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Abstract

Accurate rainfall prediction is a challenging task because of the complex physical

processes involved. This complexity is compounded in Australia as the climate can

be highly variable. Accurate rainfall prediction is immensely beneficial for making

informed policy, planning and management decisions, and can assist with the most

sustainable operation of water resource systems.

Short-term prediction of rainfall is provided by meteorological services; however,

the intermediate to long-term prediction of rainfall remains challenging and contains

much uncertainty. Many prediction approaches have been proposed in the literature,

including statistical and computational intelligence approaches. However, finding a

method to model the complex physical process of rainfall, especially in Australia where

the climate is highly variable, is still a major challenge.

The aims of this study are to: (a) develop an optimization based clusterwise linear

regression method, (b) develop new prediction methods based on clusterwise linear

regression, (c) assess the influence of geographic regions on the performance of pre-

diction models in predicting monthly and weekly rainfall in Australia, (d) determine

the combined influence of meteorological variables on rainfall prediction in Australia,

and (e) carry out a comparative analysis of new and existing prediction techniques

using Australian rainfall data.

In this study, rainfall data with five input meteorological variables from 24 ge-

ographically diverse weather stations in Australia, over the period January 1970 to

December 2014, have been taken from the Scientific Information for Land Owners

(SILO). We also consider the climate zones when selecting weather stations, because

Australia experiences a variety of climates due to its size. The data was divided into

training and testing periods for evaluation purposes.

In this study, optimization based clusterwise linear regression is modified and new

prediction methods are developed for rainfall prediction. The proposed method is

applied to predict monthly and weekly rainfall. The prediction performance of the

clusterwise linear regression method was evaluated by comparing observed and pre-

dicted rainfall values using the performance measures: root mean squared error, the

mean absolute error, the mean absolute scaled error and the Nash-Sutcliffe coefficient

of efficiency. The proposed method is also compared with the clusterwise linear regres-
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sion based on the maximum likelihood estimation, linear support vector machines for

regression, support vector machines for regression with radial basis kernel function,

multiple linear regression, artificial neural networks with and without hidden layer

and k-nearest neighbors methods using computational results.

Initially, to determine the appropriate input variables to be used in the investi-

gation, we assessed all combinations of meteorological variables. The results confirm

that single meteorological variables alone are unable to predict rainfall accurately.

The prediction performance of all selected models was improved by adding the input

variables in most locations.

To assess the influence of geographic regions on the performance of prediction

models and to compare the prediction performance of models, we trained models with

the best combination of input variables and predicted monthly and weekly rainfall over

the test periods. The results of this analysis confirm that the prediction performance

of all selected models varied considerably with geographic regions for both weekly and

monthly rainfall predictions. It is found that models have the lowest prediction error

in the desert climate zone and highest in subtropical and tropical zones.

The results also demonstrate that the proposed algorithm is capable of finding the

patterns and trends of the observations for monthly and weekly rainfall predictions in

all geographic regions. In desert, tropical and subtropical climate zones, the proposed

method outperform other methods in most locations for both monthly and weekly

rainfall predictions. In temperate and grassland zones the prediction performance of

the proposed model is better in some locations while in the remaining locations it is

slightly lower than the other models.
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Chapter 1

Introduction

In this chapter we discuss the importance of water, availability of water in Australia,

the influence of meteorological parameters on rainfall prediction and the importance

of accurate rainfall prediction. Following that, we will present the objectives of this

thesis and provide its outlines.

1.1 Water

Water is the most widely used substance on the earth. Water, which is quite limited,

is critical for sustaining life. The survival of life on this planet mainly depends on

water. It plays a major role in the environment, economics and social development.

Humans need water for household functions, agriculture, industries, irrigation, live-

stock watering and as an energy resource. In short, the absence of water means no

survival.

Increased urbanisation, improved living standards, expanding irrigation and indus-

trial water use have increased the demand of water. With seemingly ever-increasing

demand for water, it is becoming more important for the management of water re-

sources to be as efficient as possible to ensure reliable water supplies. The uncertainty

about future water availability due to climate change will be a significant challenge

for the management of water resources [21].

Water is a renewable resource. It is constantly transferred between the ocean, the

atmosphere and the land (hydrologic cycle). The hydrologic cycle begins with the

evaporation of water from the ocean and rivers. The lifted water vapors condense

to form clouds which then return to the surface as precipitation. After precipitation

some of the water evaporates back into the atmosphere while some may penetrate

the surface and become ground water. Ground water either seeps into the oceans,

rivers and streams or transpires back into the atmosphere. Water resources can be

categorized into surface water and ground water. Surface water is water found in
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streams, rivers, lakes and wetlands and ground water is water contained underground,

in geological formations known as aquifers.

Globally, only 3% of the world’s water is fresh, but 2.5% of this is frozen. Humans

rely on 0.5% of the world’s water for their needs [32]. Fresh water distribution varies

significantly among, and within, countries. For example, only Brazil, Russia, China,

Canada, Indonesia, U.S., India, Columbia and the Democratic Republic of Congo

possess 60% of the world’s available fresh water supply [32].

Australia is the driest populated continent on the earth, with 70% of its area clas-

sified as desert or semi-desert. As an island continent, water supply mainly depends

on rainfall. Average annual rainfall in Australia is 465.2 mm (1961-1990), which is

the lowest of all the continents (except Antarctica) [68]. 2015 was the 57th driest

year on record since 1900. The average rainfall for that year was 446.65 mm, 5%

below the 1961-1990 average. Figure 1.1, published by the World Business Council

for Sustainable Development in 2005, indicates that water supply in Australia is the

lowest per person per year [32]. Despite this, Australia has one of the highest per

capita water consumption rates in the world [6]. The agriculture industry consumes

the largest volume of water, making up 62% of all water consumed in 2013-14 [69].

 

 

 

  

 

Source:  

World Business Council for 

Sustainable Development 2005 

Figure 1.1: Annual renewable water per person per year.
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1.2 Rainfall

Australia is the driest inhabited continent on earth with a highly variable climate

over time and space. It can be characterized by highly variable rainfall patterns

between regions, seasons and years, including extended periods of drought [67]. Aus-

tralia is an island continent that experiences different rainfall patterns in the var-

ious regions. In Australia, there are six climate zones: equatorial, tropical, sub-

tropical, temperate, grassland and desert (Figure 1.2) and two main seasonal pat-

terns: Summer/Autumn/Winter/Spring pattern and wet/dry pattern. The Sum-

mer/Autumn/Winter/Spring pattern affects the temperate, grassland and desert zones

and wet/dry pattern affects the tropical, sub-tropical and equatorial zones. Australia’s

climate zones range from high rainfall in the tropical regions in the north through to

the driest desert region in the interior (Figure 1.3). It is common in Australia for one

region to be in drought while another is in flood. Figure 1.4 displays a time series

plot of the total annual rainfall in Australia from 1900 to 2014, indicating a slightly

increasing trend. The increase in average annual rainfall is due to increases in rainfall

across parts of north-west Australia since 1970 [63].

 

 Figure 1.2: Australian major climate zones (Source: Australian Bureau of Meteorol-
ogy).

The Intergovernmental Panel on Climate Change (IPCC) reported an increase

in temperature, a decrease in precipitation and an increase in the number of heavy

rainfall events in some regions (Figure 1.5). Since 1950, there has been a major change
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Figure 1.3: Average annual Australian rainfall based on 30 years climatology (1961-
1990).

in rainfall patterns with significant geographic variations [37]. The average winter

rainfall has dropped 17% in south-west Australia since 1970, late Autumn and early

Winter rainfall has dropped 15% since 1990, and overall the number and intensity of

extreme rainfall events is projected to increase for most regions [64]. Similarly, the

duration, frequency and intensity of heat waves have increased across many parts of

Australia. The Australian Export Grains Innovation Center analyzed the rainfall data

of more than 8000 Bureau of Meteorology weather stations across the country and

concluded that the rainfall zones had shifted from between 100 to 400km since 2000,

Summer rainfall has increased, and correspondingly Winter rainfall has decreased.

These changes can be seen very clearly in the map released by the Australian Export

Grains Innovation Center (see Figure 1.6).

These changes in rainfall and temperature pose a series of risks to water availability

and water management systems. For example, increases in extreme rainfall events may

increase the availability of fresh water in some areas, but at the same time it might

come in the form of storms, leading to flooding and damage, and resulting in more

harm than good. Rising temperatures could increase the rate of evaporation from

surface water and reservoirs, leading to the loss of fresh water.

Any change in the probability of rainfall (heavy rainfall or drought) has important

implications for future resource planning, management and investment. Increases in

heavy rainfall events may increase the frequency of flood events and landslides, and
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Figure 1.4: Average annual Australian rainfall from 1900 to 2015.

 

 

 

 

  

 

 

Source: Intergovernmental Panel on Climate Change, synthesis report 2014 

Figure 1.5: Observed changes in surface temperature and precipitation.

build up sediment in dams. Similarly, abnormally dry periods lead to drought.

A drought is a prolonged dry period when there is not enough water for the com-

mon needs of users. Australia has experienced four major droughts over the past

century. The Federation Drought (1895 - 1902) affected most of the country, but

particularly Queensland, Victoria and New South Wales. The Darling River in New

South Wales and rivers in Queensland were almost run dry. In 1982 - 83, south-eastern

Australia experienced low rainfall levels, resulting in a total loss to the Australian

economy of around $7 billion. In 1991 - 95, north-eastern New South Wales and

Queensland experienced their lowest rainfall levels on record, resulting in around $5

billion loss to the economy. The 2000s drought, known as Millennium drought, caused

a prolonged period of dry conditions in southern Australia. All key cities including

Sydney, Melbourne, Brisbane, Adelaide, Perth, Canberra and Hobart were affected.

The Murray-Darling Basin was severely affected by this drought. These droughts re-
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Figure 1.6: Australian seasonal rainfall zones based on rainfall data 1900-1999 (left)
and 2000-2015 (right)

sulted in physical hardship, social heartbreak, animal suffering, environmental damage

and financial and economic consequences.

Drought is likely to be of more concern in Australia because of population growth,

industry development, long-term climate variations and high living standards. In

addition, temperature is likely to be high and thus has implications for water supply

owing to evaporation. Droughts had a significant influence on policy makers and were

a challenge for water resource management in Australia. It is critical that appropriate

water resource infrastructure and management is established to mitigate these effects.

Floods are caused by prolonged or very heavy rainfall, severe storms or tropical

cyclones. In Australia, floods are usually caused by rainfall. The IPCC reported that

the frequency of heavy precipitation or the proportion of total rainfall from heavy falls

will increase in the 21st century over many areas of the globe [70]. The Australian

Bureau of Meteorology reported in its state of the climate report that heavy rainfall

events have increased since 1850 [63]. As a result, a series of flood events occurred.

In the 20th century, 77 floods were recorded while in the first decade of the 21st

century, six floods were recorded [78]. The consequences of floods include: loss of

human life, damage to property, destruction of crops, loss of livestock and damage to

infrastructure.

Australia’s agricultural sector is a major consumer of water and an essential part

of the national economy. The Agriculture industry depends on rainfall. Any change

in the rainfall directly impacts the Australian economy. For example, financial loss

from the drought in 2002-2003 was estimated at $7.36 billion AUD and $6.2 billion

AUD from the 2006-2007 drought. Similarly, floods lead to financial loss too. For

example, in the 2011 floods in Queensland, the damage to local government infras-
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tructure was estimated to be $2 billion, while public infrastructure across the state

sustained damage of between $5-6 billion. To counter these challenges, it is important

to develop improved prediction models to predict weekly, monthly and seasonal (or

longer) rainfall more accurately.

Rainfall predictions can be made for some time periods, including weekly, monthly

and seasonal. To date mainly seasonal rainfall prediction models have been studied

by many researchers.

In rainfall prediction, the month is used to define the start, duration and end of the

rainy season. Monthly rainfall values provide more accurate an intra-year rainfall dis-

tribution than seasonal rainfall values. Monthly rainfall is an important contributing

factor in agricultural and hydrological activities. Its accurate prediction can improve

the quality of decision making in such activities. Similarly weekly rainfall predictions

also has importance such as heavy rainfall in a short time (flood) causes significant

events that affect human life. Also weekly rainfall predictions has importance in agri-

cultural operation activities such as land preparation, crop and variety selection and

irrigation.

Many algorithms have been developed by researchers to improve rainfall predic-

tions. However, predicting rainfall is a complex process, needing continual improve-

ment. Accurate rainfall prediction is a serious concern in many countries; especially

in Australia where the climate is highly variable. Accurate rainfall prediction allows

the relevant authorities to better prepare and plan. The accurate prediction of future

water availability is critical for making informed policy, planning and management

decisions, and will also help with the most sustainable operation of water resource

systems.

1.3 Objectives of the Thesis

The research objectives of this thesis are to:

• Develop an optimization based clusterwise linear regression method. This will

be done by modifying existing clusterwise linear regression methods for large

scale data sets.

• Develop prediction methods based on clusterwise linear regression to improve

rainfall prediction accuracy.

• Carry out a comparative assessment of linear and non-linear methods in pre-

dicting the monthly and weekly rainfall in Australia.

• Assess the influence of geographic regions on the performance of models in pre-

dicting monthly and weekly rainfall in Australia.
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• Determine the combined influence of meteorological parameters on rainfall pre-

diction in Australia.

1.4 Thesis Outline

This thesis consists of seven chapters. The current chapter, Chapter 1, is an intro-

ductory chapter. Chapter 1 provides detailed information about the importance of

water, rainfall, meteorological parameters and their influence on rainfall and climate

in Australia.

Chapter 2 provides an overview of relevant work, a brief explanation of existing

prediction methods and justification for the further development of new methods for

rainfall prediction.

In Chapter 3, we provide a brief description of clusterwise regression and cluster-

wise Linear Regression based on Maximum Likelihood Estimation. In this chapter,

we also develop optimization based clusterwise linear regression method by modify-

ing the existing methods. Following that, we develop prediction methods based on

clusterwise regression to improve rainfall prediction accuracy.

Chapter 4 provides geographic details of the study area and descriptive statistics

of the data. Furthermore, the implementation of models and statistical evaluation of

the models performance are also discussed in this chapter.

Chapter 5 presents computational results for monthly rainfall predictions and a

comparison of the proposed method with the clusterwise linear regression method

based on maximum likelihood estimation, linear support vector machines, support

vector machines with radial basis kernel function , multiple linear regression, artificial

neural networks with and without a hidden layer and k-nearest neighbors methods.

Chapter 6 presents computational results for weekly rainfall predictions and a

comparison of the proposed method with other selected prediction methods. Finally,

findings of this research and recommendations for further research are given in Chapter

7.



Chapter 2

Literature Review

In this chapter, an overview of the relevant work and a review of existing prediction

methods and their applications for rainfall predictions are given. We give justification

for the further development of new methods for rainfall predictions.

2.1 Introduction

Over the past century, various algorithms have been formulated to model and predict

rainfall. These models can be classified as physical models and data-driven models.

Physical models are based on the physical laws to model all relevant physical processes

that contribute to the rainfall process. In Australia, three physical models based on

climate indices have been officially used for rainfall predictions. The first was de-

veloped in 1989 by the Australian Bureau of Meteorology (BOM). The second was

developed in 1994 by the Queensland Government through the Department of Envi-

ronment and Resource Management. The third was developed in 2013 by the BOM,

was named Predictive Ocean Atmosphere Model for Australia (POAMA) [3]. The

first two models were used to generate seasonal (three months) rainfall predictions,

while the third one was used to generate seasonal and monthly rainfall predictions.

The predictions from these models give the probability of exceeding the average

rainfall. The major drawbacks of these models are:

1. They do not provide any information about the level of expected deviation from

the mean rainfall value within the described prediction period [3].

2. They only provide seasonal predictions which are useful for some sectors, such as

agriculture, but in some areas predictions within the season are more important

than seasonal predictions, e.g. the management of water infrastructure [81].

Data-driven models use historical time series data to make future predictions.

These models can be classified into linear and non-linear models. They are based,
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in particular, on statistical and computational intelligence approaches. These models

are less data demanding and a lower computational cost than physical models. Most

data-driven models use sets of attribute values as input to predict the corresponding

rainfall value. Each input set of attribute values may contain lagged rainfall values,

or other lagged climate-related values such as temperature. Comparative studies have

shown that data-driven models have better performance for rainfall prediction when

compared to physical models [2, 3].

2.2 Overview of existing prediction methods

Rainfall data is classified as discrete time series as it is observed over a specific time

interval. A time series can be separated into four components; trend, cyclical, seasonal

and irregular variations. A trend is a long-term tendency (increasing or decreasing)

in a time series. For example, an upward trend in annual rainfall in Australia (Figure

1.4). Seasonal variations are the short term fluctuations within a year during the

season, for example, the temperature increased in Summer and decreased in Winter.

Seasonal variation is an important factor for proper future planning. Cyclical variation

is the medium-term change in the time series, which repeats in cycles. Irregular

variations are unpredictable changes in the time series. When a time series contains

a trend, seasonality or other systematic components, the general summary statistics

can be seriously misleading.

To observe any trend over time, any regular seasonal behavior, or any changes in

level and variability over time, observations are usually plotted against corresponding

times. These features need to be identified to incorporate them into mathematical

models. In practice, a suitable mathematical model is developed to a given time

series and the corresponding parameters are estimated. The procedure of fitting a

time series to a proper model is called time series analysis. The objectives of time

series analysis are to describe and summarize data, develop prediction models and

predict future values.

A number of data-driven prediction models were considered for rainfall predic-

tion, among which the most popular and widely used models are artificial neural

networks (ANN), autoregressive integrated moving average (ARIMA), the K-Nearest-

Neighbours (k-NN), multiple linear regression (MLR) and support vector machines

for regression (SVMreg) methods. A brief description of these models including their

application in rainfall prediction is given below.



29

2.2.1 Regression Analysis

Regression analysis is the most widely used statistical method for investigating and

modelling the relationship between a variable of interest (response) and a set of re-

lated predictor (explanatory) variables. Applications of regression occur in almost

every field including hydrology. Regression models are used for several purposes, in-

cluding data description, parameter estimation and prediction. These models can

be classified into simple linear regression, multiple linear regression and nonlinear

regression models. The simple linear regression model is a model to find the linear

relationship between a response variable and one independent variable. The simple

regression model is often written as:

y = β0 + β1x+ ε

where y is the response variable, β0 is the y intercept, β1 is the gradient or slope of

the regression line, x is the regressor or predictor variable and ε is the random error

component.

As the response y is a random variable, there is a probability distribution for y at

each possible value for x. The slope β1 is the change in the mean of the distribution

of y made by a unit change in x. The term linear is used because the model equation

is a linear function of the unknown parameters β0 and β1.

A regression model that involves more than one regressor variable is called multiple

linear regression model. The general form of the multiple linear regression model is

written as:

y = β0 + β1x1 + . . .+ βpxp + ε

where y is the response variable, β0, β1, . . . , βp are regression coefficients and x1, x2,. . . ,

xp are regressor or predictor variables.

A nonlinear regression model is a model to find the nonlinear relationship between

a response variable and one or more independent variable. Nonlinear regression may

be written as:

y =
α

1 + exp(βt)

The major assumptions of the regression model are:

• The relationship between the response variable y and the regressors is linear, at

least approximately.

• The error term ε has zero mean and constant variance σ2.

• The errors are uncorrelated.

• The errors are normally distributed.
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The assumption of normality is required for hypothesis testing and constructing

the confidence interval. The assumption of uncorrelated or independent errors is

not appropriate for time series data, as the errors in time series data present serial

correlation. Such error terms are assumed to be autocorrelated. There are several

causes of autocorrelation in regression problems involving time series data, including

failure to include one or more significant predictors in the regression model. For

example, suppose we are predicting monthly rainfall using the monthly temperature

as a predictor. The effects of autocorrelation on the ordinary least squares regression

procedure are [56]:

• Regression coefficients are no longer minimum variance estimates.

• Residual mean square may seriously underestimate σ2.

• Test of hypothesis and confidence interval based on F and t distribution are no

longer appropriate.

The MLR models are mostly used for comparison with other models for rainfall

prediction. In the paper [52], the author compared the ANN with the MLR model

for long-term seasonal Spring rainfall prediction in Victoria, Australia using lagged El

Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as input variables.

The paper [27] presented a comparison of the ANN with MLR for rainfall-runoff pre-

diction in Japan. In the paper [82], the author predicted an Indian Summer monsoon

rainfall with ANN and MLR models using El Nino indices as predictor variables and

compared the performance of both models.

Aksoy et al. in [5] predicted precipitation in Jordan using ANN and compared the

prediction performance with the MLR model. Similarly Chattopadhyay et al. in [19]

compared the ANN and the MLR model performance in predicting the annual average

Indian Summer monsoon rainfall. The paper [76] also compared the ANN and MLR

for daily rainfall prediction in Sao Paulo, Brazil using temperature, wind, humidity,

air temperature, precipitable water, relative vorticity and moisture divergence flux as

input variables.

2.2.2 ARIMA Model

The most widely used time series prediction technique is the autoregressive integrated

moving average, denoted by ARIMA (p, d, q), where p and q are the autoregressive

and moving average orders and d is the order of differentiation, operated on the

original series to handle non-stationeries. The ARIMA model is a generalization of

autoregressive moving average (ARMA) model. The ARMA model is a combination

of autoregressive and moving average processes.
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Auto regressive (AR) process is a function of p past observations (Xt−1, Xt−2, . . . , Xt−p)

and random disturbance term process, where p indicates the number of steps into the

past needed to forecast the current value. An autoregressive model of order p, abbre-

viated AR(p), can be represented by the equation:

Xt = φ1Xt−1 + φ2Xt−2 + ....+ φpXt−p + wt

where Xt denotes the time-series and wt indicates a white-noise process.

Moving average process is the linear function of the white noise. A moving average

model of order q, abbreviated MA(q) can be formulated as follows:

Xt = wt + θ1wt−1 + θ2wt−2 + ...+ θqwt−q

. General auto-regressive moving average model ARMA(p, q) is defined by:

Xt − φ1xt−1 − φ2xt−2 − ....− φpXt−p = wt + θ1wt−1 + θ2wt−2 + ...+ θqwt−q

Using the Box and Jenkins notation, the ARMA(p, q) model can be written as:

φ(B)Xt = θ(B)Wt

where B is the back shift operator, Xt is the zero mean time series, wt is a white

noise, and φ and θ are the respectively the pth and qth order autoregressive and

moving average components.

ARMA models are based on the assumption that the time series are approxi-

mately stationary. A stationary time series is one whose statistical properties such as

mean, variance and covariance are all constant (do not change) over time. Different

transformation techniques such as logarithms, square root or differencing are used for

eliminating each type of feature to make the time series stationary. These transfor-

mation techniques may turn skewed data into symmetric data and make the variance

constant over time. The ARMA model fitted to the transformed series is called the

ARIMA (p, d, q) model and can be written as:

φ(B)(1−B)dXt = θ(B)Wt

where d is the order of differentiation of the original data to obtain a stationary

process. The ARIMA models are stationary only if |φ| 6= ±1.

If |φ| < 1 then the unique stationary solution is casual, that is the series Xt can

be expressed in terms of the current and past values. If |φ| > 1 then the unique

stationary solution is non-casual since Xt is the function of current and future Ws, s
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≤ t. Similarly if |θ| < 1 then the unique stationary solution is invertible, which means

wt can be expressed in terms of current and past Xs, s ≤ t.

ARIMA models have been widely used in hydrological research. In the paper [20],

the authors applied ARIMA and autoregressive neural network models to predict

Summer monsoon rainfall in India. The paper [30] investigated the application of

ARIMA and ANN models for monthly rainfall prediction in Iran. In [57], pre-monsoon

rainfall trends were assessed, and rainfall was predicted using the univariate ARIMA

model. In the paper [71], the ARIMA model was applied to predict seasonal rainfall

in Indonesia. Similarly, in the paper [84], the authors predicted the yearly rainfall

with ARIMA and ANN models in India.

2.2.3 Artificial Neural Networks (ANN)

Neural networks were first introduced in 1943 by McCulloch and Pitts and gradu-

ally progressed with advances in calibration methodologies. ANN are widely used

in diverse disciplines including science, engineering and economics. Researchers in

hydrology adopted this method during the last decade and this computational tool is

still in its growing stage.

Artificial neural networks are massive, parallel distributed, information-processing

systems with characteristics resembling the biological neural networks of the human

brain [2].

An artificial neural network consists of simple neurons, and links that process in-

formation in order to find the relationship between inputs and outputs. An artificial

neural network works like a human brain. It takes input (like synapses) and then

applies the activation function which combines the input into a single value and pro-

duces an output (Figure 2.1). The activation function is generally divided into two

parts, the combination function and the transfer function. The combination function

assigns weights to each input and combines the weighted inputs in a single value. The

transfer functions produce an output. Transfer functions could be any mathematical

function. A number of transfer functions were considered in the literature, among

which the most common are sigmoid, hyperbolic tangent and step functions. The

step function limits the output of the neuron to either 0 or 1, the sigmoid function

between 0 and 1 and the hyperbolic tangent function from -1 to +1. The graphic

illustration of these functions is given in Figure 2.2.

Network Architectures

The combination of two or more artificial neurons makes an artificial neural network

and the way these individual neurons interconnect is called topology or architecture

of the artificial neural network. The interconnection of the artificial neurons can be
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Figure 2.1: Architecture of an Artificial Neural Network.
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Figure 2.2: Transfer functions.

done in many ways, resulting in several architectures. The taxonomy of the neural

networks is given in Figure 2.3. All possible architectures are divided into two classes;

feed-forward networks and recurrent/ feedback networks. An illustration of a feed-

forward network and a recurrent/feedback network architectures is given in Figure

2.4. Figure 2.4 (left side), represents the feed-forward neural network architecture,

where data moves only in a forward direction from input layer which goes through

the hidden layer and then to the output layer. The right side of Figure 2.4 represents

recurrent/feedback architecture where hidden layers and output layers have recurrent

connections. Feedback neural networks have at least one feedback loop, either from a

hidden layer to an input layer or from an output layer to a hidden layer (Figure 2.5).

Feed-forward neural networks can be further divided into single layer feed forward

neural networks and multi-layer feed-forward neural networks. Figure 2.6 illustrates

the architecture of both single layer and multi-layer feed-forward neural networks.

The single layer neural network is the simplest form of ANN. In a single layer feed-
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Figure 2.3: Taxonomy of Neural Networks.

forward neural network the input layer directly links to the output layer. There is no

hidden layer in this neural network. On the other hand, a multi-layer feed-forward

neural network has one or more hidden layers between the input layer and the output

layer. These neural networks are also called multi-layer perceptron. Feed-forward

neural networks are most appropriate models for modelling relationships between

the response variable and predictor variables. The multi-layer feed-forward neural

networks are the most widely studied and applied neural network models in practice.

In the multi-layer feed-forward neural networks, the data is divided into three sets:

the training set used to update the network weights and biases; the validation set,

used to guarantee the generalisation capability of the model; and the test set, used

to check the generalisation. The multi-layer feed-forward neural networks have the

ability to learn through training. Training a multilayer perceptron is a procedure to

find the combination of weights which results in the smallest error. There are many

algorithms that could be used to train a multi-layer perceptron, but the back prop-

agation algorithm and the algorithms derived from it are the most computationally

straightforward algorithms for training the multi-layer perceptron.

Applications of artificial neural networks for rainfall prediction

The artificial neural network has been suggested as an alternative method for time

series modelling and predictions. ANN makes no prior assumptions like statistical

techniques, and can model highly nonlinear data. These features make it more practi-

cal and accurate in modelling and predicting complex data such as rainfall data. ANN

has been applied extensively in hydrology, including in rainfall prediction. Some of

the most recent applications of ANN for rainfall prediction are given below:
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Figure 2.4: Artificial Neural Networks architecture.

Abbot et al. in [2] applied the time delay neural network (TDNN) for monthly

and seasonal rainfall prediction in Queensland, Australia using monthly rainfall, at-

mospheric temperature, SOI, PDO, and El Nino 3.4 as input variables. The TDNN

model prediction performance was compared with the POAMA model and it was

concluded the TDNN model performed better when compared to the POAMA model.

Abbot et al. in [3] applied ANN and POAMA for rainfall prediction in Queens-

land, Australia. The input variables used were rainfall, maximum and minimum tem-

peratures, Southern Oscillation Index (SOI), Inter-decadal Pacific Oscillation (IPO),

Dipole Mode Index (DMI) and El Nino 3.4. The study found the ANN model provides

more skilled predictions compared to POAMA model.

Acharya et al. in [4] developed a multi-model ensemble technique (MME) based

on ANN for rainfall prediction in India. The performance of the developed model

compared with the traditional multi-model ensemble techniques and it was concluded

that the MME method based on ANN is better in predicting rainfall than traditional

MME methods.

Aksoy et al. in [5] predicted precipitation in arid and semi-arid regions in Jordan

using a feed-forward back propagation neural network, a radial basis function neural

network, a generalized regression neural network and the MLR at three petrological

stations. Antecedent precipitation and the periodic component were used as input

variables. The Feed-forward back propagation neural network was found to be the

best model for monthly rainfall prediction as compared to the other three models.

Chattopadhyay et al. [19] predicted the annual average Indian Summer mon-
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Figure 2.5: Recurrent Neural Network architectures.

soon rainfall using ANN with three different back propagation learning rules and the

asymptotic regression model. The three different back propagation learning rules were

momentum learning, conjugate gradient descent learning, and Levenberg Marquardt

learning. The study found that ANN with conjugate gradient descent learning and

Levenberg Marquardt learning perform better than the other models.

Ravinesh et al. in [24] applied ANN for predicting monthly Standardized Precipi-

tation and Evapotranspiration Index (SPEI) in eastern Australia, using a total of 18

predictor variables. The predictor variables used in developing ANN were monthly

rainfall totals, mean temperature, minimum temperature, maximum temperature,

evapotranspiration, climate indices (Southern Oscillation Index, Pacific Decadal Os-

cillation, Southern Annular Mode and Indian Ocean Dipole) and the Sea Surface

Temperatures (Nino 3.0, 3.4 and 4.0). The study found that the ANN model is a

useful data-driven tool for monthly SPEI predictions.

El-Shafie et al. in [28] examined the performance of the multi-layer perceptron

neural network (MLP-NN), the radial basis function neural network (RBFNN) and

the input delay neural network (IDNN) for weekly and monthly rainfall prediction

in Malaysia using temperature and humidity as input variables. The results reveal

that the IDNN model achieved the highest accuracy level in predicting rainfall when

compared to other models.

El-Shafie et al. in [27] applied the ANN and MLR models for rainfall-runoff

prediction in Japan.The results showed that ANN could describe the behaviour of

the rainfall-runoff relationship more accurately than the classical regression model.
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Figure 2.6: Single-layer and multi-layer feed-forward neural network architectures.

Farajzadeh et al. in [30] considered rainfall predictions with ANN and ARIMA

models using only historical monthly rainfall data as input. The performance of the

models was compared and it was found that there was no significant difference in the

performance of either model in predicting monthly rainfall.

Karamouz et al. in [44] developed and applied the time delay recurrent neural

network for long-lead seasonal rainfall prediction in three case studies in Iran. The

investigators compared the prediction performance of the time delay recurrent neu-

ral network with ARMAX and found that the time delay recurrent neural network

perform better than the ARMAX model in all three cases.

Mekanik et al. in [52] investigated the application of ANN and MLR models

for long-term seasonal Spring rainfall prediction in Victoria, Australia using lagged El

Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as input variables.

Both models were assessed and ANN model was found to have lower prediction errors

compared to the MLR model.

Mandal et al. in [51] applied ANN and the model tree for short-term rainfall

prediction in India. Three training algorithms, namely multilayer perceptron, radial

basis function and time lagged recurrent networks were used in training the ANN. In

comparison, researchers found that the performance of both models was the same in

predicting short-term rainfall.

Ramirez et al. in [76] investigated the ANN for daily rainfall prediction in Sao

Paulo, Brazil using potential temperature, wind, humidity, air temperature, precip-

itable water, relative vorticity and moisture divergence flux as input variables. The
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prediction performance of ANN was compared with the MLR model. The study

suggested that ANN is more suitable for rain prediction in Sao Paulo, Brazil.

Shukla et al. in [82] predicted Indian Summer monsoon rainfall with the ANN and

MLR models using Nino indices as predictors. The comparative analysis suggested

that ANN model performance is better than the MLR model.

2.2.4 Support Vector Machine for regression (SVMreg)

Support Vector Machines (SVM) is a statistical learning technique, developed by

Vapnik and his colleagues in 1995 [23]. Initially, SVM was developed for classification

problems but was soon successfully applied in other areas, such as regression estima-

tion and time series prediction problems. In the supervised data classification, the

basic idea of SVM is to find a maximum margin hyperplane, which separates two finite

point classes given in the n-dimensional space. The maximum margin hyperplane is

the one which has the maximum distance to the closest data points, as illustrated in

Figure 2.7. Here we will briefly describe SVMreg estimation.

 

Figure 2.7: An illustration of Support Vector Machines.

Consider the training data T = {(x1, y1), (x2, y2), . . . , (xk, yk)} ⊂ Rn × R, where

xi is an input vector and yi ∈ R is a corresponding output, i = 1, . . . , k, k is the

number of observations in the training data set. Given an ε > 0 the aim of SVMReg



39

is to find a function f(x) that has at most ε deviation from the targets yi for all the

training data.

In the linear SVMReg, the regression function f can be written as:

f(x) = wtx+ b (2.2.1)

where w is the weight vector, b is the bias of the regression function and t stands for

the transpose of a vector. w and b are estimated by minimizing the following risk

function:

minimize R =
1

2
wtw + C

k∑
i=1

(ξi + ξ∗i ), (2.2.2)

subject to 
yi − [wtxi + b] ≤ ε+ ξi

[wtxi + b]− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i , ≥ 0.

(2.2.3)

The first part (wtw) of the risk function regularizes weight sizes and penalizes large

weights, C > 0 is a penalty parameter which determines the trade-off between the

flatness of f and the amount up to which deviations larger than ε are tolerated. This

corresponds to dealing with a so-called ε-insensitive loss function |ξ|ε defined as:

|ξ|ε =

0, if |ξ| ≤ ε

|ξ| − ε, otherwise.

Here ξi and ξ∗i are slack variables introduced to deal with infeasibility.

Problems (2.2.2)-(2.2.3) are optimization problems which are usually solved using

Lagrange multipliers. The linear SVMreg model can be extended to a non-linear

SVMreg model by applying kernel functions. The kernel function can be defined as:

K(xi, xj) = φ(xi)tφ(xj)

where φ is the nonlinear transformation of the input space. In particular, φ can be a

normal distribution function which also is known as radial basis function (RBF). The

details of the SVMreg model can be found in [22, 55].

There have been limited studies on the application of the SVMReg model for

rainfall prediction. In [49, 50] this model was combined with the multi-objective

genetic algorithm to predict hourly rainfall in Taiwan with a lead time of 1 to 6

hours. The meteorological variables: air pressure, air temperature, wind velocity,

wind direction and sunshine duration were used as inputs. In the paper [59], the

authors applied the SVMreg to predict extreme rainfall events in India with a lead
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time of 6 to 48 hours.

The SVMReg models were applied for warm season thermodynamically driven

rainfall prediction in [53]. The discrete wavelet transform and SVMreg methods were

combined in [45] to predict one-day-ahead precipitation in Turkey. In [48], the authors

compared the performance of the SVMReg model and the back propagation neural

networks for typhoon rainfall prediction in Taiwan and found that SVMReg performed

much better than the back propagation neural networks.

2.2.5 k-Nearest Neighbour Method

The k-Nearest Neighbours method (k-NN), is a non-parametric statistical pattern

recognition procedure, extended to time series prediction in [92]. For a time series

prediction, this algorithm identifies the most similar past sequences in the training

data set to the one being predicted and combines their output values to predict the

next value of the target sequence.

Next, we briefly describe the k-NN for regression. Consider a finite time series

yt, t = 1, 2, . . . ,m without explanatory variables. In the first step the series is trans-

formed into equal length feature vectors of d observations: ydt = (yt, yt−1, . . . , yt−(d−1)).

Here d < m is a predetermined integer called an embedding dimension. In the next

step, either a set of m−d overlapping vectors with t = (d, d+ 1, . . . ,m−d) or a set of

m/d non-overlapping vectors with t = (d, 2d, . . . ,m− d) is defined. These vectors are

called d-histories. As a result the d-dimensional space is considered to be the phase

space of the time series.

In the third step, the similar repetitive patterns in the time series are identified.

This can be done by calculating either the distance or the correlation between the

last observed vector ydm = (ym, ym−1, . . . , ym−(d−1)) and all d-histories. In k-NN appli-

cations the Euclidean distance is predominantly used.

