
Development and evaluation of optimization
based data mining techniques for analysis of

brain data

Mahdi Zarei

Principal Supervisor: Dr Zari Dzalilov
Associate Supervisor: Assoc.Prof. Adil Baghirov

Thesis is submitted in total fulfilment of the
requirement for the degree of Doctor of Philosophy

School of Applied and Biomedical Sciences
Faculty of Science and Technology

Federation University Australia
PO Box 663

University Drive, Mount Helen
Ballarat, VIC 3353, Australia.



Abstract

Neuroscience is an interdisciplinary science which deals with the study of structure and function

of the brain and nervous system. Neuroscience encompasses disciplines such as computer science,

mathematics, engineering, and linguistics. The structure of the healthy brain and representation of

information by neural activity are among most challenging problems in neuroscience. Neuroscience

is experiencing exponentially growing volumes of data obtained by using different technologies. The

investigation of such data has tremendous impact on developing new and improving existing models

of both healthy and diseased brains.

Various techniques have been used for collecting brain data sets for addressing neuroscience prob-

lems. These data sets can be categorized into two main groups: resting-state and state-dependent data

sets. Resting-state data is based on recording the brain activity when a subject does not think about

any specific concept while state-dependent data is based on recording brain activity related to specific

tasks.

In general, brain data sets contain a large number of features (e.g. tens of thousands) and signifi-

cantly fewer samples (e.g. several hundred). Such data sets are sparse and noisy. In addition to these

problems, brain data sets have a few number of subjects. Brains are very complex systems and data

about any brain activity reflects very complex relationship between neurons as well as different parts

of the brain. Such relationships are highly nonlinear and general purpose data mining algorithms are

not always efficient for their study.

The development of machine learning techniques for brain data sets is an emerging research area

in neuroscience. Over the last decade, various machine learning techniques have been developed for

application to brain data sets. In the meantime, some well-known algorithms such as feature selec-

tion and supervised classification have been modified for analysis of brain data sets. Support vector

machines, logistic regression, and Gaussian Naive Bayes classifiers are widely used for application to
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brain data sets. However, Support vector machines and logistic regression algorithms are not efficient

for sparse and noisy data sets and Gaussian Naive Bayes classifiers do not give high accuracy.

The aim of this study is to develop new and modify the existing data mining algorithms for the

analysis brain data sets. Our contribution in this thesis can be listed as follow:

1. Development of new algorithms:

1.1. Development of new voxel (feature) selection algorithms for Functional magnetic reso-

nance imaging (fMRI) data sets, and evaluation of these algorithms on the Haxby and

Science 2008 data sets.

1.2. Development of new feature selection algorithm based on the catastrophe model for re-

gression analysis problems.

2. Development and evaluation of different versions of the adaptive neuro-fuzzy model for the

analysis of the spike-discharge as a function of other neuronal parameters.

3. Development and evaluation of the modified global k-means clustering algorithm for investiga-

tion of the structure of the healthy brain.

4. Development and evaluation of region of interest (ROI) method for analysis of brain functional-

connectivity in healthy subjects and schizophrenia patients.
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Introduction

Understanding the human brain is one of the greatest challenges of 21st century science. Neuro-

science as an interdisciplinary science deals with anatomical, functional, medical, molecular, cellular,

developmental, evolutionary and computational aspects of the brain and nervous system. It encom-

passes various range of disciplines like computer science, mathematics, engineering and linguistics.

Problems of the structure of a healthy brain and how the neural activity represents information are

among most challenging in neuroscience. Neuroscience is experiencing exponentially growing vol-

umes of data based on different technologies for healthy and diseased brains. Such data has tremen-

dous impact on developing new and improving existing models of both healthy and diseased brains.

Various techniques like magnetic resonance imaging, functional magnetic resonance imaging, dif-

fuse optical imaging, event-related optical signal, diffusion tensor imaging, electroencephalography,

magneto encephalography, positron emission tomography, single-photon emission computed tomog-

raphy are used for collecting brain data sets [8, 50, 66, 69, 81, 197, 201]. These data sets can be

categorized into two main groups; resting-state and state dependent data sets. Resting-state data is

based on recording the brain activity when subject does not think about specific concept, but state-

dependent data is based on recording brain activity in that is related to some inputs [55, 155].

In general, brain data sets contain a large number of features (tens of thousands) and significantly

less samples (several hundred). Such data sets are sparse and noisy. In addition to these problems,

brain data sets have a few number of subjects.

The brain is a very complex system and a data about any brain activity reflects very complex

relationship between neurons as well as different parts of the brain. Such relationships are highly

nonlinear and general purposed data mining algorithms are not always efficient to study such data

sets.
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Neuroscience Research Questions

As mentioned before the problems of the structure of a healthy brain and how the neural activity

represents information are among the most challenging in neuroscience. The study of such problems

can be achieved by answering the following questions:

1. Is there any difference in neural activities when a subject thinks about different concepts?

Application of data mining techniques can help to answer this question.

2. Are neural representations similar across people when they think about the same stimulus?

To answer this question, it is important to study different subjects under the same conditions.

3. What kind of information can be extracted from fMRI data with available technologies?

Study from [138] demonstrates that it is possible to extract different ideas such as words when

subject think about them.

4. How to find the best model for a healthy brain?

5. What is the main difference in functional-connectivity between healthy and unhealthy brains?

Research aims

Over the last decade various machine learning techniques have been applied to study brain data

sets. The development of machine learning techniques for brain data sets is an emerging research

area in neuroscience. Results show that traditional feature selection, supervised classification and

clustering algorithms are not efficient for brain data sets due to the high nonlinearity of functional

connectivities between different parts of the brain. Recently, some well known algorithms for feature

selection and supervised classification in data mining have been modified for brain data sets. Gener-

ally classifiers work better with less features, but choosing this number of features is a complicated

process. Our knowledge of how to best implement feature selection for fMRI data is still preliminary

[75]. Activity, Accuracy, Searchlight Accuracy, Analysis of Variance and Stability methods are com-

monly used for feature selection of fMRI data [139]. Support vector machines, logistic regression,

and Gaussian Naive Bayes classifiers are widely used for application to brain data sets. However,
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Support vector machines and logistic regression algorithms are not efficient for sparse and noisy data

sets and Gaussian Naive Bayes classifiers do not give high accuracy.

The aim of this study is developing of new and modification of existing data mining algorithms for

the analysis of large-scale, spars and noisy brain data sets. New voxel (feature) selection algorithm for

fMRI data sets and feature selection algorithm for regression analysis problems have been developed

in this thesis. In order to investigate the structure of healthy brain the global k-means clustering

algorithm is applied for a resting-state fMRI data. Region of interest method developed and evaluated

for analysis of brain functional-connectivity in healthy subjects and schizophrenia patients.

Significance

Many data sets are collected using different technologies to analyze brain’s functions. Also nu-

merous algorithms developed to answer some open questions in this field, but development of more

efficient and accurate algorithms for obtaining more accurate results is still important. Designing

new models will answer many questions in neurolinguistics and in detecting psychiatric illnesses,

amongst others. Designing brain-computer interfaces and brain-to-brain communication computer

based models are other potential applications of results obtained in this thesis.

Analyzing the different brain data sets using graph theoretical, statistical and data mining algo-

rithms based on different scenarios can answer many questions about structure of healthy brain and

the areas of the brain that are involved in different brain disorders.

Contributions

The main contributions of this work are:

• Development of new voxel (feature) selection algorithms for fMRI data sets. Haxby and Sci-

ence 2008 data sets are used for evaluation of these algorithms.

• Development of new feature selection algorithm based on the catastrophe model for regression

analysis problems.

• Development and evaluation of different versions of the adaptive neuro-fuzzy model for the

analysis of the spike-discharge as a function of other neuronal parameters.
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• Development and evaluation of the modified global k-means clustering algorithm for investiga-

tion of the structure of the healthy brain.

• Development and evaluation of region of interest (ROI) method for analysis of brain functional-

connectivity in healthy subjects and schizophrenia patients.

Outline of the thesis

This thesis is divided into six chapters as follows.

• In Chapter 1 we present the literature on related work. First we describe different brain imaging

technologies and present the data sets that analyzed in this thesis. Then we briefly describe

some of commonly used algorithms on supervised classifiers, dimension reduction, complex

networks.

• The proposed algorithms are discussed in Chapter 2. First we explain our voxel (feature) selec-

tion algorithm that is based on overlap between voxels’ activation levels. Then the application

of this algorithm to Haxby and Science 2008 data sets is discussed. Another algorithm is fea-

ture selection algorithm for regression analysis problems that finds the most relevant feature

based on the catastrophe model. The effectiveness of the proposed algorithm is tested using

Breast cancer, Parkinson Telemonitoring and Slice locality data sets.

• In Chapter 3 we developed and evaluated different versions of the adaptive neuro-fuzzy model

for the analysis of the spike-discharge. The spike-discharge is considered as a function of other

neuronal parameters..

• The well-known Modified Global k-means algorithm is applied to Oxford data and the obtained

results are shown in Chapter 4. It is demonstrated that this clustering algorithm can be used for

finding the structure of the healthy brains.

• In Chapter 5 Region of Interest (ROI) method is developed and evaluated for analysis of brain

functional-connectivity. Two groups of healthy controls and schizophrenia patients from CO-

BRE data is used for this purpose.
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Chapter 1

Literature review

Understanding the organization of the brain and determining how mental representations map

onto patterns of neural activity are among the greatest challenges facing 21st century science. Neu-

roscience as an interdisciplinary science deals with anatomical, functional, medical, molecular, cel-

lular, developmental, evolutionary and computational aspects of the brain and nervous system. It

encompasses various range of disciplines like computer science, mathematics, engineering and lin-

guistics. Exponentially growing volumes of data based on different technologies for healthy and

diseased brains has tremendous impact on developing new and improving existing models of both

healthy and unhealthy brains.

Different technologies are used for measuring brain activity and its structure in order to collect

brain data sets to address the neuroscience problems. These data sets can be arranged into main

groups: resting-state and state-dependent data sets. Resting-state data is based on recording the brain

activity when subject does not think about any specific concept, but state-dependent data is based on

recording brain activity in that is related to some inputs.

Generally, brain data sets contain a large number of features and significantly less samples. There-

fore such data sets are noisy and sparse. Brain is a very complex system and very complex relationship

between neurons and different parts of the brain can be reflected by a data about brain activity. Such

relationships are highly nonlinear and general purpose data mining algorithms are not always efficient

to study such data sets.

Recently, various machine learning algorithms have been applied to study brain data sets. The

development of these algorithms for brain data sets is an emerging research area in neuroscience. Over
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the last decade, some well-known feature selection and supervised classification in data mining have

been modified for brain data sets. Usually classifiers work better with less features, but choosing this

number of features is a difficult process. Our knowledge of how to best implement feature selection

for brain data is still preliminary [75]. Activity, Accuracy, Searchlight Accuracy, Analysis of Variance

and Stability methods are commonly used for feature selection of fMRI data [139]. Support vector

machines, logistic regression, and Gaussian Naive Bayes classifiers are widely used for application to

brain data sets. However, Support vector machines and logistic regression algorithms are not efficient

for sparse and noisy data sets and Gaussian Naive Bayes classifiers do not give high accuracy.

In this chapter we present the literature on the brain data sets based on different brain imaging

techniques and different data analysis algorithms including dimension reduction, classification, re-

gression analysis, clustering, neuro-fuzzy and complex networks. First, we describe different brain

imaging technologies and present the data sets that analyzed in this thesis. Then we briefly describe

commonly used algorithms including supervised classifiers, dimension reduction and complex net-

works.

1.1 Brain imaging techniques

Different technologies are used for measuring of brain activity and it’s structure. In this section

we present some of them that are widely used in the neuroscience.

• Functional magnetic resonance imaging measures brain activity by detection fluctuating of oxy-

genation and flow that occurs in response to neural activity in blood [81]. FMRI is a powerful

tool for the brain functions studies. It is a technique for obtaining three-dimensional images

related to activity in the brain through time. FMRI Scanners can measure the changes in the

blood magnetic resonance that called the Blood Oxygen Level-Dependent (BOLD) signal. The

smallest unit measured by BOLD fMRI is called a voxel. FMRI’s spatial resolution is around

2mm and it’s contrast can be performed on more than 100,000 voxels [128].

• Magnetic resonance imaging is used for studying of brain anatomy and static structure of the

brain matter. It is also called nuclear magnetic resonance imaging and has many applications

in different areas of medicine.

6



• Diffuse optical imaging is a 3d imaging technique that measures the changes in oxygenated and

deoxygenated hemoglobin [50].

• Event-related optical signal is a scanning technique based infrared light and measures changes

of the cortex [66].

• Diffusion tensor imaging is another non-invasive technology that characterizes the three-dimensional

diffusion of water as a function of spatial location [8, 21].

• Electroencephalography records electrical activity along the scalp by measuring the voltage

fluctuation within neurons [126].

• Magnetoencephalography records magnetic fields in the brain. It’s temporal resolution is 1ms

and spatial resolution is around 2 mm [69].

• Positron emission tomography by detecting gamma rays into the body provides a three-dimensional

image of the functional process [197].

• Single-photon emission computed tomography uses gamma rays and provides a three dimen-

sional model of the brain [201].

Research in this thesis relates to state-dependent and resting-state data. State-dependent data is

based on recording brain’s activities during special task [211] while resting-state data reflects the

brain activity of the subjects that do not do any task [27].

1.2 Brain data sets

Many data sets which tested in this thesis are based on fMRI technique. This technique is widely

used for analyzing brain activities because it has very high spatial resolution and each voxel in fMRI

image has about two millimeters width. Thinking process is very fast and sometimes subject thinks

about many concepts in one second, whereas in fMRI we can get only one image per second. Usual

method for collecting state-dependent data with functional magnetic resonance imaging technique is

presenting stimuli to subjects, instruct them to think about stimuli and capturing their brain images

when they think. Haxby, Science2008 and StarPlus are state-dependent data sets while COBRE and

Oxford data sets are resting state data sets.
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Figure 1.1: Haxby data

Resting-state fMRI (rsfMRI) data is another type of fMRI data that has been used in many appli-

cations in the neuroscience area. Study of resting-state of the brain can help us to better explain its

functional connectivities.

1.2.1 Haxby data

Haxby data was collected by Haxby et al. [48] to study the face and object representation in

human ventral temporal cortex. The temporal lobe is a region of the cerebral cortex of the brain that

involved in processing of semantics in the both speech and the vision. In each trail subjects looked at

greyscale images of eight object categories. Each image was shown for 500msec and brain fMRI data

were recorded every 2.5s and trail were ran 12 times for every subject. Figure 1.1 shows the material

and categories of stimuli in this data.

1.2.2 Science data

This data was collected by Mitchell et al. [118] and it is based on capturing brain’s image when

subjects think about various stimuli. These stimuli can be an easily-distinguishing words such as
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Figure 1.2: Schematic depiction of presentation timing

Figure 1.3: Collecting Starplus data

dog and airplane. Nine people participated in their project and the stimuli were line drawing of 60

concrete objects from 12 semantic categories with five samples in each category. All set of stimuli

were presented six times to subjects in a different random order. Each stimuli presented 3s, followed

by a 7s rest period (figure 1.2).

This data is similar to Starplus data [188] that used by researchers to study the cognitive states

of subjects in a sentence-picture verification task [153]. In each trail, a person instructed to look

at a pairs of sentence and picture and decides about matching of them. First stimulus, that can be

a sentence or picture, presented to person, then after four second the stimulus replaced by a blank

screen. Four second later on the next stimulus is presented and every 500msec images collected.
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1.2.3 COBRE data

COBRE data set that is available on [184]. This data contains raw anatomical and functional

MR data from 72 patients with Schizophrenia and 75 healthy controls, ranging in age from 18 to 65

years old. Resting fMRI, anatomical MRI, phenotypic data for every participant including: gender,

age, handedness and diagnostic information are released. Some papers by the Center for Biomedical

Research Excellence (COBRE) group published based on this data [33, 112, 169]

1.2.4 Oxford data

This data is from 1000 Functional Connectomes Project. It is available on [193] and it is used

in this project to study the modularity in the human brain. It contains the data of 22 healthy brains.

Figure 4.6 shows the structure of the input data of the subject 02248 after preprocessing and dimension

reduction which contains 1008 brain regions with 166 brain activity. Last three columns are the 3

dimensional coordinates for each region.

1.2.5 Cerebral Cortex of the Cat

The Cerebral Cortex of the Cat data is based on the single neuron response to direct sensorimotor

cortex stimulation in cats [73]. Neuronal responsiveness of each of the four paws to strong cortical

surface stimulation was assessed for understanding facilitatory and inhibitory modulation of the wide-

field neurons by small-field neurons. This data is publicly available on [187].

1.3 Algorithms and methods

Brains are very complex systems. Technologies for collecting brain data are still not perfect, that

is why the data sets about brain and brains’ activities are high-dimensional, noisy and sparse. Con-

ventional machine learning algorithms like support vector machines and logistic regression are not

efficient for analysis such data sets. The developments of new algorithms for selection of informative

features in the brain data sets is very important. In this thesis, we introduce new feature selection

algorithms for analysis of brain data sets. The overlapping feature selection algorithm and feature

selection based on catastrophe model are helpful for selection group of the most informative features.

It was proved by results of application of these methods to Haxby, Science 2008 and Parkinson’s
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disease data sets. The proposed algorithms are able to reduce significantly the number of features in

Haxby and Science 2008 data sets. improving classification accuracy of most classifiers like support

vector machine, Bayes networks, Logistic regression. In this chapter, we demonstrate some of the

well-known supervised classification, clustering and complex networks algorithms and the results of

application of the addressed classifiers for Haxby and Science 2008 data sets. Then we describe and

recommend some publicly available packages and libraries analysis of large-scale brain data sets.

1.3.1 Dimension reduction

Principal component analysis: Principal component analysis (PCA) maps a set of data points

to linearly uncorrelated variables called as principal components. Suppose a vector x with p random

variables is given. Also αk is a vector of p constants and α
′
k =

∑p
j=1 αkjxj . PCA iteratively finds

linear function of x, α
′
1x with maximum variance, then finds another linear function of x, α

′
2x that is

uncorrelated with α
′
1x maximum variance [196].

Independent component analysis: Independent component analysis decomposes a multivariate

signal into independent non-gaussian signals. A given data xi(t) is modelled using hidden variables

si(t), as

xi(t) =
m∑
j=1

aijsj(t), i = 1...n (1.1)

or

X = AS (1.2)

where aij is called mixing matrix and si(t) are called independent components or source signals

[85].

1.3.2 Voxel (feature) selection

Generally, classifiers work better with less features, but choosing this number of features is not

always easy (figure 1.6). Our knowledge of how to implement feature selection for fMRI data is still

preliminary [75]. Generally, voxel selection algorithms can be categorized as follows [134].
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1. Embedded (learner dependent)

Support Vector Decomposition Machines (SVDMs) is one representative of such algorithms.

2. Filter (learner independent)

For example it can be done by averaging over spatial/temporal dimensions or using multiple

hypothesis testing for active voxels (e.g. t-test)

3. Wrapper (wraps around an induction algorithm)

As mentioned before, fMRI data sets are high dimensional with more than 20,000 voxels and

several hundred samples. In such data sets feature selection is an important step to avoid an over-

fitting of a classifier. One approach to feature selection is to limit the analysis to specific anatomical

regions. For example, Haxby et. al. [75] in their study of visual object processing, restricted their

data analysis to the ventral temporal cortex. Another feature selection approach is the computation of

univariate (voxel-wise) statistics ([75], [35]). The challenge in this approach is the presence of very

large space of voxel sets. Common fMRI feature selection methods include the following [139]:

• Activity

This method scores a voxel by the difference in its mean activity level during each task condi-

tion versus a baseline condition, as measured by a t-test.

• Accuracy

This method is based on accuracy of prediction in Gaussian Bayesian classifier for each sample

and requires performing a cross-validation within the training set for each voxel.

• Searchlight Accuracy

This method is similar to Accuracy, but instead of using the data from a single voxel it uses the

data from the voxel and it’s immediately adjacent neighbors in three dimensions [102].

• Analysis of Variance

Analysis of Variance looks for voxels where there are reliable differences in mean value across

conditions.
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Figure 1.4: Prediction error of classifier vs. increasing number of features

Figure 1.5: Stimuli in Haxby data

• Stability

Stability is based on consistently of voxels’ reaction to the various conditions across cross-

validation groups in the training set.

Figure 1.5 shows the results of classification of 8 categories experimental data (see Table 1.3.2).

Here stimuli are photographs of objects in 8 categories (faces, houses, cats, bottles, scissors, shoes,

chairs, scrambled) and classification task is prediction of the category.

Table 1.1: Accuracy of classification with selecting 200 voxels with the 4 methods and all voxels
[138]

GNB Log.Reg.
activation 85% 88%
accuracy 86% 90%
searchlight accuracy 84% 88%
weight range 93% 92%
all cortex voxels 35% 43%

Table 1.2 shows the results of classification of ten categories experimental data. Here classifica-

tion task is prediction of the exemplar. One can see that the Searchlight Accuracy algorithm produces

better accuracy than other algorithms. The reason is that neighbor voxels have similar activity and

classifier weights for these voxels have similar magnitude. Therefore the Searchlight Accuracy gives

good results because it takes into account spatial locality of voxels.
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Figure 1.6: Test and training error as a function of model complexity [74]

Table 1.2: Accuracy of classification with selecting 400 voxels with the 4 methods and all voxels
[138]

GNB Log.Reg.
activation 70% 58%
accuracy 72% 70%
searchlight accuracy 90% 92%
weight range 72% 45%
all cortex voxels 23% 43%

1.3.3 Supervised classification algorithms

In this section we review the various Machine Learning classifiers that are used for analysis of

fMRI data. Generally we prefer the classifiers that have reasonable tradeoff between training set and

test set (see figure 1.6). Support Vector Machines (SVMs), Logistic Regression, Nearest Neighbor

Method, Gaussian Naive Bayes are commonly used in fMRI data analysis. For different category of

fMRI data different classifier can be used. For example, for analyzing the state-dependent data like

Science data Gaussian Naive Bayes is more popular than others. The main reasons for choosing GNB

for these data are: easily implementing and being robust to noise, having acceptable performance

with a small number of data points without requiring prior dimensionality reduction step.

Linear classifiers: Linear classifiers apply linear functions to separate classes. A linear classifier

with a set of weights w = (w1, . . . , wv) applied to a sample x that has v features as follows:

xw = x1w1 + ...+ xvwv (1.3)

For two classes A and B,, this classifier predicts class A if xw > 0 or class B if xw < 0 [139].

Logistic Regression: Logistic Regression is a function approximation algorithm that uses training
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data for direct estimation of P (classk|x) [116] and fits data to Logistic Function for prediction of an

event [139]. It models P (classk|X) as

P (classk|x) =
exp(x

′
wk + w0,k)

1 +
∑k−1

j=1 exp(x
′wj + w0,j)

(1.4)

for classes 1, ..., k − 1 and

P (classk|x) =
1

1 +
∑k−1

j=1 exp(x
′wj + w0,j)

(1.5)

for class k. It fits parameters wj by solving the following optimization problem:

max
n∑
i=1

log(P (yi|Xi)) (1.6)

where Xi is the ith sample and yi is its label.

Linear Support Vector Machines: Linear Support Vector Machines is another discriminative

classifier that learns a discriminant w by solving the following problem:

min ‖w‖22 + λ
∑
i=1:n

h(yix
′
iw) (1.7)

where h is loss function and yi ∈ {−1, 1}. Minimizing the first term will maximize hyperplane

margin and minimizing of second term will penalize misclassification of data.

Gaussian Naive Bayes: Gaussian Naive Bayes (GNB) is based on Bayes rule [133]:

P(Y |X) ∝ P(X|Y )P(Y ) (1.8)

where X ∈ <J is the example and Y ∈ {0, 1} is the class label. The likelihood of the ith sample

for a feature j using a normal Gaussian is:

Xi,j |Y = c ∼ N(θ
(c)
j , σ2

j (c)) i = 1, ..., N, (1.9)

P(X|Y = c) =

J∏
j=1

P(Xj |Y = c). (1.10)

The most probable value of Y can be calculated as follow:
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Predicted− class = argmaxcP(Y = c)
J∏
j=1

P(Xj |Y = c) (1.11)

= argmaxcP(Y = c)

J∏
j=1

N(θ̂j
(c)
, σ̂j

2(c)) (1.12)

θ̂j
(c)

=
1∑N

i=1 δ(Yi = c)

N∑
i=1

δ(Yi = c)Xij (1.13)

σ̂j
2(c) =

1∑N
i=1 δ(Yi = c)

N∑
i=1

δ(Yi = c)(Xij − θ̂j
(c)

)2 (1.14)

P(Y = c) =
1

N

N∑
i=1

δ(Yi = c) (1.15)

where θ̂j
(c)

and σ̂j2(c) are sample mean and variance for the feature j and class c and P(Y = c)

is class frequency. Here δ(.) is the indicator function (δ : A → {0, 1} where δ(x) = 1 if x ∈ A and

δ(x) = 0 otherwise).

Hierarchical Bayesian Model: The GNB can be trained using data from only one subject under

assumption that there are no variations across subjects, but Hierarchical Bayesian Model supposes

that the individual θj are related by some distribution, and if suppose that θj are all drawn from a

common normal distribution, then we will have:

Xij |θj ∼ N(θj , σ
2) (1.16)

θj ∼ N(µ, τ2) (1.17)

µ and τ2 are called hyperparameters for the model and θj are related by some distribution.

In this mode, the aim is to find the best estimate of θj not only by given data, but also using prior

information about its distribution (θj |µ, τ2, X) and if ∀j, σ2
j = σ2 then:

θ̂j =
N
σ2 X̄·j + 1

τ2
µ

N
σ2 + 1

τ2

(1.18)
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Figure 1.7: Classification accuracies VS the number of training samples for Starplus dataset [157]

µ̂ =
1

J

J∑
j=1

X̄·j (1.19)

τ̂2 =
1

J

J∑
j=1

(X̄·j − µ̂)2 (1.20)

In this model, variance σ2 must be estimated from the data. Rustandi et. al. [157] applied

the hierarchical GNB classifier to Starplus and Two categories data sets. Two categories dataset

consists of fMRI activations of 6 subjects, where in each trial, each subject looked at a word that

belong to one of two categories, and had to think about the properties of the word. Figure 1.7 shows

the classification accuracies vs number of training samples for the hierarchical GNB and the two

reference methods (GNB-indiv and GNB-pooled) for Starplus data set. Figure 1.8 illustrates results

of classification accuracies versus number of training samples for the hierarchical GNB and the two

reference methods for Two categories dataset.

Feature Sharing Classifier: An assumption that all the parameters θj are drawn from the same

distribution is one disadvantage of standard hierarchical Bayes model. Palatucci et. al. [133] de-

veloped an algorithm based on HGNB and improved its accuracy. Consider two variables that are

perfectly correlated while the parameters distributions are significantly different. If we suppose pa-

rameters for these two variables are drawn from a common normal distribution, the estimation of µ, τ

and θj will not be reliable. As mentioned before, fMRI is a three dimensional image of brain activity,

so each voxel has a time series for activation (Figure 1.9).
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Figure 1.8: Classification accuracies vs number of training samples for Two categories dataset [157]

Figure 1.9: Time series of neural activation in visual cortex [133]
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Niculescu et. al. [125] showed that there there is a strong correlation between most of voxels.

Palatucci et al. [133] used linear mapping to estimate features for a single voxel. The Feature Sharing

Classifier is based on the Hierarchical Bayesian Model but unlike the latter the parameters can be

drawn from different distributions. Assume we have two random variables, X and Y , parameterized

by θX and θY . The mX→Y (θX) be of a parameter transformation function that maps parameters of

variable X to those of variable Y. The set of all other variables is denoted by Cj . Let Gj = |Cj | be

the number of variables in that set.

