually use MCS, a probabilistic constraint can be

approximated by the size of MCS, the realisation of design variables and the accepted failure

probability [181, 199].

The sampling-based methods need a very large computational effort and are expensive

[193], but the moment methods (especially FORM) are widely accepted for application into

the non-deterministic design optimisation problems due to their simplicity. Also, they often

provide adequate accuracy because of their efficiency [106, 173, 192, 195].

In the first order reliability method (FORM), a transformation is used to transform prob-

lem from original (non-normal) random space (X-space) to the independent and standard

normal random space (U-space) [78, 119]. This transformation is generally written as below:

T : X −→ U

Also, the transformation can be formulated as following:

ΦU (ui) = FX(xi) i = 1, 2, ..., n
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where F is the cumulative distribution function (CDF) in the original random space (X-space)

and Φ is the standard normalised cumulative distribution function (CDF) in the standard

normal random space (U-space). For example, if random variable xi was normally distributed

with mean value µ and standard deviation σ as statistical parameters (i.e.xi ∼ N(µ, σ)), then

the transformation is defined as follows:

T (xi) = ui =
xi − µ(xi)

σi
(2.4)

where ui is the projection of xi in the standard normal random space. In addition, perfor-

mance function must be transformed from theX-space to the U -space (i.e.T : GX(x1, x2, ..., xn) −→

GU (u1, u2, ..., un)).

The reason for this transformation is to obtain a simpler performance function and then

a reliability analysis problem. Different statistical parameters for various random variables

may result in complicated constraints for the original reliability analysis problem in X-space.

Failure probability of a system can also be formulated as a function of reliability index

(β) by using function Φ (or the standard normal cumulative distribution function (CDF)).

This relationship can be formulated as follows [61]:

Pf = P [G(x1, x2, ..., xn) < 0] ≈ Φ(−β)

A reliability index can generally be formulated as below:

β =
µR − µF√
(σ2R + σ2F )

where µR and µF are mean values of reliability and failure, respectively, and also σR and σF

are their standard deviations, respectively.

In some cases and due to difficulties originating from non-linear nature of an objective

function, different surfaces (functions) must be approximated. a sensitivity analysis of this
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process can be obtained by using objective function evaluations of some special samples

[167]. This evaluation can be assessed in two ways: either using Hessian approximation [117]

or using finite perturbations in the parameter [129].

Reliability analysis problems and probabilistic constraint evaluations have been applied

in different research fields. For instance, a reliability analysis tool and design optimisation

methodology have been proposed in the literature to reduce mechanical reliability issues in

three dimensional integrated circuits (3D-IC) [90].

Reliability analysis is also studied as a part of theory of mathematical uncertainty in the

literature [114]. Another novel reliability analysis method is introduced based on a hybrid

uncertain model. In this method, several important parameters of probability distribution

functions are given as variation intervals (not as precise values) [86].

Spin transfer torque magnetic RAM (STT-MRAM) is another application of reliability

analysis in which all possible failures are categorised as soft errors and hard errors. Impacts

of these errors on the memory reliability are analysed and then several design solutions are

found in order to address these errors and enhance STT-MRAM’s reliability [202].

In the coming subsections, two reliability analysis problems that have widely been used

in the literature are illustrated.

2.2.1 First Order Reliability Analysis Problem

A first order reliability analysis problem tries to find a point on a hyper-surfaceGU (u1, u2, ..., un) =

ga (ga is a constant, e.g. zero) in the U -space that has the minimum distance from the origin.

The point, which has the maximum joint probability density, is named the most probable

point (MPP), u∗g=ga [13, 173].

The minimum distance, named the first order reliability index βa,FORM , is an approxi-

mation of the generalized reliability index corresponding to ga. This approximation can be

formulated as below:

βa,FORM = ‖u∗g=ga‖ ≈ βa = βG(ga)
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In traditional first order reliability analysis problems, the first order reliability index

βa,FORM is obtained by solving the following non-linear optimisation problem [119, 172].

Min ‖(u1, u2, ..., un)‖ (2.5)

s.t. GU (u1, u2, ..., un) = ga

where the optimum point is the MPP u∗g=ga and thus βa,FORM = ‖u∗g=ga‖.

If ga = 0, then the mentioned hyper-surface (GU (u1, u2, ..., un) = ga) is changed to the

failure surface (i.e. GU (u1, u2, ..., un) = 0). In this case, the optimum point is called most

probable failure point (MPFP).

Some algorithms are available to solve this problem. The Hasofer and Lind - Rackwitz

and Fiessler (HL - RF) method is a particular algorithm that is often applied to solve a

reliability analysis problem. However, general optimisation algorithms, such as sequential

linear programming (SLP) and sequential quadratic programming (SQP), can be used for

this purpose as well [46, 115, 179, 184, 185, 187, 197].

2.2.2 First Order Inverse Reliability Analysis Problem

Optimum solution of a first order inverse reliability analysis problem is often a point on relia-

bility surface (β = βa) that minimises standard normalised performance function (GU (u1, u2, ..., un))

in the U -space [195]. This point is named minimum performance point (MPP), u∗β=βa

[13, 173].

The performance function value at the MPP u∗β=βa is an approximation of the probabilistic

performance measure corresponding to βa. This concept has appeared in the literature as

below:

ga,FORM = GU (u∗β=βa) ≈ ga = g(βa)

In this case, probabilistic performance measure ga,FORM is found by solving the following
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sphere-constrained non-linear optimisation problem [172].

Min GU (u1, u2, ..., un) (2.6)

s.t. ‖(u1, u2, ..., un)‖ = βa

where the optimum point is the MPP u∗β=βa and thus ga,FORM (βa) = GU (u∗β=βa).

βt is a commonly used reliability index that is called target reliability index. If βa = βt,

then the reliability surface (β = βa) is changed to target reliability surface (β = βt). In this

case, the optimum point is called minimum performance target point (MPTP).

General optimisation algorithms (such as SLP and SQP) can be used to solve this sphere-

constrained optimisation problem, which is generally easier to solve than the optimisation

problem in the first order reliability analysis due to the regular sphere constraint [17, 45].

Moreover, mean value (MV) based methods have been proposed as particular algorithms

to solve the inverse reliability analysis problem. These methods include advanced mean

value (AMV) method, conjugate mean value (CMV) method and hybrid mean value (HMV)

method [43, 184, 185].

Particular reliability analysis methods, which are often applied to solve a first-order and

a first-order inverse reliability analysis problems, will be explained in the next section.

2.3 Reliability Analysis Methods

The main objective of a reliability analysis problem is the assurance of a requested level of

reliability for a system. Further, it must be noted that an engineered system has numerous

sources of uncertainties and the absolute safety of a system cannot be guaranteed [17].

In this regard, there are many numerical tools for probabilistic constraint evaluation in a

non-deterministic design optimisation problem. As mentioned in the previous section, Hasofer

and Lind - Rackwitz and Fiessler (HL - RF) method is a preferred tool to solve first order

reliability analysis problems [72, 115, 144]. Furthermore, some algorithms that have been
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established based on the mean value (MV) method are useful tools in order to solve first

order inverse reliability analysis problems [61, 159, 172].

In addition, it was first reported in the literature that effect of size of search space on

efficiency of the MPP search algorithm is significant [173], but it has recently been found

that a MPP search algorithm is not affected by the size of search space considerably [195].

In an RBDO problem, a performance function G(x1, x2, ..., xn) is defined in order to

introduce a failure/safety condition for system. In other words, G(x1, x2, ..., xn) < 0 results

in system failure and G(x1, x2, ..., xn) > 0 indicates safety region.

As xi is a random variable, GX(x1, x2, ..., xn) is also a random variable. Considering xi as

a normally distributed random variable, we can find its standard normalised random variable

(ui) and its performance function (GU (u1, u2, ...., un)). However, we do not consider finding

density or distribution functions of GX(x1, x2, ..., xn) even if it is simple to do so.

There is a wide range of real world problems in which reliability analysis problems have

been applied. For instance, these methods are extended to investigate reliability of different

repairable and non-repairable electrical systems with various cold and warm standby switches

[56, 177, 189, 198]. Further, human reliability analysis or human sustainability is another

area that has successfully employed reliability analysis methods [20].

2.3.1 Hasofer and Lind - Rackwitz and Fiessler Method

This method was first introduced for second-moment reliability analysis problems [72] and

then extended to include distribution information [144]. The Hasofer and Lind - Rackwitz

and Fiessler (HL - RF) method, which is a specific iterative scheme, is widely used to solve

different optimisation problems in structural reliability [119].

In the first order reliability analysis problems, it is assumed that ga in the Problem (2.5)

is equal to zero. Hence, the reliability analysis problem to find an MPFP u∗g=0 is, in fact,

calculating the minimum distance from the failure surface (i.e.GU (u1, u2, ..., un) = 0) to the

origin of the standard normal random space (U -space).
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Thus, the reliability analysis problem will be changed to the following non-linear optimi-

sation problem:

Min ‖(u1, u2, ..., un)‖ (2.7)

s.t. GU (u1, u2, ..., un) = 0

This problem can be solved by the HL - RF method using the steepest descent direc-

tion. This vector must be computed by using standard normalised performance function

GU (u1, u2, ..., un) at u(k) = (uk1, u
k
2, ..., u

k
n) as below [72, 115, 144, 193]:

u(k+1) = (u(k).n(k))n(k) +
GU (u(k))

‖∇UG(u(k))‖
n(k) (2.8)

where ‖.‖ is the Euclidean norm and u(0) is the origin of the U -space; i.e. u(0) = 0. Moreover,

the steepest descent direction (n(k)) is obtained as:

n(k) =
∇UG(u(k))

‖∇UG(u(k))‖

The HL - RF method is a commonly accepted method to solve the first-order reliability

analysis problems (Problem (2.5)). It has been reported that this method is efficient and

stable to apply in inner loop of reliability index approach (RIA) [13, 111, 173, 193].

2.3.2 Advanced Mean Value Method

Different approaches have been used to evaluate a probabilistic constraint. One of the most

popular methods for this purpose, which is also applied in inner loop of performance mea-

sure approach (PMA), is to solve a first-order inverse reliability analysis problem (shown in

Problem (2.6)).

An inverse reliability analysis problem minimises a performance function on a target re-

liability surface. In this process, all probable points have a fixed distance from the origin of

28



the U -space. This distance is target reliability index that is a design parameter (predeter-

mined by an engineer or a designer based on the previous designed systems) and is denoted

by βt. As mentioned earlier, the optimum answer of this problem is often called minimum

performance target point (MPTP).

It has been reported that mean value (MV) based methods are powerful tools to find

an MPTP in a first-order inverse reliability analysis problem in inner loop of PMA. These

methods are based on the steepest descent direction.

Mean value (MV) method is the first method in this category. Optimum point of the MV

method is computed in the U-space as below [43, 115, 193]:

u∗MV = βt.n(0) (2.9)

where n(0) = − ∇UG(u(0))

‖∇UG(u(0))‖ .

In this method, the normalised steepest descent direction n(0) is defined to minimise the

standard normalised performance function GU (u1, u2, ..., un) at the mean value that is the

origin of the U -space; i.e. u
(0)
i = 0.

The optimum point of the MV method is the initial design point of the advanced mean

value (AMV) method; i.e. u
(1)
AMV = u∗MV . Advanced mean value (AMV) method is a useful

tool in order to find MPTP of a convex performance function [115, 195].

This method iteratively updates the direction vector of the steepest descent method at

the probable point uAMV until stopping criterion is held.

A design point of the AMV method is updated as follows:

u
(k+1)
AMV = βt.n(u

(k)
AMV ) k ≥ 1 (2.10)

where n(u
(k)
AMV ) = − ∇UG(u

(k)
AMV )

‖∇UG(u
(k)
AMV )‖

.

It is assumed that the AMV method has converged when the distance of two consecutive

probable points becomes less than a predetermined acceptable convergence parameter. Thus,

29



if this parameter is denoted by ε, then stopping criterion would be as follows:

|GU (u
(k+1)
AMV )−GU (u

(k)
AMV )| ≤ ε

It has been reported that the AMV method is effective for evaluating convex performance

functions, while it diverges or has a slow rate of convergence and also exhibits numerical

instability and inefficiency to evaluate concave performance functions. This shortcoming

comes from a lack of updated information during the iterative reliability analysis [115, 193,

195].

A modified chaos control (MCC) method has been introduced to apply in the AMV

method. This adjustment has been done to improve efficiency of the AMV method when

evaluating concave performance functions. Then, due to inefficiency of the MCC method

to evaluate convex performance functions, a hybrid chaos control (HCC) method has been

introduced by adaptively using the AMV end MCC methods [124].

However, a modification has also been implemented on the AMV method to evaluate

concave performance functions. This modified method, which is called conjugate mean value

(CMV) method, will be illustrated in the next subsection.

2.3.3 Conjugate Mean Value Method

Another MV based method to apply into inner loop of the PMA is conjugate mean value

(CMV) method. As discussed in the previous subsection, the AMV method has some draw-

backs when applied for evaluating concave performance functions.

The CMV method has been proposed to overcome these difficulties using information of

both the current and previous design points [195].

In this method, the new search direction is obtained by combining n(u(k−2)), n(u(k−1))

and n(u(k)). For evaluating convex performance functions, the conjugate steepest descent

direction has a slow rate of convergence, while it has a much better convergence rate as well
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as stability when the performance function is concave [43].

Execution of the CMV method starts with the AMV method, as below:

u
(0)
CMV = 0, u

(1)
CMV = u

(1)
AMV , u

(2)
CMV = u

(2)
AMV

This vector is computed from the fourth iteration as follows:

u
(k+1)
CMV = βt.

n(u
(k)
CMV ) + n(u

(k−1)
CMV ) + n(u

(k−2)
CMV )

‖n(u
(k)
CMV ) + n(u

(k−1)
CMV ) + n(u

(k−2)
CMV )‖

k ≥ 2 (2.11)

where n(u
(k)
CMV ) = − ∇UG(u

(k)
CMV )

‖∇UG(u
(k)
CMV )‖

.

Like in the AMV method, it is assumed that the CMV method has converged when

distance of two consecutive probable points becomes less than a stopping criterion parameter.

Thus, this criterion would be as below:

|GU (u
(k+1)
CMV )−GU (u

(k)
CMV )| ≤ ε

Although the CMV method works better than the AMV method for evaluating the con-

cave performance functions, it converges very slowly or even diverges for evaluating convex

performance functions.

It has been reported that the CMV method is inefficient to evaluate concave performance

functions. Therefore, the type of performance function must first be identified in order to

select an appropriate MPTP search algorithm [195]. This idea has led to another MV based

method that is explained in the last part of this section.

2.3.4 Hybrid Mean Value Method

As mentioned before, it has been reported that the AMV method behaves well for evaluating

convex performance functions, but it exhibits numerical shortcomings, such as slow conver-

gence or even divergence, when applied for evaluating concave performance functions. To
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overcome these difficulties, the CMV method has been proposed that uses both the current

and previous design points information [43].

Therefore, it can be concluded that once the type of a performance function is recognised,

a suitable numerical tool can be used to solve the corresponding reliability analysis problem.

In other words, to select an appropriate MPTP search algorithm, the type of performance

function should be identified first. In this context, hybrid mean value (HMV) method has

been introduced [195].

A function type criterion is used in the HMV method by employing the steepest descent

directions for three consecutive iterations as follows:

ζ(k+1) = (n(k+1) − n(k)).(n(k) − n(k−1)) (2.12)

where ζ(k+1) is the criterion for the performance function type at the (k + 1 )th iteration and

n(k) is the steepest descent direction of performance function at k th design point.

Once type of the performance function is determined, one of two numerical algorithms

(AMV or CMV) is adaptively selected for the MPTP search. A suitable numerical algorithm

can be selected as follows:

1. If ζ(k+1) is positive, then the performance function is convex at u
(k+1)
HMV and the AMV

method must be selected.

2. If ζ(k+1) is zero or negative, then the performance function is concave at u
(k+1)
HMV and the

CMV method must be selected.

Thus, the HMV method can be summarised as below [43]:

1. Set the iteration counter k = 0. Select the convergence parameter ε. Compute the

steepest descent direction of the performance function at the initial design point in the
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U -space. In other words, compute the following vector:

n(u
(0)
HMV ) = −

∇UG(u
(0)
HMV )

‖∇UG(u
(0)
HMV )‖

where u
(0)
HMV = 0.

2. If k < 3 or ζ(k+1) is positive, then use the AMV method to calculate the next design

point as below:

u
(k+1)
HMV = βt.n(u

(k)
HMV )

If k ≥ 3 and ζ(k+1) is zero or negative, then use the CMV method to calculate the next

design point as below:

u
(k+1)
HMV = βt.

n(u
(k)
HMV ) + n(u

(k−1)
HMV ) + n(u

(k−2)
HMV )

‖n(u
(k)
HMV ) + n(u

(k−1)
HMV ) + n(u

(k−2)
HMV )‖

In all cases, we have:

n(u
(k)
HMV ) = −

∇UG(u
(k)
HMV )

‖∇UG(u
(k)
HMV )‖

Also, it must be noted that when k < 3, this step of the AMV method is the same as

the corresponding step of the CMV method.

3. Calculate the performance function at the new design point; i.e. compute GU (u
(k+1)
HMV ).

Then check whether the convergence criterion holds, i.e. |GU (u
(k+1)
HMV )−GU (u

(k)
HMV )| ≤ ε.

If the convergence criterion is satisfied, then stop; otherwise, go to the next step.

4. Check the function type criterion ζ(k+1) for determining performance function type and

set k = k + 1. Then return to the second step.

Therefore, it can be concluded that the hybrid mean value (HMV) method is the most

efficient and robust method for finding the MPTPs of performance functions. It has been

reported that this method performs quite well for any type of performance functions [13, 45].
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Based on the numerical efficiency and robustness when applied to inverse reliability analy-

sis problems, this method is an effective numerical tool for evaluating probabilistic constraints

in a reliability-based design optimisation (RBDO) problem.

2.4 Reliability-Based Design Optimisation

In recent decades, many efforts have been made to introduce new and improve the existing

non-deterministic design optimisation models in order to apply them into real world problems.

Reliability-based design optimisation (RBDO) is one of these models that aims at searching

the best compromise between cost reduction and safety assurance and also involves evalu-

ation of probabilistic constraints. In other words, RBDO not only provides a cost-effective

manufacturing process, but also a requested confidence level [45].

Difficulties in RBDO originate from the nature of the input data, which is non-deterministic.

It can be said that RBDO ensures a minimum total cost without affecting target safety level.

The total cost is a summation of initial cost (design and construction costs), failure cost and

maintenance cost [13, 61, 173].

RBDO is a probabilistic design model that tries to obtain an optimal design under prob-

abilistic constraints and performance functions. An RBDO problem is a non-linear optimi-

sation problem with inequality probabilistic constraint. The major difficulties arise from the

non-deterministic input data [180].

The main difference between an RBDO model and other engineering designs is that system

parameters are non-deterministic in an RBDO model. Thus, constraints will be appear in

probabilistic form. The probabilistic constraints and the uncertainties play important roles

in RBDO. It can be seen that evaluating probabilistic constraints in an RBDO problem is

the most important and difficult part to deal with and hence some numerical approaches are

needed in this process [45, 193].

A multi-objective reliability-based design optimisation (MORBDO) has also been pro-

posed in the literature in order to explore design of a vehicle door. It is intended in this
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model to enhance optimisation efficiency [57].

Probabilistic approaches are very popular within all existing RBDO approaches. Various

probabilistic approaches have been studied in [42, 91, 169, 203]. However, non-probabilistic

RBDO approaches are also investigated in the existing literature [92].

A simplified safety index based on the advanced second-moment method and also a lin-

earised reliability index using linear programming optimisation are two numerical algorithms

that have been proposed to solve some special problems [109, 147].

It is commonly accepted that ensuring a high level of system reliability is one of the

most significant concerns in practical engineering design. For this purpose, a nested extreme

response surface (NERS) approach is available to carry out time-dependent reliability analysis

and find an optimum design [181].

Uncertainties in RBDO models are identified by variation of random parameters. Also,

the existence of uncertainties in the physical quantities requires a reliability-based approach

to design optimisation. In this case, it can be concluded that RBDO problems are rather

complicated by nature due to the inherent non-deterministic input data [173, 192, 193, 195].

However, in terms of whether or not to use or not to use the theories of probability

and statistics, RBDO can be classified into two categories: methods requiring probability

and statistical analysis and methods not requiring these. ”Worst Case Analysis”, ”Corner

Space Evaluation” and ”Variation Patterns Formulation” are three methods that do not

need probability and statistical analyses [27, 70]. It has been reported that the probabilistic

formulations are the best methods [173].

An RBDO problem is often solved by search methods for constrained non-linear opti-

misation, like sequential linear programming (SLP) and sequential quadratic programming

(SQP). A search method starts with an initial design and iteratively improves it with the

design change, obtained by solving an approximate sub-problem, defined by linearised prob-

abilistic constraints. The linearised probabilistic constraints are not equivalent from different

perspectives in predicting a design change [173].
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Another issue that is very important in the RBDO process (and also other types of

optimisation problems) is non-linearity that can be altered in various cases due to some

structural properties and also differences between non-linear functions used in an optimisation

problem. Efficiency of non-linear optimisation in the RBDO process significantly depends on

complexity of constraints in an optimisation problem [192].

Non-linearity of an RBDO problem can be dramatically increased by non-linearity of

reliability analysis and design optimisation problems (in the inner and outer loops of RBDO

problem). Thus, as this property can affect efficiency and robustness of RBDO process, it

must be noted that a proposed algorithm should have the lowest non-linearity [44].

Since there are some non-linear mappings between X- and U-spaces (e.g.T : xi −→ ui)

in an RBDO problem and also various probability distributions are used in this process,

non-linearity of an RBDO problem depends on type of probability distributions of random

parameters. Also, the transformation between X- and U- spaces may introduce additional

non-linearity.

In this case, most transformations used in RBDO, except Gaussian distribution, are highly

non-linear. Total number of function evaluation is used to measure efficiency of an RBDO

process [192].

An RBDO method has been proposed, which employs the response surface methodology

(RSM) [43, 44, 71]. The proposed method is based on the moving least squares (MLS) method

and a design of experiment (DOE). Also, it has been found that the MLS method is better

compared with the least squares (LS) method for obtaining an approximation of implicit

responses [43, 101, 149].

Furthermore, the response surface methodology (RSM) has been studied for reliability

assessment. In this case, various methods, such as radial basis function neural (RBFN)

network and support vector machine (SVM), have been considered and further discussed

[168].

Another method has been introduced that changes reliability analysis to deterministic
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design optimisation. In this method, the probabilistic constraints are converted to determin-

istic constraints in reliability analysis problem and then an improved design is obtained by a

deterministic design optimisation problem [37, 186].

RBDO approaches have been applied into different real world problems. Marine struc-

tures, vehicle crash-worthiness, cloud migration, and aero-elasticity problems are only a few

examples of these applications [4, 6, 85, 94, 126, 143, 163, 196].

In general, reliability-based design optimisation approaches have been classified in to

three categories that will be reviewed in the next subsections. These categories are as below

[13, 61, 194]:

1. Mono-level or single-loop approaches;

2. Two-level or double-loop approaches;

3. Decoupled approaches;

As RBDO suffers from high computational cost, Kriging-based model RBDO has been

proposed to overcome this difficulty [53]. Further, a local adaptive sampling (LAS) has been

introduced to improve Kriging method’s efficiency for RBDO approaches [40].

A typical formulation of RBDO problems is reviewed in the next subsection.

2.4.1 General Formulation of RBDO Model

As discussed earlier, in the RBDO process, random variables, which characterise physical

quantities under uncertainties, are often modelled by using probability distributions.

Suppose that G(x1, x2, ..., xn) is system performance function that was illustrated in Sub-

section 2.1.2. Statistical description of a system’s failure probability is generally characterised

by its cumulative distribution function (CDF) as below [13, 61, 173, 174, 191–193, 195]:

P [G(x1, x2, ..., xn) < g] = FG(g) =

∫ ∫
...

∫
G(x1,x2,...,xn)<g

fX(x1, x2, ..., xn)d(x1, x2, ..., xn)

(x1, x2, ..., xn)L ≤ (x1, x2, ..., xn) ≤ (x1, x2, ..., xn)U (2.13)
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where P , FG and fX are probability function, cumulative distribution function (CDF) and

joint probability density function (JPDF), respectively. Also, g is a probabilistic perfor-

mance measure. Random space is bounded in this formulation by lower and upper bounds,

(x1, x2, ..., xn)L and (x1, x2, ..., xn)U , respectively.

The probabilistic constraint in an RBDO problem defines a feasible region by restrict-

ing probability of violating limit state (G(x1, x2, ..., xn)) to an admissible failure probability

(i.e.P f = Φ(−βt)) [13]. In other words, probabilistic constraint of an RBDO problem is eval-

uated so that failure probability of a system (i.e. Pf = P [G(x1, x2, ..., xn) ≤ 0]) is kept below

than a predetermined level (i.e. P f ). This accepted level of failure probability is calculated

by using target reliability index (βt).

A basic RBDO formulation consists of minimising the cost function under probabilis-

tic constraints. An RBDO model is generally formulated in terms of design variable x =

(x1, x2, ..., xn) as follows [13, 61, 173, 174, 191–193, 195]:

Min Cost(x1, x2, ..., xn) (2.14)

s.t. Pfj ≤ P fj j = 1, 2, ..., npc

(x1, x2, ..., xn)L ≤ (x1, x2, ..., xn) ≤ (x1, x2, ..., xn)U

where the cost function can be any function in terms of design variable, Pfj is failure proba-

bility of the j th performance function and P fj is a given acceptable failure probability limit of

the j th performance function that is set on the basis of engineering knowledge and experience

with respect to the previous designs. Also, (x1, x2, ..., xn)L and (x1, x2, ..., xn)U are the lower

and upper boundaries of the design variable, respectively.

Although the design variable (x1, x2, ..., xn) may be an independent deterministic variable,

probability distribution parameters (like µx) are also often considered as design variables of
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an RBDO problem. Further, upper and lower boundaries of design variable are typically

known as deterministic constraints [13].

However, variables of an RBDO problem are indeed random variables. Their standard

deviations are fixed in the entire process, while their expected values are changed in each

iteration. In other words, expected values are assumed as design variables in an RBDO

problem. Thus, [x1, x2, ..., xn] = [µ(x1), µ(x2), ..., µ(xn)] is design variable.

A general reliability index βG, which is a function of probabilistic performance measure

(g), is introduced as FG(g) = Φ(−βG) where Φ is the standard normal cumulative distribution

function (CDF) [119]. Hence, the probabilistic performance measure (g) and also the general

reliability index (βG) can be formulated as a function of each other [173].

FG(g) = Φ(−βG) =⇒ g(βG) = F−1G [φ(−βG)] and βG(g) = −φ−1[FG(g)]

Thus, we have [173]:

if βG = βt =⇒ Φ(−βt) = P f =⇒ βt = −Φ−1(P f ) (2.15)

if βG = βs =⇒ Φ(−βs) = Pf =⇒ βs = −Φ−1(Pf ) (2.16)

if g = 0 =⇒ FG(0) = Pf = Φ(−βs) (2.17)

if g = g∗ =⇒ FG(g∗) = P f = Φ(−βt) (2.18)

where βt is target reliability index. Also, βs and g∗ are a safety reliability index and a target

probabilistic performance measure, respectively. A safety reliability index, which is denoted

as βs = βG(0), is often used to define a minimum level to assure system safety.