In the fourth step of the k-NN, the calculated distances are ranked and the k

vectors having the lowest distance from the target feature vector are selected. Con-

secutive observations in the selected feature vectors are then combined to form a

prediction, often using a simple arithmetic mean with equal weights. In the case of

using correlations, k vectors having the highest correlation with the feature vector are

combined to form a prediction. The predicted value is simply based on the k most

similar values in the neighbourhood. No theoretical or analytical assumptions are

required between the inputs and the outputs.

The k-NN for univariate time series can be easily extended to multivariate time

series by extending the creation of vectors for each input variable and applying the

distance function to a multivariate case. Owing to simplicity and easy implementation,

the k-NN method is very attractive to forecasters. It is considered one of the top ten
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most influential data mining algorithms in research [91]. An illustration of the k-NN

method where n=7 and k = 3 are shown by [92] and is given in Figure 2.8.

In [34] the author applied the k-NN model to predict daily mean discharge in a

mountain basin in northeastern Italy, and compared the prediction performance with

the Autoregressive Exogenous model. Shamseldin et al. in [79] applied the nearest

neighbour method as the nearest neighbour linear perturbation model (NNLPM) for

river flow prediction and compared the results with the simple linear model and the

linear perturbation model. Toth et al. in [87] compared the prediction performance

of k-NN, ANN and autoregressive moving average models for short-term rainfall pre-

diction in Italy with a leading time from 1 to 6 hours. Brath et al. in [17] investigated

the prediction performance of ARMA, ARIMA, artificial neural networks and near-

est neighbour methods for rainfall and discharge predictions. In [29] Eskandarinia

et al. applied k-NN for daily flow forecasting in Iran and compared the prediction

performance with the ANN model.

 

Figure 2.8: An illustration of k-NN method.

2.3 Concluding remarks

The importance of accurate prediction is highlighted where the hydrologic regime is

extremely variable from year to year, or where there is an increasing demand for

water due to population growth, irrigation or industry needs. In Australia, almost

every industry relies on water, particularly agriculture [65] and water supply is totally

dependent on rainfall and snow [66].

The accurate prediction of rainfall is very important for food production planning,
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water supply planning, reservoir operations and other water resource management

and analysis activities. Accurate prediction is one of the major challenges facing

meteorologists. Researchers tried a number of prediction methods to predict rainfall;

some are more accurate than others [10].

Rainfall in Australia is highly variable in both space and time and dynamics are

inherently non-linear in nature. High rainfall variability highlights the need for a

deep analysis of rainfall data for a comprehensive understanding of the reality of

variability and accurate rainfall prediction. Accurate rainfall prediction is critical,

but difficult because of many variables interacting with rainfall including, but not

limited to: all three surrounding oceans, temperature, vapour pressure, evaporation

and solar radiation.

Clusterwise linear regression has the capability to model rainfall dynamics in Aus-

tralia with several interrelated parameters and help improve water resources planning

and management. This method identify clusters of data that have some common

characteristics and fits the regression functions within each cluster. Predictions can

be computed from each cluster using prediction methods.

Several methods have been used for rainfall prediction. However, rainfall predic-

tion is a complex process, needing continual improvement. . Research in this area is

vital. There is always a need to improve the existing models and develop new methods

for accurate rainfall prediction.



Chapter 3

Clusterwise Linear Regression

In this chapter, we provide a brief description of the clusterwise linear regression

method based on maximum likelihood estimation (CR-EM). Then we present nons-

mooth nonconvex optimization formulation of the clusterwise linear regression prob-

lem and an incremental algorithm for solving it. Following that, we develop prediction

methods for clusterwise linear regression.

3.1 Introduction

In many applications, the presence of heterogeneous groups, nonlinear relationships or

time series necessitate the use of two or more regression functions to best summarise

the underlying structure of the data. The clusterwise regression is one such technique,

which can be used to discover trends within data when more than one trend is likely

to exist. The process of rainfall is very complex as it is highly nonlinear, time varying,

spatially distributed and not easily describable by simple models.

Many algorithms ranging from linear to nonlinear have been formulated to model

this complex nonlinear process but no one is adequate for accurate rainfall prediction.

The Clusterwise linear regression is one of the nonlinear prediction methods, which

has the capability of processing highly nonlinear data such as rainfall data. The

Clusterwise linear regression is a hybrid of clustering and regression methods. The

aim of the clusterwise regression is to find simultaneously an optimal partition of data

in k clusters and fit the regression functions to each cluster to minimise the overall

fit.

Clustering is a data mining technique, consisting of finding subsets of similar points

in a data set on the basis of similarities. Several clustering algorithms exist in the

literature. These methods can be categorized into: hierarchical, partitioning (e.g.

k-means method), density-based (e.g. expectation maximization algorithm), model-

based (e.g. neural networks (self-organizing map)), grid-based methods (e.g. STING

43
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(STatistical INformation Grid approach)) and soft computing methods (e.g. fuzzy

clustering). Regression analysis consists of fitting a function (often linear) to the data

to discover how one or more variables vary as a function of another.

Different approaches were developed to solve the clusterwise linear regression prob-

lem including those based on data mining [85, 86], statistical [26, 33, 35] and opti-

mization [14, 15, 16] techniques. The parameters that need to be estimated in these

models are; number of clusters, regression coefficients for each cluster and variance of

residuals within each cluster. In [85, 86] Spath proposed methods to solve CLR using

generalizations of classical clustering algorithm k-means with a criterion based on the

minimization of the squared residuals. Garcia et al. in [36] extended the TCLUST

methodology to perform robust clusterwise linear regression. TCLUST methodology

is a statistical clustering technique based on the modification of a trimmed k-means

clustering algorithm. DeSarbo and Cron (1988) in their paper [26] introduced con-

ditional mixture, maximum likelihood methodology together with the Expectation

Maximization (EM) algorithm for performing clusterwise linear regression. Henning

[40, 41] developed three models: the mixture model with either fixed or random

regressors, and the fixed partition model with fixed regressors using the maximum

likelihood estimation approach together with the EM Algorithm. Preda and Saporta

[73] applied CLR to investigate the stock exchange data and proposed the partial least

squares approach, given in [90] to estimate the regression coefficients for each cluster.

Existing clusterwise linear regression algorithms suffer from the same drawbacks

as their clustering counterparts: they are very sensitive to the choice of an initial

solution; and they may lead to sub-optimal solutions [93]. Furthermore, most of these

algorithms assume the number of clusters to be known a priori. Most of the algorithms

try to separate data into subsets of observations and use one regression function for

each subset.

There have been several attempts to simultaneously find all regression functions to

approximate a data set and to estimate the number of subsets. The paper [25] presents

a methodology which simultaneously clusters observations into a preset number of

groups and estimates the coefficients of the corresponding regression functions. Then

a simulated annealing-based methodology is described to accommodate overlapping

or non-overlapping clustering. In the paper [46], the authors show that estimation

of the clusterwise regression model is equivalent to solving a nonlinear mixed integer

programming problem.

An information-based criterion for determining the number of clusters in the clus-

terwise regression problem is proposed in [80]. It is shown that, under a proba-

bilistically structured population, the proposed criterion selects the true number of

regression hyperplanes with probability one among all class-growing sequences of clas-

sifications, when the number of observations from the population increases to infinity.
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The paper [74] studies the problem of estimating the number of clusters in the context

of logistic regression clustering. The classification likelihood approach is employed to

tackle this problem. A model-selection based criterion for selecting the number of

logistic curves is proposed, and its asymptotic property is also considered.

In this study, a method based on nonsmooth, nonconvex optimization formulation

and an incremental approach is proposed for solving the clusterwise linear regression.

This method starts with one regression function and summaries the underlying struc-

ture of the data by dynamically adding one hyperplane at each iteration. A special

procedure is introduced to generate good starting points for solving global optimiza-

tion problems at each iteration of the incremental algorithm. Such an approach allows

one to find a high quality solution to the problem when a data set is sufficiently dense.

Several incremental algorithms have been proposed to solve the sum of squares

clustering problems. The global k-means algorithm and its variations [7, 47] are

based on constructing the clusters incrementally, starting from finding the center for

the whole data set and then adding a cluster at a time and refining the new set of

clusters by applying k-means.

We develop a similar scheme in order to solve the CLR problem by using a non-

smooth, non-convex optimization formulation from [14] and an incremental algorithm

from [16]. In the proposed method we used affine functions as representatives of

clusters instead of classical centers.

3.2 Clusterwise linear regression based on maxi-

mum likelihood estimation (CR(EM))

Clusterwise regression based on maximum likelihood methodology also known as finite

mixture models for regression problems [61] and finite mixtures of linear regressions

[31] in the literature. Finite mixture models are a class of probability distribution,

initially developed by Newcomb (1886) [60] and Pearson (1894) [72]. Later in 1972,

Quandt and Richard in [75] extended the mixture models for the modeling of regres-

sion data. Finite mixture models are convex combinations of two or more probability

density functions.

The illustration of the overall density and components densities with the EM

algorithm using rainfall data of Wiluna, Western Australia is given in Figure 3.1.

In the figure dotted line shows the overall density, and red and green are the two

component densities.

In mixture model approach, it is assumed that observations arise from k distinct

random processes. Each of these processes is modelled by the specific density function.

Let x be a random variable and f(x, θk) be a probability density function for each
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k = 1, .., K. Then the random variable x is said to arise from a finite mixture model

if it has a density function of the form:

h(x,Θ) =
K∑
k=1

πkf(x, θk),

πk ≥ 0,
K∑
k=1

πk = 1.

(3.2.1)

Let assume yi is distributed as a finite mixture of conditional normal densities,

then a finite mixture regression model of K components can be defined as:

h(y|x,Θ) =
K∑
k=1

πkf(y|x, θk),

πk ≥ 0,
K∑
k=1

πk = 1

(3.2.2)

where f(y|x, θk) is the probability density function of the k-th component, y is a

response variable with conditional density h, x is a vector of independent variables, θk

is the component specific parameter vector for the density function, πk is the mixing

proportion also known as prior probability of component k and Θ is the vector of all

parameters.

Initially, parameters of the mixture models have been estimated using the method

of moments [72]. Later in 1974 Hosmer [42] suggested maximum likelihood estimation

technique to estimate the mixture model parameters. The likelihood of finite mix-

tures can be maximised using optimization procedures such as the Newton-Raphson

method or by using the Expectation-Maximization(EM) algorithm [89]. The EM

Algorithm is most popular and widely employed in the literature because of compu-

tational attractiveness and easy to program.

The EM algorithm was first considered in 1977 by Arther Dempster and Donald

Rubin [1]. It seeks to find the maximum likelihood estimates (MLE) iteratively apply-

ing the following two steps, E step (for expectation) and M step (for maximization).

Expectation step (E step): Estimate the expected value of the complete data log

likelihood function
∑N

i=1 log(
∑K

k=1 πkf(y|x, θk)), with respect to the unknown data y

given the observed data x and the current parameter estimates.

Let θ(r) be the current parameters estimate at the rth iteration. On the next

iteration the EL algorithm calculate the following function:

Q(θ, θ(r)) =
N∑
i=1

K∑
k=1

w
(r)
i,kπkf(y|x, θk), (3.2.3)
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Figure 3.1: Fitted overall density(dotted) and two component densities (red and
green) with EM algorithm, using the rainfall data of Wiluna, Western Australia.

where

w
(r)
i,k =

πkf(y|x, θk)∑K
k=1 πkf(yi|xi, θk)

is the posterior probability that the ith observation belongs to the kth component of

the mixture after the rth iteration.

Maximization step (M step): maximize the expectation of log-likelihood for

each component separately using the posterior probabilities as weights. In the M step

the Q(θ, θ(r)) is maximized with respect to θ and the (r + 1)th iteration of the EM

algorithm is defined as:

θ(m+1) = argmax
θ∈Θ

Q(θ, θ(r))

The E and the M steps are repeated until a convergence criterion is met under

pre-specified criteria or reached to a maximum number of iterations.

3.3 Clusterwise linear regression based on nons-

mooth optimization (CLR(Opt))

In this section first we present the clusterwise regression problem and then review the

Spath algorithm and nonsmooth optimization approach.
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3.3.1 Problem statement

Given a dataset A = {(ai, bi) ∈ Rn ×R : i = 1, . . . , l}, the aim of the CLR is to find

simultaneously an optimal partition of data in k clusters and regression coefficients

within clusters in order to minimize the overall fit. Let Aj, j = 1, . . . , k be clusters

such that

Aj 6= ∅, Aj
⋂

At = ∅, j, t = 1, . . . , k, t 6= j and A =
k⋃
j=1

Aj.

Let {xj, yj} be linear regression coefficients computed using only data points from the

cluster Aj, j = 1, . . . , k. Then for the given data point (a, b) ∈ A and coefficients

{xj, yj} the square regression error Eab(x
j, yj) is:

Eab(x
j, yj) =

(
〈xj, a〉+ yj − b

)2
.

We associate a data point with the cluster whose regression error at this point is

smallest. Then the overall fit function is [14, 15, 16]:

fk(x, y) =
l∑

i=1

min
j=1,...,k

Eab(x
j, yj), (3.3.1)

where x = (x1, . . . , xk) ∈ Rnk and y = (y1, . . . , yk) ∈ Rk. The function fk is called the

k-th clusterwise linear regression function or the k-th overall fit function. For k = 1

the function fk is convex and for k > 1 it is nonsmooth nonconvex piecewise quadratic

function.

The k-clusterwise linear regression problem is formulated as follows:

minimize fk(x, y) subject to x ∈ Rnk, y ∈ Rk. (3.3.2)

It should be noted that the number of clusters k is not always known a priori and

this number should be specified before solving Problem (3.3.2). There are various

algorithms exist in the literature for solving the problem (3.3.2) [14, 15, 16, 18, 25, 85].

3.3.2 Späth algorithm for clusterwise linear regression

The Späth algorithm [85] for solving Problem (3.3.2) is based on the well known k-

means algorithm. The algorithm was described for p = 2, however, in our description

below we will present it for p ≥ 1 in general.

The main and most time-consuming step in Algorithm 1 is Step 2 where one

solves the linear regression problems to find regression coefficients. This is a convex

optimization problem. It is a quadratic programming problem when p = 2. More
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Algorithm 1 Späth algorithm

1: (Initialization) Select mutually disjoint clusters A1, · · · , Ak such that
⋃k
j=1A

j =
A.

2: For j = 1, · · · , k, solve the following linear regression problem:

minimize ϕ(xj, yj) =
∑

(a,b)∈Aj

Eab(x
j, yj) subject to xj ∈ Rn, yj ∈ R. (3.3.3)

and obtain regression coefficients (xj, yj), j = 1, . . . , k.
3: For j = 1, · · · , k, recompute the cluster Aj such that a point (a, b) ∈ A belongs

to Aj if
Eab(x

j, yj) = min
l=1,...,k

Eab(x
l, yl)

and go to Step 2 until no more data points change their clusters.

specifically, it is a classical least squares regression problem.

Algorithm 1 converges to local minimizers of Problem (3.3.2) whereas only global

or near global solutions provide meaningful clusters. As the number of clusters k and

the number of data points m increase, the number of local solutions to the Clusterwise

linear regression increases drastically. The quality of the solution obtained by the

algorithm depends on the initial set of clusters. For a moderate number of clusters in

small data sets, a multi-restarting strategy can be applied. However, the success of

this strategy deteriorates as the number of clusters or the size of the data set increase.

We propose to use an incremental approach to solving Problem (3.3.2). This

approach iteratively adds one linear function at a time and uses the current clusters

to construct a good starting cluster distribution for the next iteration. Incremental

algorithms are increasingly popular in data mining and in particular to solve clustering

problems [8, 12, 10, 47]. For example, the modified global k-means algorithm has been

shown to be very efficient for solving clustering problems (see, [8, 9]).

3.3.3 Nonsmooth nonconvex optimization approach for solv-

ing the clusterwise linear regression problems

The brief description of the CLR problem and an algorithm for its solution is given

below. The detailed description can be found in [14, 15, 16]. In what follows, we denote

by Rn an n-dimensional Euclidean space with an inner product 〈x, y〉 =
∑n

i=1 xiyi and

associated norm ‖x‖ = 〈x, x〉1/2, x, y ∈ Rn.

The problem (3.3.2) is nonsmooth and nonconvex when k ≥ 2. The discrete

gradient method introduced in [11] is applied to solve it. It is an efficient method

for solving nonsmooth optimization problems. This method does not require the

calculation of subgradients of the objective function. The problem (3.3.2) has a special
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structure called piecewise partial separability. Therefore the version of the discrete

gradient method given in [13] is applied to solve it. This method is a local search

method and can find only local solutions to Problem (3.3.2). However, this problem

is nonconvex optimization problem which means that it may have many local solutions

and only global or near global solutions are of interest. Such solutions provide the

best approximation of data with least number of linear functions.

Conventional global optimization techniques are not always efficient for solving

such problems due to their size. Since we use the local search algorithm for solving

Problem (3.3.2), it is important to develop a special procedure to generate initial so-

lutions to computing global or near global solutions. To develop such a procedure, an

incremental approach is proposed in [16]. In this approach linear functions are com-

puted incrementally starting from one linear function and adding one linear function

at each iteration of the incremental algorithm. The use of the incremental approach

allows one to design an efficient algorithm for generating initial solutions. This is

done by introducing the so-called auxiliary CLR problem.

Given the solution (x1, y1, · · · , xk−1, yk−1) to the (k − 1)-CLR problem (3.3.2) we

define the regression error of the data point (a, b) ∈ A at the (k − 1)-th iteration by

rabk−1 = min
j=1...k−1

Eab(x
j, yj)

and introduce the following function

f̄k(u, v) =
∑

(a,b)∈A

min{rabk−1, Eab(u, v)}, u ∈ Rn, v ∈ R. (3.3.4)

The function f̄k is called the k-th auxiliary clusterwise linear regression function. This

function is nonsmooth and in general, nonconvex. Clearly,

f̄k(u, v) = fk(x1, y
1, · · · , xk−1, y

k−1, u, v),∀u ∈ Rn, v ∈ R.

Furthermore

max
(u,v)∈Rn+1

f̄k(u, v) =
∑

(a,b)∈A

rabk−1 = min
x∈R(k−1)n,y∈Rk−1

fk−1(x, y). (3.3.5)

The problem:

minimize f̄k(u, v) subject to u ∈ Rn, v ∈ R (3.3.6)

is called the k-th auxiliary clusterwise linear regression problem. This problem has

n + 1 variables and unlike Problem (3.3.2) the number of variables does not depend

on the number of linear regression functions.
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3.3.4 Computation of initial solutions

Given the solution (x1, y1, · · · , xk−1, yk−1) to the (k−1)-CLR problem (3.3.2) consider

the following set of hyperplanes:

Ck =
{

(u, v) ∈ Rn+1 : Eab(u, v) > rabk−1 ∀(a, b) ∈ A
}
.

The set Ck contains all hyperplanes which do not attract any point from the set A. It

is clear that over this set the function f̄k is constant and reaches its global maximum

value (3.3.5). Therefore any hyperplane from the set Ck is a stationary point for

the function f̄k. This means that if we choose a starting point in this set then most

local methods will be unable to escape it and will not decrease the value of both the

auxiliary and overall fit functions. Therefore it is crucial to select starting points in

the complementary set Ck of the closure of Ck:

Ck =
{

(u, v) ∈ Rn+1 : ∃ (a, b) ∈ A such that Eab(u, v) < rabk−1

}
.

Clearly, Ck is the set of hyperplanes which attract at least one data point from the

set A. Any hyperplane from this set will decrease the value of the auxiliary CLR

function. Our aim is to find hyperplanes which provide significant decrease of the

value of this function. Next we describe how such hyperplanes can be found.

Let Ā0 be a set of all data points (a, b) ∈ A which do not lie on any of hyperplanes

(x1, y
1), . . . , (xk−1, y

k−1). If Ā0 = ∅ then the hyperplanes (x1, y
1), · · · , (xk−1, y

k−1)

perfectly approximate the set A. Therefore we assume that Ā0 6= ∅. Take any

(a, b) ∈ Ā0. Assume that this point belongs to the cluster determined by the linear

regression coefficients {xj, yj} where j ∈ {1, . . . , k − 1}. Define another hyperplane

(xab, yab) parallel to the hyperplane (xj, yj) passing through the point (a, b). Then

xab = xj and yab = b− 〈xj, a〉. It is clear that (xab, yab) ∈ Ck for all (a, b) ∈ Ā0. The

value f̃k−1 of the function fk−1 over A with hyperplanes (x1, y
1, · · · , xk−1, y

k−1) is:

f̃k−1 =
∑

(a,b)∈A

rabk−1

and the value f̃k of the function fk over A with hyperplanes (x1, y
1, · · · , xk−1, y

k−1)

and (xab, yab) is:

f̃k = f̄k(x
ab, yab) =

∑
(c,d)∈A

min{rcdk−1, Ecd(x
ab, yab)}.
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The difference between these two values is:

d(xab, yab) = f̃k−1 − f̃k =
∑

(c,d)∈A

max{0, rcdk−1 − Ecd(xab, yab)}.

d(xab, yab) > 0 for any data point (a, b) ∈ Ā0. Let γ1 ∈ [0, 1] be a given number. Let

d̄1 = max{d(xab, yab) : (a, b) ∈ Ā0} (3.3.7)

and the set

Ā1 = {(a, b) ∈ A : d(xab, yab) ≥ γ1d̄1}. (3.3.8)

This set contains all the solutions providing decrease above a threshold γ1d̄1. For

γ1 = 0 the set Ā1 = Ā0 and for γ1 = 1 the set Ā1 contains only data points providing

largest decrease d̄1 of the k-th CLR function.

For each (a, b) ∈ Ā1 compute the set Bab as follows:

Bab =
{

(c, d) ∈ A : Ecd(x
ab, yab) < rcdk−1

}
. (3.3.9)

The set Bab contains all points from the set A attracted by the clusterwise linear

regression function (xab, yab). We compute (x̄ab, ȳab) as a linear regression function

approximating the set Bab. This additional step to update the clusterwise linear

regression function (xab, yab) allows one to improve an initial solution determined by

the cluster Bab.

Now we can define the following set of hyperplanes:

Ā2 =
{

(u, v) : u ∈ Rn, v ∈ R and ∃(a, b) ∈ Ā1 s.t. u = x̄ab, v = ȳab
}
. (3.3.10)

The set Ā2 contains all hyperplanes computed using points (a, b) ∈ Ā1. Next we

compute the value f̂k(u, v) of the overall fit function fk over A with hyperplanes

(x1, y
1, · · · , xk−1, y

k−1) and (u, v) = (x̄ab, ȳab):

f̂k(u, v) = f̄k(x̄
ab, ȳab) =

∑
(c,d)∈A

min{rcdk−1, Ecd(x̄
ab, ȳab)}

and the following number:

f̂k,min = min
{
f̂k(u, v) : (u, v) ∈ Ā2

}
≥ 0. (3.3.11)

Let γ2 ∈ [1,∞[ be a given number. Define the following set

Ā3 = {(u, v) ∈ Ā2 : f̂(u, v) ≤ γ2f̂k,min}. (3.3.12)
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All hyperplanes from the set Ā3 are considered as an initial solution to solve Problem

(3.3.6). The number γ2f̂k,min is defined as a threshold and if the value of the auxiliary

CLR function at (u, v) ∈ Ā2 is greater than this threshold this hyperplane is not

considered as a “promising” to be an initial solution to minimize the auxiliary CLR

function, since the value of this function at this initial solution is significantly larger

than its best value. If γ2 = 1 then hyperplanes from Ā2 with the lowest value of the

auxiliary CLR function are chosen and if γ2 is sufficiently large then Ā3 = Ā2.

Thus, an algorithm for finding good initial solutions for solving Problem (3.3.6)

can be summarized as follows:

Algorithm 2 An algorithm for finding initial solutions to solve Problem (3.3.6).

1: (Initialization) Select the numbers γ1 ∈ [0, 1] and γ2 ∈ [1,∞[.
2: Determine the set Ā0 and compute the number d̄1 using (3.3.7).
3: Compute the set Ā1 using (3.3.8).
4: For each (a, b) ∈ Ā1 compute the set Bab using (3.3.9), update the clusterwise

regression functions (xab, yab) and compute the set Ā2 applying (3.3.10).
5: Compute the number f̂k,min using (3.3.11) and the set Ā3 using (3.3.12). Any

hyperplane (u, v) ∈ Ā3 is an initial solution to solve Problem (3.3.6).

Next we describe an algorithm for solving the auxiliary CLR problem (3.3.6). For

a given hyperplane (u, v) define the following set:

B(u, v) = {(a, b) ∈ A : Eab(u, v) < rabk−1},

The set B(u, v) contains all points from the set A which are attracted by the linear

regression function (u, v). It is obvious that B(u, v) 6= ∅ for all (u, v) ∈ Ā3.

Algorithm 3 An algorithm for solving Problem (3.3.6).

1: (Initialization) Select numbers γ1 ∈ [0, 1], γ2 ∈ [1,∞[ and apply Algorithm 2 to
compute the set Ā3.

2: Select the initial linear regression function (u0, v0) ∈ Ā3, compute the set B(u0, v0)
and set l := 0.

3: Solve the following linear regression problem:

minimize ϕ(u, v) =
∑

(a,b)∈B(ul,vl)

Eab(u, v) subject to u ∈ Rn, v ∈ R (3.3.13)

and obtain regression coefficients (ũl, ṽl).
4: Compute the set B(ũl, ṽl).
5: (Stopping criterion) If B(ũl, ṽl) = B(ul, vl), then set (ū, v̄) := (ul, vl) and stop.

(ū, v̄) is a solution to Problem (3.3.6).
6: Otherwise set ul+1 := ũl, vl+1 := ṽl, B(ul+1, vl+1) := B(ũl, ṽl), l := l + 1 and go to

Step 3.
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Figure 3.2: Illustration of the incremental CLR algorithm.

3.3.5 Incremental algorithm

Now we are ready to design an incremental algorithm for solving Problem (3.3.2).

We use the solution (ū, v̄) found by Algorithm 3 to generate an initial solution to

this problem. Let γ3 ∈ [1,∞) be a given number. Take any (u, v) ∈ Ā3 as an initial

solution and apply Algorithm 3 starting from this solution. As a result we get a

regression function (ū, v̄) which is the local minimizer of the auxiliary CLR problem

(3.3.6). We denote by Ā4 the set of all solutions obtained by Algorithm 3 starting

from some (u, v) ∈ Ā3. Define the number

f̄k,min = min
{
f̄k(ū, v̄) : (ū, v̄) ∈ Ā4

}
and the set

Ā5 =
{

(ū, v̄) ∈ Ā4 : f̄k(ū, v̄) ≤ γ3f̄k,min
}
.

Notice that if γ3 = 1 then only best local minimizers of Problem (3.3.6) found by

Algorithm 3 are chosen. If γ3 is sufficiently large then all local minimizers from the

set Ā4 are chosen and Ā5 = Ā4. Summarizing we can design an incremental algorithm

as follows:
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Algorithm 4 An incremental algorithm for solving Problem (3.3.2)

1: (Initialization) Select numbers γ1 ∈ [0, 1], γ2 ∈ [1,∞) and γ3 ∈ [1,∞). Compute
the linear regression function (x1, y1) ∈ Rn ×R of the whole set A. Set l := 1.

2: (Computation of the next linear regression function). Set l := l + 1. Let
(x1, y1, · · · , xl−1, yl−1) be the solution to the (l − 1)-CLR problem. Apply Al-
gorithm 3 starting from each (u, v) ∈ Ā3 to find a set of solutions Ā5 to the l-th
auxiliary CLR problem (3.3.6).

3: (Refinement of all linear regression functions). For each (ū, v̄) ∈ Ā5 select
(x1, y1, · · · , xl−1, yl−1, ū, v̄) as an initial solution and apply the discrete gradient
method to solve the l-CLR and compute a set Ā6 of solutions (x̄1, ȳ1, · · · , x̄l, ȳl)
to this problem.

4: (Computation of the solution) Choose any

(x̂1, ŷ1, · · · , x̂l, ŷl) ∈ Argmin
{
fl(x̄

1, ȳ1, · · · , x̄l, ȳl) : (x̄1, ȳ1, · · · , x̄l, ȳl) ∈ Ā6

}
as a solution to the l-CLR problem. Set xj := x̂j, yj := ŷj, j = 1, . . . , l.

5: (Stopping criterion) If l = k, then stop. Otherwise go to Step 2.

It is easy to notice that Algorithm 4 finds solutions to all l-CLR problems where

l = 1, . . . , k. The graphical illustration of Algorithm 4 is given in Figure 3.2, where

k = 2. In Step 1, one linear function (green line) is computed to approximate the

whole data. Initial solutions (blue lines) in Step 2 are defined as parallel lines to the

line computed in Step 1 and passing through at least one data point. These lines

are used to find the set of solutions to the auxiliary CLR in Step 3 (blue lines). In

Step 4, the solution to the 1-CLR problem (green line) is combined with solutions

to the auxiliary CLR to construct the set of initial solutions to the 2-CLR problem.

Solutions (pairs of red, yellow and pink lines) to the 2-CLR problem are found starting

from each of these initial solutions. Finally, in Step 5, the best pair of lines (the pair

of green lines) is chosen as a solution to the 2-CLR problem.

3.4 Prediction methods based on clusterwise linear

regression

The main hypothesis of clusterwise regression is that the observations come from more

than one cluster with unknown proportion. The optimal number of clusters with

common characteristics are determined using the above proposed algorithm and fit

the linear regression functions within each cluster. To obtain prediction, the following

methods explored.

Let T = {(ai, bi)}, i = 1, . . . ,m be a training data. Applying the CLR method we

compute k clusters and corresponding regression coefficients (xj, yj), j = 1, . . . , k. For

a new observation a ∈ Rn, the prediction value ua can be compute as:
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1. Using the largest cluster. In this prediction method, we select the largest

j-th cluster and compute the prediction value ua for new observation a using

the corresponding regression coefficients (xj, yj) of the j-th cluster:

ua = 〈xj, a〉+ yj, j = 1, . . . , k.

2. Using weights. In this prediction method, we assign weights to each cluster.

The weight wj of the j-th cluster is computed as wj = lj/l, where lj is the

number of points in the j-th cluster and l is the total number of points in the

training set. Compute predictions for new observation a from each cluster using

the corresponding regression coefficients (xj, yj).

zj = 〈xj, a〉+ yj, j = 1, . . . , k.

Then calculate the final prediction value ua for a as:

ua =
k∑
j=1

wjzj.

3. Using neighbours. In this prediction method, we select any positive integer p

and compute p closest points to the new observation a in the input space from

the training set. Denote the set of these p points as: P = {(a1, b1), . . . , (ap, bp)}.
Next calculate the cluster distribution of training points from the set P . This

means that we get the following numbers: n1, . . . , nk where ni−s are the number

of points from the set P belonging to the i-th cluster and ni ≥ 0, i = 1, . . . , k.

k∑
i=1

ni = p

In next step calculate weights of each cluster as follows:

wj =
nj
p
.

Then compute predictions zj = 〈xj, a〉 + yj for new observation a from each

cluster and calculate the final prediction value ua as:

ua =
k∑
j=1

wjzj.

4. Using distance. In this prediction method, we calculate the distance between
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the new observation a and the clusters in the input space from the training set.

dj = ‖a− cj‖,

where cj is the centred value of the j-th cluster and j = 1, . . . , k.

Then select p closest clusters to the new observation a based on the above

calculated distance and assign weights as follow:

wi =
d−hi∑p
i=1 d

−h
i

,

where i = 1, . . . , p and h = 2.

In the next step compute predictions for new observation a from each selected

p clusters using the corresponding regression coefficients (xj, yj).

zi = 〈xi, a〉+ yi, i = 1, . . . , p.

Then calculate the final prediction value ua for a as a distance weighted average:

ua =

p∑
i=1

wizi.

3.5 Summary of chapter

To solve a clusterwise linear regression problem, many approaches exist in the liter-

ature including statistical, data mining and optimization techniques. These existing

techniques are very sensitive to the choice of an initial solution, and may lead to

sub-optimal solutions. To solve this problem, we proposed a new method based on

non-smooth, non-convex optimization by modifying the existing ones. In the pro-

posed method we used an affine function to represent clusters instead of classical

centers.This method allows one to find a global, or near global, solution to the prob-

lem. We also explored new prediction methods based on clusterwise regression to

improve the prediction accuracy.



Chapter 4

Data, implementation and

evaluation of models

In this chapter, we provide a description of rainfall data and meteorological variables,

correlation between rainfall and other meteorological variables, climate zones and

seasonal patterns in Australia, geographic details and descriptive statistics of rainfall

data. Following that, we discuss the implementation of models and the evaluation of

each model’s performance in predicting rainfall. We also provide information about

the performance measures used for the purpose of evaluation.

4.1 Rainfall and input meteorological variables

Historical daily and monthly rainfall data have been taken from the Scientific In-

formation for Land Owners (SILO) available at [83]. SILO is an enhanced climate

database hosted by the Queensland Government Department of Science, Information

Technology, Innovation and the Arts. The data is reliable and quality checked. In the

development of our prediction models, we used the data of six meteorological param-

eters from 24 geographically diverse weather stations around Australia for the period

January 1970 through to December 2014. From each state/territory (Victoria, New

South Wales, Queensland, South Australia, Western Australia and Northern Terri-

tory), we selected four weather stations. We also considered the climate zones when

choosing these weather stations because Australia experiences a variety of climates

due to its size.

In Australia, there are six major climate zones:(temperate, grassland, desert, trop-

ical, subtropical and equatorial) and two main seasonal patterns (Summer/Autumn/

Winter/Spring and wet/dry) [38]. We do not consider the equatorial zone as its area

is insignificant. The temperate, grassland and desert climate zones are affected by

the seasonal pattern Summer/Autumn/Winter/Spring and tropical, subtropical and

58
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equatorial zones by the wet/dry seasonal pattern. The Summer season in Australia

is from December to February, Autumn from March to May, Winter from June to

August and Spring from September to November. The wet season, also called the

monsoon season, starts in November and finishes in March and the dry seasons starts

in April and finishes in October. Figure 4.1 illustrates both seasonal patterns using

the rainfall data from climate zones.

Using the Bureau of Meteorology climate classification, we selected two locations

from the tropical zone, two from the subtropical, five from the desert, seven from the

temperate and eight from the grassland zones. The Bureau of Meteorology classifi-

cation is a modified Köppen climate classification. The Köppen classification system

is the most widely used classification system with several modifications from 1900 to

the present. The Bureau of Meteorology classification is derived from 0.025 × 0.025

degree resolution mean rainfall, mean maximum temperature and mean minimum

temperature gridded data. All means are based on a standard 30-year climatology

(from 1961 to 1990) [62].

For monthly rainfall predictions, a total 540 records from Jan 1970 to Dec 2014

were used. Of them, 360 records for the 30 years period from Jan 1970 to Dec 1999

were used to train the models; the remaining 180 records over a 15 year period, from

Jan 2000 to Dec 2014, were used to test the models.

For weekly rainfall predictions, a total of 2356 records from Jan 1970 to Feb 2015

were used. Of these, 1834 over a 35 year period, from Jan 1970 to Feb 2005, were

used to train the models; the remaining 522 records over a ten year period from Feb

2005 to Feb 2015, were used to test the data.

The average monthly rainfall varies across these sites from 15.07 mm to 125.87

mm. The geographic details of these weather stations are given in Table 4.1 and a

location map based on a modified Köppen classification system is given in Figure 4.2.

The set of meteorological parameters used in this study are: (1) monthly rainfall;

(2) maximum temperature (TMax); (3) minimum temperature (TMin); (4) evapo-

ration (Evap); (5) vapor pressure (VP); and (6) solar radiation (Rad). All these

parameters are important components of the hydrologic cycle. For example, evapora-

tion is the process by which liquid water is converted to water vapor via the transfer

of water molecules to the atmosphere. Solar radiation is the energy source used to

change liquid water into water vapor. The vapor pressure is the pressure exerted

by water vapor molecules in the air. Temperature is a measure of the ability of the

atmosphere and water to receive and transfer heat from other bodies. Temperature

directly affects evaporation. These meteorological parameters are interdependent and

influence precipitation.

