
JOURNAL OF INDUSTRIAL AND Website: http://AIMsciences.org
MANAGEMENT OPTIMIZATION
Volume 3, Number 2, May 2007 pp. 257–277

INTEGRATED PRODUCTION SYSTEM OPTIMIZATION USING

GLOBAL OPTIMIZATION TECHNIQUES

T. L. Mason, C. Emelle, J. van Berkel

Shell International Production and Exploration B.V
Kesslerpark 1, Postbus 60

2280 AB Rijswijk, The Netherlands

A. M. Bagirov
Centre for Informatics and Applied Optimization,

School of Information Technology and Mathematical Sciences,
University of Ballarat, Ballarat, Victoria, 3353, Australia

F. Kampas
WAM Systems Inc., Plymouth Meeting, PA, USA

J. D. Pintér

PCS Inc., 129 Glenforest Drive, Halifax, NS, Canada B3M 1J2

(Communicated by Kok Lay Teo)

Abstract. Many optimization problems related to integrated oil and gas pro-
duction systems are nonconvex and multimodal. Additionally, apart from the
innate nonsmoothness of many optimization problems, nonsmooth functions
such as minimum and maximum functions may be used to model flow/pressure
controllers and cascade mass in the gas gathering and blending networks. In
this paper we study the application of different versions of the derivative free
Discrete Gradient Method (DGM) as well as the Lipschitz Global Optimizer
(LGO) suite to production optimization in integrated oil and gas production
systems and their comparison with various local and global solvers used with
the General Algebraic Modeling System (GAMS). Four nonconvex and non-
smooth test cases were constructed from a small but realistic integrated gas
production system optimization problem. The derivation of the system of
equations for the various test cases is also presented. Results demonstrate that
DGM is especially effective for solving nonsmooth optimization problems and
its two versions are capable global optimization algorithms. We also demon-
strate that LGO solves successfully the presented test (as well as other related
real-world) problems.

1. Introduction. It is well recognized that many optimization problems in the
oil and gas industry are global optimization problems. They may have a large
number of decision variables and the objective and/or constraint functions in these
problems may contain nonsmooth functions such as maximum, minimum functions
and if statements. The presence of such functions leads to nonsmooth and even to
discontinuous optimization problem.
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So far, different meta-heuristics such as genetic algorithms (GA) and simulated
annealing (SA) methods [26] have mainly been used to tackle the nonconvexity
in optimization problems from the oil and gas industry. Parallelization of these
algorithms have been used to solve large scale problems [18]. Smoothing of dis-
continuities, which are usually present in many mechanical models, can improve
the performance of these global optimization techniques [10], possibly with some
degradation in solution accuracy.

However meta-heuristics have many drawbacks. First of all, they require a large
number of the objective and constraint function evaluations which is not acceptable
when their evaluations are expensive. This makes both simulated annealing and
genetic algorithms suitable for only small problems. Second, meta-heuristics have
difficulties in dealing with the complicated continuous constraint functions which
are common for many optimization problems from the oil and gas industry. Third,
meta-heuristics sometimes cannot locate a global solution with high accuracy: as a
result they may produce only suboptimal solutions.

For large production system optimization problems, the preferred “standard”
algorithms are still the Sequential Linear Programming (SLP) [13, 24] and Sequen-
tial Quadratic Programming (SQP) [9] methods. However, these methods also have
their own limitations. In many integrated production system optimization involving
gas blending such as in the liquified Natural Gas (LNG) processing, the simultane-
ous consideration of blending and fluid transmission can result in blending problems
which are similar to the Haverly Pooling problem [14]. Problems of this type are
generally nonconvex and can have multiple solutions [11]. In this situation, the
local solvers may get stuck in one of the many stationary points.

Derivative free methods do not rely explicitly on the local model of the objective
and/or constraint functions and therefore they are more effective to solve global
and nonsmooth optimization than gradient or subgradient-based methods. In this
paper we study the application of different versions of the derivative free Discrete
Gradient Method (DGM) as well as the Lipschitz Global Optimizer (LGO) solver
suite to production optimization in integrated oil and gas production systems and
their comparison with various local and global solvers from the General Algebraic
Modeling System (GAMS). It is well known that comparative studies of optimiza-
tion algorithms can be problematic as there may be objections to the choice of
parameters and procedures used (Dolan and Moré as cited in [17]). In this paper
we analyze the performance of DGM and LGO applied to typical gas production
optimization problems.

In integrated production system modeling and optimization, the coupling of sub-
surface dynamic reservoir models to surface network and processing plants models
is non-trivial, with many tie-in possibilities [5]. In this paper, we follow earlier
coupling ideas [25] but the minimum and maximum functions are used to combine
the pressure/rate transmission equations and gas blending constraints into a single
optimization problem. Four test problems, with increasing complexity in the objec-
tive and constraints functions are used to illustrate this approach. We present the
results of numerical experiments on these test problems.

The paper is organized as follows. Section 2 describes optimization models in
the integrated production systems. The description of optimization problems are
given in Section 3. Section 4 gives the brief description of algorithms used in this
paper and Section 5 presents the results of numerical experiments. We discuss the
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results of numerical experiments and give some preliminary conclusions in Section
6.

2. Mathematical model of the gas blending process. We consider the pro-
cess of the blending of gas produced from five fields F1, . . . , F5 to supply different
quality gas at six processing plants P1, . . . , P6 through a converging-diverging gas
gathering/distribution network, as shown in Figure 1.
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Figure 1. Scheme of the gas blending network

This model has five fields, where the average reservoir pressures are fixed and
the relationship between the average reservoir pressure and flowing bottom hole
pressure (FBHP) can be expressed as a quadratic Inflow Performance Relationship
(IPR) (see, for example, [7]). From the bottom of the well to the tubing head,
the Vertical Flow Performance (VFP), which associate the pressure drop in vertical
pipes with production, is assumed to be quadratic.

In order to find flow rates Q1, ..., Q13 in the above gas network, a set of simulta-
neous equations is developed that relates the nodes’ pressures with flow rates. The
governing principles used for fluid flow in a network under steady state conditions
are based on Kirchoff’s law, and the fact that gas flows down a pressure gradient.
It is assumed that flow controllers are present at the gathering centers GC1, GC2

and GC3 to dissipate energy in order to equalize incoming pressures and spilt flow.