θ̂j =
N
σ2 X̄·j + 1

τ2
µ̂

N
σ̂2 + 1

τ̂2

(1.21)

µ̂j =
1

Gj

Gj∑
g=1

mg→j(X̄·g) (1.22)

τ̂j
2 =

1

Gj

Gj∑
g=1

(mg→j(X̄·g)− µ̂j)2 (1.23)

σ̂j
2 =

1

Gj

Gj∑
g=1

m′g→j(S
2
g ), (1.24)

where S2
g is sample variance for feature g. Now suppose we want to estimate parameters for a single

feature for class k by the feature sharing classifier. The following steps provide calculation of these

parameters:

1. For each voxel, compute the sample mean over N training samples;

2. Perform a linear regression with each neighbor for each voxel;

3. For each voxel-timepoint, compute estimates of the hyperparameters;

4. Smooth sample mean with these hyperparameters.

Support Vector Decomposition Machines: Support Vector Decomposition Machines (SVDM)

is another classifier that developed by Pereira et. al. [137]. They combined the goals of dimensionality

reduction and classification into a single objective function, and presented an efficient alternating-

minimization algorithm for optimizing this objective. For a learning problem, suppose there are

19



Figure 1.10: Transforming features into space of the other before computing hyperparameters [133]

Figure 1.11: Accuracies of the standard Gaussian Naive Bayes classifier and the Feature Sharing
classifier for 13 human subjects with two training samples per class [133].

Figure 1.12: Accuracies of the standard Gaussian Naive Bayes classifier and the Feature Sharing
classifier using only voxels in the Visual Cortex [133].
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n data samples xi ∈ Rm with labels yi ∈ {0, 1}. The goal of the singular value decomposition

algorithm is to find a representation of training data as a product of lower-rank matrices.

Xn×m =



x1(1) x1(2) ... x1(m)

x2(1) x2(2) ... x2(m)

... ... ... ...

xn(1) xn(2) ... xn(m)


(1.25)

Xn×m ≈ Zn×lWl×m (1.26)

minZ,W ‖X − ZW‖2Fro (1.27)

Pereira et. al. [137] formulated problem as follows:

MinZ,W,Q ‖X − ZW‖2F + λ

n∑
i=1

k∑
j=1

max(0, µ− Yij [ZQ]ij) (1.28)

subject to: Zi,1 = 1, Zi,2:end <= 1, i = 1, 2, ..., n and ‖Q:,j‖2 <= 1, i = 1, 2, ..., l; j =

1, 2, ..., k (λ > 0, u > 0, l ∈ Z++).

Here Xn×m ∈ Rn×m, Yn×m ∈ {1,−1}n×m, Z ∈ Rn×l,W ∈ Rl×m, Q ∈ Rl×k

Information captured by classifiers Next we discuss application of some of above described

classifiers in brain data sets.

Distinguishing semantic categories of stimuli by classifiers.

Now we would like to understand which kind of information is captured by classifiers. When one

classifier can classify brain activities and distinguish them, we can claim that it could get a meaning

of stimuli. But this is not enough to decode processes of brain, because fMRI can get combination of

all processes. Mitchell et al. [118] developed a model for prediction of brain activity when subjects

think about concrete nouns. First question of Mitchell et al. was distinguishing differences between

brain images when people think about different stimuli. Figure 1.13 shows classification accuracy for

subjects thinking about tool or building. Each bar is related to classification accuracy of one subject.

This result illustrates that we can train classifier to distinguish semantic categories of stimuli.

To answer the question about possibility of distinguishing semantic meanings of stimuli by classi-
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Figure 1.13: Classification accuracy for subjects which think about tool or building

Figure 1.14: Training classifiers when presenting words, then decode for category of picture stimuli

fiers, we can train a classifier when subject thinks about pictures and later use this classifier to decode

fMRI activity for words. Figure 1.14 shows classification accuracy when presenting English words

to decode category of words stimuli and also presenting words, to decode category of picture stimuli

[162]. These results are almost the same if instead of English words, Portuguese words are used to

train classifiers [161]. It means that classifier can capture some semantic structure of stimuli.

Brain representations similarity across people

One of the challenging question in neuroscience area is about similarity of neural activation be-

tween different subjects when they think about the ideas. To clarify this, we can train classifier on one

group of subjects and test it on another group. Figure 1.15 shows the results of training of classifiers

on a group of people, and using it for new person. Here black bars are classification accuracy for

one group of participants and white bars show classification accuracy for the new one. Again we can

conclude that neural representations on different subjects are almost the same.
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Figure 1.15: Training of classifiers on a group of people, and using it for new person

1.3.4 Regression analysis

In this subsection, we discuss about regression analysis and it’s application to analyze the brain

data.

The aim of regression analysis is finding the relation between variables and fitting a function to a

data to see how the one group of variables vary as a function of another group [186]. There are three

groups of variables that we can consider in regression analysis; unknown parameters (β), independent

variables (X) and dependent variable (Y ). It means that Y is related to X and β and a regression

model can be described as follows:

Y ≈ f(X,β). (1.29)

There are different regression analysis algorithms. Here we describe some of them that are more

common in the different applications.

Logistic regression: The general form of linear equation that is used in linear regression analysis

is as follow [205]:

y = b0 + bT1 x (1.30)

where b0 and vector b1 ∈ Rn are constants, x is the independent variable, and y is the dependent

variable.
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Multiple regression: Generally, the approximation 1.29 is explained as E(Y |X) = f(X,β) that

can be linear or non-linear. A multiple regression model can be formulated as follow:

yi = β1xi1 + β2xi2 + ...+ βpxip + εi (1.31)

where xij is the ith observation on the jth independent variable, βi is the regression intercept and εi

is the residual.

Neural networks for regression analysis: Neural networks is a common method for solving

different machine learning problems. As a supervised learning model, it applies weight vector w

and minimizes the sum of square residuals. Searching the maximum likelihood weights is based on

gradient descent approach. The weight updating in a neural networks is as follow:

∆wij(t+ 1) = γ∆wij(t) + αδi(t)xj(t) (1.32)

where ∆wij(t) is the weight value difference between nod i and j at time t, α ∈ (0, 1] is the learning

rate and γ ∈ (0, 1] is the momentum parameter [13, 26].

Application of regression analysis algorithms in brain data analysis: Different regression

analysis algorithms have been used for analysing various brain data. One of the famous problem

in neuroscience area is epileptic seizures analysing. Generally, epileptic data is based on electroen-

cephalography (EEG) technology that provides appropriate temporal resolution of brain signals [126]

and regression analysis is an effective method for analyzing this type of brain data. Subasi et al.

analyzed EEG signals using wavelet transform and classification by logistic regression and artificial

neural network to support a physician in the diagnosing process [173]. Tomioka et al. [179] regu-

larized logistic regression used for classification of single trial electroencephalography. It’s shown

that using regression analysis can improve the sensitivity of predictor and classify patients correctly

with respect to epilepsy diagnosis [49]. In [121] an association between precentral gyrus connec-

tivity structure and autism spectrum disorders is investigated using logistic regression and showed

the strength of connectivity within and between distinct functional subregions of the precentral gyrus

which related to autism spectrum disorders diagnosis.

Recently, researchers used regression analysis algorithms for decoding and uncovering the infor-

mation in the brain [1, 119]. Miyawaki et al. [1] used logistic regression in a model for reconstructed
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visual images and decoding fMRI activity.

1.3.5 Neurofuzzy model

This model is based on artificial neural networks and fuzzy logic by using capabilities of both

models [180]. In the other words it applies neural networks structure and at the same time uses if-

then rules in fuzzy logic. Also, it uses prior knowledge to compute membership function. Different

algorithms, including the backpropagation algorithm, can be used to learn such neural networks.

Adaptive neuro fuzzy inference system (ANFIS) is a well-known neurofuzzy system that imple-

ment a Sugeno fuzzy system and uses a t-norm and differentiable membership function [86, 177].

For given two inputs x0 and y0 and corresponding linguistic labels Ai and Bi, each neuron in the

first layer of neurofuzzy model transmit crisp signal to the next layer in accordance with the following

equations:

Ai(u) = exp

[
−1

2

(
u− ai1
bi1

)2
]

and

Bi(u) = exp

[
−1

2

(
u− ai2
bi2

)2
]
,

where {ai1, ai2, bi1, bi2} is the parameters set. Second layer is responsible for fuzzification and each

neuron in this layer determines the fuzzy degree of received crisp input:

α1 = A1(x0)×B1(y0) = A1(x0) ∧B1(y0)

and

α2 = A2(x0)×B2(y0) = A2(x0) ∧B2(y0).

Every node in the third layer calculates the ratio of the ith rules firing strength to the sum of all rules

firing strengths:

β1 =
α1

α1 + α2

and

β2 =
α2

α1 + α2
.
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Layer 4 or output membership layer combine all its inputs by using the fuzzy operation union:

β1z1 = β1(a1x0 + b1y0)

and

β2z2 = β2(a2x0 + b2y0).

The last layer is responsible for Defuzzification:

o = β1z1 + β2z2.

1.3.6 Complex networks and brain data analysis

Brain can be considered as a complex network for information transfer through interconnected

regions [166, 167]. Although, complex networks’ structure can be considered as a simple graph con-

sisting of nodes and the edges between them, the measures that are used for analyzing such networks

are not simple and trivial. On the other hand, there are some measures that make the complex net-

works different from simple graphs, random graphs and lattices [6]. Scale-free networks [17] and

small-world networks [204] are two classes of complex networks that are widely used in the different

applications. Small-world networks have a high level of clustering and a short average node-to-node

distance [204]. Scale-freeness means that in the networks most of the nodes have only a limited num-

ber of connections, but a small number of so called hub-nodes have a large number of connections

which are holding the network together [16].

Anatomical structure of a healthy brain has a hierarchical organization characterized by very low

clustering of high-degree nodes [22]. This feature can be used for comparison of the structure of

healthy brain and a brain with abnormality or disorder. For example local-distance is increased in

cortical-cortical activity in autistic children [82]. A graph theoretical analysis was implemented for

investigation of modularity and local connectivity in childhood-onset schizophrenia in [10]. The

authors examined the network that obtained from fMRI data and showed that local connectivity and

modularity is disrupted in childhood-onset schizophrenia.
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1.4 General machine learning software for analyzing the brain data

There are some publicly available packages and libraries that are used for brain data analysis. In

this section we describe some of them.

Analysis of Functional NeuroImages: Analysis of Functional NeuroImages (AFNI) is a pack-

age of computer programs for analysis and visualization of three-dimensional human brain functional

magnetic resonance imaging (FMRI) which was developed at the Medical College of Wisconsin be-

ginning in 1994. It can color overlay neural activation maps onto higher resolution anatomical scans

[42]. It is available on [182].

FMRIB Software Library: FMRIB Software Library (FSL) is a general library of analysis tools

for functional, structural and diffusion MRI brain imaging data [87] (see Figure 1.16). It contains

many tools for Functional and structural MRI, Diffusion MRI and GLM that are listed in the table

1.4. The FEAT, MELODIC, FLOBS and SMM packages are for analyzing of functional MRI, but

BET, SUSAN, FAST, FLIRT, FUGUE and SIENA packages are for structural MRI. Also, FDT and

TBSS are for low-level diffusion parameter reconstruction and probabilistic tractography and Tract-

Based Spatial Statistics of Diffusion MRI. This software can be downloaded from [185].

Table 1.3: FSL tools
Functional MRI Structural MRI Diffusion MRI: FDT GLM / Stats: GLM general advice Other: FSLView

FEAT BET TBSS Randomise Fslutils
MELODIC FAST EDDY Cluster Atlases
FABBER FIRST TOPUP FDR Atlasquery
BASIL FLIRT & FNIRT Dual Regression SUSAN FUGUE

FSLVBM FLOBS Mm Miscvis
SIENA & SIENAX MCFLIRT POSSUM

fsl anat

Figure 1.16: The FSL logo [87]

Statistical parametric mapping: Statistical parametric mapping (SPM) is a software for the sta-

tistical analysis of functional imaging data [59]. Using statistical techniques, it examines differences

in brain activity recorded during functional neuroimaging experiments. It is available on [190].
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MultiVariate Pattern Analysis (MVPA) in Python (PyMVPA): MultiVariate Pattern Analysis

in Python (PyMVPA) is a Python package for statistical learning analyses of large data sets [70].

It provides a framework for data import and export and different machine learning algorithms like

classification, regression, feature selection. It is powerful software for neuroimaging domain and is

eminently suited for such data sets. PyMVPA is free software and available on [194].

Figure 1.17: The PyMVPA logo

The R Project for Statistical Computing: R is an environment for statistical computing and

graphics that contains a comprehensive libraries of machine learning and statistical analysis applica-

tions (see Figure 1.18). It’s a free software and available on [195]. It contains different packages like

AnalyzeFMRI, fmri and dcemriS4 for analysis brain data [108, 176, 206].

Figure 1.18: The R logo

MATLAB (matrix laboratory): MATLAB is an interactive environment for numerical compu-

tation, visualization, and programming that developed by MathWorks [191]. It provides varieties of

toolboxes for signal processing, image processing, control systems, test and measurement, and com-

putational biology [191]. Different toolboxes in MATLAB environment like CONN [207], cPPI [53],

and Brain Connectivity Toolbox [156] are available for analyzing brain data.

Figure 1.19: The MATLAB logo [191]

Waikato Environment for Knowledge Analysis (WEKA): WEKA - Waikato Environment for

Knowledge Analysis - is a collection of machine learning algorithms for data mining tasks. It contains

tools for data pre-processing, classification, regression, clustering, association rules, and visualization
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[110]. A WEKA Interface to solve classification and prediction problems for fMRI Data is introduced

in [146]. It is publicly available on [189].

Figure 1.20: The WEKA logo

1.5 Conclusion

In this chapter, we presented the literature review on related work. First we described different

brain imaging technologies and presented the data sets that analysed in this thesis. Then we briefly

demonstrated some of commonly used algorithms for dimension reduction, feature selection, super-

vised classifiers, regression analysis, Neuro-fuzzy and complex networks. We showed results in using

Haxby and Science 2008 data sets obtained using classifiers like Support Vector Machines, the Logis-

tic Regression and the Gaussian Naive Bayes. Different software and packages based on the famous

algorithm are developed and we introduced some of them like ANFI, FSL, SPM, PyMVPA and the

environment like MATLAB, R and WEKA.

29



Chapter 2

Feature selection algorithms for brain

data sets

In this chapter we introduce feature selection algorithms for brain data sets. Overlapping feature

(voxel) selection algorithm uses the n-dimensional rectangles for approximation of classes in the

given subset of voxels and computes overlaps between classes. Voxels or groups of voxels providing

smallest overlaps are identified as the most informative voxels.

The second algorithm based on Catastrophe model and it removes the irrelevant features in a data

set. The importance of a feature is based on its fitting to the Catastrophe model. Breast Cancer and

Parkinson Telemonitoring data sets used to evaluate the model.

2.1 Feature selection algorithm for fMRI data sets using hyperrectan-

gles

Functional magnetic resonance imaging (fMRI) technique measures brain activity by detection

fluctuating of oxygenation that occurs in response to neural activity in blood [81]. It is a technique for

obtaining three dimensional images related to activity in the brain through time. FMRI scanners can

measure the changes in the blood magnetic resonance that called the Blood Oxygen Level-Dependent

(BOLD) signal. The smallest unit measured by BOLD fMRI, is called a voxel. FMRI’s spatial

resolution is around 2mm and it is a powerful technique in studies of cognitive processes in healthy

brain and it’s contrast can be performed on more than 100,000 voxels [127].
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The development of machine learning techniques for fMRI data sets is an emerging research area

in neuroscience. Over the last decade various machine learning techniques have been applied to study

fMRI data sets. In general, fMRI data sets contain a large number of features (tens of thousands) and

significantly less samples (several hundred). Therefore such data sets are sparse. Furthermore such

data sets contain noise. Conventional supervised classification algorithms are not always applicable to

such data sets. Therefore the developments of algorithms for finding informative features in such data

sets is very important. Recently, some well known feature selection algorithms have been modified

for fMRI data sets [25, 45, 103, 117, 130, 140, 161]. Limiting the analysis to specific anatomical

regions [75], univariate feature selection [75, 117, 144] and multivariate feature selection [102, 140]

are different ways of selecting informative features (voxels) in fMRI data.

One way to select the set of informative features from the data is to use multivariate feature

selection statistics to reduce the complexity of the whole brain data analysis [127]. For example, F -

test or t-test to find the most active voxels or the most discriminant voxels and considering them as the

set of informative voxels are two usual methods for feature selection in fMRI data sets [45, 117, 120].

The main challenge in the univariate feature selection is the possibility of losing some informative

features [127]. In [45, 68, 99], the multivariate feature selection algorithms were applied to find

significant features in the whole brain data. For example, the searchlight approach that developed

in [102] uses local spatial information of a voxel to select features. Dimension reduction is another

efficient method to select informative features that many researchers applied to the voxels in different

regions of the brain [103, 120, 132].

In this section we introduce an algorithm for voxel selection in fMRI data sets. This algorithm

uses hyperrectangles to approximate classes in such data sets and overlaps between different hyper-

rectangles. A voxel or a group of voxels providing least overlaps between classes is considered as a

most informative voxels. We apply the proposed algorithm to the well-known Haxby data set. The

number of voxels in the available version of this data set has been already reduced by another fea-

ture selection algorithm [71, 75]. However, the proposed algorithm is able to significantly reduce the

number of voxels in this data set improving classification accuracy of most classifiers.

The rest of the section is organized as follows. In Section 2.1.1 we introduce hyperrectangles to

approximate classes and compute overlaps between them. We describe the voxel selection algorithm

in Section 2.1.4. Computational results and their discussions are given in Section 2.1.5. Section 2.3
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concludes the section.

2.1.1 Definition of overlaps

In this section we define one-dimensional and multi-dimensional overlaps between different stim-

uli using activity levels of voxels. Overlaps can be defined between two classes as well as between a

given class and the rest of a data set. We start with the definition of overlaps between two classes.

2.1.1.1 Binary univariate overlaps.

Suppose we are given a data set A which contains m ≥ 2 classes, ni samples in the i-th class and

p voxels. We denote by dikj the j-th brain activity value for the k-th sample in the i-th class, where

i = 1, . . . ,m, j = 1, . . . , p, k = 1, . . . , ni. This is illustrated in Figure 2.1. Then we introduce the

following numbers:

aminij = min
k=1,...,ni

dikj , a
max
ij = max

k=1,...,ni

dikj ,

j = 1, . . . , p, i = 1, . . . ,m.

Here aminij and amaxij are the minimum and maximum activation value for the j-th voxel in the i-th

class, respectively. Then the j-th voxel in the i-th class can be identified by a segment [aminij , amaxij ].

We call this segment the activation level segment of the j-th voxel in the i-th class. For a given voxel

j = 1, . . . , p and two different classes i and l we define:

c1j(i, l) = max(aminij , aminlj ), c2j(i, l) = min(amaxij , amaxlj ),

e1j(i, l) = min(aminij , aminlj ), e2j(i, l) = max(amaxij , amaxlj ).

It is clear that the interval [e1j(i, l), e2j(i, l)] contains activation levels of the j-th voxel of all samples

from classes i and l and the interval [c1j(i, l), c2j(i, l)], if is not empty, contains samples from both

classes. Overlaps for the j-th voxel between these two classes can be defined either using the length of

both intervals or the number of samples whose activation level of the j-th voxel are in these intervals.
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Figure 2.1: Brain activity value

2.1.1.2 The use of the length of intervals.

Consider

b1(i, l) = max {0, c2(i, l)− c1(i, l)} , b2(i, l) = e2(i, l)− e1(i, l).

One can note that b1(i, l) = 0 if the activation level segment of the j-th voxel in classes i and l either

has no intersection or their endpoints coincide. Always b2(i, l) ≥ 0 and b2(i, l) = 0 if and only if

amaxij = amaxlj = aminij = aminlj . Consider the following number

z =
(
aminlj − aminij )(amaxij − amaxlj

)
.

If z ≥ 0 then either

[aminlj , amaxlj ] ⊆ [aminij , amaxij ]

or

[aminij , amaxij ] ⊆ [aminlj , amaxlj ].

In particular, if b2(i, l) = 0 then z = 0.

The number

Ojil =

 1, z ≥ 0,

b1(i,l)
b2(i,l) , otherwise.

is said to be the overlap of the j-th voxel between classes i and l. Note that this type of overlaps were
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also considered in [15].

2.1.1.3 The use of the number of samples.

Overlaps can also be defined using the number of samples in the interval [c1j(i, l), c2j(i, l)]. Con-

sider the following sets:

Qt =
{
k = 1, . . . , nt : c1j(i, l) ≤ dtkj ≤ c2j(i, l)

}
, t = i, l.

Let q = |Qi|+ |Ql| where |Qt| is the cardinality of the set Qt, t = i, l. Then the number

Ojil =

 1, z ≥ 0,

q
ni+nl

, otherwise.

is said to be the overlap of j-th voxel between classes i and l.

It is clear that Ojil = Ojli, O
j
il ∈ [0, 1] and Ojii = 1 for any j = 1, . . . , p and i, l = 1, . . . ,m.

Thus, we can define the following m×m matrix for the voxel j:

Oj =



1 Oj12 Oj13 . . . Oj1m

Oj21 1 Oj23 . . . Oj2m

. . . . . . . . . . . . . . .

Ojm1 Ojm2 Ojm3 . . . 1


.

Oj is a symmetric matrix.

2.1.2 One-Vs-All univariate overlaps

For a given class i ∈ {1, . . . ,m} and voxel j ∈ {1, . . . , p} we define

āminij = min
l=1,...,m,l 6=i

aminlj , āmaxij = max
l=1,...,m,l 6=i

amaxlj ,

c̄1j(i) = max
(
aminij , āminij

)
, c̄2j(i) = min

(
amaxij , āmaxij

)
,

ē1j(i) = min
(
aminij , āminij

)
, ē2j(i) = max

(
amaxij , āmaxij

)
,
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b̄1(i) = max {0, c̄2(i)− c̄1(i)} , b̄2(i) = ē2(i)− ē1(i),

z̄ =
(
āminij − aminij )(amaxij − āmaxij

)
.

Q0
ti =

{
k = 1, . . . , nt : c̄1j(i) ≤ dtkj ≤ c̄2j(i)

}
, t = 1, . . . ,m,

Q̄i =

m⋃
t=1

Q0
ti, q̄ = |Q̄i|, n =

m∑
i=1

ni.

We can define the overlap between the class i and the rest of the data set by

Ōji =

 1, z̄ ≥ 0,

b̄1(i)

b̄2(i)
, otherwise.

or by

Ōji =

 1, z ≥ 0,

q̄
n , otherwise.

Then we can define a vector of overlaps for a given voxel j as follows:

Ōj =
(
Ōj1, . . . , Ō

j
m

)
.

2.1.3 Multi-dimensional overlaps

A hyperrectangle B = [a, b], a, b ∈ Rn in n-dimensional space Rn is defined as follows:

B = {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, . . . , n} . (2.1)

Assume that we are given two hyperrectangles B1 = [a1, b1] and B2 = [a2, b2]. Their intersection is

empty if and only if there exists at least one i ∈ {1, . . . , n} such that either b1i < a2
i or b2i < a1

i . In

other words the intersection of B1 and B2 is empty if and only if

max
i=1,...,n

max
{
a2
i − b1i , a1

i − b2i
}
> 0.

This means that B1 and B2 have an intersection if and only if:

max
i=1,...,n

max
{
a2
i − b1i , a1

i − b2i
}
≤ 0.
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Then we get that a1
i ≤ b2i and a2

i ≤ b1i for all i ∈ {1, . . . , n} which implies that max{a1
i , a

2
i } ≤

min{b1i , b2i } for all i ∈ {1, . . . , n}. Two hyperrectangles do not intersect if and only if max{a1
i , a

2
i } >

min{b1i , b2i } at least for one i ∈ {1, . . . , n}.

The intersection of two hyperrectangles B1 and B2 is also hyperrectangle and it can be described

as follows:

B12 = [α, β], α, β ∈ Rn

where αi = max{a1
i , a

2
i } and βi = min{b1i , b2i }, i = 1, . . . , n.

2.1.3.1 Binary multi-dimensional overlaps.

First we define the multi-dimensional overlaps between two classes i and l, i, l ∈ {1, . . . ,m}.

Let J = {j1, . . . , jn} ⊂ {1, . . . , p}, 0 < n ≤ p be a subset of voxels. Then the group of voxels J in

the class t can be identified by the following n-dimensional hyperrectangles:

BJ
t = [xt, yt], xt, yt ∈ Rn, xtk = amintjk

, ytk = amaxtjk
,

k = 1, . . . , n, t = i, l.

Let BJ
il = BJ

i

⋂
BJ
l . We define the multi-dimensional overlaps using the number of samples in

hyperrectangles BJ
il . Consider the set

QJt = {k = 1, . . . , ni : uk = (dtkj1 , . . . , d
t
kjn) ∈ BJ

il}.

Let q = |QJi |+ |QJl |. Then

OJil =

 1, BJ
i ⊆ BJ

l or BJ
l ⊆ BJ

i ,

q
ni+nl

, otherwise.
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It is again clear that OJil = OJli, O
J
il ∈ [0, 1] and OJii = 1 for any J ⊂ {1, . . . , p}, J 6= ∅ and

i, l = 1, . . . ,m. Thus, we can define the following m×m matrix for the subset of voxels J :

OJ =



1 OJ12 OJ13 . . . OJ1m

OJ21 1 Oj23 . . . OJ2m

. . . . . . . . . . . . . . .

OJm1 OJm2 OJm3 . . . 1


.

OJ is a symmetric matrix.

One example of two-dimensional binary overlaps for voxels 1 and 2 is given in Figure 2.2. In this

figure two classes are illustrated by “+” and “◦”, respectively. These classes are approximated by

(hyper)rectangles shown by dash lines. Overlap of these two rectangles is shaded area.

Figure 2.2: Binary two dimensional overlaps

2.1.3.2 One-Vs-All multi-dimensional overlaps.

We can define overlaps between a given class i ∈ {1, . . . ,m} and the rest of the data set for a

subset of voxels J in a similar way as in the case of univariate overlaps. First we define the following

hyperrectangles:

BJ
i = [xi, yi], xi, yi ∈ Rn, xik = aminijk

, yik = amaxijk
,

B̄J
i = [x̄i, ȳi], x̄i, ȳi ∈ Rn, x̄ik = āminijk

, ȳik = āmaxijk
,

B̄0 = BJ
i

⋂
B̄J
i .
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QJ0
t =

{
k = 1, . . . , nt : uk = (dtkj1 , . . . , d

t
kjn) ∈ B̄0

}
,

Q̄Ji =
m⋃
t=1

QJ0
t , q̄ = |Q̄Ji |.

Then we can define the overlap for the subset J between the class i and the rest of the data set by

ŌJi =

 1, BJ
i ⊆ B̄J

l or B̄J
l ⊆ BJ

i ,

q̄
n , otherwise.

Then we can define a vector of overlaps for a given subset of voxels J as follows:

ŌJ =
(
ŌJ1 , . . . , Ō

J
m

)
.

2.1.4 Computation of informative voxels

In this section we consider three different algorithms to compute informative voxels. It is clear

that a voxel or a group of voxels with a small overlap are better candidates to separate different stimuli.

Let

I(n) = {J ∈ {1, . . . , p} : |J | = n} , 0 < n ≤ p

be a set of all possible subsets which contain n different voxels.

The following algorithms can be used to determine the most informative voxels. In all algorithms

we will consider binary and one-vs-all overlaps.

Algorithm 1. The use of minimum overlaps

Binary overlaps. For any J ∈ I(n) we define the following numbers

rJ = max
i=1,...,m

max
l=i+1,...,m

OJil

and

R = min
J∈I(n)

rJ .

We assume that R ∈ [0, 1). The subset of voxels J ∈ I(n) is said to be most informative subset if

rJ = R.

One can take any tolerance ε > 0 such that ε ≤ 1 − R and define a subset of informative voxels
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with respect to this tolerance. J ∈ I(n) is a subset of informative voxels with respect to the tolerance

ε > 0 if

rJ ≤ R+ ε.

If ε = 0 we get the most informative voxels and we get all voxels as informative ones if ε = 1 − R.

Increasing ε from 0 to 1−R we can get a sequence of subsets with the increasing number of voxels.

One-vs-all overlaps. Here we define

r̄J = max
i=1,...,m

ŌJi , R̄ = min
J∈I(n)

r̄J .

and assume that R̄ ∈ [0, 1). The subset of voxels J ∈ I(n) is said to be most informative if

r̄J = R̄.