Correlations between rainfall and five input meteorological variables for each weather

station including significant test results are presented in Table 4.2. The P-value higher
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Figure 4.1: Seasonal patterns in climate zones in Australia.
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Station name Station Id Classification Latitude Longitude Elev. Min. Max. Mean
Victoria
Annuello 76000 Grassland -34.85 142.78 52 0.00 261.40 27.20
Dookie 81013 Temperate -36.37 145.70 185 0.00 227.60 47.23
Orbost 84030 Temperate -37.69 148.46 41 1.90 425.00 72.06
Cape Otway 90015 Temperate -38.86 143.51 82 1.60 218.20 77.80
New South Wales
Warren 51034 Grassland -31.50 147.69 192 0.00 258.80 41.49
Yamba 58012 Subtropical -29.43 153.36 27 0.10 629.40 125.87
Moss Vale 68045 Temperate -34.54 150.38 675 0.40 527.00 75.60
Wilcannia 46043 Desert -31.56 143.37 75 0.00 252.30 24.31
Queensland
Palmerville 28004 Tropical -16.00 144.08 203 0.00 813.20 89.69
Richmond 30045 Grassland -20.73 143.14 211 0.00 664.20 42.46
Boulia 38003 Desert -22.91 139.90 161 0.00 464.90 22.74
Fairymead 39037 Subtropical -24.79 152.36 5 0.00 1143.40 88.22
Northern Territories
Katherine 14902 Tropical -14.46 132.26 106 0.00 937.70 91.43
Newery 14820 Grassland -16.05 129.26 101 0.00 810.00 69.17
Henbury 15552 Desert -24.55 133.25 432 0.00 376.10 22.68
Alexandria 15088 Grassland -19.06 136.71 274 0.00 565.40 37.76
South Australia
Marree 17031 Desert -29.65 138.06 50 0.00 203.30 15.07
Blinman 17014 Grassland -31.09 138.68 615 0.00 294.20 28.86
Koppio 18043 Temperate -34.41 135.82 173 0.00 204.00 42.92
Port Elliot 23742 Temperate -35.53 138.69 10 0.00 152.60 41.14
Western Australia
Ningaloo 5020 Grassland -22.70 113.67 10 0.00 293.60 20.85
Wiluna 13012 Desert -26.59 120.23 521 0.00 271.60 24.29
Dowerin 10042 Grassland -31.19 117.03 273 0.00 171.20 28.52
Peppermint Grove 9594 Temperate -34.44 119.36 60 0.00 308.60 58.75

Table 4.1: Geographic details, elevation (m.), minimum, maximum and average rain-
fall of weather stations

 

 

 
 

 

  

 
v 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

1 

 

 

Orbost  

Cape Otway 

Dookie  

Annuello 

Warren  

Yamba  

Moss Vale 

Richmond 

Palmer Ville  

Wilcannia  

Newry  

Katherine 

Boulia  

Fairymead  

Koppio  

Henbury  

Alexandria 

Marree 

Blinman 

Port Elliot  

Peppermint Grove 

Dowerin 

Wiluna 

Ningaloo  

Figure 4.2: Location map of the study area (based on a modified Köppen classification
system).

than 0.05 refer to statistically not significant, less than 0.05 statistically significant

and less than 0.001 statistically highly significant.

One can see that, there is a highly significant correlation between rainfall and

meteorological variables in most climate zones (see p-values in blue color in Table

4.2.In the desert climate zone, correlations between rainfall and evaporation, solar

radiation and maximum temperature is not significant. These results justifies the use
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of meteorological variables for rainfall prediction.

Station name TMax TMin Evap. VP Rad.
Temperate
Dookie -0.23(4.5e-08) -0.04(0.31) -0.26(5.7e-10) 0.12(0.004) -0.25(4.7e-9)
Orbost -0.17(4.5e-08) 0.01(0.88) -0.11(0.01) 0.02(0.57) -0.12(0.004)
Cape Otway -0.17(2.2e-16) 0.01(2.2e-16) -0.11(2.2e-16) 0.02(2.2e-16) -0.12(2.2e-16)
Moss Vale -0.02(0.69) 0.16(0.0002) -0.09(0.03) 0.22(1.7e-7) -0.15(0.0007)
Koppio -0.67(2.2e-16) -0.54(2.2e-16) -0.63(2.2e-16) -0.40(2.2e-16) -0.632(2.2e-16)
Port Elliot -0.64(2.2e-16) -0.54(2.2e-16) -0.61(2.2e-16) -0.42(2.2e-16) -0.58(2.2e-16)
Peppermint -0.62(2.2e-16) -0.48(2.2e-16) -0.60(2.2e-16) -0.39(2.2e-16) -0.57(2.2e-16)
Grove
Grassland
Annuello -0.09(0.03) 0.07(0.11) -0.12(0.004) 0.32(1.4e-14) -0.11(0.01)
Warren 0.04(0.39) 0.22(1.7e-7) -0.03(0.54) 0.45(2.2e-16) -0.03(0.4)
Richmond 0.20(3.4e-16) 0.47(2.2e-16) -0.05(0.26) 0.66(2.2e-16) -0.12(0.005)
Newry 0.20(2.2e-16) 0.56(2.2e-16) -0.17(5.9e-5) 0.72(2.2e-16) -0.38(2.2e-16)
Alexandra 0.20(4.2e-6) 0.45(2.2e-16) -0.08(0.07) 0.67(2.2e-16) -0.22(3.8e-7)
Blinman -0.15(3.9e-4) -0.02(0.66) -0.18(2.4e-5) 0.38(2.2e-16) -0.19(8.8e-6)
Ningaloo -0.23(1.1e-7) 0.00(0.92) -0.35(2.2e-16) 0.22(1.8e-7) -0.43(2.2e-16)
Dowerin -0.52(2.2e-16) -0.37(2.2e-16) -0.51(2.2e-16) -0.10(0.01) -0.55(2.2e-16)
Desert
Wilcannia 0.00(0.96) 0.16(1.4e-4) -0.05(0.29) 0.52(2.2e-16) -0.05(0.28)
Boulia 0.18(2.9e-5) 0.33(4.6e-15) 0.03(0.50) 0.61(2.2e-16) -0.06(0.15)
Henbury 0.09(0.03) 0.25(2.9e-9) 0.01(0.77) 0.59(2.2e-16) -0.06(0.20)
Marree 0.07(0.11) 0.21(9.2e-7) 0.03(0.44) 0.49(2.2e-16) 0.00(0.98)
Wiluna 0.08(0.07) 0.23(3.9e-8) -0.01(0.89) 0.51(2.2e-16) -0.12(4.5e-3)
Tropical and Subtropical
Yamba 0.17(1.1e-4) 0.29(9.6e-12) -0.14(9.1e-4) 0.35(2.2e-16) -0.21(4.8e-7)
Fairymead 0.34(4.9e-16) 0.44(2.2e-16) 0.14(1.4e-3) 0.50(2.2e-16) 0.05(0.27)
Palmerville 0.05(0.24) 0.63(2.2e-16) -0.26(1.7e-9) 0.75(2.2e-10) -0.27(2.6e-10)
Katherine 0.13(1.8e-3) 0.55(2.2e-16) -0.39(2.2e-16) 0.70(2.2e-16) -0.57(2.2e-16)

Table 4.2: Correlation between monthly rainfall and input meteorological parameters

4.2 Implementation of models

In this section, we discuss the implementation of the CLR method as well as seven

other prediction methods used for comparison: the clusterwise regression method

based on EM algorithm (CR-EM), MLR, SVMreg and artificial neural networks with

and without the hidden layer.

The Clusterwise linear regression, based on nonsmooth nonconvex optimization,

was implemented in Fortran 95 and compiled using g95 compiler.

Statistical package R-Version 3.2.2 is used to implement the CR-EM, MLR, ANN,

and SVMreg models. R is a language and environment for statistical computing and

graphics including time series analysis, clustering, classification, linear and nonlinear

modeling and statistical tests (see: https://www.r-project.org/).

We used the R package FlexMix for CR-EM [39], nnet for ANN [88], kknn for

k-NN [77] and e1071 for SVMreg [54]. The package FlexMix implements a general

framework for fitting finite mixtures of regression models in the R statistical comput-

ing environment using the EM algorithm. The nnet is a package used to implement

feed-forward neural networks with a single hidden layer, and for multinomial log-

linear models. We implemented neural networks with and without hidden layer. The

package kknn is used to perform k-nearest neighbor classification and regression. In

implementing the k-NN method, the most important step is the selection of the num-

ber of neighbours. We evaluated different values ranging from 1 to 12 and select the
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model with minimum root mean squared error value. The package e1071 is a vital

package in R language, used to implement SVMreg with linear, polynomial, radial

basis function and sigmoid kernels. We fitted SVMreg with linear and RBF kernels.

All models were developed for each weather station using training data consisting

of 360 records and evaluated by using test data consisting of 180 records. Numerical

experiments were carried out on a PC with Processor Intel(R) Core(TM) i5-3437U

CPU 1.90 GHz.

4.3 Statistical evaluation of model performance

Prediction performance of all models was evaluated by comparing observed and pre-

dicted rainfall using four measures of forecast accuracy calculated from the test

datasets: the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE),

the Mean Absolute Scaled Error (MASE) and the Nash-Sutcliffe Efficiency (CE).

The RMSE, also called the root mean square deviation, is a measure of the dif-

ference between predicted values by a model and the observed values being modeled.

In calculating the RMSE, the first step is to calculate the individual squared errors.

Errors are the difference between the actual and predicted values. The next step is

to average the squared errors, which yields the mean square error (MSE). The third

and final step is to take the square root of the MSE.

The MAE, also referred to as the mean absolute deviation, is simply the average

of the absolute errors. It is easy to understand and compute. The RMSE and MAE

measures are widely used because of their theoretical relevance in statistical modeling.

Both RMSE and MAE are scaled dependent measures. The use of absolute values or

squared values prevents negative and positive errors from offsetting each other. It is

well-known that the MAE is less sensitive to outliers than the RMSE [43]. The small

values of the RMSE and the MAE indicates small deviations of the predictions from

actual observations.

The MASE was proposed by Hyndman and Koehler in 2006 [43]. The MASE

is a scaled error based on in-sample MAE from the naive forecast method. The

MASE < 1 value indicates predictions are better than the mean of the observed data

and MASE > 1 indicates predictions are worse than the mean of the observed data.

The MASE is not applicable in the case where all observations are equal. It is an

alternative to model performance measures based on percentage errors such as Mean

Absolute Percentage Error (MAPE).

The Nash-Sutcliffe Efficiency (CE) was proposed by Nash and Sutcliffe in 1970

[58]. It is a normalized statistic that determines the relative magnitude of the residual

variance and data variance. It is defined as one minus the sum of the absolute squared

differences between the predicted and observed values normalized by the variance of
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the observed values during the period under investigation. The CE can range from

−∞ to 1. An efficiency CE = 1 means a perfect prediction. An efficiency of 0

indicates that the model predictions are as accurate as the mean of the observed data

and an efficiency −∞ < CE < 0 occurs when the observed mean is a better predictor

than the model predictions.

Definitions of these measures follow. Assume that Y1, . . . , Ym, m ≥ 1 are observed

values for some parameter Y , and F1, . . . , Fm are their predicted values.

1. The RMSE is defined as

RMSE =

(
1

m

m∑
i=1

(Fi − Yi)2

)1/2

;

2. The MAE is:

MAE =
1

m

m∑
i=1

|Fi − Yi|;

3. The MASE is [43]:

MASE =
1

m

m∑
i=1

(
|Yi − Fi|

1
m−1

∑m
i=2 |Yi − Yi−1|

)

4. The CE is defined as [58]:

CE = 1−
[∑m

i=1(Yi − Fi)2∑m
i=1(Yi − Y )2

]
.

Y is the mean of observed values.

4.4 Summary of chapter

In this chapter, we provided detailed information of study data, study map, geographic

details and the correlation between rainfall and meteorological variables. Historical

daily and monthly rainfall data with five input meteorological variables over the period

of January 1970 to December 2014 from 24 geographically diverse weather stations in

Australia were taken from SILO. Climate zones and seasonal patterns were discussed

in detail.

We briefly discussed the implementation of models. All models were implemented

in the statistical package R-Version 3.2.2, except the CLR(Opt) model. The CLR(Opt)

was implemented in Fortran 95 and compiled using the g95 compiler. The performance

of the models were evaluated using the statistical measures RMSE, MAE, MASE and

CE.



Chapter 5

Monthly rainfall predictions

In this chapter, first we present the monthly rainfall prediction results of the CLR(Opt),

CR(EM), MLR, SVMreg(RBF), SVMreg(Linear), ANN(0), ANN(1) and K-NN mod-

els within each classification zone then we assess the CLR(Opt) model performance

comparing to other models. All models were developed using all combinations of input

variables. There is total of fifteen combinations. The combinations and their nota-

tions are given in Table 5.1. The models were trained using data from Jan 1970 to Dec

1999 and tested using data from Jan 2000 to Dec 2014 with each combination of input

variables in all 24 locations. In all cases, negative predicted values were adjusted to

zero rainfall before performance measures calculated. The best combination of input

variables for each model was determined using test data. The prediction performance

of models with each combination was evaluated by comparing observed and predicted

rainfall. The performance measure RMSE used as a primary measure to determine

the best and worst combination of input variables for each model at each location.

Then we provide a comparative assessment of models within each classification zone

in predicting monthly rainfall. We also compare the predictions zone-wise to assess

the influence of geographic regions on the performance of models.

The structure of the chapter is as follows. We present the monthly rainfall predic-

tion results for temperate classification zone in Section 5.1; for grassland in Section

5.2; for desert in Section 5.3; and for tropical and subtropical in Section 5.4. We also

provide the comparative assessment results of prediction models within each classifi-

cation zone at the end of each section. Section 5.5 concludes the chapter.

5.1 Monthly rainfall predictions in temperate zone

In this section, first we present the monthly rainfall prediction results for each model

in predicting monthly rainfall with best and worst combinations of input variables

in temperate classification zone. Then we summarize the performance of all models

65
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No. Combination No Combination No Combination

C1 TMax, TMin C6 TMax, TMin, VP C11 TMax, TMin, Evap, VP
C2 Evap C7 TMax, TMin, Rad C12 TMax, TMin, Evap, Rad
C3 VP C8 Evap, VP C13 TMax, TMin, VP, Rad
C4 Rad C9 Evap, Rad C14 Evap, VP, Rad
C5 TMax, TMin, Evap C10 VP, Rad C15 TMax, TMin, Evap, VP, Rad

Table 5.1: Combinations of input parameters

with best combination of input variables. Finally we compare the CLR(Opt) model

performance with other models using computational results and time series plots.

Table 5.2, summarizes the prediction performance of the CLR(Opt) model with

best and worst combinations of input variables in temperate classification zone. These

results show that the model provides best predictions with the combination of input

variables TMax, TMin and Rad in three out of seven locations (Mossvale, Port Elliot

and Peppermint Grove); with TMax, TMin, VP and Rad in two locations (Koppio and

Orbost); with TMax, TMin, Evap and Rad in the remaining two locations (Dookie

and Cape Otway). The CLR(Opt) model provides the worst predictions with input

variable VP in four locations (Koppio, Port Elliot, Orbost and Peppermint Grove);

with Rad in two locations (Dookie and Cape Otway) and with Evap in one location

(Mossvale).

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Rad 45.00 32.38 0.60 0.36
Koppio TMax, TMin, VP, Rad 22.40 16.86 0.67 0.54
Port Elliot TMax, TMin, Rad 19.37 14.66 0.67 0.53
Dookie TMax, TMin, Evap, Rad 25.91 18.08 0.62 0.38
Orbost TMax, TMin, VP, Rad 35.27 26.00 0.57 0.38
Cape Otway TMax, TMin, Evap, Rad 33.41 25.59 0.71 0.36
Peppermint Grove TMax, TMin, Rad 35.56 23.90 0.64 0.39

Performance measures for worst input combinations

Mossvale Evap 57.95 44.15 0.81 -0.06
Koppio VP 30.31 23.32 0.93 0.15
Port Elliot VP 24.08 18.85 0.86 0.27
Dookie Rad 33.25 25.19 0.87 -0.02
Orbost VP 45.33 34.36 0.75 -0.02
Cape Otway Rad 35.97 27.93 0.78 0.25
Peppermint Grove VP 42.28 29.63 0.79 0.14

Table 5.2: The CLR(Opt) model prediction performance with best and worst combi-
nation of input variables in temperate zone.

The performance measure RMSE for the CLR(Opt) model in predicting monthly

rainfall ranges from 19.37 to 45.00, MAE from 14.66 to 32.38, MASE from 0.57 to 0.71

and CE from 0.36 to 0.54. The performance measures RMSE and MAE indicate the
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model provides best predictions in Port Elliot; MASE in Orbost and CE in Koppio

while the performance measures RMSE and MAE indicate the model provides worst

predictions in Mossvale and MASE and CE indicate in Cape Otway (see Figure 5.1).

The graphical display of the model predictions and the observed rainfall is given in

Figure 5.2. The figure shows that the model predictions follow the series patterns at

all locations.

Table 5.3, summarizes the CR(EM) model performance with best and worst com-

binations of input variables in temperate classification zone. These results show that

the model provides best predictions with the combination of input variables TMax

and TMin at Koppio; with TMax, TMin, and Evap at Port Elliot; with TMax, TMin,

Evap and VP at Orbost; with TMax, TMin, Evap and Rad at Dookie and Cape

Otway; and with full set of input variables at Mossvale. The model produced worst

predictions with the input variable VP in all locations except Mossvale. In Mossvale

the model provides worst predictions with input variable Evap.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Evap, VP, Rad 46.14 33.37 0.62 0.33
Koppio TMax, TMin 22.99 16.95 0.68 0.51
Port Elliot TMax, TMin, Evap 19.86 15.05 0.69 0.51
Dookie TMax, TMin, Evap, Rad 25.99 17.55 0.61 0.38
Orbost TMax, TMin, Evap, VP 36.65 27.49 0.60 0.33
Cape Otway TMax, TMin, Evap, Rad 33.40 25.58 0.71 0.36
Peppermint Grove TMax, TMin, Evap, VP, Rad 36.49 24.59 0.66 0.36

Performance measures for worst input combinations

Mossvale Evap 58.67 44.15 0.81 0.00
Koppio VP 30.72 24.19 0.97 0.13
Port Elliot VP 24.74 19.25 0.88 0.23
Dookie VP 33.37 25.78 0.89 -0.03
Orbost VP 45.44 34.37 0.75 -0.02
Cape Otway VP 36.50 28.64 0.80 0.23
Peppermint Grove VP 42.61 30.28 0.81 0.13

Table 5.3: The CR(EM) model prediction performance with best and worst combina-
tion of input variables in temperate classification zone.

The performance measure RMSE for the CR(EM) model ranges from 19.86 to

46.14; MAE from 15.05 to 33.37; MASE from 0.60 to 0.71 and CE from 0.33 to

0.51. Three performance measures RMSE and MAE indicate the CR(EM) model

provides best predictions in Port Elliot; MASE indicates in Orbost; and CE in Koppio

while RMSE and CE indicate worst predictions in Mossvale; MASE indicates in Cape

Otway; and CE indicates at Mossvale (see Figure 5.1). Time series plot of the observed

rainfall and model predictions for each location in temperate zone given in Figure 5.3,

shows that the model predictions follow the series patterns.



68

Model RMSE MAE MASE NSE 
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Figure 5.1: The prediction performance of models in temperate zone.

Table 5.4, summarizes the prediction performance of the SVM(Linear) model with

best and worst combinations of input variables for locations in temperate classification

zone. These results show that the model provides best predictions at Mossvale and

Orbost with the combination of input variables TMax, TMin, Evap and Rad; at Port

Elliot and Cape Otway with TMax, TMin, Evap and Rad; at Dookie with TMax,
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Figure 5.2: Observed rainfall vs. CLR(Opt) model predictions in temperate zone.
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Figure 5.3: Observed rainfall vs. CR(EM) model predictions in temperate zone.
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TMin, VP and Rad; and at Koppio and Peppermint Grove with full set of input

variables. The model provides worst predictions with the input variable VP in all

locations of temperate zone except Mossvale. At Mossvale, the model provides worst

predictions with the input variable Evap.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Evap, VP, Rad 46.48 31.03 0.57 0.32
Koppio TMax, TMin, Evap, VP, Rad 23.01 17.08 0.68 0.51
Port Elliot TMax, TMin, Evap, VP, Rad 19.82 14.99 0.69 0.51
Dookie TMax, TMin, Evap, VP, Rad 26.57 18.37 0.63 0.35
Orbost TMax, TMin, Evap, VP, Rad 37.57 26.97 0.59 0.30
Cape Otway TMax, TMin, Evap, VP, Rad 33.58 25.33 0.70 0.35
Peppermint Grove TMax, TMin, Evap, VP, Rad 35.80 23.52 0.63 0.38

Performance measures for worst input combinations

Mossvale Evap 57.01 37.83 0.70 -0.02
Koppio VP 31.52 23.64 0.95 0.08
Port Elliot VP 24.86 18.60 0.85 0.22
Dookie VP 33.61 23.96 0.83 -0.04
Orbost VP 45.70 32.13 0.70 -0.03
Cape Otway VP 36.18 27.99 0.78 0.25
Peppermint Grove VP 43.16 28.92 0.77 0.10

Table 5.4: The SVM(Linear) model prediction performance with best and worst com-
bination of input variables in temperate zone.

The performance measure RMSE for the SVM(Linear) model ranges from 19.82 to

46.48, MAE from 14.99 to 33.37, MASE from 0.60 to 0.71 and CE from 0.33 to 0.51.

The performance measures RMSE, MAE and CE indicate that the model provides

best predictions at Port Elliot and MASE indicates at Mossvale while the performance

measures RMSE and MAE indicates worst predictions at Mossvale; MASE indicates

at Cape Otway and CE indicates at Orbost (Figure 5.1). The graphical illustration

of model predictions and actual observations given in Figure 5.4, shows that model

follows the series patterns at all locations.

Table 5.5 summarizes the SVM(RBF) model performance with best and worst

combinations of input variables for locations in temperate classification zone. Results

presented in this table show that the model predicted rainfall with higher accuracy at

Peppermint Grove with the combination of input variables TMax, TMin and VP; at

Koppio and Dookie with TMax, TMin and VP; at Port Elliot and Cape Otway with

TMax, TMin and Evap; at Mossvale with TMax, TMin, Evap and VP; and at Orbost

with full set of input variables. The model provides worst predictions at four out of

seven locations (Koppio, Port Elliot, Orbost and Peppermint Grove) with the input

variable VP; at Cape Otway with Rad; at Mossvale with Evap; and at the location

Dookie with the predictors Evap and Rad.
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Figure 5.4: Observed rainfall vs. SVM(Linear) model predictions in temperate zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Evap, VP 45.68 29.92 0.55 0.34
Koppio TMax, TMin, VP, Rad 22.89 16.93 0.68 0.51
Port Elliot TMax, TMin, Evap, Rad 18.71 14.25 0.65 0.56
Dookie TMax, TMin, VP, Rad 26.48 18.13 0.63 0.35
Orbost TMax, TMin, Evap, VP, Rad 36.71 26.83 0.59 0.33
Cape Otway TMax, TMin, Evap, Rad 31.27 23.81 0.66 0.44
Peppermint Grove TMax, TMin, VP 35.22 22.78 0.61 0.40

Performance measures for worst input combinations

Mossvale Evap 56.62 37.19 0.69 -0.01
Koppio VP 31.75 23.37 0.94 0.07
Port Elliot VP 24.30 18.90 0.87 0.26
Dookie Evap, Rad 33.14 23.83 0.82 -0.01
Orbost VP 45.66 32.12 0.70 -0.03
Cape Otway Rad 36.11 27.55 0.77 0.25
Peppermint Grove VP 43.11 28.85 0.77 0.11

Table 5.5: The SVM(RBF) model prediction performance with best and worst com-
bination of input variables in temperate zone.

In the temperate zone, the performance measure RMSE for the SVM(RBF) model

ranges from 18.71 to 45.68, MAE from 14.25 to 29.92, MASE from 0.55 to 0.68 and CE

from 0.33 to 0.56. The performance measures RMSE, MAE and CE indicates that the

model provides best predictions at Port Elliot and MASE indicates at Mossvale while

the performance measures RMSE, and MAE indicate worst predictions at Mossvale

and CE at Orbost (Figure 5.1). The graphical display of observed rainfall and model

predictions given in Figure 5.5 show that predictions follow the series patterns.

Table 5.6 summarizes the prediction performance of the MLR model with best

and worst combinations of input variables for locations in temperate classification

zone. These results show that the model provides best predictions at Port Elliot

with input variables TMax, TMin and Evap; at Koppio with TMax, TMin, Evap and

VP; at Dookie and Cape Otway with TMax, TMin, Evap and Rad; and at Mossvale,

Orbost and Peppermint Grove with full set of input variables. The model provides

worst predictions with the input variable VP in five out of seven locations (Koppio,

Port Elliot, Orbost, CapeOtway and Peppermint Grove); with input variable Rad at

Dookie; and with Evap at Mossvale.

The performance measure RMSE for the MLR model ranges from 19.60 to 46.51;

MAE from 14.96 to 34.72; MASE from 0.61 to 0.71; and CE from 0.32 to 0.52.

The performance measures RMSE, MAE and CE indicates that the MLR model

provides best predictions at Port Elliot and worst predictions at Mossvale while MASE

indicates best at Dookie and worst at Cape Otway (Figure 5.1). The graphical display

of observed rainfall and the MLR Linear model predictions is given in Figure 5.6.
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Figure 5.5: Observed rainfall vs. SVM(RBF) model predictions in temperate zone.
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Figure 5.6: Observed rainfall vs. MLR model predictions in temperate zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Evap, VP, Rad 46.51 34.72 0.64 0.32
Koppio TMax, TMin, Evap, VP 22.75 17.37 0.69 0.52
Port Elliot TMax, TMin, Evap 19.60 14.96 0.68 0.52
Dookie TMax, TMin, Evap, Rad 25.91 18.08 0.62 0.38
Orbost TMax, TMin, Evap, VP, Rad 36.68 28.03 0.61 0.33
Cape Otway TMax, TMin, Evap, Rad 33.41 25.59 0.71 0.36
Peppermint Grove TMax, TMin, Evap, VP, Rad 36.41 25.20 0.68 0.36

Performance measures for worst input combinations

Mossvale Evap 58.57 44.22 0.82 -0.08
Koppio VP 30.89 24.32 0.97 0.12
Port Elliot VP 24.70 19.24 0.88 0.23
Dookie Rad 33.52 25.35 0.87 -0.03
Orbost VP 45.50 34.40 0.75 -0.03
Cape Otway VP 36.46 28.58 0.79 0.23
Peppermint Grove VP 42.70 30.37 0.81 0.12

Table 5.6: The MLR model prediction performance with best and worst combination
of input variables in temperate zone.

Table 5.7 summarizes the prediction performance of the ANN(0) model with best

and worst combinations of input variables for locations in temperate classification

zone. Results presented in this table show that the model predictions are best at

Port Elliot and Peppermint Grove with input variables TMax, TMin and Evap; at

Koppio and Orbost with TMax, TMin, Evap and VP; at Dookie and Orbost with

TMax, TMin, Evap, Rad; and at Mossvale with full set of five input variables. The

model produced worst predictions in all locations of the temperate zone with the input

variable VP except Dookie and Mossvale. At Dookie, the model provides the worst

predictions with predictors Evap and Rad; and at Mossvale with Evap and VP.

The performance measure RMSE for the ANN(0) model ranges from 19.60 to 46.56,

MAE from 14.96 to 32.82, MASE from 0.61 to 0.69 and CE from 0.32 to 0.52. The

performance measures RMSE, MAE and CE indicates that the model provides best

predictions in Port Elliot and worst predictions in Mossvale while MASE indicates

best predictions at Mossvale and worst at Cape Otway (see Figure 5.1). The time

series plot for the observed rainfall and the model predictions are given in Figure 5.7.

Table 5.8, summarizes the ANN(1) model performance in predicting rainfall with

best and worst combinations of input variables. Results presented in this table show

that the model predicted rainfall with the lowest error with input variables TMax and

TMin in three locations (Koppio, Cape Otway and Peppermint Grove); with Rad at

Orbost; with TMax, TMin, Evap and VP at Port Elliot; with TMax, TMin, Evap and

Rad at Dookie; and with full set of variables at Mossvale . The model provides worst

predictions with the input variable Evap in three out of seven locations (Koppio, Port
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Figure 5.7: Observed rainfall vs. ANN(0) model predictions in temperate zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Evap, VP, Rad 46.56 32.82 0.61 0.32
Koppio TMax, TMin, Evap, VP 22.75 17.37 0.69 0.52
Port Elliot TMax, TMin, Evap 19.60 14.96 0.68 0.52
Dookie TMax, TMin, Evap, Rad 26.30 18.64 0.64 0.36
Orbost TMax, TMin, Evap, VP 36.70 28.05 0.62 0.33
Cape Otway TMax, TMin, Evap, Rad 32.10 24.80 0.69 0.41
Peppermint Grove TMax, TMin, Evap 35.55 24.25 0.65 0.39

Performance measures for worst input combinations

Mossvale Evap, VP 60.00 44.65 0.82 -0.13
Koppio VP 30.89 24.32 0.97 0.12
Port Elliot VP 24.70 19.24 0.88 0.23
Dookie Evap, Rad 33.35 25.24 0.87 -0.02
Orbost VP 45.50 34.40 0.75 -0.03
Cape Otway VP 36.46 28.58 0.79 0.23
Peppermint Grove VP 42.70 30.37 0.81 0.12

Table 5.7: The ANN(0) model prediction performance with best and worst combina-
tions of input variables in temperate zone.

Elliot and Peppermint Grove); with VP at Cape Otway; with Rad at Mossvale; and

with Evap and Rad at Dookie and Orbost.

The performance measure RMSE for the ANN(1) model ranges from 19.62 to

44.69, MAE from 15.01 to 32.59, MASE from 0.58 to 0.72 and CE from 0.15 to 0.54.

The performance measures RMSE and MAE indicates that the model provides best

predictions at Port Elliot; CE indicates at Mossvale; and CE at Koppio while RMSE

indicates worst predictions at Mossvale and MAE, MASE and CE indicates at Orbost

(see Figure 5.1). The time series plot of the observed rainfall and the ANN(1) model

predictions is given in Figure 5.8 shows that model predictions follow the series pattern

well except in the location Orbost. At Orbost, the model just provides the average

rainfall value.

Table 5.9 summarizes the prediction performance of the k-NN model with the best

and worst combinations of input variables for locations in the temperate zone. The

k-NN model provides the best predictions with input variables TMax and TMin at

Dookie; with TMax, TMin and VP at Orbost; with TMax, TMin, Evap and Rad at

Cape Otway; and with TMax, TMin, VP and Rad in the remaining four locations

(Mossvale, Koppio, Port Elliot and Peppermint Grove). The model provides worst

predictions with the input variable VP in four out of seven locations (Koppio, Port

Elliot, Orbost and Peppermint Grove) and with Rad in three locations (Mossvale,

Dookie and Cape Otway).

In the temperate zone, the performance measure RMSE for the k-NN model ranges

from 19.08 to 47.48; MAE from 14.45 to 33.47; MASE from 0.62 to 0.69 and CE from
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Figure 5.8: Observed rainfall vs. ANN(1) model predictions in temperate zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Evap, VP, Rad 44.69 31.52 0.58 0.37
Koppio TMax, TMin 22.24 16.61 0.66 0.54
Port Elliot TMax, TMin, Evap, VP 19.62 15.01 0.69 0.52
Dookie TMax, TMin, Evap, Rad 25.34 17.36 0.60 0.41
Orbost Rad 41.54 32.59 0.72 0.15
Cape Otway TMax, TMin 33.32 25.72 0.72 0.36
Peppermint Grove TMax, TMin 36.62 25.62 0.69 0.35

Performance measures for worst input combinations

Mossvale Rad 58.41 43.79 0.81 -0.07
Koppio Evap 32.87 26.37 1.06 0.00
Port Elliot Evap 28.23 22.19 1.02 0.00
Dookie TMax, TMin, Evap 33.63 25.98 0.90 -0.04
Orbost Evap, Rad 46.89 34.90 0.77 -0.09
Cape Otway Evap, Rad 41.87 33.43 0.93 -0.01
Peppermint Grove Evap, Rad 45.67 33.90 0.91 0.00

Table 5.8: The ANN(1) model prediction performance with best and worst combina-
tions of input variables in temperate zone.

0.29 to 0.54. The performance measures RMSE, MAE and CE indicate that the

k-NN model provides best predictions at Port Elliot and MASE at Mossvale while

the performance measures RMSE, and MAE indicate worst predictions at Mossvale;

MASE at Cape Otway; and CE at Dookie (see Figure 5.1). The graphical display of

observed rainfall and the k-NN model predictions is given in Figure 5.9.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, VP, Rad 47.48 33.47 0.62 0.29
Koppio TMax, TMin, VP, Rad 22.39 17.05 0.68 0.54
Port Elliot TMax, TMin, VP, Rad 19.08 14.45 0.66 0.54
Dookie TMax, TMin 28.32 19.63 0.68 0.26
Orbost TMax, TMin, VP 37.53 29.56 0.65 0.30
Cape Otway TMax, TMin, Evap, Rad 32.84 24.95 0.69 0.38
Peppermint Grove TMax, TMin, VP, Rad 37.07 24.19 0.65 0.34

Performance measures for worst input combinations

Mossvale Rad 64.10 46.42 0.86 -0.29
Koppio VP 32.44 25.71 1.03 0.03
Port Elliot VP 25.23 19.26 0.88 0.20
Dookie Rad 42.77 30.75 1.06 -0.68
Orbost VP 53.59 39.97 0.88 -0.42
Cape Otway Rad 41.89 32.44 0.90 -0.01
Peppermint Grove VP 43.81 29.59 0.79 0.08

Table 5.9: The k-NN model prediction performance with best and worst combinations
of input variables in temperate zone.

Table 5.10, summarizes the performance of all eight models in predicting monthly
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Figure 5.9: Observed rainfall vs. the K-NN model predictions in temperate zone.
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rainfall with best combinations of input variables in temperate classification zone.

Best results among all models are highlighted in bold. Results presented in this table,

show that at least one performance measure indicate that CLR(Opt) is best in two

locations compare to all other models; the SVM(RBF) in four locations; ANN(1) in

two locations and k-NN model in one location. The CR(EM), SVM(Linear), ANN(0)

and MLR models are not best in any location.

Stations Measures CLR CR SVM SVM ANN ANN MLR KNN
(EM) (Linear) (RBF) (0) (1)

Mossvale RMSE 45.00 46.14 46.48 45.68 46.56 44.69 46.51 47.48
MAE 32.38 33.37 31.03 29.92 32.82 31.52 34.72 33.47
MASE 0.60 0.62 0.57 0.55 0.61 0.58 0.64 0.62
CE 0.36 0.33 0.32 0.34 0.32 0.37 0.32 0.29

Koppio RMSE 22.40 22.99 23.01 22.89 22.75 22.24 22.75 22.39
MAE 16.86 16.95 17.08 16.93 17.37 16.61 17.37 17.05
MASE 0.67 0.68 0.68 0.68 0.69 0.66 0.69 0.68
CE 0.54 0.51 0.51 0.51 0.52 0.54 0.52 0.54

Port RMSE 19.37 19.86 19.82 18.71 19.60 19.62 19.60 19.08
Elliot MAE 14.66 15.05 14.99 14.25 14.96 15.01 14.96 14.45

MASE 0.67 0.69 0.69 0.65 0.68 0.69 0.68 0.66
CE 0.53 0.51 0.51 0.56 0.52 0.52 0.52 0.54

Dookie RMSE 25.91 25.99 26.57 26.48 26.30 25.34 25.91 28.32
MAE 18.08 17.55 18.37 18.13 18.64 17.36 18.08 19.63
MASE 0.62 0.61 0.63 0.63 0.64 0.60 0.62 0.68
CE 0.38 0.38 0.35 0.35 0.36 0.41 0.38 0.26

Orbost RMSE 35.27 36.65 37.57 36.71 36.70 41.54 36.68 37.53
MAE 26.00 27.49 26.97 26.83 28.05 32.59 28.03 29.56
MASE 0.57 0.60 0.59 0.59 0.62 0.72 0.61 0.65
CE 0.38 0.33 0.30 0.33 0.33 0.15 0.33 0.30

Cape RMSE 33.41 33.40 33.58 31.27 32.10 33.32 33.41 32.84
Otway MAE 25.59 25.58 25.33 23.81 24.80 25.72 25.59 24.95

MASE 0.71 0.71 0.70 0.66 0.69 0.72 0.71 0.69
CE 0.36 0.36 0.35 0.44 0.41 0.36 0.36 0.38

Peppermint RMSE 35.56 36.49 35.80 35.22 35.55 36.62 36.41 37.07
Grove MAE 23.90 24.59 23.52 22.78 24.25 25.62 25.20 24.19

MASE 0.64 0.66 0.63 0.61 0.65 0.69 0.68 0.65
CE 0.39 0.36 0.38 0.40 0.39 0.35 0.36 0.34

Table 5.10: The performance of all eight models for monthly rainfall predictions in
temperate classification zone.