2.1. Reservoir pressure. The average reservoir pressures for the five fields F1, . . . ,

F5 are, by assumption, fixed at 3569 psia (pound per square inch, absolute), 3688
psia, 3843 psia, 3935 psia and 4003 psia, respectively.

2.2. Gas inflow performance relationship. The determination of the flowing
bottom hole pressure, PFBHP , given the average reservoir pressure, PRES and gas
flow rate, Q, is based on the following Inflow Performance Relationship (IPR) equa-
tion:

P 2
RES − P 2

FBHP = A ∗ Q + F ∗ Q2 (1)
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where A and F are Darcy and Non-Darcy flow coefficients, respectively. Like most
IPR for gas-condensate reservoirs (see, [16] for other and newer IPRs), the depen-
dence (1) is also quadratic. When the pressure is expressed in psia and gas flow rate
expressed in MMscf/d (million standard cubic feet per day), the numerical values
for flow coefficients of the five fields are shown in Table 1.

Field A F

F1 1001009 6737
F2 7738 52
F3 194022 1305
F4 9033 61
F5 167005 1124

Table 1. Flow coefficients A and F .

2.3. Gas vertical flow performance. The vertical flow performance (VFP) for
the wells is an adaptation of the Cullender-Smith equation [8]. The equation relates
the flowing bottom flow pressure, PFBHP , to the flowing tubing head pressure,
PFTHP , and the flow rate, Q, as follows:

P 2
FBHP = B ∗ P 2

FTHP + C ∗ Q2. (2)

The VFP flow coefficients for the five wells, for the same pressure and rate units as
above, are shown in Table 2.

Field B C

F1 1.85 1523
F2 1.86 280
F3 1.94 1767
F4 1.98 337
F5 2.07 2086

Table 2. VFP flow coefficients B and C.

2.4. Well pressure-rate performance. Equations (1) and (2) imply that the
relationship of PTHP with Q for each field is given by

PTHP i =

√

P 2
RESi

− AiQi − (Ci + Fi)Q2
i√

Bi

, i = 1, . . . , 5. (3)

2.5. Pressure drop along horizontal pipes. The pressure drop (PIN − POUT )
associated with a flow, Q, in a horizontal pipe is calculated from the equation:

POUT =
√

P 2
IN − H ∗ Q2. (4)

The coefficient H for each pipe in the network is shown in Figure 2. Like most
pressure drop equations [12, 23], the above equation is also quadratic.

The minimum outlet pressures for P1, . . . , P6 are 500 psia, 550 psia, 600 psia, 580
psia, 560 psia and 670 psia, respectively, as shown in Figure 3. The Tubing Head
Pressure (THP) for all wells must be greater or equal to 1543 psia.
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Figure 2. Pipe pressure drop coefficient H

2.6. Network pressure-rate equations. The THP provides the energy to drive
the gas to deliver at or above the minimum delivery pressure at a plant. Some of
the energy is lost due to friction. To illustrate the pressure-rate calculation, we will
consider production from F1, . . . , F4 to P1 and P3. The steps from F1 to P1, given
Q1, a decision variable, are illustrated below:

P 2
THP 1 =

P 2
RES1 − A1Q1 − (C1 + F1)Q

2
1

B1
, (5)

P 2
OUT 1 = P 2

THP 1 − H1 ∗ Q2
1, (6)

P 2
OUT 5 = P 2

OUT 1 − H5 ∗ Q2
5. (7)

After substitution, P 2
OUT 5 can be expressed as:

P 2
OUT 5 =

P 2
RES1 − A1Q1 − (C1 + F1)Q

2
1

B1
− H1 ∗ Q2

1 − H5 ∗ Q2
5. (8)

For feasible flow, P 2
OUT 5 ≥ (500psia)2, the squared of the minimum delivery pres-

sure at P1, therefore one condition for flow is:

P 2
RES1 − A1Q1 − (C1 + F1)Q

2
1

B1
− H1 ∗ Q2

1 − H5 ∗ Q2
5 ≥ 5002. (9)

The condition for flow to the processing plant, P3, is more involved as we have to
consider production from F1 to F4 and flow and blending at three gathering centers
GC1, GC2 and GC3.

The outlet pressures from the four fields at GC3 are calculated as shown above
and they are as follows:

P 2
OUT 6 =

P 2
RES1 − A1Q1 − (C1 + F1)Q

2
1

B1
− H1 ∗ Q2

1 − H6 ∗ Q2
6, (10)
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P 2
OUT 2 =

P 2
RES2 − A2Q2 − (C2 + F2)Q

2
2

B2
− H2 ∗ Q2

2, (11)

P 2
OUT 3 =

P 2
RES3 − A3Q3 − (C3 + F3)Q

2
3

B3
− H3 ∗ Q2

3, (12)

P 2
OUT 7 =

P 2
RES4 − A4Q4 − (C4 + F4)Q

2
4

B4
− H4 ∗ Q2

4 − H7 ∗ Q2
7. (13)

Then the pressure PGC3 at GC3 is:

PGC3 = min[POUT 6, POUT 2, POUT 3, POUT 7]. (14)

Thus, the condition for flow from GC3 to P3 is as follows:

P 2
GC3 − H9 ∗ Q2

9 ≥ (600psia)2 (15)

or alternatively,

min[P 2
OUT 6, P

2
OUT 2, P

2
OUT 3, P

2
OUT 7] − H9 ∗ Q2

9 ≥ (600psia)2. (16)

In addition to the above equations, at the gathering centers the following mole
(and volume) conservation applies:

Q1 − Q5 − Q6 = 0, (17)

Q4 − Q7 − Q8 = 0, (18)

Q2 + Q3 + Q6 + Q7 − Q9 − Q10 − Q11 − Q12 = 0. (19)

2.7. Gas composition. It is desired that gas delivered to processing plant P6

must meet CO2 and N2 concentration limits while maximizing LPG content. For
the blending calculation, we need the gas composition of all the five fields as they
all contribute towards production to P6. The gas composition, in volume fraction,
for the five fields are shown in Table 3.