Therefore, the probabilistic constraint of an RBDO model can be expressed by using

either of the following inequalities:

Pfj ≤ P fj (2.19)
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FGi(0) ≤ FGi(g
∗) (2.20)

Φ(−βsi) ≤ Φ(−βti) (2.21)

FGi(0) ≤ Φ(−βti) (2.22)

The last expression is the most popular notation of the probabilistic constraint in the RBDO

model.

In the following subsections, different categories of RBDO approaches will be reviewed.

2.4.2 Mono-Level RBDO Approaches

Mono-level approaches, also known as single-loop RBDO approaches, solve an RBDO problem

in a single loop procedure. In these approaches, reliability analysis problem is avoided. The

probabilistic constraints are replaced in a mono-level RBDO approach by the optimality

conditions such that the RBDO problem will be reformulated in a single loop optimisation

problem [13].

Karush-Kuhn-Tucker (KKT) optimality conditions in the RBDO, single-loop single-vector

(SLSV) and approximate moment approach (AMA) are the main single-loop RBDO ap-

proaches [45, 118, 193].

In the KKT based approach, the probabilistic constraint of RBDO is replaced by KKT

optimality conditions in the RBDO. Although the computational cost in this method can be

reduced by parallel convergence in both design and random spaces, the reduction of the total

cost is not very impressive.

Moreover, in another method design and random variables are combined in a hybrid

optimisation space by multiplying the structural cost into the objective function of the first-

order reliability method (FORM) [95].

Single-loop single-vector (SLSV) is another method based on an approximation of the

limit-state function. In this method, the RBDO problem is converted to a deterministic

optimisation problem by finding the minimum performance target point (MPTP) in terms of
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the target reliability index and limit-state derivatives [38].

Approximate moment approach (AMA) is another mono-level approach that is originated

from the robust design optimisation concept [193]. In this approach, the first and second

statistical moments (mean value and variance, respectively) are approximated to evaluate

the probabilistic constraint. This is achieved by approximately matching statistical moments

[45].

AMA does not require a reliability analysis problem, but second-order sensitivity analysis

is needed resulting a large amount of computational effort. However, an inaccuracy in mea-

suring the failure probability and numerical instability due to this inaccuracy are two major

shortcomings of this probabilistic approach [193].

2.4.3 Two-Level RBDO Approaches

Two-level approaches (as direct solutions of RBDO problems) are based on an improvement

of the traditional double-loop approaches by increasing efficiency of the reliability analysis

loop. These approaches solve the RBDO problem in two nested loops that is a heavy task

due to the nested non-linear procedures (reliability analysis and design optimisation).

These approaches consider the probabilistic constraints inside an optimisation loop where

the inner loop is concerned with reliability analysis and the outer loop involves design opti-

misation. This category is also called double-loop approaches and includes reliability index

approach (RIA) and performance measure approach (PMA) [13, 61]. The main concentration

of this research is on double-loop RBDO approaches, with a especial focus on PMA.

The RIA uses a first-order reliability analysis problem in its inner loop that leads to

repeated evaluations of the performance function [54]. In this approach, the limit-state

function can also be expanded at a point with the highest probability, known as most probable

failure point (MPFP) [135]. Although many methods have been proposed to reduce the cost

of this approach, RIA still involves a high computational cost [69, 109, 147].

Moreover, a dual method has been proposed in order to approximate the limit-state

41



function using a response surface. In this method, the failure probability is approximated by

interpolation functions in terms of the design variables [66].

Due to shortcomings of the RIA, especially the high computational cost and also some

difficulties in the numerical approach, which result in slow convergence or even divergence,

performance measure approach (PMA) has been proposed. This approach converts the prob-

ability measure to a performance measure. A first-order inverse reliability analysis problem

is used in the inner loop of the PMA [173].

The PMA tries to find a point that yields the minimum value of the performance function

on the target reliability surface that is called minimum performance target point (MPTP).

In fact, the PMA is created because minimising a complicated performance function under

simple constraints is easier than minimising a simple cost function under complex constraints

[13, 172].

2.4.4 Decoupled RBDO Approaches

Reliability analysis and design optimisation procedures are decoupled in decoupled RBDO

approaches. In other words, the reliability analysis is not carried out within the design opti-

misation in these approaches. The RBDO problem is transformed to a sequence of determin-

istic design optimisation problems so that deterministic constraints are linked to reliability

analysis problem [13].

One of the best decoupled RBDO approaches is sequential optimisation and reliability as-

sessment (SORA), which is based on a transformation from the RBDO problem to a sequence

of deterministic design optimisation and reliability cycles [52].

In fact, the probabilistic constraint of the RBDO is replaced by deterministic functions

related to probable points in this approach. The SORA method improves a design point

from cycle to cycle until convergence. This method is developed to improve efficiency of the

probabilistic optimisation.

The SORA method uses a serial-loop strategy with a cycle of deterministic design op-
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timisation and reliability assessment problems. In this method, design optimisation and

reliability analysis are decoupled from each other in each cycle. In this approach, reliability

analysis is generally done after deterministic design optimisation in order to verify feasibility

of constraints under uncertainty [52].

Another decoupled approach is sequential approximate programming (SAP) that for-

mulates an RBDO problem as a sub-programming problem. The probabilistic constraint is

replaced by the first order Taylor series at the current design point. It can be seen in the SAP

method that the RBDO problem is transformed to a sequence of approximate programming

sub-problems [41].

As mentioned before, this PhD thesis mainly focuses on two-level (double-loop) RBDO

approaches. These approaches are discussed in more details in the next section.

2.5 Double-Loop RBDO Approaches

Double-loop RBDO approaches include reliability index approach (RIA), which considers the

cost reduction under the reliability constraints, and performance measure approach (PMA),

which involves an inverse reliability analysis problem as an alternative constraint. The effi-

ciency of these approaches depends on activeness of the probabilistic constraints [61, 173, 174].

It must be noted that in spite of some positive properties of probabilistic design optimi-

sation methods, they often involve high computational cost due to existence of a double-loop

procedure for overall optimisation and reliability assessment [34, 69, 122].

A typical double-loop RBDO solution process iteratively carries out a design optimisation

in the original random space (X-space) and a reliability analysis of the performance function

in the standard normal random space (U-space).

It has been found that PMA is robust and more efficient in evaluating inactive probabilistic

constraints, while RIA is more efficient for evaluating violated probabilistic constraints and

is also unstable for some problems [43]. Thus, it can be concluded that these approaches are

not equivalent when solving various RBDO problems. Also, RBDO often yields a higher rate
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of convergence using PMA, while RIA yields singularities in some cases [173].

Moreover, a study of non-linearity of double-loop RBDO approaches can be carried out

by observing nonlinearity of constraints in two optimisation problems (reliability analysis and

design optimisation). Efficiency and robustness of RBDO process depend on non-linearity of

reliability analysis and design optimisation problems.

Furthermore, it has been reported that different reliability analysis methods employed in

the RIA and the PMA result different behaviours of non-linearity in these approaches [192].

In addition, performance function G(x1, x2, ..., xn) is itself a non-linear function that

requires a complex engineering analysis. In general, a small non-linearity has been introduced

in the PMA, while a significant non-linearity has been found in the RIA [44].

RIA is originated from reliability analysis and describes a probabilistic constraint as a

reliability index, while PMA is originated from reliability-based design concept and converts

a performance function to a performance measure [193].

The main difference between reliability analysis problems of the RIA and the PMA is

that inner loop of RIA is intended to find the minimum distance of the failure surface

(i.e.GU (u1, u2, ..., un) = 0) from the origin of the U -space, while inner loop of PMA aims

at minimising standard normalised performance function on the target reliability surface

(i.e.‖(u1, u2, ..., un)‖ = βt).

Additionally, it has to be noted that in an RBDO model, the mean values of random

parameters are often used as design variables and the variances are assumed to be fixed [173].

2.5.1 Probabilistic Constraint Evaluation

The reliability analysis of a system performance function is to evaluate the relationship be-

tween a reliability index (β) and the corresponding probabilistic performance measure (g).

A generalised reliability index βG, which is a non-increasing function of g, is often defined as

below:

FG(g) = Φ(−βG) (2.23)
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Thus, it can easily be shown that βG(g) = −Φ−1[FG(g)] and also g(βG) = F−1G [Φ(−βG)].

Since the system performance function is often not normally distributed, the βG ∼ g rela-

tionship is generally non-linear [173].

As displayed earlier, probabilistic constraint of the RBDO model (P [G(x1, x2, ..., xn) ≤

0] ≤ Φ(−βt)) includes two inequality relationships. This constraint can be represented by

a set of three simple constraints, where two inequality constraints are related to each other

through an equality constraint [173]. These three constraints are written as follows:

βG ≥ βt (i)

g ≥ 0 (ii)

FG(g) = φ(−βG) (iii)

Inequality constraints (i) and (ii) represent the limit-state of reliability index and prob-

abilistic performance measure, respectively. Also, equality constraint (iii) represents the

non-increasing βG ∼ g curves.

Thus, as shown in Figure 2.1, βG − g space is divided into four regions, as following:

1. Active Point: βG = βt and g = 0

2. Feasible Region: βG ≥ βt and g ≥ 0

3. Infeasible Region: βG ≤ βt and g ≤ 0

4. Ambiguous Regions: (βG − βt).g < 0

In this regard, a probabilistic constraint can be evaluated by finding any point on the

curve that is outside the ambiguous regions [173] as below:

1. Active Constraint: The probabilistic constraint is active, if the corresponding βG ∼ g

curve passes through the active point.
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2. Inactive Constraint: The probabilistic constraint is inactive, if the corresponding

βG ∼ g curve passes through the feasible region.

3. Violated Constraint: The probabilistic constraint is violated, if the corresponding

βG ∼ g curve passes through the infeasible region.

In other words, a given design is feasible/infeasible, if the corresponding βG ∼ g curve

passes through the feasible/infeasible region [173].

Figure 2.1: General Interpretation of Probabilistic Constraint

A probabilistic constraint may be evaluated by using any point between (βs, 0) and

(βt, g
∗). These two points are often used for this purpose as they are known as good points

of RIA and PMA, respectively. Suppose that (βa, ga) is the intended point between two

mentioned good points such that ga = αg∗ and βa = αβt + (1− α)βs where 0 ≤ α ≤ 1.

Obviously, if α = 0, then ga = 0 and βa = βs that shows RIA. Also, if α = 1, then ga = g∗

and βa = βt that shows PMA. In other words, the point (βa, ga) shows the MPFP in the RIA

and the MPTP in the PMA if α is either zero and one, respectively. These points are shown
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in the Figure (2.2).

Figure 2.2: Illustration of Probabilistic Constraint Evaluation

In this case, regarding βG(g) = −Φ−1[FG(g)] and g(βG) = F−1G [Φ(−βG)] and also using

the Taylor Series expansion, we will have:

βG(g) = βG(ga) +
∞∑
n=1

dnβG
dgn

(ga).
(g − ga)n

n!

and

g(βG) = g(βa) +

∞∑
n=1

dng

dβnG
(βa).

(βG − βa)n

n!

(Note that βG(ga) = βa and also g(βa) = ga). In fact, the Taylor Series have been

expanded for βG and g at ga and βa, respectively.

Since high order derivatives in the above Taylor Series expansions are difficult to obtain,

the mth order approximation is often used (if m = 1, then first-order approximation refers

to first-order reliability method (FORM)). Hence, the point (βa, ga) can sufficiently identify

the limit-state of a probabilistic constraint [173].

Assuming g = 0 (in RIA) and βG = βt (in PMA) in the Taylor Series expansion, for the
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first order reliability method (FORM), we will obtain (respectively):

βG(0) = βa + (0− ga).∇gβa ≥ βt ⇒ βa − ga.∇gβa ≥ βt (2.24)

g(βt) = ga + (βt − βa).∇βga ≥ 0 (2.25)

On the other hand, the computational efforts associated with RIA (using first order

reliability analysis) and PMA (using first order inverse reliability analysis) cannot be easily

quantified, since RIA and PMA are searching different points.

The computational difference between RIA and PMA becomes significant if u∗g=0 and

u∗β=βt are far apart in the U-space, while the exact status of probabilistic constraint is un-

known until u∗g=0 or u∗β=βt is finally found.

Generally, it is easier to find a point that is closer to the origin of the U -space (searching

in a more restrictive solution space) [173]. Thus, the estimations of the computational efforts

associated with the RIA and the PMA can be established as following:

1. If βs < βt, then u∗g=0 (RIA) is closer to the origin. In this case, the probabilistic

constraint passes through the infeasible region and is violated.

2. If βs > βt, then u∗β=βt (PMA) is closer to the origin. In this case, the probabilistic

constraint passes through the feasible region and is inactive.

3. If βs = βt, then RIA and PMA search the same point (u∗g=0 = u∗β=βt). In this case, the

probabilistic constraint passes through the active point and is active.

However, it is often assumed that g and βG are fixed numbers in the RIA and the PMA,

respectively. Thus, the RBDO problem should be solved (using FORM) so that βG and g are

obtained. In this case and for the RIA and the PMA we have:

RIA : g = 0⇒ βG(0) = ‖u∗g=0‖ = βs

PMA : βG = βt ⇒ g(βG) = G(u∗β=βt) = g∗
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The next subsections explain further details inside the RIA and the PMA, respectively.

2.5.2 Reliability Index Approach

Reliability index approach (RIA) tries to find a point on the failure surface (GU (u1, u2, ..., un) =

0) in the reliability analysis loop in order to obtain the required change to update the current

design point. RIA looks at the probabilistic constraint as a reliability index and originates

from the reliability analysis concept [45, 54, 135].

In a general RIA formulation, we have:

FG(0) = φ(−βG(0)) = φ(−βs) ≤ φ(−βt)⇐⇒ βt ≤ βs (2.26)

The RIA yields a singularity in two cases:

1. When the βG ∼ g curve is always positive (the curve is completely above the βG

axis), g can never be zero. In this case, the failure probability of the system is zero

(g > 0⇒ Pf = 0).

2. When the βG ∼ g curve is always negative (the curve is completely below the βG

axis), g can never be zero. In this case, the failure probability of the system is one

(g < 0⇒ Pf = 1).

These occur because the reliability index (βs) tends to positive and negative infinity,

respectively, and hence the point (βs, 0) does not exist.

In other words, reliability analysis problem in RIA may fail to have a solution whenever

the corresponding failure surface in the U -space (GU (u1, u2, ..., un) = 0) is outside the infinite

probability integration domain; i.e. β = ‖(u1, u2, ..., un)‖ =∞ [173].

RIA uses the first order reliability method (FORM) approximation to perform reliabil-

ity analysis where the probabilistic constraints are replaced by reliability index constraints.
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Hence, the probabilistic constraint of RIA can generally be written as below [13, 135]:

βG(0) = −Φ−1[FG(0)] ≥ βt ⇒ βs ≥ βt (2.27)

Due to sequential changes of optimal point and the MPFP, RIA leads to a slow convergence

scheme and also zigzagging [61]. RBDO method using the conventional RIA is known as a

good approach that requires a large computational time [173].

Moreover, it must be mentioned that a modified version of RIA has been proposed in the

literature to improve stability and efficiency of the existing traditional RIA. In the modified

RIA, reliability index is redefined and then drawbacks related to convergence of RIA are found

and further studied in order to consider non-normally distributed design variables [111].

Figure 2.3: Reliability Analysis in RIA

However, if a quadratic programming problem was used in the design optimisation loop

of RIA in order to calculate design change, then RBDO problem is actually solved by two
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nested sub-problems as below:

1. Inner loop; reliability analysis problem: This problem aims at calculating the minimum

distance of the limit-state function GU (u1, u2, ..., un) = 0 from the origin of the U -space

that is called safety reliability index. This concept is displayed in the Figure (2.3).

Reliability analysis problem of RIA is often formulated as follows:

Min ‖(u1, u2, ..., un)‖

s.t. GU (u1, u2, ..., un) = 0

2. Outer loop, design optimisation problem: This problem finds a search direction for

updating the current design point. It has commonly been accepted that a constrained

minimisation problem is used in outer loop of RIA.

This problem often includes a quadratic objective function. Constraint of the mentioned

quadratic programming problem is βs ≥ βt.

Safety reliability index βs is used as the RIA probabilistic constraint in the design op-

timisation loop. βs is a simple n-dimensional quadratic function in the U-space and should

inversely be transformed into the X-space to perform a design optimisation problem. Also,

the objective function of the reliability analysis problem in RIA does not involve a non-linear

transformation of probability distributions.

Thus, the inverse transformation in the probabilistic constraint evaluation introduces

additional non-linearity for all probability distributions, except the Gaussian distribution

that requires a linear transformation [192].

Generally, it has been reported that RIA fails to converge for probability distributions with

bounds (such as Uniform distribution) and extreme type distributions (like Gumbel distribu-

tion) in which the infinite integration domain may not include a failure surface. Therefore,

reliability index approach (RIA) depends so much on the non-linear transformation that does

51



not yield a good RBDO tool [44, 135].

A preferred method for evaluating the probabilistic constraint of RIA is the Hasofer and

Lind - Rackwitz and Fiessler (HL - RF) method, whereas any general optimisation algorithm,

like sequential linear programming (SLP) and sequential quadratic programming (SQP) can

be used as well [135, 193].

2.5.3 Performance Measure Approach

The performance measure approach (PMA) has been established on this fact that it is easier

to minimise a complex cost function subject to a simple constraint function than to minimise

a simple cost function subject to a complicated constraint function.

In other words, the PMA with a spherical equality constraint is easier to solve than RIA

with a complicated equality constraint when evaluating the probabilistic constraint of an

RBDO problem [45, 172, 195]. The PMA converts the performance function into a perfor-

mance measure and is originated from the reliability-based design concept [45].

In the inverse reliability analysis problem of PMA, the probabilistic constraint must be

replaced by a new optimisation problem, which minimises the standard normalised perfor-

mance function GU (u1, u2, ..., un) as a cost function. The optimum solution has to satisfy the

spherical equality constraint ‖(u1, u2, ..., un)‖ = βt so that βt is a target reliability index.

Further, an enhanced PMA has been introduced in the literature in order to improve

PMA’s computational efficiency. In this approach, which is very useful when applied in

large-scale system problems, numerical efficiency has been improved by a reduction in the

number of required iterations in an RBDO problem.

Probabilistic constraints are efficiently evaluated in the enriched PMA, which is also called

PMA+, by reusing some information obtained in previous RBDO iterations [194].

However, the probabilistic constraint of RBDO using PMA can generally be written as

below:

g(βt) = F−1G [Φ(−βt)] ≥ 0⇒ g∗ ≥ 0 (2.28)

52



where g∗ is target probabilistic performance measure. This constraint may be linearised in

order to use in the design optimisation loop for estimating a new search direction as follows:

Gi(x
∗
i ) +∇Gi(x∗i )T .D ≥ 0

where D is the design change.

Therefore, supposing that a quadratic programming problem has been used in design

optimisation loop, two nested sub-problems in the PMA can be summarised as follows:

1. Inner loop; reliability analysis problem: This problem aims at calculating the mini-

mum amount of the standard normalised performance function GU (u1, u2, ..., un) on

the target reliability surface. This idea is displayed in the Figure (2.4).

Figure 2.4: Reliability Analysis in PMA
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Reliability analysis problem of inner loop of PMA is often formulated as follows:

Min GU (u1, u2, ..., un)

s.t. ‖(u1, u2, ..., un)‖ = βt

2. Outer loop; design optimisation problem: This problem estimates a design change for

updating the current design point. This goal is often obtained by solving a constrained

minimisation problem in which objective function is quadratic. Constraint of this prob-

lem is written as Gi(x
∗
i ) +∇Gi(x∗i )T .D ≥ 0.

The PMA has an inverse reliability analysis problem where the probabilistic constraint is

transformed to a performance measure corresponding to the target reliability level.

This approach goes first to the hyper-sphere with a radius equal to the target reliability

index (βt), then iterations are carried out on this hyper-sphere. PMA is increasingly used for

the large-scale systems [13, 61].

Although a general optimisation algorithm, such as sequential linear programming (SLP)

and sequential quadratic programming (SQP), can be used for evaluating the probabilistic

constraint in PMA, there are many efficient particular algorithms for this purpose, like ad-

vanced mean value (AMV), conjugate mean value (CMV) and hybrid mean value (HMV)

methods.

It has been reported that PMA using the HMV method provides the best result in the

RBDO problem [193]. Also, it can be concluded that PMA is robust because the point (βt, g
∗)

always exists [173].

The constraint of reliability analysis problem in PMA is a simple n-dimensional quadratic

function without any non-linear transformation, while the cost function involves a non-linear

transformation. Also, since the probabilistic constraints of the PMA are the original perfor-

mance function evaluated at x∗β=βt , there is no non-linear transformation in design optimisa-

tion loop of PMA [192].
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PMA is much less dependent on the non-linear transformation and thus can handle a

variety of probability distributions without significantly increasing number of function eval-

uations [192]. Also, it can be seen that at the solution point u∗, the limit-state function is

tangent to the hyper-sphere with radius βt [13].

2.6 Optimisation in Electricity Power Networks

Mathematical optimisation is increasingly applied in a wide range of real world problems such

as engineering, economics, the health sciences, etc. In this regard, electricity power networks

utilize optimisation approaches in order to find optimum amounts for various objectives in

economical aspects (cost) and/or electrical engineering aspects (power, voltage, etc.).

Electricity networks are one of the most complex systems ever known. There are many

optimisation models available for these networks. These models include mono- and multi-

objective optimisation problems [33, 58, 64, 65, 81, 93, 98, 125, 176].

An electricity power network generates, controls, transmits and finally consumes electrical

power. Electricity is produced in generators, transformed to an appropriate voltage level in

transformers and then distributed via buses on transmission lines for final distribution to

customers. Figure (2.5) displays a common view of electricity networks.

Power is injected into a bus from generators, while loads are tapped from it. Some buses

may have no generation facility. The surplus power at a bus is transported via transmission

lines to buses which have deficit in power [99].

A mathematical model must be formulated for power networks in order to predict the

flow picture. This model is power flow equation (PFE). Substations and loads on feeders

are considered as sources and demands in an optimisation problem of electricity networks,

respectively [130, 175].

In general, nodes and line loads are treated as sources and demands in an effective model,

respectively. There are four major approaches for planning an electricity power network.

These approaches can briefly be explained as below [175]:
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Figure 2.5: A General Electricity Power Network

1. The alternative policy method that compares a number of policies and selects the best.

2. The decomposition approach in which a large optimisation problem is divided into

several smaller subproblems.

3. The linear programming and the integer programming methods.

4. The dynamic programming method.

Constraints of a problem are also constructed based on the assumptions below [175]:

1. The required load (by consumers) should be supplied all the time.
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2. The transmitted power in each line should not be more than its thermal power capacity.

3. Substations installed in a given area should be less than the accepted number of sub-

stations in that area.

4. The power flow in the lines should be unidirectional.

5. Total undelivered energy must be kept less than an accepted rate.

6. The power flow cannot be negative; i.e. there cannot be a flow from the demand node

to the supply node.

Reducing electricity losses in networks is another important issue in electrical energy

management. Cost of electricity is reduced and efficiency of a network is improved by reducing

electricity losses [55, 60].

These losses are typically categorised as technical losses (such as losses due to physical

processes) and non-technical losses (such as unauthorized line tapping or meter by passing)

[51]. Technical losses are often less than non-technical losses [39, 97].

In the following subsections, more details of an electricity network and its optimisation

model will be provided.

2.6.1 Components and Subsystems of an Electricity Network

There are different components and subsystems in a typical electricity power network. An

electricity network is often divided into three subsystems while each sub-system is able to

affect the overall system’s behaviour. These subsystems are as below:

1. Generation subsystem;

2. Transmission subsystem;

3. Distribution subsystem.

A common structure for an electricity network includes the following properties [130]:
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1. Electric power is generated in generation subsystems.

2. Generated power is transmitted from generators to load centers through transmission

subsystems.

3. Low voltage networks that deliver the generated electricity power to consumers are

distribution subsystems.

4. Tight tolerance levels of voltage and frequency are used to ensure a high quality product.

Generator voltages are usually in the range of 11 to 35 kV. These are stepped up to

transmission voltage level. A transmission system connects all major generating stations

(GSs) and main load centers in the system. Transmission system is often regarded as the

power system’s spine and operates at the highest voltage levels (+230 kV) [130].

Transmission subsystem consists of transmission lines, transformers and switching devices.

When generated power is transmitted to transmission substations, voltages are stepped down

to a range from 69 to 138 kV, which is called sub-transmission level.

Sub-transmission systems often supply large industrial customers directly. This system

transmits power from transmission substations to distribution substations at a lower voltage

and in smaller quantities. Further, a set of generation and transmission subsystems is often

called a bulk power system.

Distribution system performs the last step of power transformation by delivering electric-

ity power to the customers described below [130]:

1. Primary feeders supplying small industrial customers (4 to 34.5 kV).

2. Secondary feeders supplying commercial and residential customers (120/240 V).

Generally, buses in a power flow problem are often shown using PQ, PV and S notations.

PQ buses enforce active and reactive power equations and PV buses enforce active power

and voltage magnitude equations. S buses, which are also called slack buses, enforce specified

values of Vdk and Vqk .
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All equations of power flows and voltage magnitude must be satisfied at all buses of an

electricity power network. However, within solution procedure of a power flow problem, only

two equations (within the set of all possible equations) are directly enforced at each bus [107].

Moreover, a controlled electric vehicle (EV) has been considered as a possible utility to

eliminate or reduce voltage disturbances. This can be modelled as a multi-period, unbalanced

load flow and rolling optimisation method. It is intended in this method to focus on different

rates and times with minimum cost subject to certain constraints [136].

A strategy for interactions between commercial buildings and a smart grid is proposed

based on building power demand management [190].

2.6.2 General Optimisation Model

An optimisation model of electricity power networks based on a radial network model is, in

general, a non-linear programming problem (non-linear objective function with non-linear

constraints) which should be solved with consideration to optimality conditions. Difficulties

in optimal planning of electricity networks are originated from two different sources: non-

linear nature of the models and large number of scenarios [2, 16].

Although various objectives, such as total cost, network area and voltage drops, have often

been considered for optimisation in electricity power networks [55, 60, 138, 161, 165, 183],

there are two major goals in a typical optimisation model of electricity networks [98, 128]:

1. Determining the optimum number and locations of distribution substations;

2. Finding an optimum way of connecting load nodes to these substations through inter-

connection of feeders.

A general optimisation model of electricity networks minimises total cost. Manufacturing

cost, instalment cost and maintenance cost are often considered as different components

of total cost [60, 98]. Further, total cost is sometimes defined as a summation of fixed and

variable costs where fixed costs include costs of construction of nodes and lines (manufacturing
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cost) and instalment cost. Also, operation, maintenance and energy losses costs are often

considered as variable costs [96].

Further, technical constraints in an electricity network optimisation problem are summa-

rized as follows:

1. The first Kirchhoff’s law in the existing nodes of a power network;

2. Restrictions of power transport capacity for each line;

3. Restrictions of power supply capacity associated with substations;

Many optimisation algorithms have been applied into electricity power networks. A short

list of these algorithms is as below [98, 128, 138]:

1. Mixed Integer Linear Programming (MILP)

2. Ant Colony (AC)

3. Genetic Algorithms (GA)

4. Tabu Search (TS)

5. Branch Exchange (BE)

6. Simulated Annealing (SA)

7. Bender’s Decomposition (BD)

8. Particle Swarm Optimisation (PSO)

Mono- and multi-objective optimisation models are applied in electricity networks. Multi-

objective models are intended to consider various objectives simultaneously. For instance,

total cost and network reliability are taken into account in these models. These models will

be discussed in more details in the next section.
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However, a mono-objective optimisation model of electricity power networks is concerned

with cost only. A typical optimisation model for these networks is formulated as follows

[2, 33, 113, 120]:

Min Cost(d) (2.29)

s.t. fi(d) = 0 i = 1, 2, ...,m

hj(d) ≤ 0 j = 1, 2, ..., p

where d = [d1, d2, ..., dn] are the design variables and f(d) and h(d) are deterministic con-

straints.