Again we can take any tolerance ε > 0 such that ε < 1− R̄ and define a subset of informative voxels

with respect to this tolerance. J ∈ I(n) is a subset of informative voxels with respect to the tolerance

ε > 0 if

r̄J ≤ R̄+ ε.

Increasing ε from 0 to 1− R̄ we can get a sequence of subsets with the increasing number of voxels,

where ε = 0 corresponds to the subset of the most informative voxels and ε = 1− R̄ corresponds to

the whole set of voxels.

Algorithm 2. The use of the sum of overlaps.

Binary overlaps. For each subset J ∈ I(n) of voxels we compute

fJ =

m∑
i=1

m∑
k=i+1

OJil,

and

F = min
J∈I(n)

fJ .

The subset of voxels J ∈ I(n) is called the most informative if fJ = F.

Let ε > 0 be a given tolerance. Then J ∈ I(n) is called a subset of informative voxels with
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respect to ε > 0 if

fJ ≤ F + ε.

One-vs-all overlaps. Here for given J ∈ I(n) we compute

f̄J =

m∑
i=1

ŌJi .

Let

F̄ = min
J∈I(n)

f̄J .

J ∈ I(n) is called the subset of most informative voxels if

f̄J = F̄ .

J ∈ I(n) is called a subset of informative voxels with respect to ε > 0 if

f̄J ≤ F̄ + ε.

In both cases 0 ≤ ε < ∞ and increasing ε from 0 to ∞ we can get a sequence of subsets with the

increasing number of voxels, where we get the subset of the most informative voxels if ε = 0 and the

set of all of voxels if ε is sufficiently large.

Algorithm 3. The use of the number of well-separated classes.

Binary overlaps. Let

θ = min
i=1,...,m

min
l=i+1,...,m

OJil.

and α ∈ [θ, 1]. For the subset J ∈ I(n) of voxels we define the following set:

NJ(α) =
{

(i, l) : i = 1, . . . ,m, l = i+ 1, . . . ,m, OJil ≤ α
}
.

Let

N0 = max
J∈I(n)

|NJ(α)|,

40



where |Q| is the cardinality of the set Q. J is called the subset of most informative voxels if

|NJ(α)| = N0.

It is clear that N0 ≤ m(m−1)
2 . Let q > 0 be any integer such that 0 ≤ q ≤ N0. J ∈ I(n) is called a

subset of informative voxels with respect to the number q if

|NJ(α)| ≥ q.

One-vs-all overlaps. Let

θ̄ = min
i=1,...,m

ŌJi ,

and ᾱ ∈ [θ̄, 1]. For the subset J ∈ I(n) of voxels we define the following sets:

N̄J(ᾱ) =
{
i ∈ {1, . . . ,m} : ŌJi ≤ ᾱ

}
.

Let

N̄0 = max
J∈I(n)

|N̄J(ᾱ)|.

The subset of voxels J is called the most informative if

|N̄J(α)| = N̄0.

It is clear that N̄0 ≤ m. Let q̄ > 0 be any integer such that q̄ ≤ N̄0. J ∈ I(n) is called a subset of

informative voxels with respect to the number q̄ if

|N̄J(α)| ≥ q̄.

We can compute a sequence of subsets with increasing number of voxels by increasing α (ᾱ) from

θ(θ̄) to 1 and by decreasing q(q̄) from N0(N̄0) to 0.

It should be noted that for m = 2 all algorithms produce the same results. Furthermore, Al-

gorithms 1 and 2 are the same in this case. However, for larger number of classes they may differ

and sometimes significantly. If Algorithm 1 determines voxels which are good for separation of a
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few classes only, Algorithms 2 and 3 are efficient to find voxels for separation of all classes. Since

the most of fMRI data sets contain more than two classes, Algorithms 2 and 3 are more efficient

to compute informative voxels in such data sets than Algorithm 1. Therefore in our computational

experiments in the next section we will use only these two algorithms. Algorithm 2 tries to find vox-

els with least overall overlaps and Algorithm 3 finds voxels which are good for separation as many

classes as possible.

2.1.5 Computational results

To verify the effectiveness of the proposed algorithm we carried out a number of numerical ex-

periments with Haxby data set [75]. Numerical experiments have been carried out on a PC with

Processor Intel(R) Core(TM) i5-3470S CPU 2.90 GHz and 8 GB RAM running under Windows 7.

We use the well-known Haxby data set, available from [75], for calculations. It contains data

on face and object representation in human ventral temporal cortex and has 6 subjects viewing 8

categories of stimuli (faces, houses, cats, chairs, shoes, bottles, scissors and scrambled images). In

each run subjects passively viewed greyscale images of eight object categories repeated 12 times (see,

for details, [75]).

The original Haxby data set contains 64 × 64 × 40 voxels [75, 131]. In [75] significant voxels

were selected according to their variance and user defined threshold [71]. Only this data set is publicly

available (not the original one). The data set is retrievable from [183]. The number of informative

voxels in this data set varies between 307 and 675 for different subjects.

In numerical experiments we apply Algorithm 2 with both binary and one-vs-all overlaps to com-

pute subsets of voxels using the number of samples. Furthermore, we apply this algorithm to find

a sequence of subsets with the increasing number of voxels using different values of ε > 0. Then

we apply different classifiers from WEKA to compute classification error with different subsets of

voxels. See, Subsection 1.4 for details of WEKA.

Classifiers based on completely different approaches are chosen for classification task. These

classifiers include:

• BayesNet: Builds a tree, where each node is a random variable and edges between nodes are

probabilistic dependencies among variables [57].

• SMO: Implements the sequential minimal optimization algorithm for training a support vector
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classifier [142].

• Logistic regression: It calculates optimized values of parameter matrix using a Quasi-Newton

Method and finds probability of a class for a given data point [105].

• IBK: K-nearest neighbours classifier. It assigns a data point to a class common amongst its k

nearest neighbors where k is the closest training examples in the feature space [4].

• PART: rule-based classifier. It builds a decision tree in each iteration and refines rule set by

discarding individual rules to make them work better together rather complex optimization

stage [56].

• J48 is the implementation of C4.5 algorithm which is based on decision tree approach [93, 147]

• FLR: the Fuzzy Lattice Reasoning Classifier induces rules in a mathematical lattice data domain

such that a rule antecedent corresponds to a lattice interval and a rule consequent is a class label

and a lattice interval corresponds to a N -dimensional hyperbox [12, 89].

• FURIA: Fuzzy unordered rule induction algorithm based on RIPPER (repeated incremental

pruning to produce error reduction) algorithm [208]. This classifier learns fuzzy rules instead

of conventional rules and unordered rule sets instead of rule lists [83].

Results for all subjects are presented in Tables 2.1-2.12. In these tables classification accuracies

obtained by classifiers are given. The last line in all tables contains classification accuracy using all

voxels. All classification accuracies using subset of voxels which are better than the classification

accuracy using all voxels, are in bold font.

Table 2.1: Classification performance for Subject 1 using binary overlap
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 43.04 41.60 42.84 39.60 39.53 41.53
5 41.74 43.73 44.83 55.30 46.42 46.90

10 40.36 44.90 47.73 66.32 49.86 48.48
20 40.43 48.42 50.69 74.52 52.62 54.20
50 50.00 59.44 57.23 86.50 58.61 56.20
100 52.00 66.46 59.85 88.50 56.82 54.48
150 53.65 71.76 57.64 88.71 60.06 54.41
250 54.13 75.21 56.96 89.60 57.16 54.96
300 53.31 77.07 58.75 82.51 57.37 56.54
350 52.55 78.17 58.95 89.67 56.20 55.65
400 52.96 79.20 57.58 89.19 57.78 54.55
500 52.82 81.34 53.93 89.67 55.17 53.99
577 52.82 81.75 52.82 89.33 57.09 52.62
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Table 2.2: Classification performance for Subject 2 using binary overlap
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 45.39 44.08 46.21 42.42 39.74 43.53
5 46.28 47.31 49.24 54.96 48.55 48.28

10 50.34 53.37 55.65 63.64 53.86 52.69
20 51.31 58.06 63.02 70.39 54.55 51.45
50 53.99 72.52 71.01 76.93 55.10 53.10
100 54.96 81.61 71.01 82.51 56.75 53.03
150 56.82 85.61 73.21 82.85 55.44 52.41
250 60.06 90.01 73.69 86.09 56.54 53.37
350 60.67 90.77 79.41 86.23 54.68 54.61
300 60.61 89.53 76.24 85.61 55.30 52.34
400 59.23 90.91 83.33 87.60 53.17 51.93
464 59.02 91.74 77.75 87.47 52.62 52.14

Table 2.1 presents classification results for Subject 1 using binary overlaps. One can see that IBK

classifier achieved best result in this data set and this result is obtained using 350 out 577 voxels. On

the same time very good accuracy is obtained using only 250 voxels. These results demonstrate the

proposed voxel selection algorithm improves the performance of all classifiers except SMO classifier.

Results from Table 2.2 for Subject 2 show that SMO classifier achieves the best classification accuracy

on this subject. Although this classifier gets the best accuracy using all voxels its result with the use

of 350 voxels is also quite high. For all other classifiers classification accuracy is improved using

subset of voxels.

Table 2.3: Classification performance for subject 3 using binary overlap
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 40.50 40.50 40.43 35.54 31.54 38.50
5 40.56 40.50 40.98 40.08 36.64 36.02

10 39.94 40.56 41.67 44.21 39.46 37.95
20 40.36 45.18 43.66 52.89 42.36 42.08
50 41.80 47.45 46.28 65.56 43.53 44.42
100 41.32 49.24 45.87 69.49 44.97 42.84
150 40.91 51.17 44.97 69.77 44.49 40.77
250 44.01 52.34 35.61 69.63 43.80 41.74
307 44.77 53.65 34.23 72.31 41.53 42.63

Results from Tables 2.3 and 2.4 indicate that IBK classifier obtains best accuracy results for

Subjects 3 and 4 using binary overlaps. The use of the proposed voxel selection algorithm allows

to improve performance of Logistic, PART and J48 classifiers in Subject 3 and all classifiers, except

SMO, in Subject 4. Furthermore, the best accuracy is obtained in Subject 4 using 350 voxels out of

675.

Results for Subjects 5 and 6 using binary overlaps are given in Tables 2.5 and 2.6, respectively.

In these subjects SMO classifier achieves the best accuracy. The use of the voxel selection algorithm
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Table 2.4: Classification performance for subject 4 using binary overlap
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 40.36 40.50 39.74 35.26 30.72 32.92
5 38.64 40.50 40.43 48.83 40.36 40.56

10 38.43 40.50 41.39 57.16 45.73 43.87
20 39.12 42.49 43.11 67.98 49.04 50.69
50 39.94 48.62 48.76 77.14 50.48 50.07
100 43.60 55.17 53.17 78.86 51.45 50.21
150 45.73 55.58 45.11 80.44 51.38 48.07
250 46.42 60.61 45.73 78.37 49.86 46.63
300 46.76 62.33 44.77 79.20 50.55 46.42
350 46.42 63.15 43.80 80.58 48.55 47.66
400 45.52 63.91 43.46 80.03 49.66 47.45
500 44.28 64.05 42.63 78.72 48.76 47.25
675 43.87 66.74 39.53 78.24 48.21 44.63

Table 2.5: Classification performance for subject 5 using binary overlap
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 45.87 46.01 47.18 45.66 41.60 47.11
5 47.59 46.28 49.10 47.80 43.94 43.04

10 50.55 51.93 56.20 53.58 46.42 46.63
20 52.75 60.40 63.29 60.06 46.69 47.25
50 51.24 67.70 69.15 68.18 50.76 50.55
100 50.07 77.75 61.36 73.21 51.03 50.96
150 48.48 79.61 62.12 75.07 50.00 49.04
250 48.35 83.95 61.98 77.48 48.97 49.38
300 48.14 84.02 60.54 77.34 48.97 47.87
350 48.35 84.78 61.98 76.58 48.90 47.66
400 50.07 85.40 60.54 76.17 48.00 45.66
423 47.18 85.12 59.71 76.45 47.87 46.69

allows to improve the performance of all classifiers in Subject 5. In this subject SMO classifier

produces a good accuracy using 350 voxels. In Subject 6 the performance of all classifiers, except

SMO, is improved.
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Table 2.6: Classification performance for subject 6 using binary overlap
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 46.63 45.52 47.73 41.32 43.80 44.08
5 46.63 47.25 49.79 45.87 40.98 41.80

10 48.14 52.20 56.06 50.41 44.77 44.42
20 52.48 61.09 63.64 59.09 46.14 47.31
50 52.41 61.91 68.60 61.91 47.52 46.63
100 53.99 75.83 61.23 65.01 48.90 44.83
150 54.68 78.03 63.50 66.12 48.90 44.63
250 54.55 81.54 61.57 65.84 46.56 44.49
349 53.65 82.58 59.02 59.64 44.77 45.52
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Table 2.7: Classification performance for Subject 1 using one vs all overlaps
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 44.77 42.63 44.35 43.11 39.05 42.49
5 44.77 45.18 45.45 52.69 47.66 47.04

10 46.42 48.76 48.97 65.22 51.93 52.34
20 46.01 51.10 51.45 71.69 53.24 52.14
50 50.14 59.99 60.19 83.82 57.30 55.44
100 52.96 65.56 59.30 88.02 58.33 54.75
150 52.34 69.35 56.61 87.81 58.33 55.44
250 53.58 76.38 56.47 90.15 55.79 54.06
300 53.99 77.27 58.82 90.29 56.68 55.03
350 53.24 77.89 58.61 90.01 58.40 54.27
400 52.96 78.79 55.23 89.53 58.47 54.82
500 52.69 81.20 54.61 89.05 58.95 53.72
577 52.82 81.75 52.82 89.33 57.09 52.62

Results obtained by the binary overlap algorithm for all subjects from Haxby data are summarised

in Figure 2.3. Here Legends show the number of selected voxels and stars indicate the number of

voxels in the original data sets. One can see that the IBK classifier obtains the best accuracy and the

binary overlap algorithm improves this accuracy.
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Figure 2.3: Classification performance for Haxby data set using binary overlaps. Horizontal axis
indicates the accuracy of classification algorithms and vertical axis shows the classifiers that are used.
In the right hand side of the graphs number of selected features are shown.
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Results for Subject 1 using one vs all overlaps are given in Table 2.7. The best classification

accuracy on this subject was obtained using IBk classifier with 300 voxels. The use of the voxel

selection algorithm allows to improve the performance of all classifiers except SMO classifier. The

comparison of results from Tables 2.1 and 2.7 show that the use of binary and one vs all overlaps

does not lead to any significant difference in classification accuracy for all classifiers. However, note

that the best accuracy obtained using one vs all overlaps is slightly better than that of using binary

overlaps.

Table 2.8: Classification performance for Subject 2 using one vs all overlaps
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 44.56 45.80 45.87 43.04 42.49 43.53
5 48.97 47.11 48.42 51.93 46.97 47.04

10 47.87 50.76 51.24 57.64 48.28 49.31
20 51.79 57.16 58.95 66.94 50.83 51.31
50 55.10 72.31 72.25 77.14 53.79 53.10
100 57.92 81.68 72.18 84.44 54.48 53.79
150 59.23 85.19 74.38 84.23 54.82 53.24
250 59.50 88.91 74.93 86.36 55.44 50.83
300 59.30 89.33 77.69 86.16 53.79 51.17
350 59.57 90.22 79.55 86.43 54.89 52.82
400 59.23 90.77 85.67 86.98 54.96 51.17
464 59.02 91.74 77.75 87.47 52.62 52.14

Results for Subject 2 using one vs all overlaps presented in Table 2.8 show that the best clas-

sification accuracy on this subject was obtained using SMO classifier with all voxels, however this

classifier achieves a good accuracy using only 350 voxels. One can see that the use of the voxel selec-

tion algorithm allows to improve the performance of all classifiers except SMO and IBk classifiers.

Comparing results from Tables 2.2 and 2.8 we can conclude that there is no any significant difference

in classification accuracy obtained by all classifiers using both the binary and one vs all overlaps.

Table 2.9: Classification performance for Subject 3 using one vs all overlaps
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 40.50 40.50 40.36 36.64 32.71 38.77
5 40.56 40.50 41.74 40.15 33.26 39.67

10 40.56 43.11 43.66 43.80 40.36 7.26
20 41.39 45.18 44.49 52.96 41.60 41.74
50 38.71 46.97 45.32 63.84 45.94 42.36
100 42.70 49.17 46.28 69.90 45.04 42.56
150 43.73 51.79 45.66 69.35 44.63 41.94
250 44.97 53.79 36.36 72.25 45.11 42.98
307 44.77 53.65 34.23 72.31 41.53 42.63

Table 2.9 contains results for Subject 3 using one vs all overlaps. These results show that the best

classification accuracy on this subject was obtained using IBk classifier with all voxels, however this
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classifier achieves almost the same accuracy using only 250 voxels. The use of the voxel selection

algorithm improves the performance of all classifiers except IBk classifier. Results presented in Tables

2.3 and 2.9 show that the classification accuracy obtained using one vs all overlaps is consistently

better than that obtained using the binary overlaps.

Table 2.10: Classification performance for Subject 4 using one vs all overlaps
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 41.60 41.60 42.70 41.05 38.50 41.05
5 40.98 43.66 43.80 47.04 42.15 43.39

10 40.91 43.80 44.63 59.23 47.59 47.87
20 41.32 45.25 44.70 68.94 49.93 48.07
50 43.32 49.66 49.66 76.10 50.41 48.55
100 45.59 53.93 51.65 79.82 50.83 48.00
150 44.90 57.44 47.73 78.65 49.79 49.10
250 46.07 61.50 45.87 79.27 49.93 48.21
300 46.14 63.22 43.80 79.89 50.55 46.76
350 45.66 63.15 45.04 79.55 49.24 47.38
400 44.21 64.94 42.91 79.34 49.59 44.77
500 44.70 66.12 43.32 79.55 48.76 45.52
675 43.87 66.74 39.53 78.24 48.21 44.63

Results for Subject 4 using one vs all overlaps are presented in Table 2.10. On this subject the

best classification was obtained using IBk classifier with 300 voxels. The use of the voxel selection

algorithm improves the performance of all classifiers except SMO classifier. Furthermore, this al-

gorithm significantly improves the performance of the Logistic classifier. Comparing results from

Tables 2.4 and 2.10 we can see that the classification accuracies obtained using binary overlaps are

slightly better than those obtained using the one vs all overlaps.

Table 2.11: Classification performance for Subject 5 using one vs all overlaps
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 45.04 45.45 46.90 43.39 38.84 43.46
5 46.35 47.38 49.93 49.38 44.56 44.77

10 49.24 53.86 57.44 55.58 48.55 48.42
20 46.28 59.30 65.01 61.78 50.69 50.07
50 48.62 69.01 69.77 68.25 50.28 49.04
100 49.52 76.72 63.09 75.07 50.28 48.48
150 47.73 79.75 61.43 75.69 48.48 49.17
250 47.11 82.51 61.09 77.75 48.28 48.90
300 46.56 83.33 62.74 75.69 47.45 48.00
350 46.69 84.92 60.40 77.41 49.45 47.52
400 47.18 84.99 59.64 76.93 46.90 47.11
423 47.18 85.12 59.71 76.45 47.87 46.69

Results for Subject 5 using one vs all overlaps are reported in Table 2.11. The SMO classifier

achieves the best accuracy on this subject using all voxels, however the classification accuracy with

350 voxels is very close to the best accuracy. The use of the voxel selection algorithm improves the
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performance of all classifiers except SMO classifier. One can also see performance of the Logis-

tic classifier is significantly improved. From Tables 2.5 and 2.11 we can see that the classification

accuracies obtained using binary and one vs all overlaps are similar.

Table 2.12: Classification performance for Subject 6 using one vs all overlaps
Number

of selected features BayesNet SMO Logistic IBK (K=3) Part J48

2 44.08 44.01 45.04 41.39 38.22 40.63
5 47.80 49.38 52.41 47.25 41.53 45.45

10 50.34 55.10 59.50 54.68 47.73 45.25
20 51.38 59.85 62.05 58.33 47.04 46.97
50 54.13 68.73 67.91 63.09 49.17 44.70
100 54.41 76.58 62.81 64.74 48.07 46.28
150 53.93 78.37 62.40 64.46 48.48 43.53
250 54.27 82.51 62.95 66.60 48.48 46.35
349 53.65 82.58 59.02 59.64 44.77 45.52

Results for Subject 6 using one vs all overlaps are reported in Table 2.12. Although the SMO

classifier achieves the best accuracy on this subject using all voxels, this accuracy with 250 voxels is

very close to the best accuracy. The use of the voxel selection algorithm improves the performance

of all classifiers except SMO classifier. Results from Tables 2.6 and 2.12 show that the classification

accuracies obtained using binary and one vs all overlaps are similar.

Figure 2.4 shows results of one vs all performance for all subjects in the Haxby data. Comparing

results from Figures 2.3 and 2.4 we can see that there is no any significant difference in classification

accuracy obtained by all classifiers using both the binary and one vs all overlaps.
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Figure 2.4: Classification performance for Haxby data set using one vs all overlaps. Horizontal axis
indicates the accuracy of classification algorithms and vertical axis shows the classifiers that are used.
In the right hand side of the graphs number of selected features are shown.
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2.1.6 Results for Science 2008 data set

Results for all subjects of Science 2008 data set are presented in Tables 2.13-2.21 (N/A in these

tables means that a classifier does not produce any result). Since results for binary and one vs all

overlaps do not differ significantly here we present results only for one vs all overlaps. We replace

BayesNet and Logistic classifiers by FLR and FURIA classifiers because the former classifiers can

not produce any result on this data set using all voxels due to the memory requirements. Results

presented in Tables 2.13-2.21 show that the performance of the voxel selection algorithm is very

similar throughout of all nine subjects. These results clearly demonstrate that the proposed algorithm

is highly efficient in finding the subset of informative voxels in this data set. One can see that the

classification accuracy of all classifiers using all 21344 voxels is very low. The algorithm is able

to find subsets of 10 or 50 voxels which provide better accuracy for all classifiers. Moreover, this

algorithm is able to reduce the number of voxels from 70 to 100 times and at the same time to

significantly improve the performance of all classifiers.

Table 2.13: Classification performance for Subject 1 using one vs all overlaps
Number

of selected features
SMO IBK(K=3) J48 PART FLR FURIA

10 13.33 40.00 30.00 30.00 30.00 28.33
50 48.33 46.67 28.33 26.67 35.00 23.33
100 75.00 63.33 33.33 28.33 48.33 13.33
150 75.00 61.67 50.00 21.67 46.67 15.00
200 78.33 68.33 40.00 21.67 43.33 16.67
250 80.00 68.33 43.33 23.33 41.67 10.00
300 76.67 66.67 41.67 21.67 43.33 16.67
350 80.00 68.33 38.33 21.67 45.00 15.00
400 85.00 75.00 40.00 21.67 45.00 16.67
450 81.67 70.00 40.00 20.00 45.00 16.67
500 81.67 68.33 40.00 16.67 48.33 13.33

21764 20.00 28.33 11.67 11.67 3.33 8.33
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Table 2.14: Classification performance for Subject 2 using one vs all overlaps
Number

of selected features
SMO IBK(K=3) J48 PART FLR FURIA

10 15.00 18.33 16.67 20.00 28.33 10.00
50 40.00 33.33 25.00 21.67 43.33 16.67
100 53.33 48.33 16.67 20.00 38.33 15.00
150 58.33 51.67 23.33 26.67 21.67 21.67
200 53.33 35.00 20.00 25.00 40.00 21.67
250 55.00 46.67 16.67 26.67 41.67 20.00
300 51.67 45.00 18.33 30.00 41.67 18.33
350 56.67 45.00 20.00 20.00 43.33 25.00
400 56.67 43.33 18.33 18.33 41.67 21.67
450 55.00 55.00 16.67 15.00 41.67 20.00
500 55.00 45.00 16.67 15.00 41.67 20.00

21253 8.33 11.67 13.33 6.67 1.67 6.67

Table 2.15: Classification performance for Subject 3 using one vs all overlaps
Number

of selected features
SMO IBK(K=3) J48 PART FLR FURIA

10 18.33 30.00 26.67 28.33 36.67 26.67
50 55.00 45.00 23.33 28.33 41.67 35.00
100 60.00 46.67 23.33 30.00 48.33 18.33
150 61.67 46.67 18.33 28.33 40.00 20.00
200 70.00 46.67 21.67 20.00 38.33 20.00
250 70.00 51.67 20.00 26.67 40.00 23.33
300 71.67 46.67 35.00 31.67 38.33 20.00
350 71.67 45.00 23.33 38.33 33.33 16.67
400 71.67 50.00 33.33 41.67 35.00 18.33
450 70.00 53.33 33.33 40.00 31.67 20.00
500 71.67 51.67 33.33 36.67 30.00 21.67

20651 20.00 13.33 11.67 5.00 3.33 8.33
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Table 2.16: Classification performance for Subject 4 using one vs all overlaps
Number

of selected features
SMO IBK(K=3) J48 PART FLR FURIA

10 31.67 35.00 26.67 30.00 38.33 18.33
50 78.33 53.33 26.67 25.00 70.00 30.00
100 75.00 53.33 25.00 30.00 60.00 20.00
150 81.67 65.00 35.00 26.67 53.33 20.00
200 86.67 68.33 30.00 28.33 56.67 21.67
250 88.33 76.67 25.00 26.67 55.00 35.00
300 90.00 71.67 25.00 25.00 56.67 35.00
350 90.00 73.33 26.67 28.33 55.00 30.00
400 85.00 73.33 25.00 25.00 56.67 21.67
450 88.33 76.67 25.00 25.00 53.33 26.67
500 86.67 78.33 21.67 23.33 55.00 20.00

20395 23.33 23.33 13.33 11.67 N/A 15.00

Table 2.17: Classification performance for Subject 5 using one vs all overlaps
Number

of selected features
SMO IBK(K=3) J48 PART FLR FURIA

10 10.00 16.67 23.33 25.00 21.67 10.00
50 43.33 36.67 23.33 26.67 28.33 10.00
100 46.67 35.00 28.33 21.67 33.33 13.33
150 55.00 31.67 28.33 21.67 33.33 10.00
200 53.33 33.33 31.67 21.67 33.33 13.33
250 53.33 31.67 30.00 18.33 33.33 15.00
300 51.67 30.00 33.33 21.67 35.00 18.33
350 46.67 33.33 31.67 21.67 30.00 13.33
400 43.33 36.67 30.00 23.33 28.33 15.00
450 45.00 35.00 30.00 25.00 23.33 11.67
500 46.67 31.67 30.00 23.33 25.00 10.00

20601 15.00 10.00 5.00 11.67 5.00 11.67
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Table 2.18: Classification performance for Subject 6 using one vs all overlaps
Number

of selected features
SMO IBK(K=3) J48 PART FLR FURIA

10 0.00 10.00 3.33 20.00 16.67 11.67
50 13.33 11.67 10.00 16.67 11.67 10.00
100 20.00 6.67 6.67 10.00 13.33 8.33
150 18.33 8.33 10.00 8.33 11.67 6.67
200 15.00 8.33 8.33 8.33 10.00 6.67
250 16.67 5.00 6.67 6.67 10.00 5.00
300 16.67 6.67 10.00 8.33 10.00 6.67
350 15.00 6.67 3.33 6.67 10.00 6.67
400 15.00 6.67 3.33 6.67 8.33 6.67
450 15.00 10.00 3.33 6.67 10.00 5.00
500 15.00 8.33 3.33 11.67 10.00 6.67

19919 11.67 3.33 6.67 1.67 6.67 5.00

Table 2.19: Classification performance for Subject 7 using one vs all overlaps
Number

of selected features
SMO IBK(K=3) J48 PART FLR FURIA

10 20.00 35.00 20.00 13.33 35.00 21.67
50 46.67 30.00 25.00 38.33 45.00 18.33
100 48.33 30.00 30.00 28.33 38.33 21.67
150 48.33 46.67 28.33 26.67 35.00 11.67
200 56.67 31.67 25.00 31.67 33.33 8.33
250 61.67 31.67 26.67 18.33 36.67 13.33
300 60.00 35.00 25.00 26.67 36.67 16.67
350 58.33 36.67 21.67 21.67 33.33 11.67
400 51.67 33.33 18.33 23.33 30.00 10.00
450 51.67 36.67 20.00 18.33 25.00 8.33
500 56.67 33.33 16.67 20.00 25.00 11.67

19750 11.67 10.00 13.33 8.33 5.00 10.00
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Table 2.20: Classification performance for Subject 8 using one vs all overlaps
Number

of selected features
SMO IBK(K=3) J48 PART FLR FURIA

10 10.00 25.00 23.33 26.67 35.00 30.00
50 43.33 30.00 15.00 15.00 46.67 13.33
100 58.33 36.67 13.33 21.67 43.33 20.00
150 58.33 35.00 20.00 21.67 43.33 20.00
200 55.00 28.33 20.00 16.67 36.67 18.33
250 53.33 35.00 16.67 8.33 36.67 16.67
300 51.67 26.67 20.00 18.33 38.33 18.33
350 45.00 20.00 21.67 18.33 33.33 13.33
400 43.33 23.33 20.00 18.33 31.67 11.67
450 43.33 23.33 23.33 20.00 35.00 11.67
500 46.67 25.00 20.00 18.33 25.00 10.00

20082 11.67 5.00 5.00 8.33 1.67 10.00

Table 2.21: Classification performance for Subject 9 using one vs all overlaps
Number

of selected features
SMO IBK(K=3) J48 PART FLR FURIA

10 6.67 20.00 18.33 16.67 36.67 18.33
50 65.00 33.33 8.33 16.67 36.67 18.33
100 66.67 48.33 15.00 21.67 36.67 11.67
150 71.67 51.67 13.33 15.00 35.00 16.67
200 68.33 51.67 16.67 16.67 30.00 16.67
250 75.00 45.00 16.67 15.00 28.33 18.33
300 73.33 43.33 16.67 10.00 25.00 21.67
350 73.33 43.33 20.00 8.33 26.67 18.33
400 71.67 40.00 18.33 15.00 28.33 15.00
450 73.33 40.00 21.67 16.67 23.33 10.00
500 71.67 46.67 18.33 25.00 23.33 10.00

21344 13.33 11.67 8.33 8.33 5.00 5.00
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The performances of four classifiers for Science 2008 data are illustrated in the Figures 2.5 and

2.6. Horizontal axis indicates the accuracy of classification algorithms and vertical axis shows the

classifiers that are used. In the right hand side of the graphs number of selected features are shown.