Mole F1 F2 F3 F4 F5

N2 0.006663 0.021507 0.023881 0.013324 0.023273
CO2 0.095243 0.069502 0.025714 0.049802 0.054818

C1 0.797880 0.595579 0.695003 0.756350 0.676466
C2 0.049224 0.061650 0.070667 0.072361 0.059070
C3 0.018223 0.042565 0.046096 0.035477 0.035145
C4 0.008072 0.034419 0.028061 0.017898 0.027000

C5+ 0.024695 0.174778 0.110578 0.054789 0.124228
Total 1.000000 1.000000 1.000000 1.000000 1.000000

Table 3. Field gas composition.

The concentrations of CO2, N2 and LPG at GC3 are as follows:

[CO2]GC3
=

Q6[CO2]F1
+ Q2[CO2]F2

+ Q3[CO2]F3
+ Q7[CO2]F4

Q2 + Q3 + Q6 + Q7
, (20)

[N2]GC3
=

Q6[N2]F1
+ Q2[N2]F2

+ Q3[N2]F3
+ Q7[N2]F4

Q2 + Q3 + Q6 + Q7
, (21)
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[LPG]GC3
=

Q6[C3 + C4]F1
+ Q2[C3 + C4]F2

+ Q3[C3 + C4]F3
+ Q7[C3 + C4]F4

Q2 + Q3 + Q6 + Q7
.

(22)
Thus at P6 we get

[CO2]P6
=

Q12[CO2]GC3
+ Q13[CO2]F5

Q12 + Q13
(23)

and likewise for [N2]P6
and [LPG]P6

.

3. The optimization problems. We will consider four different optimization
problems. These problems may differ from each other by both objective and con-
straint functions. Their general form is as follows:

maximize f(Q) subject to Q ∈ X ⊂ IR13. (24)

Here the function f may have one of the following forms:

1. The objective function for gas production

f1(Q) =

4
∑

i=1

Qi + Q13; (25)

2. The objective function for the amount of LPG produced at P6:

f2(Q) =
Q12 (Q6LPGF1

+ Q2LPGF2
+ Q3LPGF3

+ Q7LPGF4
)

Q2 + Q3 + Q6 + Q7
+ Q13LPGF5

(26)
where LPGi = [C3 +C4]i is the sum of the amount of the propane and butane
components.

3. The objective function for maximization of LPG production at plant P6 and
total condensate production:

f3(Q) = f2(Q) +

4
∑

i=1

3Qi[C5+]Fi
+ 3Q13[C5+]F5

(27)

In production operations the upper and lower bounds are generally known and
here the decision variables Qi, i = 1, . . . , 13 are in the range between 0 MMscf/day
and 200 MMscf/day.

The feasible set X is described by the following constraint functions. There are
seven pressure/rate constraint equations to deliver as per minimum outlet pressure
requirements shown in Figure 3:

ϕ1(Q) ≡ P 2
RES1 − A1Q1 − (C1 + F1)Q

2
1

B1
−H1∗Q2

1−H5∗Q2
5−(500psia)2 ≥ 0, (28)

ϕ2(Q) ≡ P 2
RES4 − A4Q4 − (C4 + F4)Q

2
4

B4
−H4∗Q2

4−H8∗Q2
8−(550psia)2 ≥ 0, (29)

ϕ3(Q) ≡ min[P 2
OUT 6, P

2
OUT 2, P

2
OUT 3, P

2
OUT 7] − H9 ∗ Q2

9 − (600psia)2 ≥ 0, (30)

ϕ4(Q) ≡ min[P 2
OUT 6, P

2
OUT 2, P

2
OUT 3, P

2
OUT 7] − H10 ∗ Q2

10 − (580psia)2 ≥ 0, (31)
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ϕ5(Q) ≡ min[P 2
OUT 6, P

2
OUT 2, P

2
OUT 3, P

2
OUT 7] − H11 ∗ Q2

11 − (560psia)2 ≥ 0, (32)

ϕ6(Q) ≡ min[P 2
OUT 6, P

2
OUT 2, P

2
OUT 3, P

2
OUT 7] − H12 ∗ Q2

12 − (670psia)2 ≥ 0, (33)

ϕ7(Q) ≡ P 2
RES5 − A5Q13 − (C5 + F5)Q

2
13

B5
− H13 ∗ Q2

13 − (670psia)2 ≥ 0. (34)

There are three volume (mole) fraction constraints for CO2 and N2 at GC3 and
LPGP5

:

ϕ8(Q) ≡ [CO2]GC3
− 0.05 ≤ 0, (35)

ϕ9(Q) ≡ [N2]GC3
− 0.03 ≤ 0, (36)

ϕ10(Q) ≡ Q12(Q12 + Q13)(Q6LPGF1
+ Q2LPGF2

+ Q3LPGF3
+ Q7LPGF4

)

Q2 + Q3 + Q6 + Q7

+
Q13LPGF5

Q12 + Q13
− 0.06 ≥ 0. (37)

In addition there are three linear equalities from (17) - (19) describing mole (and
volume) conservation at the gathering centers:

ϕ11(Q) = Q1 − Q5 − Q6 = 0, (38)

ϕ12(Q) = Q4 − Q7 − Q8 = 0, (39)

ϕ13(Q) = Q2 + Q3 + Q6 + Q7 − Q9 − Q10 − Q11 − Q12 = 0. (40)

It should be noted that functions ϕ1, . . . , ϕ7 are concave, ϕ8, ϕ9 are nonconvex and
ϕ10 is nonconcave.

We will consider the following problems.

Problem 1. maximize f1(Q) ubject to x ∈ X1 = {Q ∈ IR13 : 0 ≤ Qi ≤ 200, i =
1, . . . , 13, ϕi(Q) = 0, i = 11, 12, 13, ϕi(Q) ≥ 0, i = 1, . . . , 7}.

Since f1 is linear function and the set X1 is convex the problem (1) is convex.