2.6.3 Other Optimisation Problems

Different objectives have been considered for power networks optimisation in the existing

literature. These objectives and their associated optimisation problems are discussed in this

subsection. A number of well-known minimisation problems in electricity networks can be

found in [15, 77, 80, 105, 158].

Static or dynamic planning can be used to formulate an optimisation problem for an

electricity power network. A static approach is based on one-step planning, and a dynamic

approach plans a network with load growth at the existing nodes [128].

As previously mentioned, there are two kinds of costs in a network, namely fixed cost and

variable cost. In this case, distance between start and end nodes of a link is often considered

as fixed cost of the link while value of transmitted power is known as variable cost. It should

be noted that each source has a maximum limit of the power supply [3, 128].

One of the existing approaches for generation cost reduction in electricity networks is

topology control. This approach is also called optimal transmissions switching (OTS) [59,

63, 137, 141]. It has been reported in the literature that network congestion, which is often

created by line thermal limits or nominal voltage requirements, may be reduced or even
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eliminated by changing topology of a power network [148, 156].

A usual difficulty in electricity networks is power quality disturbance, such as voltage

sag, voltage swell and harmonic distortion. An accepted method to protect conventional and

sensitive loads against these disturbances is to use custom power devices (CPD) [58].

The proper placement of CPDs has an important effect on quality improvement and

ensures that total cost is minimal in accordance with maximum efficiency. The CPDs can be

installed for an individual customer or a group of customers. Further, it’s accepted that the

best solution to improve quality, reliability and availability (QRA) is to fit a network with

proper types of CPDs.

Central improvement and distributed improvement are two widely used methods for lo-

cating CPDs. It has been reported in the literature that it is preferred to apply a distributed

improvement configuration and a central improvement should be used at the same time [58].

Determining the optimal location and size of CPDs is the main goal of many radial

electricity networks. These networks are formulated so that power quality improvement is

maximised while minimising total cost.

A function of attributed cost of low power quality delivered to customers (CLPQ), cost

of CPDs including investment, operation and maintenance costs (CCPD), utility revenue due

to installation of CPDs (CUTI) and penalty cost charged to the utility due to the lack of the

regulatory targets (PUTI) is often considered as objective function of an optimisation model

in which it is intended to locate CPDs optimally [58].

Constraints of the mentioned optimisation model must be well-defined so that all variables

are considered based on their real applications. These constraints are often defined as follows:

1. Bus voltage limit: Vmin ≤ |Vi| ≤ Vmax where Vi is voltage magnitude of i th bus.

2. Frequency of voltage sag: V Si ≤ V Si−Limit where V Si is i th bus voltage sag frequency.

3. CPD rating limit: SCPD ≤ SCPD−max where SCPD is the maximum power rating of

CPDs.
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4. Total harmonic distortion (THD) limits: THDi ≤ THDmax where THDi is i th bus

total harmonic distortion.

When a suitable objective function and a set of constraints are determined, a stopping

criteria should be defined based on improvement of the QRA level. If the obtained solution

cannot satisfy the stopping criteria, the procedure should be iterated until the goal is reached.

Different optimisation methods (such as gradient-based search algorithms, dynamic pro-

gramming technique, artificial neural network, hybrid optimisation algorithms, genetic algo-

rithm, particle swarm optimisation and simulated annealing) are applied to solve optimal

CPD placement problems [58].

Meanwhile, partitioning techniques are widely used to solve electricity networks optimisa-

tion problems. One of these techniques is the Bender’s decomposition (BD) algorithm, which

decomposes problem into two sub-problems and solves problem using an iterative process

[98].

A master sub-problem is first formulated in the BD algorithm as a mixed integer non-

linear programming (MINLP) problem in order to determine radial topology of distribution

network. In this step, the unserved energy cost is minimised subject to all constraint. The

objective function has four items including investment cost, power losses cost, unavailability

cost and infeasibility cost.

Then, a slave sub-problem is formulated as a non-linear programming (NLP) problem

that is used to check feasibility of the master sub-problem’s solution and provide an optimal

value for operation variables. A common method to make a problem feasible is to add slack

variables to the problem so that these slack variables should be zero in the last iteration.

Hence, the objective function of this step is a summation of slack variables.

When the solution obtained by the master problem is feasible and value of the objective

function computed in the slave problem (i.e. all slack variables) is zero, the BD algorithm is

stopped [98].

Further, a convex geometric programming problem is used in the literature to approximate
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lengths of lines between nodes. It has been reported that lengths of lines on each voltage

level is the sum of length of links (connections between consumers and also between feeding

nodes and consumers) [93].

The objective function of this model includes all system costs, including investment cost

of substations and lines, cost of losses in substations and lines, non-delivered energy cost

and maintenance cost. The objective function is formulated so that system configuration is

determined by variables of the cost function. Also, non-negativity of variables, over-loading of

transformers and lines, voltage-drop and minimal and maximal ratings for various equipments

are often considered as constraints of this problem.

This model is based on uniformly distributed variables and is solved using a random

search method. This problem mainly includes a nonlinear multi-objective cost function with

nonlinear constraints. Physical feasibility of a system, which means variables should have

realistic values, is another important issue that is considered in this problem [93].

2.7 Uncertainty Considerations in Electricity Networks

Many acceptable results have been obtained by minimising the total cost of an electricity

power network. However, it’s reported that a mono-objective optimisation model cannot

yield a compromise result between cost and reliability.

Reliability is one of the most important and complicated issues in electricity networks.

Thus, it is accepted that cost minimisation alone cannot be assumed as a comprehensive

goal to achieve in optimisation projects and it has been found that a better response will be

obtained if uncertainties are considered in the problems [58, 71, 145].

A factor in electricity networks that has a major influence on system, but which is not

being observed or cannot be predicted with certainty is generally called an uncertainty. Risk

is the hazard to which a utility is exposed because of uncertainty. Uncertainties result in risks.

It is widely accepted that simple optimisation is ineffective when there are uncertainties in a

system as well as multiple objectives [125].
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Maximisation of system loadability has also been considered to propose a new algorithm

for electricity power networks reconfiguration [10].

Another basic concept, which must be defined carefully by engineers, is system failure.

This definition is used to define a safety level for a system regarding an acceptable level of

system performance. For instance, line flow magnitudes must remain below established levels

and voltage magnitudes must remain within set limits.

Defining the failure probability of each line in a network as well as the whole system is

another way to deal with uncertainties in electricity networks. In this case, failure probability

is calculated based on the theory of probability using a predetermined limit of transmission

capability for each line or for the whole of the system [151].

A scenario is also a complete set of specified variables (both options and uncertainties),

which determines a set of specified options combined with a particular set of outcomes of

uncertainties [125].

Uncertainty is often represented by a set of scenarios. Stochastic characteristics are often

represented as a set of scenarios. Each scenario is a sequence of possibilities [35].

Uncertainties are significant features of electricity networks. Representation of a net-

work’s input data as random variables is one of the accepted approaches to gather sources of

uncertainty in a system [151].

Probabilistic load flow is generally defined as a solution of the load flow problem [30].

Random variable values are often assumed as starting data to estimate solutions of the load

flow problem. Simulation techniques (such as the Monte Carlo Simulation method) which use

deterministic algorithms and analytical techniques (like the method of cumulants) that are

based on random variables are widely accepted to solve these problems [12, 108, 150, 152].

Monte Carlo simulation is applied into reliability analysis of an electric power system [154].

The best property justifying the use of above techniques is their computational efficiency

[131, 201]. Newly developed electricity networks have increased the need of considering reli-

ability issued in optimisation models [153]. Since various factors influence system reliability,
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it is very hard to decide how to determine reliability of a system in an optimisation problem

[151].

Availability of power plants, loads at nodes, lines out of service, nodes out of service,

weather, season, day of the week and hour of the day are different sources of uncertainty in

an electricity network [151].

Risk must be considered by attributes such as cost of electricity, capital requirements and

environmental effects. Risk is a characteristic of decisions with two dimensions [125]: 1. the

likelihood of making a regrettable decision 2. the amount by which the decision is regrettable.

The definition of reliability is one of the most important concepts in power systems.

Experts often have different opinions about this definition and its applications, even within

one technical field.

However, system reliability in a power network is generally defined as below [36]:

R(t) = P ([0, t])

where P is a probability function and [0, t] is a time period when system does not fail.

It is assumed that failure is indicated by the inability of an item to carry out its particular

function. Unreliability or failure is the complement of reliability. An electricity system

reliability can be assessed based on the following items [36]: 1. System configuration; 2.

System components’ reliability; 3. Power delivery to loads of system.

It is reported in the literature that the increasing necessity to deal with uncertainties is

one of the significant sources of difficulty and complexity in the optimal planning of electricity

power networks. However, the non-linear nature of networks optimisation models, as well as

the need to consider a large number of scenarios, have the effects of making these models

much more complicated [98].

Uncertainties in electricity power networks can be found in customer demand and failure

probability of system. These uncertainties create risk in a system [151].
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Reliability of electricity power networks is an important issue that may cause extra diffi-

culties in an optimisation problem [2, 50, 65]. There are generally two approaches to consider

uncertainties in electricity networks. Approaches that are based on the probability theory

can be summarized as below [125]:

1. If probability distributions are known and problem being studied is consistent with

the law of large numbers, uncertainties are often modeled probabilistically. In these

approaches, uncertainties are modeled using probability distributions based on the sta-

tistical data such as expected values and variances.

2. If probability distributions are not available, then uncertainties can be modeled as

unknown-but-bounded variables. This approach does not have a probabilistic structure

for uncertainties and contains less information than a probabilistic approach.

Another approach to consider reliability of an electricity network is introduced in the

literature as a simplified version of security constraints [31].

As mentioned in this section, various optimisation models and techniques have been intro-

duced for electricity power networks in order to cover reliability issues in the corresponding

optimisation models.

However, no probabilistic constraint has yet been introduced for these networks and also

there is no reliability-based design optimisation (RBDO) model available for electricity power

networks. We introduce an RBDO model for electricity networks in this thesis that considers

reliability of the network by evaluating a probabilistic constraint.

2.7.1 Uncertainty Indices

Several indices are suggested by scholars to investigate reliability in electricity networks. A

robustness index, which reflects a degree of confidence in or the adequacy of a given plan, is

one of the widely accepted indices. In this case, adequacy (the degree of confidence) of each
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solution is calculated as below [98]:

β = 1− αmax

where αmax is the maximum of any possible constraint violations.

In other words, every obtained solution is used to investigate system uncertainties. For

this purpose, a robustness index should be calculated for each solution. A given plan is robust

with respect to a specific constraint if the constraint holds true for every possible value of

the particular variables and constants. In this case, αmax = 0 and β = 1.

If any instance of obtained quantities leads to a violation of constraints, β equals the

maximum possibility for which the constraint is not violated. The global robustness β is

obtained from the minimum value of βjk among all n lines [98]:

β = min(βj1, ..., β
j
n)

Reliability of electricity networks is also measured by investigating quality of supply and

perceived power. Further, load demand and power injection are two uncertainty sources in

electricity networks that have been integrated using a fuzzy power flow and its indices [166].

A new method is introduced in the literature based on the particle swarm optimisa-

tion (PSO) algorithm in which reliability of electricity network is considered using a multi-

objective model. Reduction/Minimisation in real power losses and improvement/maximisation

of electricity network reliability while reducing/minimising non-delivered energy are major

aims of this model [11, 128].

Infeasibility rate (IR) is used in the new PSO algorithm as a criterion for choosing a

lossless and reliable network as the best network. In other words, IR is a criterion analyzing

the number of times that network becomes infeasible. IR is considered as a probability of

infeasibility, and the acceptable value for IR is less than 20% [128].

In the mentioned new PSO algorithm, the particle movement has two major components:
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a stochastic component and a deterministic component. A particle is attracted toward the

position of the current global best (pti) and its own best location (xti), while at the same time

it is allowed to move randomly. In this algorithm, a global optimum point (not just a local)

is available for all particles [128].

The main aim is to find the global best (gti) among all the current best solutions. It is

supposed that xti and vti are the position and velocity vectors, respectively. Thus, new vectors

are obtained as following:

xt+1
i = xti + vt+1

i i = 1, 2, ..., n

where n is the number of particles and also we have:

vt+1
i = w.vti + c1.r1(p

t
i − xti) + c2.r2(g

t
i − xti)

where w is a weight coefficient, c1 and c2 are fixed coefficients and r1 and r2 are fixed numbers

between 0 and 1 [128].

The overall system failure probability is also used in order to determine reliability index

of a system. Since it is not yet possible to compute reliability index exactly, only its limits

are considered in this thesis. In this case, upper and lower boundaries of reliability index are

determined assuming that all contingencies of a set results in either system failure or keeping

the system safe, respectively [151].

However, it is accepted that it is very difficult to consider unforeseen contingencies (equip-

ment outages) in a model. Also, the number of simulated contingencies depend on the desired

accuracy of obtained results or reliability index limits [123].

System failure probability, failure frequency and expected duration of the failure are the

most commonly used indices [123]. Random variables are used to model availability of power

generation and load variations at the nodes [151].
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2.7.2 Stochastic Optimisation and Multi-Objective Functions

Stochastic optimisation is widely used to design electricity networks [19, 100, 116, 142]. For

instance, based on the theory of reliability and Markov models, if failure and repair rates

are available, then system reliability assessment can be carried out through the state space

method.

In this case, availability of a component is calculated as follows [19]:

p =
µ

λ+ µ
, q =

λ

λ+ µ

where p and q are probabilities of safety and failure of the component, respectively, and λ

and µ are failure and repair rates, respectively.

A stochastic programming framework is defined in order to use in problems related to

renewable energies and corresponding networks. Optimal values are calculated such that

fluctuating nature of market prices is taken into account [5].

Moreover, one of the proposed methods to consider uncertainties in optimisation models

of electricity networks is to develop a multi-objective optimisation model so that both cost

and reliability issues are taken into account in the same time.

In this case, a two-dimensional function is formulated as the objective function. Cost and

reliability are two components of this objective function [2, 65]. It’s reported in the literature

that although more aims can be achieved using multi-objective optimisation models, they are

more complicated than the mono-objective optimisation models [3, 50].

2.8 Optimal Power Flow Model

One of the widely used optimisation models for electricity power networks is optimal power

flow (OPF). This model was first introduced in the early 1960s. The OPF model is generally

known as an extension of conventional economic transmission [32].

The optimal power flow (OPF) problem is intended to compute an optimum point for an
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electricity power network. A widely accepted cost function of the OPF problem is generation

cost function. However, transmission loss is also considered in the literature as a cost function

of the OPF problem. Further, various constraints on variables related to power and voltage

are often formulated in an OPF problem [130].

The increase need to optimise power networks is due to an increase in the size of power

systems and complexity of networks. Load flow constraints are often incorporated into objec-

tive function in order to change the constrained optimisation problem into an unconstrained

optimisation problem [99].

In an OPF problem, an objective function is minimised based on particular controllable

variables such that various physical and operating constraints are satisfied. Cost function is

often assumed to be a smooth and quadratic function.

Although the OPF model is a very well-known optimisation model in electricity networks,

uncertainties are ignored in this formulation. A chance-constrained (CC) OPF is proposed

in the existing literature in order to correct the problem and alleviate dangerous renewable

fluctuations, while the current operational procedure has minimum changes [28].

The OPF problem is a large-scale non-linear optimisation problem. An OPF problem can

be formulated in polar, rectangular or mixture of polar and rectangular forms. However, the

rectangular version has the property that power flow equations do not include trigonometric

functions. This property leads directly to the formulation of semi-definite programming

(SDP) models [18].

The optimal power flow (OPF) problem looks for decision variable values to yield an

optimal operating point for an electric power system [107].

Linear programming, Newton Raphson, quadratic programming, nonlinear programming,

Lagrange relaxation, interior point methods, artificial intelligence, artificial neural network,

fuzzy logic, genetic algorithms, evolutionary programming and particle swarm optimisation

are applied into the OPF problem as different approaches [104, 139].

Several algorithms have been proposed based on the genetic algorithm (GA) to apply in
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the OPF problem. In these algorithms, which adopt advantages of this evolutionary method,

various sets of control variables are used in order to discover their potential usefulness in the

OPF solutions [182].

However, since many of the above mentioned approaches are based on the KKT necessary

condition, only a local optimal solution is guaranteed as a result of non-convex problem

formulations [104].

Total generation cost is a typical objective of the OPF problems. Power flow equations

determine relationships between voltages and active and reactive power injections in a power

system. Constraints of an OPF problem include engineering limits on active and reactive

power generation, bus voltage magnitudes, transmission line and transformer flows [107].

Many researchers have been attracted by OPF problem relevant issues and many algo-

rithms are now available to solve an OPF problem. However, as electricity power networks

are getting more complicated issues, the OPF problems turn to be harder to deal with [18].

Moreover, efficient algorithms with guaranteed performance have been developed for the

OPF problem [82, 87, 88, 112]. It’s also proposed to consider a Lagrangian dual of the OPF

problem and solve it in order to recover a desired solution from a dual optimum [102].

Further, a class of quadratic programming problems is proposed in the literature and a

connection from this class to non-convex quadratic constraints is studied. It’s proved that

the OPF problem has a convex semi-definite programming relaxation for DC networks. This

relaxation is always equivalent to the main problem [104].

An accurate model of cost function may require a piecewise polynomial form or an opti-

misation using quadratic, cubic, piecewise linear or piecewise quadratic functions [99].

The only power, which is controlled for cost minimisation, is active power. Active and

reactive power flows, voltage magnitudes and phase angles are often used as independent

control variables to formulate constraints in an OPF problem.

In optimisation models of electricity power networks, electricity flows are governed by

the Kirchhoff’s Laws. These laws are the origin of difficulties related to the networks [31].
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Commonly used constraints of an OPF problem are as below [99]:

1. Network power balance at each node;

2. Boundaries on all variables;

3. Line-flow limits.

It is reported that an OPF problem is intended to find optimum amounts of active and

reactive power flows as well as voltage magnitudes such that operational feasibility constraints

are satisfied [103].

Non-linear nature of the OPF problem and its non-convexity leads to convergence diffi-

culties. Comprehensive researches about OPF problem have been done so far and many algo-

rithms have recently been developed with guaranteed performance to solve an OPF problem

[79, 171, 178]. Non-linear interior point algorithms are proposed for an equivalent current

injection model of the problem [87, 112]. Also, an improved implementation of the automatic

differentiation technique for the OPF problem is introduced [88].

Control and system theory, signal processing and communications and also combinatorial

optimisation are applied to solve OPF problems [8, 9, 25, 67, 68, 140, 188].

The Jacobian and Hessian matrices (first- and second-order partial derivatives) must be

found for each specific problem so that interior point method (IPM) can be applied to solve

the OPF problems. Thus, it can be concluded that developing a general and unique software

to solve these problems is a hard mission [18].

It has been reported in the literature that non-convexity of the OPF problem originates

from non-linear nature of power network parameters, such as active power, reactive power

and voltage magnitudes. The OPF problem is NP-hard in the worst case [103].

A semi-definite programming (SDP) formulation and a dual problem for the OPF model

are introduced in the literature. These models are developed in order to decrease difficulties

of solving an OPF problem.
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An active field in numerical optimisation is the semi-definite programming (SDP) on

which various algorithms are based. The main priority of the SDP-based interior point

method is to avoid deriving and computing partial derivative matrices for each particular

problem [1, 18, 127].

Further, solving a dual of an equivalent form of the OPF problem is known as an alter-

native approach rather than solving the OPF problem itself. The mentioned dual problem is

a convex semi-definite problem and can hence be solved efficiently [103].

A necessary and sufficient condition is introduced in the literature in order to guarantee

zero duality gap for dual OPF problem. The dual formulation can also be used to convexify

practical system problems. Obtained results for the dual problem are monitored by consid-

ering a resistive network, which has only resistive and constant active power loads, and a

network without any limitation on reactive power flows [103].

Further, it has been shown that there is an unbounded region so that duality gap is zero

(if the imaginary part of admittance matrix Y belongs to this region), when the real part of

Y is fixed. Zero duality gap of classic OPF problem conveys zero duality gap of general OPF

problem which might involve more variables and constraints [103].

Moreover, many algorithms to solve the OPF problem are based on the KKT conditions.

In these algorithms, a dual OPF problem is formulated and solved. An important difference

between the KKT-based methods to solve dual OPF problems and optimisation algorithms

based on the well-known KKT conditions is that the latter methods are built on both primal

and dual variables, while the dual OPF problem is only dependent to dual variables [103].

Further, it can be shown that the OPF problem may have many solutions (all satisfying

the KKT conditions), but a global optimum of the OPF problem can be obtained by solving

the dual OPF when duality gap is zero [103]. A global solution of the OPF problem is sought

and a semi-definite programming (SDP) method is proposed for this purpose [89].

It is commonly accepted that a positive semi-definite matrix must be chosen in order

to optimise a linear function subject to linear constraints in the semi-definite programming
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problems. In other words, the LP problem may be generalized by replacing vector of variables

by a symmetric matrix and also non-negative constraints by a positive semi-definite constraint

[18].

This generalization is convex and has a rich duality theory. Although a semi-definite

programming problem can be written in different forms, the primal form and its dual are

considered in the literature.

Also, it is reported that all IPM improvements, which are applied to linear programming,

are useful for SDP. The OPF problem is reformulated as an SDP model and then an algorithm

is introduced based on interior point method (IPM) for SDP [18].

2.8.1 A Basic OPF Formulation

The optimal power flow (OPF) problem has been formulated for various electricity networks.

In this subsection, a formulation of this problem is explained based on a three bus example

system. Figure (2.6) displays the three bus example system. In this figure, nodes 1 and 2 are

considered as generating stations and node 3 indicates demand.

Generators in this model are often considered as marginal cost curves that are smooth

functions. This function is designated by function mc and written as below [31]:

mci(gi) = lci + giqci gi ≥ 0 i = 1, 2

where lci and qci are linear and quadratic cost components of total cost, respectively. Also,

gi is the generated electricity power at the generator i.

Further, consumers are considered by demand curves as below:

p3 = α3 − β3ω3

where ω3 ≥ 0 is electricity consumption at bus 3.
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Figure 2.6: Three Bus System

Hence, an optimal power flow (OPF) model based on the given three bus example system

is written as following [31]:

Min vc1(g1) + vc2(g2)− u3(w3)

s.t. g1 + g2 = w3 (Kirchhoff ′s Circuit Law) (2.30)

g1 − g2
3

≤ f12 (Thermal Limit)

g1, g2 ≥ 0, w3 ≥ Demand

where g1 and g2 are generated electricity at the nodes 1 and 2, respectively. Also, w3 is

electricity consumption at node 3.

Functions vci(gi) (i = 1, 2) are variable cost functions of the nodes 1 and 2. These

functions originate from the explained marginal cost curves using the following:

dvci
dgi

= mci(gi) = lci + giqci i = 1, 2

Also, if a function is considered for willingness to pay and denoted by u3(ω3), then we’ll
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have [31]:

du3
ω3

= mu3(ω3) = α3 − β3ω3

Thermal limit in the above OPF problem originates from the Ohm’s Laws. Thermal limit

on the line 1-2 is expressed as following [31]:

−f12 ≤ f12 ≤ f12

where f12 is total flow on this line and −f12 and f12 are its lower and upper boundaries,

respectively.

Thermal limits are intended to limit temperature of lines. They are not a function of line

length and usually determine the maximum power flow for lines less than 50 miles in length.

Since the indirect path 1-2-3 in the Figure (4.1) is twice of the direct path 1-3, a unit

injection of electricity flow in node 1 that is withdrawn at node 3 requires flows of 1
3 and 2

3

on the paths 1-2-3 and 1-3, respectively. Then, the total flow on the line 1-2 can be written

as below:

f12 =
g1 − g2

3

For simplicity, it is assumed that the flow in the line 1-2 (with no contingency) always

goes from node 1 to node 2. Then, the thermal limit constraint −f12 ≤
g1−g2

3 is always slack

and can be dropped.

Moreover, it must be mentioned that although reliability related issues have high impor-

tance in electricity power networks, these factors are not considered in the above model. In

this case, security constraints are proposed in the literature to cover reliability issues in the

OPF problems [31].

A general formulation of the OPF problem will be illustrated in the next subsection.
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2.8.2 Mathematical OPF Problem

A classical formulation of the OPF problem is explained in this subsection. The following

are assumed in this formulation [107]:

1. Ñ = {1, 2, ..., n} is the set of all buses. In other words, it is assumed that the network

includes n buses.

2. G̃ = {1, 2, ..., g} is the set of generation stations; i.e. it is assumed that the network

includes g generators.

3. L̃ is the set of all existing lines. The number of all existing lines is at most n(n−1)
2 .

4. PDk
and QDk

are active and reactive power loads at bus k ∈ Ñ , respectively. These are

real values and given as fixed demands.

5. PGk
and QGk

are active and reactive powers generated at generator k ∈ G̃, respectively.

These are real values and considered as optimisation variables.

6. Vk = Vdk + jVqk is an optimisation variable which shows the voltage magnitude at bus

k ∈ Ñ . Vdk and Vqk are real and imaginary parts of voltage magnitude.

7. Slm is apparent power flow on the line (l,m) ∈ L̃.

8. Y = G + jB is the network admittance matrix where G and B are conductance and

susceptance, respectively.

Further, operating cost function associated with generator k is often written as below:

fk(PGk
) = ck2P

2
Gk

+ ck1PGk
+ ck0
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where ck2 , ck1 and ck0 are nonnegative numbers.

The above cost function is a quadratic function that is also formulated for the whole

network as following:

F (PG) =

g∑
i=1

(αi + βiPGi + γiP
2
Gi

)

where PGi is active power generation at unit i and αi , βi and γi are cost function parameters

of unit i. Thus, cost function and inequality constraints (boundaries) of the OPF problem

are formulated as follows [62, 107]:

Min
∑
k∈G

fk(PGk
) (2.31)

s.t. PminGk
≤ PGk

≤ PmaxGk
k ∈ G̃ (2.32)

QminGk
≤ QGk

≤ QmaxGk
k ∈ G̃ (2.33)

(V min
k )2 ≤ V 2

dk + V 2
qk ≤ (V max

k )2 k ∈ Ñ (2.34)

|Slm| ≤ Smaxlm (l,m) ∈ L̃ (2.35)

Equality constraints of the OPF problem may be written in the rectangular form or in po-

lar form. Rectangular formulation of these constraints is given as below (in both constraints,

we have: k ∈ Ñ):

PGk
− PDk

= Vdk

n∑
i=16=k

(GikVdi −BikVqi) + Vqk

n∑
i=16=k

(BikVdi −GikVqi) (2.36)

QGk
−QDk

= Vdk

n∑
i=16=k

(−BikVdi −GikVqi) + Vqk

n∑
i=16=k

(GikVdi −BikVqi) (2.37)
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The equality constraints are formulated in polar form as follows:

PGk
− PDk

= |Vk|
n∑

j=16=k
|Vj ||Ykj |cos(δk − δj − θkj) k ∈ Ñ (2.38)

QGk
−QDk

= |Vk|
n∑

j=16=k
|Vj ||Ykj |sin(δk − δj − θkj) k ∈ Ñ (2.39)

where δi is phase angle at bus i, θkj is angle of (kj )th element in the admittance matrix and

Ykj is magnitude of admittance of line between buses k and j.