One can see that the One vs all voxel selection algorithm is able to find subsets of 10 or 50 voxels

which provide better accuracy for all classifiers in comparison with all voxels.

Figure 2.5: Classification performance for Science 2008 data set using one vs all overlaps.
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Figure 2.6: Classification performance for Science 2008 data set using one vs all overlaps (cont.).
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2.2 Feature selection algorithm based on Catastrophe model

In this section we introduce a new feature selection algorithm to remove the irrelevant or redun-

dant features in medium size or large scale regression data sets. In this algorithm the importance of

a feature is based on it’s fitting to the Catastrophe model. Breast Cancer, Parkinson Telemonitoring

data and Slice locality data sets are used to evaluate the model. Akaike information criterion value is

used for ranking the features in the data set and the proposed algorithm is compared with well-known

feature selection algorithm RELIEF. Since our algorithm is based on the approaches from Catastrophe

theory and Akaike information criterion, we start with very brief description of them.

2.2.1 Cusp Catastrophe

In this subsection we give a brief description of cusp model. Consider the following dynamical

system:
∂y

∂t
= −∂V (y; c)

∂t
, y ∈ Rk, c ∈ Rp, (2.2)

where V is the potential function, y(t) represents the system’s state variable(s), c shows one or mul-

tiple (control) parameter(s) whose value(s) determine the specific structure of the system. If y is at a

point where
∂V (y; c)

∂t
= 0 (2.3)

the system is in equilibrium. The function V (y; c) acquires a minimum with respect to y at a non-

equilibrium point. Equilibrium points that correspond to minima of V (y; c) are stable equilibrium

points because the system will return to such a point after a small perturbation to the system’s state.

The equilibrium points that correspond to maxima of V (y; c) are unstable equilibrium points because

a perturbation of the system’s state will cause the system to move away from the equilibrium point

towards a stable equilibrium point. Equilibrium points that correspond neither to maxima nor to

minima of V (y; c), at which the Hessian matrix (∂2V (y)/∂yi∂yj) has eigenvalues equal to zero,

are called degenerate equilibrium points. When the control variables of the system are changed.

System can give rise to unexpected bifurcations in its equilibrium states at these point when the

control variables of the system are changed [65, 159, 212].
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Cusp model that is the simplest form of Catastrophe and can be formulated as follows:

− V (y;α, β) = αy +
1

2
βy2 − 1

4
y4, (2.4)

where V is the canonical form of the potential function for the Cusp model and it’s equilibrium points

is a function of the control parameters α and β (see Figure 2.7). The control parameters are the

solution to the equation

α+ βy − y3 = 0. (2.5)

This equation has one solution if δ = 27α − 4β3 that is greater than zero, and has three solution if

δ < 0 [39, 65].

Figure 2.7: Cusp surface [40]

2.2.2 Akaike information criterion

Akaike information criterion (AIC) is a model quality measure for a given data [5, 32]. For a

model AIC measure can be defined as follow [29, 158]:

AIC = −2logL(θ̂) + 2k, (2.6)

where L(θ̂) is the maximized likelihood function and k is the number of free parameters in the model.

The smaller value of AIC shows that data is better fit to model. In the proposed algorithm, we used

the reverse value of AIC for ranking the features in our data.
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2.2.3 The feature selection algorithm

In the Catastrophe theory small change in certain parameters of a system can cause equilibria

to appear or disappear [178, 212]. We used this characteristics of the Catastrophe model to find

the features that are more affective in regression analysis. In the proposed algorithm the features

that better change the dynamic of outcome feature or features are considered as informative features.

Assume that we are given a data set A with N features that z is outcome feature. The algorithm takes

each feature i from the data set and consider it as bifurcation variable in the Cusp Catastrophe model.

If this variable affects the dynamic of the system (outcome feature), it is informative feature. The

AIC value of the Cusp model is computed for each feature for ranking. The ranking of a feature i can

be formulated as follows:

AICi = AIC(−V (y;α, i)), (2.7)

where V is the potential function for the Cusp model (see Equation 2.4), AICi is the AIC value of the

Cusp model for the feature i as bifurcation value (β) and α is the asymmetric value in the Cusp model.

Figure 2.8 shows the preparing the input parameters for Cusp model where the the outcome feature is

considered as state variable and the features i and the last features are considered as bifurcation and

asymmetric values, respectively. The state variable and control values can be computed as follows

[65]:

y[t] = w[0] + w[1] ∗ Y [t, 1] + ...+ w[p] ∗ Y [t, p], (2.8)

α[t] = a[0] + a[1] ∗X[t, 1] + ...+ a[p] ∗X[t, p], (2.9)

β[t] = b[0] + b[1] ∗X[t, 1] + ...+ b[p] ∗X[t, p], (2.10)

where X[t, p]’s are independent and Y [t, p]’s are dependent features in the data set. The vectors

a[j]’s, b[j]’s and w[j]’s are estimated by means of maximum likelihood. The rank of each feature i in

the data set can be calculated as follows:

ranki ←
1

AICi
. (2.11)

More details about the algorithm is shown in the Algorithm 1.
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Figure 2.8: Preparing input features for Cusp Catastrophe model

Algorithm 1 Feature selection algorithm based on the Cusp Catastrophe model and AIC ranking
Step 1: (Initialization) N ← Number of features ,NF ← Number of informative features , α ←

featureN , i← 1 and α is asymmetric variable
Step 2: Let β ← featurei be bifurcation value in the Cusp model
Step 3: (Fitting the Cusp model using α and β) Let AICi be the Akaike information criterion value

of the fitting Cusp model using parameters α and β
Step 4: (Ranking the feature) ranki ← 1

AICi
is the rank of feature i in the dataset

Step 5: if 1
AICi

≤ t then featurei is not informative and eliminate it, i← i+ 1 and go to 6
Step 6: (Stopping criterion) if i > NF stop. Otherwise go to Step 2
Step 7: (Retraining informative features) Return NF informative features.

HereN is the number of all feature in the data set andNF (NF < N ) is the number of informative

features. For all features i of the data set their rank in the data set is computed (ranki). The set of

informative features with NF features is the outcome of the algorithm.

2.2.4 RELIEF feature selection algorithm

Next, we give a brief description of the RELIEF algorithm. More detailed description can be

found in [97, 100, 154]. For a given data set with m samples, and threshold of relevancy τ (0 ≤

τ ≤ 1), it detects those features which are statistically relevant to the target concept (Y = f(X)).

Differences of feature values between two instances X and Y are defined by the following function

diff [98].

diff(xk, yk) = (xk − yk)/nuk, (2.12)
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where nuk is a normalization unit to normalize the values of diff into the interval [0, l]. RELIEF

picks a sample composed of m triplets of an instance X , it’s same-class instance (nearHit) and

closest different-class instance (nearMiss). RELIEF uses the p-dimensional Euclidean distance

for selecting nearHit and nearMiss. In every routine the feature weight W vector is updated as

follows:

Wi = Wi−1 − (xi − nearHiti)2 + (xi − nearMissi)
2. (2.13)

Then the average feature weight vector relevance is determined for every sample triple. Finally, it

chooses the features whose average weight is above the given threshold τ .

2.2.5 Experimental results

The effectiveness of the proposed algorithm is verified using three different data sets: Parkinson’s

Telemonitoring, Breast Cancer and Slice locality from UCI machine learning repository [28]. Nu-

merical experiments have been carried out on a PC with Processor Intel(R) Core(TM) i5-3470S CPU

2.90 GHz and 8 GB RAM running under Windows 7.

In numerical experiments we apply the proposed algorithm to find a ranking sequence of features in

data sets. Then we apply different regression analysis algorithms from WEKA to compute regression

error with subsets of features. The following regression analysis algorithms from WEKA are used in

numerical experiments:

• Linear regression: Linear regression finds the best curve to fit the data by computing the rela-

tionship between a scalar dependent variable y and one or more explanatory variables denoted

X . It appplies least squares, which minimizes the sum of the distance from the line for each of

points. The actual observations, yi, may be slightly off the population line because of variabil-

ity in the population. The equation is yi = β0 + β1xi + εi, where εi is the deviation from the

population line which is called the residual [19, 122].

• K nearest neighbors regressor: The algorithm computes the mean of the function values of its

K-nearest neighbours [101].

• M5Rulles: It generates rules for numeric prediction by separate-and-conquer and at each itera-

tion builds a model tree using M5 and makes the ”best” leaf into a rule [79, 148, 203]
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• REPTree: Reptree is a fast tree learner that uses reduced error pruning [209].

2.2.6 Results for Breast cancer data set

Breast Cancer Wisconsin (Prognostic) Data Set contains 30 features with 569 samples. Each

record represents follow-up data for one breast cancer case [107, 170] . Table 2.22 presents the error

of analysing the data using for regression analysis algorithms. The second row shows the number of

features before and after feature selection. Results from this table demonstrate that features selected

by the proposed algorithm allow us to reduce the mean absolute error (MAE) regression. MAE is

calculated as follows:

MAE =
1

n

n∑
i=1

|fi − yi| , (2.14)

where n is the number of observation, fi is the predicted and yi is the true values. Although this data

set is not noisy the proposed algorithm is able to significantly reduce the number of features without

deteriorating the regression error. Regression errors with the subsets of features which are better than

that of for all features are presented in bold font.

Table 2.22: Performance of regression analysis algorithms for breast cancer data set
Original data After feature selection

Number of features 30 25 20 15 10 6 5
Linear Regression 0.003 0.003 0.003 0.003 0.003 0.003 0.004

IBK 0.008 0.008 0.008 0.007 0.007 0.006 0.007
M5P 0.003 0.003 0.003 0.003 0.003 0.003 0.004

M5Rules 0.003 0.003 0.003 0.003 0.003 0.003 0.004

2.2.7 Results for Slice locality data set

Slice locality data set consists of 384 features extracted from 53500 CT images. The CT images

are from 74 different patients (43 male, 31 female). The class variable of this data set is location of

the CT slice on the axial axis of the human body [64]. This data set is available on UCI Machine

Learning Repository.

Results for 10 subjects of Slice locality data set are presented in Tables 2.23-2.26. In these tables

regression error obtained by regression algorithms are given. The second line in all tables contains

number of features of original data and after feature selection. Table 2.23 presents results for all
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subjects using IBK algorithm. One can see that the IBK algorithm achieved the better accuracy for

all subjects data set except subject number 10 using 380 features. Table 2.24 presents results for all

subjects using Logistic regression algorithm. The use of the proposed algorithm allows to improve

performance of Logistic regression using 250 features for Subject 1 and 150 features for Subjects 2

and 3. The best performance for Subject 5 achieved using 100 features. Results are almost the same

for other Subjects.

Tables 2.25 and 2.26 show results for all patients using M5P and M5Rules algorithms, respec-

tively. Results for these two algorithms are very similar and one can see that the proposed algorithm

can improve the accuracy of regression algorithms.

Table 2.23: IBK algorithm performance for 10 subjects from Slice locality data
Original data After feature selection

Number of features 385 380 350 300 250 200 150 100
Patient1 0.059 0.059 0.059 0.060 0.061 0.065 0.063 0.083
Patient2 0.080 0.080 0.081 0.081 0.082 0.083 0.085 0.103
Patient3 0.076 0.076 0.076 0.075 0.076 0.077 0.086 0.115
Patient4 0.060 0.060 0.060 0.061 0.062 0.063 0.066 0.081
Patient5 0.078 0.078 0.078 0.079 0.080 0.088 0.086 0.090
Patient6 0.349 0.349 0.349 0.349 0.336 0.346 0.456 0.466
Patient7 0.081 0.081 0.081 0.081 0.081 0.087 0.091 0.099
Patient8 0.087 0.087 0.087 0.087 0.086 0.086 0.093 0.099
Patient9 0.364 0.364 0.370 0.370 0.364 0.380 0.494 0.516

Patient10 0.098 0.098 0.100 0.104 0.103 0.105 0.110 0.139

Table 2.24: Logistic regression algorithm performance for 10 subjects from Slice locality data
Original data After feature selection

Number of features 385 380 350 300 250 200 150 100
Patient1 0.354 0.392 0.250 0.267 0.284 0.326 0.411 0.570
Patient2 0.496 0.435 0.398 0.367 0.332 0.309 0.376 0.621
Patient3 0.258 0.256 0.266 0.228 0.226 0.226 0.247 0.361
Patient4 0.282 0.294 0.305 0.281 0.294 0.269 0.373 0.476
Patient5 0.928 1.742 2.413 0.512 0.440 0.469 0.572 0.529
Patient6 0.435 0.439 0.456 0.440 0.456 0.572 2.232 1.514
Patient7 0.515 0.500 0.460 0.426 0.420 0.414 0.443 0.756
Patient8 1.306 1.272 1.275 1.275 1.449 1.234 1.457 2.025
Patient9 0.549 0.539 0.567 0.532 0.497 0.860 1.857 7.839

Patient10 0.570 0.565 0.513 0.522 0.508 0.492 0.506 0.681
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Table 2.25: M5P algorithm performance for 10 subjects from Slice localization data
Original data After feature selection

Number of features 385 380 350 300 250 200 150 100
Patient1 0.299 0.299 0.301 0.297 0.294 0.293 0.298 0.338
Patient2 0.455 0.455 0.440 0.443 0.441 0.471 0.451 0.452
Patient3 0.352 0.352 0.352 0.349 0.358 0.343 0.342 0.337
Patient4 0.341 0.347 0.348 0.350 0.339 0.310 0.319 0.325
Patient5 0.458 0.458 0.427 0.404 0.395 0.375 0.385 0.396
Patient6 1.334 1.297 1.289 1.326 1.357 1.136 1.229 1.291
Patient7 0.472 0.467 0.472 0.472 0.469 0.476 0.475 0.490
Patient8 0.782 0.797 0.801 0.801 0.720 0.744 0.728 0.728
Patient9 1.214 1.214 1.175 1.189 1.152 1.020 1.683 1.754

Patient10 0.561 0.546 0.542 0.513 0.513 0.519 0.509 0.519

Table 2.26: M5Rules algorithm performance for 10 subjects for Slice localization data
Original data After feature selection

Number of features 385 380 350 300 250 200 150 100
Patient1 0.331 0.319 0.313 0.368 0.370 0.322 0.272 2.217
Patient2 0.455 0.455 0.360 0.339 0.347 0.557 0.445 0.490
Patient3 0.508 0.508 0.508 0.477 0.432 0.413 0.388 0.420
Patient4 0.328 0.307 0.311 0.328 0.333 0.294 0.309 0.317
Patient5 0.481 0.479 0.410 0.507 0.508 0.458 0.492 0.412
Patient6 1.562 1.320 1.231 1.313 1.338 1.030 1.480 1.242
Patient7 0.783 0.783 0.784 0.783 0.559 0.500 0.412 0.611
Patient8 0.686 0.687 0.696 0.696 0.853 0.822 0.755 2.506
Patient9 1.476 1.476 1.220 1.249 1.162 1.260 0.968 1.952

Patient10 0.815 0.693 0.727 0.714 0.688 - 1.926 0.586
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Figure 2.9: Classification algorithms performance for 10 subjects of Slice localization data

Results for Slice locality data set is presented in Figure 2.9. In the right hand side of the graphs

number of selected features are shown (star is related to the number of features in the original data

set). The use of the proposed algorithm allows to improve performance of algorithms. The IBK and

Logistic regression algorithms achieved the better accuracy for all subjects data set except subject

number 10. Results for M5P and M5Rules algorithms are very similar and one can see that the

proposed algorithm can improve the accuracy of regression algorithms.
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2.2.8 Results for Parkinsons Telemonitoring data set

In this section we present the results for Parkinsons Telemonitoring data set. This data set com-

posed of a range of biomedical voice measurements from 42 people with early-stage Parkinson’s

disease. Here we analyzed 15 subjects from this data set. Results for subjects of Parkinsons Tele-

monitoring data set are presented in Tables 2.27-2.30. This is illustration of a number of features in

original data and after feature selection. Number of features in original data is 18.

Table 2.27 shows the results for the error of the data using IBK regressor algorithm. The use of very

small subset of features can provide better performance for almost all subjects. Table 2.28 presents

the results for Logistic regression algorithm. The proposed algorithm can reduce the error for more

than 70% of cases. The situation is almost the same for the M5P algorithm 2.29, but M5Rulles algo-

rithm provides better performance and the accuracy is increased for all subjects except Subjects 14

and 15.

Table 2.27: IBK algorithm performance for Parkinson’s disease data
Original data After feature selection

Number of features 18 11 10 9 8 7 6 5 4
Subject1 0.037 0.038 0.037 0.038 0.038 0.040 0.044 0.041 0.042
Subject2 0.039 0.037 0.039 0.038 0.039 0.040 0.036 0.040 0.042
Subject3 0.030 0.027 0.027 0.027 0.027 0.026 0.029 0.027 0.027
Subject4 0.039 0.034 0.034 0.035 0.035 0.036 0.034 0.035 0.037
Subject5 0.037 0.033 0.032 0.032 0.030 0.029 0.029 0.030 0.031
Subject6 0.034 0.037 0.035 0.033 0.033 0.033 0.031 0.031 0.031
Subject7 0.040 0.033 0.033 0.034 0.030 0.034 0.035 0.036 0.035
Subject8 0.032 0.031 0.033 0.034 0.032 0.033 0.036 0.036 0.036
Subject9 0.041 0.038 0.038 0.039 0.039 0.037 0.036 0.036 0.039

Subject10 0.044 0.037 0.039 0.039 0.044 0.046 0.044 0.042 0.040
Subject11 0.022 0.022 0.022 0.021 0.021 0.021 0.020 0.021 0.023
Subject12 0.030 0.024 0.024 0.028 0.029 0.030 0.032 0.032 0.030
Subject13 0.040 0.042 0.044 0.042 0.047 0.039 0.051 0.049 0.049
Subject14 0.032 0.030 0.030 0.031 0.031 0.031 0.031 0.033 0.033
Subject15 0.032 0.031 0.030 0.030 0.032 0.031 0.030 0.032 0.032
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Table 2.28: Linear regression algorithm performance for Parkinson’s disease data
Original data After feature selection

Number of features 18 11 10 9 8 7 6 5 4
Subject1 0.030 0.028 0.028 0.028 0.028 0.028 0.028 0.029 0.029
Subject2 0.028 0.028 0.030 0.031 0.030 0.030 0.030 0.030 0.030
Subject3 0.018 0.019 0.018 0.020 0.020 0.020 0.022 0.021 0.021
Subject4 0.029 0.028 0.027 0.027 0.027 0.027 0.027 0.027 0.028
Subject5 0.024 0.025 0.025 0.025 0.025 0.026 0.026 0.026 0.027
Subject6 0.024 0.025 0.024 0.025 0.025 0.025 0.025 0.025 0.025
Subject7 0.024 0.024 0.024 0.023 0.023 0.024 0.024 0.024 0.025
Subject8 0.027 0.031 0.035 0.034 0.034 0.034 0.033 0.031 0.034
Subject9 0.029 0.029 0.030 0.030 0.030 0.030 0.037 0.037 0.038

Subject10 0.033 0.033 0.033 0.033 0.032 0.032 0.032 0.032 0.034
Subject11 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.017 0.017
Subject12 0.019 0.018 0.017 0.021 0.021 0.021 0.020 0.020 0.021
Subject13 0.031 0.030 0.031 0.030 0.032 0.033 0.033 0.033 0.035
Subject14 0.024 0.020 0.019 0.019 0.019 0.020 0.020 0.020 0.027
Subject15 0.019 0.020 0.018 0.018 0.018 0.018 0.021 0.021 0.022

Table 2.29: M5P algorithm performance for Parkinson’s disease data
Original data After feature selection

Number of features 18 11 10 9 8 7 6 5 4
Subject1 0.030 0.028 0.028 0.028 0.028 0.028 0.029 0.029 0.029
Subject2 0.027 0.028 0.029 0.030 0.030 0.030 0.030 0.030 0.030
Subject3 0.018 0.019 0.018 0.020 0.020 0.020 0.022 0.021 0.021
Subject4 0.028 0.027 0.027 0.027 0.025 0.027 0.027 0.027 0.028
Subject5 0.024 0.023 0.023 0.023 0.023 0.022 0.022 0.023 0.024
Subject6 0.025 0.025 0.024 0.025 0.025 0.025 0.025 0.025 0.025
Subject7 0.024 0.024 0.024 0.023 0.023 0.024 0.023 0.024 0.025
Subject8 0.024 0.026 0.029 0.029 0.030 0.030 0.029 0.030 0.030
Subject9 0.029 0.029 0.028 0.028 0.029 0.029 0.031 0.031 0.031

Subject10 0.034 0.034 0.034 0.034 0.032 0.032 0.032 0.032 0.032
Subject11 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.017 0.017
Subject12 0.020 0.018 0.017 0.021 0.021 0.021 0.020 0.020 0.021
Subject13 0.033 0.031 0.031 0.031 0.032 0.033 0.033 0.033 0.035
Subject14 0.019 0.019 0.019 0.019 0.019 0.021 0.020 0.020 0.023
Subject15 0.019 0.021 0.019 0.019 0.019 0.019 0.023 0.023 0.022

Table 2.30: M5Rules algorithm performance for Parkinson’s disease data
Original data After feature selection

Number of features 18 11 10 9 8 7 6 5 4
Subject1 0.030 0.028 0.029 0.029 0.028 0.028 0.029 0.029 0.029
Subject2 0.027 0.029 0.029 0.031 0.030 0.030 0.030 0.030 0.030
Subject3 0.019 0.019 0.018 0.020 0.020 0.021 0.022 0.021 0.021
Subject4 0.029 0.028 0.028 0.027 0.026 0.028 0.030 0.030 0.028
Subject5 0.025 0.023 0.023 0.023 0.023 0.022 0.022 0.023 0.024
Subject6 0.024 0.025 0.024 0.025 0.025 0.025 0.025 0.025 0.025
Subject7 0.024 0.024 0.024 0.023 0.023 0.025 0.024 0.024 0.025
Subject8 0.029 0.038 0.043 0.043 0.031 0.031 0.044 0.045 0.031
Subject9 0.031 0.030 0.029 0.029 0.030 0.031 0.032 0.032 0.031

Subject10 0.035 0.035 0.035 0.034 0.033 0.033 0.033 0.033 0.033
Subject11 0.017 0.017 0.016 0.016 0.016 0.016 0.016 0.017 0.017
Subject12 0.019 0.018 0.017 0.021 0.021 0.021 0.020 0.020 0.021
Subject13 0.033 0.031 0.031 0.031 0.032 0.033 0.033 0.033 0.035
Subject14 0.019 0.020 0.020 0.019 0.019 0.021 0.020 0.020 0.023
Subject15 0.020 0.021 0.020 0.020 0.020 0.020 0.023 0.024 0.022
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Figure 2.10: Regression analysis algorithms performance for Parkinson’s disease data using all fea-
tures and subset of features obtained by the cusp catastrophe feature selection algorithm

Figure 2.10 illustrates application of different regression analysis algorithms for Parkinson’s dis-

ease data set. Figure 2.10 indicates that the cusp model reduced the error of algorithms for almost all

subjects from Parkinson’s disease data set.
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Figures 2.11 show the Equilibrium surface (3 dimensional) and control surface (2 dimensional) of

fitting the most irrelevant (left) and the most significant features in different data sets using the Cusp

Catastrophe model. The informative features have more affect to the system and put the system closer

to the bifurcation situation.

Tables 2.31- 2.36 show ranking of the features using the proposed and RELIEF algorithms. The

ranking values are not exactly the same, but the for almost all cases the informative features’ levels

are similar in both ranking results. For example, for the first subject the informative features of 3, 14,

4 and 6 are in the top of the table in both algorithms and less-significant features 2 and 17 are in the

bottom.