Problem 2. maximize f1(Q) subject to x ∈ X2 = {Q ∈ IR13 : 0 ≤ Qi ≤ 200, i =
1, . . . , 13, ϕi(Q) = 0, i = 11, 12, 13, ϕi(Q) ≥ 0, i = 1, . . . , 10}.

Despite the fact that f1 is linear function, the set X2 is nonconvex and therefore
the problem (2) is nonconvex and it may have many local minimizers.

Problem 3. maximize f2(Q) subject to x ∈ X2.

In this problem both the objective function and the feasible set X2 are nonconvex
and therefore the problem (3) is nonconvex.

Problem 4. maximize f3(Q) subject to x ∈ X2.

The problem (4) is nonconvex.
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Figure 3. Minimum Outlet Delivery Pressure Requirements (in psia)

4. Optimization algorithms.

4.1. Discrete gradient method. The discrete gradient method (DGM) was in-
troduced and studied for different nonsmooth optimization problems in [1, 2, 3, 4].
Here we use four different versions of DGM. Their main difference is the way they
compute descent directions. Therefore we will describe here only an algorithm for
the computation of descent directions in DGM. The description of DGM itself can
be found in the above mentioned papers.

Let f be a locally Lipschitz continuous function defined on IRn. Let

S1 = {g ∈ IRn : ‖g‖ = 1}, G = {e ∈ IRn : e = (e1, . . . , en), |ej | = 1, j = 1, . . . , n},
P = {z(λ) : z(λ) ∈ IR1, z(λ) > 0, λ > 0, λ−1z(λ) → 0, λ → 0}.

Here S1 is the unit sphere, G is the set of vertices of the unit hypercube in IRn and
P is the set of univariate positive infinitesimal functions.

We take any g ∈ S1 and define |gi| = max{|gk|, k = 1, . . . , n}. We also take
any e = (e1, . . . , en) ∈ G, a positive number α ∈ (0, 1) and define the sequence of n

vectors ej(α), j = 1, . . . , n:

e1(α) = (αe1, 0, . . . , 0),
e2(α) = (αe1, α

2e2, 0, . . . , 0),
. . . = . . . . . . . . .

en(α) = (αe1, α
2e2, . . . , α

nen).

Then for given x ∈ IRn and z ∈ P we define a sequence of n + 1 points as follows:

x0 =
x1 =
x2 =
. . . =
xn =

x+ λg,

x0+ z(λ)e1(α),
x0+ z(λ)e2(α),
. . . . . .

x0+ z(λ)en(α).
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Definition 1. (see [1] - [4]) The discrete gradient of the function f at the point
x ∈ IRn is the vector Γi(x, g, e, z, λ, α) = (Γi

1, . . . , Γ
i
n) ∈ IRn, g ∈ S1 with the

following coordinates:

Γi
j = [z(λ)αjej)]

−1
[

f(xj) − f(xj−1)
]

, j = 1, . . . , n, j 6= i,

Γi
i = (λgi)

−1



f(xn) − f(x) −
n

∑

j=1,j 6=i

Γi
j

(

λgj − z(λ)αjej

)



 .

Remark 1. One can see from the definition that n − 1 coordinates of the discrete
gradient are computed differently from its i-th coordinate. They are approximations
to n−1 coordinates of a certain subgradient at the point x+λg and these coordinates
dependent in particular on z ∈ P . One can take z very small number and fix it for
all λ > 0 or z ∈ P can be any univariate positive infinitesimal function. Discrete
gradients approximate subgradients for a broad subset of nonsmooth functions [3, 4].

Let z ∈ P, λ > 0, α ∈ (0, 1], the number c ∈ (0, 1) and a tolerance δ > 0 be given.

Algorithm 1. An algorithm for the computation of the descent direction.

Step 1. Choose any g1 ∈ S1, e ∈ G, compute i = argmax{|gj |, j = 1, . . . , n} and a

discrete gradient v1 = Γi(x, g1, e, z, λ, α). Set D1(x) = {v1} and k = 1.

Step 2. Calculate the vector ‖wk‖2 = min{‖w‖2 : w ∈ Dk(x)}. If

‖wk‖ ≤ δ, (41)

then stop. Otherwise go to Step 3.

Step 3. Calculate the search direction by gk+1 = −‖wk‖−1wk.
Step 4. If

f(x + λgk+1) − f(x) ≤ −cλ‖wk‖, (42)

then stop. Otherwise go to Step 5.

Step 5. Compute i = argmax{|gk+1
j | : j = 1, . . . , n} and a discrete gradient

vk+1 = Γi(x, gk+1, e, z, λ, α),

construct the set Dk+1(x) = co {Dk(x)
⋃

{vk+1}}, set k = k + 1 and go to Step 2.

Remark 2. Algorithm 1 is a terminating [3, 4]. This fact is true for any values
of λ > 0. Small values of λ > 0 give approximations to subgradients of f and in
this case Algorithm 1 calculates local descent directions. Large values of λ > 0
do not give approximations to subgradients anymore however they still allow one
to find descent directions from x and such directions are global descent directions.
Algorithm 1 is capable of finding such directions even from local minimizers.

We will consider four different versions of the discrete gradient method: DGM1L,
DGM1G, DGM2L and DGM2G. In DGM1L and DGM1G discrete gradients are
computed using z(λ) = λl where l ≥ 2 whereas z(λ) = 10−12 for any λ > 0 in
DGM2L and DGM2G. Only local descent directions are computed in DGM1L and
DGM2L. In DGM1G and DGM2G both local and global descent directions are
computed.
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The idea behind both DGM1G and DGM2G is the same. We take any starting
point and applying DGM1L (or DGM2L in DGM2G) compute the first local solu-
tion. Then applying the algorithm for the computation of global descent directions
we find descent direction from this local minimizer and compute a new starting
point for DGM1L (or DGM2L) and so on. This continues until the algorithm for
the computation of global descent directions cannot find a descent direction from a
local minimizer.