The above problem limits the apparent power flow measured at each end of a given line.

In an OPF problem, individual solutions are easily calculated using Newton’s method. The

main challenge is to find all solutions [107].

Power flow equations (equality constraints in the OPF problem; i.e. Equalities (2.36)

and (2.37)) relate active and reactive power injected at each bus to voltage phasor at the

same bus. There are different variables associated with each bus that are formulated using

an equation. For instance, variables associated with bus k ∈ N and relevant equations are as

follows:

1. Net active power injection, Pk = PGk
− PDk

;

2. Net reactive power injection, Qk = QGk
−QDk

;

3. Voltage magnitude Vk = Vdk + jVqk or |Vk|2 = V 2
dk

+ V 2
qk

;

Three above equations can also be rewritten as below (for sufficiently small ε > 0) [107]:

Pk − PDk
− ε ≤ PGk

≤ Pk − PDk
+ ε ∀k ∈ {PQ,PV }

Qk −QDk
− ε ≤ QGk

≤ Qk −QDk
+ ε ∀k ∈ PQ

|Vk|2 − ε ≤ V 2
dk

+ V 2
qk
≤ |Vk|2 + ε ∀k ∈ {PV, S}
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As can be seen in the above OPF model, probabilistic constraints are ignored when

formulating the optimal power flow models. In the following subsection, AC and DC power

flow models, as two popular models for electricity networks will be illustrated.

2.8.3 AC and DC Power Flow Formulations

As mentioned before, there are generally two kinds of formulations for electricity networks,

which are called alternating current (AC) and direct current (DC) power flows. When a set

of linear equations is used to define a DC optimisation model for electricity power networks,

this DC model is called linearized DC (LDC) model. A comprehensive LDC model for the

planning and control of electricity networks can also be applied to approximate nonlinear AC

power flow equations [48].

The LDC model can produce an accurate approximation of the AC power flow equations

for active power when normal operating conditions and some adjustments for line losses are

considered [164].

In general, an AC power flow equation for bus n is written as below [48]:

Sn =
∑
k 6=m

VnV
∗
k Y
∗
nk − VnV ∗mY ∗nm

where Sn is AC apparent power of bus n (Sn = pn + iqn), Vn is AC voltage magnitude of bus

n and Ynm is line admittance between buses n and m (Ynm = gnm + ibnm). pn and qn, as the

real and imaginary terms of the AC power, indicate active and reactive powers, respectively.

It must be noted that the above equation is not symmetric. In other words, the following

can simply be shown [48]:

Snm 6= Smn

Considering Y ∗nk = Y b
nk (k 6= m) and Y ∗nm = −Y b

nm, above equation can be rewritten as
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following:

Sn =
∑
n

VnV
∗
k Y

b
nk

Based on the above equation, active and reactive powers can be formulated, respectively,

as below:

pn =
∑
m

pnm & qn =
∑
m

qnm

where we have:

pnm = |Vn||Vm|(gynmcos(θn − θm) + bynmsin(θn − θm))

qnm = |Vn||Vm|(gynmsin(θn − θm)− bynmcos(θn − θm))

On the other hand, LDC power flow equations are often written based on the assumptions

below [48]:

1. Magnitude of a line susceptance is much larger than magnitude of its conductance; i.e.

|b| � |g|.

2. Phase angles are close to each other so that sin(θn − θm) ≈ θn − θm.

3. Voltage magnitudes are close to 1 and do not vary significantly; i.e. |V | ≈ 1.

As |g| � |b|, it can be shown that |r| � |x|. In other words, real impedance is much less

than imaginary impedance. Based on these assumptions, active power can be reformulated

as follows [48]:

pnm = −bnm(θn − θm)

Further, reactive power flow can be simplified as below:

qnm = −bnm + bnmcos(θn − θm)− 0⇒ qnm = bnm(−1 + cos(θn − θm))

Since θn − θm ≈ 0, we can conclude that cos(θn − θm) ≈ 1. Thus, qnm = 0.
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The LDC model is not able to obtain reactive power in an electricity network. Hence,

this model cannot be applied in capacitor placement and voltage stability problems [48]. An

incorporation of the LDC model in a mixed integer programming (MIP) model is often used

in various optimisation applications in electricity networks [29].

A linear programming AC (LPAC) model is introduced in the literature incorporating

both reactive power and voltage magnitudes. AC power flow equations include some cosine

terms. These terms are approximated in this method using convex functions. Other nonlinear

terms are approximated using Taylor series [48].

Optimal transmission switching (OTS) is a natural extension of primal flow problem.

Topological changes are also included by the OTS. The total cost of generation is minimised

in an OTS, which is often modeled as a quadratic function [49]. However, it is also discussed

to apply the AC power flow models into the OTS problems instead of the DC power flow

models [160, 162].

An optimal transmission switching (OTS) problem is generally a non-convex mixed integer

nonlinear programming problem that is often approximated by using a DC power flow model.

A mixed integer linear programming problem is obtained from the OTS problem by the

mentioned approximation [21–23, 63, 74–76].

An alternative version of the OTS problem is solved because of computational challenges

of solving the AC-OTS. An AC-OTS is often made by using one of the following approaches

[49]:

1. Heuristics;

2. Power flow equations approximations;

3. Power flow equations relaxations.

Although heuristic approaches are fast to compute, these do not provide quality guaran-

tees. Approximations are able to computational complexity reduction, but these approaches

can also return infeasible solutions in the original space. Relaxation approaches provide dual
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bounds to solution of original problem. Relaxations can also be used to show that no solution

for a network topology is available [23, 160].

Relaxation’s solutions are often supposed as a superset of original feasible set. Heuris-

tics and approximations approaches are unable to find dual bounds and prove infeasibility

conditions [49].

Benefits of line switching for generation cost reduction are also studied in the literature.

It is reported that 29% cost reduction can be obtained by line switching. However, it is not

acceptable to use the DC power flow model in order to study line switching [49].

There are three different start models as below [48]:

1. Hot Start Models: An AC solution is available and so model has an additional infor-

mation, like voltage magnitudes. These models are suitable for applications in which

network topology is stable.

2. Cold Start Models: No AC solution is available and it can be very difficult to obtain a

solution by simulating of network. These models are used when no operational network

is available.

3. Warm Start Models: Model has its target voltages from normal operating conditions,

but an actual solution may not exist for these targets.

In characterizing high-level behavior of power systems, phase angles and voltage magni-

tudes’ differences are primary factors in determining active and reactive power flows, respec-

tively [48].

In an active power flow contour, when a fixed voltage magnitude is considered, many lines

are crossed inducing significant changes in active power. Also, for a fixed angle difference,

varying the voltage has a limited impact on the active power as few lines are crossed.

In a reactive power plot, although varying phase difference results significant changes in

reactive power, varying voltage results in even more significant changes in reactive power.

Thus, it can be resulted that:
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1. Phase angle differences are the primary factors of active power while voltage differences

have only a small effect.

2. Changes in voltage are the primary factors of reactive power, but phase angle differences

have also significant influences.
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Chapter 3

New Reliability Analysis Methods

During the past decades, many algorithms have been introduced to solve reliability-based

design optimisation (RBDO) problems. However, there are still some drawbacks in solu-

tion methods for RBDO problems. It seems that more efforts are required to develop new

approaches with higher efficiency and stability.

As mentioned in the previous chapter, inner loop of a two-level RBDO approach is con-

cerned with reliability analysis. So far, various algorithms have been proposed to use in this

loop in order to evaluate performance functions in an RBDO problem.

Reliability index approach (RIA), as a two-level (double-loop) RBDO approach, includes

a first-order reliability analysis problem in its inner loop. This problem is often solved by

using the Hasofer and Lind - Rackwitz and Fiessler (HL - RF) method. However, general

optimisation algorithms can be used to solve this problem as well.

In inner loop of the RIA, a constrained minimisation problem should be solved to compute

a safety reliability index (βs). In this problem, distance from failure surface (GU (u1, u2, ..., un) =

0) to origin of the standard normal random space (U -space) is minimised.

Performance measure approach (PMA) is another double-loop RBDO approach that has

a first-order inverse reliability analysis problem in its inner loop. In the PMA, reliability

analysis problem is a constrained optimisation problem that aims at minimising standard
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normalised performance function on a circular equality constraint.

A target reliability index (βt) is considered as radius of this circle. In spite of reliability

analysis problem of the RIA, optimum answer of this problem in the PMA has a fixed

distance (βt) from origin of the U -space. In this case, the given performance function is to

be minimised.

There are several particular algorithms to solve an inverse reliability analysis problem. It

has been reported that advanced mean value (AMV) method is efficient for evaluating convex

performance functions, while conjugate mean value (CMV) method has been proposed to

evaluate concave performance functions.

Moreover, hybrid mean value (HMV) method has been introduced to adaptively select

a suitable method between the AMV and the CMV methods. In this regard, a method

can be chosen within the AMV and CMV methods, once the type of performance function

is determined. A function type criterion is used in the HMV method to specify type of

performance function as either convex or concave.

The MV-based (AMV, CMV and HMV) methods originate from the same concept. All of

these methods use the steepest descent direction in order to update the current design point.

It has been reported in the literature that the HMV method is the most efficient and stable

method to solve reliability analysis problems.

However, there are still many problems that the HMV method does not perform well to

solve. In many cases, the HMV method needs a large number of iterations to find an optimum

point of a reliability analysis problem. Further, this method sometimes diverges and cannot

solve a problem successfully.

In this chapter, two new reliability analysis methods are introduced to evaluate perfor-

mance functions in reliability analysis loop of the PMA. It must be mentioned that since

it is commonly accepted that the PMA solves an RBDO problem better than the RIA, the

methods introduced in this chapter are only compared with the existing reliability analysis

problems in the PMA.
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These new methods (introduced in this chapter), which are named as conjugate gradient

analysis (CGA) method and unconstrained polar reliability analysis (UPRA) method, are

based on the conjugate gradient direction and the polar co-ordinate system. A number of

numerical experiments are performed to compare efficiency and stability of these methods

with the existing methods.

3.1 A New Reliability Analysis Method based on Conjugate

Gradient Direction

In this section, a new reliability analysis method is introduced to apply in inner loop (re-

liability analysis loop) of two-level RBDO approaches in order to solve first-order inverse

reliability analysis problems.

As a line search method to update a design point, the conjugate gradient direction has

been applied to introduce this method. Due to this usage of the conjugate gradient direction,

this method is called ”Conjugate Gradient Analysis (CGA) Method”.

The most stable and efficient existing reliability analysis method, which is hybrid mean

value (HMV) method, and its peers, are based on steepest descent direction. It is found that

these methods sometimes show instability and inefficient behaviour.

It is found that the HMV method is very sensitive to initial design point so that it diverges

in some cases. It will be shown in this chapter that the new CGA method is not sensitive

to initial design point. The CGA method converges in all of the numerical experiments

mentioned later.

Conjugate gradient direction is used in this method to improve stability and efficiency of

the solution process for a reliability analysis problem. In the CGA method, all information

(including random variables, performance functions, etc.) should be transformed from the

original random space (X-space) to the standard normal random space (U -space).

First order reliability method (FORM) is often used to transform a problem from X-
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space to U -space. This transformation is done to reduce non-linearity of problem, because

different statistical parameters of random variables in X-space may result in highly non-linear

functions.

3.1.1 Conjugate Gradient Analysis Method

Conjugate gradient analysis (CGA) method is a search method that is based on the conjugate

gradient direction. This method (like many other search methods) starts with an initial design

point that is a simple (and sometimes inexact) estimation of optimum point. In the real world

problems, the initial design point is often determined in the basis of different properties of

materials used and also on experience and knowledge of previous systems.

It is important to note that an initial design point is the expected value (µ) in the original

random space (X-space). Since all information, including initial design point, should be

transformed to the standard normal random space (U -space), the original initial design point

(in the X-space) is also transformed to the U -space. After this transformation, the origin of

the U -space will be considered as a new initial design point; i.e. x
(0)
i = µi (i = 1, 2, ..., n) is

transformed to u
(0)
i = 0 (i = 1, 2, ..., n).

Each design point (in each iteration) must be updated until stopping criteria are satisfied.

Hence, we need to find a design change in order to update the current design point.

It is supposed that design change equals to a step size multiplied by a search direction.

Like the MV-based methods (discussed in the previous chapter), step size is considered as

a fixed number such that satisfies equality constraint of the first-order inverse reliability

analysis problem. As this constraint is ‖U‖ = βt, the intended step size must be equal to βt.

In other words, it is supposed that step size (λ) is as big as target reliability index (βt) in

order to satisfy the equality constraint, i.e. λ = βt.

At the first iteration, conjugate gradient direction is equal to negative of the gradient of

the performance function at the initial design point. In other words, the conjugate gradient di-

rection is as same as the steepest descent direction in the first iteration; i.e. w(1) = −∇GU (0).
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The main difference between the conjugate gradient direction and the steepest descent direc-

tion arises in the subsequent iterations.

In order to update a design point, a unit vector must be calculated by dividing the

obtained conjugate gradient direction by its norm. This unit vector is then weighted (mul-

tiplied) by target reliability index in order to find a new design point satisfying the equality

constraint.

When a new design point is found, value of performance function and its gradient at this

point are calculated to check stopping criteria. Stopping criteria of the conjugate gradient

method (as a search direction determination method) are applied into this reliability analysis

method.

If at least one stopping criterion holds, then the algorithm is stopped. In this case, the

new obtained design point is the optimum solution (minimum performance target point or

MPTP). Otherwise, the conjugate gradient direction must be updated by using a scale factor

(di) and gradient of performance function at the new design point. Then, the whole process

must be repeated.

3.1.2 Solving a Reliability Analysis Problem by Using the CGA Method

In the reliability analysis method introduced in this section, the conjugate gradient method

is used as a line search method to calculate a search direction. In this method, the following

vector should be calculated first and then the obtained vector must be divided by its norm

in order to obtain a unit vector which yields a search direction. This process is formulated

as below:

w(i+1) = −∇GU (u(i)) + di.w
(i) (3.1)

where GU is the standard normalised performance function, ∇GU is its gradient vector and

u(i) is the current design point in the U -space. Also, di is a scalar factor that is calculated
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as follows:

di =
‖∇G(u(i))‖2

‖∇G(u(i−1))‖2

Additionally, it must be noted that d0 = 0, w(0) = 0 and the initial design point in U -

space is the origin, i.e. u(0) = 0. Thus, search direction at (i + 1 )th iteration is obtained as

following:

SD(i+1) =
w(i+1)

‖w(i+1)‖
(3.2)

Therefore, since design change is a multiplication of step size and search direction, it can

be computed as below:

D(i+1) = λ ∗ SD(i+1) ⇒ D(i+1) = βt ∗
w(i+1)

‖w(i+1)‖
(3.3)

where λ is the step size, which is equal to βt, and SD(i+1) is the search direction at (i + 1 )th

iteration.

Since the CGA method is carried out in the U -space and the initial design point (in this

space) is the origin of the U -space and also the obtained design change in each iteration has

to be added to the initial design point, hence the design change is, in fact, a new design point.

Therefore, a new design point is found as below:

u(i+1) = u(0) +D(i+1)

where u(0) = 0. Thus, we will have:

u(i+1) = D(i+1)

Finally, the following equality is resulted:

u(i+1) = βt ∗
w(i+1)

‖w(i+1)‖
(3.4)
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It should be noted that although the CGA method can be implemented in the original

random space (X-space), it is easier to carry out this algorithm in the standard normal

random space (U -space) due to simplicity of the process in this space.

The main difference between evaluating performance functions (in a reliability analysis

problem) in the X- and U -spaces is originated from the equality constraint of the inverse

reliability analysis problem. This constraint is written in the U -space as ‖U‖ = βt, while

it has some major changes in the X-space that may cause some hardships. For example, if

standard deviation of random variables are not the same, then a square root function will be

involved in the equality constraint.

It can be seen in this chapter that the CGA method is stable and does not diverge in

numerical experiments, while the existing reliability analysis method (the HMV method)

exhibits instability. This shortcoming of the HMV method affects the solution process of an

RBDO problem, but the CGA method has overcome this difficulty. All steps of this method

are briefly illustrated in the following subsection.

3.1.3 Basic Algorithm

The proposed CGA method can be summarised as the following steps. Note that · stands for

the scalar product of two vectors and ‖ · ‖ stands for the Euclidean norm.

1. Set the iteration counter i = 0.

Select the convergence parameters ε1, ε2 and ε3.

Suppose:

d0 = 0, u(0) = 0n∗1, w
(0) = 0n∗1

where n is the number of random variables in the problem.

2. Calculate performance function value at the initial design point as GU (u(0)).
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3. Calculate conjugate gradient direction at current design point as below:

w(i+1) = −∇GU (u(i)) + di · w(i)

4. Calculate a unit vector based on the obtained conjugate gradient direction as follows:

n(u(i)) =
w(i+1)

‖w(i+1)‖

5. Calculate a new design point as u(i+1) = βt.n(u(i))

6. Calculate gradient vector of performance function at current design point as∇GU (u(i+1)).

7. Calculate performance function value at new design point as GU (u(i+1)).

8. Check the following stopping criteria:

‖u(i) − u(i−1)‖ < ε1

‖∇GU (u(i−1))‖ < ε2

|GU (u(i))−GU (u(i−1))| < ε3

9. If at least one stopping criterion holds, then stop.
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Otherwise, calculate a new scalar factor as di+1 = ‖∇GU (u(i+1))‖2
‖∇GU (u(i))‖2 , set i = i+ 1 and then

go to step 3.

Convergence of the CGA method is discussed in the next subsection.

3.1.4 Convergence of the CGA Method

Three conditions are considered in the introduced CGA method as the stopping criteria of

this algorithm. The process is stopped when at least one of these criteria is satisfied. These

criteria are formulated as below:

1. ‖u(i) − u(i−1)‖ < ε1

2. ‖∇G(u(i−1))‖ < ε2

3. |G(u(i))−G(u(i−1))| < ε3

where ε1, ε2 and ε3 are some pre-defined acceptable tolerances.

Further, convergence of the CGA method is presented via the following theorem. We will

denote by B = {u : ‖u‖ = βt} the sphere with radius βt.

Theorem. Suppose that the standard normalized performance function GU (u) is con-

tinuously differentiable and the following two assumptions hold:

(A1) There exists a unit vector p and a positive number ξ such that

∇GU (u) · p ≥ ξ > 0, ∀u ∈ B

(A2) There exists δ > 0 such that

‖∇GU (u)‖ ≥ δ > 0, ∀u ∈ B

Then, limi→∞ ‖u(i+1) − u(i)‖ = 0.
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Proof. Since GU (u) is continuously differentiable, there is a number M < +∞ such that

‖∇GU (u)‖ ≤M, ∀u ∈ B (3.5)

Then, from assumption A2 it follows that

‖∇GU (u1)‖
‖∇GU (u2)‖

≥ δ1 > 0, ∀ u1, u2 ∈ B (3.6)

First, we show that

‖w(i)‖ → ∞, as i→∞ (3.7)

From Step 3 of the algorithm, we have w(1) = −∇GU (0) and

w(i+1) = −∇GU (u(i))−
i∑

j=1

[∇GU (u(i−j)).

j∏
k=1

di−j+k]

By Assumption 1 for all i the inequality ∇GU (u(i)) · p ≥ ξ holds. Then

w(i+1) · p ≤ −ξ − ξ
i∑

j=1

j∏
k=1

di−j+k

On the other hand, from the definition of di in Step 9 of the algorithm, we obtain:

j∏
k=1

di−j+k =
‖∇GU (u(i−j+1))‖2

‖∇GU (u(i−j))‖2
· ‖∇GU (u(i−j+2))‖2

‖∇GU (u(i−j+1))‖2
· · ·

‖∇GU (u(i))‖2

‖∇GU (u(i−1))‖2
=
‖∇GU (u(i−j+1))‖2

‖∇GU (u(i−1))‖2

Thus, (3.6) yields:
j∏

k=1

di−j+k ≥ δ21 > 0, ∀j = 1, 2, · · · , i
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Therefore,

w(i+1) · p ≤ −ξ(1 +
i∑

j=1

δ21) = −ξ(1 + i δ21)

or w(i+1) · p→ −∞ as i→∞.

This means that (3.7) is true.

From w(i+1) = −∇GU (u(i)) + di.w
(i), it follows that:

‖w(i+1)‖ ≤ ‖∇GU (u(i))‖+ di.‖w(i)‖

Dividing this inequality by ‖w(i+1)‖ we obtain

1 ≤ ‖∇GU (u(i))‖
‖w(i+1)‖

+ di
‖w(i)‖
‖w(i+1)‖

Clearly, limi→∞
‖∇GU (u(i))‖
‖w(i+1)‖ = 0; thanks to (3.5) and (3.7). Thus, we have:

lim inf
i→∞

di
‖w(i)‖
‖w(i+1)‖

≥ 1 (3.8)

Using the formula in Step 3 of the algorithm, we have

w(i+1) · w(i) = −∇GU (u(i)).w(i) + diw
(i) · w(i)

Then

w(i) · w(i+1)

‖w(i)‖ · ‖w(i+1)‖
= −∇GU (u(i))

‖w(i+1)‖
· w(i)

‖w(i)‖
+ di

‖w(i)‖
‖w(i+1)‖

and, taking into account (3.8), we obtain

lim inf
i→∞

w(i) · w(i+1)

‖w(i)‖ · ‖w(i+1)‖
≥ 1
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On the other hand w(i) · w(i+1) ≤ ‖w(i)‖ · ‖w(i+1)‖ for all i and therefore:

lim
i→∞

w(i) · w(i+1)

‖w(i)‖ · ‖w(i+1)‖
= 1 (3.9)

Now, from the definition of u(i) in Step 5 of the algorithm, we have:

‖u(i+1) − u(i)‖ = βt ‖
w(i+1)

‖w(i+1)‖
− w(i)

‖w(i)‖
‖ =

= βt

√
2− 2

w(i) · w(i+1)

‖w(i)‖ · ‖w(i+1)‖

Thus, by using (3.9) it can be concluded that:

lim
i→∞
‖u(i+1) − u(i)‖ = 0

The theorem is proved. �

In the next section, another reliability analysis method will be introduced based on the

polar co-ordinate system.

3.2 Solving Reliability Analysis Problems in Polar Space

In this section, a new method is introduced to solve reliability analysis problems. As men-

tioned earlier, a reliability analysis problem based on the performance measure approach

(PMA) is often transformed from original random space (X-space) to standard normalised

random space (U -space). In other words, the original performance function (GX(x1, x2, ..., xn))

in inner loop of an RBDO problem must be standard normalised in order to obtainGU (u1, u2, ..., un).

In this new method, a new area will be used to evaluate performance functions in a

reliability analysis problem of PMA. The main task is to convert performance functions into

the polar co-ordinate system. It means that standard normalised performance function must

be rewritten with respect to polar co-ordinate system. For this purpose, all random variables
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are converted to a product of trigonometric functions.

However, it must be noted that a performance function GX(x1, x2, ..., xn) in inner loop of

PMA should first be transformed to the U -space. Then, the obtained standard normalised

performance function GU (u1, u2, ..., un) is converted to the polar co-ordinate system.

Direct transformation from the X-space to the polar space is difficult and sometimes

impossible. In this case, if statistical parameters of random variables were not the same, spe-

cially when standard deviations of random variables are different, a square root function will

be involved in the problem resulting further difficulties and complexity to direct conversion

from the X-space to the polar space.

When this transformation is done in the U -space, the equality constraint (i.e. ‖(u1, u2, ..., un)‖ =

βt) can easily be converted to ρ = βt where ρ is the radius of a circle or a sphere in two or three

dimensional spaces, respectively. Also, ρ, which is a fixed number, is used in the conversion

from the U -space to the polar co-ordinate system.

The basic idea of this conversion is to reduce the number of variables in the corresponding

reliability analysis problem. The equality constraint of reliability analysis problem shows a

circular / spherical constraint in two / three dimensional spaces, respectively. Radius of this

circular / spherical constraint is a fixed number. Thus, it can be concluded that the number

of variables is reduced from n to n− 1.

Moreover, it should be noted that reliability analysis problem, which is a constrained

minimisation problem in the U -space, will be converted into an unconstrained minimisation

problem by converting problem into the polar co-ordinate system.

It happens because there is only one constraint in the original problem that is a circle

in two dimensional space, a sphere in three dimensional space, etc. This constraint can

generally be seen as a fixed radius. Thus, this constraint will vanish in the polar co-ordinate

system and the radius (ρ) is used as a co-efficient in conversions from the U -space to the

polar co-ordinate system.

It is anticipated that evaluating functions in the polar co-ordinate system, which is to
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solve an unconstrained optimisation problem, has less difficulties than evaluating them in

the standard normalised random space, which is related to solve a constrained optimisation

problem.

Since in this method the constrained reliability analysis problem is converted to an un-

constrained reliability analysis problem in the polar co-ordinate system, this new method will

be called ”Unconstrained Polar Reliability Analysis (UPRA) Method”.

All conversions and relevant relationships will be explained in the next subsection.

3.2.1 Unconstrained Polar Reliability Analysis Method

As discussed before, the basic idea of new method introduced in this section is originated from

changing (reducing) a constrained optimisation problem to an unconstrained optimisation

problem. In this regard, performance function in the U -space (GU (u1, u2, ..., un)) should be

re-written in the polar co-ordinate system.

For this purpose, random variables must first be converted to a combination of trigono-

metric functions. Hence, some relationships are required to use in conversions. Relevant

constraints in two- and three-dimensional spaces are a circle and a sphere, respectively.

Required relationships to convert functions from the U -space to the polar co-ordinate

system are as below:

Two dimensional space:

U1 = r.cos(θ)

U2 = r.sin(θ)

where r is a constant (radius of the circle) and θ is the polar angle so that:

U2
1 + U2

2 = r2

Three dimensional space:

U1 = ρ.sin(φ).cos(θ)
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U2 = ρ.sin(φ).sin(θ)

U3 = ρ.cos(φ)

where ρ is a constant (radius of the sphere), θ is the polar angle and φ is the azimuthal

angle so that:

U2
1 + U2

2 + U2
3 = ρ2

Furthermore, the required relationships for converting problems from four-dimensional

space to the polar co-ordinate system can be written as follow:

U1 = ρ.sin(φ).sin(θ).cos(β)

U2 = ρ.sin(φ).sin(θ).sin(β)

U3 = ρ.sin(φ).cos(θ)

U4 = ρ.cos(φ)

where ρ is a constant, φ, θ and β are various angles so that:

U2
1 + U2

2 + U2
3 + U2

4 = ρ2

These transformations can be expanded to n-dimensional spaces. Therefore, n conversions

can generally be formulated for an n-dimensional problem as below:

n - dimensional space:

U1 = ρ.sin(θ1).sin(θ2).sin(θ3)...sin(θn−2).cos(θn−1)

U2 = ρ.sin(θ1).sin(θ2).sin(θ3)...sin(θn−2).sin(θn−1)

U3 = ρ.sin(θ1).sin(θ2).sin(θ3)...cos(θn−2)

U4 = ρ.sin(θ1).sin(θ2)...cos(θn−3)

and so on, until:

Un−1 = ρ.sin(θ1).cos(θ2)

Un = ρ.cos(θ1)

101



where ρ is a constant. Also, we have:

U2
1 + U2

2 + ...+ U2
n = ρ2

3.2.2 Fundamental Concepts of the UPRA Method

The unconstrained polar reliability analysis (UPRA) method, introduced in this section, is

proposed on the basis of various facts. It can be seen that the number of variables is decreased

from n to n − 1 by converting the standard normalised reliability analysis problem to the

polar co-ordinate space, because ρ is a constant. Thus, one can expect that difficulties of

solving the reliability analysis problem is reduced as the number of variables is decreased.