Table 2.31: Ranking of the features using the proposed and RELIEF algorithms for subject 1 from
Parkinsons disease data

Feature selection algorithm based on the Cusp model RELIEF algorithms
Attribute ID Rank Attribute ID Rank

3 0.003144 14 0.030901
14 0.003096 3 0.014302
4 0.003052 6 0.014158
6 0.002947 4 0.011554
15 0.002923 5 0.009576
5 0.002732 7 0.009572
7 0.002731 15 0.006487
9 0.002685 12 0.004949
12 0.002586 16 0.004764
16 0.002569 9 0.004034
8 0.002565 11 0.001722
11 0.002564 13 0.0016
10 0.0025 10 0.001595
13 0.0025 2 0.000525
17 0.002358 8 -0.00004
2 0.002351 1 -0.00254
1 0.002351 17 -0.00378
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Table 2.32: Ranking of the features using the proposed and RELIEF algorithms for subject 2 from
Parkinsons disease data

Feature selection algorithm based on the Cusp model RELIEF algorithms
Attribute ID Rank Attribute ID Rank

16 0.003336 14 0.0195
6 0.003299 6 0.00943
14 0.003241 16 0.00907
9 0.003212 12 0.00784
12 0.0032 9 0.00706
4 0.003173 3 0.00582
3 0.003167 4 0.00309
15 0.003154 15 0.003
8 0.003134 11 0.0026
13 0.003069 13 0.00244
10 0.003069 10 0.00244
11 0.003057 7 0.00243
7 0.00304 5 0.00242
5 0.00304 8 0.0023
2 0.002727 2 0.00133
1 0.002727 1 0.00107
17 0.002718 17 -0.00237

Table 2.33: Ranking of the features using the proposed and RELIEF algorithms for subject 3 from
Parkinsons disease data

Feature selection algorithm based on the Cusp model RELIEF algorithms
Attribute ID Rank Attribute ID Rank

15 0.003585 15 0.024669
6 0.003473 14 0.018446
3 0.003261 6 0.016579
4 0.003031 3 0.013203
14 0.002994 4 0.010286
7 0.002946 5 0.007498
9 0.002946 7 0.00748
5 0.002945 11 0.005778
12 0.002937 12 0.003904
8 0.002934 9 0.00329
11 0.002933 1 0.003219
10 0.00287 8 0.002655
13 0.002869 10 0.002304
16 0.002627 13 0.002297
1 0.002595 17 0.002161
2 0.002589 2 0.000729
17 0.002565 16 -0.00093
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Figure 2.11: Cusp plot: The most least informative features (left) and the most least informative
features (right) base on proposed algorithm for subject 1 to subject 6
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Table 2.34: Ranking of the features using the proposed and RELIEF algorithms for subject 4 from
Parkinsons disease data

Feature selection algorithm based on the Cusp model RELIEF algorithms
Attribute ID Rank Attribute ID Rank

3 0.004621 6 0.02566
4 0.00456 3 0.02124
6 0.004473 17 0.01921
5 0.003827 4 0.01823
7 0.003826 14 0.01734
14 0.003417 5 0.01714
15 0.003254 7 0.01711
9 0.002984 2 0.00843
8 0.002968 15 0.00774
13 0.002935 13 0.00711
10 0.002935 10 0.00711
12 0.00293 11 0.00695
11 0.00291 12 0.00676
17 0.002904 8 0.00671
16 0.002793 9 0.00613
1 0.002771 1 0.00519
2 0.00277 16 0.00168

Table 2.35: Ranking of the features using the proposed and RELIEF algorithms for subject 5 from
Parkinsons disease data

Feature selection algorithm based on the Cusp model RELIEF algorithms
Attribute ID Rank Attribute ID Rank

14 0.003896 14 0.02979
3 0.003671 6 0.02661
4 0.003533 4 0.02327
6 0.003529 3 0.01819
7 0.003189 7 0.01289
5 0.003185 5 0.01287
15 0.003059 9 0.01101
16 0.00253 15 0.0101
9 0.00248 12 0.00659
12 0.002401 11 0.00414
8 0.002372 10 0.00354
11 0.002363 13 0.00354
10 0.002343 8 0.00331
13 0.002343 16 0.00278
2 0.002339 2 0.00244
1 0.002324 17 0.00116
17 0.002314 1 -0.00406
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Table 2.36: Ranking of the features using the proposed and RELIEF algorithms for subject 6 from
Parkinsons disease data

Feature selection algorithm based on the Cusp model RELIEF algorithms
Attribute ID Rank Attribute ID Rank

15 0.003297 14 0.014851
4 0.003173 6 0.014336
3 0.003093 15 0.014142
6 0.003076 17 0.01388
14 0.003062 4 0.012454
7 0.002854 3 0.010648
5 0.002854 7 0.008541
9 0.002691 5 0.008525
12 0.002649 2 0.003976
8 0.002644 12 0.002502
11 0.002619 1 0.001973
16 0.002597 11 0.001794
10 0.002565 9 -6.8E-05
13 0.002565 8 -0.0006
1 0.002418 13 -0.00153
2 0.00234 10 -0.00153
17 0.002315 16 -0.00244
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Tables 2.37-2.44 show the mean absolute error and root mean square error for Regression analysis

before and after feature selection for 15 subjects. We separated the results of different algorithms from

each other. Tables 2.37 and 2.38 shows the results of Linear regression algorithm. The accuracy of

analyzing all subjects except subject 2, 9 and 14 using the proposed algorithm compared with original

data is improved. The RELIEF algorithm has improvement for almost all subjects, but our algorithm

has better performance than RELIEF algorithm.

Tables 2.39-2.40 are the related results for K-nearest neighbors algorithm and they show that

both algorithms have better accuracy only for 60% of subjects and the same situation happened for

M5Rulles (see the tables 2.41-2.42) and REPTree (2.43-2.44) algorithms, but for some subjects the

RELIEF algorithm has better performance.

Table 2.37: Mean absolute error of Linear regression algorithm after feature selection using the pro-
posed and RELIEF algorithms for Slice locality data set

MAE of Linear Regression

Subject Original data
After Feature selection

using feature selection algorithm
based on the Cusp model

After feature
selection using RELIEF algorithms

1 0.0295 0.0291 0.0282
2 0.0276 0.028 0.028
3 0.0183 0.0183 0.0182
4 0.0292 0.029 0.0292
5 0.0235 0.0235 0.0235
6 0.0239 0.0239 0.024
7 0.0243 0.0242 0.0244
8 0.0266 0.0266 0.028
9 0.0286 0.0288 0.0288
10 0.0333 0.0333 0.0333
11 0.0169 0.0167 0.017
12 0.0193 0.0187 0.0194
13 0.0305 0.0297 0.0315
14 0.019 0.0193 0.0188
15 0.0266 0.0261 0.0266
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Table 2.38: Root mean square error of Linear regression algorithm after feature selection using the
proposed and RELIEF algorithms for Slice locality data set

RMSE of Linear Regression

Subject Original data
After Feature selection

using feature selection algorithm
based on the Cusp model

After feature
selection using RELIEF algorithm

1 0.0386 0.0381 0.0384
2 0.0372 0.0377 0.0377
3 0.0249 0.0249 0.0248
4 0.042 0.0418 0.042
5 0.0336 0.0336 0.0336
6 0.0325 0.0325 0.0322
7 0.0338 0.0338 0.0335
8 0.0401 0.0401 0.0424
9 0.0376 0.0377 0.0375
10 0.0472 0.0472 0.0461
11 0.0239 0.0237 0.024
12 0.025 0.0245 0.0256
13 0.0404 0.0392 0.0425
14 0.0248 0.0253 0.0246
15 0.0322 0.0317 0.0319

Table 2.39: Mean absolute error of IBK algorithm after feature selection using the proposed and
RELIEF algorithms for Slice locality data set

MAE of IBK

Subject Original data
After Feature selection

using feature selection algorithm
based on the Cusp model

After feature
selection using RELIEF algorithm

1 0.037 0.038 0.042
2 0.0389 0.0411 0.0411
3 0.0304 0.0297 0.0311
4 0.0394 0.0387 0.0372
5 0.0369 0.0344 0.0356
6 0.034 0.0334 0.0355
7 0.0404 0.0385 0.0389
8 0.0321 0.032 0.032
9 0.0405 0.0399 0.0399
10 0.0439 0.044 0.0433
11 0.0218 0.0231 0.0224
12 0.0297 0.0295 0.0308
13 0.0402 0.0411 0.0402
14 0.0317 0.03 0.0307
15 0.0338 0.0352 0.0335
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Table 2.40: Root mean square error of IBK algorithm after feature selection using the proposed and
RELIEF algorithms for Slice locality data set

RMSE of IBK

Subject Original data
After Feature selection

using feature selection algorithm
based on the Cusp model

After feature
selection using RELIEF algorithm

1 0.0493 0.0506 0.0548
2 0.0526 0.0537 0.0537
3 0.0379 0.0379 0.0401
4 0.0569 0.0565 0.0567
5 0.0499 0.047 0.0477
6 0.0453 0.0447 0.0457
7 0.0527 0.0504 0.0507
8 0.0462 0.0458 0.0466
9 0.0531 0.0528 0.0536
10 0.056 0.0562 0.0538
11 0.0285 0.0316 0.029
12 0.0385 0.0399 0.0402
13 0.0533 0.0539 0.0532
14 0.038 0.0359 0.0378
15 0.0426 0.0435 0.0427

Table 2.41: Mean absolute error of M5Rules algorithm after feature selection using the proposed and
RELIEF algorithms for Slice locality data set

MAE of M5Rules

Subject Original data
After Feature selection

using feature selection algorithm
based on the Cusp model

After feature
selection using RELIEF algorithm

1 0.0299 0.0299 0.0292
2 0.0273 0.0285 0.0276
3 0.0188 0.0181 0.0203
4 0.0291 0.0291 0.0278
5 0.0246 0.0248 0.0233
6 0.0241 0.024 0.024
7 0.0237 0.0233 0.0235
8 0.0286 0.0275 0.0262
9 0.0306 0.0319 0.0306
10 0.0349 0.0349 0.034
11 0.0167 0.0169 0.0175
12 0.019 0.0188 0.0197
13 0.0333 0.0313 0.032
14 0.0196 0.021 0.0209
15 0.0246 0.0249 0.0256
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Table 2.42: Root mean square error of M5Rules algorithm after feature selection using the proposed
and RELIEF algorithms for Slice locality data set

RMSE of M5Rules

Subject Original data
After Feature selection

using feature selection algorithm
based on the Cusp model

After feature
selection using RELIEF algorithm

1 0.0393 0.0393 0.0393
2 0.0366 0.0377 0.0366
3 0.0259 0.0252 0.0284
4 0.0423 0.0423 0.0415
5 0.0343 0.0345 0.0318
6 0.0327 0.0327 0.0327
7 0.033 0.0324 0.0328
8 0.0457 0.0444 0.0388
9 0.0403 0.0424 0.0401
10 0.0488 0.0488 0.0478
11 0.0219 0.0225 0.0235
12 0.0244 0.0244 0.026
13 0.044 0.041 0.0424
14 0.0258 0.0286 0.0275
15 0.0305 0.0305 0.0314

Table 2.43: Mean absolute error of REPTree algorithm after feature selection using the proposed and
RELIEF algorithms for Slice locality data set

MAE of REPTree

Subject Original data
After Feature selection

using feature selection algorithm
based on the Cusp model

After feature
selection using RELIEF algorithm

1 0.0357 0.0357 0.0353
2 0.0344 0.0347 0.0347
3 0.0223 0.0228 0.0226
4 0.0312 0.0308 0.0304
5 0.0272 0.0273 0.0276
6 0.0278 0.028 0.0278
7 0.0273 0.0276 0.0276
8 0.03 0.0311 0.03
9 0.0387 0.0381 0.0387
10 0.0358 0.0358 0.0349
11 0.0183 0.018 0.0184
12 0.0261 0.0267 0.0261
13 0.043 0.043 0.0428
14 0.0263 0.0263 0.0263
15 0.0288 0.0289 0.0293
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Table 2.44: Root mean square error of REPTree algorithm after feature selection using the proposed
and RELIEF algorithms for Slice locality data set

RMSE of REPTree

Subject Original data
After Feature selection

using feature selection algorithm
based on the Cusp model

After feature
selection using RELIEF algorithm

1 0.0458 0.0458 0.0453
2 0.0449 0.0448 0.0448
3 0.0284 0.0288 0.0288
4 0.0449 0.0446 0.0437
5 0.0363 0.0363 0.0367
6 0.0371 0.038 0.0371
7 0.0379 0.0387 0.0383
8 0.0506 0.0547 0.0506
9 0.0519 0.0513 0.052
10 0.0458 0.0458 0.0454
11 0.0251 0.025 0.0252
12 0.0336 0.0356 0.0335
13 0.0538 0.0538 0.0538
14 0.0339 0.0338 0.0339
15 0.0362 0.0363 0.0366

Figure 2.12 provides a comparison between proposed algorithm and the well known RELIEF

algorithm for Slice locality data set. Mean absolute error and root mean square error of four classifiers

of original data and after feature selection are shown in the Figures. Graphs show that the proposed

algorithm improved the accuracy of classification algorithms for almost all subjects using different

classifiers.
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Figure 2.12: Mean square error and root mean square error of classifiers after feature selection using
the proposed and RELIEF algorithms for Slice locality data set
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2.3 Conclusions

In this chapter we introduced feature selection algorithms for brain data sets. First algorithm

selects most significant voxels (features) in fMRI data sets using hyperrectangles. This algorithm

uses the n-dimensional rectangles to approximate each class for the given subset of voxels and com-

putes overlaps between classes. Voxels (features) or groups of voxels providing smallest overlaps

are identified as the most informative voxels. This algorithm is applied to find a group of most in-

formative voxels in Haxby and Science 2008 data set. Various classifiers from WEKA are used to

evaluate classification error for each subset of voxels. Results show that the proposed algorithm al-

lows one significantly decrease the number of voxels and improve the classification accuracy of most

of classifiers. These results demonstrate that the proposed algorithm is efficient in finding subset of

informative voxels in fMRI data sets.

Second algorithm removes the irrelevant or redundant features of a regression data sets. This

algorithm selects significant features based on their fitting to the Catastrophe model and the features

that better change the dynamics of the outcome feature or features are considered as informative

features. The Akaike information criterion value of the Cusp model is computed for ranking of each

feature. We applied this algorithm to three different data sets: Parkinson’s Telemonitoring, Breast

Cancer and Slice locality from UCI machine learning repository. Results show that the proposed

algorithm is efficient in finding significant subset of features in a data set.
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Chapter 3

Spike discharge prediction based on

Neuro-fuzzy system

This chapter presents the development and evaluation of different versions of adaptive neuro-

fuzzy model for prediction of spike discharge. We aim to predict the spike discharge variation using

first spike latency and frequency-following interval. The use of animals like cat and rat because of

similarity of their brain with human brain is common method for studying spike discharge [61, 145].

For study of spike discharge, we analyzed the Cerebral Cortex data of the Cat [187]. For analysis of

the Cat data we applied the following algorithms: Adaptive Neuro-Fuzzy Inference Systems (ANFIS),

Wang and Mendel (WM), Dynamic evolving neural-fuzzy inference system (DENFIS), Hybrid neural

Fuzzy Inference System (HyFIS), genetic for lateral tuning and rule selection of linguistic fuzzy

system (GFS.LT.RS) and subtractive clustering and fuzzy c-means (SBC). Among all these algorithms

ANFIS and genetic for lateral tuning and rule selection of linguistic fuzzy system models have better

performance.

3.1 Introduction

Recording action potentials (spikes) from the neural cells makes it possible to investigate their

health, stability and sensitivity[88]. Different characteristics of electrical activity of neurones can be

considered in the study of neural coding. One important concept in this area is spike discharge that is

a type of transient waveforms present in the brain activity and include a high correlation with seizure
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occurrence [171].

Studies on movement indole illustrated that this process is related to the neuronal discharge

[60, 90]. For example, study on activity of arm-related neurons and their relationship between premo-

tor cortical cell activity and direction of arm movement shows that the cells activity vary in orderly

fashion with the direction of movement [34]. Also, detection of spike discharge in the electroen-

cephalogram is an important way of diagnosis of the disease [171]. Different algorithms like neural

networks, logistic regression and neuro-fuzzy model can be applied for detection of epileptic seizure

[135, 171, 173]. There are many similarity between human and animal brain’s neural coding and many

studies used animal modeling for investigation the spike discharge ([36, 109, 145, 163]). Johnsen et

al. [88] analyzed twenty-six pairs of units recorded from twenty-four retinal ganglion cells in the

isolated goldfish retina and examined the cross-correlation histogram for the maintained discharge

of each pair of cells. Their results showed that it is unlikely that differences in latency could be at-

tributed to unequal effectiveness of the stimuli for the two units. Batuev et al. [23] investigated the

postsynaptic response of motor cortex neurons of the cat in response to the stimulation of different

modalities and showed that it responds with a wide range of peripheral inputs. The electrical changes

in the cerebral cortex can correspond with the electric changes in muscle and nerve [3]. The studies

of the functional organisation of the motor cortex show that this cortical area is composed of mod-

ules consisting of columnar aggregates of neurones related to different aspects of the same movement

[94]. The current-flow and current-source-density analysis of the direct cortical response in the so-

matosensory cortex of rats show that the activation and magnitude of direct cortical response depends

on stimulus strength and frequency [72].

In this chapter the variation of spike discharge as a function of first spike latency and frequency-

following interval is analyzed. First spike latency is the time delay between stimulus onset and first

action potential [63]. Neuro-fuzzy model is a combination of artificial neural network (ANN) and

fuzzy logic approaches. It is a powerful tool for dealing with uncertainty, and widely used for ana-

lyzing electrical activity of neurons. It is widely used for analyzing of the electrical activity of the

neurones ([67, 80, 143, 172]). The ANFIS method was successfully applied for EEG signals with

high accuracy of the results obtained [67]. A feature extraction method through the time-series pre-

diction based on ANFIS model for brain computer interface applications has been proposed by Hsu

[80]. In this model ANFISs is used for prediction of time-series for the left and right motor imagery
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classification, respectively. It is shown that neuro-fuzzy is an accurate model diagnosing epilepsy

[172].

Different versions of neuro-fuzzy model have been used to find the model with higher accuracy.

In all models the spike discharge is considered as an output of the model, while first spike latency and

spike frequency are considered as inputs. Using neuro-fuzzy model as a predictor of spike discharge,

we are able to use insufficient crisp inputs to make accurate decision about spike discharge. We

used first spike latency and frequency-following interval in input layer of the neuro-fuzzy system and

output was the spike discharge. The structure of this chapter is as follows.

First we discuss about spike discharge, latency and frequency. Section 3.2 provides a brief de-

scription of ANFIS, WM, DENFIS, HyFIS and SBC algorithms and section 3.3 presents performance

of different neuro-fuzzy algorithms for analysis of cat data.

3.2 Neuro-fuzzy model

Neuro-fuzzy model is a combination of artificial neural networks and fuzzy logic and it uses

capabilities of both models. It applies a neural networks structure and at the same time uses if-

then rules in fuzzy systems. It uses prior knowledge to compute membership function and different

learning algorithms of neural networks, including the back-propagation algorithm [180].

The different types of neuro-fuzzy systems used in this chapter are as follow:

• Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

• Wang and Mendel (WM)

• Dynamic evolving neural-fuzzy inference system (DENFIS)

• Hybrid neural Fuzzy Inference System (HyFIS) [96]

• genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS) [7]

• subtractive clustering and fuzzy c-means (SBC) [37, 210]

Here we provide a short description each of them.

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) model is a well-known neuro-fuzzy system

that implements a Sugeno fuzzy system and uses a t-norm and differentiable membership function

[86, 177]. For a system with two rules we can build the following neuro-fuzzy structure.
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For given two inputs x0 and y0 and corresponding linguistic labels Ai and Bi, each neuron in the

first layer of neuro-fuzzy model transmit crisp signal to the next layer (Algorithm 2).

Algorithm 2 ANFIS model
This algorithm has two main stages, the forward and backward steps. The forward step has five
layers as follows:

• First layer maps the crisp inputs using bell-shaped membership function as follows:

Ai(u) = exp

[
−1

2

(
u− ai1
bi1

)2
]

and

Bi(u) = exp

[
−1

2

(
u− ai2
bi2

)2
]

where {ai1, ai2, bi1, bi2} is the parameters set.

• Second layer is responsible for fuzzification and each neuron in this layer determines the
fuzzy degree received crisp input.

α1 = A1(x0)×B1(y0) = A1(x0) ∧B1(y0)

and
α2 = A2(x0)×B2(y0) = A2(x0) ∧B2(y0)

• Neurones in the third layer are correspond to fuzzy rules and receive inputs from fuzzification
neurons in the second layer. The outputs of layer 3 are as follow:

β1 =
α1

α1 + α2

and
β2 =

α2

α1 + α2

• Layer 4 or output membership layer combine all its inputs by using the fuzzy operation union

β1z1 = β1(a1x0 + b1y0)

and
β2z2 = β2(a2x0 + b2y0)

• The last layer is responsible for Defuzzification.

o = β1z1 + β2z2

In the backward process the errors are propagated backward and the parameters are updated by
gradient descent technique.

Wang and Mendel (WM) model is another type of neuro-fuzzy system that developed by Wang

and Mendel [202] that has high performance for regression tasks. First it divides input and outputs
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into fuzzy region and assigns a membership function to each regions. Then finds a rule for each

pair of input data. In the next step a degree is assigned to each rule. After assigning degrees, they

are combined. The final rule is obtained after deleting redundant rules. Algorithm 3 provides more

details about WM algorithm.

Algorithm 3 Wang and Mendel (WM)
Division numerical input and output data spaces into fuzzy regions
Generate fuzzy IF-THEN rules covering the training data
Determining a degree for each rule
Eliminating redundant rules and obtaining a final rule base

Dynamic evolving neural-fuzzy inference system (DENFIS) is another fuzzy inference systems

that developed by Kasabov et al. [91]. Output of the system is based on m-most activated fuzzy rules

and evolving clustering method is applied to determine the cluster center (Algorithm 4).

Algorithm 4 Dynamic evolving neural-fuzzy inference system (DENFIS) model
Choose cluster center from training data
Determine the cluster centers using the evolving clustering method
partition the input space and to find optimal parameters on the consequent part
Update the parameters on the consequent part

Hybrid neural Fuzzy Inference System (HyFIS) has two general steps for learning [96]. In the

first step the Wang and Mendel is used for knowledge acquisition. In the second step the input vector

is propagated forward in the network and parameter updating is performed using backpropagating the

error using a gradient descending approach [181].

Algorithm 5 Hybrid neural Fuzzy Inference System (HyFIS)
Uses the techniques of Wang and Mendel to acquire the knowledge
Use gradient descent-based to learn parameters of the structure

GFS.LT.RS: GFS.LT.RS is proposed by R. Alcala et al. [7] that performs an evolutionary lateral

tuning of membership functions in constructing FRBS model to obtain higher accurate linguistic

models (algorithm 6).

Algorithm 6 genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS)
Uses the Wang and Mendel to to construct the population
Evaluate the chromosome using Mean square error
Minimize the number of rules
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Subtractive clustering and fuzzy c-means (SBC) [37, 210] is checking each data point’s distance

from all other data points to find the cluster centers. More details about SBC algorithm is provided in

the Algorithm 7

Algorithm 7 Subtractive clustering and fuzzy c-means (SBC)
Use subtractive clustering method to obtain the cluster centeres (generating the rules)
Choose the highest potential as the cluster centere
Update the potential of each data point
Optimise the cluster centers using fuzzy c-means

3.3 computational results

To verify the effectiveness of the neuro-fuzzy algorithms we carried out a number of numerical

experiments with cortex of the somatosensory/motor system of the Cat data set on a PC with Proces-

sor Intel(R) Core(TM) i5-3470S CPU 2.90 GHz and 8 GB RAM running under Windows XP. The

cortex of the somatosensory/motor system of the Cat data is publicly available from [187]. This data

is based on recording neurones of extracellularly in postcruciate cerebral cortex of cats. It is neuronal

responsiveness of each of the four paws to strong cortical surface stimulation to understand facilita-

tory and inhibitory modulation of wide-field neurons by small-field neurones. Two groups of data

from the Cerebral Cortex of the Cat data sets are considered for evaluation of the algorithms: Con-

tralateral Forepaw (CF) Cortex (Chloralose) and Contralateral Hindpaw (CH) Cortex (Chloralose).

The Contralateral Forepaw (CF) Cortex (Chloralose) is based on the measurements of 4,272 neurons,

but Contralateral Hindpaw (CH) Cortex (Chloralose) contains data of 991 neurons. Various versions

of neuro-fuzzy algorithms from R package are used to evaluate the algorithms’ error for each data.

The R Project for Statistical Computing is an environment for statistical computing and graphics that

contains a comprehensive libraries of machine learning and statistical analysis applications that is

available on [195].

3.3.1 Results of Forepaw (CF) Cortex (Chloralose) analysis

The Ipsilateral and Contralateral data from Forepaw Cortex data are considered for analysis. The

results of application of neuro-fuzzy algorithm to the Ipsilateral Forepaw Cortex data are presented

on the Figures 3.3.1-3.3.1. The first spike latency and ipsilateral forepaw frequency following interval

(msec) are used as inputs, while mean spikes per discharge is used as output of the model. Each figure
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contains the actual spikes per discharge value that is computed using neuro-fuzzy algorithm. Also,

some statistics about the analysis is illustrated in each figure. The results show that the smallest Root

Mean Square Error (RMSE) is obtained by HYFIS algorithm (RMSE=1.34) and the biggest RMSE

is obtained by WM model (RMSE=2.72).

Figure 3.1: Spike Discharge prediction for cat Ipsilateral Forepaw Cortex using ANFIS algorithm

Figures 3.3.1-3.3.1 present the results of application for neuro-fuzzy algorithm for the Contralat-

eral Forepaw Cortex data. Again the 1st spike latency and ipsilateral forepaw frequency following

interval (msec) are used as inputs and mean spikes per discharge is used as output of the model.

The results demonstrate that the smallest Root Mean Square Error (RMSE) is obtained using HYFIS

algorithm (RMSE=0.93) and the biggest RMSE is obtained by WM model (RMSE=4.27).

3.3.2 Results of Hindpaw Cortex (Chloralose) data analysis

The Hindpaw Cortex is divided into two parts: the Contralateral Forepaw Cortex and Ipsilateral

Hindpaw Cortex. Then different neuro-fuzzy algorithms have been applied to them. Figures 3.3.1-

3.3.1 present the results of application of neuro-fuzzy algorithm for the Contralateral Forepaw Cortex

data. The best RMSE is obtained using GFS LT RS (RMSE=2.06), the smallest Root Mean Square

Error (RMSE) is obtained using HYFIS algorithm (RMSE=0.93), and the biggest RMSE is btained

by WM model (RMSE=4.27).
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Figure 3.2: Spike Discharge prediction for cat Ipsilateral Forepaw Cortex using Denfis algorithm

Figure 3.3: Spike Discharge prediction for cat Ipsilateral Forepaw Cortex using GFS LT RS algorithm
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Figure 3.4: Spike Discharge prediction for cat Ipsilateral Forepaw Cortex using HYFIS algorithm

Figure 3.5: Spike Discharge prediction for cat Ipsilateral Forepaw Cortex using WM algorithm
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Figure 3.6: Spike Discharge prediction for cat Contralateral Forepaw Cortex using ANFIS algorithm

Figure 3.7: Spike Discharge prediction for cat Contralateral Forepaw Cortex using Denfis algorithm

93



Figure 3.8: Spike Discharge prediction for cat Contralateral Forepaw Cortex using GFS LT RS algo-
rithm

Figure 3.9: Spike Discharge prediction for cat Contralateral Forepaw Cortex using HYFIS algorithm
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Figure 3.10: Spike Discharge prediction for cat Contralateral Forepaw Cortex using WM algorithm

Figure 3.11: Spike Discharge prediction for cat Contralateral Hindpaw Cortex using ANFIS algorithm
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Figure 3.12: Spike Discharge prediction for cat Contralateral Hindpaw Cortex using Denfis algorithm

Figure 3.13: Spike Discharge prediction for cat Contralateral Hindpaw Cortex using SBC algorithm

96



Figure 3.14: Spike Discharge prediction for cat Contralateral Hindpaw Cortex using GFS LT RS
algorithm

Figure 3.15: Spike Discharge prediction for cat Contralateral Hindpaw Cortex using WM algorithm
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Results of application of the algorithms to the Ipsilateral Hindpaw Cortex data are presented

in figures 3.3.2-3.3.2. The WM algorithm provides better accuracy compared with other algorithm

(RMSE=2.73)

Figure 3.16: Spike Discharge prediction for cat Ipsilateral Hindpaw Cortex using ANFIS algorithm

Figure 3.17: Spike Discharge prediction for cat Ipsilateral Hindpaw Cortex using Denfis algorithm
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Figure 3.18: Spike Discharge prediction for cat Ipsilateral Hindpaw Cortex using SBC algorithm

Figure 3.19: Spike Discharge prediction for cat Ipsilateral Hindpaw Cortex using GFS LT RS algo-
rithm

99



Figure 3.20: Spike Discharge prediction for cat Ipsilateral Hindpaw Cortex using WM algorithm
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3.4 Conclusion

In this chapter we presented the development and evaluation of different versions of adaptive

neuro-fuzzy model including Adaptive Neuro-Fuzzy Inference Systems, Wang and Mendel, Dynamic

evolving neural-fuzzy inference system, Hybrid neural Fuzzy Inference System, genetic for lateral

tuning and rule selection of linguistic fuzzy system and subtractive clustering and fuzzy c-means

algorithms for prediction of Spike discharge. Results reveal that Spike discharge can be predicted

using the neuro-fuzzy model where first spike latency and frequency-following interval are the inputs

and spike discharge is the output of the model.
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Chapter 4

Modularity detection in the brain

In this chapter we discuss the concept of modularity in the brain and the algorithms for discovery

of meaningful modules or clusters in the brain. First we introduce basic concepts of complex networks

that can reveal a lot of information about different functions of the brain. Then we describe the

application of data mining algorithm to ”resting-state brain data”. Analysis of these data sets can be

considered as a case study.