4.2. The Lipschitz-continuous global optimizer. The Lipschitz-Continuous
Global Optimizer (LGO) solver suite has been successfully applied to complex,
large-scale models both in research and commercial contexts for over a decade. De-
tailed technical descriptions and user documentation can be found in [19] and [20]
and elsewhere, including the peer review [6]. LGO solver suites is based on a seam-
less combination of a suite of global and local scope nonlinear solvers. Currently,
LGO includes the following solver options:

• Branch-and-bound (adaptive partition and sampling) based global search (LGO-
BB);

• Adaptive global random search (with single-start) (LGO-GARS);
• Adaptive multi-start global random search (LGO-MS).
• Constrained local search based on the generalized reduced gradient method

(GRG) (LGO-LS).

The LGO global search methodology has been described in [19], [20] and Section
2 of [21] reviews several implementations. In all three global search modes the
model functions are aggregated by an exact penalty (aggregated merit) function.
By contrast, in the local search phase all model functions are considered and treated
individually. The global search phases are equipped also with stochastic sampling
procedures that support the usage of statistical bound estimation methods. All
LGO search algorithms are derivative-free: specifically, in the local search phase
central differences are used to approximate gradients. The compiler-based LGO
solver suite is used as an option linked to various modeling environments [21]. In its
core text I/O based version, the application-specific LGO executable program (that
includes a driver file, the LGO solver library and the model function file) reads an
input text file that contains application-specific information (model name, variable
and constraint names, variable bounds and nominal values, and constraint types)
as well as a few key solver options (global solver type, precision settings, resource
and time limits). Upon completing the LGO run, a summary and a detailed report
file are available. As can be expected, this LGO version has the lowest demands
for hardware, it also is fastest and can be directly embedded into vertical and
proprietary user applications.

4.3. GAMS local and global solvers. For an independent verification and com-
parison, the four test problems were run through various local and global solvers
available in GAMS. Brief descriptions of the solvers are as follows
(see http://www.gams.com/solvers/solvers.htm, for more details):

• SNOPT is a large scale Sequential Quadratic Programming (SQP) solver de-
veloped by Philip Gill (University of California at San Diego) and Walter
Murray and Michael Saunders (Stanford University).

• MINOS from the Systems Optimization Laboratory at Stanford University
iteratively solves subproblems with linearized constraints and an augmented
Lagrangian objective function. MSMINOS is MINOS with multi-start.



268 MASON, BAGIROV, EMELLE, KAMPAS, PINTÉR AND BERKEL

• KNITRO from Ziena Optimization, Inc is a software package for finding lo-
cal solutions of continuous, smooth nonlinear optimization problems, with or
without constraints.

• PATHNLP solves an NLP by internally constructing the Karush-Kuhn-Tucker
(KKT) system of first-order optimality conditions associated with the NLP
and solving this system using the PATH solver for complementarity problems.

• CONOPT from ARKI Consulting and Development in Denmark is a general-
ized reduced gradient solver. MSCONOPT is multi-start CONOPT.

• OQNLP, from Optimal Methods and OptTek Systems, Inc., is a solver for
global optimization of smooth constrained problems with either all continuous
variables or a mixture of discrete and continuous variables.

• MSNLP (Multi-Start NLP) is another stochastic search algorithm from Opti-
mal Methods, Inc. for global optimization problems.

• OQCONOPT combines the OptQuest (OQ) Callable Library (a scatter search
code) of Glover, Laguna, Kelly with the CONOPT solver.

• OQMINOS combines the OQ Callable Library with MINOS.

5. Results of numerical experiments. It is obvious from the construction that
the above formulated optimization problems can have multiple solutions, which is
what we expect in real world production operations. In production operations the
upper and lower bounds are generally known and for the test cases, the decision
variables are in the range between 0 MMscf/day and 200 MMscf/day. The starting
point for each variable is set to the mid-point value of 100 MMscf/day. However,
this selection may be an infeasible starting point which it is in these test cases.

LGO is available for the Mathematica (version 5.1 was used) platform as the
MathOptimizer Professional (MOP) software package. MOP auto-converts the
Mathematica model code into Fortran (the compiler used was Intel Fortran ver-
sion 7.1) and then the external LGO engine solves the model. Results are reported
back to the calling Mathematica document (see [22]).

No tuning of search parameters was made for the algorithms and all were run in
the default option mode. All versions of DGM have no user tuneable parameters
which is an important feature for deployment in the operating companies.

5.1. Problem 1: maximizing gas production. The solutions obtained by LGO
and DGM are shown in Table 4.

One can see from Table 4 that the LGO-GARS and LGO-MS solutions are better
than those obtained by the different versions of DGM. However, the DGM results
are better than LGO-BBLS and LGO-LS (recall that the latter is only a local solver
mode usage of LGO).

The solutions by LGO-GARS, LGO-MS, LGO-LS and LGO-BB were obtained
with the maximum constraint violation of 5×10−6, 5×10−6, 7×10−7 and 7×10−7,
respectively. The solutions of the DGM variants were obtained to the maximum
constraint violation of less than 10−10. This may explain why the LGO-GARS and
LGO-MS results were slightly better albeit with acceptable constraint violation.
For engineering purposes, all these solutions are acceptable.

The solutions obtained by local and global solvers of GAMS, with constraint
violation of about 10−6 are shown in Tables 5 and 6. SNOPT and MINOS failed
to come up with feasible solution and the OQMINOS solution was suboptimal.
From the various solutions, with almost similar values of the objective function,
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Variable LGO-GARS LGO-MS LGO-LS LGO-BB DGM1L DGM1G DGM2L DGM2G

Q1 7.820 7.820 0.000 0.000 7.820 7.820 7.820 7.818

Q2 154.975 154.975 154.975 154.975 133.816 114.016 140.110 151.503

Q3 34.005 34.005 0.000 0.000 33.147 33.731 26.259 32.050

Q4 153.579 153.579 153.579 153.579 151.767 147.552 150.886 153.579

Q5 2.250 0.000 0.000 0.000 3.530 5.909 4.647 7.218

Q6 5.570 7.820 0.000 0.000 4.291 1.911 3.173 0.600

Q7 126.110 0.000 131.622 131.622 6.870 91.526 136.405 115.092

Q8 27.470 153.579 21.957 21.957 144.897 56.026 14.481 38.487

Q9 23.999 59.920 47.529 47.529 8.597 66.293 143.995 10.604

Q10 70.708 13.224 77.826 77.826 157.303 65.977 11.853 139.561

Q11 131.697 53.171 54.863 54.863 9.860 65.661 136.765 12.552

Q12 94.256 70.485 106.380 106.380 2.365 43.252 13.333 136.528

Q13 38.277 38.277 38.277 38.277 10.734 34.595 29.842 14.035

Value 388.657 388.657 346.832 346.832 337.285 337.715 354.917 358.985

Table 4. LGO and DGM solutions for Problem 1

this problem has multiple solutions. The consensus optimal value in the objective
function is 388.657 with the maximum constraint violation of less than 10−6.