It is worthwhile to mention that reliability analysis problems, which are constrained op-

timisation problems, are changed to unconstrained optimisation problems by converting to

the polar co-ordinate system. Therefore, it can be predicted that evaluating functions in

this space can have less difficulties than evaluating them in the standard normalised random

space.

Furthermore, it must be noted that when a reliability analysis problem is changed to

an unconstrained optimisation problem, it can be solved by using any general optimisation

algorithm of unconstrained problems. In this thesis, the obtained function in the polar co-

ordinate system will be minimised by using the steepest descent method.

Moreover, it can simply be shown that if a reliability analysis problem has n random

variables (after transforming problem to the polar space), only the first k components of the

gradient vector are non-zero in iteration k. It happens because of the nature of transfor-

mations from the U -space to the polar space that involve trigonometric functions. Thus, in

iteration k, just the first k components of design point are changed.

Therefore, one can conclude that in a n-dimensional problem, which is changed to a

(n− 1)-dimensional problem in the polar space, the first iteration in which all components of

the gradient vector are non-zero and thus all components of design point are updated is the

102



(n − 1 )th iteration.

Further, to integrate the UPRA method with an RBDO problem, it must be mentioned

that an RBDO problem, as a two-level problem, deals with reliability analysis and design

optimisation problems in its inner and outer loops, respectively.

In general, we start to solve an RBDO problem by using an initial design point. To update

this point, it is necessary to solve a reliability analysis problem. The UPRA method is able

to solve reliability analysis problems efficiently and in a stable manner. After solving this

problem, the obtained information must be used to calculate a new design point by updating

the current design point in design optimisation loop.

In this chapter, a number of numerical experiments will be presented and solved in order

to compare the performance of the HMV method (as the most stable and efficient existing

reliability analysis method) with that of the CGA and UPRA methods as two new analysis

analysis methods introduced in this research project.

3.3 Numerical Reliability Analysis Problems Solved by the

Existing Methods

A reliability analysis problem is mainly intended to evaluate a probabilistic constraint and a

corresponding performance function. For this purpose, performance function is often trans-

formed from original random space (X-space) to standard normalised random space (U -

space). Also, new constraint in the U -space is constructed by using a target reliability index

(βt).

The following constrained optimisation problem is used to evaluate a performance func-

tion. This problem is called a first-order inverse reliability analysis problem.

Min GU (u1, u2, ..., un) (3.10)

s.t. ‖(u1, u2, ..., un)‖ = βt
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where GU (u1, u2, ..., un) and βt are the normalised performance function and target reliability

index, respectively.

A number of problems will be solved in the following subsections to get a better idea of

performance of the existing reliability analysis methods.

Three problems are stated here in order to show differences between the existing reliability

analysis methods (various MV-based methods).

The first two problems are chosen so that performances of the advanced mean value

(AMV) and conjugate mean value (CMV) methods vary when solving these problems. The

AMV method is more efficient than the CMV method for the first problem, while the CMV

method performs better than the AMV method in the second problem.

The third problem includes an uncommon performance function with a changeable be-

haviour. The hybrid mean value (HMV) method that is used to solve this problem changes

the selected method (the AMV or CMV methods) several times.

Also, it must be mentioned that the terms convex and concave functions, which are used

in this section, are based on a particular assumption in the MV-based methods. In this case,

the following criterion is supposed to determine nature of a performance function:

ζ(k+1) = (n(k+1) − n(k)).(n(k) − n(k−1)) (3.11)

where ζ(k+1) is the criterion for the performance function type at the (k + 1 )th iteration and

n(k) is the steepest descent direction of performance function at k th design point (u
(k)
HMV ).

If ζ(k+1) is positive, then performance function is convex at u
(k+1)
HMV and the AMV method

must be selected. Otherwise, performance function is concave at u
(k+1)
HMV and the CMV method

should be used to solve the problem.
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3.3.1 A Convex Performance Function

Consider the following convex performance function:

G(x1, x2) = −ex1−7 − x2 + 10

where both random variables follow the Gaussian distribution and their statistical parameters

are xi ∼ N(6, 0.8), i = 1, 2. Also, target reliability index (βt) and convergence parameter

(ε) are supposed as 3 and 10−6, respectively.

The corresponding reliability analysis problem with the given data can be solved by using

either the AMV or the CMV methods. The given performance function has been evaluated

twice by using these methods, separately, and the obtained numerical results are shown in

the Table (3.1).

AMV Method CMV Method

Iteration x1 x2 G(x1, x2) x1 x2 G(x1, x2)

1 6.0000 6.0000 3.6321 6.0000 6.0000 3.6321

2 6.8286 8.2524 0.9051 6.8286 8.2524 0.9051

3 7.5463 7.8354 0.4376 7.5463 7.8354 0.4376

4 8.0769 7.2027 -0.1383 7.5453 7.8363 0.4386

5 8.2718 6.7739 -0.3412 7.9253 7.4329 0.0444

6 8.3109 6.6478 -0.3574 8.1333 7.0996 -0.2054

7 8.3173 6.6247 -0.3579 8.2061 6.6450 -0.2855

8 8.3183 6.6210 -0.3579 8.2731 6.7699 -0.3420

9 8.3184 6.6204 -0.3579 8.2986 6.6904 -0.3544

10 Converged 8.3087 6.6558 -0.3570

11 8.3145 6.6350 -0.3578

12 8.3167 6.6268 -0.3579

13 8.3176 6.6233 -0.3579

14 8.3181 6.6216 -0.3579

Converged

Table 3.1: Minimising A Convex Performance Function

It can be seen in the table that both AMV and CMV methods are stable (i.e. convergent)

in this problem, but their efficiencies are not the same. The AMV method converges in 9
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iterations, while the CMV method needs 5 more iterations.

Therefore, it can be concluded that although both applied methods are stable and they

reach the same performance function values, the AMV method is more efficient than the

CMV method for evaluating the given performance function in this problem.

3.3.2 A Concave Performance Function

Suppose that the following performance function is given.

G(x1, x2) =
e0.8x1−1.2 + e0.7x2−0.6 − 5

10

Also, the statistical parameters are x1 ∼ N(4, 0.8) and x2 ∼ N(5, 0.8). Further, target

reliability index (βt) and convergence parameter (ε) are the same as for the previous problem.

AMV Method CMV Method

Iteration x1 x2 G(x1, x2) x1 x2 G(x1, x2)

1 4.0000 5.0000 0.2612 4.0000 5.0000 2.0563

2 2.9887 2.8235 -0.1661 2.9887 2.8235 0.2251

3 2.3476 3.2594 -0.2964 2.3476 3.2594 0.2344

4 3.0726 2.7864 -0.1434 2.7870 2.9291 0.2065

... ... ... ... ... ... ...

8 3.2496 2.7203 0.2739 2.6816 2.9946 0.2038

... ... ... ... ... ... ...

11 2.6740 2.9996 0.2038

12 2.6769 2.9976 0.2038

... ... ... ... Converged

33 1.9809 3.7027 0.3798

34 3.4641 2.6606 0.3347

... ... ... ...

999 1.9809 3.7027 0.3798

1000 3.4641 2.6606 0.3347

... ... ... ...

9999 1.9809 3.7027 0.3798

10000 3.4641 2.6606 0.3347

Diverged

Table 3.2: Minimising A Concave Performance Function
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This concave performance function has been evaluated by using the AMV and the CMV

methods separately and the obtained answers are shown in the Table (3.2).

As mentioned before, the AMV method does not work well for evaluating concave per-

formance functions. It converges very slowly and also sometimes diverges. As shown in the

Table (3.2), the AMV method diverges in this problem because of its cyclic behaviour that

starts from the 33 rd iteration. This method does not converge even after 10000 iterations.

On the other hand, the CMV method, which has been used in this problem, converges

with a reasonable rate (in just 12 iterations).

Thus, it can be concluded from the numerical results shown in the Table (3.2) that

the AMV method is unstable for evaluating the given concave performance functions in

this problem, while the CMV method is stable and also efficient enough to evaluate the

corresponding reliability analysis problem.

3.3.3 The HMV Method

In this subsection, a reliability analysis problem is solved by using the hybrid mean value

(HMV) method to show its details. Suppose that a performance function is given as below:

G(x1, x2) = e−0.7x1+x2−1.2 + 2x21 − 0.8x1x
2
2 − 4x2 + 5

where the random variables are normally distributed with the following statistical parameters:

x1 ∼ N(3, 0.4) & x2 ∼ N(2, 0.6)

Also, target reliability index equals 3.

If this reliability analysis problem is solved by using the HMV method, an unusual be-

havior of the performance function will be found. Numerical results obtained by the HMV

method are shown in the Table (3.3).

As can be seen in this table, behaviour of this performance function changes during the
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HMV Method

Iteration Method x1 x2 G(x1, x2)

1 AMV 3.0000 5.0000 -51.5261

2 AMV 3.5580 6.5936 -101.5749

3 AMV 3.9832 6.0320 -95.6200

4 CMV 3.7202 6.4398 -102.5505

5 CMV 3.8128 6.3243 -101.5697

... ... ... ... ...

16 CMV 3.7825 6.3646 -102.0336

17 AMV 3.7831 6.3639 -102.0258

18 AMV 3.7825 6.3646 -102.0336

19 CMV 3.7829 6.3641 -102.0284

... ... ... ... ...

31 CMV 3.7828 6.3643 -102.0297

32 AMV 3.7828 6.3643 -102.0297

Converged

Table 3.3: The HMV Method

solution procedure. After the first three iterations, which the AMV and the CMV methods

are the same, the HMV method is altered to the CMV method until 17 th iteration. In this

iteration, the AMV method is used to find the next performance target point.

The HMV method comes back to the CMV method again in iteration 19 (after two

iterations). This process (using the CMV method inside the HMV method) is followed until

the second last iteration (iteration 31). In the 32nd iteration (which is in fact the last

iteration) the AMV method is used again inside the HMV method and then the iterative

process is stopped.

This problem shows that it cannot be assumed that if the HMV method starts with either

the AMV or the CMV methods (after the first three iterations), this method will be used in

the whole process.

In other words, it can be concluded from this problem that when the HMV method is

applied to evaluate any performance function, the function type criterion should be checked

in all iterations.
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Further, it will be shown in the next sections that the above mentioned behaviour of the

HMV method (changing to select the AMV or CMV methods) may result in divergence in

for reliability-based design optimisation (RBDO) problem.

3.4 A Mathematical RBDO Problem

The performance measure approach (PMA) is employed in this section to solve a double-loop

RBDO problem. The hybrid mean value (HMV) method, as the most stable and efficient

existing reliability analysis method, is used in reliability analysis loop of this problem. Also,

design change in the outer loop (design optimisation loop) is calculated by using sequential

quadratic programming (SQP) algorithm.

Suppose that the following RBDO problem is given:

Min Cost(x1, x2) = x1 + x2 (3.12)

s.t. P [Gi(x1, x2) ≤ 0] ≤ Φ(−βti)

0 ≤ x1 ≤ 10 , 0 ≤ x2 ≤ 10

(3.13)

where target reliability index (βti) for all probabilistic constraints is 2 (i = 1, 2, 3) and initial

design point is x(0) = [5, 5]T with a standard deviation of σ = 0.6 for both random variables.

Moreover, three performance functions are given for this problem as below:

G1(x1, x2) =
x21x2
20
− 1

G2(x1, x2) =
(x1 + x2 − 5)2

30
+

(x1 − x2 − 12)2

120
− 1

G3(x1, x2) =
80

x21 + 8x2 + 5
− 1

It is assumed in this problem that random variables are normally distributed. The max-
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imum number of iterations in the reliability analysis problem is also set as 20.

As discussed earlier, it must be mentioned that variables of an RBDO problem are indeed

random variables. Their standard deviations are fixed the throughout solution process, while

their expected values are changed in each iteration. In other words, expected values are the

design variables in an RBDO problem. Thus, [x1, x2] = [µ(x1), µ(x2)] is design variable.

However, it is commonly accepted in the existing literature to refer to variables of an

RBDO problem as random variables. Obviously, the cost function value for the initial design

point is 10. Obtained results in the first two iterations are shown in the following subsections.

3.4.1 First Iteration

Reliability analysis

In this loop, each performance function should be evaluated in order to find the minimum

performance target point (MPTP). The HMV method is chosen to solve reliability analysis

problems. Table (3.4) shows the obtained answers of the reliability analysis problems.

Reliability Analysis with the HMV Method

Performance Function Method x1 x2 G(x1, x2)

1 AMV 3.8979 4.5252 2.4378

2 CMV 4.8346 3.8114 0.4472

3 AMV 5.9982 5.6660 -0.0731

Table 3.4: Obtained Results in Reliability Analysis Loop of the First Iteration

As displayed in the table, the HMV method is changed to the AMV method for evaluating

the first and third performance functions because they are convex. But since the second

performance function is concave, it has been evaluated by using the CMV method (inside the

HMV method).

When all MPTPs are obtained, the information obtained by the HMV method must be

used to compute a design change in the design optimisation loop in order to update the

current design point.
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Design Optimisation

Various optimisation algorithms can be applied into the outer loop of an RBDO problem

to find a design change. Sequential quadratic programming (SQP) algorithm is widely used

for this purpose.

The obtained results in the reliability analysis loop are often used to formulate a quadratic

programming (QP) sub-problem in design optimisation loop in an RBDO problem in order

to calculate a design change.

Quadratic function of the QP sub-problem is generally written as 0.5DTHD+cTD where

D = [d1, d2]
T shows a vector of new variables in the outer loop, c is gradient of the cost

function at the current design point (i.e. c = ∇f(x(0))) and H is an approximate Hessian

matrix that is initially considered as an n ∗ n identity matrix (n is the number of design

variables). However, it is also possible to ignore the Hessian matrix in this function. In this

case, the quadratic function is written as 0.5DTD + cTD.

Values of performance functions at the obtained MPTPs and their gradients at these

points are also required to evaluate the constraints in the QP sub-problem.

Thus, the following quadratic programming subproblem is obtained, which should be

solved to calculate the required design change.

Min 0.5d21 + 0.5d22 + d1 + d2

s.t. 3.8979d1 + 4.5252d2 ≤ 2.4378

4.8346d1 + 3.8114d2 ≤ 0.4472

5.9982d1 + 5.6660d2 ≤ −0.0731

Hence, the design change would be [d1, d2]
T = [−1.0000,−1.0000]T and so the next design
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point can be computed as below:

x(1) = x(0) + [d1, d2]
T =⇒ x(1) = [5, 5]T + [−1.0000,−1.0000]T

Therefore, the next design point and also the cost function’s value at this point would be

as follows:

x(1) = [4.0000, 4.0000]T =⇒ Cost(x(1)) = 8.0000

3.4.2 Second Iteration

Reliability analysis

Now, we have to come back to the inner loop (reliability analysis loop) in order to evaluate

the performance functions by using the new design point. The new design point (x(1)) must

be considered as new expected value (µ) in this iteration. These new expected values create

new transformations for performance functions.

All performance functions should be transformed into the U -space by using the new

statistical parameters. In other words, FORM transformation (i.e. T : X −→ U) is affected

by the new design point (x = σu+ µ).

Performance functions must be evaluated again by using new design point to find new

MPTPs. The HMV method is used to solve the corresponding reliability analysis problems.

Obtained numerical results are displayed in the Table (3.5).

Reliability Analysis with the HMV Method

Performance Function Method x1 x2 G(x1, x2)

1 AMV 2.8887 3.5471 0.4800

2 CMV 4.1766 2.8131 0.0747

3 AMV 4.9315 4.7565 0.1874

Table 3.5: Obtained Results in Reliability Analysis Loop of the Second Iteration

As can be seen in the table, the first and third performance functions are evaluated by
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using the AMV method. Also, the CMV method is selected inside the HMV method to

evaluate the second performance function. The results obtained in this loop are used in the

next design optimisation loop in order to find a new design point.

Design Optimisation

The process of solving the design optimisation problem in this iteration is as same as the

first iteration’s process, except for the approximation of the Hessian matrix. This matrix

should be updated by using the quasi-Newton method in this iteration (as well as in subse-

quent iterations). Information obtained in the first iteration and also the reliability analysis

loop of the second iteration are used to update the approximation Hessian matrix.

Therefore, a new QP sub-problem is written by using the obtained information from the

reliability analysis loop as below:

Min 0.4536d21 + 0.6253d22 + 0.1330d1d2 + d1 + d2

s.t. 2.9596d1 + 3.4021d2 ≤ 0.4900

4.1766d1 + 2.8131d2 ≤ 0.0747

4.9315d1 + 4.7565d2 ≤ 0.1874

This optimisation problem should be solved to find new design change. Hence, the new

design change is [d1, d2]
T = [−0.4207,−0.6932]T and then it can be concluded that the next

design point is computed as follows:

x(2) = x(1) + [d1, d2]
T =⇒ x(2) = [4.0000, 4.0000]T + [−0.4207,−0.6932]T

Thus, we will have:

x(2) = [3.5793, 3.3068]T =⇒ Cost(x(2)) = 6.8861
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3.4.3 Convergence

This process should be repeated until convergence. It must be noted that the obtained

optimum design may or may not satisfy all the constraints. Feasibility conditions can be

checked according to the details in Subsection 2.5.1 (Figures (2.1) and (2.2) and relevant

illustrations).

In this problem, an optimum design point satisfying the constraints is found after 5

iterations. The optimum design point and the value of the cost function at this point are:

x(5) = x∗ = [3.1092, 3.1604]T =⇒ Cost(x∗) = 6.2696

In the next section, performances of all the proposed reliability analysis methods will be

compared by solving different reliability analysis problems.

3.5 Performances of the New Reliability Analysis Methods

Two reliability analysis methods are introduced in this chapter; the conjugate gradient anal-

ysis (CGA) method and the unconstrained polar reliability analysis (UPRA) method. In

order to have a comparison between performances of the existing and new reliability analysis

methods, a number of numerical experiments are solved in this section.

Each problem is solved by using three different methods; hybrid mean value (HMV)

method as the most stable and efficient existing reliability analysis method and also the CGA

and UPRA methods, as two new reliability analysis methods introduced in this chapter.

The reliability analysis methods are compared based on their required number of iterations

for convergence and in the obtained performance function values. Also, the elapsed CPU times

of all methods are used to make a more comprehensive comparison. In the next section, a

conclusion will be made based on the information obtained in this section.

At first, the HMV method, which is changed to the AMV or the CMV methods for evalu-
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ating convex and concave performance functions, respectively, is used to solve each problem.

It is accepted that the AMV method is efficient enough for evaluating convex performance

functions, while the CMV method works better than the AMV method to evaluate concave

performance functions.

After that, the first reliability analysis method introduced in this chapter, which is the

CGA method, is applied to solve the numerical problems to test the efficiency of this method.

The last method that is used to solve all the problems is the UPRA method. In this method,

the given performance function must be converted to the polar co-ordinate system by using

trigonometric functions.

It must be noted that the HMV and CGA methods are used to solve a constrained

minimisation problem and the given performance functions should be minimised subject to

an equality constraint. But in the UPRA method, converted performance function to the

polar space is minimised as an unconstrained optimisation problem.

Converting performance functions into the polar co-ordinate system should be done in

standard normalised random space (U -space); not in the original random space (X-space).

There are three subsections here. The first subsection includes five two- and three dimen-

sional problems. Initial design points are considered as fixed numbers in this subsection.

The second subsection includes the same problems, as the first subsection, but the initial

design points are not fixed. 50 initial design points are randomly generated by the MATLAB

software for each problem.

Each reliability analysis problem is indeed solved 50 times by using 50 different initial

design points in this subsection. An average of the required iterations for 50 different cases of

each problem is calculated to compare performances of different reliability analysis methods.

Further, a particular function is introduced and used in the third subsection. The number

of design variables in this function varies from 2 to 10. All reliability analysis methods (the

HMV, CGA and UPRA methods) are applied to evaluate all various versions of this function.

In all the following problems, accepted tolerances of the stopping criteria in all methods
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are considered equal to 10−5. Also, all CPU times are shown in milliseconds in this section

and all algorithms have been implemented in MATLAB.

3.5.1 Fixed Initial Design Point

Problem 1

Consider the following performance function.

G(x1, x2) =
(x1 + x2 − 5)2

30
+

(x1 − x2 − 12)2

120
− 1

where x1 ∼ N(1, 0.6) and x2 ∼ N(2.3, 0.8). Also, target reliability index (βt) equals 2.

The given performance function in this experiment is minimised by using three different

reliability analysis methods. Table (3.6) displays detailed numerical results obtained by these

methods.

Table 3.6: Minimising Performance Function (G(X)) using Various Methods - Problem 1

HMV Method CGA Method UPRA Method

i x1 x2 G(x1, x2) x1 x2 G(x1, x2) x1 x2 G(x1, x2)

1 1.0000 2.3000 0.5704 1.0000 2.3000 0.5704 1.0000 2.3000 0.5704

2 2.1418 1.8079 0.1709 2.1418 1.8079 0.1709 2.1418 1.8079 0.1709

3 2.0859 1.6191 0.1644 2.1135 1.7035 0.1661 2.0770 1.5944 0.1643

4 2.1180 1.7187 0.1666 2.1110 1.6954 0.1658 Converged

5 2.1042 1.6737 0.1652 2.1102 1.6927 0.1657

6 2.1125 1.7003 0.1660 2.1098 1.6915 0.1657

7 2.1075 1.6840 0.1655 2.1096 1.6909 0.1657

8 2.1096 1.6909 0.1657 2.1095 1.6904 0.1657

9 2.1086 1.6875 0.1656 2.1094 1.6902 0.1656

10 2.1094 1.6900 0.1656 Converged

11 2.1090 1.6888 0.1656

12 2.1091 1.6892 0.1656

13 2.1090 1.6889 0.1656

14 2.1091 1.6891 0.1656

Converged

Time 23.213 milliseconds 12.937 milliseconds 28.088 milliseconds
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It can be seen in the Table (3.6) that all methods are convergent in this problem. Various

methods have calculated various minimum performance target points (MPTP). However,

obtained values for performance function at the optimum points are the same for the HMV

and CGA methods, but the UPRA method has found a better (smaller) performance function

value.

Further, the number of required iterations of the UPRA method to solve this problem is

less than the other methods. In other words, based on the displayed data in the Table (3.6),

it can be concluded that although the UPRA method needs longer time for converging, it is

more efficient than the other methods. The UPRA method converges after just 3 iterations,

while the CGA and HMV methods need 9 and 14 iterations for convergence, respectively.

Moreover, the required CPU time of the CGA method is considerably less than the other

methods. The CGA method is able to find MPTP in this problem in less than 13 millisec-

onds, whereas the HMV and UPRA methods require more than 23 and 28 milliseconds for

convergence, respectively.

Problem 2

A performance function is given as below:

G(x1, x2) = 3e−x1+x2 + 2x21 − 4x2

where x1 and x2 are normally distributed. Their statistical parameters are (4, 0.7) and (2, 0.5),

respectively. Also, target reliability index equals 3.

All reliability analysis methods (HMV, CGA and UPRA) are applied to minimise the given

performance function in this problem. Detailed results obtained by using these methods are

displayed in the Table (3.7).

In this problem, again all methods are stable (convergent) and three different MPTPs

are found by various methods. It can be seen in the table that although the HMV and

CGA methods have calculated the same value for the performance function, the performance
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function value obtained by the UPRA method is even less.

Table 3.7: Minimising Performance Function (G(X)) using Various Methods - Problem 2

HMV Method CGA Method UPRA Method

i x1 x2 G(x1, x2) x1 x2 G(x1, x2) x1 x2 G(x1, x2)

1 4.0000 2.0000 24.4060 4.0000 2.0000 24.4060 4.0000 2.0000 24.4060

2 1.9536 2.3369 2.6870 1.9536 2.3369 2.6870 1.9536 2.3369 2.6870

3 1.9143 1.8250 2.7731 1.9034 1.9147 2.6211 1.9044 2.0972 2.5027

4 1.9152 2.1803 2.5256 1.9020 2.0648 2.5062 1.9044 2.0972 2.5027

5 1.9029 2.0783 2.5039 1.9044 2.0973 2.5027 Converged

... ... ... ... ... ... ...

11 1.9059 2.1122 2.5034 1.9061 2.1139 2.5036

12 1.9060 2.1133 2.5035 1.9061 2.1142 2.5036

... ... ... ... ... ... ...

17 1.9062 2.1150 2.5038 1.9062 2.1148 2.5037

18 1.9062 2.1155 2.5038 Converged

... ... ... ...

22 1.9062 2.1153 2.5038

23 1.9062 2.1152 2.5037

24 Converged

Time 22.378 milliseconds 12.702 milliseconds 25.583 milliseconds

Thus, as the problem is a minimisation problem, the function value obtained by the UPRA

method can be considered as the best function value obtained in this problem.

Moreover, three different convergence rates (required iterations for convergence) are found

in this problem. The HMV method converges at the 24 th iteration, while the CGA method

needs 7 iterations less than the HMV method.

However, the UPRA method needs the minimum number of iterations and has converged

at the 4 th iteration. Hence, it can be concluded that the UPRA method is more efficient

than the HMV and CGA methods in this problem.

Meanwhile, the UPRA method needs the longest time for convergence, even longer than

the HMV method, while the CGA method requires half of the time required for the UPRA

method for convergence.
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Problem 3

Consider the following performance function.

G(x1, x2) = 0.3x21x2 − x2 + 0.8x1 + 1

where x1 ∼ N(0, 0.55) and x2 ∼ N(6, 0.55). Also, it is supposed that βt = 2.

Table 3.8: Minimising Performance Function (G(X)) using Various Methods - Problem 3

HMV Method CGA Method UPRA Method

i x1 x2 G(x1, x2) x1 x2 G(x1, x2) x1 x2 G(x1, x2)

1 0.0000 6.0000 -5.0000 0.0000 6.0000 -5.0000 0.0000 6.0000 -5.000

2 -0.6872 6.8590 -5.4371 -0.6872 6.8590 -5.4371 -0.6872 6.8590 -5.4371

3 1.0130 6.4288 -2.6393 -0.0969 7.0957 -6.1533 -0.1549 7.0890 -6.1619

4 -0.5126 6.9733 -5.8337 -0.2628 7.0681 -6.1319 -0.1549 7.0890 -6.1619

5 0.6232 6.9065 -4.6033 -0.0471 7.0990 -6.1319 Converged

... ... ... ... ... ... ...

9 0.8311 6.7206 -3.6629 -0.1549 7.0890 -6.1619

10 -0.8933 6.6419 -4.7666 Converged

... ... ... ...

34 -0.9539 6.5477 -4.5234

35 0.9112 6.6162 -3.2394

... ... ... ...

999 0.9112 6.6162 -3.2394

1000 -0.9539 6.5477 -4.5234

... ... ... ...

9999 0.9112 6.6162 -3.2394

10000 -0.9539 6.5477 -4.5234

Diverged

Time 2740.260 milliseconds 13.079 milliseconds 27.391 milliseconds

Table (3.8) shows details of numerical results obtained by using different methods. It can

be seen in the table that the HMV method is unstable in this problem.