Results presented in Table 5.10 clearly demonstrate that the CLR(Opt) model

is superior to the CR(EM), SVM(Linear), ANN(0) and MLR models for monthly

rainfall predictions in temperate classification zone. In comparison with the ANN(1)

model, the CLR(Opt) model is best in three locations (Port Elliot, Orbost, Pepper-

mint Grove), ANN(1) model in two locations (Moss Vale and Dookie) and both models

performed equally in two locations (Koppio, Cape Otway). According to the RMSE
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measure, the ANN(1) model performance in Moss Vale is only 0.69% higher and in

Dookie 2.2% than CLR(Opt) model.

Similarly, in comparison with the SVM(RBF) model, the CLR(Opt) model is best

in three out of seven locations (Moss Vale, Dookie and Orbost); SVM(RBF) is best

in three locations (Port Elliot, Cape Otway and Peppermint Grove) and both models

have similar results in one location (Koppio). According to the RMSE measure, the

SVM(RBF) model performance in Port Elliot is 3.41%, in Cape Otway 6.41% and in

Peppermint Grove 0.96% higher than CLR(Opt) model.

Although the ANN(1) model outperformed in two locations, but the overall per-

formance is unreliable. In most locations, the ANN(1) model just predicted a single

value for all observations in the test data with most combinations of input variables.

For example, in the location Moss Vale, the model predicted 79.45 with five combina-

tions (C2, C5, C8, C10, C12) of input variables. The detail of combinations (c1-c15)

is given in Table 5.1. Similarly, in Koppio, the model predicted 43.16 for all 180

observations with ten combinations (C2, C3, C6, C7, C9, C10, C11, C12, 13, 15) and

in Dookie, 49.86 with eight combinations (C3, C5, C6, C7, C8, C9, C11, C14).

A visual comparison of model predictions with the actual observations in temperate

classification zone, given in Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9, show that

all models follow the series patterns at all locations except Orbost. In Orbost, the

ANN(1) model failed to predict rainfall values (see Figure 5.8).

In summary, based on the performance measures, the CLR(Opt) and SVM(RBF)

model are the most suitable models in finding the pattern and trends of the observa-

tions compared to other models at all sites in temperate classification zone.
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5.2 Monthly rainfall predictions in grassland zone

In this section, first we present the monthly rainfall prediction results for each model

in predicting monthly rainfall with best and worst combinations of input variables

in grassland classification zone. Then we summarize the performance of all models

with best combination of input variables. Finally we compare the CLR(Opt) model

performance with other models using computational results and time series plots.

Table 5.11 summarizes the CLR(Opt) model prediction performance with best

and worst combinations of input variables in grassland classification zone. Results

presented show that the model provides best predictions at Alexandria with input

variables TMax and TMin; at Warren with TMax, TMin and VP; at Newry, Rich-

mond, Annuello, Ningaloo and Dowerine with TMax, TMin, VP and Rad; and at

Blinman with a full set of input variables. The model provides the worst predictions

with input variable Evap in four locations (Warren, Newry, Alexandria and Annuello);

with VP in two locations (Ningaloo and Dowerine); and with Evap and Rad in two

locations (Richmond and Blinman).

In grassland zone, the performance measure RMSE for the CLR(Opt) model ranges

from 19.43 to 70.15, MAE from 12.80 to 37.91, MASE from 0.48 to 0.68 and CE from

0.24 to 0.68. The performance measures RMSE and MAE indicate the CLR(Opt)

model provides best predictions at Dowerine and worst at Newry; the performance

measure MASE indicates best at Alexandria and worst at Annuello; and CE indicates

best predictions at Richmond and worst at Annuello (Figure 5.10). Graphical display

of observed rainfall and the CLR(Opt) model predictions given in Figure 5.11 show

that model predictions follow the series patterns and tried well to predict the extreme

values at Alexandria and Richmond.

Table 5.3, summarizes the CR(EM) model performance in predicting monthly

rainfall with best and worst combinations of input variables in grassland classifica-

tion zone. These results show that the model provides best predictions with input

variables TMax, TMin, Evap and VP at Alexandria and Ningaloo; at Warren, with

input variables TMax, TMin, VP and Rad at Newry and Blinman; and with full set of

five variables at Richmond, Annuello and Dowerine. The model produced worst pre-

dictions in five locations (Newry, Alexandria, Blinman, Annuello and Ningaloo) with

input variable Evap; at Richmond with Rad; at Dowerine with VP; and at Warren

with Evap and Rad.

The performance measure RMSE for the CR EM model ranges from 20.25 to

95.77; MAE from 12.98 to 47.50; MASE from 0.56 to 0.69; and CE from 0.23 to

0.51. The performance measures RMSE, MAE and MASE indicates that the CR(EM)

model predictions have lowest prediction error at Dowerine and highest at Newry

while CE indicates lowest at Annuello and highest at Richmond (see Figure 5.10).
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Figure 5.10: The prediction performance of models in grassland zone.

The graphical display of observed rainfall and the model predictions for fifteen years

for all eight locations in the grassland classification zone are given in Figure 5.12.
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Figure 5.11: Observed rainfall vs. the CLR(Opt) model predictions in grassland zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, VP 26.80 20.10 0.58 0.56
Newry TMax, TMin, VP, Rad 70.15 37.91 0.55 0.66
Alexandria TMax, TMin 43.44 22.02 0.48 0.66
Richmond TMax, TMin, VP, Rad 35.73 23.10 0.54 0.68
Blinman TMax, TMin, Evap, VP, Rad 21.14 15.40 0.59 0.37
Annuello TMax, TMin, VP, Rad 23.42 14.28 0.68 0.24
Ningaloo TMax, TMin, VP, Rad 28.32 14.06 0.56 0.47
Dowerine TMax, TMin, VP, Rad 19.43 12.80 0.55 0.44

Performance measures for worst input combinations

Warren Evap 39.54 29.38 0.85 0.04
Newry Evap 118.82 85.24 1.24 0.03
Alexandria Evap 74.64 47.79 1.04 0.00
Richmond Evap, Rad 62.52 47.49 1.11 0.02
Blinman Evap, Rad 26.61 21.21 0.81 0.01
Annuello Evap 27.28 17.93 0.86 -0.03
Ningaloo VP 37.36 23.20 0.93 0.08
Dowerine VP 25.16 19.02 0.82 0.06

Table 5.11: The CLR(Opt) model performance for monthly rainfall predictions with
best and worst combination of input variables in grassland zone.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, VP, Rad 29.53 20.11 0.58 0.46
Newry TMax, TMin, VP, Rad 95.77 47.50 0.69 0.37
Alexandria TMax, TMin, Evap, VP 59.25 26.67 0.58 0.37
Richmond TMax, TMin, Evap, VP, Rad 44.21 26.25 0.61 0.51
Blinman TMax, TMin, VP, Rad 21.14 14.75 0.56 0.37
Annuello TMax, TMin, Evap, VP, Rad 23.51 13.35 0.64 0.23
Ningaloo TMax, TMin, Evap, VP 32.62 15.12 0.60 0.30
Dowerine TMax, TMin, Evap, VP, Rad 20.25 12.98 0.56 0.39

Performance measures for worst input combinations

Warren Evap, Rad 40.73 30.58 0.89 -0.02
Newry Evap 119.05 86.41 1.26 0.03
Alexandria Evap 74.35 49.28 1.08 0.01
Richmond Rad 63.43 47.70 1.11 -0.01
Blinman Evap 26.36 20.94 0.80 0.03
Annuello Evap 27.00 17.88 0.86 -0.01
Ningaloo Evap 38.08 23.32 0.93 0.05
Dowerine VP 25.98 19.64 0.85 0.00

Table 5.12: The CR(EM) model prediction performance with best and worst combi-
nations of input variables in grassland zone.

Table 5.13 summarizes the prediction performance of the SVM(Linear) model

with best and worst combinations of input variables in grassland zone. These results

show that the model provides best predictions at Newry, Alexandria, Ningaloo and
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Dowerine with input variables TMax, TMin, Evap and VP; at Warren and Blinman

with TMax, TMin, VP and Rad; and at Richmond and Annuello with a full set of

five input variables. The model provides worst predictions with input variable Evap

at Newry and Annuello; with VP at Ningaloo and Dowerine; with Rad at Alexandria

and Richmond; and with Evap and Rad at warren and Blinman.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, VP, Rad 28.57 19.77 0.57 0.50
Newry TMax, TMin, Evap, VP 84.98 43.20 0.63 0.50
Alexandria TMax, TMin, Evap, VP 55.62 24.52 0.54 0.45
Richmond TMax, TMin, Evap, VP, Rad 41.88 25.30 0.59 0.56
Blinman TMax, TMin, VP, Rad 21.26 14.52 0.56 0.37
Annuello TMax, TMin, Evap, VP, Rad 24.16 13.94 0.67 0.19
Ningaloo TMax, TMin, Evap, VP 32.11 14.09 0.56 0.32
Dowerine TMax, TMin, Evap, VP 21.23 13.18 0.57 0.33

Performance measures for worst input combinations

Warren Evap, Rad 41.53 27.75 0.80 -0.06
Newry Evap 138.04 78.38 1.14 -0.31
Alexandria Rad 82.47 42.03 0.92 -0.22
Richmond Rad 68.57 39.05 0.91 -0.18
Blinman Evap, Rad 27.01 19.69 0.75 -0.02
Annuello Evap 28.55 17.44 0.84 -0.13
Ningaloo VP 40.58 18.91 0.76 -0.08
Dowerine VP 28.03 19.48 0.84 -0.17

Table 5.13: The SVM(Linear) model prediction performance with best and worst
combinations of input variables in grassland zone.

The performance measure RMSE for the SVM(Linear) model ranges from 21.23

to 84.98; MAE from 13.18 to 43.20; MASE from 0.54 to 0.67; and CE from 0.19 to

0.56. The performance measures RMSE and MAE indicates that the SVM(Linear)

model provides best predictions at Dowerine and worst at Newry; MASE indicates

best at Alexandria and worst at Annuello, and CE indicates best at Richmond and

worst at Annuello (Figure 5.10). The graphical illustration of model predictions with

the actual observations presented in Figure 5.13, shows that model follows the series

patterns at all locations.

Table 5.14 summarizes the prediction performance of the SVM(RBF) model with

best and worst combinations of input variables in grassland classification zone. The

results presented in this table show that the model provides best predictions with

input variables TMax, TMin and VP at Newry and Ningaloo; with TMax, TMin, VP

and Rad at Warren, Richmond, Annuello and Dowerine; and with a full set of input

variables in the remaining locations Alexandria and Blinman. The model provides

worst predictions with input variable Evap at Newry, Alexandria, Richmond, Annuello

and Ningaloo; with VP at Blinman and Dowerine; and with Rad at Warren.
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Figure 5.12: Observed rainfall vs. the CR(EM) model predictions in grassland zone.
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Figure 5.13: Observed rainfall vs. the SVM(Linear) model predictions in grassland
zone.
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The performance measure RMSE for the SVM(RBF) model ranges from 20.66 to

84.98, MAE from 12.79 to 36.84, MASE from 0.50 to 0.67 and CE from 0.20 to 0.69.

The performance measure RMSE indicates that the model has lowest prediction error

at Dowerine; MAE indicates at Ningaloo; MASE indicates at Alexandria, and CE

indicates at Richmond. The performance measures RMSE and MAE indicates the

model provides worst predictions at the location Newry and MASE and CE indicates

at the location Annuello (see Figure 5.10). The Graphical display of observed rainfall

and the SVM(Linear) model predictions given in Figure 5.14, show that the model

predictions follow the series patterns and at location Richmond the model successfully

predicted the extreme values.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, VP, Rad 25.13 18.05 0.52 0.61
Newry TMax, TMin, VP 68.68 36.84 0.54 0.68
Alexandria TMax, TMin, Evap, VP, Rad 43.09 19.82 0.43 0.67
Richmond TMax, TMin, VP, Rad 34.94 21.47 0.50 0.69
Blinman TMax, TMin, Evap, VP, Rad 21.59 14.73 0.56 0.35
Annuello TMax, TMin, VP, Rad 24.05 13.93 0.67 0.20
Ningaloo TMax, TMin, VP 27.43 12.79 0.51 0.51
Dowerine TMax, TMin, VP, Rad 20.66 12.87 0.55 0.37

Performance measures for worst input combinations

Warren Rad 40.39 26.53 0.77 0.00
Newry Evap 125.86 79.05 1.15 -0.09
Alexandria Evap 81.71 41.65 0.91 -0.20
Richmond Evap 66.57 39.90 0.93 -0.11
Blinman VP 27.80 19.00 0.73 -0.08
Annuello Evap 28.22 17.21 0.82 -0.11
Ningaloo Evap 37.69 16.96 0.68 0.07
Dowerine VP 25.87 18.66 0.80 0.01

Table 5.14: The SVM(RBF) model prediction performance with best and worst com-
binations of input variables in grassland zone.

Table 5.15 summarizes the prediction performance of the MLR model with best

and worst combinations of input variables in grassland zone. The results show that

the model provides best predictions with combination of input variables TMax, TMin,

Evap and VP at Ningaloo and Dowerine; with TMax, TMin, VP and Rad at War-

ren and Blinman; with TMax, TMin and VP at Newry; and with full set of input

variables at the remaining three locations Alexandria, Richmond and Annuello. The

MLR model provides worst predictions with input variable Evap in four locations

(Newry, Alexandria, Richmond and Annuello); with VP in two locations (Ningaloo

and Dowerine); and with Evap and Rad in the remaining two locations (Warren and

Blinman).

The performance measure RMSE for the MLR model ranges from 20.07 to 75.10,
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Figure 5.14: Observed rainfall vs. the SVM(RBF) model predictions in grassland
zone.
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MAE from 12.88 to 40.31, MASE from 0.51 to 0.66 and CE from 0.23 to 0.61. The

performance measures RMSE and MAE indicates that the MLR model has best pre-

dictions at Dowerine; MASE indicates at Alexandria; CE indicates at Richmond,

Alexandria and Newry. Similarly, the performance measures RMSE, and MAE indi-

cates the model provides worst predictions at Newry and MASE and CE indicates at

Annuello (see Figure 5.10). The time series plot of observed rainfall and the MLR

model predictions given in Figure 5.15, show that the model predictions follow the

series patterns but unable to predict extreme values.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, VP, Rad 27.59 19.85 0.58 0.53
Newry TMax, TMin, VP 75.10 40.31 0.59 0.61
Alexandria TMax, TMin, Evap, VP, Rad 46.38 23.21 0.51 0.61
Richmond TMax, TMin, Evap, VP, Rad 39.21 26.12 0.61 0.61
Blinman TMax, TMin, VP, Rad 21.08 15.02 0.58 0.38
Annuello TMax, TMin, Evap, VP, Rad 23.46 13.72 0.66 0.23
Ningaloo TMax, TMin, Evap, VP 29.02 14.54 0.58 0.45
Dowerine TMax, TMin, Evap, VP 20.07 12.88 0.55 0.40

Performance measures for worst input combinations

Warren Evap, Rad 40.72 30.51 0.88 -0.02
Newry Evap 119.45 85.92 1.25 0.02
Alexandria Evap 74.64 47.79 1.04 0.00
Richmond Evap 62.97 45.62 1.06 0.00
Blinman Evap, Rad 26.61 21.21 0.81 0.01
Annuello Evap 27.28 17.92 0.86 -0.03
Ningaloo VP 37.64 23.62 0.94 0.07
Dowerine VP 26.31 19.39 0.84 -0.03

Table 5.15: The MLR model prediction performance with best and worst combinations
of input variables in grassland zone.

Table 5.16 summarizes the prediction performance of the ANN(0) model with

best and worst combinations of input variables for location in grassland zone. The

results presented show that the model performance was best with input variables

TMax and TMin at Richmond; with TMax, TMin, Evap and VP at Dowerine; with

TMax, TMin, VP and Rad at Warren, Alexandria, Blinman and Ningaloo; and with

a full set of input variables at Newry and Annuello. The ANN(0) model provides

the worst predictions at four locations (Newry, Alexandria, Richmond and Annuello)

with input variable Evap; at two locations (Ningaloo and Dowerine) with VP; and at

the remaining two locations (Warren and Blinman) with Rad.

The performance measure RMSE for the ANN(0) model ranges from 20.02 to

75.09, MAE from 12.91 to 40.39, MASE from 0.46 to 0.64 and CE from 0.25 to 0.70.

The performance measures RMSE and MAE indicates that the model has lowest

prediction error at the location Dowerine and highest at Newry while performance



94

 

0

100

200

300

R
ai

n
fa

ll 
(m

m
) 

Warren 

0

200

400

600

800

R
ai

n
fa

ll 
(m

m
) 

Newry 

0

200

400

600

R
ai

n
fa

ll 
(m

m
) 

Alexandria 

0

100

200

300

400

R
ai

n
fa

ll 
(m

m
) 

Richmond 

0

50

100

150

R
ai

n
fa

ll 
(m

m
) 

Blinma
n 

0

100

200

300

R
ai

n
fa

ll 
(m

m
) 

Annuello 

0

100

200

300

R
ai

n
fa

ll 
(m

m
) 

Ningaloo 

0

50

100

150

200

Ja
n

-0
0

Ju
l-

0
0

Ja
n

-0
1

Ju
l-

0
1

Ja
n

-0
2

Ju
l-

0
2

Ja
n

-0
3

Ju
l-

0
3

Ja
n

-0
4

Ju
l-

0
4

Ja
n

-0
5

Ju
l-

0
5

Ja
n

-0
6

Ju
l-

0
6

Ja
n

-0
7

Ju
l-

0
7

Ja
n

-0
8

Ju
l-

0
8

Ja
n

-0
9

Ju
l-

0
9

Ja
n

-1
0

Ju
l-

1
0

Ja
n

-1
1

Ju
l-

1
1

Ja
n

-1
2

Ju
l-

1
2

Ja
n

-1
3

Ju
l-

1
3

Ja
n

-1
4

Ju
l-

1
4

R
ai

n
fa

ll 
(m

m
) 

Dowerine 

Figure 5.15: Observed rainfall vs. the MLR model predictions in grassland zone.
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measures MASE and CE indicates lowest at Alexandria and highest at Annuello (see

Figure 5.10). The graphical display of observed rainfall and the model predictions

given in Figure 5.16, show that model predictions follow the series patterns.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, VP, Rad 25.13 18.58 0.54 0.61
Newry TMax, TMin, Evap, VP, Rad 75.09 40.39 0.59 0.61
Alexandria TMax, TMin, VP, Rad 40.97 20.84 0.46 0.70
Richmond TMax, TMin 35.81 25.66 0.60 0.68
Blinman TMax, TMin, VP, Rad 21.08 15.02 0.58 0.38
Annuello TMax, TMin, Evap, VP, Rad 23.27 13.46 0.64 0.25
Ningaloo TMax, TMin, VP, Rad 25.70 13.53 0.54 0.57
Dowerine TMax, TMin, Evap, VP 20.02 12.91 0.56 0.40

Performance measures for worst input combinations

Warren Rad 40.41 30.16 0.87 0.00
Newry Evap 119.45 85.92 1.25 0.02
Alexandria Evap 74.64 47.79 1.04 0.00
Richmond Evap 62.97 45.62 1.06 0.00
Blinman Rad 27.79 19.60 0.75 -0.08
Annuello Evap 27.28 17.92 0.86 -0.03
Ningaloo VP 37.88 23.70 0.95 0.06
Dowerine VP 26.31 19.39 0.84 -0.03

Table 5.16: The ANN(0) model prediction performance with best and worst combi-
nations of input variables in grassland zone.

Table 5.17 summarizes the prediction performance of the ANN(1) model with best

and worst combinations of input variables using test data sets for all eight locations

in grassland zone. The results presented in this table show that the model with input

variables TMax and TMin provides best predictions at the location Richmond; with

TMax, TMin and Rad at two locations (Newry and Alexandria); with Tmax, TMin

and VP at two locations (Blinman and Ningaloo); and with input variables TMax,

TMin, VP and Rad at three locations (Warren, Annuello and Dowerine).

The performance measure RMSE for the ANN 1 model ranges from 20.67 to

69.18, MAE from 13.32 to 36.10, MASE from 0.44 to 0.75 and CE from 0.20 to 0.71.

The performance measures RMSE and MAE indicates that the ANN(1) model have

lowest prediction error at the location Dowerine, and MASE and CE indicate best

at Alexandria while RMSE and MAE indicate worst predictions at Newry; MASE at

Ningaloo, and CE at Blinman and Ningaloo (see Figure 5.10). The graphical display

of observed rainfall and the ANN(1) model predictions for all eight locations in the

grassland classification zone is given in Figure 5.17. The figure shows that the model

predictions follow the series pattern and tried well to predict the extreme values.

Table 5.18 summarizes the prediction performance of the k-NN model with the

best and worst combinations of input variables for locations in grassland zone. The
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Figure 5.16: Observed rainfall vs. the ANN(0) model predictions in grassland zone.
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Figure 5.17: Observed rainfall vs. the ANN(1) model predictions in grassland zone.



98

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, VP, Rad 24.88 18.56 0.54 0.62
Newry TMax, TMin, Rad 69.18 36.10 0.53 0.67
Alexandria TMax, TMin, Rad 40.53 20.28 0.44 0.71
Richmond TMax, TMin 34.50 24.91 0.58 0.70
Blinman TMax, TMin, VP 23.90 17.56 0.67 0.20
Annuello TMax, TMin, VP, Rad 23.10 13.32 0.64 0.26
Ningaloo TMax, TMin, VP 34.55 18.67 0.75 0.22
Dowerine TMax, TMin, VP, Rad 20.67 13.40 0.58 0.37

Performance measures for worst input combinations

Warren Evap 40.40 30.27 0.88 0.00
Newry Evap 121.72 85.14 1.24 -0.02
Alexandria Evap 74.97 47.39 1.04 -0.01
Richmond Rad 103.56 51.02 1.19 -1.70
Blinman TMax, TMin, Evap, Rad 27.89 20.73 0.79 -0.09
Annuello TMax, TMin, Evap 31.37 17.59 0.84 -0.37
Ningaloo TMax, TMin, Evap 39.09 24.97 1.00 0.00
Dowerine Rad 25.99 19.83 0.85 0.00

Table 5.17: The ANN(1) model prediction performance with best and worst combi-
nations of input variables in grassland zone.

results presented in this table show that the model with input variables TMax and

TMin provides best predictions at Newry and Ningaloo; with TMax, TMin and VP at

Warren and Alexandria; with TMax, TMin and Rad at Blinman and Dowerine; with

TMax, TMin and Evap at Annuello; and with TMax, TMin, VP and Rad at the loca-

tion Richmond. The k-NN model provides the worst predictions with input variable

Evap at three locations (Warren, Newry and Alexandria), with VP at three locations

(Blinman, Ningaloo and Dowerine) and with Rad at two locations (Richmond and

Annuello).

In grassland zone, the performance measure RMSE for the k-NN model ranges

from 21.24 to 67.75, MAE from 14.13 to 37.17, MASE from 0.50 to 0.71 and CE

from 0.21 to 0.68. The performance measures RMSE and MAE indicates that the

k-NN model have best predictions at the location Dowerine while MASE indicates

at the location Alexandria and CE indicate at the locations Newry and Richmond.

Similarly, both performance measures RMSE and MAE indicates the model provides

worst predictions at the location Newry; the performance measure MASE indicates at

the location Annuello and CE indicates at Blinman and Annuello (see Figure 5.10).

The graphical display of observed rainfall and the k-NN model predictions for all eight

locations in the grassland classification zone given in Figure 5.18, show that model

follow the series patterns.

Tables 5.19, summarizes the performance of all eight models in predicting monthly

rainfall with best combinations of input variables in grassland classification zone. Best



99

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, VP 28.13 21.19 0.61 0.51
Newry TMax, TMin 67.75 37.17 0.54 0.68
Alexandria TMax, TMin, VP 44.40 22.72 0.50 0.65
Richmond TMax, TMin, VP, Rad 35.67 22.27 0.52 0.68
Blinman TMax, TMin, Rad 23.73 17.56 0.67 0.21
Annuello TMax, TMin, Evap 23.84 14.87 0.71 0.21
Ningaloo TMax, TMin 30.29 15.19 0.61 0.40
Dowerine TMax, TMin, Rad 21.24 14.13 0.61 0.33

Performance measures for worst input combinations

Warren Evap 43.44 31.93 0.93 -0.16
Newry Evap 120.01 88.83 1.29 0.01
Alexandria Evap 77.06 46.91 1.03 -0.06
Richmond Rad 66.08 45.46 1.06 -0.10
Blinman VP 30.32 20.94 0.80 -0.29
Annuello Rad 31.55 20.96 1.00 -0.38
Ningaloo VP 39.93 23.97 0.96 -0.05
Dowerine VP 28.59 21.36 0.92 -0.21

Table 5.18: The kNN model prediction performance with best and worst combinations
of input variables in grassland zone.

results among all models are highlighted in bold. The results show that at least one

performance measure indicates that the SVM(RBF) model is best compare to other

models in six out of eight locations; ANN(1) model in five locations; ANN(0) in three

locations; CR(EM) and MLR in two locations; while SVM(Linear) and CLR(Opt) in

one location.

According to the performance measures RMSE, the SVM(RBF) is not best in

any location and the ANN(1) model is best at four locations (Warren, Alexandria,

Richmond and Annuello). In these four locations, the CLR(Opt) model performance

is 7.16% lower in Warren, 6.70% in Alexandria, 3.44% in Richmond and 1.37% lower

in Annuello than the ANN(1) model. Similarly, the ANN(0) model is best at Ningaloo

with 9.25% and at Blinman with 0.28% and k-NN model at Newry with 3.42% higher

performance than CLR(Opt) model. At location Dowerine the CLR(Opt) model

outperformed other models.

A visual comparison of model predictions with the actual observations in temperate

classification zone, given in Figures 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18,

show that all models follow the series patterns at all locations except Ningaloo. In

this location, the ANN(1) model failed to follow the series patterns (see Figure 5.17).

Although ANN(1) model outperformed other models at most locations, but overall

performance is unreliable. For example at location Warren, the ANN(1) model pre-

dicted single value (42.29) for all 180 observations with four combinations (C8, C9,

C11 and C12)(see Table 5.1 for combinations detail) of input variables. Similarly at
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Figure 5.18: Observed rainfall vs. the k-NN model predictions in grassland zone.
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the location Alexandria, the ANN(1) model predicted single value (35.62) for all 180

observations with nine combinations (C2, C3, C4, C8, C9, C10, C11, C12, C13 and

C14) of input variables; at Richmond predicted 43.17 with eight combinations (C2,

C3, C8, C9, C11, C12, C14 and C15); and at Annuello, with seven combinations (C2,

C3, C4, C8, C11, C12 and C15).

In summary, based on the performance measure RMSE, the ANN(1) and ANN(0)

models are the most suitable models in predicting monthly rainfall in grassland clas-

sification zone. The CLR(Opt), MLR and k-NN models were determined to be the

second in ranking.

Stations Measures CLR CR SVM SVM ANN ANN MLR KNN
(EM) (Linear) (RBF) (0) (1)

Warren RMSE 26.80 29.53 28.57 25.13 25.13 24.88 27.59 28.13
MAE 20.10 20.11 19.77 18.05 18.58 18.56 19.85 21.19
MASE 0.58 0.58 0.57 0.52 0.54 0.54 0.58 0.61
CE 0.56 0.46 0.50 0.61 0.61 0.62 0.53 0.51

Newry RMSE 70.15 95.77 84.98 68.68 75.09 69.18 75.10 67.75
MAE 37.91 47.50 43.20 36.84 40.39 36.10 40.31 37.17
MASE 0.55 0.69 0.63 0.54 0.59 0.53 0.59 0.54
CE 0.66 0.37 0.50 0.68 0.61 0.67 0.61 0.68

Alexandria RMSE 43.44 59.25 55.62 43.09 40.97 40.53 46.38 44.40
MAE 22.02 26.67 24.52 19.82 20.84 20.28 23.21 22.72
MASE 0.48 0.58 0.54 0.43 0.46 0.44 0.51 0.50
CE 0.66 0.37 0.45 0.67 0.70 0.71 0.61 0.65

Richmond RMSE 35.73 44.21 41.88 34.94 35.81 34.50 39.21 35.67
MAE 23.10 26.25 25.30 21.47 25.66 24.91 26.12 22.27
MASE 0.54 0.61 0.59 0.50 0.60 0.58 0.61 0.52
CE 0.68 0.51 0.56 0.69 0.68 0.70 0.61 0.68

Blinman RMSE 21.14 21.14 21.26 21.59 21.08 23.90 21.08 23.73
MAE 15.40 14.75 14.52 14.73 15.02 17.56 15.02 17.56
MASE 0.59 0.56 0.56 0.56 0.58 0.67 0.58 0.67
CE 0.37 0.37 0.37 0.35 0.38 0.20 0.38 0.21

Annuello RMSE 23.42 23.51 24.16 24.05 23.27 23.10 23.46 23.84
MAE 14.28 13.35 13.94 13.93 13.46 13.32 13.72 14.87
MASE 0.68 0.64 0.67 0.67 0.64 0.64 0.66 0.71
CE 0.24 0.23 0.19 0.20 0.25 0.26 0.23 0.21

Ningaloo RMSE 28.32 32.62 32.11 27.43 25.70 34.55 29.02 30.29
MAE 14.06 15.12 14.09 12.79 13.53 18.67 14.54 15.19
MASE 0.56 0.60 0.56 0.51 0.54 0.75 0.58 0.61
CE 0.47 0.30 0.32 0.51 0.57 0.22 0.45 0.40

Dowerine RMSE 19.43 20.25 21.23 20.66 20.02 20.67 20.07 21.24
MAE 12.80 12.98 13.18 12.87 12.91 13.40 12.88 14.13
MASE 0.55 0.56 0.57 0.55 0.56 0.58 0.55 0.61
CE 0.44 0.39 0.33 0.37 0.40 0.37 0.40 0.33

Table 5.19: Prediction performance of models with best combination of input variables
in grassland classification zone.
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5.3 Monthly rainfall predictions in desert zone

In this section, first we present the monthly rainfall prediction results for each model

in predicting monthly rainfall with best and worst combinations of input variables in

desert classification zone. Then we summarize the performance of all models with best

combination of input variables. Finally we compare the CLR(Opt) model performance

with other models using computational results and time series plots.

Table 5.20 summarizes the prediction performance of the CLR(Opt) model with

best and worst combinations of input variables in desert classification zone. Results

presented in this table show that the model provides best predictions at Henbury

with a combination of input variables TMax, TMin and VP; at Boulia and Marree

with TMax, TMin, VP and Rad; at Wiluna with TMax, TMin, Evap and VP; and at

Wilcannia with full set of five input variables. The CLR(Opt) model provides worst

predictions at Wilcannia and Henbury with input variable Rad; at Wiluna with VP;

and at Boulia and Marree with a combination of input variable Evap and Rad.

In the desert zone, the performance measure RMSE for the CLR(Opt) model

ranges from 13.15 to 28.93, MAE from 8.80 to 16.88, MASE from 0.51 to 0.74 and

CE from 0.36 to 0.59. The performance measures RMSE and MAE indicate that the

model provides best predictions at Marree; MASE indicates at Wilcannia; and CE

indicates at Boulia while the performance measures MAE, MASE and CE indicate

worst predictions at Wiluna and RMSE at Henbury (Figure 5.19). A visual compar-

ison of observed rainfall and model predictions given in Figure 5.20 show that the

model follows the series patterns at all locations.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, Evap, VP, Rad 21.29 12.31 0.51 0.53
Henbury TMax, TMin, VP 28.93 16.88 0.57 0.49
Boulia TMax, TMin, VP, Rad 24.78 15.65 0.60 0.59
Marree TMax, TMin, VP, Rad 13.15 8.80 0.54 0.45
Wiluna TMax, TMin, Evap, VP 26.12 18.45 0.74 0.36

Performance measures for worst input combinations

Wilcannia Rad 30.18 20.97 0.87 0.05
Henbury Rad 39.90 24.13 0.81 0.04
Boulia Evap, Rad 40.33 29.87 1.15 -0.10
Marree Evap, Rad 18.02 14.50 0.89 -0.04
Wiluna VP 38.73 27.96 1.12 -0.41

Table 5.20: The CLR(Opt) model prediction performance for best and worst combi-
nation of input variables in desert zone.

Table 5.21 summarizes the prediction performance of the CR(EM) model with best

and worst combinations of input variables for locations in desert classification zone.

The results presented in this table show that the model provides best predictions with



103

Model RMSE MAE MASE NSE 
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Figure 5.19: The prediction performance of each model in desert zone.

input variables TMax, TMin, Evap and VP at location Wiluna; with TMax, TMin,

VP and Rad at two locations Henbury and Marree; and with all five input variables

at the remaining two locations Wilcannia and Boulia. The CR(EM) model provides

worst predictions at two locations (Henbury and Marree) with input variable Evap;

at Wiluna with input variable Rad; and at Wilcannia and Boulia with input variables

Evap and Rad.

The performance measure RMSE for the CR(EM) model in desert classification
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Figure 5.20: Observed rainfall vs. the CLR(Opt) model predictions in desert zone.

zone ranges from 13.61 to 33.70, MAE from 9.25 to 18.80, MASE from 0.55 to 0.74

and CE from 0.31 to 0.41. The performance measures RMSE, MAE and CE indicates

that the CR(EM) model provides best predictions at location Marree and MASE

indicates at Wilcannia while RMSE and CE indicate worst predictions at Henbury;

MAE indicates at Boulia, and MASE indicates at Wiluna (see Table 5.28 and Figure

5.19). The graphical display of observed rainfall and the CR(EM) model predictions

for all five locations in the desert classification zone is given in Figure 5.21.

Table 5.22 summarizes the prediction performance of the SVM(Linear) model with

best and worst combinations of input variables for locations in desert classification

zone. According to the results, the model provides best predictions with input vari-

ables TMax, TMin and VP at the location Wiluna and adding Rad in TMax, TMin
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, Evap, VP, Rad 23.92 13.13 0.55 0.40
Henbury TMax, TMin, VP, Rad 33.70 17.24 0.58 0.31
Boulia Evap, VP 30.53 18.80 0.72 0.37
Marree TMax, TMin, Evap, VP, Rad 13.61 9.25 0.57 0.41
Wiluna TMax, TMin, Evap, VP 26.61 18.46 0.74 0.34

Performance measures for worst input combinations

Wilcannia Evap, Rad 31.56 22.69 0.95 -0.04
Henbury Evap 40.71 26.03 0.87 0.00
Boulia Evap, Rad 42.39 34.38 1.32 -0.21
Marree Evap 17.99 14.45 0.89 -0.04
Wiluna Rad 33.12 24.07 0.96 -0.03

Table 5.21: The CR(EM) model prediction performance for best and worst combina-
tions of input variables for locations in desert zone.

and VP increased the model performance in the remaining four locations (Wilcannia,

Henbury, Boulia and Wiluna). The model provides the worst predictions at four lo-

cations (Wilcannia, Henbury, Marree and Wiluna) with input variable Evap and with

Rad at the location Boulia.

In desert zone, the performance measure RMSE for the SVM(Linear) model ranges

from 13.26 to 32.80, MAE from 8.73 to 20.53, MASE from 0.54 to 0.82 and CE from

0.26 to 0.44. All four performance measures RMSE, MAE, MASE and CE indicate

that the SVM(Linear) model provides best predictions at the location Marree while the

performance measures MAE, MASE and CE indicate worst predictions at Wiluna and

RMSE indicates at Henbury (see Table 5.28 and Figure 5.19). The time series plot of

observed rainfall and the model predictions of all five locations of desert classification

zone is given in Figure 5.22.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, VP, Rad 23.43 13.02 0.54 0.43
Henbury TMax, TMin, VP, Rad 32.80 16.77 0.56 0.35
Boulia TMax, TMin, VP, Rad 29.27 16.86 0.65 0.42
Marree TMax, TMin, VP, Rad 13.26 8.73 0.54 0.44
Wiluna TMax, TMin, VP 28.02 20.53 0.82 0.26

Performance measures for worst input combinations

Wilcannia Evap 32.35 18.84 0.79 -0.09
Henbury Evap 43.17 22.00 0.74 -0.13
Boulia Rad 40.89 21.14 0.81 -0.13
Marree Evap 18.94 11.84 0.73 -0.15
Wiluna Evap 36.37 22.91 0.91 -0.24

Table 5.22: The SVM Linear model prediction performance for best and worst com-
binations of input variables for locations in desert zone.
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Figure 5.21: Observed rainfall vs. the CR(EM) model predictions in desert zone.

Table 5.23 summarizes the prediction performance of the SVM(RBF) model with

best and worst combinations of input variables for locations in desert classification

zone. The results presented in this table show that the model provides best predictions

with input variables TMax, TMin and Rad at the location Wiluna; with TMax, TMin,

VP and Rad at Boulia; with Evap, VP and Rad at Henbury; and with a full set of five

variables at Wilcannia and Marree. The SVM(RBF) model provides worst predictions

with single input variable Rad at Henbury; with Evap at Marree and Henbury; and

with a combination of Evap and Rad at Wilcannia and Boulia.