Variable KNITRO PATHNLP CONOPT MSCONOPT MSMINOS

Q1 7.820 7.820 7.820 7.820 7.820

Q2 154.975 154.975 154.975 154.975 154.975

Q3 34.005 34.005 34.005 34.005 34.005

Q4 153.579 153.579 153.579 153.579 153.579

Q5 3.846 5.694 0.000 0.000 0.149

Q6 3.974 2.126 7.820 7.820 7.671

Q7 80.572 118.746 0.000 0.000 9.517

Q8 73.007 34.833 153.579 153.579 144.063

Q9 71.355 96.810 149.955 149.955 0.000

Q10 69.464 83.207 46.845 46.845 91.833

Q11 67.771 72.676 0.000 0.000 39.221

Q12 64.936 57.159 0.000 0.000 75.113

Q13 38.277 38.277 38.277 38.277 38.277

Value 388.657 388.657 388.657 388.657 388.657

Table 5. Solutions from various GAMS local solvers with both
single start and multi-start options for Problem 1.

5.2. Problem 2: maximizing gas production with gas quality constraints.

The solutions obtained by LGO solvers and different versions of DGM are presented
in Table 7.

The solutions by the various local and global solvers of GAMS are presented in
Tables 8 and 9. The solvers SNOPT, MINOS, KNITRO and PATHNLP failed to
locate any feasible solution. However, the multi-start MINOS managed to converge
to a feasible solution but no such improvement was observed for CONOPT (see
Table 8).

From the results of the various GAMS and the LGO solvers, the consensus best
value for the objective function is 276.6. DGM1L and DGM1G search modes did
come up with better values but these were achieved at the expense of a single
constraint violation (Equation 35) in the order of 10−2. The maximum constraint
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Variable OQNLP MSNLP OQCONOPT OQMINOS

Q1 7.820 7.820 7.820 7.707

Q2 154.975 154.975 154.975 54.521

Q3 34.005 34.005 34.005 8.886

Q4 153.579 153.579 153.579 32.188

Q5 0.000 0.000 0.000 7.707

Q6 7.820 7.820 7.820 0.000

Q7 108.911 108.911 0.000 16.911

Q8 44.668 44.668 153.579 15.277

Q9 78.377 78.377 149.955 17.976

Q10 78.302 78.302 46.845 35.843

Q11 78.227 78.227 0.000 13.657

Q12 70.804 70.804 0.000 12.841

Q13 38.277 38.277 38.277 7.642

Value 388.657 388.657 388.657 110.943

Table 6. Solutions obtained by GAMS global solvers for Problem 1.

Variable LGO-CARS LGO-MS LGO-LS LGO-BB DGM1L DGM1G DGM2L DGM2G

Q1 7.820 7.820 0.000 0.000 7.820 7.820 6.156 6.156

Q2 42.955 42.955 42.642 42.642 137.162 137.162 111.777 111.777

Q3 34.005 34.005 34.005 34.005 33.970 33.970 23.991 23.991

Q4 153.579 153.579 153.579 153.579 153.579 153.579 135.929 135.929

Q5 7.820 7.820 0.000 0.000 7.729 7.729 6.156 6.156

Q6 0.000 0.000 0.000 0.000 0.091 0.091 0.000 0.000

Q7 153.579 153.579 99.974 99.974 93.261 93.261 105.846 105.846

Q8 0.000 0.000 53.606 53.606 60.319 60.319 30.083 30.083

Q9 23.999 8.371 75.147 75.147 73.048 73.048 18.638 18.638

Q10 70.708 49.717 51.549 51.549 72.776 72.776 72.501 72.501

Q11 56.454 61.831 40.465 40.465 72.505 72.505 75.328 75.328

Q12 79.377 110.619 9.460 9.460 46.155 46.155 75.147 75.147

Q13 38.277 38.277 38.277 38.277 32.190 32.190 38.277 38.277

Value 276.636 276.636 268.503 268.503 364.722 364.722 316.130 316.130

Table 7. LGO and DGM solutions for Problem 2.

violation for the other three LGO and GAMS solvers is about 10−6. This may
explain why the DGM solutions are better.

5.3. Problem 3: plant P6 LPG maximization. Results for LGO solvers and
different versions of DGM are presented in Table 10.

One can see from Table 10 that In this test case, LGO gave better solutions
compared to the two DGM versions. For the first three LGO solutions the constraint
violations were all less than 1.1 · 10−7. The constraint violation for the LGO-BB
was 4.5 · 10−6. It is intuitive that for this test case the best strategy would be to
divert as much gas to Plant P6 as possible. This is indeed the case for the three
LGO algorithms.

Results for GAMS solvers are shown in Tables 11 and 12 and these results
show that Problem 3 has many solutions and different solvers given the same
starting point, which is the mid-point of the lower and upper bounds. Overall,
MSCONOPT (multi-start CONOPT) gave the best solution, followed by LGO-MS.
MINOS, MSMINOS and SNOPT failed to locate feasible solutions.
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Variable CONOPT MSCONOPT MSMINOS

Q1 7.820 7.820 7.820

Q2 42.955 42.955 42.801

Q3 34.005 34.005 34.005

Q4 153.579 153.579 153.579

Q5 7.820 7.820 7.820

Q6 0.000 0.000 0.000

Q7 153.579 153.579 127.214

Q8 171.951 0.000 26.365

Q9 17.766 171.951 4.591

Q10 17.766 17.766 50.864

Q11 23.056 17.766 92.142

Q12 38.277 23.056 56.423

Q13 0.000 38.277 38.277

Value 276.636 276.636 276.482

Table 8. Solutions from various GAMS local solvers with both
single start and multi-start options for Problem 2.