When the HMV method is applied to evaluate this performance function, an oscillating

behavior starts from 34 th iteration. Thus, this method cannot find the optimum point and
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diverges. In this case, this method is stopped after 10,000 iterations.

The other methods are stable and could find an MPTP. The same optimum points and

the same performance function values are found by the CGA and UPRA methods.

Further, the elapsed time of the UPRA method is more than the required time for the

CGA method. The CGA method has found the MPTP at 13 milliseconds, while the UPRA

method needs more than double of this time for convergence.

However, the number of required iterations of the UPRA method is less than the CGA

method. The UPRA and CGA methods have found the optimum solution at the 4 th and 9 th

iterations, respectively.

Problem 4

The following performance function is given:

G(x1, x2, x3) = 2x31 + 3x2e
x3

where initial design point is [1,4,-2] and standard deviations are 0.3, 0.4 and 0.8, respectively.

Also, target reliability index is 3.

Three reliability analysis methods (HMV, CGA and UPRA) are applied to solve the

corresponding reliability analysis problem. Table (3.9) displays results obtained by using all

methods.

In this problem, which three random variables are involved in the given performance

function, all methods are stable and could find MPTPs. However, different methods have

found different MPTPs and various performance function values.

The UPRA method has found the best (smallest) performance function value and hence

can be considered as the best method to solve this problem, because this problem is intended

to minimise the given performance function.

Also, the UPRA method has the minimum number of required iterations for convergence.
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This method has converged after 4 iterations, while the CGA method and the HMV method

have found the MPTPs at the 10 th and 126 th iterations, respectively.

It can also be seen in the Table (3.9) that although the CGA method needs the shortest

elapsed time, its performance function value is the worst among all methods.

Problem 5

A performance function is given as below:

G(x1, x2, x3) =
e−x1 + 3x32 − 4x23
2x2x23 + 5x1x2x3

where x1 ∼ N(3, 0.5), x2 ∼ N(−2.3, 0.3) and x3 ∼ N(1, 0.8). Also, target reliability index is

3.

Table (3.10) is used to show details of answers obtained by various reliability analysis

methods. As can be seen in this table, the HMV method diverges in this problem. This

method cannot find the optimum point (MPTP) even after 10,000 iterations. Thus, this

algorithm is stopped after 10,000 iterations.

However, the other methods are stable and have found different MPTPs. The UPRA

method has found the MPTP at the 110 th iteration and needs more than 32 milliseconds

for convergence. Also, as shown in the Table (3.10), 36 iterations are enough for the CGA

method in order to find an optimum point. Further, this method requires just 18 milliseconds

for convergence.

Based on the obtained results, it can be seen that although the number of iterations

and also the elapsed time of the CGA method are less than the UPRA method, there is a

significant difference between performance function values obtained by the CGA and UPRA

methods. The performance function value obtained by the UPRA method is much better

than the value found by the CGA method.
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The five previous problems will be solved again in the next subsection by using different

initial design points. 50 various initial design points are randomly generated by MATLAB

for each problem and then an average of all obtained results are used for a comparison.

3.5.2 Randomly Generated Initial Design Points

The problems solved in the previous subsection are solved in this subsection again by using

50 different initial design points. The design points are randomly generated by the MATLAB

software.

Answers obtained by the HMV, CGA and UPRA methods are shown it the Table (3.11).

The best performance function values are displayed by bold digits in this table.

The table below includes three parts and each part includes three columns. For each part,

the first column is devoted to show numerical details obtained by the existing HMV method.

Two other columns at each part are considered for details of results obtained by the CGA

and UPRA methods, respectively.

Table 3.11: Reliability analysis problems with randomly generated initial design points - The
best performance function values are shown by bold digits.

Convergence Iterations Function Value
Problem HMV CGA UPRA HMV CGA UPRA HMV CGA UPRA

1 50 50 50 10 9 2 1.2745 0.9253 0.6902
2 0 50 50 10000 16.4 2.9 — 11.3112 4.6657
3 50 50 50 9 51 3.1 -2.0784 -0.8461 -2.3836
4 50 50 50 8 55 6.7 -45.3117 -53.2223 -55.6486
5 0 50 50 10000 12.7 7.6 — 0.4294 0.3853

The first part of the Table (3.11) displays the number of convergent cases for each method.

As 50 different randomly generated initial design points are applied to solve the above men-

tioned reliability analysis problems, a number between 0 and 50 will be displayed for each

problem and each method. This number shows the number of cases in which the relevant

reliability analysis method is convergent.
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The numbers shown in the second and third parts of the table are related to the number of

required iterations for convergence and the obtained performance function values. However,

it must be mentioned that these numbers are averages of correspondence results for each

method.

Based on the data displayed in the Table (3.11), we can conclude that the CGA and

UPRA methods are stable in all problems and all cases, while the HMV method is sometimes

divergent.

Furthermore, it can be seen by comparing the averages of required iterations that the

UPRA method requires the minimum number of iterations generally.

Moreover, the averages of performance function values obtained by using the UPRA

method is much less than the performance function values obtained by the other methods.

Since these problems are intended to minimise a given performance function, it can be seen

that the UPRA method has found the best performance function values.

Thus, it can be concluded that the UPRA method is more stable and efficient than the

HMV and CGA methods to minimise these performance functions.

The elapsed CPU times to solve the above reliability analysis problems by using 50 ran-

domly generated initial design points in this subsection are not displayed in the Table (3.11).

However, it can be found from the previous subsection that the required computational times

of each iteration in the HMV and CGA methods are approximately the same.

Therefore, it can be concluded that the elapsed time of the CGA method is shorter than

the HMV method, because the CGA method needs less iterations than the HMV method.

3.5.3 High dimensional problem

A special function is introduced in this subsection. In this function, the number of random

variables varies from 2 to 10. Suppose that the following performance function is given.

G(xi) =

∑n
i=1 e

−xii∏n
i=1 x

i
i+1

i
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where σ = 0.3 and βt = 3. n is the number of random variables and also the initial design

point is x(0) = (2, 2, ..., 2).

Table 3.12: Minimising performance function (G(xi)) by using the HMV, CGA and UPRA
methods - The best performance function values are shown by bold digits.

Iteration G(xi) Time
Variables HMV CGA UPRA HMV CGA UPRA HMV CGA UPRA

2 15 8 4 0.1700 0.0212 0.0212 24.866 18.386 49.686
3 13 4 4 0.1310 0.0124 0.0120 24.916 19.327 53.452
4 13 3 4 0.0815 0.0068 0.0066 25.444 16.903 58.845
5 12 5 4 0.0487 0.0036 0.0035 27.563 18.201 85.286
6 10 3 4 0.0278 0.0019 0.0018 29.273 17.350 112.323
7 10 3 4 0.0155 0.0010 0.0010 25.282 17.412 148.787
8 10 3 3 0.0085 0.0005 0.0005 30.570 16.803 159.096
9 10 3 3 0.0046 0.0003 0.0003 32.251 17.856 167.015
10 9 10 3 0.0024 0.0001 0.0001 34.402 17.145 174.170

This performance function is minimised by using all reliability analysis methods (the

HMV, CGA and UPRA methods) for different number of variables. Table (3.12) shows the

obtained numerical results using various methods for different conditions.

The first column of the table displays the number of variables in the performance function.

Then, there are three categories in the table. The first three columns show the number of

required iterations of each method for convergence in each case.

The middle category is devoted to display performance function values obtained by various

reliability analysis methods for different cases (different number of variables in each problem).

The best performance function value is shown by bold digits. Also, the required CPU times

for convergence in each problem are displayed in the last three columns.

Based on the numerical results displayed in this table, it can be concluded that all methods

are stable in all cases. Further, the performance function values obtained by the UPRA

method are generally less than the values resulted from the other methods. Therefore, it

can be resulted that the UPRA method has generally found the best performance function

values.
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On the other hand, the elapsed CPU time of the UPRA method is longer than the

other methods. This has happened because of the transformations involved in the MATLAB

code. In all cases, many transformations are required in this experiment in order to calculate

gradient vector and performance function values in the UPRA method.

3.6 Conclusion

Two new reliability analysis methods are introduced in this chapter to apply to the reliability

analysis problem (inner loop) of the performance measure approach (PMA). As mentioned

before, PMA and reliability index approach (RIA) include different reliability analysis prob-

lems. Since the PMA (solved by the HMV method) results in better stability and efficiency

than the RIA (solved by the HL-RF method), new reliability analysis methods (introduced

in this chapter) are compared only with the HMV method.

The first developed method is based on the conjugate gradient direction. In this method,

the conjugate gradient direction is used to update a design point at each iteration and hence

this method is called conjugate gradient analysis (CGA) method.

Further, a reliability analysis problem, which is a constrained optimisation problem, is

converted to an unconstrained optimisation problem in the second reliability analysis method

introduced in this chapter. Then, the obtained unconstrained optimisation problem is solved

in the polar space. Therefore, this method is called unconstrained polar reliability analysis

(UPRA) method.

Stabilities and efficiencies of the newly introduced reliability analysis methods are com-

pared with stability and efficiency of the HMV method (as the most stable and efficient

existing reliability analysis method) by application to various performance functions.

It is shown in this chapter that the HMV method is not stable in some cases. This

method sometimes diverges and is hence unstable. This instability results in failing to solve

an RBDO problem, because a reliability analysis problem must be solved in the inner loop

of a double-loop RBDO problem. However, based on the solved numerical experiments, the
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new reliability analysis methods (CGA and UPRA methods) are stable and convergent in all

numerical experiments.

It can be concluded that an RBDO problem can completely be solved when one of the

new CGA or UPRA methods is applied to solve a reliability analysis problem in its inner

loop. This guarantee to solve an RBDO problem comes from stability of the new methods,

while the HMV method is not always stable and hence cannot guarantee a solution of RBDO

problem.

In all cases, the UPRA method finds the best values for performance function. Thus, it

can be concluded that the UPRA method is the best reliability analysis method regarding

their robustness.

Moreover, the newly proposed CGA method often requires a shorter CPU time to solve re-

liability analysis problems and performs better than the other methods regarding the elapsed

time.

In summary, based on the numerical experiments solved in this chapter, it can be resulted

that the new CGA and UPRA methods are more stable and efficient than the existing HMV

method to solve reliability analysis problems.
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Chapter 4

Non-Deterministic Optimisation

Models for Electricity Networks

Electricity power networks are known as complicated engineering systems that need modern

mathematical optimisation models. Solar energy and wind energy, which are generally called

renewable and clean energies, are considered as new sources for electricity generating systems

requiring new optimisation models and techniques.

Many efforts have been made to introduce and develop powerful optimisation models and

algorithms for electricity power networks. An optimisation model of electricity networks is

generally intended to minimise total cost of the network. Manufacturing cost, instalment

cost, operation cost and maintenance cost are often considered as different parts of total

cost.

Other objectives are also considered for minimisation in electricity power networks. Net-

work’s area, energy losses and power flow are different examples that have been minimised

in the existing optimisation models.

Cost relevant issues are generally categorised into fixed and variable costs. In this case,

manufacturing cost and instalment cost are considered as fixed costs, while variable costs

include operation and maintenance costs.
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Furthermore, non-deterministic concepts play important roles in electricity networks.

However, most existing optimisation models for these networks are deterministic. A typ-

ical deterministic optimisation model for electricity power networks is often formulated as

below:

Min Cost(d) (4.1)

s.t. fi(d) = 0 i = 1, 2, ...,m

hj(d) ≤ 0 j = 1, 2, ..., p

where d = [d1, d2, ..., dn] is design variable and f(d) and h(d) are two sets of equality and

inequality technical constraints, respectively. As can be seen in the above model, reliability

related issues are not considered in this optimisation model.

However, different approaches are considered in formulating non-deterministic optimisa-

tion models of electricity networks. A number of stochastic optimisation models are available

for these networks in which reliability issues are formulated based on a Markov model. Vari-

ous indices, such as an availability index and a robustness index, are also developed in order

to consider reliability issues in electricity power networks.

Moreover, multi-objective optimisation models are applied into electricity power networks

so that reliability relevant concerns are taken into account. In these models, network’s reli-

ability is considered as part of an objective function that must be maximised while cost is

considered for minimisation.

Nevertheless, there is still a gap in the literature as there is no comprehensive optimisation

model for electricity networks in which network’s uncertainty is considered as a constraint.

Although probabilistic constraints are developed for particular electricity networks, these

constraints have not yet been extended to consider a general electricity network.

Our main aim in this chapter is to introduce non-deterministic optimisation models for

electricity power networks by considering their reliability. In this case, a major task is to
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introduce a probabilistic constraint for a network while cost is minimised. The main goal of

formulating a probabilistic constraint is to control network’s failure probability.

A general idea of how to formulate a probabilistic constraint for electricity networks will

be illustrated first in this chapter. Next, a linear-programming (LP) problem will be supposed

as a basic optimisation model for electricity networks in order to formulate a reliability-based

design optimisation (RBDO) model for these networks.

Then, we will move to optimal power flow (OPF) model as a widely used optimisation

model for electricity networks. A new OPF model will be developed so that a probabilistic

constraint is added to the problem. In this case, failure probability of an electricity network

is kept below a predetermined and acceptable level while cost function is minimised at the

same time.

4.1 An Introduction to Probabilistic Constraints in Power

Networks

Optimisation models are generally known as deterministic and non-deterministic. The main

difference between these two groups is in their constraints. A non-deterministic optimisation

model often includes a probabilistic constraint. This constraint incorporates uncertainties in

a system. A probabilistic constraint is often defined as below:

P [G(x1, x2, ..., xn) ≤ 0] ≤ Φ(−βt)

where P and Φ are a probability function and a standard normalised cumulative distribu-

tion function (CDF), respectively. Further, G(x1, x2, ..., xn) is a system performance func-

tion which is formulated in terms of random variables (x1, x2, ..., xn) in order to define a

safety/failure condition for a system.

In this formulation, G(x1, x2, ..., xn) < 0 denotes failure region. Safety region and failure

surface are also determined by G(x1, x2, ..., xn) > 0 and G(x1, x2, ..., xn) = 0, respectively.
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Since failure surface (i.e. G(x1, x2, ..., xn) = 0) indicates a border between failure and safety

regions, it is also called limit state function.

βt in the mentioned probabilistic constraint is target reliability index of a system. Hence,

Φ(−βt) is in fact an intended upper level for system safety. This acceptable level is often

assumed as a fixed number that system failure probability must be kept below.

Therefore, it can simply be seen that a probabilistic constraint consists of two general

functions (P and Φ), one system function (G(x1, x2, ..., xn)) and an index (βt).

As P and Φ are two functions from theory of probability and βt is only a number,

which is often determined based on experience and knowledge from the existing models,

one can conclude that the main step to introduce a probabilistic constraint for a system is

to define a safety/failure condition for the system by formulating a performance function

G(x1, x2, ..., xn).

In this section, we aim at introducing a general probabilistic constraint for electricity

power networks. For this purpose, we first need to know the origin of uncertainties in the

mentioned networks. Customer demand is often supposed as the main source of uncertainties

in electricity power networks. Thus, it can be resulted that demand of customers must be

considered in a probabilistic constraint.

Different approaches can be used to define safety and failure conditions for electricity

networks. It is assumed in this section that GE(x1, x2, ..., xn) and D(x1, x2, ..., xn) are two

available functions for these networks, which are formulated with respect to a random variable

(x1, x2, ..., xn). Suppose that these functions indicate generated electricity power that is ready

for distribution in the network and electricity power demand that is supposed to be needed

by customers, respectively.

Therefore, a performance function for an electricity network can be defined as follows:

G(x1, x2, ..., xn) = GE(x1, x2, ..., xn)−D(x1, x2, ..., xn) (4.2)
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Hence, safety and failure conditions of an electricity network are defined as below:

1. Safety Condition: One of the most important requirements of every electricity power

network is to supply a requested amount of electricity power to customers (i.e. customer

demand). Hence, a safety condition can be defined based on the supplied power.

In this case, an electricity network continues to work safely when all demanded electric-

ity power is supplied to customers. In other words, and based on the above mentioned

functions, an electricity network is safe if the following condition is satisfied:

GE(x1, x2, ..., xn) ≥ D(x1, x2, ..., xn)

Therefore, in terms of the performance function, which is introduced in the Function

(4.2), a safety condition can be defined for an electricity network as following:

GE(x1, x2, ..., xn) ≥ D(x1, x2, ..., xn) ' G(x1, x2, ..., xn) ≥ 0

2. Failure Condition: If an electricity network is unable to supply all demanded electricity

power to customers, it can be said that the network failed in its mission. In other

words, the following condition indicates a failure in an electricity network:

GE(x1, x2, ..., xn) ≤ D(x1, x2, ..., xn)

Hence, a failure condition of an electricity power network can be defined by using

Function (4.2) as follows:

GE(x1, x2, ..., xn) ≤ D(x1, x2, ..., xn) ' G(x1, x2, ..., xn) ≤ 0

Based on the above safety and failure conditions, a failure surface (as a border between
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safety and failure regions) can be introduced for an electricity power network as below:

G(x1, x2, ..., xn) = GE(x1, x2, ..., xn)−D(x1, x2, ..., xn) = 0

The above equality results GE(x1, x2, ..., xn) = D(x1, x2, ..., xn). Since this equality is

obtained if the distributed and demanded electricity powers are the same, this condition can

be supposed as a general optimal condition for the network.

Therefore, the above three conditions divide the whole space into three subregions:

1. Safety Region, indicated byG(x1, x2, ..., xn) > 0 orGE(x1, x2, ..., xn) > D(x1, x2, ..., xn);

2. Failure Region, indicated byG(x1, x2, ..., xn) < 0 orGE(x1, x2, ..., xn) < D(x1, x2, ..., xn);

3. Limit State Function, indicated byG(x1, x2, ..., xn) = 0 orGE(x1, x2, ..., xn) = D(x1, x2, ..., xn);

Thus, failure probability of an electricity network can be formulated based on the above

defined failure condition as follows:

Pf = P [G(x1, x2, ..., xn) ≤ 0] = P [GE(x1, x2, ..., xn) ≤ D(x1, x2, ..., xn)]

If we suppose that a predetermined and acceptable level for failure probability of an

electricity network is assigned based on experience and knowledge from the existing models,

a probabilistic constraint can be introduced for the network.

Assuming that P f is the requested level for network’s failure probability, a probabilistic

constraint can be formulated for electricity network as follows:

P [G(x1, x2, ..., xn) ≤ 0] = P [GE(x1, x2, ..., xn)−D(x1, x2, ..., xn) ≤ 0] ≤ P f

The acceptable level of a system failure probability is formulated based on a target relia-

bility index (βt). When an acceptable level is determined for a system (in general) or for an

electricity network (in particular), the relevant βt can be calculated based on the theory of
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probability and by using function Φ. This index will then be used to formulate probabilistic

constraint and solve the corresponding reliability analysis problem.

Thus, a probabilistic constraint for electricity power networks is introduced as below:

Pf = P [GE(x1, x2, ..., xn) ≤ D(x1, x2, ..., xn)] ≤ Φ(−βt) (4.3)

The above introduced probabilistic constraint for electricity power networks can be ap-

plied into different non-deterministic optimisation models. We will introduce non-deterministic

design optimisation models for electricity power networks in the following sections based on

this formulated probabilistic constraint.

4.2 A Novel LP-Based Optimisation Model for Electricity Net-

works Considering Uncertainties

A general idea was illustrated in the previous section describing how to introduce a probabilis-

tic constraint for electricity power networks. In this section, a new reliability-based design

optimisation (RBDO) model is developed for these networks based on a linear programming

(LP) problem.

Optimisation problems for electricity power networks are often formulated in different

models, such as linear, non-linear, etc. For simplicity, consider an optimisation problem for

an electricity network, which can be formulated as a simple LP problem.

Constraints of this LP problem are written based on Kirchhoff’s and Ohm’s laws. Op-

timal answer of the LP problem is further modified in this section in order to formulate a

probabilistic constraint for the network. This constraint is then used to introduce an RBDO

model for electricity networks.

RBDO is a non-deterministic optimisation model that is widely used to take into account

reliability issues when minimising cost function. Failure probability of a system is kept below

an acceptable level while minimising cost in RBDO models.

135



An RBDO model, which is illustrated in full details in Chapter 2, is generally formulated

as follows:

Min Cost(x1, x2, ..., xn)

s.t. P [G(x1, x2, ..., xn) ≤ 0] ≤ Φ(−βt) (4.4)

(x1, x2, ..., xn)L ≤ (x1, x2, ..., xn) ≤ (x1, x2, ..., xn)U

where (x1, x2, ..., xn) is a random variable. In this model, the cost function can be any function

of the random variable, G(x1, x2, ..., xn) is system performance function, and (x1, x2, ..., xn)L

and (x1, x2, ..., xn)U are lower and upper bounds for the random variable (x1, x2, ..., xn),

respectively.

Further, P is probability function, Φ is standard normalised cumulative distribution func-

tion (CDF), βt is target reliability index and Φ(−βt) is an acceptable level for system failure

probability. As mentioned earlier, this type of constraint is called probabilistic constraint.

In the RBDO formulation, P [G(x1, x2, ..., xn) ≤ 0] is failure probability of system that is

statistically defined as below:

P [G(x1, x2, ..., xn) ≤ 0] =

∫ ∫
...

∫
G(x1,x2,...,xn)<0

f(x1, x2, ..., xn)d(x1, x2, ..., xn) (4.5)

where f is joint probability density function (JPDF).

Probabilistic constraint of an RBDO model, which is constructed by using system fail-

ure probability, defines a feasible region by restricting probability of violating limit state

(G(x1, x2, ..., xn) = 0) to an admissible failure probability (P f = Φ(−βt)). The probabilistic

constraint is often evaluated by solving a first-order inverse reliability analysis problem. Inner

loop of a double-loop RBDO problem is designated for solving this problem.

Target reliability index (βt) has an important role in a reliability analysis problem. Based
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on the theory of probability, target reliability index (βt) is defined as following:

βt = −Φ−1(P f ) (4.6)

where P f is an acceptable level of system failure probability.

βt is often calculated by solving a first-order reliability analysis problem. Then, a first-

order inverse reliability analysis problem is solved by using the obtained reliability index in

order to evaluate probabilistic constraint. Reliability analysis methods introduced in Chapter

3 (conjugate gradient analysis (CGA) method and unconstrained polar reliability analysis

(UPRA) method) are stable and efficient enough to solve a first-order inverse reliability

analysis problem.

In the following subsections, an RBDO problem is introduced for electricity networks

based on an LP problem.

4.2.1 An LP Problem for Electricity Networks

We aim at briefly explaining a particular optimisation model for electricity power networks

in this subsection. This model, which is illustrated with full details in Section 2.8, is written

as below:

Min vc1(g1) + vc2(g2)− u3(w3)

s.t. g1 + g2 = w3 (4.7)

f12 ≤ f12

g1, g2 ≥ 0, w3 ≥ cd

where g1 and g2 are the generated electricity powers at the nodes 1 and 2, respectively. Also,

w3 is electricity consumption at the node 3 and cd is customer electricity power demand.

(g1, g2, w3) is considered as a design variable (d) in the above formulation.
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Figure 4.1: Standard Three Nodes Model

Figure 4.1 displays a standard three node model in a basic scheme for which the above

optimisation problem can be applied for cost minimisation.

There are two kinds of constraints in the given optimisation problem (Model 4.7). These

constraints can be illustrated as below:

1. The first type of constraint is a power balance constraint which is written based on

Kirchhoff’s laws. This constraint checks whether there is a balance between incoming

(generated) electricity power and outgoing (supplied) electricity power in the network.

2. The second constraint, which is an inequality constraint, is formulated based on the

Ohm’s laws. This constraint is intended to limit thermal property of the line between

generating stations (the nodes 1 and 2).

Since the total power flow on the line 1 - 2 is calculated as f12 = g1−g2
3 , the thermal limit

on the line 1 - 2 can be rewritten as below:

g1 − g2
3

≤ f12

As can be seen in the Model (4.7), reliability related issues are ignored in this formulation.
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The main concern of this problem is to minimise total cost of a network.

It must be noted that the equivalent of the above optimisation problem (Model (4.7)) for

more general networks is often a non-linear programming (NLP) problem. In fact, it is very

difficult to formulate behaviour of an electricity network by using a linear programming (LP)

problem.

However, for simplicity, we use the mentioned LP model in the next subsection in order to

introduce a basic reliability-based design optimisation (RBDO) model for electricity networks.

The main aim is to introduce a non-deterministic optimisation model for electricity networks

by using a probabilistic constraint.

4.2.2 Definition of New Variables

Consider the optimisation problem introduced in the previous subsection and suppose that

d∗ = [d∗1, d
∗
2, d
∗
3] = [g∗1, g

∗
2, w

∗
3] is an optimal solution for this problem. We now define a

new design variable (d̂ = [d̂1, d̂2, d̂3]) based on this optimal solution to formulate a new

optimisation problem considering system reliability.

New design variable is defined as below:

d̂i = xi + d∗i (i = 1, 2) and d̂3 = y3 + d∗3 (4.8)

where xi is considered as a random variable as an adjustment on the optimal solution d∗i .

The idea of this adjustment comes from our current aim to formulate a non-deterministic

optimisation model for electricity networks. Hence, random variables are obtained as follows:

xi = d̂i − d∗i (i = 1, 2) and y3 = d̂3 − d∗3

where d∗i and d̂i are the i th components of the optimal solution and new design variable,

respectively.

It should be noted that random variables of an electricity network can also be considered
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as a time-dependent variable. Further, some conditions, such as weather, daylight and other

environmental conditions may affect the defined random variable of an optimisation model

for electricity power networks. However, we ignore these additional complications at this

stage.

As discussed before, our current intention is to introduce an RBDO problem for electricity

networks by using a new variable and based on the optimum solution obtained by the LP

problem. It is not difficult to predict that additional cost will be experienced in a network

when reliability is taken into account. Thus, the main aim would be minimising the additional

cost while keeping the system failure probability below an acceptable level.

In other words, failure probability of system should not exceed a predetermined amount

(Φ(−βt)), while the additional cost is minimised. A performance function must be defined

to calculate system failure probability in the probabilistic constraint.

Probabilistic constraint is an important part of an RBDO problem. A probabilistic con-

straint, which was generally introduced for electricity power networks in the previous section,

is often evaluated by using a target reliability index in a reliability analysis problem.

Considering (g∗1, g
∗
2, w

∗
3) as the obtained optimal LP solution and based on Kirchhoff’s law

(power balance law or equality constraint in the Model (4.7)), we have:

g∗1 + g∗2 = w∗3 (4.9)

Further, suppose that ĝ1 , ĝ2 and ŵ3 are new design variables using which failure prob-

ability of the network is kept below an intended level, while experiencing an extra cost. In

other words, we suppose that (ĝ1, ĝ2, ŵ3) = (d̂1, d̂2, d̂3). Optimal values of these variables

should be calculated such that system can work safely. However, new variables (ĝ1 , ĝ2 , ŵ3)

are not at the optimum LP solution and definitely result in an additional cost.

Thus, new random variables are defined for the nodes 1 and 2 as below:

ĝ1 = g∗1 + x1 , ĝ2 = g∗2 + x2 (4.10)
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and for the node 3, we will have:

ŵ3 = w∗3 + y3 (4.11)

where x1 , x2 and y3 are random variables which indicate differences between initial optimum

solutions and new design variables.