4.1 Modularity in the brain and complex networks

Recent studies in the area of neuroimaging showed that connectivity in the brain network can

be described by small-world properties, because in the brain networks, nodes are highly clustered

and average minimal path connecting pair of nodes is small compared to the size of the network

[168]. Below we provide a brief review of complex networks’ methods for analyzing and finding

communities in fMRI data sets. We first focus on communities in the brain networks and how to find

them; we, then present our method for finding informative voxels in state dependent fMRI data.

4.2 Complex networks

By definition complex system is a composition of interconnected elements in such a way, that

global property of the system is not clear from characteristics of its individual parts, but these parts

altogether show some global or emergent properties. Figure 4.1 shows the structure of the internet

that, an example complex system which can be analysed with a complex networks approach. Many
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complex systems can be properly described by complex networks whose nodes represent individuals

or organisations, and links mimic the interactions among them [136]. A common property of many

large networks is that the vertex connectivities follow a scale-free power-law distribution [16]. Figure

5.2 shows the popularity of an actor using number of links (the probability that an actor has k links)

has power-low tail for large k, following p(k) ∼ k−λactor distribution where typically λactor =

2.3± 0.1. Figure 4.2 shows the The distribution function of connectivities for various large networks

: (A) actor collaboration network with 212,250 vertices, (B) WWW network with 325,729 vertices

and (C) power grid data network with 4941 vertices [16].

Figure 4.1: Structure of Internet [123]

Figure 4.2: The distribution function of connectivities for various large networks [16].
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4.3 Identifying modularity and community structure in complex net-

works

Modularity optimization is an NP-complete problem, and many algorithms for this have expo-

nential time complexity. Therefore, it is not efficient to run this function on larger graphs, but graphs

with up to fifty vertices should be fine, and graphs with a couple of hundred vertices might be pos-

sible to consider. Newman [124] developed an algorithm to find optimal community in very large

network, that can be found via greedy optimization of modularity. Community of a given network

with n vertices can be found as follow:

Q = 1/2
∑
i,j

(Aij −
kikj
M

)(sisj + 1) (4.1)

Where Q is modularity, Aij is adjacency matrix, kikjM is the probability of an edge between two

vertices is proportional to their degrees and (sisj + 1) is vertices that are in the same community.

Figure 4.3: Splitting a social network (karate club) into two groups using division algorithm [124]

Ravasz et al. [152] developed an algorithm to calculate topological overlap as follow:

O(i, j) =
J(i, j)

min(ki, kj)
(4.2)

Where O is topological overlap for each pair of nodes, i and j, J(i, j) denotes the number of

nodes to which both i and j are linked; ki, kj is the degree of i and j, respectively.

Hollme et al. [78] introduced an algorithm for decomposing biochemical networks into subnet-

works based on the global network structure. For an undirected graph the betweenness centrality of

reaction nodes is defined as:
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CB(r) =
1

kin(r)

∑ σr(s, t)

σ(s, t)
(4.3)

Where CB(r) is centrality of reaction nodes (r ∈ R), σr(s, t) is the number of shortest paths

between s and t that passes through r, σ(s, t) is the total number of shortest paths between s and t,

kin(r) is the in-degree of node r.

As mentioned before, modularity in large networks reveals significant information about structure

of network [152]. We can deduce from modularity of the brain networks that these modules could

be correspond to different functions [165]. Recent applications based on graph theoretical analysis

in the neuroscience about consistent description of the brain functional network community structure

have been addressed [10, 20, 115]. One of effective algorithm for analyzing brain data addressed in

[43], that cuts the graph into a pre-specified number of clusters. Here minimized cutting cost can be

computed as follow:

cut(A,B) =
∑

vi∈A,vi∈B
Wij (4.4)

WhereK is pre-specified number of clusters, i and j are indices for two clustersA andB andWij

is the non-negative weight of two voxels, vi and vj that shows the similarity between the voxel. The

normalized cut that minimizes the similarity between clusters and maximizes the similarity within

clusters, can be found as follow:

Ncut(A,B) =
cut(A,B)∑
vi∈A,vn∈V win

+
cut(A,B)∑
vj∈B,vn∈V wjn

(4.5)

4.4 Modularity in brain networks

As mentioned before, modularity in large networks reveals significant information about the struc-

ture of the network. These modules can correspond to different functions. For example hierarchical

modularity in human brain functional networks with more than 1800 regional nodes analyzed using

graph theoretical tools in [115] in order to identify nested modular structure at several hierarchical

levels. The results obtained showed that human brain functional networks have hierarchical modular

organization with a fair degree of similarity between subjects. The largest five modules at the high-
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est level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-

temporal systems; occipital modules demonstrated less sub-modular organization than modules com-

prising regions of multimodal association cortex 1.5. The hub nodes play a key role in inter-modular

connectivity. Another study [9] addressed the decreasing of modularity in functional brain networks

in schizophrenia, with proportionally more inter-modular edges and fewer intra-modular edges. Fig-

ure 4.5 shows the group difference in modularity for two subjects in each clinical sample. Black edges

represent intra-modular connections, between brain regions in the same functional community. Red

edges represent inter-modular connections, between brain regions in different functional communi-

ties. On average there are more inter-modular connections and less intra-modular connections in the

networks of patients with childhood-onset schizophrenia compared to healthy participants [9].

Figure 4.4: Sub-modular decomposition of the five largest modules (shown centrally) illustrates that
the medial occipital module has no major submodules whereas the fronto-temporal modules has many
sub-modules [115]

4.5 Oxford data

Oxford data from 1000 Functional Connectomes Project used in this project to study the modular-

ity in the human brain that contain the data of 22 healthy brains [192]. Figure 4.6 shows the structure

of the input data of the subject 02248 after preprocessing and dimension reduction which contains

1008 brain regions with 166 time points brain activity. Last three columns are the 3 dimensional

coordinates for each region.
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Figure 4.5: The group difference in modularity for two subjects in each clinical sample [9]

4.6 Modified global k-means algorithm for minimum sum-of-squares

clustering problems

The modified global k-means clustering algorithm is another method for analysis of large data

sets. This algorithm computes clusters incrementally and computes as many clusters as a data set

contains, with respect to a given tolerance. In this section we present the brief description of the

modified global k-means algorithm. Let the tolerance ε > 0 be given. The modified global k-means

algorithm:

Step 1. (Initialization). Select a tolerance ε > 0. Compute the center x1 ∈ Rn of the set A. Let f1 be

the corresponding value of the objective function. Set k = 1.

Step 2. (Computation of the next cluster center). Set k = k + 1. Let x1, . . . , xk−1 be the cluster

centers for (k − 1)-partition problem. Find a starting point ȳ ∈ Rn for the k-th cluster center (details

of finding starting point can be found in [14]).

Step 3. (Refinement of all cluster centers). Select (x1, . . . , xk−1, ȳ) as a new starting point, apply

k-means algorithm to solve k-partition problem. Let y1, . . . , yk be a solution to this problem and fk

be the corresponding value of the objective function.

Step 4. (Stopping criterion). If
fk−1 − fk

f1
< ε (4.6)
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Figure 4.6: Oxford data: 22 healthy brains

then stop, otherwise set xi = yi, i = 1, . . . , k and go to Step 2.

It is clear that fk ≥ 0 for all k ≥ 1 and the sequence {fk} is decreasing, that is,

fk+1 ≤ fk∀k ≥ 1.

This means that the stopping criterion in Step 4 will be satisfied after finite many iterations. Thus

Algorithm 4.6 computes as many clusters as the data set A contains with respect to the tolerance

ε > 0.

The choice of the tolerance ε > 0 is crucial for Algorithm 4.6. Large values of ε can result in the

appearance of large clusters whereas small values can produce artificial clusters. The recommended

values for ε are ε ∈ [0.01, 0.1].

4.6.1 Computational results

To verify the effectiveness of the proposed algorithms we carried out a number of numerical

experiments with Oxford time series data ([192]) set with 1008 nodes and 166 brain activities for

each node. The clusters are computed based different tolerances. More than %80 of clusters are

stable. For example cluster number 47 is completely stable, also after some iteration cluster number

54 becomes stable, but cluster number 50 is not stable. There are some stable clusters that we cant

consider them as informative community, because they are only noise with a few elements. Our future
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work is to find communities in that are spatiallycontiguous, because these provide more information

about structure of the brain and are easier to interpret.

Figure 4.7: Stability in clusters using Modified global k-means algorithm for subject 02248 from
Oxford data. Horizontal axis shows the number of data point in the cluster, vertical axis is number
of iteration and Tolerance=0.01. (A) a cluster that is stable in all iteration, (B) unstable cluster. (C)
a cluster that becomes stable after some iteration and (D) a cluster that can be considered as a noise
because it has only one data point. Horizontal axis shows the number of data point in the cluster,
vertical axis is number of iteration and Tolerance=0.01

Figures 6-6 from appendix demonstrate the three dimensional coordinates of data points in each

cluster for subject 02248. They are the computed clusters in the last iteration using 0.01 for tolerance.

Many modules or clusters have symmetric shapes that are related to left and right hemispheres of the

brain. Figure 4.8 shows some of the symmetric clusters (clusters 1, 2, 13, 21, 26 and 30) for subject

02248.

As mentioned before the Modified Global K-means algorithm find a new cluster center in each

iteration and calculates new cluster. It means that some of the old clusters get smaller. The clusters

that keep the shape in different iteration can be called stable clusters. Figures 6-6 from appendix

show the stability of clusters based on 0.0001 for tolerance. In each figure the vertical axis shows the

number of data points in the cluster, the horizontal axis is the iteration and the cluster number is above

the graph. It is clear that many clusters are stable and can be related to different functions of the brain.

Figure 4.9 shows cluster stability of 8 clusters based on 0.0001 for tolerance for 10 subjects. We can
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Figure 4.8: Cluster 3d 02248

see that there only a few unstable clusters in each group.

4.7 Conclusion

In this chapter we discussed the concept of community and modularity in the brain. We provided a

brief description about some of commonly used modularity detection algorithms, then we introduced

the algorithm that we developed and evaluated for resting-state Oxford data. The results of analyzing

of Oxford data shows that more than 80% of obtained clusters are stable.
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Figure 4.9: cluster stability of clusters 33 to 40 based on 0.0001 for tolerance for 10 subjects
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Chapter 5

Functional connectivity differences

between men and women in healthy

brains and schizophrenia

Schizophrenia is a complex and multifactorial psychiatric disorder, increasingly associated with

abnormalities of functional brain connectivity, primarily detected through non-invasive brain imag-

ing methods such as functional magnetic resonance imaging (MRI). Previous studies of schizophre-

nia have largely converged on abnormal functional connectivity patterns in schizophrenia involving

frontal, temporal and limbic regions. However few studies have considered gender-specific influences

on these effects, despite clear evidence that gender modulates the clinical presentation and progres-

sion of schizophrenia, and is consequently likely to influence the underlying patterns of anatomical

and functional dysconnectivity underpinning the disorder. Here we used whole-brain functional MRI

and data driven analyses to study gender-specific differences in functional connectivity in 48 men

and women with and without schizophrenia. Our results reproduced some of the previously observed

major connectivity alterations in the disorder, but importantly additionally detected gender-specific

differences in dysconnectivity involving the left superior temporal gyrus, a brain region associated

with basic speech perception. These results provide new evidence for gender-specific abnormalities

of schizophrenia, and their implications in distinguishing between the male and female phenotypes

of the disorder.
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5.1 Introduction

Functional connectivity refers to analyzing the temporal relationship of different regions of the

brain [11] and its correlation between different brain regions activities. The following different meth-

ods can be used for this analysis: Seed-to-Voxel, ROI-to-ROI and Voxel-to-Voxel [207]. Studies of

brain connectivity based on two types of experiments, such as resting state and task-related data how-

ever resting-state fMRI is more robust, reliable, and can elucidates the functional organization of the

human brain [207]. Resting state functional connectivity network provides an essential architecture of

the human brain’s functions [207]. Functional magnetic resonance imaging is widely used technology

for study of connectivity in the brain and it can be used for either of healthy and diseased brains. For

example, decreasing fMRI blood-oxygen-level dependent (BOLD) signal activity in two areas shown

on the figure 5.1-A. Figure 5.1-B shows the time series of BOLD signal for these areas.

Figure 5.1: Similarity of FMRI BOLD signal activity in two areas in the resting state[149]

Generally, FMRI data is noisy and contains many irrelevant data points in time and space and be-

fore analysing it we need to use different preprocessing techniques like noise reduction or we can use

dimensional reduction methods to get meaningful features of this data. Different methods like statis-

tical summaries (t-test or correlation test), isolating region of interest (ROI) and dimension reduction

methods such as principle component analysis (PCA) or independent component analysis (ICA) can

be used for dimension reduction of fMRI data. These methods are well-known for extracting common

signals across the brain. Component-based noise correction method (CompCor) [24] is an efficient

strategy for noise reduction of fMRI data and its application to fMRI data is addressed in [11, 84].

For efficiency, only after preprocessing fMRI data, different machine learning and complex networks

algorithms can be used for analyzing it.

Brain networks can be described by small-world properties, because the nodes of the network

are highly clustered and an average minimal path connecting pair of nodes is small compared to the

network’s size [31, 168].Complex networks method is an efficient method for analysing the functional
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connectivity in the brain, that is measured using different graph measures like average path length and

small-worldness. Usually, the original brain data is de-composing to a brain networks in such a way,

that functional connectivity measures are computed and based on these measures graph structure is

created. Complex network approach used in [198] for analyzing bilateral inferior/superior frontal

cortex and temporal pole regions and their capacity to communicate with other regions of the brain.

Abnormality in the connectivity in schizophrenia is an interesting topic in the neuroscience area.

For example, Fornito et al. [52] showed that there are connectivity deficits between frontal cortex and

posterior regions and occurred irrespective of task context in the first-episode schizophrenia. Another

research [51] addressed the abnormality in resting-state functional connectivity in bipolar patients.

In terms of connectivity significant difference between bipolar patients and healthy subjects was

observed between the Medial prefrontal cortex and the right dorsolateral prefrontal cortex. In [11]

functional-connectivity measures used for independent components to classify schizophrenia patients

and healthy controls during resting-state. Modularity and local connectivity impairments of brain

functional networks in childhood-onset schizophrenia is addressed in [10]. They used Complex net-

work analysis to show the alteration of inter- versus intra-modular connections between network

nodes. They illustrated that there are more inter-modular connections and less intra-modular connec-

tions in the networks of patients with childhood-onset schizophrenia compared to healthy participants.

Figure 5.1 hows the decreasing of modularity (edges within clusters) and increased global efficiency

(edges between modules) in schizophrenic patients relative to controls.

Figure 5.2: Difference of modularity between health control (left) and schizophrenic population
(right) [10]

Recent studies addressed alterations of functional connectivity of prefrontal cortex in schizophre-

nia [41, 54, 106]. In [41] resting state functional connectivity magnetic resonance imaging used to

identify within prefrontal cortex (PFC) dysconnectivity in schizophrenia and showed that the right

dorsolateral prefrontal cortex (DLPFC) and left inferior frontal junction (IFJ) has reduction within-
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Figure 5.3: Difference in clustering (left) and efficiency (right) between schizophrenic patients and
healthy control [10]

PFC connectivity for patients compared with control subjects (figure 5.1). Also, The dorsolateral

prefrontal cortex is underconnected with prefrontal cortex and overconnected with posterior cortex in

schizophrenia.

Figure 5.4: Within prefrontal cortex (PFC) dysconnectivity in schizophrenia [41]

Middle temporal gyrus and inferior temporal gyrus have abnormal connectivity in schizophrenia

patient [76, 129]. Also, the superior temporal gyrus is strongly implicated in the pathophysiology of

schizophrenia [46]. Figure 5.5 shows the relative volumes of the middle temporal gyrus and inferior

temporal gyrus in chronic schizophrenia patients. Compared with control healthy, the schizophrenia

patients show gray matter volume reductions in the left middle temporal gyrus and bilateral inferior

temporal gyrus [41].

As mentioned before, analyzing the statistical dependencies between regional time series could

be based on source of interest. The difference between connectivities can help us to discriminate the

patient group and healthy controls [11]. In this chapter, we focused on connectivity difference in male

and females schizophrenia patients. First, we considered the connectivity difference between patients

and healthy control subjects, then we applied ROI-to-ROI analysing (analysing the connectivity be-

tween seed region and all other ROIs) and complex networks methods for patients’ data to see the

difference between genders in patients data.
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Figure 5.5: Relative Volumes of the Middle Temporal Gyrus and Inferior Temporal Gyrus by Hemi-
sphere in Male Patients With Chronic Schizophrenia (Horizontal lines represent the mean relative
volume) [129].

5.2 Gender difference in schizophrenia

In this section we discuss about the functional connectivity difference of schizophrenia in male

and female patients. Although, functional connectivity of many areas in the brain is similar for

different genders, but there are some distinction for some areas in some experiments. This mental

disorder is common in women, but the age of onset is early in women[44, 141]. There is reduction

in left hippocampus formation in male [199] and the men have smaller ratio of grey matter in the

caudate, hippocampus, and temporal gyrus (are involved functions with language, thinking and mem-

ory) [111, 199]. Figure 5.6 demonstrated the regional changes in brain gray matter in patients with

schizophrenia.

Schmithorst et al. [160] showed that association between intelligence and the functional con-

nectivity linking Broca’s area to auditory processing area, including Wernicke’s areas and the right

posterior superior temporal gyrus in boys is greater than girl, but for girls the association is greater

the linking left posterior superior temporal gyrus to Wernicke’s areas bilaterally. Also, investigating

functional connectivity measuring the gamma phase synchrony in schizophrenia shows that global

functional connectivity (lower gamma phase synchrony) declines in chronic schizophrenia subjects

compared with healthy subjects and this reduction is most apparent in female patients [164].

Compared with patients with healthy comparison subjects gray matter volume over time in the

left superior temporal gyrus has significant decreases [92]. A study on handedness as a differen-
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Figure 5.6: Regional changes in brain gray matter in patients with schizophrenia [175]

tiating variable [77] shows that gray matter volumes in the superior temporal gyrus in left-handed

schizophrenic men is smaller. More evidences regarding abnormality in between different genders

and left and right hemisphere of superior temporal gyrus in schizophrenia patients’ can be found

[38, 114, 150, 151, 174, 200].

The current study has two steps. First we analyzed the difference in functional connectivity

between schizophrenia patients and healthy controls. Then we evaluated the difference between male

and female dysfunctionality has been evaluated. Our results in the first step confirmed the previous

works about abnormality in the prefrontal cortex in the SP’s. We used the CONN-fMRI Functional

connectivity toolbox that is a toolbox for functional connectivity analyses of fMRI data [207] that

publicly available on [193]. It provides different techniques of analyzing of functional connectivity

of resting state and task-related data.

5.3 Material and method

5.3.1 COBRE data

We included 48 subjects from Centre for Biomedical Research Excellence COBRE data set; 24

healthy controls and 24 schizophrenia patients (12 men and 12 women in each group) in the study.

In the original data set (see table 5.3.1) there are more male subjects than females and to allow the

same effects of the both genders in the results we used the above arrangement. COBRE data contains

raw anatomical and functional MRI data from patients with Schizophrenia and healthy controls. Some
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papers that by the COBRE group published based on this data [33, 112, 169]. This data set is available

on [184] and contains raw anatomical and functional MR data from patients with Schizophrenia and

healthy controls, ranging in age from 18 to 65 years old. Resting fMRI, anatomical MRI, phenotypic

data for every participant including: gender, age, handedness and diagnostic information are released.

N Age(SD) %Female %Right-Handed
Schizophrenia 72 38.16(13.89) 0.19 0.83
Patients 74 35.82(11.58) 0.31 0.96

Table 5.1: COBRE data [11]

5.4 Setting up the data and the related parameters

In this section we discuss about setting up the structural and functional data, defining region of

interests and setting up the parameters.

5.4.1 Structural and functional preprocessing of the data

The CONN and SPM toolboxes are used for spatially preprocessing (Realignment, coregistering,

normalization, ...) of structural and functional data. Figures 5.4.1 and 5.4.1 show the structural and

functional data for each subject. The functional volumes are coregistered with the region of interest

and structural volumes (figure 5.4.1).

Figure 5.7: Structural data setup

5.4.2 Regions of interest

Regions of interest and all the Brodmann areas defined from Talairach daemon assigned to all

subjects. By segmentation of structural image for each subject, grey matter, white matter and cere-
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Figure 5.8: Setting up of the functional data. The window shows the first (left) and last (right) scan
for each subject

Figure 5.9: Functional data (a) and the related structural data (b)

brospinal fluid (CSF) masks generated. Here, the time series of interest are the number of PCA

components.

Figure 5.10: Regions of interest for subject 40121 from COBRE data. Grey matter (a), White matter
(b) and Cerebrospinal fluid (c) masks.

5.4.3 First and second level of covariates

In this step the realignment parameters in BOLD model is defined (first level covariate), then in

the second level covariate the group level regressor is performed. We categorized the data input data

into 4 groups; Control females, Control males, Patient females and Patient male. After defining the

experiment data, the functional data is imported, then the structural data is segmented to define the

grey matter, white matter, cerebrospinal fluid region of interest. By performing PCA on within region
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of interests the ROIs time series is extracted.

5.5 Denoising of the data

Before analysing the data we need to explore and remove the confounds. Using CONN toolbox

different source of possible confounds like cerebrospinal fluid and white matter signal and within-

subject covariate (realignment parameters) are considered. Figure 5.11 shows the white matter and

CSF and the related signals for subject 40121 from COBRE data. We chose the 5 dimension that is

the number of temporal components are being used. Similarly, the number of dimension for white

matter was 5 and the derivative order was 0.

Figure 5.11: Signals and the total variance explained in white matter (a) and CSF (b) for subject
40121

The histogram plot 5.12 display r value before and after confound removal and the band-pass

filter is set to [0.008 0.09].

Figure 5.12: R value before and after confound removal

The CONN and SPM toolboxes used for spatially preprocessing (Realignment, coregistering, nor-

malization) of structural and functional data of functional data is done using SPM toolbox. The func-

tional volumes are coregistered with the region of interest and structural volumes. ROI-to-ROI corre-

lational analysis were carried out by the CONN toolbox [207] that is publicly available on [193]and

SPM8 (Statistical Parametric Mapping). The preprocessing of the functional images considered of

band-pass filtering of 0.008 - 0.09 Hz, motion correction, registration to structural images and spatial

normalization to the MNI template. Then to reduce the physiological noise source, a Component
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Based Noise Correction Method (CompCor) has been used [24]. CompCor can be used for the re-

duction of noise in both blood oxygenation level dependent and perfusion-based functional magnetic

resonance imaging data. False discovery rate correction is used to multiple hypothesis testing. Num-

ber of PCA components to be extracted for each ROI is set to one. It means that the time-series of

interest is defined as the average BOLD activation within the ROI voxels, but it’s possible to define

it as the principal eigenvariates of the time-series within the ROI voxels. Regions of interest and

all the Brodmann areas defined from Talairach daemon assigned to all subjects. By segmentation of

structural image for each subject, grey matter, white matter and cerebrospinal fluid (CSF) masks were

generated.

5.5.1 Calculating functional connectivity measures

Functional connectivity analysis was done using CONN toolbox to examine sex difference in

schizophrenia. Bivariate correlation is used as a functional connectivity measures between two areas.

General linear model (GLM) [113] used for comparison of connectivity results between genders.

5.5.2 ROI based analysis

As discussed before, temporal gyrus is altered in schizophrenia and it’s abnormality is different

for men and women [44, 111, 141]. We investigated the hypothesis of connectivity differece in

schizophrenia and used ROI analysing for this area. Two-sample t-test analyses computed via SPM8

[58] to compare the connectivity results of patients vs. controls and male patient vs. women patient

to compare the connectivity across two group. Connectivity values (Fisher-transformed correlation

coefficients) between the seed and the identified ROI was extracted from the connectivity map.

Different source of interest can be defined for analyzing. Figure 5.13 shows the results connec-

tivity analyzing based left primary somatosensory cortex and left associative visual cortex for subject

40121 from COBRE data that voxels with correlation coefficient 0.5 are colored.

Different measures can be used for the analyzing the connectivity that is listed in the table 5.2.

x and y are two BOLD time series vectors and X and Y are matrices created by concatenating

horizontally one or several x and y vectors. The brackets ([]) show the operation of zeroing all the

nondiagonal elements in a matrix. Here we used bivariate correlation [207].
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Figure 5.13: ROI-based connectivity of left primary somatosensory cortex (a) and left associative
visual cortex (b) for subject 40121

Table 5.2: Functional connectivity measures
Bivariate regression b = (xt.x)−1.(xt.y)

Bivariate correlation r = (xt.x)1/2.b.(yt.y)−1/2

Multivariate regression B = (Xt.X)−1.(Xt.Y )

Semipartail correlation R = [(Xt.X)−1]−1/2.B.[Y t.Y ]−1/2

5.5.3 First level voxel-based analysis

For a subject or condition it is possible to perform voxel-to-voxel analyzing that applies matrix of

voxel-to-voxel connectivity values and there is no need for priori region of interest or seed analysis.

In this method we can investigate whole brain connectivity. The voxel based analyzing can be based

on connectivity pattern (Principal Component Analysis ) between a voxel and the rest of the brain

(MVPA). Another voxel based measeure is avialable in CONN toolboxes is Indexes that calculates

the the average local connectivity between each voxel and its neighbors (Integrated Local Correla-

tion) [47] or instead of average, the spatial asymmetry of the local connectivity can be used (Radial

Correlation Contrast) [62]. Also, instead of local connectivity, global connectivity pattern between a

voxel and the rest of the brain can be used ( e.g. Radial Similarity Contrast) [95]. More details about

measuring the Index can be found in [207].

5.6 Second level analysis

In the second level analysis step the between-subject contrast can be consider (e.g. to compared

different groups like male vs. femals to see main effects in the connectivity within each group).

In the ROI-to-ROI analyses, the first-level connectivity-measure matrix is used and the results can

be thresholded at the desired p-value threshold. In this step by graph theoretical analyzing method

provides the network measures like efficiency, centrality, and cost/degree to test the between-subject

contrast.
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5.7 Results: Healthy women vs. healthy men

In this section we discuss about some of our results about functional connectivity difference be-

tween men and women. Two groups of healthy subjects (12 men and 12 women) from COBRE data

is used for this experience. We used all similar setting that we discussed before. Using ROI-based

analyzing, we found significant differences in Insular Cortex, Temporal Gyrus,Cingulate Cortex, Op-

ercularis and Premotor cortex.

Table 5.3: Difference between healthy women and healthy men
1 (L) Dorsal anterior Cingulate Cortex
2 (L) Dorsal Posterior Cingulate Cortex
3 (R) Dorsal Posterior Cingulate Cortex
4 (L) IFC pars opercularis
5 (L) Ventral Posterior Cingulate Cortex
6 (R) Dorsal Posterior Cingulate Cortex
7 (L) Ventral Posterior Cingulate Cortex
8 (R) Ventral Posterior Cingulate Cortex
9 L Insular Cortex
10 L Middle Temporal Gyrus
11 PCC
12 rsREL Left Anterior Sup Temp Gyrus
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Table 5.4: Difference between all healthy subjects and all patients
1 (R). Primary Somatosensory Cortex
2 (R). Middle Temporal Gyrus
3 (L). Superior Temporal Gyrus
4 (R). Superior Temporal Gyrus
5 (L). Ventral Anterior Cingulate Cortex
6 (L). Posterior Entorhinal Cortex
7 (R). Posterior Entorhinal Cortex
8 (L). Anterior Entorhinal Cortex
9 (L). Parahippocampal cortex
10 (R). Fusiform gyrus
11 (L). Temporopolar Area
12 (R). Temporopolar Area
13 (L). Primary Auditory Cortex
14 (R). Primary Auditory Cortex
15 (L). Subcentral Area
16 (R). IFC pars opercularis
17 (L). Premotor Cortex
18 (L). Dorsolateral Prefrontal Cortex
19 (R). Dorsolateral Prefrontal Cortex
20 rsREL.Right Posterior Sup Temp Gyrus (60,-30,24)

Figure 5.14: Healthy women vs. healthy men. L Insular Cortex, L Middle Temporal Gyrus, L Ven-
tral Posterior Cingulate Cortex, R Ventral Posterior Cingulate Cortex, L Dorsal Posterior Cingulate
Cortex, R Dorsal Posterior Cingulate Cortex, L Dorsal anterior Cingulate Cortex, L IFC pars opercu-
laris, Left Anterior Sup Temp Gyrus,PCC. ROI-to-ROI connections from connectivity matrix (99 ×
99 ROIs), p-FDR=0.05
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Figure 5.15: All healthy vs. all patients. (R). Primary Somatosensory Cortex,(R). Middle Tem-
poral Gyrus, (L). Superior Temporal Gyrus, (R). Superior Temporal Gyrus, (L). Ventral Anterior
Cingulate Cortex, (L). Posterior Entorhinal Cortex, ,(R). Posterior Entorhinal Cortex, (L). Anterior
Entorhinal Cortex (L). Parahippocampal cortex, (R). Fusiform gyrus,, (L). Temporopolar Area (R).
Temporopolar Area, (L). Primary Auditory Cortex,, (L). Primary Auditory Cortex,, (R). Primary Au-
ditory Cortex (L). Subcentral Area, (R). IFC pars opercularis, (L). Premotor Cortex, (L). Dorsolateral
Prefrontal Cortex, (R). Dorsolateral Prefrontal Cortex,, Right Posterior Sup Temp Gyrus (60,-30,24)
. ROI-to-ROI connections from connectivity matrix (99 × 99 ROIs), p-FDR=0.05
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5.8 Connectivity difference based on Network-Based Statistics

The ROI-to-ROI functional connectivity networks properties for the selected between-subjects

the graph network’s measures are calculated as follow:

1. Network nodes are limited the network analyzed to that defined by a subset of ROIs.

2. The Network edges defined for the connectivity threshold above which two ROIs are consid-

ered connected. It can be defined based on correlation scores, z-scores, or cost values. Here

cost=0.15 selected for thresholding the nodes.