Variable OQNLP MSNLP OQCONOPT OQMINOS

Q1 7.820 7.820 7.820 7.820

Q2 42.955 42.963 42.955 42.838

Q3 34.005 34.005 34.005 34.005

Q4 153.579 153.579 153.579 153.579

Q5 7.820 7.820 7.820 7.820

Q6 0.000 0.000 0.000 0.000

Q7 153.579 153.579 153.579 133.508

Q8 0.000 0.000 0.000 20.071

Q9 114.495 0.000 171.951 60.795

Q10 23.716 0.000 17.766 58.021

Q11 46.674 147.588 17.766 47.791

Q12 45.653 82.959 23.056 43.745

Q13 38.277 38.277 38.277 38.277

Value 276.636 276.645 276.636 276.519

Table 9. Solutions obtained by GAMS global solvers for Problem 2.

5.4. Problem 4: plant P6 LPG and total condensate production maxi-

mization. The solutions are as shown in Table 13.
For this problem case, the DGM gave better solutions than the LGO. The DGM

solution were some 50% better.
The solutions obtained by GAMS solvers are shown in Tables 14 and 15.
One can see that Problem 4 has multiple solutions and different solvers produce

different solutions starting from the the same point. Overall, DGM gave the best
solutions. SNOPT, MINOS and MSMINOS failed to locate feasible solutions.

6. Discussions and conclusions. ”The future is gas”, said Jeroen van der Veer,
the Chief Executive of the Royal Dutch Shell plc, in a speech delivered on the
23rd World Gas Conference held in Amsterdam on June 6, 2006. It is anticipated
that over the next two decades, gas either transported in pipelines or as Liquified
Natural Gas (LNG) will be the major business of many major oil and gas companies.
Optimization algorithms may play important role to meet the challenges of gas
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Variable LGO-GARS LGO-MS LGO-LS LGO-BB DGM1L DGM1G DGM2L DGM2G

Q1 0.000 0.000 0.000 6.941 2.000 2.001 7.226 2.000

Q2 42.911 36.028 42.517 39.375 40.203 35.670 154.917 113.643

Q3 34.005 28.518 34.005 31.340 12.914 20.220 29.386 32.058

Q4 146.159 129.639 145.900 139.786 8.738 9.784 152.242 5.000

Q5 0.000 0.000 0.000 6.941 2.000 2.000 7.226 2.000

Q6 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

Q7 146.159 129.639 78.460 104.831 3.738 4.784 49.762 0.000

Q8 0.000 0.000 67.440 34.955 5.000 5.000 102.481 5.000

Q9 0.000 0.000 0.000 0.000 4.819 3.213 10.382 0.000

Q10 34.467 0.000 0.000 0.000 5.820 4.138 96.438 0.303

Q11 33.630 0.000 0.000 0.000 6.823 5.168 41.727 1.483

Q12 154.978 194.185 154.982 175.546 39.394 48.156 85.518 143.914

Q13 38.277 37.678 38.277 37.590 38.277 38.277 21.713 36.314

Value 11.863 14.171 12.378 13.306 5.330 5.956 7.483 13.262

Table 10. LGO and DGM solutions for Problem 3.

Variable KNITRO PATHNLP CONOPT MSCONOPT MSMINOS

Q1 7.820 7.820 7.820 0.433 25.908

Q2 42.448 42.448 42.448 36.027 43.864

Q3 34.005 34.005 34.005 28.517 48.363

Q4 153.579 153.579 153.579 129.645 154.508

Q5 7.820 7.820 7.820 0.433 25.908

Q6 0.000 0.000 0.000 0.000 0.000

Q7 66.653 66.653 66.653 129.645 154.508

Q8 86.926 86.926 86.926 86.926 0.000

Q9 0.000 0.000 0.000 0.000 0.000

Q10 0.000 0.000 0.000 0.000 0.000

Q11 0.000 0.000 0.000 0.000 125.400

Q12 143.105 143.105 143.105 194.190 121.335

Q13 38.277 38.277 38.277 38.277 44.837

Value 13.604 6.876 12.378 14.208 11.741

Table 11. Solutions from various GAMS local solvers with both
single start and multi-start options for Problem 3.

production and blending systems. Most of optimization problems in these systems
are nonconvex and nonsmooth global optimization problems.

It is well known that gas optimization problems, as typified by the Haverly gas
pooling problem [14], are nonconvex and can have multiple solutions [11]. Pro-
duction behaviors in nature may have many discontinuities and so are generally
nonsmooth and nonconvex. Therefore, depending on starting points, one of the lo-
cal scope solvers (such as SLP and SQP) may end up at a local minimizer. Finding
the best among the many local optima may lead to substantial business advan-
tages. On the other hand, data from gas production systems may contain noise
which makes the application of gradient-based methods impossible to solve in such
problems. Since the derivative-free methods do not rely explicitly on the local
models of the objective and/or constraint functions such methods are suitable for
solving many gas blending optimization problems. In this paper we pursue the use
of derivative-free techniques such as the LGO and the DGM.

In gas production optimization with blending, it is desirable to be able to take
into account the flow splitting and pressure dissipation in gathering and distribution
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Variable OQNLP MSNLP OQCONOPT OQMINOS

Q1 7.820 7.820 7.820 0.000

Q2 42.460 42.460 36.027 42.460

Q3 33.957 33.957 28.517 33.957

Q4 78.966 78.966 129.645 84.400

Q5 7.820 7.820 7.820 0.000

Q6 0.000 0.000 0.000 0.000

Q7 78.966 78.966 129.645 78.966

Q8 0.000 0.000 0.000 0.000

Q9 0.000 0.000 0.000 0.000

Q10 0.000 0.000 0.000 0.000

Q11 0.000 0.000 0.000 0.000

Q12 155.383 155.383 194.190 155.383

Q13 38.277 38.277 38.277 31.131

Value 12.397 12.397 14.208 11.953

Table 12. Solutions obtained by GAMS global solvers for Prob-
lem 3.