Based on the equality constraint in the Model (4.7), the following equation is obtained:

ĝ1 + ĝ2 = ŵ3 (4.12)

On the other hand, by summation of the Equations (4.10), it can be concluded that:

ĝ1 + ĝ2 = g∗1 + x1 + g∗2 + x2 (4.13)

Hence, it can simply be shown that:

ŵ3 = w∗3 + x1 + x2

Therefore, the following equation is obtained:

ŵ3 − w∗3 = x1 + x2 ⇒ y3 = x1 + x2 (4.14)

Thus, new random variable y3 can be eliminated from the RBDO problem by using the

above equation. Hence, the new RBDO model includes only two random variables.

Further, regarding the inequality constraint of the Model (4.7) (g1 − g2 ≤ 3f12), we can

define a feasible set for the RBDO problem as below:

g1 − g2 ≤ 3f12 ⇒ x1 − x2 ≤ g∗2 − g∗1 + 3f12 (4.15)

This feasibility condition, which is obtained using the thermal limit of the Model (4.7),
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can also be added to the RBDO cost function as a penalty term as below:

max(0, 106((x1 − x2)− (g∗2 − g∗1 + 3f12))) (4.16)

The next subsection includes an RBDO problem for electricity power networks that is

formulated using the random variables introduced in this subsection. It should be mentioned

that the expected values of these random variables are indeed considered in this section to

formulate the RBDO model (as is usual for RBDO models).

4.2.3 Formulating the RBDO Problem

A new optimisation problem for electricity networks is discussed in the previous subsections

so that network’s failure probability is taken into account. A reliability-based design optimi-

sation (RBDO) problem is introduced in this subsection.

The basic idea is to replace the design variables of the optimisation problem illustrated in

Subsection 4.2.1 (Model (4.7)) by using random variables introduced in Subsection 4.2.2. In

this case, a new cost function is obtained using the original cost function after replacement

of variables and corresponding simplifications.

Since the new RBDO model will be formulated based on the optimal solution (d∗) and also

considers failure probability of the network by keeping this probability below an acceptable

level, we expect additional cost compared to the obtained optimal cost values in the LP

problem. Thus, the RBDO problem is intended to minimise this additional cost.

In other words, cost amount obtained by the RBDO problem cannot be less than cost

obtained by the LP problem due to additional assumptions and constraints related to con-

sidering system reliability.

Moreover, it is anticipated that RBDO cost function would be an increasing function with

respect to target reliability index (βt). Hence, a higher target reliability index, which leads to

a lower acceptable level of system failure probability and a higher safety level for the system,

142



results in a bigger extra cost.

Therefore, the only task left now is to formulate a probabilistic constraint in order to

obtain an RBDO problem for the standard three node example system (Figure (4.1)).

In the Model (4.7), the condition below must be satisfied in order to find a feasible solution

and keep the network in safety conditions:

ŵ3 > w∗3

This inequality results a safety condition as below:

ĝ1 + ĝ2 > g∗1 + g∗2 ⇒ x1 + x2 > 0

Thus, it can be concluded that system fails if:

ĝ1 + ĝ2 < g∗1 + g∗2 or x1 + x2 < 0

Therefore, safety and failure conditions can be defined as following:

1. Failure Condition: x1 + x2 < 0

2. Safety Condition: x1 + x2 > 0

In this case, x1 + x2 = 0, which leads to the initial optimal solution (g∗1, g
∗
2, w

∗
3), is

considered as limit state function or failure surface.

Since x1 +x2 < 0 results failure in electricity network, the required performance function

can be written as a function of both random variables (x1, x2). It must be noticed that a

necessary condition for the intended performance function is that x1 + x2 < 0 should result

in system failure.

Hence, an RBDO problem for standard three nodes electricity network is written based
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on the Model (4.7) as following:

Min vc1(x1) + vc2(x2)

s.t. P [G(x1, x2) < 0] ≤ Φ(−βt) (4.17)

(x1, x2)
L ≤ (x1, x2) ≤ (x1, x2)

U

where G(x1, x2) is network’s performance function, and (x1, x2)
L and (x1, x2)

U are lower and

upper boundaries of the random variables, respectively.

Further, a new cost function is obtained using the original cost function in the Model

(4.7) by replacing the initial variables (g1, g2, w3) by new variables (x1, x2, y3). It should be

noted that the third variable (y3) is eliminated based on the Equation (4.14).

Moreover, if the penalty term defined in the Equation (4.16) is added to the cost function,

the RBDO problem for the network can be rewritten as below:

Min vc1(x1) + vc2(x2) +max(0, 106((x1 − x2)− (g∗2 − g∗1 + 3f12)))

s.t. P [G(x1, x2) < 0] ≤ Φ(−βt) (4.18)

(x1, x2)
L ≤ (x1, x2) ≤ (x1, x2)

U

In the next section, the above introduced RBDO problem will be investigated by using

various performance functions in a numerical experiment.

4.3 Illustrative Experiment Based on an LP Problem

In this section, a numerical experiment is solved in full details to explain all concepts discussed

in the previous section. Figure (4.1) is again considered here for the problem.

A linear programming problem is first solved for the three nodes electricity network and

then an RBDO problem will be formulated based on the obtained optimal solution.

As discussed earlier, additional cost is anticipated with respect to the obtained optimal
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solution by the LP problem. The main reason for the additional cost is to take network’s

failure probability into account.

We aim at minimising this additional cost while keeping the failure probability of system

below a predetermined acceptable level. Various target reliability indices (βts) are used to

investigate their effects on solutions and compare the resulting additional costs.

Suppose that the following LP problem is given for a standard three node electricity power

network:

Min 30g1 + 40g2 − 25w3

s.t. g1 + g2 = w3 (4.19)

g1 − g2 ≤ 90 (4.20)

w3 ≥ 75 (4.21)

g1, g2 ≥ 0 (4.22)

It is not difficult to observe that the optimum solution for the above LP problem is as

below:

g∗1 = 75, g∗2 = 0, w∗3 = 75⇒ Cost = 375

This optimal solution is used in the following subsections in order to introduce new vari-

ables, formulate a new cost function and then an RBDO problem.

4.3.1 New Cost Function

The first step to introduce an RBDO problem based on the above mentioned LP problem

is to define random variables. As explained in the previous section, three random variables

must be defined based on the obtained optimal solution. Two random variables are supposed

for the nodes 1 and 2 as follows:

ĝ1 = 75 + x1 & ĝ2 = 0 + x2
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where x1 and x2 indicate differences between optimal solutions (g∗1 = 75 and g∗2 = 0) and

new variables (ĝ1 and ĝ2). Also, based on the Equation (4.14), the third variable (y3) has

been eliminated.

The initial cost function (used in the LP problem) must be used here to formulate a new

cost function for RBDO problem. For this purpose, the original variables (g1, g2, w3) must be

replaced by the new random variables (x1, x2) and then the cost function can be simplified.

Therefore, RBDO cost function is obtained as follows:

Cost(x1, x2) : 30(75 + x1) + 40(0 + x2)− 25(75 + x1 + x2)

⇒ Cost(x1, x2) : 5x1 + 15x2 + 375

Further, based on the thermal limit Equation (4.15) (which is Equation (4.20) in the

above solved LP problem), a feasible set of this problem is found as follows:

ĝ1 − ĝ2 ≤ 90⇒ x1 − x2 ≤ 90− (75− 0)⇒ x1 − x2 ≤ 15

This feasibility condition should be added to the new cost function as a penalty term.

Thus, the RBDO cost function is rewritten as below:

Cost(x1, x2) : 5x1 + 15x2 + 375 +max{0, 106(x1 − x2 − 15)}

The next subsection explains how to formulate a performance function for this network.

4.3.2 Boundaries and Performance Functions

In this subsection, new boundaries are formulated in order to complete the RBDO problem

formulation. Also, a number of performance functions are introduced for the three node

electricity network so that the network can complete a requested mission safely.
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Based on the non-negativity constraint of the LP problem (Inequality (4.22)), the follow-

ing conditions are obtained:

ĝ1 ≥ 0⇒ x1 ≥ −75

ĝ2 ≥ 0⇒ x2 ≥ 0

These conditions are used to find lower and upper boundaries for two new random vari-

ables. Boundaries are supposed as below:

−10 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10

Boundaries of the first random variable (x1) are defined so that both negative and positive

numbers are allowed. However, negative numbers cannot be considered for the second random

variable (x2), because it must be non-negative. Otherwise, we will have g2 < 0 leading a

contradiction with the non-negativity condition of the LP problem (Inequality (4.22)).

Moreover, a performance function should be defined such that the safety condition is

satisfied. We will use several performance functions to evaluate system performance and

then solve reliability analysis problems inside the RBDO problem.

The following performance functions will be introduced on the basis of the fact from

previous section that if x1 + x2 = 0, we are at the optimum point of the LP problem and

hence on the limit state function. In other words, G(x1+x2 = 0) must be zero. The proposed

performance functions are indeed assumed to be increasing functions of x1 + x2.

Further, it is assumed that rate of additional cost will be high initially (immediately after

moving away from x1 + x2 = 0) and then the rate of this change will decrease.
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The first performance function is defined as below:

G(x1, x2) =

 ex1+x2 − 1 for x1 + x1 ≤ 0.5578

√
x1 + x2 for 0.5578 < x1 + x2

(4.23)

where x1 +x2 < 0 results system failure and x1 +x2 > 0 keeps system in safety condition. It

can easily be seen that this performance function meets the required safety/failure conditions.

The exponential function is first used to prevent having a complex number around zero

in the square root function. Also, the number 0.5578 is used to separate two sections of the

performance function because this is the point where both functions intersect.

Another performance function that is used to solve the proposed RBDO problem is for-

mulated as follows:

G(x1, x2) = arctan(x1 + x2) (4.24)

It can also be seen that above performance functions have a minimum around zero (i.e.

where x1 + x2 ' 0) and then increase or decrease while the variable (x1 + x2) is increase or

decrease, respectively.

Further, the second performance function is modified to investigate effects of changing

gradient vector. Thus, the third performance function is written as following:

G(x1, x2) = arctan(
x1 + x2

3
) (4.25)

Therefore, the required RBDO problem is as below:

Min 5x1 + 15x2 + 375 +max{0, 106(x1 − x2 − 15)}

s.t. P [G(x1, x2) ≤ 0] ≤ Φ(−βt) (4.26)

−10 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10

where three performance functions (Functions (4.23), (4.24) and (4.25)) are applied to solve
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this problem. It must be noticed that the feasibility condition is added to the RBDO cost

function as a penalty term.

Also, the statistical parameters are supposed as follows:

µ = [0, 0] and σ = [0.65, 0.45]

Further, it is widely accepted that a target reliability index (βt) must be considered for

any RBDO problem. This index indicates an acceptable level for system failure probability.

When this acceptable level is determined, a target reliability index can be assigned based on

the theory of probability.

Four different βts are listed in the Table (4.1). These indices are applied to solve the

above RBDO problem.

It must be mentioned that it is not common to use a target reliability index greater than

3, because failure probability of system is already zero in this case and so system is absolutely

safe.

Table 4.1: Selecting Target Reliability Index

βt ΦZ(−βt) Probability of Failure Accepted Safety Level

0.01 P (Z < −0.01) 0.4960 0.5040

1 P (Z < −1) 0.1587 0.8413

2 P (Z < −2) 0.0228 0.9772

3 P (Z < −3) 0.0014 0.9986

The above RBDO problem is solved by using various target reliability indices (βt) and

with different performance functions and target reliability indices in the next subsections.

Each subsection is dedicated to one performance function. Then, obtained answers will be

compared with the initial optimum solution in order to check effects of different βts to solve

this problem.

Each subsection includes two tables. The first tables show optimum solutions for random

149



variables (x1, x2, y3). Then, new additional and total cost values and also a percentage of

increase in the total cost are shown in the second tables.

Moreover, it should be noted that the conjugate gradient analysis (CGA) method is

applied to solve all reliability analysis problems inside these RBDO problems. The uncon-

strained polar reliability analysis (UPRA) method can also be applied to solve these prob-

lems, but the CGA method is selected for this purpose because of its higher convergence rate

(speed). However, this selection of reliability analysis method does not affect the obtained

final solution.

4.3.3 First Performance Function

The RBDO problem introduced in the previous subsection (Problem (4.26)) is solved in this

subsection using the first performance function (Function (4.23)). This performance function

is as below:

G(x1, x2) =

 ex1+x2 − 1 for x1 + x2 ≤ 0.5578

√
x1 + x2 for 0.5578 < x1 + x2

Optimal solutions of the RBDO problem, obtained by using the above performance func-

tion, are displayed in the following tables.

Table (4.2) shows optimal solutions of the random variables (x1, x2). In all cases, a

summation of both random variables (i.e. y3 = x1 + x2) is also provided in the last column

of the table.

Table 4.2: Optimum Solutions of Random Variables

βt Failure Probability Accepted Level x1 x2 y3 = x1 + x2
0.01 0.4960 0.5040 0.0156 0.0000 0.0156

1 0.1587 0.8413 1.5556 0.0000 1.5556

2 0.0228 0.9772 3.1113 0.0000 3.1113

3 0.0014 0.9986 4.6669 0.0000 4.6669

The following table shows the resulting additional and total cost amounts. Additional
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cost increases while the acceptable level of failure probability of the system is decreased and

thus system’s safety is improved.

Table 4.3: New Cost Amounts based on Different βts

βt Failure Probability Accepted Level Extra Cost Total Cost Percentage

0.01 0.4960 0.5040 0.0779 375.0779 0.02

1 0.1587 0.8413 7.7782 382.7782 2.08

2 0.0228 0.9772 15.5563 390.5563 4.15

3 0.0014 0.9986 23.3345 398.3345 6.22

It can be seen in the first row of the Table (4.3) that there is only a 0.02% increase in the

total cost. However, in this case the failure probability of the system is 0.4960 which means

that the system is at high risk and its reliability is not improved very much.

4.3.4 Second Performance Function

In this subsection, the following performance function is applied to solve the RBDO problem:

G(x1, x2) = arctan(x1 + x2)

The below table displays the obtained optimal solutions of the RBDO problem considering

the above performance function.

Table 4.4: Optimum Solutions of Random Variables

βt Failure Probability Accepted Level x1 x2 y3 = x1 + x2
0.01 0.4960 0.5040 0.0156 0.0000 0.0156

1 0.1587 0.8413 1.8931 0.0000 1.8931

2 0.0228 0.9772 3.0090 0.0000 3.0090

3 0.0014 0.9986 4.3940 0.0000 5.3940

Also, the corresponding additional and total costs are shown in the Table (4.5). The last

column of the next table is the percentage increase in the total cost values.

151



It can be concluded from these tables that the second performance function (considered

in this subsection) results in a better solution than the previous performance function only

when βt = 2. In this case, the percentage increase in the total cost is 0.14% less than the

corresponding percentage increase obtained with the first performance function.

Table 4.5: New Cost Amounts based on Different βts

βt Failure Probability Accepted Level Extra Cost Total Cost Percentage

0.01 0.4960 0.5040 0.0779 375.0779 0.02

1 0.1587 0.8413 9.4654 384.4654 2.52

2 0.0228 0.9772 15.0452 390.0452 4.01

3 0.0014 0.9986 26.9701 401.9701 7.19

But there are an additional 0.44% and 0.97% percentage increases in these amounts

compared to the results from the previous performance function when βt = 1 and βt = 3,

respectively.

4.3.5 Third Performance Function

The last performance function, which is considered in this subsection, is defined as below:

G(x1, x2) = arctan(
x1 + x2

3
)

This performance function is applied to solve the RBDO problem. Table (4.6) displays

the obtained optimal solutions for the random variables.

Table 4.6: Optimum Solutions of Random Variables

βt Failure Probability Accepted Level x1 x2 y3 = x1 + x2
0.01 0.4960 0.5040 0.0156 0.0000 0.0156

1 0.1587 0.8413 3.0396 0.0000 3.0396

2 0.0228 0.9772 4.4513 0.0000 4.4513

3 0.0014 0.9986 5.5976 0.0000 5.5976
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The below table shows optimal solutions of the cost functions and the corresponding

percentages. By comparing results shown in these tables, it can be concluded that the

third performance function results in the largest additional costs in all cases (except when

βt = 0.01).

Table 4.7: New Cost Amounts based on Different βts

βt Failure Probability Accepted Level Extra Cost Total Cost Percentage

0.01 0.4960 0.5040 0.0779 375.0779 0.02

1 0.1587 0.8413 15.1978 390.1978 4.05

2 0.0228 0.9772 22.2567 397.2567 4.94

3 0.0014 0.9986 28.4882 403.4882 7.60

Moreover, if the obtained results in this subsection and the previous subsection are com-

pared, we will be able to track effects of changes in the gradient vector of performance

functions. As can be seen, the worst results are obtained when x1 + x2 is divided by 3 in the

performance function.

Thus, based on the above obtained optimal solutions, we can conclude that different

performance functions may provide different solutions and additional costs for the same

acceptable level for network’s failure probability.

Further, it can be resulted that although a performance function may work well for a

particular safety level, any change in the required safety level may require us to alter the

performance function.

4.4 An Enhancement for OPF Model Using Random Vari-

ables

In this section, it is intended to extend RBDO formulation to a very well-known optimisation

model for electricity power networks. This model, which is fully illustrated in Chapter 2, Sec-

tion 8, is called optimal power flow (OPF) model. OPF is a classical non-linear optimisation
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model that is often used, as a powerful tool, to optimise power flows in electricity networks.

The main objective of an OPF problem is to find values of decision variables in order to

minimise power generation cost. Constraints of this problem are based on the Kirchhoff’s and

Ohm’s laws. Engineering limits on active and reactive power generation, bus voltage mag-

nitudes, transmission lines and transformer flows are widely considered as different technical

constraints in an OPF problem.

The non-linear nature of parameters in an electricity power network may result in non-

convexity in an OPF problem. This non-linearity can be found in active power, reactive

power and voltage magnitudes. The OPF problem limits the apparent power flow measured

at each end of a given line.

However, as discussed earlier, safety issues have always been of concern in electricity

networks. Many efforts have been made to reinforce the existing OPF models to cover these

issues. But there is still a lack of recognition of an electricity network’s failure probability in

many existing OPF models.

We aim in this section at modifying the existing OPF model so that failure probability

of an electricity network is also considered in the model. For this purpose, a probabilistic

constraint should be introduced first. It is intended to keep failure probability of electricity

power networks below a predetermined level in our model.

In the RBDO model explained in Chapter 2, a random variable must be defined to for-

mulate a probabilistic constraint. In the meantime, it should be considered what properties

of an electricity network are taken into account when defining random variables.

When a random variable is determined, a performance function G(x1, x2, ..., xn) should be

formulated so that a safety/failure condition can be defined for the system. The formulated

performance function is then used to find a safety region, a failure region, and a limit state

function.

In general, an OPF problem, which is fully illustrated in Subsection 2.8.2, is written as
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below:

Min F (PG) =
∑
k∈G

fk(PGk
)

s.t. PGk
− PDk

= Vk

N∑
j=16=k

VjYkjcos(δk − δj − θkj) k = 1, 2, ..., N (4.27)

QGk
−QDk

= Vk

N∑
j=16=k

VjYkjsin(δk − δj − θkj) k = 1, 2, ..., N

PminGk
≤ PGk

≤ PmaxGk
k = 1, 2, ..., g

QminGk
≤ QGk

≤ QmaxGk
k = 1, 2, ..., g

V min
k ≤ Vk ≤ V max

k k = 1, 2, ..., n

|Sk| ≤ Smaxk k = 1, 2, ..., l

where G is the set of generator buses, Vk is the voltage magnitude at bus k ∈ N and Sk is

apparent power flow on the existing line k.

The OPF cost function is often expanded as follows:

F (PG) =
∑
i∈G

(αi + βiPGi + γiP
2
Gi

)

As this function is a function of active power PG and since the active power is itself a

function of voltage magnitudes (V ) and phase angle (θ), hence it can be resulted that the

OPF cost function is indeed a function of V and θ. In other words, it can be concluded that:

Cost = h(V, θ)

Random variables of the intended RBDO problem will then be defined based on the above

mentioned variables (i.e. V and θ). Hence, it can be concluded that cost function can be

defined in terms of random variables.
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As discussed in the previous sections, an important step of formulating an RBDO problem

is to define a performance function. A performance function is a function of defined random

variables. In an OPF problem, either equality or inequality constraints may be used to define

a safety/failure condition and introduce a performance function.

Each performance function is assumed to formulate a probabilistic constraint (and then

to formulate a reliability analysis problem). In other words, if the network had g generators,

n nodes and l lines, we can introduce 4g+2n+l probabilistic constraints by using the existing

boundaries and also 2g probabilistic constraints by using the equality constraints of an OPF

problem.

It will be shown in the coming subsections how new random variables must be defined to

formulate a probabilistic constraint.

4.4.1 Random Variable Definition Based on Boundaries

The first step of formulating a probabilistic constraint for an electricity network is to define

random variable(s). For this purpose, it is assumed in this subsection that the bounds of an

OPF problem are used to define performance functions.

As can be seen in the OPF formulation (Model (4.27)), there are four groups of inequality

constraints (including seven sets of bounds) in an OPF problem. If n and g indicate the

number of all nodes and generators, respectively, and also l is the number of existing lines,

then the maximum number of bounds is 4g + 2n+ l, because there are 2g bounds on active

power flows in generating stations, 2g bounds on reactive power flows in generating stations,

2n bounds on voltage magnitudes in all nodes and l bounds on apparent powers on the

existing lines in an OPF problem.

Suppose that (V ∗, θ∗) denotes the optimal solution of the OPF problem such that:

V ∗ = [V ∗1 , V
∗
2 , ..., V

∗
n ]T
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θ∗ = [θ∗1, θ
∗
2, ..., θ

∗
n]T

where n is the number of all nodes in electricity network. Random variables are defined as a

perturbation of this optimal solution.

Two new variables are considered for this adjustment. These new variables are (V̂ , θ̂)

and will be used to formulate a performance function for electricity network. Based on the

difference between the defined variables (V̂ , θ̂) and the obtained optimal solutions (V ∗, θ∗),

we are now able to define new random variables. These random variables will be used to

formulate system performance functions.

Random variables are denoted by x1 and x2 and defined as follows:

x1 = V̂ − V ∗ (4.28)

x2 = θ̂ − θ∗ (4.29)

The original cost function, which was a function of V and θ, can now be reformulated

as a function of x1 and x2. These random variables can generally be positive or negative

depending on conditions of electricity network and OPF problem. In this case, if x1 and/or

x2 equals zero, then it can be concluded that the relevant variable(s) has (have) reached the

optimum amount obtained by the OPF problem.

Different inequalities in the OPF problem may be used to define random variables. Three

possible approaches for random variable definitions based on various bounds are illustrated

in this subsection as follows:

1. Based on Active and Reactive Power Flows:

Active and reactive power flows are two functions of voltage magnitudes (V ) and phase
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angle (θ). These functions are given below:

P = V Icos(θ)

Q = V Isin(θ)

When an OPF problem is solved, the optimum solution is obtained based on the above

mentioned variables; i.e. V and θ. Hence, it is easy to compute active and reactive power

flows (P and Q, respectively) using the obtained values for V and θ.

Each bound of active and reactive power flows can be considered to formulate a perfor-

mance function. For instance, if we consider upper boundary of active power flow at generator

k, then we have:

PGk
≤ PmaxGk

The above inequality can also be rewritten by using the definition of active power flow as

follows:

VkIkcos(θk) ≤ PmaxGk

Therefore, the defined random variables can now be used to formulate a performance

function. If the latter inequality is written in temrs of the new variables (V̂ , θ̂), then we have:

V̂kIkcos(θ̂k) ≤ PmaxGk

and then by replacing these variables with random variables using Equalities (4.28) and

(4.29), it follows that:

(V ∗k + xk1)Ikcos(θ
∗
k + xk2) ≤ PmaxGk

where the only variables (unknowns) in the above inequality are xk1 and xk2 .

Moreover, based on the first inequality constraint of the OPF problem, it can be concluded
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that the following condition results in failure of an electricity network:

PGk
> PmaxGk

and then this failure condition can simply be rewritten as follows:

(V ∗k + xk1)Ikcos(θ
∗
k + xk2) > PmaxGk

Therefore, a performance function can now be formulated based on the above failure

condition as following:

G1(xk1 , xk2) = PmaxGk
− (V ∗k + xk1)Ikcos(θ

∗
k + xk2) (k = 1, 2, ..., g) (4.30)

This performance function is formulated using two newly defined random variables; i.e.

xk1 and xk2 .

A similar process can be implemented in order to define a performance function based on

the lower bound of active power flow at node k. A failure condition can be determined by

using this boundary as follows:

(V ∗k + xk1)Ikcos(θ
∗
k + xk2) < PminGk

Thus, the corresponding performance function is formulated as below:

G2(xk1 , xk2) = (V ∗k + xk1)Ikcos(θ
∗
k + xk2)− PminGk

(k = 1, 2, ..., g) (4.31)

Furthermore, bounds on reactive power flow at node k may be used to define performance

functions. Two failure conditions are considered for reactive power flow at this node as below:

(V ∗k + xk1)Iksin(θ∗k + xk2) > QmaxGk
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(V ∗k + xk1)Iksin(θ∗k + xk2) < QminGk

and thus the following are the corresponding performance functions:

G3(xk1 , xk2) = QmaxGk
− (V ∗k + xk1)Iksin(θ∗k + xk2) (k = 1, 2, ..., g) (4.32)

G4(xk1 , xk2) = (V ∗k + xk1)Iksin(θ∗k + xk2)−QminGk
(k = 1, 2, ..., g) (4.33)

It is not difficult to see that Gi(xk1 , xk2) < 0 and Gi(xk1 , xk2) > 0 (i = 1, 2, 3, 4) indicate

failure and safety regions, respectively. Also, Gi(xk1 , xk2) = 0 shows failure surface or limit

state function for electricity power network.

2. Based on Voltage Magnitudes:

There are 2n bounds for voltage magnitudes in an OPF problem. Suppose that V ∗k is

the optimal solution for voltage magnitude at node k, obtained by solving the OPF problem.

There is an inequality constraint for voltage magnitude at node k as below:

V min
k ≤ Vk ≤ V max

k

Suppose that V̂k is a new variable based on voltage magnitude at node k to consider

system’s failure probability. Also, suppose that we aim at introducing a performance function

for this node using, for example, its upper bound. Hence, a new random variable can be

defined at this node as follows:

yk = V̂k − V ∗k ⇒ V̂k = V ∗k + yk

Thus, we have:

V̂k = V ∗k + yk ≤ V max
k
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Hence, system fails if V max
k < V ∗k + yk. Therefore, a performance function can be formu-

lated as below:

G5(yk) = V max
k − (yk +V ∗k )⇒ G5(yk) = (V max

k −V ∗k )−yk (k = 1, 2, ..., n) (4.34)

The above linear function can be supposed as a safety condition to formulate a perfor-

mance function. Also, this function itself may be considered as a performance function or to

define a new bound for the RBDO problem.

By using a similar process, a failure condition and performance function can be defined

based on the lower bound of voltage magnitude at node k. This bound is written as below:

V min
k ≤ V̂k = V ∗k + yk

Hence, the following inequality results in system failure:

V ∗k + yk < V min
k

Therefore, a performance function is formulated as follows:

G6(yk) = yk + V ∗k − V min
k ⇒ G6(yk) = yk + (V ∗k − V min

k ) (k = 1, 2, ..., n) (4.35)

It can simply be shown that Gi(yk) < 0 and Gi(yk) > 0 (i = 5, 6) are held as failure and

safety conditions. In both cases, limit state function is determined by Gi(yk) = 0.