3. For each ROI the corresponding measure effect size (global efficiency, local effiency, or cost), as

well as T- values, uncorrected p-values, and FDR-corrected p- values for the specified second-

level analysis. Here for the thresholding I selected 0.05 for uncorrected p-value.

Here we demonstrate a brief description about the graph theoretical measurements that are used

in this step. More description about the measurements can be found in [2, 31, 104].

• Cost: Cost is the proportion of connected neighbors for each node n in the graph G. It can be

defined as follow [207]:

Cn(G) =
1

‖G‖ − 1
.‖Gn‖ (5.1)

where Cn(G) is cost of node n in the graph G in ROI-level and ‖G‖ represents the number of

nodes in graph G.

• Global efficiency: It is the average inverse shortest path distance from node n to all other

nodes in the graph [207]. For each node n in the graph G the global efficiency Eglobaln (G) can

be calculated as:

Eglobaln (G) =
1

‖G‖ − 1
.
∑

m 6=n∈G
d−1
nm(G) (5.2)

where dnm(G) is the shortest path distance between nodes n and m in graph G.

• Local efficiency: Is the average global efficiency across all nodes in the local subgraph of node

n [207] and can be defined as follow:

Elocaln (G) = Eglobaln (Gn) (5.3)
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where Elocaln (G) is the local efficiency of node n in the graph G.

• Betweenness centrality: For each node n betweenness centrality is the proportion of all

shortest-paths in the network containing it [30]. It can be presented as:

CG(n) =
∑

s 6=n6=t∈V

σst(n)

σst
(5.4)

where CG(n) is the betweenness centrality of node n in the graph G, V is the set of vertices,

σst(n) is the number of those paths that pass through n and σst is total number of shortest paths

from node s to node t.

• Average path length: It is the average shortest-path distance from each node n to all other

nodes in the graph.

• Clustering coefficient: Is the proportion of connected nodes across all nodes neighboring node

n. For a node n in a graph G the clustering coefficient Cn can be defined as follow:

Cn =
2ln

kn(kn − 1)
(5.5)

where kn is the number of neighbors of node n and ln is the number of connected pairs between

all neighbors of node n [18, 204].

• Degree: Degree is the number of connected neighbors for each node n in the graph G.

5.9 Conclusion

In this chapter abnormality of connectivity and it’s difference between male and female schizophre-

nia patients investigated. Our results revealed abnormal temporal gyrus, cingulate cortex, entorhinal

cortex and auditory cortex are involved in schizophrenia and support former hypothesis. Also. some

of these abnormalities are not identical for men and women. To do this resting state functional data

and structural data of 48 healthy controls and schizophrenia patients data and we chose identical

numbers of subjects for each genders in each group. The ROI-to-ROI analysing and Network-Based

Statistic are done to see the abnormal connectivity in schizophrenia patients. We demonstrated that

alteration in connectivity of left superior temporal gyrus is difference between genders.
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Figure 5.16: Graph-theory measures for the Healthy Women vs. Healthy Men
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Figure 5.17: Graph-theory measures for all healthy subjects vs. all patients
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Chapter 6

Conclusion and future works

In this thesis we considered two main questions in neuroscience; representation of information

by neural activity and the structure of the healthy brain. To deal with these problems we looked at

several data-sets based acquired using a variety of methods, mainly functional Magnetic Resonance

Imaging, and analyzed using a variety of algorithms.

In Chapter 1 we introduced that data and algorithms that are more common in the neuroscience.

Although, there are many data sets that we can use for testing the accuracy of prediction and decoding

cognitive states and functional connectivity analysis, we focused on a small sample of relevant data

sets. For example Science 2008 and Haxby data sets are two famous data sets that we used to test

the classification algorithms. Also, we used a new data set called COBRE data that contains heathy

brains and the brains with schizophrenia data to analyze the gender differences in schizophrenia.

In Chapter 2 we introduced applications of new feature selection algorithms to brain data sets.

Theses new algorithms are overlapping feature selection algorithm and feature selection based on

Catastrophe model. Haxby, Science 2008, breast cancer and Parkinson’s data sets used for evaluation

of these algorithms.

In Chapter 3 we showed the development and evaluation of Neuro-fuzzy model for prediction of

Spike discharge. Our results showed that spike discharge can be modeled accurately using the Neuro-

fuzzy approach and it can be predicted using first spike latency and frequency-following interval. We

showed that ANFIS and genetic for lateral tuning and rule selection of linguistic fuzzy system model

have better performance compared with other versions of Neuro-fuzzy models.

In Chapter 4 we discussed application of clustering algorithms and graph theoretical analysis
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algorithms to fMRI data for finding modules in the brain.

In Chapter 5 we analyzed a schizophrenia data set and connectivity difference between healthy

control brains and schizophrenia. Also, in this chapter we compared male and female patients in

schizophrenia. We showed that there is significant difference in some areas like Left Superior Tem-

poral Gyrus between men and women patients.

The following can be considered future work.

• With the development of new technologies for collecting brain data new models and algorithms

are necessary to analyze them. Such algorithms should be efficient for solving feature selection,

supervised and unsupervised classification problems in high dimensional data sets.

• New mathematical approaches are necessary to model processes in brain. Such approaches

may include graph theory, optimization and data mining.

• Applications of these mathematical algorithms and approaches to higher quality data sets of

patients with diseases such as schizophrenia will allow to reveal the underlying processes giving

rise to psychiatric symptoms.

In conclusion, we demonstrate a successful application of computational techniques to complex

brain data sets. The use of these techniques will become increasingly important in the future as new

technologies will generate larger and more complex data which could only be analyzed in automated

ways. The development of these computational techniques should be combined with development of

imaging methods to match the future increase of complexity of the acquired data.
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Appendix

Three dimensional location of data points of clusters: subject 02248 and

tholerance=0.01 (from chapter 5)
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Cluster stability in different iteration: subject 02248 and tolerance 0.0001

(from Chapter 5)
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This part is related to Chapter 6