In the desert zone, the performance measure RMSE for the SVM(RBF) model

ranges from 13.84 to 29.34; MAE from 8.63 to 17.37; MASE from 0.53 to 0.69; and

CE from 0.19 to 0.62. The performance measures RMSE, MAE and MASE indicate
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Figure 5.22: Observed rainfall vs. the SVM(Linear) model predictions in desert zone.

that the SVM(RBF) model predictions have lowest prediction error at location Marree

and CE indicates at Boulia while all four performance measures indicate the model

provides worst predictions at location Wiluna (see Table 5.28 and Figure 5.19). The

graphical display of observed rainfall and the model predictions for all five locations

in the desert classification zone is given in Figure 5.23.

Table 5.24 presents the prediction performance results of the MLR model with

best and worst combinations of input variables for locations in desert classification

zone. According to these results, the model provides best predictions with input

variables TMax and TMin at the location Wiluna; with TMax, TMin and Evap at

the location Boulia; with TMax, TMin and Rad in the location Marree; with TMax,

TMin, VP and Rad at the location Henbury; and with all five input variables at the
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, Evap, VP, Rad 22.32 12.89 0.54 0.48
Henbury Evap, VP, Rad 27.64 16.26 0.55 0.54
Boulia TMax, TMin, VP, Rad 23.76 14.46 0.56 0.62
Marree TMax, TMin, Evap, VP, Rad 13.84 8.63 0.53 0.39
Wiluna TMax, TMin, Rad 29.34 17.37 0.69 0.19

Performance measures for worst input combinations

Wilcannia Evap, Rad 32.80 20.30 0.85 -0.12
Henbury Evap 42.26 21.47 0.72 -0.08
Boulia Evap, Rad 41.35 28.69 1.10 -0.15
Marree Evap 41.20 18.19 1.12 -4.44
Wiluna Rad 61.53 37.02 1.48 -2.55

Table 5.23: The SVM(RBF) model prediction performance for best and worst com-
binations of input variables for locations in desert zone.

location Wilcannia. The MLR model provides worst predictions at Henbury with

input variable Evap; at Marree with VP; at Wiluna with a combination of input

variables Evap and VP; and at Wilcannia and Boulia with a combination of input

variables Evap and Rad.

In the desert zone, the performance measure RMSE for the MLR model ranges

from 14.98 to 30.39; MAE from 10.86 to 18.21; MASE from 0.51 to 0.71; and CE

from 0.25 to 0.53. The performance measures RMSE, and MAE indicate that the

MLR model provides best predictions at the location Marree and worst at Henbury

while the performance measure MASE and CE indicate best at Wilcannia and worst

at Wiluna (see Table 5.28 and Figure 5.19). The graphical display of observed rainfall

and the MLR model predictions over the test period for all five locations of desert

classification zone is given in Figure 5.24.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, Evap, VP, Rad 21.29 12.31 0.51 0.53
Henbury TMax, TMin, VP, Rad 30.39 18.21 0.61 0.44
Boulia TMax, TMin, Evap 28.78 17.11 0.66 0.44
Marree TMax, TMin, Rad 14.98 10.86 0.67 0.28
Wiluna TMax, TMin 28.33 17.88 0.71 0.25

Performance measures for worst input combinations

Wilcannia Evap, Rad 31.19 22.15 0.92 -0.02
Henbury Evap 40.69 26.03 0.87 0.00
Boulia Evap, Rad 47.38 40.43 1.56 -0.51
Marree VP 18.41 13.37 0.82 -0.09
Wiluna Evap, VP 39.91 29.58 1.18 -0.49

Table 5.24: The MLR model prediction performance for best and worst combinations
of input variables for locations in desert zone.
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Figure 5.23: Observed rainfall vs. the SVM(RBF) model predictions in desert zone.

Table 5.25 summarizes the prediction performance of the ANN(0) model with

best and worst combinations of input variables for locations in desert classification

zone. According to these results, the model provides best predictions with input

variables TMax and TMin in four out of five locations (Henbury, Boulia, Marree and

Wiluna) and in the remaining fifth location (Wilcannia), the model provides best

predictions with a full set of five input variables. The ANN(0) model provides the

worst predictions at Wilcannia and Henbury with input variable Rad; at Marree and

Wiluna with VP; and at Boulia with a combination of input variables Evap and Rad.

The performance measure RMSE for the ANN(0) model ranges from 15.23 to

27.43; MAE from 11.09 to 17.48; MASE from 0.53 to 0.68; and CE from 0.26 to

0.62. The performance measures RMSE, and MAE indicates that the ANN(0) model
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Figure 5.24: Observed rainfall vs. the MLR model predictions in desert zone.

predictions have the lowest error at Marree; MASE indicates at Wilcannia; and CE

indicates at Henbury while RMSE indicates the model provides worst predictions at

Wiluna; MAE indicates at Henbury; MASE and CE indicate at Marree (see Table

5.28 and Figure 5.19). The graphical display of observed rainfall and the ANN(0)

model predictions over the test period for all five locations in the desert classification

zone is given in Figure 5.24.

Table 5.26 summarizes the prediction performance of the ANN(1) model with best

and worst combinations of input variables of all five locations in desert classification

zone. The results presented in this table show that the model with input variables

TMax and TMin provides best predictions at location Henbury; with TMax, TMin

and Rad at Marree and Wiluna; with TMax, TMin and VP at Boulia; and with VP
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, Evap, VP, Rad 21.47 12.77 0.53 0.52
Henbury TMax, TMin 24.95 17.48 0.59 0.62
Boulia TMax, TMin 24.34 15.85 0.61 0.60
Marree TMax, TMin 15.23 11.09 0.68 0.26
Wiluna TMax, TMin 27.43 17.10 0.68 0.29

Performance measures for worst input combinations

Wilcannia Rad 30.08 20.64 0.86 0.06
Henbury Rad 40.74 25.55 0.86 0.00
Boulia Evap, Rad 43.45 34.18 1.32 -0.27
Marree VP 22.57 15.21 0.94 -0.63
Wiluna VP 72.29 41.42 1.65 -3.90

Table 5.25: The ANN(0) model performance in predicting monthly rainfall with best
and worst combinations of input variables in desert classification zone.

and Rad at Wilcannia. The model provides worst predictions with input variable

Evap at Wilcannia and Boulia; with VP at Marree and Wiluna; and with Rad at

Henbury.

The performance measure RMSE for the ANN(1) model ranges from 17.14 to

27.92, MAE from 10.97 to 18.65, MASE from 0.62 to 0.70 and CE from 0.06 to

0.59. The performance measures RMSE and MAE indicates that the ANN(1) model

predictions have lowest prediction error at Marree while MASE and CE at Boulia. The

performance measures RMSE and MAE indicates the model provides worst predictions

at Henbury; MASE indicates at Wilcannia, and CE indicates at Marree.(see Table 5.28

and Figure 5.19). The graphical display of observed rainfall and the model predictions

over the test period for all five locations in the desert classification zone is given in

Figure 5.26.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia VP, Rad 24.73 16.80 0.70 0.36
Henbury TMax, TMin 27.92 18.65 0.63 0.53
Boulia TMax, TMin, VP 24.59 15.99 0.62 0.59
Marree TMax, TMin, Rad 17.14 10.97 0.67 0.06
Wiluna TMax, TMin, Rad 27.69 17.36 0.69 0.28

Performance measures for worst input combinations

Wilcannia Evap 31.00 21.76 0.91 0.00
Henbury Rad 40.70 25.33 0.85 0.00
Boulia Evap 38.57 26.14 1.01 0.00
Marree VP 24.15 15.54 0.96 -0.87
Wiluna VP 60.15 37.77 1.51 -2.39

Table 5.26: The ANN(1) model prediction performance for best and worst combina-
tions of input variables for locations in desert zone.
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Figure 5.25: Observed rainfall vs. the ANN(0) model predictions in desert zone.

Table 5.27 summarizes the prediction performance of the k-NN model with best

and worst combinations of input variables for all five locations in desert classification

zone. The results show that the k-NN model with input variables TMax, TMin and

Evap provides best predictions at the location Wiluna; with TMax, TMin and VP at

Henbury; with TMax, TMin and Rad at Marree; with VP and Rad at Boulia; and

with TMax, TMin, Evap and VP at Wilcannia. The model provides worst predictions

with input variable Rad at Wilcannia, Henbury and Boulia; with input variable VP

at Marree; and with a combination of input variables Evap and VP at the location

Wiluna.
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Figure 5.26: Observed rainfall vs. the ANN(1) model predictions in desert zone.

In the desert zone, the performance measure RMSE for the KNN model ranges

from 15.12 to 29.80, MAE from 10.77 to 17.67, MASE from 0.58 to 0.70 and CE from

0.27 to 0.54. The performance measures RMSE, MAE and CE indicates that the

k-NN model provides best predictions at Marree and MASE indicates at Wilcannia

while RMSE and MAE indicate the model provides worst predictions at Henbury;

MASE indicates at Wiluna, and CE at Wiluna (see Table 5.28 and Figure 5.19). The

graphical display of observed rainfall and the k-NN model predictions over the test

period for all five locations of desert classification zone is given in Figure 5.27.

Tables 5.28, summarizes the performance of all eight models in predicting monthly

rainfall with best combinations of input variables in desert classification zone. Best

results among all models are highlighted in bold. Results presented in this table, show
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, Evap, VP, Rad 22.96 13.99 0.58 0.45
Henbury TMax, TMin 29.80 17.67 0.59 0.46
Boulia TMax, TMin 26.20 16.50 0.64 0.54
Marree TMax, TMin 15.12 10.77 0.66 0.27
Wiluna TMax, TMin 27.61 17.64 0.70 0.29

Performance measures for worst input combinations

Wilcannia Rad 36.38 22.73 0.95 -0.38
Henbury Rad 42.26 25.60 0.86 -0.08
Boulia Rad 42.31 26.35 1.01 -0.21
Marree VP 22.25 15.78 0.97 -0.59
Wiluna Evap, VP 37.50 28.19 1.12 -0.32

Table 5.27: The k-NN model prediction performance for best and worst combinations
of input variables for locations in desert zone.

that at least one performance measure indicate that CLR(Opt) is best in three loca-

tions compare to all other models; the SVM(RBF) also in three locations; ANN(0) in

two locations and MLR model in one location. The CR(EM), SVM(Linear), ANN(1)

and k-NN models are not best in any location.

Stations Measures CLR CR SVM SVM ANN ANN MLR KNN
(EM) (Linear) (RBF) (0) (1)

Wilcannia RMSE 21.29 23.92 23.43 22.32 21.47 24.73 21.29 22.96
MAE 12.31 13.13 13.02 12.89 12.77 16.80 12.31 13.99
MASE 0.51 0.55 0.54 0.54 0.53 0.70 0.51 0.58
CE 0.53 0.40 0.43 0.48 0.52 0.36 0.53 0.45

Henbury RMSE 28.93 33.70 32.80 27.64 24.95 27.92 30.39 29.80
MAE 16.88 17.24 16.77 16.26 17.48 18.65 18.21 17.67
MASE 0.57 0.58 0.56 0.55 0.59 0.63 0.61 0.59
CE 0.49 0.31 0.35 0.54 0.62 0.53 0.44 0.46

Boulia RMSE 24.78 30.53 29.27 23.76 24.34 24.59 28.78 26.20
MAE 15.65 18.80 16.86 14.46 15.85 15.99 17.11 16.50
MASE 0.60 0.72 0.65 0.56 0.61 0.62 0.66 0.64
CE 0.59 0.37 0.42 0.62 0.60 0.59 0.44 0.54

Marree RMSE 13.15 13.61 13.26 13.84 15.23 17.14 14.98 15.12
MAE 8.80 9.25 8.73 8.63 11.09 10.97 10.86 10.77
MASE 0.54 0.57 0.54 0.53 0.68 0.67 0.67 0.66
CE 0.45 0.41 0.44 0.39 0.26 0.06 0.28 0.27

Wiluna RMSE 26.12 26.61 28.02 29.34 27.43 27.69 28.33 27.61
MAE 18.45 18.46 20.53 17.37 17.10 17.36 17.88 17.64
MASE 0.74 0.74 0.82 0.69 0.68 0.69 0.71 0.70
CE 0.36 0.34 0.26 0.19 0.29 0.28 0.25 0.29

Table 5.28: Prediction performance of models in desert classification zone.

According to our primary performance measure RMSE, the CLR(Opt) model out-

performed other models at three locations (Wilcannia, Marree and Wiluna). The
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Figure 5.27: Observed rainfall vs. the k-NN model predictions in desert zone.

SVM(RBF) model is best at Boulia with 4.12% higher performance and the ANN(0)

model at Henbury with 13.76% higher performance. Results demonstrate that the

CLR(Opt) model is superior to other models in predicting monthly rainfall in desert

classification zone.

A visual comparison of model predictions with the actual observations in temperate

classification zone, given in Figures 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26 and 5.27,

show that all models follow the series patterns at all sites in desert classification zone.

In summary, based on the performance measure RMSE, the CLR(Opt) model is

the most suitable model in finding the pattern and trends of the observations compared

to other models at all sites in desert classification zone.
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5.4 Monthly rainfall predictions in tropical and sub-

tropical zones

In this section, first we present the monthly rainfall prediction results for each model

in predicting monthly rainfall with best and worst combinations of input variables in

tropical and subtropical classification zones. Then we summarize the performance

of all models with best combination of input variables. Finally we compare the

CLR(Opt) model performance with other models using computational results and

time series plots.

Table 5.29 summarizes the prediction performance of the CLR(Opt) model with

best and worst combinations of input variables in tropical and subtropical zones.

Results presented in this table show that the model provides best predictions at

Palmerville and Yamba with input variables TMax, TMin and Rad; at Katherine

with TMax, TMin, VP and Rad; and at Fairymead with VP and Rad. The CLR(Opt)

model provides worst predictions in three out of four locations (Katherine, Yamba and

Fairymead) with input variable Evap and at Palmerville with input variable Rad.

In tropical and subtropical zones, the performance measure RMSE for CLR(Opt)

model ranges from 58.17 to 94.89, MAE from 34.42 to 54.81, MASE from 0.43 to

0.58 and CE from 0.34 to 0.81. All four performance measures indicate the model

provides best predictions at Katherine while the performance measures RMSE, and

CE indicates the model provides worst predictions at Fairymead and MAE and MASE

indicates at Yamba (Figure 5.28). The graphical display of observed rainfall and the

model predictions given in Figure 5.29, show that the model predictions follow the

series patterns in all locations.

Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, VP, Rad 58.17 34.42 0.43 0.81
Palmerville Tropical TMax, TMin, Rad 70.15 41.21 0.52 0.71
Yamba Subtropical TMax, TMin, Rad 75.04 54.81 0.58 0.38
Fairymead Subtropical VP, Rad 94.89 47.04 0.55 0.34

Performance measures for worst input combinations

Katherine Tropical Evap 122.49 92.30 1.15 0.17
Palmerville Tropical Rad 127.27 97.99 1.24 0.04
Yamba Subtropical Evap 95.16 77.33 0.81 0.01
Fairymead Subtropical Evap 116.60 70.60 0.83 0.02

Table 5.29: The CLR(Opt) model prediction performance with best and worst com-
binations of input variables in tropical and subtropical zones.

Table 5.30 summarizes the prediction performance of the CR(EM) model with

best and worst combinations of input variables in tropical and subtropical zones. The

results presented in this table show that the model provides best predictions with
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Model RMSE MAE MASE NSE 
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Figure 5.28: The prediction performance of models in tropical and subtropical zones.

input variables TMax, TMin and VP at Katherine; with TMax, TMin and Rad at

Yamba; with TMax, TMin, VP and Rad at Fairymead; and with input variables Evap,

VP and Rad at Palmerville. The model provides worst predictions in three out of four

locations (Katherine, Palmerville and Yamba) with input variable Evap and in the

fourth location Fairymead with input variable Rad.

The performance measure RMSE in tropical and subtropical zones for the CR(EM)
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Figure 5.29: Observed rainfall vs. the CLR(Opt) model predictions in tropical and
subtropical classification zones.

model ranges from 76.77 to 103.97, MAE from 49.47 to 56.21, MASE from 0.58 to 0.71

and CE from 0.21 to 0.53. The performance measures RMSE indicates that the model

provides best predictions at Yamba; MAE and MASE indicate at Fairymead and CE

indicates at Katherine while the performance measures RMSE, and CE indicates worst

predictions at Fairymead and MAE and MASE indicates at Palmerville (see Figure

5.28). The time series plot of observed rainfall and the model predictions of all four

locations in the tropical and subtropical classification zones is given in Figure 5.30.

Table 5.31 summarizes the prediction performance of the SVM(Linear) model

with best and worst combinations of input variables in tropical and subtropical zones.

According to the results, the model provides best predictions at Fairymead with input
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Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, VP 92.08 49.67 0.62 0.53
Palmerville Tropical Evap, VP, Rad 98.18 56.21 0.71 0.43
Yamba Subtropical TMax, TMin, Rad 76.77 55.59 0.58 0.35
Fairymead Subtropical TMax, TMin, VP, Rad 103.97 49.47 0.58 0.21

Performance measures for worst input combinations

Katherine Tropical Evap 125.29 97.19 1.21 0.13
Palmerville Tropical Evap 127.20 97.56 1.23 0.04
Yamba Subtropical Evap 95.03 76.84 0.81 0.01
Fairymead Subtropical Rad 117.29 71.20 0.83 0.00

Table 5.30: The CR(EM) model prediction performance with best and worst combi-
nations of input variables in tropical and subtropical zones.

variables TMax, TMin and VP; at Katherine with TMax, TMin, Evap and VP; at

Palmerville with Evap, VP and Rad; and at Yamba with a full set of input variables.

The SVM(Linear) model provides worst predictions in three out of four locations

(Katherine, Palmerville and Yamba) with input variable Evap and with input variable

Rad in the remaining fourth location Fairymead.

In tropical and subtropical zones, the performance measure RMSE for the SVM(Linear)

model ranges from 77.19 to 105.46, MAE from 44.88 to 54.57, MASE from 0.56 to

0.68 and CE from 0.19 to 0.67. All four performance measures indicate that the

SVM(Linear) model provide best predictions at location Katherine while RMSE and

CE indicate the model provides worst predictions at Fairymead; MAE indicates at

Yamba; MASE indicates at Palmerville (see Figure 5.28). The graphical display of

observed rainfall and the model predictions for all four locations of tropical and sub-

tropical zones is given in Figure 5.31.

Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, Evap, VP 77.19 44.88 0.56 0.67
Palmerville Tropical Evap, VP, Rad 90.77 54.15 0.68 0.51
Yamba Subtropical TMax, TMin, Evap, VP, Rad 77.48 54.57 0.57 0.34
Fairymead Subtropical TMax, TMin, VP 105.46 48.85 0.57 0.19

Performance measures for worst input combinations

Katherine Tropical Evap 141.41 95.85 1.19 -0.11
Palmerville Tropical Evap 143.86 89.11 1.12 -0.23
Yamba Subtropical Evap 96.16 72.47 0.76 -0.01
Fairymead Subtropical Rad 119.81 62.75 0.74 -0.05

Table 5.31: The SVM(Linear) model prediction performance with best and worst
combination of input variables in tropical and subtropical classification zones.

Table 5.32 summarizes the prediction performance of the SVM(RBF) model with

best and worst combinations of input variables of selected locations in tropical and
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Figure 5.30: Observed rainfall vs. the CR(EM) model predictions in tropical and
subtropical classification zones.

subtropical zones. The results presented in this table show that the model with input

variables TMax, TMin and Rad provides best predictions at two locations (Palmerville

and Yamba), with input variables TMax, TMin and VP at Katherine and with VP

and Rad at the location Fairymead. The SVM(RBF) model provides worst predic-

tions with input variable Evap at the location Katherine; with Rad at Yamba and

fairymead; and with combinations of Evap and Rad at Palmerville.

In tropical and subtropical zones, the performance measure RMSE for the SVM(RBF)

model ranges from 60.15 to 99.81, MAE from 34.26 to 54.65, MASE from 0.43 to 0.57

and CE from 0.27 to 0.80. All four performance measures indicate that the SVM(RBF)

model provides best predictions at location Katherine while the performance measures
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Figure 5.31: Observed rainfall vs. the SVM(Linear) model predictions in tropical and
subtropical classification zones.

RMSE, and CE indicates the model provides worst predictions at location Fairymead;

MAE indicates at location Yamba; MASE indicates at location Palmerville (see Figure

5.28). The graphical display of observed rainfall and the SVM(RBF) model predic-

tions for all four locations of the tropical and subtropical classification zones are given

in Figure 5.32.

Table 5.33 summarizes the prediction performance of the MLR model with best

and worst combinations of input variables for all selected locations of tropical and

subtropical zones. According to the results, the MLR model provides best predictions

at Palmerville with input variable VP; at Fairymead with TMax, TMin and VP;

at Yamba with TMax, TMin and Rad; and at Katherine with TMax, TMin, Evap
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Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, Evap, VP 60.15 34.26 0.43 0.80
Palmerville Tropical TMax, TMin, Rad 71.67 41.03 0.52 0.69
Yamba Subtropical TMax, TMin, Rad 76.48 54.65 0.57 0.36
Fairymead Subtropical VP, Rad 99.81 47.64 0.56 0.27

Performance measures for worst input combinations

Katherine Tropical Evap 131.99 87.22 1.09 0.03
Palmerville Tropical Evap, Rad 148.60 94.58 1.19 -0.31
Yamba Subtropical Rad 95.57 71.54 0.75 0.00
Fairymead Subtropical Rad 118.97 62.49 0.73 -0.03

Table 5.32: The SVM(RBF) model prediction performance for best and worst com-
bination of input variables for locations in tropical and subtropical zones.

and VP. The model provides worst predictions in Katherine and Yamba with input

variable Evap; in Palmerville and Fairymead with input variable Rad.

In tropical and subtropical zones, the performance measure RMSE for the MLR

model ranges from 68.26 to 101.59, MAE from 42.32 to 56.64, MASE from 0.53 to

0.64 and CE from 0.25 to 0.74. All four performance measures indicate that the MLR

model provides best predictions at location Katherine while the performance measures

RMSE, and CE indicate the model provides worst predictions at Fairymead; MAE

indicates at location Yamba; MASE indicates at location Palmerville (see Figure

5.28). The graphical display of observed rainfall and the MLR model predictions for

locations in the tropical and subtropical classification zones are given in Figure 5.33.

Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, Evap, VP 68.26 42.32 0.53 0.74
Palmerville Tropical VP 83.00 51.02 0.64 0.59
Yamba Subtropical TMax, TMin, Rad 76.06 56.64 0.60 0.37
Fairymead Subtropical TMax, TMin, VP 101.59 49.71 0.58 0.25

Performance measures for worst input combinations

Katherine Tropical Evap 122.64 95.58 1.19 0.17
Palmerville Tropical Rad 127.27 98.00 1.24 0.04
Yamba Subtropical Evap 95.16 77.33 0.81 0.01
Fairymead Subtropical Rad 117.17 70.85 0.83 0.00

Table 5.33: The MLR model prediction performance with best and worst combination
of input variables in tropical and subtropical zones.

Table 5.34 summarizes the prediction performance of the ANN(0) model with

best and worst combinations of input variables in tropical and subtropical zones.

According to the results, the model provides best predictions with TMax, TMin and

Rad at Palmerville and Yamba; with TMax, TMin, VP and Rad at Katherine; with

TMax, TMin, Evap and VP at Fairymead. The model provides worst predictions
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Figure 5.32: Observed rainfall vs. the SVM(RBF) model predictions in tropical and
subtropical classification zones.

with input variable Evap in Katherine and Yamba; with Rad in Fairymead; and with

a combination of input variables Evap and Rad in the location Palmerville.

In tropical/subtropical zones, the performance measure RMSE for the ANN(0)

model ranges from 62.51 to 98.59, MAE from 38.15 to 56.20, MASE from 0.48 to

0.59 and CE from 0.29 to 0.78. All four performance measures indicate that the

ANN(0) model provides best predictions in Katherine while the performance measures

RMSE, and CE indicates the model provides worst predictions in Fairymead and MAE

and MASE indicates in Yamba (Figure 5.28). The graphical display of observed

rainfall and the ANN(0) model predictions for locations in tropical and subtropical

classification zones is given in Figure 5.34.
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Figure 5.33: Observed rainfall vs. the MLR model predictions in tropical and sub-
tropical classification zones.

Table 5.35 summarizes the prediction performance of the ANN(1) model with best

and worst combinations of input variables locations in tropical and subtropical zones.

The ANN(1) model provides best predictions with input variables TMax, TMin and

Evap at Palmerville; with TMax, TMin and Rad at Yamba; with VP and Rad at

Katherine and Fairymead. The model provides worst predictions with input variable

Rad in all four locations of tropical and subtropical classification zones.

In tropical/subtropical zones, the performance measure RMSE for the ANN(1)

model ranges from 64.85 to 98.00, MAE from 38.28 to 55.25, MASE from 0.48 to 0.60

and CE from 0.30 to 0.77. All four performance measures indicate that the ANN(1)

model provides best predictions in Katherine while the performance measures RMSE,
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Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, VP, Rad 62.51 38.15 0.48 0.78
Palmerville Tropical TMax, TMin, Rad 74.43 43.38 0.55 0.67
Yamba Subtropical TMax, TMin, Rad 76.14 56.20 0.59 0.37
Fairymead Subtropical TMax, TMin, Evap, VP 98.59 45.26 0.53 0.29

Performance measures for worst input combinations

Katherine Tropical Evap 122.64 95.58 1.19 0.17
Palmerville Tropical Evap, Rad 127.98 98.36 1.24 0.03
Yamba Subtropical Evap 95.16 77.33 0.81 0.01
Fairymead Subtropical Rad 117.17 70.85 0.83 0.00

Table 5.34: The ANN(0) model prediction performance with best and worst combi-
nations of input variables in tropical and subtropical zones.

MASE and CE indicate the model provides worst predictions in Fairymead and MAE

indicates in Yamba (see Figure 5.28). The graphical display of observed rainfall and

the ANN(1) model predictions are given in Figure 5.35.

Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical VP, Rad 64.85 38.28 0.48 0.77
Palmerville Tropical TMax, TMin, Evap 72.34 42.64 0.54 0.69
Yamba Subtropical TMax, TMin, Rad 75.11 55.25 0.58 0.38
Fairymead Subtropical VP, Rad 98.00 51.61 0.60 0.30

Performance measures for worst input combinations

Katherine Tropical Rad 134.75 107.62 1.34 -0.01
Palmerville Tropical Rad 129.94 98.79 1.25 0.00
Yamba Subtropical Rad 95.90 76.77 0.81 -0.01
Fairymead Subtropical Rad 120.39 72.76 0.85 -0.06

Table 5.35: The ANN(1) model prediction performance with best and worst combi-
nations of input variables in tropical and subtropical zones.

Table 5.36 summarizes the prediction performance of the k-NN model with best

and worst combinations of input variables in tropical and subtropical zones. The

results presented show that the k-NN model with input variables TMax, TMin and

VP provides best predictions at Katherine; with input variables TMax, TMin and

Rad at Palmerville and Yamba; with VP and Rad at Fairymead. The model provides

worst predictions with input variable Evap in three locations (Katherine, Yamba and

Fairymead) and with Rad in the remaining location Palmerville.

In tropical and subtropical zones, the performance measure RMSE for the k-NN

model ranges from 60.61 to 91.28, MAE from 36.09 to 60.53, MASE from 0.45 to

0.64 and CE from 0.33 to 0.80. All four performance measures indicate that the kNN

model provides best predictions in Katherine while the performance measures RMSE

indicates the model provides worst predictions at Fairymead and MAE, MASE and
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Figure 5.34: Observed rainfall vs. the ANN(0) model predictions in tropical and
subtropical classification zones.

CE indicate at Yamba (see Figure 5.28). The graphical display of observed rainfall

and the k-NN model predictions for all four selected locations in the tropical and

subtropical classification zones are given in Figure 5.36.

Table 5.37, summarizes the performance of all eight models in predicting monthly

rainfall with best combinations of input variables in tropical and subtropical zones.

Best results among all models are highlighted in bold. Results presented in this table,

show that at least one performance measure indicate that CLR(Opt) is best in three

locations compare to all other models; the SVM(RBF) also in three locations; the

k-NN in two locations; the SVM(Linear) in one location; the ANN(0) in one and

ANN(1) model is also in one location. The CR(EM) and MLR models are not best
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Figure 5.35: Observed rainfall vs. the ANN(1) model predictions in tropical and
subtropical classification zones.

in any location.

According to our primary performance measure RMSE, the CLR(Opt) model out-

performed other models at two locations (Katherine and Yamba) and k-NN model

in the remaining two locations (Palmerville and Fairymead). The k-NN model per-

formance is 0.5% higher at Palmerville and 3.8% higher at Fairymead comparing to

the CLR(Opt) model. Results confirmed the superiority of CLR(Opt) model over

CR(EM), SVM(Linear), SVM(RBF), ANN(0), ANN(1) and MLR models in tropical
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Figure 5.36: Observed rainfall vs. the k-NN model predictions in tropical and sub-
tropical classification zones.

and subtropical classification zones.

A visual comparison of model predictions with the actual observations in temper-

ate classification zone, given in Figures 5.29, 5.30, 5.31, 5.32, 5.33, 5.34, 5.35 and

5.36, show that all models follow the series patterns at all locations in tropical and

subtropical classification zones.

In summary, based on the performance measure RMSE, the CLR(Opt) and k-NN

models are the most suitable models in finding the pattern and trends of the obser-

vations compared to other models at all sites in tropical and subtropical classification

zones.
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Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, VP 60.51 36.09 0.45 0.80
Palmerville Tropical TMax, TMin, Rad 69.80 40.91 0.52 0.71
Yamba Subtropical TMax, TMin, Rad 78.15 60.53 0.64 0.33
Fairymead Subtropical VP, Rad 91.28 47.04 0.55 0.39

Performance measures for worst input combinations

Katherine Tropical Evap 124.58 94.81 1.18 0.14
Palmerville Tropical Rad 141.74 106.16 1.34 -0.19
Yamba Subtropical Evap 106.50 83.86 0.88 -0.24
Fairymead Subtropical Evap 121.80 73.95 0.87 -0.08

Table 5.36: The k-NN model prediction performance with best and worst combina-
tions of input variables in tropical and subtropical zones.

Stations Measures CLR CR SVM SVM ANN ANN MLR KNN
(EM) (Linear) (RBF) (0) (1)

Katherine RMSE 58.17 92.08 77.19 60.15 62.51 64.85 68.26 60.51
(Tropical) MAE 34.42 49.67 44.88 34.26 38.15 38.28 42.32 36.09

MASE 0.43 0.62 0.56 0.43 0.48 0.48 0.53 0.45
CE 0.81 0.53 0.67 0.80 0.78 0.77 0.74 0.80

Palmerville RMSE 70.15 98.18 90.77 71.67 74.43 72.34 83.00 69.80
(Tropical) MAE 41.21 56.21 54.15 41.03 43.38 42.64 51.02 40.91

MASE 0.52 0.71 0.68 0.52 0.55 0.54 0.64 0.52
CE 0.71 0.43 0.51 0.69 0.67 0.69 0.59 0.71

Yamba RMSE 75.04 76.77 77.48 76.48 76.14 75.11 76.06 78.15
(Subtropical) MAE 54.81 55.59 54.57 54.65 56.20 55.25 56.64 60.53

MASE 0.58 0.58 0.57 0.57 0.59 0.58 0.60 0.64
CE 0.38 0.35 0.34 0.36 0.37 0.38 0.37 0.33

Fairymead RMSE 94.89 103.97 105.46 99.81 98.59 98.00 101.59 91.28
(Subtropical) MAE 47.04 49.47 48.85 47.64 45.26 51.61 49.71 47.04

MASE 0.55 0.58 0.57 0.56 0.53 0.60 0.58 0.55
CE 0.34 0.21 0.19 0.27 0.29 0.30 0.25 0.39

Table 5.37: Prediction performance of models with best combination of input variables
in tropical and subtropical zones.
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5.5 Summary of chapter

This chapter reports on the results of the proposed CLR(Opt) and seven other mod-

els for monthly rainfall predictions over fifteen years. Considering classification zones,

twenty-four geographically diverse weather stations were used: seven from temper-

ate zone, eight from grassland, five from the desert, two from tropical and two from

subtropical zones. The purpose of choosing these locations was to investigate the

performance of the prediction models in zones which experience different climate and

hydrological regimes. All the selected prediction models were developed for each

weather station using training sets and evaluated by using test sets. The prediction

performance of models was evaluated by comparing observed and predicted rainfall us-

ing performance measures RMSE, MAE, MASE and CE. The computational results of

the proposed model were compared with those obtained from CR(EM), SVM(Linear),

SVM(RBF), MLR, ANN(0), ANN(1) and k-NN models.

The results reported in this chapter show that in the temperate climate zone, the

CLR(Opt) and SVM(RBF) models are the most capable of finding the patterns and

trends of the observations. In the grassland climate zone, the ANN(1) model is the

most suitable for monthly rainfall predictions compared to other models. In the desert

climate zone, the CLR(Opt) is the best, and in tropical and subtropical zones, the

CLR(Opt) and k-NN models are better at predicting monthly rainfall when compared

with other models. Results demonstrate that the CLR(Opt) model is an efficient

method for monthly rainfall predictions and is superior to CR(EM), SVM(Linear),

MLR, ANN(0) and k-NN models in most locations used in this study.

The prediction performance of all models varied considerably with changes of

geographic regions. Predictions have the lowest deviation from the actual observations

in the desert classification zone. The temperate classification zone was found to be

second, with the lowest deviation between predictions and actual observations, and

the grassland zone was ranked third. In the tropical and subtropical zones, predictions

have the highest deviation from the actual rainfall observations.

The results also confirmed that no single meteorological parameter as an input

variable provides the best predictions. Adding more input variables improved the

performance of models in most locations used in this study. The best combinations of

input variables in most temperate zone locations are: C12, C13 and C15; in grassland

zone: C6, C11, C13 and C15; in desert zone: C1, C6, C7, C13 and C15 and in tropical

and subtropical zones are: C6, C7, C10, C12 and C15 (see Table 5.1 for combinations

detail). The results presented in this chapter suggest that these five meteorological

parameters are suitable predictors for monthly rainfall predictions in Australia.



Chapter 6

Weekly Rainfall Predictions

In this chapter, first we present the weekly rainfall prediction results of the CLR(Opt),

CR(EM), MLR, SVMreg(RBF), SVMreg(Linear), ANN(0), ANN(1) and K-NN mod-

els within each classification zone then we assess the CLR(Opt) model performance

comparing to other models. For weekly rainfall predictions, all models were developed

using four combinations of input variables: (1) minimum temperature, maximum tem-

perature and vapour pressure (2) minimum temperature, maximum temperature and

solar radiation, (3) minimum temperature, maximum temperature, vapour pressure

and solar radiation and (4) minimum temperature, maximum temperature, evapo-

ration, vapour pressure and solar radiation. We used these combinations of input

variables as these provided best monthly rainfall predictions in most locations (See

Chapter 5). The models were trained using data from Jan 1970 to Feb 2005 and tested

using data from Feb 2005 to Feb 2015 in all 24 locations. In all cases, negative pre-

dicted values were adjusted to zero rainfall before performance measures calculated.

The prediction performance of models with each combination was evaluated by

comparing observed and predicted rainfall. The performance measure RMSE used

as a primary measure to determine the best combination of input variables for each

model at each location. Then we compare the results of the proposed method with

those obtained using the CR(EM), MLR, SVMreg(RBF), SVMreg(Linear), ANN(0),

ANN(1) and K-NN methods. We also compare the predictions zone-wise to assess

the influence of geographic regions on the performance of models.

The structure of the chapter is as follows. We present the weekly rainfall prediction

results for temperate classification zone in Section 6.1; for grassland in Section 6.2; for

desert in Section 6.3; for tropical and subtropical in Section 6.4. We also provide the

comparative assessment results of prediction models within each classification zone at

the end of each section. Section 6.5 concludes the chapter.
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6.1 Weekly rainfall predictions in temperate zone

In this section, first we present the weekly rainfall prediction results of each model

in predicting weekly rainfall with best and worst combinations of input variables in

temperate classification zone. Then we summarize the performance of all models

with best combination of input variables. Finally we compare the CLR(Opt) model

performance with other models using computational results and time series plots.