3. Based on Apparent Power Flow:

Each existing line has an upper bound for its apparent power flow. Having l lines in a

network, we will have l inequalities for the existing lines’ apparent power flows. As S =

P + jQ, we have:

|S| =
√
P 2 +Q2 ⇒ |S| = V I
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Therefore, inequality constraint of an OPF problem can be rewritten as follows:

VkIk ≤ Smaxk

Again, assuming V ∗k as the obtained optimal solution, a new variable is defined for voltage

magnitude as below:

V̂k = V ∗k + zk

Hence, various conditions for the network can be obtained based on apparent power flow

on the line k as following:

1. Safety Condition: V ∗k + zk < Smaxk

2. Failure Condition: V ∗k + zk > Smaxk

3. Failure Surface: V ∗k + zk = Smaxk

Thus, a performance function can be defined as below:

G7(zk) = Smaxk − (V ∗k + zk) (k = 1, 2, ..., l) (4.36)

All bounds of an OPF problem are now considered for random variable definitions in

order to formulate performance functions and probabilistic constraints.

It can easily be seen that if the new variables defined for voltage magnitudes in various

boundaries of P , Q, V and S are the same, all performance functions can be formulated using

only two random variables. In this case, x1 is the first random variable that is defined for

voltage magnitude. Also, the second random variable is defined for phase angle and denoted

by x2.

Further, it should be noted that two above random variables (i.e. x1 and x2) should be

defined individually for each node. In other words, each node needs two random variables

and hence the whole network requires 2n random variables.
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When all required random variables are defined and also all performance functions are

formulated, the resulting reliability analysis problem(s) can be solved by using either method

introduced in Chapter 3. This step, which is generally called probabilistic constraint eval-

uation in the solution process of a non-deterministic design optimisation problem, plays a

significant role in finding optimal solutions for a system subject to uncertainties.

It must also be noted that before solving a reliability analysis problem, we need to define

or determine various standard deviations (σ); each σ for one random variable.

In this case, there is no need to define/determine relevant expected values (µ), because

all expected values must be equal to the obtained optimum solutions of the OPF problem

so that initial design point in the standard normalised random space (U -space) would be

origin of the U -space. These expected values are in fact considered as design variables of

non-deterministic design optimisation problem.

In the next subsection, equality constraints of the OPF model will be considered for intro-

ducing probabilistic constraints and formulating a new non-deterministic design optimisation

problem for electricity networks.

4.4.2 Formulating Performance Functions Using Equality Constraints

It is discussed in the previous subsection how to formulate performance functions for an OPF

problem using its bounds. This concept is extended here to equality constraints of an OPF

problem.

There are two groups of equality constraints in an OPF problem; the first group is for

active power flows in generating stations and the second group is for reactive power flows in

generating stations. Hence, if g denotes the number of generators in an electricity network,

there could be 2g equality constraints in the corresponding OPF problem.

Similar to the previous subsection, suppose that V ∗ = [V ∗1 , V
∗
2 , ..., V

∗
n ]T and θ∗ = [θ∗1, θ

∗
2, ..., θ

∗
n]T

are the obtained optimum solution for an OPF problem. These can also be described as a
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single vector as shown below:

d∗ = [d∗1, d
∗
2, ..., d

∗
2n]T = [V ∗1 , V

∗
2 , ..., V

∗
n , θ

∗
1, θ
∗
2, ..., θ

∗
n]T

Thus, a random variable should be defined as a modification of this optimum point in

order to formulate new performance functions.

Considering d̂ = [d̂1, d̂2, ..., d̂2n]T as a new variable based on a modification on optimum

solution d∗, a random variable can be defined as below:

xi = d̂i − d∗i i = 1, 2, ..., 2n

Since the existing equality constraints of the OPF problem are initially written with

respect to the variables V and θ, they can now be rewritten in terms of the variable d̂ =

[V̂ , θ̂]. In this case, new constraints are obtained (after this change of variables and required

simplifications) with respect to newly defined random variable X = [x1, x2, ..., xn]T .

The new equations, which are written using the random variable X, can be considered as

new performance functions. It can simply be shown that setting the obtained performance

functions to zero (i.e. G(x1, x2, ..., xn) = 0) yields deterministic constraints in the OPF

problem.

In this case, G(x1, x2, ..., xn) 6= 0 indicates system failure and thus new failure regions for

the network can be defined based on the above mentioned concepts. These failure regions

and related failure probabilities will then be used to formulate a probabilistic constraint for

the network in order to apply in a new RBDO problem.

The next sections are dedicated to solving some numerical experiments in order to illus-

trate the introduced constraints in his section and their effects on the optimal solution of an

OPF problem.
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4.5 Numerical OPF Examples

The optimal power flow (OPF) problem was selected for further modification in the previous

section in order to introduce a probabilistic constraint for this popular optimisation problem

of electricity power networks.

An OPF problem consists of various constraints that can generally be divided into two

groups as equality and inequality constraints. Equality constraints are based on the power

balance laws and inequality constraints are effectively bounds for different parameters.

In this section, details of an OPF problem and its solution are explained in two subsections.

Equality constraints of an OPF problem are illustrated in the first subsection. The second

subsection includes an OPF problem that is written based on a three bus example network.

An RBDO problem will then be formulated and solved in the next section.

4.5.1 Equality Constraints

Figure (4.2) shows a five bus example network. As can be seen in the figure, this network

includes only one generating station (Node 1), because this node is the only node in which

P and |V | are given. Based on the explanations given in Chapter 1, Section 1.2, Nodes 2, 3

and 4 are load nodes and Node 5 is a slack bus in this network.

Using the given data in the Figure (4.2), various pieces of information are obtained for

this network. This information is displayed in the Table (4.8).

Since there is only one generating station in this network (Node 1), there will be just two

equality constraints in the relevant OPF problem; one constraint for active power flow at this

node and one constraint for reactive power flow.

Equality constraints of the OPF problem for the mentioned five bus system are written

in polar form as follows:

PG1 − PD1 = |V1|{|V2||Y12|cos(δ1 − δ2 − θ12) + |V3||Y13|cos(δ1 − δ3 − θ13) + ...

|V4||Y14|cos(δ1 − δ4 − θ14) + |V5||Y15|cos(δ1 − δ5 − θ15)}
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Figure 4.2: Five Bus System

QG1 −QD1 = |V1|{|V2||Y12|sin(δ1 − δ2 − θ12) + |V3||Y13|sin(δ1 − δ3 − θ13) + ...

|V4||Y14|sin(δ1 − δ4 − θ14) + |V5||Y15|sin(δ1 − δ5 − θ15)}

Table 4.8: Conductance (G), Susceptance (B), Admittance (Y ) and Admittance Angles (θ)

From Bus To Bus G B Y |Y | θ (degrees)

1 2 0.06 0.18 0.06 + i0.18 0.1897 71.5

1 3 0.06 0.18 0.06 + i0.18 0.1897 71.5

1 4 0.04 0.12 0.04 + i0.12 0.1265 71.5

1 5 0.02 0.06 0.02 + i0.06 0.0632 71.5

2 3 0.01 0.03 0.01 + i0.03 0.0316 71.5

2 5 0.08 0.24 0.08 + i0.24 0.2530 71.5

3 4 0.08 0.24 0.08 + i0.24 0.2530 71.5

166



Using the provided data, these constraints can be rewritten as below:

PG1 − 0.2 = |V1|{0.1897|V2|cos(δ1 − δ2 − 71.5) + 0.1897|V3|cos(δ1 − δ3 − 71.5) + ...

0.1265|V4|cos(δ1 − δ4 − 71.5) + 0.0632|V5|cos(δ1 − δ5 − 71.5)}

QG1 − 0.5095 = |V1|{0.1897|V2|sin(δ1 − δ2 − 71.5) + 0.1897|V3|sin(δ1 − δ3 − 71.5) + ...

0.1265|V4|sin(δ1 − δ4 − 71.5) + 0.0632|V5|sin(δ1 − δ5 − 71.5)}

An optimum solution that satisfies these two constraints is displayed in the Table (4.9).

Table 4.9: Solution of the Five Bus Example System

Node 1 2 3 4 5

V 1.0000 0.9805 0.9771 0.9662 1.0600

δ -2.0675 -4.5358 -4.8535 -5.6925 0.0000

4.5.2 Three Node Network

An OPF problem for a three bus example system is studied and solved in this subsection.

Figure (4.3) displays the relevant network.

No active power is generated at Node 3 and hence there is no cost here. In other words,

all cost parameters (related to active power flow) at this node are zero. This leads to:

PG3 = 0⇒ c0,3 = c1,3 = c2,3 = 0

Cost function parameters for the other nodes (two generating stations at Nodes 1 and 2)

are given in the Table (4.10).

Further, Table (4.11) displays active and reactive power loads at all nodes. Conductance,

susceptance, admittance and its norms as well as angle of various elements in admittance
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Figure 4.3: Three Bus System

Table 4.10: Cost Function Parameters

Generator c0 c1 c2
1 0 5 0.11

2 0 1.2 0.085

matrix can also be easily calculated. These are shown in the Table (4.12).

Table 4.11: Active and Reactive Power Loads

Generator PD QD
1 110 40

2 110 40

3 95 50

Moreover, there are no bounds for active and reactive power flows. Apparent power flows

on the lines 1-2 and 1-3 are also not bounded.

Hence, the OPF problem, based on the shown network and using the provided data, is
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Table 4.12: Conductance, Susceptance, Admittance and Admittance Angles

From Bus To Bus G B Y |Y | θ (degrees)

1 3 0.1673 -1.5954 0.1673− i1.5954 1.6041 -84

3 2 0.0444 -1.3318 0.0444− i1.3318 1.3326 -88

1 2 0.0517 -1.1087 0.0517− i1.1087 1.1099 -87

written in polar form as below:

Min 5PG1 + 0.11P 2
G1

+ 1.2PG2 + 0.085P 2
G2

(4.37)

s.t. PG1 − 110 = V1{1.1099V2cos(δ1 − δ2 + 87) + 1.6041V3cos(δ1 − δ3 + 84)}

PG2 − 110 = V2{1.1099V1cos(δ2 − δ1 + 87) + 1.3226V3cos(δ2 − δ3 + 88)}

−95 = V3{1.6041V1cos(δ3 − δ1 + 84) + 1.3226V2cos(δ3 − δ2 + 88)}

QG1 − 40 = V1{1.1099V2sin(δ1 − δ2 + 87) + 1.6041V3sin(δ1 − δ3 + 84)}

QG2 − 40 = V2{1.1099V1sin(δ2 − δ1 + 87) + 1.3326V3sin(δ2 − δ3 + 88)}

QG3 − 50 = V3{1.6041V1sin(δ3 − δ1 + 84) + 1.3326V2sin(δ3 − δ2 + 88)}

0.9 ≤ V1, V2, V3 ≤ 1.1 & |S23| ≤ 60

This problem can be solved by using various general optimisation methods for constrained

non-linear problems such as augmented Lagrangian multipliers. Table (4.13) displays the

obtained results.

Table 4.13: Solution to Three Bus System

Node 1 2 3

|V | 1.069 1.028 1.001

δ (degrees) 0 9.916 -13.561

Thus, active and reactive power flows in different nodes can be obtained. These informa-
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tion are shown in the Table (4.14).

Table 4.14: Active and Reactive Power Flows

Node 1 2 3

Pg 131.09 185.93 0

Qg 17.02 -3.50 0.06

In the next section, a new RBDO problem will be formulated and solved based on an

OPF problem.

4.6 An RBDO Problem Based on an OPF Problem

We now solve a numerical example to illustrate the idea explained in Section (4.4). For this

purpose, consider the electricity power network shown in the Figure (4.4).

1

0.2 + j 0.1

0.45 + j 0.15 0.4 + j 0.05

2 3

0.01 + j 0.03

0.
08

 +
 j 
0.

24
0.06 + j 0.18

Figure 4.4: Three Bus System

As can be seen in the figure, there are three nodes in this network including only one

generating station (Node 1). An OPF problem must first be formulated for this network.
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The cost function parameters of the generating station, which will be used to formulate the

mentioned OPF problem, are given as below:

c0 = 3 , c1 = 2 , c2 = 1.2

It should be noticed that all above parameters are for Node 1. Also, based on the displayed

network, load flows (active and reactive powers) and admittances as well as corresponding

angles are written in the Tables (4.15) and (4.16).

Table 4.15: Active and Reactive Power Loads

Generator PD QD
1 0.20 0.10

2 0.45 0.15

3 0.40 0.05

Table 4.16: Admittances and Admittance Angles

From Bus To Bus Y |Y | θ (degrees)

1 2 0.06 + i0.18 0.1897 71.56

1 3 0.08 + i0.24 0.2530 71.56

2 3 0.01 + i0.03 0.0316 71.56

Moreover, it must be noted that there are no bounds for any variable in this problem.

Thus, the intended OPF problem can be formulated as:

Min 1.2P 2
G1

+ 2PG1 + 3 (4.38)

s.t. P1 = 0.1897V1V2cos(δ1 − δ2 − 71.56) + 0.2530V1V3cos(δ1 − δ3 − 71.56)

Q1 = 0.1897V1V2sin(δ1 − δ2 − 71.56) + 0.2530V1V3sin(δ1 − δ3 − 71.56)

The obtained solution for the above OPF problem is displayed in the Table (4.17). Hence,
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optimum value for the cost function is calculated as 5.1993.

Table 4.17: Obtained Solution for the Given Network

Bus 1 Bus 2 Bus 3

|V | 4.54 0.09 2.38

δ (degrees) 107.83 39.29 282.24

Now, the obtained solution is used to formulate new probabilistic constraints for the given

network in order to obtain an RBDO problem. For this purpose, all variables in the above

optimisation problem must be redefined in terms of new design variables.

The following new design variables are considered:

d = [d1 = V1, d2 = V2, d3 = V3, d4 = δ1, d5 = δ2, d6 = δ3]
T

Thus, the above OPF problem can be rewritten using the new design variable as below:

Min 0.432d21cos
2(d4) + 1.2d1cos(d4) + 3 (4.39)

s.t. 0.6d1cos(d4)− 0.1897d1d2cos(d4 − d5 − 71.56)− 0.2530d1d3cos(d4 − d6 − 71.56) = 0.2

0.6d1sin(d4)− 0.1897d1d2sin(d4 − d5 − 71.56)− 0.2530d1d3sin(d4 − d6 − 71.56) = 0.1

In this notation, the obtained optimum point is denoted by d∗. Hence, we have:

d∗ = [d∗1 = 4.54, d∗2 = 0.09, d∗3 = 2.38, d∗4 = 107.83, d∗5 = 39.29, d∗6 = 282.24]T

Since our aim is to re-optimise the above system so that its reliability is also taken into

account, it is necessary to modify the existing optimum point. Suppose that d̂ is a new

variable in the reformulated problem.

Then, we need to define a random variable using which performance functions and prob-
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abilistic constraints will be formulated. Suppose that x = [x1, x2, ..., x6]
T is the intended

random variable. In other words, the random variable x can be considered as a modification

on the optimum point d∗.

d̂i = d∗i + xi ⇒ xi = d̂i − d∗i

The following hold for these new variables:

x = [d̂1 − 4.54, d̂2 − 0.09, d̂3 − 2.38, d̂4 − 107.83, d̂5 − 39.29, d̂6 − 282.24]T

or

d̂ = [x1 + 4.54, x2 + 0.09, x3 + 2.38, x4 + 107.83, x5 + 39.29, x6 + 282.24]T

When the random variable x is defined (using the new variable d̂), the OPF cost function

must be reformulated by replacing the existing variable d by the new variable d̂. Hence, this

cost function can be rewritten as below:

0.432d̂21cos
2(d̂4) + 1.2d̂1cos(d̂4) + 3

and then:

0.432(x1 + 4.54)2cos2(x4 + 107.83) + 1.2(x1 + 4.54)cos(x4 + 107.83) + 3

Moreover, we want to define some probabilistic constraints for this network in order to

introduce a new RBDO problem. For this purpose, we must first define performance functions

for this network.

In this case, design variable d in the equality constraints of the OPF problem (Problem

(4.39)) should be replaced by the new variable d̂. By this replacement and after required
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simplifications, we will have:

0.6(x1 + 4.54)cos(x4 + 107.83)− 0.1897(x1 + 4.54)(x2 + 0.09)cos(x4 − x5 − 3.02)...

−0.2530(x1 + 4.54)(x3 + 2.38)cos(x4 − x6 − 245.97) = 0.2

0.6(x1 + 4.54)sin(x4 + 107.83)− 0.1897(x1 + 4.54)(x2 + 0.09)sin(x4 − x5 − 3.02)...

−0.2530(x1 + 4.54)(x3 + 2.38)sin(x4 − x6 − 245.97) = 0.1

Now, we use the above equality constraints to introduce new performance functions for

this network. Hence, the new performance functions would be defined as following:

G1(x) = 0.6(x1 + 4.54)cos(x4 + 107.83)− 0.1897(x1 + 4.54)(x2 + 0.09)... (4.40)

cos(x4 − x5 − 3.02)− 0.2530(x1 + 4.54)(x3 + 2.38)cos(x4 − x6 − 245.97)− 0.2

G2(x) = 0.6(x1 + 4.54)sin(x4 + 107.83)− 0.1897(x1 + 4.54)(x2 + 0.09)... (4.41)

sin(x4 − x5 − 3.02)− 0.2530(x1 + 4.54)(x3 + 2.38)sin(x4 − x6 − 245.97)− 0.1

Therefore, a new RBDO problem can now be formulated as below:

Min 0.432(x1 + 4.54)2cos2(x4 + 107.83) + 1.2(x1 + 4.54)cos(x4 + 107.83) + 3

s.t. P [Gi(x1, x2, ...x6) 6= 0] ≤ Φ(−βti) i = 1, 2 (4.42)

(x1, x2, ...x6)
L ≤ (x1, x2, ...x6) ≤ (x1, x2, ...x6)

U

where functions (4.40) and (4.42) are two performance functions defined for this problem.

It must be noted that there is no bound in the OPF problem. Hence, the above mentioned

performance functions are obtained using the method explained in Subsection (4.4.2).

Suppose that target reliability index for both probabilistic constraints equals 2 (i.e. βti =
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2 (i = 1, 2)). Also, it is considered that standard deviation (σ) for potential changes in all

random variables is 0.4; i.e. σj = 0.4 j = 1, 2, ..., 6.

If the optimal point obtained for the OPF problem is assumed as the initial design point

of the RBDO problem, a new optimum point is found as below. This optimum solution is

obtained by using the CGA method in the inner loop and the SQP algorithm in the outer

loop (same as Section 3.4).

x∗ = [4.91, 0.24, 2.71, 92.34, 41.52, 217.14]T

Therefore, it can be concluded that with only 1.8416 increase in the total cost, which is

35% of the initial total cost, failure probability of the network is kept below than 2.28% as

βt = 2.

4.7 Conclusion

Electricity power networks are well known as examples of large scale systems. There are

many optimisation models available for these networks. However, failure probability of these

networks is not studied comprehensively in the existing literature.

We have studied electricity networks in this thesis and dealt with investigation of their

reliability in this chapter. At the beginning of the current chapter, a general idea is explained

about probabilistic constraints and how to apply them into electricity networks optimisation

problems. It is found that a performance function must be formulated for a network in order

to define its safety and failure conditions and considering network’s reliability.

Based on the defined performance function and also safety and failure conditions, a prob-

abilistic constraint is introduced for electricity networks so that failure probability of the

network is kept below a predetermined and acceptable level.

After that, a reliability-based design optimisation (RBDO) model is introduced in this

chapter to apply into electricity networks. Although most of the existing optimisation mod-
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els of electricity networks are non-linear and it is accepted that this non-linearity comes

from the nature of electricity power flow, the introduced RBDO model is based on a linear

programming (LP) problem.

It is found that the LP problem must first be solved and then its optimal solution is

modified using the introduced RBDO problem. This modification, which is done to consider

an electricity networks failure probability, results in extra cost.

The new RBDO model of electricity networks is intended to minimise the extra cost, while

network’s failure probability is kept below an intended level. This level for failure probability

of electricity networks is calculated by using a target reliability index (βt) and is based on

the theory of probability.

Further, an optimal power flow (OPF) model, as an existing and popular optimisation

model for electricity power networks, is considered for further modification. Different con-

straints of the OPF problem are used to introduce probabilistic constraints for electricity

networks.

All concepts discussed in this chapter are investigated by using numerical experiments.

Various performance functions are applied in these problems. Based on the obtained results,

it is concluded that the additional cost is increased when the acceptable level of system failure

probability is decreased.

In other words, a bigger target reliability index (βt), which leads to a lower acceptable

level of system failure probability and thus a higher level of system safety, leads to a higher

additional cost.
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Chapter 5

Conclusion and Future Works

Reliability-based design optimisation (RBDO) is known as a non-deterministic and highly

non-linear design optimisation model. This model, which is often solved in two different

loops, is studied in this research project. Also, electricity power networks are considered as

large-scale systems for which new non-deterministic optimisation models are proposed.

There are three kinds of RBDO approaches, mono-level (single-loop) approaches, two-level

(double-loop) approaches and decoupled approaches. Different features of these approaches

are summarised as follows:

1. Single-loop approaches are based on some approximations and hence their precision is

not at an acceptable level. However, some mono-level formulations are very efficient

and simple to implement.

2. Double-loop approaches are simple to implement, but they are usually inefficient for

real world structures. In these approaches, reliability analysis and design optimisation

problems are solved in two loops.

3. Decoupled approaches are generally efficient and accurate, but they require specific

implementations. A sequential process is often used to solve an RBDO problem by

using a decoupled approach.
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Double-loop RBDO approaches are mainly considered in this thesis for further modifica-

tion and improvement. The reliability index approach (RIA) and the performance measure

approach (PMA) are two double-loop RBDO approaches. As it has been reported in the

literature that PMA is generally more stable and efficient than RIA, new reliability analysis

methods that are introduced in this research project are compared with reliability analysis

methods inside PMA.

Reliability related issues play very significant roles in double-loop RBDO approaches.

This importance has led to the introduction of different reliability analysis methods. However,

there are still many drawbacks in these approaches.

Moreover, many optimisation models are available for electricity power networks. The

main concern in these models is to minimise total cost of the network. In other words,

although safety of these networks is very important, there is very little research in this area

about safety issues and non-deterministic optimisation models of electricity networks.

In this chapter, a conclusion of this PhD thesis is illustrated in two different sections.

The first section includes a brief conclusion about new reliability analysis methods that are

introduced in this thesis, and then research aims about electricity networks are addressed in

the second section. The last section of this chapter consists of our plans for future research

work.

5.1 New Reliability Analysis Methods

Two new reliability analysis methods are introduced in this thesis in order to apply in reli-

ability analysis loop (inner loop) of the performance measure approach (PMA) to evaluate

performance functions. These methods are called the conjugate gradient analysis (CGA)

method and the unconstrained polar reliability analysis (UPRA) method.

The CGA method is formulated based on the conjugate gradient direction. This vector

is employed in the CGA method to find a new search direction and update a design point.

In this method, reliability analysis problems are first standard normalised in order to reduce
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their non-linearity, and then solved by the CGA method.

Another new reliability analysis method is the UPRA method that solves reliability anal-

ysis problems in the polar space. In this method, a standard normalised reliability analysis

problem is transformed to the polar space. By this transformation, a reliability analysis

problem, which is a constrained optimisation problem, is changed to an unconstrained opti-

misation problem.

Efficiency and stability of these methods are investigated by solving several numerical

problems in this thesis. Since it has been reported in the literature that hybrid mean value

(HMV) method is the most stable and efficient existing reliability analysis method, stability

and efficiency of the CGA and UPRA methods are compared with those of the HMV method.

It is found in this thesis that the newly introduced methods are more stable and efficient

than the HMV method. A function type criterion has been used in the HMV method to select

advanced mean value (AMV) method or conjugate mean value (CMV) method for solving a

problem.

Based on the comparisons between all reliability analysis methods, it is shown that stabil-

ity and efficiency of the CGA and UPRA methods are much greater if behaviour of the HMV

method to choose either AMV or CMA methods changes during iterations and/or amount of

the function type criterion is too small.

However, the best property of the CGA and UPRA methods is their stability, not effi-

ciency. They always converge even if their convergence rate was not good, while the HMV

method sometimes diverges when evaluating a performance function. In other words, the new

methods are always stable and also often more efficient than the existing reliability analysis

methods.

Performance function values obtained by the new methods are often smaller than those

obtained by the existing HMV method. Also, a smaller number of iterations and a shorter

time are required for the new reliability analysis methods for convergence compared with the

HMV method.

179



5.2 Application of RBDO in Electricity Power Networks

One of the most complicated systems ever known in real world problems is an electricity

power network. Different optimisation models have been proposed in the literature for these

systems. Mono- and multi-objective models as well as a number of stochastic optimisation

models and various reliability indices are available for these networks. However, there are

still many concerns about reliability related issues in electricity networks and corresponding

optimisation models.

In this thesis, a general probabilistic constraint is formulated for these networks. For this

purpose, a safety/failure condition is first defined for a network. Based on this, a performance

function is introduced for the network. Then, assuming an acceptable level for failure prob-

ability of the network, a probabilistic constraint is introduced for electricity power networks.

It must be mentioned that the acceptable level for network’s failure probability must

be determined by using knowledge and experience from the existing networks. Standard

normalised cumulative distribution function (CDF) from the theory of probability, which is

called function Φ, and a reliability index are often used to calculate this level.

The introduced probabilistic constraint, which is evaluated in a reliability analysis prob-

lem, can be applied in different non-deterministic optimisation models. A reliability-based

design optimisation (RBDO) model is proposed in this PhD thesis for electricity networks.

This model is based on a linear programming (LP) problem.

Another non-deterministic optimisation model that is developed for these networks is

based on the optimal power flow (OPF) model. A probabilistic constraint is added to this

model in order to take uncertainties of a network into account and also to formulate a new

optimisation model for the network.

The main idea in introducing these non-deterministic design optimisation models for

electricity power networks is to modify an obtained optimum solution. In this case, an initial

optimisation problem should be solved and then the obtained answer is adjusted to formulate

probabilistic constraints and introduce a new model.
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Thus, since extra assumptions and constraints are added to the model, an additional cost

is experienced. It is found in this thesis that if the acceptable level for network’s failure

probability is reduced and hence network’s reliability is improved, more additional cost is

incurred to design the network. In other words, the lower the acceptable level of failure

probability, the higher the associated additional cost.

5.3 Future Work

In this section, a number of our main concerns about RBDO models and electricity power

networks, which will be considered in our future researches, are addressed.

One of the major drawbacks of the RBDO models is their difficulties in dealing with a

large number of variables. The existing reliability analysis methods may not be efficient, or

even stable, if a system performance function includes many random variables.

Another shortcoming of the existing methods is originated from probability distribution

function of the random variables. In this regard, the only probability distribution that is

widely studied in the existing literature is the Gaussian distribution. Hence, a solid research

work is required in the future to investigate other probability distributions and their effects

on a real world problem.

Further, reliability analysis problem inside RIA (as a double-loop RBDO approach) still

needs more work to increase its stability and efficiency. The existing methods for this problem

are very sensitive with respect to initial design point and often show singularity behaviour.

Hence, our other future work would be dedicated to propose a new method for the inner loop

of RIA so that reliability analysis problems can be solved stably and efficiently.

Moreover, electricity power networks require new optimisation models in the future. The

main issue in this area is that environmental factors must be considered in the next generation

of optimisation models of these networks. Various factors, such as daylight, temperature and

season, must be considered in the future when a non-deterministic design optimisation model
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is introduced for these networks.
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