Results: Healthy women vs. healthy men (from Chapter 6)
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Table 6.1: List of sources
001 BA.1 (L). Primary Somatosensory Cortex 051 BA.37 (L). Fusiform gyrus
002 BA.1 (R). Primary Somatosensory Cortex 052 BA.37 (R). Fusiform gyrus
003 BA.10 (L). Anterior Prefrontal Cortex 053 BA.38 (L). Temporopolar Area
004 BA.10 (R). Anterior Prefrontal Cortex 054 BA.38 (R). Temporopolar Area
005 BA.11 (L). Orbitofrontal Cortex 055 BA.39 (L). Angular gyrus
006 BA.11 (R). Orbitofrontal Cortex 056 BA.39 (R). Angular gyrus
007 BA.13 (L). Insular Cortex 057 BA.4 (L). Primary Motor Cortex
008 BA.13 (R). Insular Cortex 058 BA.4 (R). Primary Motor Cortex
009 BA.17 (L). Primary Visual Cortex 059 BA.40 (L). Supramarginal Gyrus
010 BA.17 (R). Primary Visual Cortex 060 BA.40 (R). Supramarginal Gyrus
011 BA.18 (L). Secondary Visual Cortex 061 BA.41 (L). Primary Auditory Cortex
012 BA.18 (R). Secondary Visual Cortex 062 BA.41 (R). Primary Auditory Cortex
013 BA.19 (L). Associative Visual Cortex 063 BA.42 (L). Primary Auditory Cortex
014 BA.19 (R). Associative Visual Cortex 064 BA.42 (R). Primary Auditory Cortex
015 BA.2 (L). Primary Somatosensory Cortex 065 BA.43 (L). Subcentral Area
016 BA.2 (R). Primary Somatosensory Cortex 066 BA.43 (R). Subcentral Area
017 BA.20 (L). Inferior Temporal Gyrus 067 BA.44 (L). IFC pars opercularis
018 BA.20 (R). Inferior Temporal Gyrus 068 BA.44 (R). IFC pars opercularis
019 BA.21 (L). Middle Temporal Gyrus 069 BA.45 (L). IFC pars triangularis
020 BA.21 (R). Middle Temporal Gyrus 070 BA.45 (R). IFC pars triangularis
021 BA.22 (L). Superior Temporal Gyrus 071 BA.46 (L). Dorsolateral Prefrontal Cortex
022 BA.22 (R). Superior Temporal Gyrus 072 BA.46 (R). Dorsolateral Prefrontal Cortex
023 BA.23 (L). Ventral Posterior Cingulate Cortex 073 BA.47 (L). Inferior Prefrontal Gyrus
024 BA.23 (R). Ventral Posterior Cingulate Cortex 074 BA.47 (R). Inferior Prefrontal Gyrus
025 BA.24 (L). Ventral Anterior Cingulate Cortex 075 BA.5 (L). Somatosensory Association Cortex
026 BA.24 (R). Ventral Anterior Cingulate Cortex 076 BA.5 (R). Somatosensory Association Cortex
027 BA.25 (L). Subgenual cortex 077 BA.6 (L). Premotor Cortex
028 BA.25 (R). Subgenual cortex 078 BA.6 (R). Premotor Cortex
029 BA.27 (L). Piriform Cortex 079 BA.7 (L). Somatosensory Association Cortex
030 BA.27 (R). Piriform Cortex 080 BA.7 (R). Somatosensory Association Cortex
031 BA.28 (L). Posterior Entorhinal Cortex 081 BA.8 (L). Dorsal Frontal Cortex
032 BA.28 (R). Posterior Entorhinal Cortex 082 BA.8 (R). Dorsal Frontal Cortex
033 BA.29 (L). Retrosplenial Cingulate Cortex 083 BA.9 (L). Dorsolateral Prefrontal Cortex
034 BA.29 (R). Retrosplenial Cingulate Cortex 084 BA.9 (R). Dorsolateral Prefrontal Cortex
035 BA.3 (L). Primary Somatosensory Cortex 085 rsREL.Precuneus (PCC) (0,-56,28)
036 BA.3 (R). Primary Somatosensory Cortex 086 rsREL.Right Inferior Parietal Lobe (RLP) (48,-60,38)
037 BA.30 (L). Cingulate Cortex 087 rsREL.Left Inferior Parietal Lobe (LLP) (-42,-68,38)
038 BA.30 (R). Cingulate Cortex 088 rsREL.Med Prefrontal Cortex (MPFC) (0,54,-8)
039 BA.31 (L). Dorsal Posterior Cingulate Cortex 089 rsREL.Right Posterior Sup Temp Gyrus (60,-30,24)
040 BA.31 (R). Dorsal Posterior Cingulate Cortex 090 rsREL.Right Anterior Sup Temp Gyrus (54,8,-2)
041 BA.32 (L). Dorsal anterior Cingulate Cortex 091 rsREL.Cingulate Gyrus (0,6,40)
042 BA.32 (R). Dorsal anterior Cingulate Cortex 092 rsREL.Right Superior Frontal Gyrus (30,22,52)
043 BA.33 (L). Anterior Cingulate Cortex 093 rsREL.Left Superior Frontal Gyrus (-28,22,52)
044 BA.33 (R). Anterior Cingulate Cortex 094 rsREL.Left Posterior Sup Temp Gyrus (-60,-30,20)
045 BA.34 (L). Anterior Entorhinal Cortex 095 rsREL.Left Anterior Sup Temp Gyrus (-44,4,-4)
046 BA.34 (R). Anterior Entorhinal Cortex 096 LLP
047 BA.35 (L). Perirhinal cortex 097 MPFC
048 BA.35 (R). Perirhinal cortex 098 PCC
049 BA.36 (L). Parahippocampal cortex 099 RLP
050 BA.36 (R). Parahippocampal cortex
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Table 6.2: (L) Dorsal anterior Cingulate Cortex
Targets beta T(22) p-unc p-FDR
BA.21 (L). Middle Temporal Gyrus -0.3 -4.72 0.000103 0.010197
BA.19 (R). Associative Visual Cortex -0.29 -3.93 0.000714 0.035348
BA.22 (L). Superior Temporal Gyrus -0.25 -3.54 0.001833 0.06049
BA.22 (R). Superior Temporal Gyrus -0.2 -3.11 0.005058 0.125192
BA.38 (L). Temporopolar Area -0.2 -2.8 0.010476 0.204602
BA.19 (L). Associative Visual Cortex -0.27 -2.72 0.0124 0.204602
Grey Matter -0.23 -2.6 0.016325 0.23088
BA.38 (R). Temporopolar Area -0.16 -2.26 0.033727 0.36936
BA.23 (R). Ventral Posterior Ci*rtex -0.18 -2.25 0.034752 0.36936
BA.18 (R). Secondary Visual Cortex -0.14 -2.22 0.037309 0.36936
BA.18 (L). Secondary Visual Cortex -0.16 -2.17 0.041325 0.371923
BA.1 (L). Primary Somatosensory*rtex 0.18 2.09 0.048413 0.386337
BA.21 (R). Middle Temporal Gyrus -0.18 -2.07 0.050731 0.386337
rsREL.Precuneus (PCC) (0,-56,28) -0.18 -1.91 0.068704 0.444616
BA.17 (R). Primary Visual Cortex -0.12 -1.86 0.075581 0.444616
BA.47 (L). Inferior Prefrontal Gyrus -0.15 -1.85 0.078384 0.444616
BA.39 (L). Angular gyrus -0.16 -1.84 0.079083 0.444616
BA.44 (L). IFC pars opercularis -0.15 -1.81 0.083965 0.444616
BA.46 (R). Dorsolateral Prefron*rtex -0.17 -1.74 0.095712 0.444616
BA.29 (L). Retrosplenial Cingul*rtex 0.14 1.74 0.095863 0.444616
BA.37 (L). Fusiform gyrus -0.17 -1.69 0.105284 0.444616
BA.43 (L). Subcentral Area -0.12 -1.69 0.106 0.444616
BA.34 (L). Anterior Entorhinal *rtex -0.17 -1.68 0.107394 0.444616
BA.31 (L). Dorsal Posterior Cin*rtex -0.14 -1.68 0.107786 0.444616
rsREL.Cingulate Gyrus (0,6,40) 0.16 1.58 0.128131 0.471705
BA.43 (R). Subcentral Area -0.12 -1.55 0.135724 0.471705
BA.45 (R). IFC pars triangularis -0.12 -1.54 0.137024 0.471705
BA.45 (L). IFC pars triangularis -0.14 -1.54 0.138838 0.471705
BA.4 (L). Primary Motor Cortex -0.12 -1.53 0.13963 0.471705
BA.3 (R). Primary Somatosensory*rtex -0.11 -1.5 0.147288 0.471705
rsREL.Right Superior Frontal Gy*,52) -0.12 -1.5 0.147963 0.471705
BA.9 (R). Dorsolateral Prefront*rtex -0.14 -1.48 0.15247 0.471705
BA.34 (R). Anterior Entorhinal *rtex -0.11 -1.46 0.157377 0.47213
BA.35 (R). Perirhinal cortex -0.16 -1.43 0.167678 0.482841
BA.33 (L). Anterior Cingulate Cortex -0.15 -1.42 0.170701 0.482841
PCC -0.1 -1.33 0.195923 0.508877
BA.39 (R). Angular gyrus -0.13 -1.33 0.196002 0.508877
BA.4 (R). Primary Motor Cortex -0.1 -1.33 0.196866 0.508877
BA.30 (R). Cingulate Cortex -0.11 -1.3 0.2067 0.508877
BA.33 (R). Anterior Cingulate Cortex -0.13 -1.29 0.210507 0.508877
BA.13 (L). Insular Cortex -0.08 -1.29 0.211501 0.508877
LLP -0.11 -1.27 0.215887 0.508877
RLP -0.11 -1.21 0.23847 0.54242
BA.28 (R). Posterior Entorhinal*rtex -0.13 -1.19 0.246811 0.54242
BA.35 (L). Perirhinal cortex -0.13 -1.18 0.250614 0.54242
rsREL.Left Inferior Parietal Lo*,38) -0.11 -1.16 0.257097 0.54242
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Table 6.3: (L) Dorsal Posterior Cingulate Cortex
Targets beta T(22) p-unc p-FDR
BA.13 (L). Insular Cortex -0.26 -3.93 0.000713 0.034421
BA.44 (L). IFC pars opercularis -0.26 -3.88 0.000814 0.034421
rsREL.Left Anterior Sup Temp Gy*,-4) -0.31 -3.77 0.001043 0.034421
BA.44 (R). IFC pars opercularis -0.28 -3 0.006614 0.163687
rsREL.Right Anterior Sup Temp G*,-2) -0.24 -2.73 0.012338 0.244295
BA.13 (R). Insular Cortex -0.22 -2.47 0.021929 0.361829
BA.4 (R). Primary Motor Cortex -0.18 -2.35 0.027996 0.376402
BA.29 (L). Retrosplenial Cingul*rtex 0.26 2.23 0.036632 0.376402
rsREL.Left Posterior Sup Temp G*,20) -0.17 -2.16 0.042039 0.376402
BA.3 (R). Primary Somatosensory*rtex -0.17 -2.11 0.04659 0.376402
rsREL.Right Posterior Sup Temp *,24) -0.2 -2.08 0.048985 0.376402
BA.42 (L). Primary Auditory Cortex -0.2 -2.07 0.050854 0.376402
BA.4 (L). Primary Motor Cortex -0.18 -2.05 0.052755 0.376402
BA.22 (R). Superior Temporal Gyrus -0.22 -2.04 0.053229 0.376402
BA.45 (R). IFC pars triangularis -0.18 -2 0.058426 0.384568
BA.40 (R). Supramarginal Gyrus -0.22 -1.97 0.062152 0.384568
BA.3 (L). Primary Somatosensory*rtex -0.16 -1.92 0.068364 0.398122
BA.19 (R). Associative Visual Cortex -0.15 -1.81 0.083212 0.457668
BA.6 (R). Premotor Cortex -0.2 -1.79 0.088034 0.458702
BA.22 (L). Superior Temporal Gyrus -0.19 -1.7 0.103441 0.46577
BA.24 (L). Ventral Anterior Cin*rtex -0.15 -1.69 0.104371 0.46577
BA.32 (L). Dorsal anterior Cing*rtex -0.14 -1.68 0.107786 0.46577
BA.42 (R). Primary Auditory Cortex -0.14 -1.65 0.113105 0.46577
BA.20 (R). Inferior Temporal Gyrus 0.14 1.63 0.11707 0.46577
BA.10 (L). Anterior Prefrontal *rtex 0.11 1.61 0.122104 0.46577
BA.33 (L). Anterior Cingulate Cortex -0.14 -1.57 0.131136 0.46577
BA.41 (R). Primary Auditory Cortex -0.14 -1.57 0.131639 0.46577
BA.11 (L). Orbitofrontal Cortex 0.13 1.56 0.132282 0.46577
BA.28 (L). Posterior Entorhinal*rtex 0.16 1.54 0.137587 0.46577
BA.9 (R). Dorsolateral Prefront*rtex -0.12 -1.5 0.148491 0.46577
BA.24 (R). Ventral Anterior Cin*rtex -0.14 -1.49 0.149131 0.46577
BA.43 (R). Subcentral Area -0.13 -1.47 0.156813 0.46577
BA.41 (L). Primary Auditory Cortex -0.15 -1.46 0.157495 0.46577
Grey Matter -0.15 -1.45 0.162095 0.46577
BA.11 (R). Orbitofrontal Cortex 0.1 1.43 0.167858 0.46577
BA.45 (L). IFC pars triangularis -0.12 -1.42 0.169981 0.46577
BA.2 (R). Primary Somatosensory*rtex -0.15 -1.4 0.174076 0.46577
rsREL.Precuneus (PCC) (0,-56,28) 0.14 1.37 0.184976 0.48191
BA.25 (R). Subgenual cortex 0.1 1.33 0.196192 0.4869
BA.20 (L). Inferior Temporal Gyrus 0.11 1.32 0.198883 0.4869
BA.36 (R). Parahippocampal cortex 0.13 1.32 0.201876 0.4869
BA.30 (L). Cingulate Cortex 0.11 1.3 0.206564 0.4869
BA.35 (L). Perirhinal cortex 0.12 1.27 0.216826 0.495951
BA.32 (R). Dorsal anterior Cing*rtex -0.12 -1.26 0.220423 0.495951
BA.18 (R). Secondary Visual Cortex -0.1 -1.22 0.234053 0.497394
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Table 6.4: (L) IFC pars opercularis
Targets beta T(22) p-unc p-FDR
BA.31 (R). Dorsal Posterior Cin*rtex -0.31 -4.44 0.000207 0.020471
BA.23 (R). Ventral Posterior Ci*rtex -0.27 -3.99 0.000621 0.026848
BA.31 (L). Dorsal Posterior Cin*rtex -0.26 -3.88 0.000814 0.026848
BA.41 (L). Primary Auditory Cortex -0.27 -3.64 0.001449 0.035865
BA.43 (L). Subcentral Area -0.23 -2.93 0.00776 0.150163
BA.29 (R). Retrosplenial Cingul*rtex -0.2 -2.78 0.01084 0.150163
BA.23 (L). Ventral Posterior Ci*rtex -0.19 -2.78 0.011029 0.150163
PCC -0.22 -2.73 0.012134 0.150163
BA.41 (R). Primary Auditory Cortex -0.18 -2.14 0.044071 0.386097
BA.25 (L). Subgenual cortex -0.16 -2.13 0.044766 0.386097
BA.29 (L). Retrosplenial Cingul*rtex -0.15 -2.1 0.047136 0.386097
BA.9 (R). Dorsolateral Prefront*rtex -0.16 -2.1 0.047791 0.386097
BA.34 (R). Anterior Entorhinal *rtex -0.18 -2.07 0.0507 0.386097
Grey Matte r -0.16 -1.99 0.05859 0.408127
BA.34 (L). Anterior Entorhinal *rtex -0.17 -1.96 0.062791 0.408127
BA.32 (R). Dorsal anterior Cing*rtex -0.16 -1.93 0.06596 0.408127
RLP -0.19 -1.83 0.080409 0.434934
BA.32 (L). Dorsal anterior Cing*rtex -0.15 -1.81 0.083965 0.434934
rsREL.Prec uneus (PCC) (0,-56,28) -0.19 -1.8 0.084986 0.434934
BA.30 (L). Cingulate Cortex -0.13 -1.78 0.089504 0.434934
BA.43 (R). Subcentral Area -0.15 -1.74 0.096393 0.434934
BA.30 (R). Cingulate Cortex -0.11 -1.74 0.096652 0.434934
BA.22 (L). Superior Temporal Gyrus -0.17 -1.67 0.108432 0.445316
BA.39 (R). Angular gyrus -0.18 -1.67 0.110012 0.445316
BA.24 (R). Ventral Anterior Cin*rtex -0.11 -1.65 0.112453 0.445316
rsREL.Righ t Inferior Parietal L*,38) -0.17 -1.6 0.123232 0.469228
BA.25 (R). Subgenual cortex -0.14 -1.57 0.129818 0.471752
BA.8 (R). Dorsal Frontal Cortex -0.12 -1.56 0.133425 0.471752
BA.28 (R). Posterior Entorhinal*rtex -0.15 -1.54 0.138264 0.472004
BA.21 (L). Middle Temporal Gyrus -0.18 -1.45 0.160477 0.514094
BA.27 (L). Piriform Cortex 0.08 1.43 0.165738 0.514094
BA.11 (L). Orbitofrontal Cortex -0.1 -1.43 0.166172 0.514094
BA.28 (L). Posterior Entorhinal*rtex -0.14 -1.39 0.178041 0.534123
MPFC -0.16 -1.37 0.185311 0.539582
BA.20 (L). Inferior Temporal Gyrus -0.15 -1.33 0.198028 0.542579
BA.27 (R). Piriform Cortex 0.08 1.32 0.200555 0.542579
BA.20 (R). Inferior Temporal Gyrus -0.15 -1.31 0.202782 0.542579
BA.35 (L). Perirhinal cortex -0.12 -1.25 0.225521 0.570675
rsREL.Righ t Superior Frontal Gy*,52) -0.11 -1.23 0.230417 0.570675
BA.42 (R). Primary Auditory Cortex -0.1 -1.23 0.232907 0.570675
BA.36 (L). Parahippocampal cortex -0.13 -1.22 0.23634 0.570675
BA.11 (R). Orbitofrontal Cortex -0.06 -1.12 0.27461 0.632436
BA.7 (R). Somatosensory Associa*rtex -0.1 -1.09 0.285811 0.632436
BA.21 (R). Middle Temporal Gyrus -0.13 -1.09 0.286013 0.632436
BA.9 (L). Dorsolateral Prefront*rtex -0.08 -1.08 0.290138 0.632436
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Table 6.5: (L) Ventral Posterior Cingulate Cortex
Targets beta T(22) p-unc p-FDR
BA.13 (L). Insular Cortex -0.25 -5.22 0.000031 0.003089
rsREL.Left Anterior Sup Temp Gy*,-4) -0.27 -3.91 0.000745 0.033781
BA.13 (R). Insular Cortex -0.25 -3.78 0.001024 0.033781
BA.22 (R). Superior Temporal Gyrus -0.26 -3.24 0.00378 0.093551
BA.41 (R). Primary Auditory Cortex -0.2 -2.79 0.010742 0.156123
BA.44 (L). IFC pars opercularis -0.19 -2.78 0.011029 0.156123
rsREL.Right Posterior Sup Temp *,24) -0.22 -2.73 0.012312 0.156123
BA.42 (L). Primary Auditory Cortex -0.24 -2.68 0.013596 0.156123
rsREL.Right Anterior Sup Temp G*,-2) -0.23 -2.66 0.014193 0.156123
rsREL.Left Posterior Sup Temp G*,20) -0.2 -2.55 0.018057 0.178763
BA.41 (L). Primary Auditory Cortex -0.2 -2.23 0.036173 0.322663
BA.4 (R). Primary Motor Cortex -0.12 -2.19 0.039111 0.322663
BA.44 (R). IFC pars opercularis -0.2 -2.09 0.048612 0.370195
BA.22 (L). Superior Temporal Gyrus -0.17 -2 0.057663 0.40776
BA.42 (R). Primary Auditory Cortex -0.16 -1.87 0.075105 0.430405
BA.19 (R). Associative Visual Cortex -0.14 -1.86 0.076729 0.430405
BA.24 (R). Ventral Anterior Cin*rtex -0.17 -1.85 0.078092 0.430405
BA.20 (R). Inferior Temporal Gyrus 0.13 1.84 0.078777 0.430405
rsREL.Cingulate Gyrus (0,6,40) -0.18 -1.82 0.082603 0.430405
BA.43 (R). Subcentral Area -0.14 -1.78 0.088512 0.438136
BA.4 (L). Primary Motor Cortex -0.13 -1.71 0.101822 0.461053
BA.11 (R). Orbitofrontal Cortex 0.09 1.7 0.102456 0.461053
BA.40 (R). Supramarginal Gyrus -0.15 -1.67 0.109914 0.473109
BA.40 (L). Supramarginal Gyrus -0.13 -1.55 0.134396 0.537033
BA.33 (R). Anterior Cingulate Cortex -0.12 -1.53 0.140616 0.537033
BA.2 (L). Primary Somatosensory*rtex -0.1 -1.49 0.150775 0.537033
BA.20 (L). Inferior Temporal Gyrus 0.11 1.49 0.151163 0.537033
BA.23 (R). Ventral Posterior Ci*rtex -0.17 -1.47 0.156063 0.537033
BA.45 (R). IFC pars triangularis -0.12 -1.46 0.158511 0.537033
BA.33 (L). Anterior Cingulate Cortex -0.1 -1.43 0.165739 0.537033
BA.24 (L). Ventral Anterior Cin*rtex -0.12 -1.41 0.172203 0.537033
BA.35 (L). Perirhinal cortex 0.12 1.41 0.173586 0.537033
BA.10 (L). Anterior Prefrontal *rtex 0.12 1.37 0.183268 0.538278
BA.37 (R). Fusiform gyrus -0.1 -1.35 0.189423 0.538278
BA.3 (L). Primary Somatosensory*rtex -0.09 -1.35 0.1903 0.538278
BA.6 (R). Premotor Cortex -0.12 -1.29 0.211015 0.564253
Grey Matter -0.11 -1.28 0.215384 0.564253
BA.19 (L). Associative Visual Cortex -0.1 -1.25 0.224284 0.564253
BA.3 (R). Primary Somatosensory*rtex -0.07 -1.22 0.23374 0.564253
BA.17 (R). Primary Visual Cortex -0.07 -1.22 0.234301 0.564253
BA.39 (L). Angular gyrus 0.11 1.19 0.247523 0.564253
BA.5 (L). Somatosensory Associa*rtex -0.1 -1.18 0.249786 0.564253
BA.32 (R). Dorsal anterior Cing*rtex -0.13 -1.17 0.254047 0.564253
BA.43 (L). Subcentral Area -0.1 -1.17 0.255671 0.564253
BA.17 (L). Primary Visual Cortex 0.08 1.17 0.256479 0.564253
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Table 6.6: (R) Dorsal Posterior Cingulate Cortex
Targets beta T(22) p-unc p-FDR
rsREL.Left Anterior Sup Temp Gy*,-4) -0.31 -4.53 0.000164 0.006959
BA.44 (L). IFC pars opercularis -0.31 -4.44 0.000207 0.006959
BA.13 (L). Insular Cortex -0.29 -4.43 0.000211 0.006959
BA.44 (R). IFC pars opercularis -0.26 -3.23 0.003843 0.082388
BA.13 (R). Insular Cortex -0.26 -3.2 0.004161 0.082388
BA.40 (R). Supramarginal Gyrus -0.25 -2.98 0.006889 0.113667
BA.10 (L). Anterior Prefrontal *rtex 0.21 2.55 0.01811 0.240575
rsREL.Right Anterior Sup Temp G*,-2) -0.21 -2.52 0.01944 0.240575
BA.45 (R). IFC pars triangularis -0.2 -2.4 0.025228 0.277511
rsREL.Left Posterior Sup Temp G*,20) -0.2 -2.27 0.033084 0.277757
BA.6 (R). Premotor Cortex -0.25 -2.19 0.039017 0.277757
BA.4 (R). Primary Motor Cortex -0.19 -2.19 0.039051 0.277757
BA.42 (L). Primary Auditory Cortex -0.21 -2.19 0.039523 0.277757
BA.29 (L). Retrosplenial Cingul*rtex 0.24 2.16 0.042271 0.277757
rsREL.Right Posterior Sup Temp *,24) -0.18 -2.13 0.044174 0.277757
BA.3 (R). Primary Somatosensory*rtex -0.19 -2.13 0.04489 0.277757
BA.41 (R). Primary Auditory Cortex -0.17 -1.99 0.058947 0.343279
BA.43 (R). Subcentral Area -0.16 -1.9 0.070344 0.37635
BA.24 (R). Ventral Anterior Cin*rtex -0.18 -1.87 0.074781 0.37635
BA.22 (R). Superior Temporal Gyrus -0.18 -1.86 0.07603 0.37635
BA.25 (L). Subgenual cortex 0.1 1.7 0.102962 0.469208
BA.42 (R). Primary Auditory Cortex -0.16 -1.69 0.104268 0.469208
BA.24 (L). Ventral Anterior Cin*rtex -0.15 -1.62 0.119451 0.472461
BA.2 (R). Primary Somatosensory*rtex -0.17 -1.61 0.122243 0.472461
BA.45 (L). IFC pars triangularis -0.14 -1.59 0.125717 0.472461
rsREL.Med Prefrontal Cortex (MP*,-8) 0.13 1.58 0.128873 0.472461
BA.19 (R). Associative Visual Cortex -0.15 -1.56 0.133966 0.472461
BA.25 (R). Subgenual cortex 0.11 1.51 0.144101 0.472461
BA.41 (L). Primary Auditory Cortex -0.15 -1.51 0.145123 0.472461
rsREL.Cingulate Gyrus (0,6,40) -0.19 -1.51 0.145393 0.472461
BA.33 (L). Anterior Cingulate Cortex -0.11 -1.5 0.148978 0.472461
BA.32 (R). Dorsal anterior Cing*rtex -0.14 -1.47 0.155048 0.472461
BA.22 (L). Superior Temporal Gyrus -0.18 -1.46 0.157487 0.472461
BA.47 (R). Inferior Prefrontal Gyrus -0.11 -1.4 0.175554 0.483844
BA.11 (L). Orbitofrontal Cortex 0.09 1.39 0.178421 0.483844
BA.28 (L). Posterior Entorhinal*rtex 0.1 1.35 0.191489 0.483844
BA.11 (R). Orbitofrontal Cortex 0.08 1.34 0.193867 0.483844
BA.3 (L). Primary Somatosensory*rtex -0.11 -1.34 0.195401 0.483844
BA.4 (L). Primary Motor Cortex -0.12 -1.32 0.200801 0.483844
BA.7 (L). Somatosensory Associa*rtex -0.1 -1.32 0.200942 0.483844
BA.5 (L). Somatosensory Associa*rtex -0.12 -1.31 0.203548 0.483844
rsREL.Left Superior Frontal Gyr*,52) 0.1 1.3 0.207745 0.483844
Grey Matter -0.13 -1.29 0.210155 0.483844
BA.43 (L). Subcentral Area -0.09 -1.24 0.228113 0.513254
BA.9 (R). Dorsolateral Prefront*rtex -0.08 -1.2 0.243605 0.535103
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Table 6.7: (R) Ventral Posterior Cingulate Cortex
Targets beta T(22) p-unc p-FDR
BA.44 (L). IFC pars opercularis -0.27 -3.99 0.000621 0.042188
BA.13 (L). Insular Cortex -0.27 -3.86 0.000852 0.042188
rsREL.Left Anterior Sup Temp Gy*,-4) -0.29 -3.67 0.001334 0.044035
BA.22 (R). Superior Temporal Gyrus -0.27 -3.29 0.003346 0.082809
rsREL.Right Anterior Sup Temp G*,-2) -0.29 -3.07 0.005619 0.111262
BA.13 (R). Insular Cortex -0.27 -2.91 0.008129 0.134122
BA.41 (R). Primary Auditory Cortex -0.23 -2.77 0.011141 0.149372
rsREL.Left Posterior Sup Temp G*,20) -0.21 -2.74 0.01207 0.149372
BA.42 (L). Primary Auditory Cortex -0.25 -2.67 0.013888 0.152766
BA.32 (R). Dorsal anterior Cing*rtex -0.23 -2.59 0.016619 0.164526
BA.44 (R). IFC pars opercularis -0.25 -2.38 0.026137 0.211064
rsREL.Right Posterior Sup Temp *,24) -0.19 -2.38 0.026371 0.211064
BA.24 (R). Ventral Anterior Cin*rtex -0.21 -2.36 0.027715 0.211064
BA.47 (R). Inferior Prefrontal Gyrus -0.15 -2.28 0.032751 0.22657
BA.32 (L). Dorsal anterior Cing*rtex -0.18 -2.25 0.034752 0.22657
BA.24 (L). Ventral Anterior Cin*rtex -0.19 -2.21 0.038101 0.22657
BA.47 (L). Inferior Prefrontal Gyrus -0.12 -2.17 0.04106 0.22657
BA.45 (R). IFC pars triangularis -0.19 -2.17 0.041195 0.22657
BA.41 (L). Primary Auditory Cortex -0.21 -2.05 0.051999 0.270944
rsREL.Cingulate Gyrus (0,6,40) -0.21 -1.99 0.058725 0.290689
BA.42 (R). Primary Auditory Cortex -0.17 -1.92 0.068219 0.321605
BA.43 (R). Subcentral Area -0.16 -1.83 0.080705 0.363174
BA.1 (L). Primary Somatosensory*rtex 0.1 1.8 0.084841 0.365184
BA.40 (R). Supramarginal Gyrus -0.13 -1.71 0.101873 0.420226
BA.33 (R). Anterior Cingulate Cortex -0.14 -1.67 0.10884 0.42659
BA.29 (L). Retrosplenial Cingul*rtex 0.2 1.64 0.115503 0.42659
BA.4 (R). Primary Motor Cortex -0.09 -1.62 0.120131 0.42659
BA.34 (L). Anterior Entorhinal *rtex -0.1 -1.61 0.120652 0.42659
rsREL.Left Superior Frontal Gyr*,52) 0.12 1.56 0.132087 0.446173
BA.22 (L). Superior Temporal Gyrus -0.16 -1.55 0.135204 0.446173
BA.23 (L). Ventral Posterior Ci*rtex -0.17 -1.47 0.156063 0.494535
BA.10 (L). Anterior Prefrontal *rtex 0.11 1.44 0.1653 0.494535
BA.20 (R). Inferior Temporal Gyrus 0.1 1.42 0.168589 0.494535
BA.20 (L). Inferior Temporal Gyrus 0.09 1.41 0.171098 0.494535
BA.33 (L). Anterior Cingulate Cortex -0.11 -1.4 0.174836 0.494535
BA.27 (R). Piriform Cortex -0.12 -1.38 0.182657 0.502306
BA.8 (L). Dorsal Frontal Cortex 0.1 1.33 0.198446 0.530977
BA.37 (L). Fusiform gyrus -0.09 -1.26 0.219818 0.572683
BA.19 (L). Associative Visual Cortex -0.11 -1.24 0.226357 0.574598
BA.19 (R). Associative Visual Cortex -0.1 -1.17 0.25502 0.631173
Grey Matter -0.1 -1.14 0.265853 0.64128
BA.1 (R). Primary Somatosensory*rtex 0.07 1.13 0.272058 0.64128
BA.31 (R). Dorsal Posterior Cin*rtex 0.11 1.08 0.293709 0.676213
BA.6 (R). Premotor Cortex -0.11 -1.02 0.318142 0.715821
BA.2 (R). Primary Somatosensory*rtex -0.08 -0.99 0.33459 0.736098
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Table 6.8: L Insular Cortex
Targets beta T(22) p-unc p-FDR
BA.23 (L). Ventral Posterior Ci*rtex -0.25 -5.22 0.000031 0.003089
BA.31 (R). Dorsal Posterior Cin*rtex -0.29 -4.43 0.000211 0.010439
BA.31 (L). Dorsal Posterior Cin*rtex -0.26 -3.93 0.000713 0.018262
BA.23 (R). Ventral Posterior Ci*rtex -0.27 -3.86 0.000852 0.018262
PCC -0.27 -3.83 0.000922 0.018262
BA.21 (L). Middle Temporal Gyrus -0.31 -3.43 0.00237 0.039104
BA.21 (R). Middle Temporal Gyrus -0.34 -3.28 0.003381 0.047822
rsREL.Precuneus (PCC) (0,-56,28) -0.2 -2.99 0.006772 0.083807
BA.22 (R). Superior Temporal Gyrus -0.3 -2.82 0.009896 0.108859
BA.39 (L). Angular gyrus -0.17 -2.55 0.018238 0.174288
BA.39 (R). Angular gyrus -0.19 -2.52 0.019365 0.174288
BA.29 (R). Retrosplenial Cingul*rtex -0.17 -2.4 0.025067 0.206799
RLP -0.15 -2.28 0.032435 0.247001
BA.41 (R). Primary Auditory Cortex -0.2 -2.23 0.035945 0.247771
BA.42 (R). Primary Auditory Cortex -0.18 -2.21 0.037541 0.247771
rsREL.Right Inferior Parietal L*,38) -0.17 -2.16 0.042203 0.26113
BA.41 (L). Primary Auditory Cortex -0.19 -2.09 0.048108 0.266088
BA.32 (R). Dorsal anterior Cing*rtex -0.15 -2.08 0.04928 0.266088
BA.20 (L). Inferior Temporal Gyrus -0.17 -2.06 0.051067 0.266088
BA.45 (R). IFC pars triangularis -0.18 -1.94 0.06508 0.322148
BA.22 (L). Superior Temporal Gyrus -0.19 -1.83 0.080354 0.378812
BA.29 (L). Retrosplenial Cingul*rtex -0.13 -1.77 0.089796 0.404083
BA.38 (R). Temporopolar Area -0.18 -1.72 0.099584 0.428643
BA.9 (R). Dorsolateral Prefront*rtex -0.12 -1.65 0.112809 0.455092
BA.8 (R). Dorsal Frontal Cortex -0.13 -1.64 0.114922 0.455092
rsREL.Med Prefrontal Cortex (MP*,-8) -0.12 -1.58 0.129216 0.492016
Grey Matter -0.16 -1.51 0.145544 0.533663
BA.35 (R). Perirhinal cortex -0.14 -1.47 0.155813 0.55091
rsREL.Left Superior Frontal Gyr*,52) 0.11 1.42 0.170392 0.571547
LLP -0.12 -1.41 0.173196 0.571547
BA.24 (R). Ventral Anterior Cin*rtex -0.11 -1.34 0.193806 0.59628
BA.46 (L). Dorsolateral Prefron*rtex 0.1 1.3 0.206768 0.59628
BA.30 (L). Cingulate Cortex -0.11 -1.3 0.207072 0.59628
MPFC -0.09 -1.3 0.208527 0.59628
BA.32 (L). Dorsal anterior Cing*rtex -0.08 -1.29 0.211501 0.59628
BA.30 (R). Cingulate Cortex -0.11 -1.27 0.218218 0.59628
BA.43 (L). Subcentral Area -0.13 -1.24 0.226901 0.59628
BA.20 (R). Inferior Temporal Gyrus -0.12 -1.23 0.23349 0.59628
rsREL.Left Inferior Parietal Lo*,38) -0.1 -1.22 0.237139 0.59628
BA.25 (L). Subgenual cortex -0.12 -1.21 0.240921 0.59628
rsREL.Left Anterior Sup Temp Gy*,-4) -0.09 -1.18 0.252549 0.606635
BA.2 (R). Primary Somatosensory*rtex -0.11 -1.16 0.258279 0.606635
BA.1 (R). Primary Somatosensory*rtex -0.1 -1.15 0.263488 0.606635
BA.47 (R). Inferior Prefrontal Gyrus -0.1 -1.11 0.277265 0.623847
BA.35 (L). Perirhinal cortex -0.1 -1.09 0.286622 0.630568
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Table 6.9: L Middle Temporal Gyrus
Targets beta T(22) p-unc p-FDR
BA.32 (L). Dorsal anterior Cing*rtex -0.3 -4.72 0.000103 0.010197
rsREL.Left Anterior Sup Temp Gy*,-4) -0.42 -4.23 0.000342 0.016947
BA.13 (L). Insular Cortex -0.31 -3.43 0.00237 0.078208
rsREL.Right Anterior Sup Temp G*,-2) -0.3 -2.84 0.00944 0.233628
BA.40 (R). Supramarginal Gyrus -0.26 -2.7 0.012933 0.248856
BA.42 (L). Primary Auditory Cortex -0.26 -2.55 0.01841 0.248856
BA.43 (L). Subcentral Area -0.17 -2.51 0.020046 0.248856
BA.2 (L). Primary Somatosensory*rtex -0.22 -2.51 0.02011 0.248856
BA.13 (R). Insular Cortex -0.24 -2.2 0.038801 0.372374
BA.6 (R). Premotor Cortex -0.21 -2.15 0.042718 0.372374
BA.32 (R). Dorsal anterior Cing*rtex -0.2 -2.1 0.0479 0.372374
Grey Matter -0.14 -2.07 0.050849 0.372374
BA.22 (L). Superior Temporal Gyrus -0.23 -2.06 0.051661 0.372374
BA.44 (R). IFC pars opercularis -0.24 -2.01 0.056422 0.372374
rsREL.Left Inferior Parietal Lo*,38) 0.28 2.01 0.056822 0.372374
MPFC -0.19 -1.97 0.062152 0.372374
BA.24 (R). Ventral Anterior Cin*rtex -0.16 -1.94 0.064875 0.372374
BA.9 (R). Dorsolateral Prefront*rtex -0.19 -1.92 0.067704 0.372374
BA.17 (R). Primary Visual Cortex -0.11 -1.87 0.07543 0.372412
rsREL.Right Posterior Sup Temp *,24) -0.17 -1.83 0.080588 0.372412
BA.47 (R). Inferior Prefrontal Gyrus -0.19 -1.83 0.080724 0.372412
BA.24 (L). Ventral Anterior Cin*rtex -0.16 -1.82 0.082758 0.372412
rsREL.Right Inferior Parietal L*,38) 0.18 1.75 0.093918 0.404255
LLP 0.25 1.71 0.1019 0.420336
rsREL.Cingulate Gyrus (0,6,40) -0.13 -1.67 0.109364 0.432864
BA.4 (L). Primary Motor Cortex -0.14 -1.65 0.113682 0.432864
BA.41 (L). Primary Auditory Cortex -0.15 -1.61 0.121796 0.446585
BA.42 (R). Primary Auditory Cortex -0.14 -1.5 0.14789 0.478978
RLP 0.19 1.49 0.149598 0.478978
BA.43 (R). Subcentral Area -0.12 -1.49 0.151622 0.478978
BA.44 (L). IFC pars opercularis -0.18 -1.45 0.160477 0.478978
BA.3 (L). Primary Somatosensory*rtex -0.12 -1.45 0.161012 0.478978
BA.39 (L). Angular gyrus 0.21 1.44 0.164219 0.478978
BA.22 (R). Superior Temporal Gyrus -0.15 -1.43 0.165526 0.478978
BA.4 (R). Primary Motor Cortex -0.13 -1.42 0.169336 0.478978
BA.18 (R). Secondary Visual Cortex -0.09 -1.39 0.179928 0.494802
rsREL.Med Prefrontal Cortex (MP*,-8) -0.14 -1.32 0.199528 0.533873
BA.2 (R). Primary Somatosensory*rtex -0.14 -1.3 0.206671 0.535642
BA.3 (R). Primary Somatosensory*rtex -0.11 -1.28 0.214971 0.535642
BA.25 (L). Subgenual cortex -0.13 -1.27 0.216421 0.535642
BA.35 (L). Perirhinal cortex 0.13 1.22 0.234912 0.536403
BA.33 (R). Anterior Cingulate Cortex 0.09 1.22 0.236464 0.536403
BA.18 (L). Secondary Visual Cortex -0.1 -1.21 0.239343 0.536403
rsREL.Left Posterior Sup Temp G*,20) -0.1 -1.21 0.239834 0.536403
BA.36 (R). Parahippocampal cortex 0.13 1.2 0.24382 0.536403
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Table 6.10: PCC
Targets beta T(22) p-unc p-FDR
rsREL.Left Anterior Sup Temp Gy*,-4) -0.34 -3.86 0.00085 0.045654
BA.13 (L). Insular Cortex -0.27 -3.83 0.000922 0.045654
rsREL.Right Anterior Sup Temp G*,-2) -0.28 -3.43 0.002377 0.076463
rsREL.Left Posterior Sup Temp G*,20) -0.2 -3.3 0.003238 0.076463
rsREL.Right Posterior Sup Temp *,24) -0.26 -3.23 0.003862 0.076463
BA.9 (R). Dorsolateral Prefront*rtex -0.23 -3.04 0.006076 0.088446
BA.42 (L). Primary Auditory Cortex -0.23 -3.02 0.006254 0.088446
BA.2 (L). Primary Somatosensory*rtex -0.19 -2.94 0.00763 0.094425
BA.44 (R). IFC pars opercularis -0.27 -2.75 0.01156 0.100456
rsREL.Cingulate Gyrus (0,6,40) -0.24 -2.73 0.012118 0.100456
BA.44 (L). IFC pars opercularis -0.22 -2.73 0.012134 0.100456
BA.40 (R). Supramarginal Gyrus -0.28 -2.73 0.012176 0.100456
BA.13 (R). Insular Cortex -0.22 -2.63 0.01542 0.117429
BA.6 (R). Premotor Cortex -0.29 -2.5 0.02017 0.142633
BA.3 (L). Primary Somatosensory*rtex -0.18 -2.45 0.022702 0.149836
BA.20 (L). Inferior Temporal Gyrus 0.2 2.3 0.031108 0.192482
BA.22 (L). Superior Temporal Gyrus -0.23 -2.18 0.040608 0.225613
BA.10 (L). Anterior Prefrontal *rtex 0.14 2.16 0.041873 0.225613
BA.2 (R). Primary Somatosensory*rtex -0.19 -2.13 0.044489 0.225613
BA.20 (R). Inferior Temporal Gyrus 0.2 2.12 0.045578 0.225613
BA.4 (L). Primary Motor Cortex -0.16 -2.08 0.049508 0.233395
BA.41 (L). Primary Auditory Cortex -0.17 -1.98 0.060851 0.27383
BA.24 (L). Ventral Anterior Cin*rtex -0.16 -1.85 0.078339 0.327725
BA.41 (R). Primary Auditory Cortex -0.17 -1.82 0.082367 0.327725
BA.24 (R). Ventral Anterior Cin*rtex -0.16 -1.82 0.082759 0.327725
BA.22 (R). Superior Temporal Gyrus -0.19 -1.75 0.094636 0.350226
BA.42 (R). Primary Auditory Cortex -0.15 -1.74 0.095516 0.350226
BA.4 (R). Primary Motor Cortex -0.12 -1.65 0.113931 0.37476
RLP 0.2 1.64 0.115401 0.37476
BA.7 (R). Somatosensory Associa*rtex -0.15 -1.63 0.116854 0.37476
BA.29 (L). Retrosplenial Cingul*rtex 0.2 1.63 0.117349 0.37476
BA.11 (L). Orbitofrontal Cortex 0.12 1.59 0.125086 0.386986
BA.3 (R). Primary Somatosensory*rtex -0.12 -1.53 0.140304 0.393334
BA.40 (L). Supramarginal Gyrus -0.17 -1.52 0.142465 0.393334
Grey Matter -0.14 -1.5 0.147894 0.393334
BA.19 (R). Associative Visual Cortex -0.12 -1.5 0.148857 0.393334
LLP 0.18 1.49 0.149532 0.393334
rsREL.Right Inferior Parietal L*,38) 0.17 1.49 0.150977 0.393334
rsREL.Precuneus (PCC) (0,-56,28) 0.19 1.47 0.156741 0.397882
BA.6 (L). Premotor Cortex -0.13 -1.44 0.162786 0.401401
BA.35 (L). Perirhinal cortex 0.14 1.42 0.168542 0.401401
rsREL.Right Superior Frontal Gy*,52) -0.16 -1.42 0.170291 0.401401
BA.36 (R). Parahippocampal cortex 0.13 1.36 0.188315 0.433562
BA.32 (L). Dorsal anterior Cing*rtex -0.1 -1.33 0.195923 0.440827
BA.11 (R). Orbitofrontal Cortex 0.1 1.27 0.216309 0.462038
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Table 6.11: rsREL.Left Anterior Sup Temp Gyrus
Targets beta T(22) p-unc p-FDR
BA.31 (R). Dorsal Posterior Cin*rtex -0.31 -4.53 0.000164 0.016271
BA.21 (L). Middle Temporal Gyrus -0.42 -4.23 0.000342 0.016947
BA.23 (L). Ventral Posterior Ci*rtex -0.27 -3.91 0.000745 0.018872
PCC -0.34 -3.86 0.00085 0.018872
BA.31 (L). Dorsal Posterior Cin*rtex -0.31 -3.77 0.001043 0.018872
rsREL.Precuneus (PCC) (0,-56,28) -0.32 -3.73 0.001158 0.018872
BA.23 (R). Ventral Posterior Ci*rtex -0.29 -3.67 0.001334 0.018872
BA.8 (R). Dorsal Frontal Cortex -0.24 -3.26 0.003564 0.040179
BA.29 (R). Retrosplenial Cingul*rtex -0.26 -3.22 0.003905 0.040179
BA.39 (R). Angular gyrus -0.22 -3.18 0.004359 0.040179
BA.20 (L). Inferior Temporal Gyrus -0.29 -3.17 0.004464 0.040179
BA.21 (R). Middle Temporal Gyrus -0.35 -3.05 0.005922 0.048855
RLP -0.24 -3 0.006544 0.049831
rsREL.Right Inferior Parietal L*,38) -0.25 -2.96 0.007153 0.050584
BA.41 (L). Primary Auditory Cortex -0.2 -2.49 0.020596 0.132265
BA.41 (R). Primary Auditory Cortex -0.23 -2.46 0.022341 0.132265
BA.30 (L). Cingulate Cortex -0.23 -2.45 0.022712 0.132265
BA.22 (L). Superior Temporal Gyrus -0.22 -2.39 0.025858 0.142219
BA.42 (R). Primary Auditory Cortex -0.23 -2.35 0.028066 0.146239
BA.30 (R). Cingulate Cortex -0.2 -2.32 0.029937 0.148187
BA.29 (L). Retrosplenial Cingul*rtex -0.19 -2.28 0.032911 0.149356
Grey Matter -0.22 -2.27 0.033669 0.149356
BA.39 (L). Angular gyrus -0.21 -2.25 0.034699 0.149356
BA.22 (R). Superior Temporal Gyrus -0.26 -2.18 0.040166 0.165687
BA.20 (R). Inferior Temporal Gyrus -0.19 -2.13 0.044855 0.177626
BA.43 (L). Subcentral Area -0.19 -2.11 0.046755 0.17803
BA.8 (L). Dorsal Frontal Cortex -0.18 -2.04 0.054043 0.198157
BA.32 (R). Dorsal anterior Cing*rtex -0.15 -1.93 0.066253 0.23425
BA.13 (R). Insular Cortex -0.15 -1.78 0.089585 0.305825
BA.35 (L). Perirhinal cortex -0.18 -1.73 0.097153 0.318309
LLP -0.17 -1.72 0.099784 0.318309
BA.45 (R). IFC pars triangularis -0.18 -1.7 0.104168 0.318309
BA.9 (R). Dorsolateral Prefront*rtex -0.11 -1.69 0.106103 0.318309
MPFC -0.14 -1.65 0.112821 0.320183
BA.35 (R). Perirhinal cortex -0.18 -1.65 0.113196 0.320183
rsREL.Med Prefrontal Cortex (MP*,-8) -0.16 -1.63 0.117319 0.322628
BA.9 (L). Dorsolateral Prefront*rtex -0.14 -1.58 0.127712 0.336662
rsREL.Left Inferior Parietal Lo*,38) -0.16 -1.57 0.13174 0.336662
BA.43 (R). Subcentral Area -0.14 -1.56 0.132624 0.336662
rsREL.Right Superior Frontal Gy*,52) -0.14 -1.55 0.136495 0.337825
BA.38 (R). Temporopolar Area -0.19 -1.48 0.153089 0.369655
BA.2 (R). Primary Somatosensory*rtex -0.1 -1.35 0.189853 0.44751
BA.3 (R). Primary Somatosensory*rtex -0.12 -1.34 0.19449 0.447779
BA.1 (R). Primary Somatosensory*rtex -0.11 -1.28 0.215441 0.484742
BA.4 (R). Primary Motor Cortex -0.1 -1.19 0.245088 0.539194
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