Table 6.1, summarizes the performance of the CLR(Opt) model in predicting

weekly rainfall with best and worst combinations of input variables in temperate

classification zone. According to these results, the model provides best predictions

with input variables TMax, TMin and VP in Orbost; with TMax, TMin and Rad in

Port Elliot and Peppermint Grove; with TMax, TMin, VP and Rad in Dookie; with

full set of input variables in the remaining three locations Mossvale, Koppio and Cape

Otway. The CLR(Opt) model provides worst predictions in four locations (Mossvale,

Dookie, Orbost and Cape Otway) with input variable TMax, TMin and Rad; in two

locations (Koppio and Peppermint Grove) with TMax, TMin and VP; and in one

location (Port Elliot) with TMax, TMin, VP and Rad.

The performance measure RMSE for the CLR(Opt) in predicting weekly rainfall

ranges from 10.07 to 20.04; MAE from 6.51 to 12.42; MASE from 0.54 to 0.68; and

CE from 0.18 to 0.42. The performance measures RMSE, and MAE indicate that the

model provides best predictions with lowest prediction error in the location Port Elliot;

MASE indicates in the location Dookie; CE indicates in the location Mossvale while

the performance measures RMSE, and MAE indicate worst predictions in Mossvale;

MASE and CE indicate in Peppermint Grove (see Figure 6.1). The graphical display

of observed rainfall and CLR(Opt) model predictions for ten years from Feb 2005 to

Feb 2015 is given in Figure 6.2.

Table 6.2, summarizes the performance of the CR(EM) model in predicting weekly

rainfall with best and worst combinations of input variables using test data over the

period Feb 2005 to Feb 2015 in temperate classification zone. Results show that

the CR(EM) model with input variables TMax, TMin, VP and Rad provides best

predictions in three out of seven locations (Mossvale, Koppio and Port Elliot) and

with full set of input variables provides best predictions in the remaining four locations

(Dookie, Orbost, Cape Otway, and Peppermint Grove). The model provides worst

predictions with input variable TMax, TMin and Rad in three locations (Mossvale,

Dookie and Orbost); with TMax, TMin and VP in two locations (Cape Otway and

Peppermint Grove); with a full set of five input variables in the remaining two locations

(Koppio and Port Elliot).

The performance measure RMSE for the CR(EM) in predicting weekly rainfall

ranges from 10.88 to 21.02, MAE from 7.12 to 11.89, MASE from 0.54 to 0.70 and
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Evap, VP, Rad 20.04 12.42 0.63 0.42
Koppio TMax, TMin, Evap, VP, Rad 10.55 6.59 0.58 0.39
Port Elliot TMax, TMin, Rad 10.07 6.51 0.61 0.31
Dookie TMax, TMin, VP, Rad 13.49 7.43 0.54 0.39
Orbost TMax, TMin, VP 17.13 10.86 0.61 0.37
Cape Otway TMax, TMin,Evap, VP, Rad 14.34 9.91 0.65 0.25
Peppermint Grove TMax, TMin, Rad 16.60 10.01 0.68 0.18

Performance measures for worst input combinations

Mossvale TMax, TMin, Rad 21.02 13.74 0.70 0.36
Koppio TMax, TMin, VP 10.86 6.67 0.59 0.35
Port Elliot TMax, TMin, VP, Rad 10.24 6.80 0.64 0.29
Dookie TMax, TMin, Rad 13.83 7.60 0.56 0.35
Orbost TMax, TMin, Rad 18.40 12.29 0.69 0.28
Cape Otway TMax, TMin, Rad 15.11 10.81 0.71 0.16
Peppermint Grove TMax, TMin, VP 16.74 10.05 0.68 0.17

Table 6.1: The CLR(Opt) model prediction performance for weekly rainfall using best
and worst combinations of input variables in temperate classification zone.

CE from 0.14 to 0.36. The performance measures RMSE indicates that the CR(EM)

model provides best predictions with lowest prediction error in the location Port Elliot;

MAE indicates in the location Koppio; MASE indicates in the location Dookie, and

CE indicates in the location Mossvale while performance measures RMSE, and MAE

indicate worst predictions at Mossvale; MASE indicates in Cape Otway; and CE in

Peppermint Grove(see Figure 6.1). The graphical display of observed rainfall and

CR(EM) model predictions for ten years from Feb 2005 to Feb 2015 is given in Figure

6.3.

Table 6.3, summarizes the prediction performance of the SVM(Linear) model with

best and worst combinations of input variables using test data sets over the period

Feb 2005 to Feb 2015 in temperate classification zone. The results presented in this

table show that the model with input variables TMax, TMin, and VP provides best

predictions in the location Mossvale; with TMax, TMin and Rad in two locations

(Koppio and Peppermint Grove); with TMax, TMin, VP and Rad in the location Port

Elliot and with full set of input variables provides best predictions in the remaining

three locations (Dookie, Orbost and Cape Otway). The SVM(Linear) model provides

the worst predictions with input variable TMax, TMin and Rad in three locations

(Mossvale, Dookie and Orbost); with TMax, TMin and VP also in three locations

(Port Elliot, Cape Otway and Peppermint Grove) and with full set of five input

variables in the remaining location Koppio.

The performance measure RMSE for the SVM(Linear) model in predicting weekly

rainfall ranges from 10.92 to 23.84, MAE from 6.64 to 12.64, MASE from 0.53 to 0.65
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Model RMSE MAE MASE NSE 
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Figure 6.1: Illustration of models performance in predicting weekly rainfall in tem-
perate zone.

and CE from 0.13 to 0.25. The performance measures RMSE, and MAE indicate the

model provides best predictions in the location Port Elliot; MAE and CE indicate in

the location Dookie while RMSE and MAE indicate worst predictions in Mossvale;

MASE in Cape Otway and CE indicate in Peppermint Grove (see Figure 6.1). The

graphical display of observed rainfall and SVM(Linear) model predictions for ten years

from Feb 2005 to Feb 2015 is given in Figure 6.4.

Table 6.4, summarizes the prediction performance of the SVM(RBF) model with
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Figure 6.2: Observed rainfall vs. CLR(Opt) model weekly predictions in temperate
zone.
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Figure 6.3: Observed rainfall vs. CR(EM) model weekly predictions in temperate
zone.
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Figure 6.4: Observed rainfall vs. the SVM(Linear) model weekly predictions in tem-
perate zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, VP, Rad 21.01 11.89 0.60 0.36
Koppio TMax, TMin, VP, Rad 11.84 7.12 0.63 0.23
Port Elliot TMax, TMin, VP, Rad 10.88 7.18 0.67 0.19
Dookie TMax, TMin, Evap, VP, Rad 14.83 7.41 0.54 0.26
Orbost TMax, TMin, Evap, VP, Rad 19.09 11.88 0.67 0.22
Cape Otway TMax, TMin, Evap, VP, Rad 14.74 10.66 0.70 0.20
Peppermint Grove TMax, TMin, Evap, VP, Rad 17.01 10.06 0.68 0.14

Performance measures for worst input combinations

Mossvale TMax, TMin, Rad 21.71 11.99 0.61 0.32
Koppio TMax, TMin, Evap, VP, Rad 11.93 7.12 0.63 0.22
Port Elliot TMax, TMin, Evap, VP, Rad 10.96 6.96 0.65 0.18
Dookie TMax, TMin, Rad 15.00 7.87 0.58 0.24
Orbost TMax, TMin, Rad 19.54 12.30 0.69 0.18
Cape Otway TMax, TMin, Vp 15.18 11.16 0.73 0.15
Peppermint Grove TMax, TMin, VP 17.13 10.15 0.69 0.13

Table 6.2: The CR(EM) model prediction performance for weekly rainfall using best
and worst combinations of input variables in temperate zone.

best and worst combinations of input variables using test data sets over the period

Feb 2005 to Feb 2015 in temperate classification zone. The results presented in this

table show that the model with input variables TMax, TMin, and VP provides best

predictions in three out of seven locations (Koppio, Orbost and Peppermint Grove);

with TMax, TMin and Rad in three locations (Port Elliot, Dookie and Cape Otway)

and with TMax, TMin, VP and Rad in the remaining location Mossvale. The model

provides the worst predictions with input variable TMax, TMin and Rad in three

locations (Mossvale, Dookie and Orbost); with TMax, TMin and VP in three locations

(Port Elliot, Cape Otway and Peppermint Grove) and with a full set of five input

variables in the remaining location Koppio.

The performance measure RMSE for the SVM(RBF) model in predicting weekly

rainfall ranges from 10.69 to 21.01, MAE from 6.62 to 11.89, MASE from 0.49 to 0.69

and CE from 0.11 to 0.49. The performance measures RMSE, and MAE indicate the

model provides best predictions in the location Port Elliot; MAE and CE indicate in

the location Dookie while RMSE and MAE indicate the model provide worst predic-

tions in Port Elliot and MASE and CE indicate in Cape Otway (see Figure 6.1). The

graphical display of observed rainfall and SVM(RBF) model predictions for ten years

over the period Feb 2005 to Feb 2015 is given in Figure 6.5.

Table 6.5, summarizes the prediction performance of the MLR model in predict-

ing weekly rainfall with best and worst combinations of input variables in temperate

classification zone. According to these results the model with input variables TMax,

TMin, and VP provides best predictions in the location Koppio; with TMax, TMin
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Figure 6.5: Observed rainfall vs. SVM(RBF) model weekly predictions in temperate
zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, VP 23.84 12.64 0.64 0.18
Koppio TMax, TMin, Rad 12.02 6.89 0.61 0.21
Port Elliot TMax, TMin, VP, Rad 10.92 6.64 0.62 0.19
Dookie TMax, TMin, Evap, VP, Rad 14.89 7.16 0.53 0.25
Orbost TMax, TMin, Evap, VP, Rad 19.53 11.06 0.62 0.18
Cape Otway TMax, TMin, Evap, VP, Rad 15.19 9.94 0.65 0.15
Peppermint Grove TMax, TMin, Rad 17.05 9.27 0.63 0.13

Performance measures for worst input combinations

Mossvale TMax, TMin, Rad 24.19 12.67 0.64 0.15
Koppio TMax, TMin, Evap, VP, Rad 12.23 6.86 0.61 0.18
Port Elliot TMax, TMin, VP 11.10 6.75 0.63 0.16
Dookie TMax, TMin, Rad 15.13 7.35 0.54 0.23
Orbost TMax, TMin, Rad 20.17 11.45 0.64 0.13
Cape Otway TMax, TMin, VP 15.52 10.41 0.68 0.12
Peppermint Grove TMax, TMin, VP 17.18 9.37 0.64 0.12

Table 6.3: The SVM Linear model prediction performance for weekly rainfall using
best and worst combinations of input variables in temperate zone.

and Rad in Port Elliot and Peppermint Grove; with a full set of input variables in

Mossvale, Dookie, Orbost and Cape Otway. The MLR model provides worst pre-

dictions with input variable TMax, TMin and Rad in Mossvale, Dookie, Orbost and

Cape Otway; with TMax, TMin and VP in Port Elliot and Peppermint Grove and

with a full set of five input variables in the remaining location Koppio.

The performance measure RMSE for the MLR model in predicting weekly rainfall

ranges from 10.22 to 21.65, MAE from 6.77 to 13.35, MASE from 0.55 to 0.71 and CE

from 0.17 to 0.38. The performance measures RMSE, and MAE indicate the MLR

model provides best predictions in Port Elliot and worst in Mossvale while MAE and

CE indicate best in Dookie and worse in Peppermint Grove (see Figure 6.1). The

graphical display of observed rainfall and MLR model predictions for ten years is

given in Figure 6.6.
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Figure 6.6: Observed rainfall vs. MLR model weekly predictions in temperate zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, VP, Rad 21.01 11.89 0.60 0.36
Koppio TMax, TMin, VP 11.32 6.70 0.59 0.29
Port Elliot TMax, TMin, Rad 10.69 6.62 0.62 0.22
Dookie TMax, TMin, Rad 12.27 6.71 0.49 0.49
Orbost TMax, TMin, VP 17.80 10.51 0.59 0.32
Cape Otway TMax, TMin, Rad 15.61 10.47 0.69 0.11
Peppermint Grove TMax, TMin, VP 17.03 9.20 0.63 0.14

Performance measures for worst input combinations

Mossvale TMax, TMin, Rad 21.71 11.99 0.61 0.32
Koppio TMax, TMin, Evap, VP, Rad 11.85 7.59 0.67 0.23
Port Elliot TMax, TMin, Evap, VP, Rad 10.95 7.03 0.66 0.18
Dookie TMax, TMin, Evap, VP, Rad 13.38 7.52 0.55 0.40
Orbost TMax, TMin, Rad 19.31 11.17 0.63 0.20
Cape Otway TMax, TMin, VP, Rad 16.82 11.56 0.76 -0.04
Peppermint Grove TMax, TMin, Evap, VP, Rad 18.61 10.31 0.70 -0.03

Table 6.4: The SVM(RBF) model prediction performance for weekly rainfall using
best and worst combinations of input variables in temperate zone.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Evap, VP, Rad 21.65 13.35 0.68 0.32
Koppio TMax, TMin, VP 10.94 6.76 0.60 0.34
Port Elliot TMax, TMin, Rad 10.22 6.77 0.64 0.29
Dookie TMax, TMin, Evap, VP, Rad 13.60 7.44 0.55 0.38
Orbost TMax, TMin, Evap, VP, Rad 17.95 11.88 0.67 0.31
Cape Otway TMax, TMin, Evap, VP, Rad 14.51 10.22 0.67 0.23
Peppermint Grove TMax, TMin, Rad 16.65 10.41 0.71 0.17

Performance measures for worst input combinations

Mossvale TMax, TMin, Rad 22.43 14.60 0.74 0.27
Koppio TMax, TMin, Evap, VP, Rad 11.10 6.75 0.60 0.32
Port Elliot TMax, TMin, VP 10.36 6.92 0.65 0.27
Dookie TMax, TMin, Rad 13.84 7.62 0.56 0.35
Orbost TMax, TMin, Rad 19.15 12.77 0.72 0.22
Cape Otway TMax, TMin, Rad 15.14 10.89 0.71 0.16
Peppermint Grove TMax, TMin, VP 16.79 10.47 0.71 0.16

Table 6.5: The MLR model prediction performance for weekly rainfall with best and
worst combinations of input variables in temperate zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, VP, Rad 24.34 12.90 0.65 0.14
Koppio TMax, TMin, Rad 10.66 6.63 0.59 0.37
Port Elliot TMax, TMin, VP 10.01 6.63 0.62 0.32
Dookie TMax, TMin, Evap, VP, Rad 12.77 7.06 0.52 0.45
Orbost TMax, TMin, VP 16.64 11.23 0.63 0.41
Cape Otway TMax, TMin, Evap, VP, Rad 13.41 8.99 0.59 0.34
Peppermint Grove TMax, TMin, VP 16.59 10.39 0.71 0.18

Performance measures for worst input combinations

Mossvale TMax, TMin, Rad 24.91 12.85 0.65 0.10
Koppio TMax, TMin, VP 11.09 7.08 0.63 0.32
Port Elliot TMax, TMin, Rad 10.22 6.77 0.64 0.29
Dookie TMax, TMin, VP, Rad 13.40 7.16 0.53 0.39
Orbost TMax, TMin, Rad 19.25 12.75 0.72 0.21
Cape Otway TMax, TMin, VP 15.17 10.99 0.72 0.16
Peppermint Grove TMax, TMin, Evap, VP, Rad 16.69 10.31 0.70 0.17

Table 6.6: The ANN(0) model prediction performance for weekly rainfall with best
and worst combinations of input variables in temperate zone.

Table 6.6, summarizes the prediction performance of the ANN(0) model with best

and worst combinations of input variables in temperate classification zone. According

to these results, the model with input variables TMax, TMin, and VP provides best

predictions in Port Elliot, Orbost and Peppermint Grove; with TMax, TMin and Rad

in the location Koppio; with TMax, TMin, VP and Rad in the location Mossvale and

with full set of five input variables in the remaining locations Dookie and Cape Otway.

The ANN(0) model provides the worst predictions with input variable TMax, TMin

and Rad in Mossvale, Port Elliot and Orbost; with TMax, TMin and VP in Koppio

and Cape Otway; with TMax, TMin, VP and Rad in the location Dookie and with

full set of five input variables in the remaining location Peppermint Grove.

The performance measure RMSE for the ANN(0) model in predicting weekly rain-

fall ranges from 10.01 to 24.34, MAE from 6.63 to 12.90, MASE from 0.52 to 0.71

and CE from 0.14 to 0.45. The performance measures RMSE, and MAE indicate the

ANN(0) model provide best predictions in the locations Port Elliot; MASE and CE

indicate in Dookie while the performance measures RMSE, MAE and CE indicate

worst predictions in Mossvale and MASE indicates in Peppermint Grove (see Figure

6.1). The graphical display of observed rainfall and ANN(0) model predictions over

the period of ten years is given in Figure 6.7.

Table 6.7, summarizes the prediction performance of the ANN(1) model with best

and worst combinations of input variables in temperate classification zone. Results

show that the model with input variables TMax, TMin, and Rad provides best pre-

dictions in four locations (Koppio, Port Elliot, Cape Otway and Peppermint Grove);
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Figure 6.7: Observed rainfall vs. ANN(0) model weekly predictions in temperate
zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Vp, Rad 21.26 13.58 0.69 0.34
Koppio TMax, TMin, Rad 10.78 6.78 0.60 0.36
Port Elliot TMax, TMin, Rad 10.03 6.63 0.62 0.31
Dookie TMax, TMin, VP, Rad 13.01 7.09 0.52 0.43
Orbost TMax, TMin, Evap, VP, Rad 16.04 10.75 0.60 0.45
Cape Otway TMax, TMin, Rad 15.20 11.05 0.72 0.15
Peppermint Grove TMax, TMin, Rad 16.58 10.01 0.68 0.18

Performance measures for worst input combinations

Mossvale TMax, TMin, Rad 23.06 13.74 0.70 0.23
Koppio TMax, TMin, VP, Rad 13.48 9.81 0.87 0.00
Port Elliot TMax, TMin, VP 10.23 6.88 0.65 0.29
Dookie TMax, TMin, Evap, VP, Rad 13.40 7.19 0.53 0.39
Orbost TMax, TMin, Rad 21.66 14.49 0.81 0.00
Cape Otway TMax, TMin, VP, Rad 16.64 13.00 0.85 -0.02
Peppermint Grove TMax, TMin, Vp, Rad 18.32 12.15 0.83 0.00

Table 6.7: The ANN(1) model performance in predicting weekly rainfall with best
and worst combinations of input variables in temperate zone.

with TMax, TMin, VP and Rad in two locations (Mossvale and Dookie) and with full

set of five input variables in the remaining location Orbost. The model provides worst

predictions with input variable TMax, TMin and Rad in two locations (Mossvale and

Orbost); with TMax, TMin and VP in the location Port Elliot; with TMax, TMin,

VP and Rad in three locations (Koppio, Cape Otway and Peppermint Grove) and

with full set of five input variables in the remaining location Dookie.

The performance measure RMSE for the ANN(1) model in predicting weekly rain-

fall ranges from 10.03 to 21.26, MAE from 6.63 to 13.58, MASE from 0.52 to 0.72

and CE from 0.15 to 0.45. The performance measures RMSE and MAE indicate the

ANN(1) model provides best predictions in the location Port Elliot; MASE indicates

in the location Dookie and CE indicates in the location Orbost while RMSE and

MAE indicate worst predictions in Mossvale and MASE and CE indicate in Cape

Otway (see Figure 6.1). The graphical display of observed rainfall and ANN(1) model

predictions over the test period is given in Figure 6.8.

Table 6.8, summarizes the prediction performance of the k-NN model with best

and worst combinations of input variables in temperate classification zone. The results

presented show that the model with input variables TMax, TMin, and Rad provides

best predictions in the location Port Elliot; with TMax, TMin, VP in the location

Orbost; with TMax, TMin, VP and Rad in the location Peppermint Grove and with

a full set of five input variables in the remaining four locations (Mossvale, Koppio,

Dookie and Cape Otway). The k-NN model provides the worst predictions with

input variable TMax, TMin and Rad in four locations (Mossvale, Koppio, Orbost and
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Figure 6.8: Observed rainfall vs. ANN(1) model weekly predictions in temperate
zone.
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Peppermint Grove); with TMax, TMin and VP in two locations (Dookie and Cape

Otway) and with a full set of five input variables in the remaining location Port Elliot.

The performance measure RMSE for the k-NN model in predicting weekly rainfall

ranges from 10.14 to 21.45, MAE from 6.76 to 13.19, MASE from 0.58 to 0.69 and

CE from 0.20 to 0.36. The performance measures RMSE and MAE indicate the k-

NN model provides best predictions in the location Port Elliot; MASE indicates in

the location Dookie, and CE indicates in the location Koppio while the performance

measures RMSE, and MAE indicate worst predictions in Mossvale; MASE indicates

in Cape Otway and CE in Peppermint Grove (see Figure 6.1). The graphical display

of observed rainfall and k-NN model predictions over the test period is given in Figure

6.9.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Mossvale TMax, TMin, Evap, VP, Rad 21.45 13.19 0.67 0.33
Koppio TMax, TMin, Evap, VP, Rad 10.81 6.78 0.60 0.36
Port Elliot TMax, TMin, Rad 10.14 6.76 0.64 0.30
Dookie TMax, TMin, Evap, VP, Rad 14.43 7.86 0.58 0.30
Orbost TMax, TMin, VP 17.46 11.11 0.62 0.35
Cape Otway TMax, TMin, Evap, VP, Rad 14.61 10.48 0.69 0.22
Peppermint Grove TMax, TMin, VP, rad 16.44 9.85 0.67 0.20

Performance measures for worst input combinations

Mossvale TMax, TMin, Rad 22.00 13.87 0.70 0.30
Koppio TMax, TMin, Rad 10.96 6.97 0.62 0.34
Port Elliot TMax, TMin, Evap, VP, Rad 10.46 6.89 0.65 0.26
Dookie TMax, TMin, VP 14.59 7.88 0.58 0.28
Orbost TMax, TMin, Rad 18.90 12.31 0.69 0.24
Cape Otway TMax, TMin, VP 16.00 11.79 0.77 0.06
Peppermint Grove TMax, TMin, Rad 17.06 10.12 0.69 0.13

Table 6.8: The k-NN model performance in predicting weekly rainfall with best and
worst combinations of input variables in temperate zone.

Table 6.9, summarizes the performance of all selected models in predicting weekly

rainfall with best combinations of input variables in temperate classification zone.

Best results among all models are highlighted in bold. According to these results,

at least one performance measure indicate that the CLR(Opt) is best in three out

of seven locations (Moss Vale, Koppio and Port Elliot); SVM(RBF) in four locations

(Moss Vale, Dookie, Orbost and Peppermint Grove) and ANN(0) in two locations

(PortElliot and Cape Otway) while CR(EM) in Moss Vale; ANN(1) in Orbost; k-NN

and SVM(Linear) in Peppermint Grove.

According to the performance measure RMSE, the CLR(Opt) model outperformed

other models in Mossvale and Koppio; the ANN(0) outperformed in Port Elliot and

Cape Otway; ANN(1) in Orbost; SVM(RBF) in Dookie and k-NN in Peppermint
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Figure 6.9: Observed rainfall vs. k-NN model weekly predictions in temperate zone.
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Stations Measures CLR CR SVM SVM MLR ANN ANN KNN
(Opt) (EM) (Linear) (RBF) (0) (1)

Mossvale RMSE 20.04 21.01 23.84 21.01 21.65 24.34 21.26 21.45
MAE 12.42 11.89 12.64 11.89 13.35 12.90 13.58 13.19
MASE 0.63 0.60 0.64 0.60 0.68 0.65 0.69 0.67
CE 0.42 0.36 0.18 0.36 0.32 0.14 0.34 0.33

Koppio RMSE 10.55 11.84 12.02 11.32 10.94 10.66 10.78 10.81
MAE 6.59 7.12 6.89 6.70 6.76 6.63 6.78 6.78
MASE 0.58 0.63 0.61 0.59 0.60 0.59 0.60 0.60
CE 0.39 0.23 0.21 0.29 0.34 0.37 0.36 0.36

Port RMSE 10.07 10.88 10.92 10.69 10.22 10.01 10.03 10.14
Elliot MAE 6.51 7.18 6.64 6.62 6.77 6.63 6.63 6.76

MASE 0.61 0.67 0.62 0.62 0.64 0.62 0.62 0.64
CE 0.31 0.19 0.19 0.22 0.29 0.32 0.31 0.30

Dookie RMSE 13.49 14.83 14.89 12.27 13.60 12.77 13.01 14.43
MAE 7.43 7.41 7.16 6.71 7.44 7.06 7.09 7.86
MASE 0.54 0.54 0.53 0.49 0.55 0.52 0.52 0.58
CE 0.39 0.26 0.25 0.49 0.38 0.45 0.43 0.30

Orbost RMSE 17.13 19.09 19.53 17.80 17.95 16.64 16.04 17.46
MAE 10.86 11.88 11.06 10.51 11.88 11.23 10.75 11.11
MASE 0.61 0.67 0.62 0.59 0.67 0.63 0.60 0.62
CE 0.37 0.22 0.18 0.32 0.31 0.41 0.45 0.35

Cape RMSE 14.34 14.74 15.19 15.61 14.51 13.41 15.20 14.61
Otway MAE 9.91 10.66 9.94 10.47 10.22 8.99 11.05 10.48

MASE 0.65 0.70 0.65 0.69 0.67 0.59 0.72 0.69
CE 0.25 0.20 0.15 0.11 0.23 0.34 0.15 0.22

Peppermint RMSE 16.60 17.01 17.05 17.03 16.65 16.59 16.58 16.44
Grove MAE 10.01 10.06 9.27 9.20 10.41 10.39 10.01 9.85

MASE 0.68 0.68 0.63 0.63 0.71 0.71 0.68 0.67
CE 0.18 0.14 0.13 0.14 0.17 0.18 0.18 0.20

Table 6.9: Models performance for predicting weekly rainfall with best combination
of input variables in temperate classification zone.

Grove. In Port Elliot, the CLR(Opt) model performance is 0.60% lower than the best

one; in Cape Otway 6.49%; in Orbost 6.36%; in Dookie 9.04% and in Peppermint

Grove 0.96%. In two locations (Port Elliot and Peppermint Grove), the CLR(Opt)

model performance is less than 1% lower than the best models.

A visual comparison of model predictions with the actual observations in temperate

classification zone, given in Figures 5.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9, show that

all models follow the series patterns at all locations.

Results presented in this section demonstrate that the CLR(Opt) and ANN(0)

models are superior than other models. Both CLR(Opt) and SVM(RBF) models are

the most suitable models in finding the pattern and trends of the observations in

temperate classification zone for weekly rainfall predictions.
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6.2 Weekly rainfall predictions in grassland zone

In this section, first we present the weekly rainfall prediction results of each model

in predicting weekly rainfall with best and worst combinations of input variables

in grassland classification zone. Then we summarize the performance of all models

with best combination of input variables. Finally we compare the CLR(Opt) model

performance with other models.

Table 6.10, summarizes the prediction performance of the CLR(Opt) model with

the best and worst combinations of input variables in grassland classification zone.

According to these results the CLR(Opt) model provides best predictions with input

variables TMax, TMin and VP in three out of eight locations (Alexandria, Annuello

and Ningaloo); with TMax, TMin and VP in two locations (Blinman and Dowerine)

and with full set of five meteorological variables in the remaining three locations

(Warren, Richmond and Newry). The model provides worst predictions with input

variables TMax, TMin and Rad in all eight locations.

The performance measure RMSE for the CLR(Opt) model in predicting weekly

rainfall ranges from 8.51 to 28.49, MAE from 4.28 to 11.92, MASE from 0.53 to 0.63

and CE from 0.30 to 0.59. The performance measures RMSE indicates that the model

provides best predictions in Dowerine; MAE indicates in Ningaloo; MASE indicates

in Warren and CE indicates in Richmond while the performance RMSE, MAE and

MASE indicate worst prediction in Newry and CE indicate in Dowerine (see Figure

6.10). The graphical display of observed rainfall and CLR(Opt) model predictions

over the test period is given in Figure 6.11.

Table 6.11, summarizes the prediction performance of the CR(EM) model with

best and worst combinations of input variables in grassland classification zone. Ac-

cording to these results, the CR(EM) model provides best predictions with input vari-

ables TMax, TMin and Rad in one location (Warren); with input variables TMax,

TMin, VP in three locations (Newry, Alexandria and Blinman); with TMax, TMin,

VP and Rad in two locations (Annuello and Ningaloo) and with full set of five mete-

orological variables in two locations (Richmond and Dowerine). The model provides

worst predictions with input variables TMax, TMin and Rad in all locations except

Warren. In Warren, the model provides worst predictions with full set of input mete-

orological parameters.

The performance measure RMSE for the CR(EM) model in predicting weekly

rainfall ranges from 9.39 to 37.08, MAE from 4.53 to 16.50, MASE from 0.49 to 0.88

and CE from 0.15 to 0.59. The performance measures RMSE indicates the model

provides best predictions with lowest prediction error in Dowerine; MAE indicates in

the location Ningaloo; MASE indicates in the location Warren and CE indicates in

the location Richmond while all four performance measures indicate worst predictions



151

Model RMSE MAE MASE NSE 

CLR 

    

CREM 

    

SVM_Linear 

    

SVM_RBF 

    

MLR 

    

ANN_0 

    

ANN_1 

    

KNN 

    
 

0
5

10
15
20
25
30

0

5

10

15

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0

10

20

30

40

0

5

10

15

20

0.0
0.2
0.4
0.6
0.8
1.0

0.0

0.2

0.4

0.6

0.8

0

10

20

30

40

0

5

10

15

20

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.1
0.1
0.2
0.2
0.3

0
5

10
15
20
25
30

0

5

10

15

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0

10

20

30

40

0

5

10

15

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.1
0.2
0.3
0.4
0.5

0
5

10
15
20
25
30

0

5

10

15

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0
5

10
15
20
25
30

0

5

10

15

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0

10

20

30

40

0

5

10

15

20

0.0

0.2

0.4

0.6

0.8

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Figure 6.10: Graphical display of models performance measures in predicting weekly
rainfall in grassland zone.

in Newry (see Figure 6.10). The graphical display of observed rainfall and CR(EM)

model predictions over the test period are given in Figure 6.12.

Table 6.12, summarizes the prediction performance of the SVM(Linear) model
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Figure 6.11: Observed rainfall vs. CLR(Opt) model weekly predictions in grassland
classification zone.
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Figure 6.12: Observed rainfall vs. CR(EM) model weekly predictions in grassland
classification zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, Evap, VP, Rad 14.91 7.27 0.53 0.43
Newry TMax, TMin, Evap, VP, Rad 28.49 11.92 0.64 0.50
Alexandria TMax, TMin, VP 16.25 7.55 0.60 0.55
Richmond TMax, TMin, Evap, VP, Rad 15.63 8.44 0.63 0.59
Blinman TMax, TMin, VP, Rad 11.72 5.97 0.59 0.33
Annuello TMax, TMin, Vp 12.18 4.98 0.55 0.34
Ningaloo TMax, TMin, VP 12.31 4.28 0.55 0.40
Dowerine TMax, TMin, VP, Rad 8.51 4.66 0.56 0.30

Performance measures for worst input combinations

Warren TMax, TMin, Rad 15.33 7.48 0.54 0.40
Newry TMax, TMin, Rad 29.71 12.71 0.68 0.45
Alexandria TMax, TMin, Rad 17.84 8.63 0.68 0.46
Richmond TMax, TMin, Rad 18.20 9.01 0.67 0.45
Blinman TMax, TMin, Rad 12.12 6.21 0.61 0.28
Annuello TMax, TMin, Rad 13.15 4.95 0.54 0.23
Ningaloo TMax, TMin, Rad 13.48 4.68 0.61 0.28
Dowerine TMax, TMin, Rad 8.76 4.81 0.58 0.26

Table 6.10: The CLR(Opt) model performance for weekly rainfall predictions with
best and worst combinations of input variables in grassland classification zone.

with best and worst combinations of input variables in grassland classification zone.

The results show that the SVM(Linear) model provides best predictions with input

variables TMax, TMin, VP and Rad in two locations (Annuello and Dowerine); with

full set of five meteorological variables in the remaining six locations (Warren, Newry,

Alexandria, Richmond, Blinman and Ningaloo). The SVM(Linear) model provides

worst predictions with input variables TMax, TMin and Rad in all locations except

Ningaloo. In Ningaloo, the model provides worst predictions with the input variables

TMax, TMin and VP.

The performance measure RMSE for the SVM(Linear) model in predicting weekly

rainfall ranges from 9.29 to 35.63, MAE from 4.68 to 14.34, MASE from 0.54 to

0.77 and CE from 0.0.06 to 0.21. The performance measures RMSE indicates the

model has lowest prediction error in the location Dowerine; MAE indicates in the

location Ningaloo; MASE indicates in the location Annuello and CE indicates in

the location Newry while performance measures RMSE, MAE and MASE indicates

highest prediction error in the location Newry and CE in the location Ningaloo (see

Figure 6.10). The graphical display of observed rainfall and SVM(Linear) model

predictions are given in Figure 6.13.

Table 6.13, summarizes the prediction performance of the SVM(RBF) model with

best and worst combinations of input variables in grassland classification zone. Ac-

cording to these results the SVM(RBF) model provides best predictions with input
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Figure 6.13: Observed rainfall vs. SVM(Linear) model weekly predictions in grassland
classification zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, Rad 14.50 6.84 0.49 0.46
Newry TMax, TMin, VP 37.08 16.50 0.88 0.15
Alexandria TMax, TMin, VP 21.38 8.19 0.65 0.23
Richmond TMax, TMin, Evap, VP, Rad 15.63 8.44 0.63 0.59
Blinman TMax, TMin, VP 12.78 6.72 0.66 0.20
Annuello TMax, TMin, VP, Rad 13.82 5.28 0.58 0.15
Ningaloo TMax, TMin, VP, Rad 14.61 4.53 0.59 0.15
Dowerine TMax, TMin, Evap, VP, Rad 9.39 5.45 0.66 0.15

Performance measures for worst input combinations

Warren TMax, TMin, Evap, VP, Rad 15.75 7.44 0.54 0.36
Newry TMax, TMin, Rad 37.27 17.17 0.92 0.14
Alexandria TMax, TMin, Rad 21.55 8.36 0.66 0.21
Richmond TMax, TMin, Rad 18.20 9.01 0.67 0.45
Blinman TMax, TMin, Rad 13.39 6.86 0.68 0.12
Annuello TMax, TMin, Rad 14.05 5.59 0.61 0.12
Ningaloo TMax, TMin, Rad 14.70 4.64 0.60 0.14
Dowerine TMax, TMin, Rad 9.52 5.56 0.67 0.13

Table 6.11: The CR(EM) model performance for weekly rainfall predictions with best
and worst combinations of input variables in grassland classification zone.

variables TMax, TMin and Rad in one location (Warren); with TMax, Tmin and

VP in three locations (Alexandria, Blinman and Annuello); with TMax, TMin, VP

and Rad in Richmond and with full set of five meteorological variables in the remain-

ing three locations (Newry, Ningaloo and Dowerine) while the model provides worst

predictions with input variables TMax, TMin and Rad in two locations (Newry and

Richmond); with TMax, TMin and VP in two locations (Ningaloo and Dowerine);

with TMax, TMin, VP and Rad in Blinman and with full set of variables in three

locations (Warren, Alexandria and Annuello).

The performance measure RMSE for the SVM(RBF) model in predicting weekly

rainfall ranges from 9.04 to 28.52, MAE from 4.39 to 12.24, MASE from 0.49 to 0.66

and CE from 0.21 to 0.59. The performance measures RMSE indicates the SVM(RBF)

model provides best predictions in the location Dowerine; MAE indicates in the lo-

cation Ningaloo; MASE indicates in the location Warren and CE indicates in the

location Alexandria while performance measures RMSE, MAE and MASE indicates

worst predictions in the location Newry; CE in the location Dowerine (see Figure

6.10). The graphical display of observed rainfall and SVM(RBF) model predictions

over the test period is given in Figure 6.14.

Table 6.14, summarizes the prediction performance of the MLR model with best

and worst combinations of input variables in grassland classification zone. The re-

sults show that the MLR model provides best predictions with input variables TMax,



157

 

0

20

40

60

80
R

ai
n

fa
ll 

(m
m

) 

Observed Rainfall Predicted Rainfall Dowerine 

0

50

100

150

R
ai

n
fa

ll 
(m

m
) 

Ningalo 

0

100

200

300

400

R
ai

n
fa

ll 
(m

m
) 

Newry 

0

50

100

150

200

R
ai

n
fa

ll 
(m

m
) 

Alexandria 

0

50

100

150

R
ai

n
fa

ll 
(m

m
) 

Blinman 

0

50

100

150

200

R
ai

n
fa

ll 
(m

m
) 

Warren 

0

50

100

150

200

R
ai

n
fa

ll 
(m

m
) 

Richmond 

0

25

50

75

100

2
8/

02
/2

0
05

 -
…

2
3/

05
/2

0
05

 -
…

1
5/

08
/2

0
05

 -
…

7
/1

1/
20

0
5 

-…

3
0/

01
/2

0
06

 -
…

2
4/

04
/2

0
06

 -
…

1
7/

07
/2

0
06

 -
…

9
/1

0/
20

0
6 

-…

1
/0

1/
20

0
7 

-…

2
6/

03
/2

0
07

 -
…

1
8/

06
/2

0
07

 -
…

1
0/

09
/2

0
07

 -
…

3
/1

2/
20

0
7 

-…

2
5/

02
/2

0
08

 -
…

1
9/

05
/2

0
08

 -
…

1
1/

08
/2

0
08

 -
…

3
/1

1/
20

0
8 

-…

2
6/

01
/2

0
09

 -
…

2
0/

04
/2

0
09

 -
…

1
3/

07
/2

0
09

 -
…

5
/1

0/
20

0
9 

-…

2
8/

12
/2

0
09

 -
…

2
2/

03
/2

0
10

 -
…

1
4/

06
/2

0
10

 -
…

6
/0

9/
20

1
0 

-…

2
9/

11
/2

0
10

 -
…

2
1/

02
/2

0
11

 -
…

1
6/

05
/2

0
11

 -
…

8
/0

8/
20

1
1 

-…

3
1/

10
/2

0
11

 -
…

2
3/

01
/2

0
12

 -
…

1
6/

04
/2

0
12

 -
…

9
/0

7/
20

1
2 

-…

1
/1

0/
20

1
2 

-…

2
4/

12
/2

0
12

 -
…

1
8/

03
/2

0
13

 -
…

1
0/

06
/2

0
13

 -
…

2
/0

9/
20

1
3 

-…

2
5/

11
/2

0
13

 -
…

1
7/

02
/2

0
14

 -
…

1
2/

05
/2

0
14

 -
…

4
/0

8/
20

1
4 

-…

2
7/

10
/2

0
14

 -
…

1
9/

01
/2

0
15

 -
…

R
ai

n
fa

ll 
(m

m
) 

Annuello 

Figure 6.14: Observed rainfall vs. SVM(RBF) model weekly predictions in grassland
classification zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, Evap, VP, Rad 17.83 7.64 0.55 0.18
Newry TMax, TMin, Evap, VP, Rad 35.63 14.34 0.77 0.21
Alexandria TMax, TMin, Evap, VP, Rad 22.25 8.51 0.67 0.16
Richmond TMax, TMin, Evap, VP, Rad 22.46 9.15 0.68 0.16
Blinman TMax, TMin, Evap, VP, Rad 13.21 5.86 0.58 0.15
Annuello TMax, TMin, VP, Rad 14.05 4.93 0.54 0.12
Ningaloo TMax, TMin, Evap, VP, Rad 15.39 4.68 0.61 0.06
Dowerine TMax, TMin, VP, Rad 9.29 4.86 0.59 0.17

Performance measures for worst input combinations

Warren TMax, TMin, Rad 18.14 7.88 0.57 0.16
Newry TMax, TMin, Rad 37.48 15.42 0.83 0.13
Alexandria TMax, TMin, Rad 23.12 8.84 0.70 0.09
Richmond TMax, TMin, Rad 23.53 9.53 0.71 0.08
Blinman TMax, TMin, Rad 13.49 6.01 0.59 0.11
Annuello TMax, TMin, Rad 14.26 5.01 0.55 0.10
Ningaloo TMax, TMin, VP 15.51 4.70 0.61 0.05
Dowerine TMax, TMin, Rad 9.54 4.94 0.60 0.12

Table 6.12: The SVM(Linear) model performance for weekly rainfall prediction with
best and worst combinations of input variables in grassland zone.

TMin and VP in the location Alexandria; with TMax, TMin, VP and Rad in two

locations (Annuello and Ningaloo) and with full set of five meteorological variables

in the remaining five locations (Warren, Newry, Richmond, Blinman and Dowerine)

while the model provides worst predictions with input variables TMax, TMin and

Rad in all eight locations.

The performance measure RMSE for the MLR model in predicting weekly rainfall

ranges from 9.04 to 28.52, MAE from 4.39 to 12.24, MASE from 0.49 to 0.66 and

CE from 0.21 to 0.59. The performance measures RMSE and MAE indicate that

the MLR model provides best predictions with lowest prediction error in the location

Dowerine; MASE indicates in the location Annuello and CE indicates in the location

Alexandria while the performance measures RMSE, MAE indicates worst predictions

in the location Newry; MASE in the location Richmond and CE in the location

Ningaloo (see Figure 6.10). The graphical display of observed rainfall and MLR

model predictions over the test period is given in Figure 6.15.
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Figure 6.15: Observed rainfall vs. MLR model weekly predictions in grassland classi-
fication zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, Rad 14.50 6.84 0.49 0.46
Newry TMax, TMin, Evap, VP, Rad 28.52 12.24 0.66 0.49
Alexandria TMax, TMin, VP 15.51 7.18 0.57 0.59
Richmond TMax, TMin, VP, Rad 18.13 8.29 0.62 0.45
Blinman TMax, TMin, VP 11.94 5.72 0.56 0.30
Annuello TMax, TMin, VP 11.92 4.92 0.54 0.37
Ningaloo TMax, TMin, Evap, VP, Rad 12.43 4.39 0.57 0.39
Dowerine TMax, TMin, Evap, VP, Rad 9.04 4.97 0.60 0.21

Performance measures for worst input combinations

Warren TMax, TMin, Evap, VP, Rad 15.75 7.44 0.54 0.36
Newry TMax, TMin, Rad 31.12 12.91 0.69 0.40
Alexandria TMax, TMin, Evap, VP, Rad 18.69 8.46 0.67 0.41
Richmond TMax, TMin, Rad 19.67 8.54 0.64 0.36
Blinman TMax, TMin, VP, Rad 12.48 5.70 0.56 0.24
Annuello TMax, TMin, Evap, VP, Rad 12.25 5.32 0.58 0.33
Ningaloo TMax, TMin, VP 12.98 4.58 0.59 0.33
Dowerine TMax, TMin, VP 9.55 4.86 0.59 0.12

Table 6.13: The SVM(RBF) model performance for weekly rainfall prediction with
best and worst combinations of input variables in grassland classification zone.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, Evap, VP, Rad 15.89 8.36 0.60 0.35
Newry TMax, TMin, Evap, VP, Rad 30.98 13.85 0.74 0.40
Alexandria TMax, TMin, VP 18.68 9.58 0.76 0.41
Richmond TMax, TMin, Evap, VP, Rad 19.18 11.03 0.82 0.39
Blinman TMax, TMin, Evap, VP, Rad 11.81 6.40 0.63 0.32
Annuello TMax, TMin, VP, Rad 12.69 5.10 0.56 0.28
Ningaloo TMax, TMin, VP, Rad 13.54 5.78 0.75 0.27
Dowerine TMax, TMin, Evap, VP, Rad 8.47 4.83 0.58 0.31

Performance measures for worst input combinations

Warren TMax, TMin, Rad 16.33 8.69 0.63 0.32
Newry TMax, TMin, Rad 32.36 15.50 0.83 0.35
Alexandria TMax, TMin, Rad 19.28 10.03 0.79 0.37
Richmond TMax, TMin, Rad 20.08 11.62 0.86 0.33
Blinman TMax, TMin, Rad 12.41 6.97 0.69 0.25
Annuello TMax, TMin, Rad 13.18 5.29 0.58 0.23
Ningaloo TMax, TMin, Rad 13.68 5.82 0.75 0.26
Dowerine TMax, TMin, Rad 8.72 4.82 0.58 0.27

Table 6.14: The MLR model performance for weekly rainfall predictions with best
and worst combinations of input variables in grassland classification zone.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, Evap, VP, Rad 14.49 7.19 0.52 0.46
Newry TMax, TMin, Evap, VP, Rad 28.18 12.36 0.66 0.51
Alexandria TMax, TMin, VP, Rad 15.24 7.54 0.60 0.61
Richmond TMax, TMin, Evap, VP, Rad 16.58 8.90 0.66 0.54
Blinman TMax, TMin, VP, Rad 11.74 5.97 0.59 0.33
Annuello TMax, TMin, VP 11.64 4.92 0.54 0.40
Ningaloo TMax, TMin, VP 12.22 4.68 0.61 0.41
Dowerine TMax, TMin, VP, Rad 8.39 4.66 0.56 0.32

Performance measures for worst input combinations

Warren TMax, TMin, VP 15.97 8.44 0.61 0.35
Newry TMax, TMin, Rad 32.36 15.50 0.83 0.35
Alexandria TMax, TMin, Evap, VP, Rad 18.69 9.55 0.76 0.41
Richmond TMax, TMin, Rad 19.68 9.76 0.73 0.36
Blinman TMax, TMin, Rad 12.13 6.57 0.65 0.28
Annuello TMax, TMin, Evap, VP, Rad 12.70 5.05 0.55 0.28
Ningaloo TMax, TMin, Evap, VP, Rad 13.55 5.83 0.76 0.27
Dowerine TMax, TMin, Rad 8.75 4.83 0.58 0.26

Table 6.15: The ANN(0) model performance for weekly rainfall predictions with best
and worst combinations of input variables in grassland zone.

Table 6.15, summarizes the prediction performance of the ANN(0) model with best

and worst combinations of input variables in grassland classification zone. According

to these results the ANN(0) model provides the best predictions with input variables

TMax, TMin and VP in two locations (Annuello and Ningaloo); with TMax, Tmin,

VP and Rad in three locations (Alexandria, Blinman and Dowerine) and with full set

of five meteorological variables in the remaining three locations (Warren, Newry and

Richmond). The model provides worst predictions with input variables TMax, TMin

and Rad in four locations (Newry, Richmond, Blinman and Dowerine); with TMax,

TMin and VP in the location Warren and with full set of variables in three locations

(Alexandria, Annuello and Ningaloo).

The performance measure RMSE for the ANN(0) model in predicting weekly rain-

fall ranges from 8.39 to 28.18, MAE from 4.66 to 12.36, MASE from 0.52 to 0.66 and

CE from 0.32 to 0.61.. The performance measures RMSE and MAE indicate that the

ANN(0) model provides best predictions in the location Dowerine; MASE indicates

in the location Warren and CE indicates in the location Alexandria while the perfor-

mance measures RMSE, MAE and MASE indicate worst predictions in the location

Newry and CE in the location Dowerine (see Figure 6.10). The graphical display of

observed rainfall and ANN(0) model predictions over the test period is given in Figure

6.16.

Table 6.16, summarizes the prediction performance of the ANN(1) model with best
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Figure 6.16: Observed rainfall vs. ANN(0) model weekly predictions in grassland
classification zone.
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and worst combinations of input variables in grassland classification zone. According

to these results the ANN(1) model provides the best predictions with input variables

TMax, TMin and VP in two locations (Annuello and Blinman); with TMax, Tmin,

VP and Rad in the location Dowerine and with full set of five meteorological variables

in the remaining five locations (Warren, Newry, Alexandria, Richmond, Ningaloo).

The model provides worst predictions with input variables TMax, TMin and Rad

in five locations (Warren, Newry, Alexandria, Blinman and Ningaloo); with TMax,

TMin and VP in the location Dowerine and with TMax, TMin, VP and Rad in two

locations (Annuello and Richmond).

The performance measure RMSE for the ANN(1) model in predicting weekly rain-

fall ranges from 8.37 to 27.68, MAE from 4.53 to 12.25, MASE from 0.51 to 0.67 and

CE from 0.32 to 0.59. The performance measure RMSE indicates that the ANN(1)

model provides best predictions in the location Dowerine; MAE indicates in the lo-

cation Ningaloo; MASE indicates in the location Warren and CE indicates in the lo-

cation Alexandria while the performance measures RMSE and MAE indicates worst

predictions in the location Newry; MASE indicates in the location Richmond and CE

in the location Dowerine (see Figure 6.10). The graphical display of observed rainfall

and ANN(1) model predictions fover the test period is given in Figure 6.17.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, Evap, VP, Rad 13.72 7.03 0.51 0.52
Newry TMax, TMin, Evap, VP, Rad 27.68 12.25 0.66 0.52
Alexandria TMax, TMin, Evap, VP, Rad 15.60 7.67 0.61 0.59
Richmond TMax, TMin, Evap, VP, Rad 16.79 8.96 0.67 0.53
Blinman TMax, TMin, VP 11.68 6.22 0.61 0.33
Annuello TMax, TMin, VP 11.61 4.89 0.54 0.40
Ningaloo TMax, TMin, Evap, VP, Rad 12.18 4.53 0.59 0.41
Dowerine TMax, TMin, VP, Rad 8.37 4.55 0.55 0.32

Performance measures for worst input combinations

Warren TMax, TMin, Rad 14.72 7.75 0.56 0.44
Newry TMax, TMin, Rad 32.01 16.90 0.91 0.36
Alexandria TMax, TMin, Rad 16.60 7.74 0.61 0.53
Richmond TMax, TMin, VP, Rad 19.11 9.90 0.74 0.39
Blinman TMax, TMin, Rad 12.65 6.52 0.64 0.22
Annuello TMax, TMin, VP, Rad 14.99 7.38 0.81 0.00
Ningaloo TMax, TMin, Rad 13.64 5.64 0.73 0.26
Dowerine TMax, TMin, VP 9.29 5.50 0.66 0.17

Table 6.16: The ANN(1) model performance for weekly rainfall predictions with best
and worst combinations of input variables in grassland zone.

Table 6.17, summarizes the performance of the k-NN model for weekly rainfall

predictions with best and worst combinations of input variables in grassland classifi-
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Figure 6.17: Observed rainfall vs. ANN(1) model weekly predictions in grassland
classification zone.
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cation zone.The results presented show that the k-NN model provides best predictions

with input variables TMax, TMin and VP in six locations (Warren, Alexandria, Blin-

man, Annuello, Ningaloo and Dowerine); with TMax, Tmin and Rad in the location

Richmond and with full set of five meteorological variables in the location Newry.

The k-NN model provides the worst predictions with input variables TMax, TMin

and Rad in all locations except Richmond. In Richmond, the model provides worst

predictions with full set of five input variables.

The performance measure RMSE for the k-NN model in predicting weekly rainfall

ranges from 8.83 to 33.11, MAE from 4.53 to 14.93, MASE from 0.53 to 0.65 and

CE from 0.25 to 0.54. The performance measures RMSE indicates the k-NN model

provides best predictions in the location Dowerine; MAE indicates in the location

Ningaloo; MASE indicates in the location Warren and CE indicates in the location

Alexandria while the performance measures RMSE and MAE indicate worst predic-

tions in the location Richmond; MASE indicates in the location Newry and CE in the

location Dowerine (see Figure 6.10). The graphical display of observed rainfall and

k-NN model predictions over the test period is given in Figure 6.18.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Warren TMax, TMin, VP 15.13 7.35 0.53 0.41
Newry TMax, TMin, Evap, VP, Rad 28.65 12.10 0.65 0.49
Alexandria TMax, TMin, VP 16.44 7.58 0.60 0.54
Richmond TMax, TMin, Rad 33.11 14.93 0.64 0.46
Blinman TMax, TMin, VP 11.83 6.30 0.62 0.32
Annuello TMax, TMin, VP 12.71 5.16 0.57 0.28
Ningaloo TMax, TMin, VP 12.55 4.53 0.59 0.38
Dowerine TMax, TMin, VP 8.83 5.04 0.61 0.25

Performance measures for worst input combinations

Warren TMax, TMin, Rad 15.86 8.05 0.58 0.36
Newry TMax, TMin, Rad 30.90 13.13 0.70 0.41
Alexandria TMax, TMin, Rad 18.33 8.28 0.66 0.43
Richmond TMax, TMin, Evap, VP, Rad 33.90 15.21 0.66 0.44
Blinman TMax, TMin, Rad 12.46 6.52 0.64 0.24
Annuello TMax, TMin, Rad 13.15 5.18 0.57 0.23
Ningaloo TMax, TMin, Rad 13.56 4.87 0.63 0.27
Dowerine TMax, TMin, Rad 9.06 5.01 0.61 0.21

Table 6.17: The k-NN model performance for weekly rainfall predictions with best
and worst combinations of input variables in grassland zone.

Table 6.18, summarizes the performance of all eight models in predicting weekly

rainfall with best combinations of input variables in grassland classification zone. Best

results among all models are highlighted in bold. According to these results, at least

one performance measure indicate that the CLR(Opt) is best in four out of eight
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Figure 6.18: Observed rainfall vs. k-NN model weekly predictions in grassland clas-
sification zone.
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Stations Measures CLR CR SVM SVM MLR ANN ANN KNN
(EM) (Linear) (RBF) (0) (1)

Warren RMSE 14.91 14.50 17.83 14.50 15.89 14.49 13.72 15.13
MAE 7.27 6.84 7.64 6.84 8.36 7.19 7.03 7.35
MASE 0.53 0.49 0.55 0.49 0.60 0.52 0.51 0.53
CE 0.43 0.46 0.18 0.46 0.35 0.46 0.52 0.41

Newry RMSE 28.49 37.08 35.63 28.52 30.98 28.18 27.68 28.65
MAE 11.92 16.50 14.34 12.24 13.85 12.36 12.25 12.10
MASE 0.64 0.88 0.77 0.66 0.74 0.66 0.66 0.65
CE 0.50 0.15 0.21 0.49 0.40 0.51 0.52 0.49

Alexandria RMSE 16.25 21.38 22.25 15.51 18.68 15.24 15.60 16.44
MAE 7.55 8.19 8.51 7.18 9.58 7.54 7.67 7.58
MASE 0.60 0.65 0.67 0.57 0.76 0.60 0.61 0.60
CE 0.55 0.23 0.16 0.59 0.41 0.61 0.59 0.54

Richmond RMSE 15.63 15.63 22.46 18.13 19.18 16.58 16.79 33.11
MAE 8.44 8.44 9.15 8.29 11.03 8.90 8.96 14.93
MASE 0.63 0.63 0.68 0.62 0.82 0.66 0.67 0.64
CE 0.59 0.59 0.16 0.45 0.39 0.54 0.53 0.46

Blinman RMSE 11.72 12.78 13.21 11.94 11.81 11.74 11.68 11.83
MAE 5.97 6.72 5.86 5.72 6.40 5.97 6.22 6.30
MASE 0.59 0.66 0.58 0.56 0.63 0.59 0.61 0.62
CE 0.33 0.20 0.15 0.30 0.32 0.33 0.33 0.32

Annuello RMSE 12.18 13.82 14.05 11.92 12.69 11.64 11.61 12.71
MAE 4.98 5.28 4.93 4.92 5.10 4.92 4.89 5.16
MASE 0.55 0.58 0.54 0.54 0.56 0.54 0.54 0.57
CE 0.34 0.15 0.12 0.37 0.28 0.40 0.40 0.28

Ningaloo RMSE 12.31 14.61 15.39 12.43 13.54 12.22 12.18 12.55
MAE 4.28 4.53 4.68 4.39 5.78 4.68 4.53 4.53
MASE 0.55 0.59 0.61 0.57 0.75 0.61 0.59 0.59
CE 0.40 0.15 0.06 0.39 0.27 0.41 0.41 0.38

Dowerine RMSE 8.51 9.39 9.29 9.04 8.47 8.39 8.37 8.83
MAE 4.66 5.45 4.86 4.97 4.83 4.66 4.55 5.04
MASE 0.56 0.66 0.59 0.60 0.58 0.56 0.55 0.61
CE 0.30 0.15 0.17 0.21 0.31 0.32 0.32 0.25

Table 6.18: Models performance for weekly rainfall predictions in grassland classifi-
cation zone.

locations; ANN(1) in six locations; ANN(0) in three locations; SVM(RBF) in five

locations; SVM(Linear) in one location and CR(EM) in two locations. The MLR and

k-NN models are not best in any location.

According to the performance measure RMSE, the CLR(Opt) and CR(EM) mod-

els are best in Richmond (Both have same results). The ANN(1) model outperformed

other models in six locations(Warren, Newry, Blinman, Annuello, Ningaloo and Dow-

erine) and ANN(0) model in Alexandria. In these seven locations, the CLR(Opt)

model performance is 7.98% lower in Warren; 2.84% in Newry; 6.22% in Alexandria;

0.34% in Blinman; 4.68% in Annuello; 1.06% in Ningaloo and 1.65% in Dowerine.
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A visual comparison of model predictions with the actual observations in temperate

classification zone, given in Figures 5.2, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17 and 6.18, show

that all models follow the series patterns at all locations in grassland classification

zone.

In summary, based on the performance measure RMSE, the ANN(1) model is

the best model for weekly rainfall predictions in grassland classification zone. The

CLR(Opt) and ANN(0) models found to be the second best models in ranking.
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6.3 Weekly rainfall predictions in desert zone

In this section, first we present the weekly rainfall prediction results for each model

in predicting weekly rainfall with best and worst combinations of input variables in

desert classification zone. Then we summarize the performance of all models with best

combination of input variables. Finally we compare the CLR(Opt) model performance

with other models.

Table 6.19, summarizes the prediction performance of the CLR(Opt) model with

best and worst combinations of input variables in desert classification zone. according

to these results the CLR(Opt) provides best predictions with input variables TMax,

TMin, VP and Rad in the location Boulia and with full set of five input meteoro-

logical variables in the remaining four locations (Wilcannia, Henbury, Marree and

Wiluna). The CLR(Opt) model provides worst predictions in all five locations with

input variables TMax, TMin and Rad.

The performance measure RMSE for the CLR(Opt) model in predicting weekly

rainfall in desert zone ranges from 6.87 to 41.01, MAE from 3.51 to 29.83, MASE

from 0.52 to 1.48 and CE from -0.07 to 0.49. The performance measures RMSE and

MAE indicate the model provides best predictions with in the location Marree; MASE

indicates in the location Wilcannia and CE indicates in the location Boulia while all

four performance measures indicate worst prediction in Wiluna (see Figure 6.19). The

graphical display of observed rainfall and CLR(Opt) model predictions over the test

period is given in Figure 6.20.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, Evap, VP, Rad 12.13 4.82 0.52 0.46
Henbury TMax, TMin, Evap, VP, Rad 10.07 4.72 0.64 0.47
Boulia TMax, TMin, VP, Rad 8.87 4.22 0.68 0.49
Marree TMax, TMin, Evap, VP, Rad 6.87 3.51 0.70 0.37
Wiluna TMax, TMin, Evap, VP, Rad 41.01 29.83 1.48 -0.07

Performance measures for worst input combinations

Wilcannia TMax, TMin, Rad 13.27 5.17 0.56 0.35
Henbury TMax, TMin, Rad 10.60 4.75 0.64 0.41
Boulia TMax, TMin, Rad 9.36 4.28 0.69 0.43
Marree TMax, TMin, Rad 7.25 3.42 0.68 0.30
Wiluna TMax, TMin, Rad 43.30 32.21 1.59 -0.19

Table 6.19: The CLR(Opt) model performance for weekly rainfall prediction with
best and worst combinations of input variables in desert zone.

Table 6.20, summarizes the prediction performance of the CR(EM) model with

best and worst combinations of input variables in desert classification zone. Results

presented in this table show that the model provides best predictions with input vari-

ables TMax, TMin and VP in the location Wilcannia; with TMax, TMin, VP and
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Figure 6.19: Graphical display of models performance measures in predicting weekly
rainfall in desert zone.

Rad in two locations (Boulia and Marree) and with full set of five input meteorolog-

ical variables in the remaining two locations (Henbury and Wiluna). The CR(EM)

model provides worst predictions with input variables TMax, TMin and Rad in three



171

 

0

50

100

150

200

250
R

ai
n

fa
ll 

(m
m

) 

Observed Rainfall Predicted Rainfall
Wilcannia 

0

50

100

150

R
ai

n
fa

ll 
(m

m
) 

Boulia 

0

20

40

60

80

100

R
ai

n
fa

ll 
(m

m
) 

Marree 

0

50

100

150

R
ai

n
fa

ll 
(m

m
) 

Henbury 

0

50

100

150

200

250

2
8

/0
2

/2
0

0
5

 -
…

6
/0

6
/2

00
5

 -
…

1
2

/0
9

/2
0

0
5

 -
…

1
9

/1
2

/2
0

0
5

 -
…

2
7

/0
3

/2
0

0
6

 -
…

3
/0

7
/2

00
6

 -
…

9
/1

0
/2

00
6

 -
…

1
5

/0
1

/2
0

0
7

 -
…

2
3

/0
4

/2
0

0
7

 -
…

3
0

/0
7

/2
0

0
7

 -
…

5
/1

1
/2

00
7

 -
…

1
1

/0
2

/2
0

0
8

 -
…

1
9

/0
5

/2
0

0
8

 -
…

2
5

/0
8

/2
0

0
8

 -
…

1
/1

2
/2

00
8

 -
…

9
/0

3
/2

00
9

 -
…

1
5

/0
6

/2
0

0
9

 -
…

2
1

/0
9

/2
0

0
9

 -
…

2
8

/1
2

/2
0

0
9

 -
…

5
/0

4
/2

01
0

 -
…

1
2

/0
7

/2
0

1
0

 -
…

1
8

/1
0

/2
0

1
0

 -
…

2
4

/0
1

/2
0

1
1

 -
…

2
/0

5
/2

01
1

 -
…

8
/0

8
/2

01
1

 -
…

1
4

/1
1

/2
0

1
1

 -
…

2
0

/0
2

/2
0

1
2

 -
…

2
8

/0
5

/2
0

1
2

 -
…

3
/0

9
/2

01
2

 -
…

1
0

/1
2

/2
0

1
2

 -
…

1
8

/0
3

/2
0

1
3

 -
…

2
4

/0
6

/2
0

1
3

 -
…

3
0

/0
9

/2
0

1
3

 -
…

6
/0

1
/2

01
4

 -
…

1
4

/0
4

/2
0

1
4

 -
…

2
1

/0
7

/2
0

1
4

 -
…

2
7

/1
0

/2
0

1
4

 -
…

2
/0

2
/2

01
5

 -
…

R
ai

n
fa

ll 
(m

m
) 

Wiluna 

Figure 6.20: Observed rainfall vs. CLR(Opt) model weekly predictions in desert
classification zone.

locations (Henbury, Boulia and Marree); with TMax, TMin and VP in the location

Wiluna and with TMax, TMin, VP and Rad in the location Wilcannia.

The performance measure RMSE for the CR(EM) model in predicting weekly

rainfall ranges from 7.88 to 41.30, MAE from 3.27 to 30.26, MASE from 0.49 to 1.50

and CE from -0.09 to 0.60. The performance measures RMSE and MAE indicate the

model provides best predictions in the location Marree and MASE and CE indicate in

the location Wilcannia while all four performance measures indicate that the model

provides worst predictions in the location Wiluna (see Figure 6.19). The graphical
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Figure 6.21: Observed rainfall vs. CR(EM) model weekly predictions in desert clas-
sification zone.

display of observed rainfall and CR(EM) model predictions over the test period is

given in Figure 6.21.

Table 6.21, summarizes the prediction performance of the SVM(Linear) model with

best and worst combinations of input variables in desert classification zone. according

to these results the SVM(Linear) model provides best prediction with input variables

TMax, TMin, VP and Rad in the location Henbury and with full set of five input

meteorological variables in the remaining four locations (Wilcannia, Boulia, Marree

and Wiluna). The SVM(Linear) model provides the worst predictions with input
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, VP 10.43 4.55 0.49 0.60
Henbury TMax, TMin, Evap, VP, Rad 20.61 8.95 0.67 0.29
Boulia TMax, TMin, VP, Rad 10.55 4.18 0.68 0.27
Marree TMax, TMin, VP, Rad 7.88 3.27 0.65 0.17
Wiluna TMax, TMin, Evap, VP, Rad 41.30 30.26 1.50 -0.09

Performance measures for worst input combinations

Wilcannia TMax, TMin, VP, Rad 12.43 5.14 0.55 0.43
Henbury TMax, TMin, Rad 21.14 9.33 0.69 0.26
Boulia TMax, TMin, Rad 11.06 4.60 0.75 0.20
Marree TMax, TMin, Rad 8.08 3.41 0.68 0.13
Wiluna TMax, TMin, VP 42.80 31.45 1.56 -0.17

Table 6.20: The CR(EM) model prediction performance for weekly rainfall with best
and worst combinations of input variables in desert classification zone.

variables TMax, TMin and Rad in four locations (Wilcannia, Henbury, Boulia and

Marree) and with TMax, TMin and VP in the remaining fifth location Wiluna.

The performance measure RMSE for the SVM(Linear) model in predicting weekly

rainfall ranges from 8.06 to 41.61, MAE from 3.24 to 30.34, MASE from 0.56 to 1.50

and CE from -0.10 to 0.16. The performance measures RMSE and MAE indicate

the model provides best predictions in the location Marree; MASE indicates in the

location Wilcannia and CE indicates in the location Boulia while all four performance

measures indicate that the model provide worst predictions in the location Wiluna

(see Figure 6.19). The graphical display of observed rainfall and SVM(Linear) model

predictions over the test period is given in Figure 6.22.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, Evap, VP, Rad 15.50 5.22 0.56 0.11
Henbury TMax, TMin, VP, Rad 12.73 4.76 0.65 0.15
Boulia TMax, TMin, Evap, VP, Rad 11.33 4.23 0.69 0.16
Marree TMax, TMin, Evap, VP, Rad 8.06 3.24 0.64 0.13
Wiluna TMax, TMin, Evap, VP, Rad 41.61 30.34 1.50 -0.10

Performance measures for worst input combinations

Wilcannia TMax, TMin, Rad 15.94 5.37 0.58 0.06
Henbury TMax, TMin, Rad 13.26 4.87 0.66 0.08
Boulia TMax, TMin, Rad 12.03 4.30 0.70 0.06
Marree TMax, TMin, Rad 8.38 3.24 0.64 0.06
Wiluna TMax, TMin, VP 43.78 32.24 1.60 -0.22

Table 6.21: The SVM(Linear) model performance for weekly rainfall predictions with
best and worst combinations of input variables in desert zone.

Table 6.22, summarizes the performance of the SVM(RBF) model in predicting

weekly rainfall with best and worst combinations of input variables in desert classifica-
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Figure 6.22: Observed rainfall vs. SVM(Linear) model weekly predictions in desert
classification zone.

tion zone. according to these results the SVM(RBF) model provides best predictions

with input variables TMax, TMin and VP in three locations (Wilcannia, Henbury and

Boulia); with TMax, TMin and Rad in the location Marree and with TMax, TMin,

VP and Rad in the location Wiluna. The SVM(RBF) model provides the worst pre-

dictions with input variables TMax, TMin, VP and Rad in the location Wilcannia

and with full set of input variables in the remaining four locations (Henbury, Boulia,

Marree and Wiluna).

The performance measure RMSE for the SVM(RBF) model in predicting weekly
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Figure 6.23: Observed rainfall vs. SVM(RBF) model weekly rainfall predictions in
desert classification zone.

rainfall ranges from 7.37 to 41.84, MAE from 3.28 to 29.51, MASE from 0.49 to 1.46

and CE from -0.12 to 0.60. The performance measures RMSE and MAE indicate the

SVM(RBF) model provides best predictions with in the location Marree; MASE and

CE indicate in the location Wilcannia while all four performance measures indicate

the model provides worst predictions in the location Wiluna (see Figure 6.19). The

graphical display of observed rainfall and SVM(RBF) model predictions over the test

period is given in Figure 6.23.

Table 6.23, summarizes the prediction performance of the MLR model with best
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, VP 10.43 4.55 0.49 0.60
Henbury TMax, TMin, VP 11.67 4.64 0.63 0.29
Boulia TMax, TMin, VP 8.82 3.91 0.63 0.49
Marree TMax, TMin, Rad 7.37 3.28 0.65 0.27
Wiluna TMax, TMin, VP, Rad 41.84 29.51 1.46 -0.12

Performance measures for worst input combinations

Wilcannia TMax, TMin, VP, Rad 12.43 5.14 0.55 0.43
Henbury TMax, TMin, Evap, VP, Rad 12.57 4.94 0.67 0.17
Boulia TMax, TMin, Evap, VP, Rad 13.85 6.61 1.07 -0.25
Marree TMax, TMin, Evap, VP, Rad 10.04 4.67 0.93 -0.35
Wiluna TMax, TMin, Evap, VP, Rad 43.66 30.81 1.53 -0.21

Table 6.22: The SVM(RBF) model performance for weekly rainfall predictions with
best and worst combinations of input variables in desert zone.

and worst combinations of input variables in desert classification zone. The results

presented in this table show that the MLR model provides the best predictions with

input variables TMax, TMin and VP in three locations (Henbury, Boulia and Marree);

with TMax, TMin, VP and Rad in the location Wilcannia and with full set of five

input meteorological parameters in the location Wiluna. The MLR model provides

the worst predictions with input variables TMax, TMin and Rad in three locations

(Wilcannia, Henbury and Marree); with TMax, TMin and VP in the location Wiluna

and with full set of five meteorological variables in the remaining location Boulia.

The performance measure RMSE for the MLR model in predicting weekly rainfall

ranges from 7.74 to 40.72, MAE from 4.93 to 29.81, MASE from 0.58 to 1.48 and CE

from -0.06 to 0.35. The performance measures RMSE and MAE indicate the MLR

model provides best predictions in the location Marree and MASE and CE indicate in

the location Wilcannia while all four performance measures indicate that the model

provides worst predictions in the location Wiluna (see Figure 6.19). The graphical

display of observed rainfall and the MLR model predictions over the test period is

given in Figure 6.24.

Table 6.24, summarizes the prediction performance of the ANN(0) model with best

and worst combinations of input variables in desert classification zone. These results

show that the ANN(0) model provides best predictions with input variables TMax,

TMin and VP in two locations (Wilcannia and Boulia); with TMax, TMin, VP and

Rad in the location Wiluna and with full set of five input variables in the remaining

two locations (Henbury and Marree). The ANN(0) model provides worst predictions

with input variables TMax, TMin, Evap, VP and Rad in the location Wilcannia; with

TMax, TMin and VP in two locations (Henbury and Wiluna) and with TMax, TMin

and Rad in the remaining two locations (Boulia and Marree).
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Figure 6.24: Observed rainfall vs. MLR model weekly predictions in desert classifica-
tion zone.

The performance measure RMSE for the ANN(0) model in predicting weekly rain-

fall ranges from 7.83 to 41.03, MAE from 4.53 to 29.81, MASE from 0.52 to 1.48 and

CE from -0.07 to 0.49. The performance measures RMSE indicates the ANN(0) model

provides best predictions in the location Marree; MAE indicates in the location Bou-

lia; MASE indicates in the location Wilcannia and CE indicates in the location Boulia

while all four performance measures indicate that the model provides worst predic-

tions in the location Wiluna (see Figure 6.19). The graphical display of observed

rainfall and ANN(0) model predictions over the test period is given in Figure 6.25.
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, VP, Rad 13.29 5.39 0.58 0.35
Henbury TMax, TMin, VP 11.29 6.10 0.83 0.33
Boulia TMax, TMin, VP 10.77 6.39 1.04 0.24
Marree TMax, TMin, VP 7.74 4.93 0.98 0.20
Wiluna TMax, TMin, Evap, VP, Rad 40.72 29.81 1.48 -0.06

Performance measures for worst input combinations

Wilcannia TMax, TMin, Rad 14.09 5.73 0.62 0.27
Henbury TMax, TMin, Rad 11.82 6.50 0.88 0.27
Boulia TMax, TMin, Evap, VP, Rad 11.13 6.95 1.13 0.19
Marree TMax, TMin, Rad 7.84 4.57 0.91 0.18
Wiluna TMax, TMin, VP 42.65 31.41 1.56 -0.16

Table 6.23: The MLR model performance for weekly rainfall predictions with best
and worst combinations of input variables in desert zone.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, VP 11.89 4.81 0.52 0.48
Henbury TMax, TMin, Evap, VP, Rad 10.41 4.80 0.65 0.43
Boulia TMax, TMin, VP 8.88 4.53 0.74 0.49
Marree TMax, TMin, Evap, VP, Rad 7.83 4.97 0.99 0.18
Wiluna TMax, TMin, VP, Rad 41.03 29.81 1.48 -0.07

Performance measures for worst input combinations

Wilcannia TMax, TMin, Evap, Evap, VP, Rad 13.13 5.60 0.60 0.36
Henbury TMax, TMin, VP 11.82 5.54 0.75 0.27
Boulia TMax, TMin, Rad 10.78 5.28 0.86 0.24
Marree TMax, TMin, Rad 9.17 4.16 0.83 -0.12
Wiluna TMax, TMin, VP 42.54 31.15 1.54 -0.15

Table 6.24: The ANN(0) model performance for weekly rainfall predictions with best
and worst combinations of input variables in desert zone.

Table 6.25, summarizes the performance of the ANN(1) model in predicting weekly

rainfall with best and worst combinations of input variables in desert classification

zone. according to these results the ANN(1) model provides best predictions with

input variables TMax, TMin and VP in two locations (Henbury and Boulia); with

TMax, TMin and Rad in the location Wiluna and with TMax, TMin, VP and Rad

in the remaining two locations (Wilcannia and Marree). The ANN(1) model provides

worst predictions with input variables TMax, TMin and VP in the location Wilcannia;

with TMax, TMin and Rad in two locations (Henbury and Boulia) and with a full set

of five input variables in the remaining two locations (Marree and Wiluna).

The performance measure RMSE for the ANN(1) model in predicting weekly rain-

fall ranges from 8.04 to 41.87, MAE from 3.87 to 30.68, MASE from 0.51 to 1.52 and

CE from -0.12 to 0.59. The performance measures RMSE and MAE indicate the
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Figure 6.25: Observed rainfall vs. ANN(0) model weekly predictions in desert classi-
fication zone.

ANN(1) model provides best predictions in the location Marree and MASE and CE

in the location Wilcannia while all four performance measures indicate the model

provides worst predictions in the location Wiluna (see Figure 6.19). The graphical

display of observed rainfall and ANN(1) model predictions over the test period is

given in Figure 6.26.

Table 6.26, summarizes the prediction performance of the k-NN model with best

and worst combinations of input variables in desert classification zone. According to

these results, the k-NN model provides best predictions with input variables TMax,
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Figure 6.26: Observed rainfall vs. ANN(1) model weekly predictions in desert classi-
fication zone.

TMin and Rad provides the in the location Marree; with TMax, TMin, VP and Rad

in the location Boulia and with a full set of five input variables in the remaining

three locations (Wilcannia, Henbury and Wiluna). The k-NN model provides worst

predictions with input variables TMax, TMin and Rad in four locations (Wilcannia,

Henbury, Boulia and Wiluna) and with TMax, TMin and VP in the remaining fifth

location Marree.

The performance measure RMSE for the k-NN model in predicting weekly rainfall

ranges from 7.63 to 40.03, MAE from 3.78 to 28.42, MASE from 0.51 to 1.41 and CE
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Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, VP, Rad 10.52 4.75 0.51 0.59
Henbury TMax, TMin, VP 10.98 4.77 0.65 0.37
Boulia TMax, TMin, VP 8.70 4.32 0.70 0.51
Marree TMax, TMin, VP, Rad 8.04 3.87 0.77 0.14
Wiluna TMax, TMin, Rad 41.87 30.68 1.52 -0.12

Performance measures for worst input combinations

Wilcannia TMax, TMin, VP 14.06 5.35 0.57 0.27
Henbury TMax, TMin, Rad 13.39 6.86 0.93 0.06
Boulia TMax, TMin, Rad 12.94 6.60 1.07 -0.09
Marree TMax, TMin, Evap, VP, Rad 9.59 5.01 0.99 -0.23
Wiluna TMax, TMin, Evap, VP, Rad 48.55 35.45 1.76 -0.50

Table 6.25: The ANN(1) model performance for weekly rainfall predictions with best
and worst combinations of input variables in desert zone.

from -0.02 to 0.46. The performance measures RMSE and MAE indicate the k-NN

model provides best predictions in the location Marree, and MASE and CE indicate

in the location Wilcannia while all four performance measures indicate that the model

provides worst predictions in the location Wiluna (see Figure 6.19). The graphical

display of observed rainfall and k-NN model predictions over the test period is given

in Figure 6.27.

Stations Combination RMSE MAE MASE CE

Performance measures for best input combinations

Wilcannia TMax, TMin, Evap, VP, Rad 12.03 4.79 0.51 0.46
Henbury TMax, TMin, Evap, VP, Rad 11.01 4.84 0.66 0.36
Boulia TMax, TMin, VP, Rad 9.24 4.37 0.71 0.44
Marree TMax, TMin, Rad 7.63 3.78 0.75 0.22
Wiluna TMax, TMin, Evap, VP, Rad 40.03 28.42 1.41 -0.02

Performance measures for worst input combinations

Wilcannia TMax, TMin, Rad 13.40 5.14 0.55 0.34
Henbury TMax, TMin, Rad 11.36 5.16 0.70 0.32
Boulia TMax, TMin, Rad 10.05 4.90 0.79 0.34
Marree TMax, TMin, VP 8.72 4.35 0.86 -0.02
Wiluna TMax, TMin, Rad 42.39 30.48 1.51 -0.14

Table 6.26: The k-NN model performance for weekly rainfall predictions with best
and worst combinations of input variables in desert zone.

Table 6.27, summarizes the performance of all eight models in predicting weekly

rainfall with best combinations of input variables in desert classification zone. Best

results among all models are highlighted in bold. According to these results, at

least one performance measure indicate that the CLR(Opt) is best in two out of five

locations (Henbury and Marree); SVM(RBF) in three locations (Wilcannia, Henbury

and Boulia); CR(EM) in Wilcannia, SVM(Linear) in Marree, ANN(1) in Boulia and
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Figure 6.27: Observed rainfall vs. k-NN model weekly predictions in desert classifi-
cation zone.

k-NN in Wiluna while MLR and ANN(0) modesl are not best in any location.

According to the performance measures RMSE, the CLR(Opt) model outper-

formed other models in two locations (Henbury and Marree); CR(EM) and SVM(RBF)

both models in Wilcannia (Both have Same results); ANN(1) model in Boulia and

k-NN model in Wiluna. In Wilcannia, the CLR(Opt) model performance is 14.01%

lower than the outperformed model. Similarly, in Boulia 1.92% and in Wiluna 2.39%

lower than the outperformed model.

A visual comparison of model predictions with the actual observations in temperate
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Stations Measures CLR CR SVM SVM MLR ANN ANN KNN
(EM) (Linear) (RBF) (0) (1)

Wilcannia RMSE 12.13 10.43 15.50 10.43 13.29 11.89 10.52 12.03
MAE 4.82 4.55 5.22 4.55 5.39 4.81 4.75 4.79
MASE 0.52 0.49 0.56 0.49 0.58 0.52 0.51 0.51
CE 0.46 0.60 0.11 0.60 0.35 0.48 0.59 0.46

Henbury RMSE 10.07 20.61 12.73 11.67 11.29 10.41 10.98 11.01
MAE 4.72 8.95 4.76 4.64 6.10 4.80 4.77 4.84
MASE 0.64 0.67 0.65 0.63 0.83 0.65 0.65 0.66
CE 0.47 0.29 0.15 0.29 0.33 0.43 0.37 0.36

Boulia RMSE 8.87 10.55 11.33 8.82 10.77 8.88 8.70 9.24
MAE 4.22 4.18 4.23 3.91 6.39 4.53 4.32 4.37
MASE 0.68 0.68 0.69 0.63 1.04 0.74 0.70 0.71
CE 0.49 0.27 0.16 0.49 0.24 0.49 0.51 0.44

Marree RMSE 6.87 7.88 8.06 7.37 7.74 7.83 8.04 7.63
MAE 3.51 3.27 3.24 3.28 4.93 4.97 3.87 3.78
MASE 0.70 0.65 0.64 0.65 0.98 0.99 0.77 0.75
CE 0.37 0.17 0.13 0.27 0.20 0.18 0.14 0.22

Wiluna RMSE 41.01 41.30 41.61 41.84 40.72 41.03 41.87 40.03
MAE 29.83 30.26 30.34 29.51 29.81 29.81 30.68 28.42
MASE 1.48 1.50 1.50 1.46 1.48 1.48 1.52 1.41
CE -0.07 -0.09 -0.10 -0.12 -0.06 -0.07 -0.12 -0.02

Table 6.27: Models performance for weekly rainfall predictions in desert classification
zone.

classification zone, given in Figures 5.2, 6.21, 6.22, 6.23, 6.24, 6.25, 6.26 and 6.27, show

that all models follow the series patterns in all locations of desert classification zone.

In summary , based on our primary performance measure RMSE, the CLR(Opt)

model is the the most suitable models in finding the pattern and trends of the obser-

vations compared to other models at most locations of desert classification zone.



184

6.4 Weekly rainfall predictions in tropical and sub-

tropical zones

In this section, first we present the weekly rainfall prediction results for each model in

predicting weekly rainfall with best and worst combinations of input variables in trop-

ical and subtropical classification zones. Then we summarize the performance of all

models with best combination of input variables. Finally we compare the CLR(Opt)

model performance with other models.

Table 6.28, summarizes the performance of the CLR(Opt) model for weekly rainfall

predictions with best and worst combinations of input variables in tropical and sub-

tropical classification zones. According to these results the CLR(Opt) model provides

the best predictions with input variables TMax, TMin and Rad in Palmerville and

Yamba and with full set of five input variables in the remaining locations Katherine

and Fairymead. The model provides worst predictions with input variables TMax,

TMin and Rad in the location Katherine; with TMax, TMin and VP in two loca-

tions Yamba and Fairymead and with TMax, TMin, VP and Rad in the location

Palmerville.

Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, Evap, VP, Rad 27.58 13.71 0.62 0.58
Palmerville Tropical TMax, TMin, Rad 32.37 14.37 0.62 0.49
Yamba Subtropical TMax, TMin, Rad 36.99 21.77 0.59 0.37
Fairymead Subtropical TMax, TMin, Evap, VP, Rad 45.18 17.43 0.57 0.29

Performance measures for worst input combinations

Katherine Tropical TMax, TMin, Rad 30.38 14.93 0.68 0.49
Palmerville Tropical TMax, TMin, VP, Rad 34.20 16.82 0.73 0.43
Yamba Subtropical TMax, TMin, VP 40.35 22.15 0.60 0.25
Fairymead Subtropical TMax, TMin, VP 46.94 17.22 0.56 0.23

Table 6.28: The CLR(Opt) model performance for weekly rainfall predictions with
best and worst combinations of input variables in tropical and subtropical zones.
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Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, VP 36.71 17.24 0.78 0.26
Palmerville Tropical TMax, TMin, VP, Rad 38.62 17.77 0.77 0.27
Yamba Subtropical TMax, TMin, Rad 38.57 20.73 0.56 0.32
Fairymead Subtropical TMax, TMin, Rad 50.17 18.68 0.61 0.13

Performance measures for worst input combinations

Katherine Tropical TMax, TMin, Rad 37.65 18.94 0.86 0.22
Palmerville Tropical TMax, TMin, Rad 39.28 16.51 0.71 0.25
Yamba Subtropical TMax, TMin, Evap, VP, Rad 43.26 24.11 0.65 0.14
Fairymead Subtropical TMax, TMin, VP 50.46 18.68 0.61 0.12

Table 6.29: The CR(EM) model performance for weekly rainfall predictions with best
and worst combinations of input variables in tropical and subtropical zones.

The performance measure RMSE for the CLR(Opt) model in predicting weekly

rainfall ranges from 27.58 to 45.18, MAE from 13.71 to 21.77, MASE from 0.57 to 0.62

and CE from 0.29 to 0.58. The performance measures RMSE, MAE and CE indicates

that the CLR(Opt) model provides best predictions in the location Katherine and

MASE indicates in the location Fairymead while the performance measures RMSE

and CE indicates worst predictions in the location Fairymead; MAE in the location

Yamba and MASE in the location Katherine (see Figure 6.28). The graphical display

of observed rainfall and CLR(Opt) model predictions over the test period is given in

Figure 6.29.

Table 6.29, summarizes the performance of the CR(EM) model in predicting

weekly rainfall with best and worst combinations of input variables in tropical and

subtropical classification zones. These results show that the CR(EM) model provides

best predictions with input variables TMax, TMin and Rad in two locations (Yamba

and Fairymead); with TMax, TMin and VP in the location Katherine and TMax,

TMin, VP and Rad in the location Palmerville. The model provides worst predic-

tions with input variables TMax, TMin and Rad in two locations (Katherine and

Palmerville); with TMax, TMin and VP in the location Fairymead and with TMax,

TMin, Evap, VP and Rad in the location Yamba.

The performance measure RMSE for the CR(EM) model in predicting weekly

rainfall ranges from 36.71 to 50.17, MAE from 17.24 to 18.68, MASE from 0.56 to 0.78

and CE from 0.13 to 0.32. The performance measures RMSE and MAE indicate that

the CR(EM) model provides best predictions in the location Katherine and MASE and

CE indicates in the location Yamba while the performance measure RMSE and CE

indicate worst predictions in the location Fairymead; MAE in the location Yamba and

MASE in the location Katherine (see Figure 6.28). The graphical display of observed

rainfall and CR(EM) model predictions over the test period is given in Figure 6.30.
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Figure 6.28: Illustration of models performance measures in predicting weekly rainfall
in tropical and subtropical zones.

Table 6.30, summarizes the performance of the SVM(Linear) model in predicting

weekly rainfall with best and worst combinations of input variables in tropical and

subtropical classification zones. According to these results the SVM(Linear) model

provides best predictions with input variables TMax, TMin and VP in the location

Katherine and with a full set of five input variables in the remaining three locations

(Palmerville, Yamba and Fairymead). The model provides worst predictions with

input variables TMax, TMin and Rad in three locations (Katherine, Palmerville and
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Figure 6.29: Observed rainfall vs. CLR(Opt) model weekly predictions in tropical
and subtropical classification zones.

Fairymead) and with TMax, TMin and VP in the location Yamba.

The performance measure RMSE for the SVM(Linear) model in predicting weekly

rainfall ranges from 35.18 to 52.08, MAE from 16.77 to 22.14, MASE from 0.60 to 0.80

and CE from 0.06 to 0.32. The performance measures RMSE, MAE and CE indicate

that the SVM(Linear) model provides best predictions in the location Katherine and

MASE indicates in the location Yamba while the performance measure RMSE and

CE indicate worst predictions in the location Fairymead; MAE in the location Yamba

and MASE in the location Palmerville (see Figure 6.28). The graphical display of

observed rainfall and SVM(Linear) model predictions over the test period is given in

Figure 6.31.
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Figure 6.30: Observed rainfall vs. CR(EM) model weekly predictions in tropical and
subtropical classification zones.

Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, VP 35.18 16.77 0.76 0.32
Palmerville Tropical TMax, TMin, Evap,VP, Rad 39.99 18.47 0.80 0.22
Yamba Subtropical TMax, TMin, Evap,VP, Rad 42.22 22.14 0.60 0.18
Fairymead Subtropical TMax, TMin, Evap,VP, Rad 52.08 18.64 0.61 0.06

Performance measures for worst input combinations

Katherine Tropical TMax, TMin, Rad 37.32 17.35 0.79 0.23
Palmerville Tropical TMax, TMin, Rad 42.20 18.33 0.79 0.13
Yamba Subtropical TMax, TMin, VP 44.59 22.96 0.62 0.09
Fairymead Subtropical TMax, TMin, Rad 52.54 18.99 0.62 0.04

Table 6.30: The SVM(Linear) model performance for weekly rainfall predictions with
best and worst combinations of input variables in tropical and subtropical zones.
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Figure 6.31: Observed rainfall vs. SVM(Linear) model weekly predictions in tropical
and subtropical classification zones.

Table 6.31, summarizes the performance of the SVM(RBF) model in predicting

weekly rainfall predictions with best and worst combinations of input variables in

tropical and subtropical classification zones. According to the results, the SVM(RBF)

model provides best predictions with input variables TMax, TMin and VP in two

locations (Katherine and Fairymead) and with TMax, TMin and Rad in the remaining

two locations (Palmerville and Yamba). The model provides worst predictions with

full set of input variables in all four locations.

The performance measure RMSE for the SVM(RBF) model in predicting weekly

rainfall ranges from 26.39 to 47.64, MAE from 13.27 to 20.73, MASE from 0.55 to 0.60

and CE from 0.21 to 0.62. The performance measures RMSE, MAE and CE indicate

that the SVM(RBF) model provides best predictions in the location Katherine and

MASE indicates in the location Fairymead while the performance measures RMSE
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Figure 6.32: Observed rainfall vs. SVM(RBF) model weekly predictions in tropical
and subtropical classification zones.

and CE indicate worst predictions in the location Fairymead; MAE indicates in the

location Yamba and MASE in the location Katherine (see Figure 6.28). The graphical

display of observed rainfall and SVM(RBF) model predictions over the test period is

given in Figure 6.32.
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Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, VP 26.39 13.27 0.60 0.62
Palmerville Tropical TMax, TMin, Rad 34.86 15.04 0.65 0.41
Yamba Subtropical TMax, TMin, Rad 38.57 20.73 0.56 0.32
Fairymead Subtropical TMax, TMin, VP 47.64 16.77 0.55 0.21

Performance measures for worst input combinations

Katherine Tropical TMax, TMin, Evap, VP, Rad 30.64 14.81 0.67 0.48
Palmerville Tropical TMax, TMin, Evap, VP, Rad 48.44 21.87 0.94 -0.15
Yamba Subtropical TMax, TMin, Evap, VP, Rad 43.26 24.11 0.65 0.14
Fairymead Subtropical TMax, TMin, Evap, VP, Rad 48.14 17.56 0.57 0.20

Table 6.31: The SVM(RBF) model performance for weekly rainfall predictions with
best and worst combinations of input variables in tropical and subtropical zones.

Table 6.32, summarizes the performance of the MLR model in predicting weekly

rainfall with best and worst combinations of input variables in tropical and subtropical

classification zones. Results presented in this table show that the MLR model provides

best predictions with input variables TMax, TMin and Rad in the location Palmerville

and with a full set of five variables in the remaining three locations (Katherine, Yamba

and Fairymead). The model provides worst predictions with TMax, TMin and Rad

in locations Katherine and Fairymead; with TMax, TMin and VP in Yamba and with

a full set of parameters in Palmerville.

The performance measure RMSE for the MLR model in predicting weekly rainfall

ranges from 30.25 to 47.94, MAE from 16.64 to 23.47, MASE from 0.63 to 0.80 and

CE from 0.20 to 0.50. The performance measures RMSE, MAE and CE indicate

that the MLR model provides best predictions in the location Katherine and MASE

indicates in the location Fairymead while the performance measure RMSE and CE

indicate the model provides worst predictions in the location Fairymead; MAE in

the location Yamba and MASE in the location Palmerville (see Figure 6.28). The

graphical display of observed rainfall and MLR model predictions over the test period

is given in Figure 6.33.

Table 6.33, summarizes the performance of the ANN(0) model in predicting weekly

rainfall with best and worst combinations of input variables in tropical and subtropical

classification zones. According to these results ANN(0) model provides best predic-

tions with input variables TMax, TMin and Rad in the location Palmerville; with

TMax, TMin, VP and Rad in the location Yamba and with a full set of five input

variables in the remaining two locations (Katherine and Fairymead). The model pro-

vides worst predictions with TMax, TMin and Rad in the location Katherine; with

TMax, TMin and VP in two locations (Yamba and Fairymead) and with a full set of

input variables in the remaining location Palmerville.



192

 

0

100

200

300

400
R

ai
n

fa
ll 

(m
m

) 
Observed Rainfall Predicted Rainfall

Yamba 

0

200

400

600

800

R
ai

n
fa

ll 
(m

m
) 

Fairymead 

0

100

200

300

400

R
ai

n
fa

ll 
(m

m
) 

Palmerville 

0

100

200

300

2
8

/0
2

/2
0

0
5

 -
…

6
/0

6
/2

00
5

 -
…

1
2

/0
9

/2
0

0
5

 -
…

1
9

/1
2

/2
0

0
5

 -
…

2
7

/0
3

/2
0

0
6

 -
…

3
/0

7
/2

00
6

 -
…

9
/1

0
/2

00
6

 -
…

1
5

/0
1

/2
0

0
7

 -
…

2
3

/0
4

/2
0

0
7

 -
…

3
0

/0
7

/2
0

0
7

 -
…

5
/1

1
/2

00
7

 -
…

1
1

/0
2

/2
0

0
8

 -
…

1
9

/0
5

/2
0

0
8

 -
…

2
5

/0
8

/2
0

0
8

 -
…

1
/1

2
/2

00
8

 -
…

9
/0

3
/2

00
9

 -
…

1
5

/0
6

/2
0

0
9

 -
…

2
1

/0
9

/2
0

0
9

 -
…

2
8

/1
2

/2
0

0
9

 -
…

5
/0

4
/2

01
0

 -
…

1
2

/0
7

/2
0

1
0

 -
…

1
8

/1
0

/2
0

1
0

 -
…

2
4

/0
1

/2
0

1
1

 -
…

2
/0

5
/2

01
1

 -
…

8
/0

8
/2

01
1

 -
…

1
4

/1
1

/2
0

1
1

 -
…

2
0

/0
2

/2
0

1
2

 -
…

2
8

/0
5

/2
0

1
2

 -
…

3
/0

9
/2

01
2

 -
…

1
0

/1
2

/2
0

1
2

 -
…

1
8

/0
3

/2
0

1
3

 -
…

2
4

/0
6

/2
0

1
3

 -
…

3
0

/0
9

/2
0

1
3

 -
…

6
/0

1
/2

01
4

 -
…

1
4

/0
4

/2
0

1
4

 -
…

2
1

/0
7

/2
0

1
4

 -
…

2
7

/1
0

/2
0

1
4

 -
…

2
/0

2
/2

01
5

 -
…

R
ai

n
fa

ll 
(m

m
) 

Katherine 

Figure 6.33: Observed rainfall vs. MLR model weekly predictions in tropical and
subtropical classification zones.

The performance measure RMSE for the ANN(0) model in predicting weekly rain-

fall ranges from 27.77 to 47.18, MAE from 14.93 to 22.32, MASE from 0.60 to 0.68 and

CE from 0.23 to 0.58. The performance measures RMSE, MAE and CE indicate that

the ANN(0) model provides best predictions in the location Katherine, and MASE

indicates in the location Fairymead while the performance measure RMSE and CE

indicate worst predictions in the location Fairymead; MAE in the location Yamba and

MASE in the location Katherine (see Figure 6.28). The graphical display of observed

rainfall and ANN(0) model predictions over the test period is given in Figure 6.34.
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Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, Evap, VP, Rad 30.25 16.64 0.75 0.50
Palmerville Tropical TMax, TMin, Rad 36.27 18.44 0.80 0.36
Yamba Subtropical TMax, TMin, Evap, VP, Rad 38.35 23.47 0.64 0.32
Fairymead Subtropical TMax, TMin, Evap, VP, Rad 47.94 19.19 0.63 0.20

Performance measures for worst input combinations

Katherine Tropical TMax, TMin, Rad 31.97 17.29 0.78 0.44
Palmerville Tropical TMax, TMin, Evap, VP, Rad 36.88 20.71 0.89 0.34
Yamba Subtropical TMax, TMin, VP 40.29 23.26 0.63 0.25
Fairymead Subtropical TMax, TMin, Rad 48.46 20.03 0.65 0.18

Table 6.32: The MLR model performance for weekly rainfall predictions with best
and worst combinations of input variables in tropical and subtropical zones.
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Figure 6.34: Observed rainfall vs. ANN(0) model weekly predictions in tropical and
subtropical classification zones.
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Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, Evap, VP, Rad 27.77 14.93 0.68 0.58
Palmerville Tropical TMax, TMin, Rad 34.82 15.59 0.67 0.41
Yamba Subtropical TMax, TMin, VP, Rad 36.91 22.32 0.60 0.37
Fairymead Subtropical TMax, TMin, Evap, VP, Rad 47.18 18.43 0.60 0.23

Performance measures for worst input combinations

Katherine Tropical TMax, TMin, Rad 31.97 17.29 0.78 0.44
Palmerville Tropical TMax, TMin, Evap, VP, Rad 41.44 22.51 0.97 0.16
Yamba Subtropical TMax, TMin, VP 40.38 23.24 0.63 0.25
Fairymead Subtropical TMax, TMin, VP 48.40 18.85 0.62 0.19

Table 6.33: The ANN(0) model performance for weekly rainfall predictions with best
and worst combinations of input variables in tropical and subtropical zones.

Table 6.34, summarizes the prediction performance of the ANN(1) model with best

and worst combinations of input variables in tropical and subtropical classification

zones.According to these results the ANN(1) model provides best predictions with

input variables TMax, TMin and VP in two locations (Katherine and Fairymead)

and with TMax, TMin, VP and Rad in the remaining two locations (Palmerville and

Yamba). The model provides worst predictions with TMax, TMin and Rad in the

three locations (Katherine, Palmerville and Fairymead) and with a full set of input

variables in location Yamba.

The performance measure RMSE for the ANN(1) model in preding weekly rainfall

ranges from 28.18 to 46.10, MAE from 14.90 to 21.98, MASE from 0.56 to 0.76 and

CE from 0.26 to 0.56. The performance measures RMSE, MAE and CE indicate that

the ANN(1) model provides best predictions in the location Katherine and MASE

indicates in the location Fairymead while the performance measure RMSE and CE

indicate worst predictions in the location Fairymead; MAE indicates in the location

Yamba and MASE in the location Palmerville (see Figure 6.28). The graphical display

of observed rainfall and ANN(1) model predictions over the test period is given in

Figure 6.35.
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Figure 6.35: Observed rainfall vs. ANN(1) model weekly predictions in tropical and
subtropical classification zones.

Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, VP 28.18 14.90 0.67 0.56
Palmerville Tropical TMax, TMin, VP, Rad 36.38 17.66 0.76 0.35
Yamba Subtropical TMax, TMin, VP, Rad 36.83 21.98 0.59 0.38
Fairymead Subtropical TMax, TMin, VP 46.10 17.18 0.56 0.26

Performance measures for worst input combinations

Katherine Tropical TMax, TMin, Rad 42.63 28.70 1.30 0.00
Palmerville Tropical TMax, TMin, Rad 45.36 28.17 1.22 0.00
Yamba Subtropical TMax, TMin, EVap, VP, Rad 41.20 26.06 0.71 0.22
Fairymead Subtropical TMax, TMin, Rad 46.60 17.89 0.58 0.25

Table 6.34: The ANN(1) model performance for weekly rainfall predictions with best
and worst combinations of input variables in tropical and subtropical zones.



196

Table 6.35, summarizes the performance of the k-NN model in predicting weekly

rainfall with best and worst combinations of input variables in tropical and subtropical

classification zones. These results shoe that k-NNprovides best predictions with input

variables TMax, TMin, VP and Rad in two locations (Katherine and Fairymead);

with TMax, TMin and Rad in Palmerville and with a full set of input variables in the

remaining location Yamba. The k-NN provides worst predictions with TMax, TMin,

and Rad in two locations (Katherine and Fairymead); with TMax, TMin, and VP in

Yamba and with a full set of input variables in the location Palmerville.

The performance measure RMSE for the k-NN model in predicting weekly rainfall

ranges from 28.41 to 46.22, MAE from 14.31 to 17.85, MASE from 0.58 to 0.65 and

CE from 0.26 to 0.56. The performance measures RMSE, MAE and CE indicate

that the k-NN model provides best predictions in the location Katherine and MASE

indicates in the location Fairymead while the performance measure RMSE, MAE

and CE indicate the model provides worst predictions in the location Fairymead and

MASE in the location Katherine (see Figure 6.28). The graphical display of observed

rainfall and k-NN model predictions over the test period is given in Figure 6.36.

Stations Zone Combination RMSE MAE MASE CE

Performance measures for best input combinations

Katherine Tropical TMax, TMin, VP, Rad 28.41 14.31 0.65 0.56
Palmerville Tropical TMax, TMin, Rad 33.11 14.93 0.64 0.46
Yamba Subtropical TMax, TMin, Evap, VP, Rad 38.01 22.96 0.62 0.34
Fairymead Subtropical TMax, TMin, VP, Rad 46.22 17.85 0.58 0.26

Performance measures for worst input combinations

Katherine Tropical TMax, TMin, Rad 31.00 15.08 0.68 0.47
Palmerville Tropical TMax, TMin, Evap, VP, Rad 33.90 15.21 0.66 0.44
Yamba Subtropical TMax, TMin, VP 40.28 22.49 0.61 0.25
Fairymead Subtropical TMax, TMin, Rad 47.18 19.34 0.63 0.23

Table 6.35: The k-NN model performance for weekly rainfall predictions with best
and worst combinations of input variables in tropical and subtropical zones.

Table 6.36, summarizes the performance of all eight models in predicting weekly

rainfall with best combinations of input variables in tropical and subtropical zones.

Results presented in this table show that at least one performance measure indi-

cate that the CLR(Opt) model outperformed other models in three out of four lo-

cations (Palmerville, Yamba and Fairymead); MLR model in two locations (Yamba

and Fairymead); CR(EM) and ANN(1) in Yamba and SVM(RBF) in Katherine. The

SVM(Linear), ANN(0) and k-NN models are not best in any location.

According to performance measure RMSE, the CLR(Opt) model outperformed

other models in Palmerville and Fairymead; the SVM(RBF) model in Katherine and

the MLR model in Yamba. In the location Katherine, the CLR(Opt) model perfor-
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Figure 6.36: Observed rainfall vs. k-NN model weekly predictions in tropical and
subtropical classification zones.

Stations Measures CLR CR SVM SVM ANN ANN MLR KNN
(EM) (Linear) (RBF) (0) (1)

Katherine RMSE 27.58 36.71 35.18 26.39 30.25 27.77 28.18 28.41
(Tropical) MAE 13.71 17.24 16.77 13.27 16.64 14.93 14.90 14.31

MASE 0.62 0.78 0.76 0.60 0.75 0.68 0.67 0.65
CE 0.58 0.26 0.32 0.62 0.50 0.58 0.56 0.56

Palmerville RMSE 32.37 38.62 39.99 34.86 36.27 34.82 36.38 33.11
(Tropical) MAE 14.37 17.77 18.47 15.04 18.44 15.59 17.66 14.93

MASE 0.62 0.77 0.80 0.65 0.80 0.67 0.76 0.64
CE 0.49 0.27 0.22 0.41 0.36 0.41 0.35 0.46

Yamba RMSE 36.99 38.57 42.22 43.26 38.35 36.91 36.83 38.01
(Subtropical) MAE 21.77 20.73 22.14 24.11 23.47 22.32 21.98 22.96

MASE 0.59 0.56 0.60 0.65 0.64 0.60 0.59 0.62
CE 0.37 0.32 0.18 0.14 0.32 0.37 0.38 0.34

Fairymead RMSE 45.18 50.17 52.08 48.14 47.94 47.18 46.10 46.22
(Subtropical) MAE 17.43 18.68 18.64 17.56 19.19 18.43 17.18 17.85

MASE 0.57 0.61 0.61 0.57 0.63 0.60 0.56 0.58
CE 0.29 0.13 0.06 0.20 0.20 0.23 0.26 0.26

Table 6.36: Models performance of all eight linear and non-linear models for weekly
rainfall predictions in tropical and subtropical zones using best combination of input
variables.
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mance is 4.31% lower and in Yamba 0.43% than the outperformed models. Results

demonstrate that the CLR(Opt) model is superior than SVM(Linear), ANN(0) and

k-NN models in predicting weekly rainfall in tropical and subtropical classification

zones.

A visual comparison of model predictions with the actual observations in temper-

ate classification zone, given in Figures 6.29, 6.30, 6.31, 6.32, 6.33, 6.34, 6.35 and

6.36, show that all models follow the series patterns in all locations of tropical and

subtropical classification zones.

In summary, based on the primary performance measure RMSE, the CLR(Opt)

model is the most suitable model in finding the patterns and trends of the observations

compared to other models at most sites in tropical and subtropical classification zones.

6.5 Summary of chapter

In this chapter, we reported the results of the proposed model and seven other mod-

els for weekly rainfall predictions over ten years. In the development of our models,

twenty-four geographically diverse weather stations were used: seven from the temper-

ate zone, eight from the grassland, five from the desert, two from the tropical and two

from the subtropical zones. All the selected prediction models were developed for each

weather station using training sets and evaluated by using test sets. The prediction

performance of models was evaluated by comparing observed and predicted rainfall us-

ing performance measures RMSE, MAE, MASE and CE. The computational results of

the proposed model were compared with those obtained from CR(EM), SVM(Linear),

SVM(RBF), MLR, ANN(0), ANN(1) and k-NN models.

The results reported in this chapter show that in temperate classification zone,

the CLR(Opt) and ANN(0) models are most capable of finding the patterns and

trends of the observations. In grassland classification zone, ANN(1) model is the

most suitable model for monthly rainfall predictions compared to other models. In

the desert, tropical and subtropical classification zones, the CLR(Opt) is the best in

predicting weekly rainfall in most locations.

The prediction performance of all models varied considerably with changes of

geographic regions. In tropical and subtropical zones, predictions have more deviation

from the actual rainfall observation. This may be because of higher rainfall variability

and extreme values.

The results also confirmed that no single input variable provides the best pre-

dictions. Adding more input variables improved the performance of models in most

locations used in this study. Results also found that these five meteorological variables

are suitable predictors for weekly rainfall prediction in Australia.



Chapter 7

Conclusions and Future Research

The aims of this thesis were to develop optimization based clusterwise linear regres-

sion method and prediction methods based on it to improve the accuracy of rainfall

prediction in Australia. This study also investigated the influence of meteorological

parameters (both individually and in combination) and geographic regions on the

performance of models in predicting monthly and weekly rainfall in Australia.

Accurate rainfall prediction is a serious concern in many countries; especially in

Australia where the climate is highly variable and water supply mainly depends on

rainfall. Any change in the probability of rainfall (heavy rainfall or drought) has

important implications for future resource planning, management and investment.

Predicting rainfall is a complex process, needing continual improvement. There

are many approaches to modeling rainfall. Many studies predicted rainfall using

only historical data as input and some used climate indices as input variables. There

have been comparatively few studies where rainfall was predicted using meteorological

variables as input.

In this thesis, we have developed a new optimization based clusterwise linear

regression method. This method simultaneously divides the data into k clusters and

fits the regression functions within each cluster. It is an incremental algorithm that

starts with one linear function and gradually adds one function at each iteration until

the satisfactory approximation is achieved.

Predictions can be computed from each cluster using prediction methods, however

finding the one with the lowest error is a challenge. We introduced and applied new

prediction methods for both monthly and weekly rainfall predictions. We assessed

the prediction performance of the proposed CLR(Opt) model with several multivari-

ate models including clusterwise linear regression based on maximum likelihood esti-

mation. This research also investigated the influence of meteorological variables and

geographic regions on the performance of models in predicting monthly and weekly

rainfall in Australia.

This thesis has presented results that showed:

199
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• Among all eight models, the CLR(Opt) is the most accurate for weekly rain-

fall predictions in tropical and subtropical climate zones and for both monthly

and weekly rainfall predictions in the desert climate zone. In temperate zone,

CLR(Opt) and SVM(RBF) models give the best predictions for monthly rain-

fall and CLR(Opt) and ANN(0) for weekly rainfall. In tropical and subtropical

climate zones, the CLR(Opt) and k-NN models are the most accurate models

for monthly rainfall predictions. The ANN(1) model is best in grassland zone.

• The CLR(Opt) is superior to the CLR(EM), SVM(Linear), ANN(0) and MLR

models in most locations used in this study for both weekly and monthly rainfall

predictions.

• Two linear models, SVM(linear) and MLR, in general, are not accurate models

for rainfall prediction.

• All eight models at all locations, with a very few exceptions, fail to predict

extreme rainfalls.

• The prediction performance of all models varies considerably both within and

across climate zones. Predictions have the lowest deviation from the actual

observations in desert climate zone and the highest in tropical and subtropical

zones.

• No single meteorological parameter as an input variable in the models provides

best predictions. Adding input variables increased the prediction performance

of models in most locations used in this study. Results also found that these

five meteorological variables are suitable predictors for both monthly and weekly

rainfall predictions in Australia.

Rainfall is a very complex climate variable. It is controlled by physical processes

involving random fluctuations. The relationship between rainfall and climate or me-

teorological variables is highly nonlinear. Results confirm that data-driven modeling

presents a powerful approach for rainfall prediction. Models which are able to capture

nonlinearities are the most suitable for such predictions. Our results on the CLR(Opt),

SVM(RBF), k-NN and ANN(1) models confirm this conclusion. Our results also con-

firm that the CLR(Opt) model is an efficient method for rainfall predictions and a

good alternative to existing mainstream models. However, results from this research

also show that mainstream models are not always successful for rainfall predictions

especially, for extreme rainfall predictions.

The results obtained in this research are useful to understand the relationship

between rainfall and meteorological variables in different climate zones in Australia

and may lead to further development in the modeling and predictions of weekly and
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monthly rainfall. Future work should continue to develop more accurate prediction

methods based on clusterwise linear regression. Furthermore, hybrids of clusterwise

linear regression and other models can be developed. Such models should be able,

in particular, to predict extreme rainfall events which are the real challenge for all

existing models.
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