Variable LGO-GARS LGO-MS LGO-LS LGO-BB DGM1L DGM1G DGM2L DGM2G

Q1 0.588 7.820 0.000 0.000 4.370 1.661 7.385 5.498

Q2 42.942 42.448 42.752 42.752 135.601 154.975 154.973 154.935

Q3 34.005 34.005 34.005 34.005 32.377 31.351 30.780 30.203

Q4 153.579 153.579 153.579 153.579 145.956 130.373 146.169 132.373

Q5 0.588 7.820 0.000 0.000 1.646 1.660 7.385 5.498

Q6 0.000 0.000 0.000 0.000 2.724 0.001 0.000 0.000

Q7 151.443 66.653 118.869 118.790 88.552 57.750 83.574 90.655

Q8 2.136 86.926 34.710 34.789 57.404 72.623 62.595 41.718

Q9 23.790 0.000 0.000 0.000 70.669 79.475 10.894 74.834

Q10 70.499 0.000 34.607 34.562 70.352 65.894 72.240 73.155

Q11 56.246 0.000 23.523 23.478 70.036 60.708 130.116 51.467

Q12 77.854 143.105 137.495 137.506 48.197 38.000 56.077 76.337

Q13 36.486 38.277 38.277 38.277 38.277 26.083 10.272 33.418

Value 79.680 85.347 84.125 84.126 126.038 127.204 124.350 133.171

Table 13. LGO and DGM Solutions for Problem 4.

networks, as shown in Figure 1. We took advantage of the capability of the DGM
and LGO to solve nonsmooth problems and introduced the use of the minimum
function to model chokes and flow controllers in production systems. In the forward
flow from the well to the processing plant, termed the ”forward-pass”, the condition
of flow at any gathering center, is that the operating pressure there is the minimum
of the inlet pressures feeding into the gathering center. Excess pressures of the
other inlets at the gathering center are dissipated through chokes and valves. In the
”backward-pass”, given the minimum delivery pressures at the plant, the maximum
function is used to cascade the pressures and rates back to the production wells.
This approach allows us to incorporate the network pressure/flow rate constraints
and the blending requirements into a single optimization problem.

The above test problems model real-world situations. In this study, we are in-
terested in the range of engineering solutions rather than just the performance of
individual algorithms. Starting from a simple gas optimization under pressure con-
straints we gradually add blending requirements which involve fractional terms into
the constraints and objective functions. The CO2 volume fraction constraint (35)
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Variable KNITRO PATHNLP CONOPT MSCONOPT MSMINOS

Q1 7.820 7.820 7.820 7.820 7.820

Q2 42.448 42.448 42.448 42.448 42.448

Q3 34.005 34.005 34.005 34.005 34.005

Q4 153.579 153.579 153.579 153.579 153.579

Q5 7.820 7.820 7.820 7.820 7.820

Q6 0.000 0.000 0.000 0.000 0.000

Q7 66.653 66.653 66.653 66.653 66.653

Q8 86.926 86.926 86.926 86.926 86.926

Q9 0.000 0.000 0.000 0.000 0.000

Q10 0.000 0.000 0.000 0.000 0.000

Q11 0.000 0.000 0.000 0.000 0.000

Q12 143.105 143.105 143.105 143.105 143.105

Q13 38.277 38.277 38.277 38.277 38.277

Value 85.347 85.347 85.347 85.347 85.347

Table 14. Solutions from various GAMS local solvers for Problem 4.

Variable OQNLP MSNLP OQCONOPT OQMINOS

Q1 0.672 0.687 7.820 7.820

Q2 7.820 7.820 42.448 42.257

Q3 42.448 42.448 34.005 34.005

Q4 34.005 34.005 153.579 153.579

Q5 153.579 153.579 7.820 7.820

Q6 7.820 7.820 0.000 0.000

Q7 0.000 0.000 66.653 33.948

Q8 66.653 66.653 86.926 119.631

Q9 86.926 86.926 0.000 0.000

Q10 0.000 0.000 0.000 57.523

Q11 0.000 0.000 0.000 0.000

Q12 0.000 0.000 143.105 52.687

Q13 143.105 143.105 38.277 38.277

Value 85.347 85.347 85.347 79.518

Table 15. Solutions generated by GAMS global solvers for Prob-
lem 4.

presents considerable challenge for DGM. Although DGM came up with the best
value at 368.33 (Table 7), it did so while violating the constraint (35) in the order of
0.007. From the results of the various GAMS and the LGO solvers, the consensus
best value for the objective function of Problem 2 is 276.6. When the constraint
(35) is expressed as a polynomial function instead of a fraction, both DGM1G and
DGM2G gave an objective function value of 250.84 with no constraint violations
(< 10−8). So DGM1G and DGM2G are both capable algorithm. From an engineer-
ing perspective, the valid GAMS and LGO solutions where the objective function
values are close to 276.6 are also acceptable.

In Problem 3, we introduced a fractional objective function, to test the capability
of the DGM to address cases where blending is part of the objective function as
well; in this case the maximization of LPG production at a particular plant. As
shown in Table 10, only DGM2G came close to those obtained by LGO. For the
GAM solvers, there is a wide spread in feasible solutions, ranging from 6.9 to 14.21,
indicating that this problem has multiple solutions. As in Problem 2, when the
constraint (35) is expressed as a polynomial function, DGM2G gave an objective
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Figure 4. Compared to a 3rd party package, HFPT/LGO gave
better gas lift allocation.
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Figure 5. Better gas lift allocation by HFPT/LGO results in
higher oil production.

value of 8.20 with almost no constraint violation (< 10−8). In this case, DGM did
not perform as good as LGO.

In Problem 4, the objective function is a sum of condensate and LPG blending at
Plant6. In this case, intuitively a good production strategy would be to produce to
the other plants as well. Here DGM did outstandingly well, with the values of the
objective function in the 124.35 to 131.17, but again while violating the constraint
(35) in the order of 0.007. DGM2G found some other 20 stationary points, ranging
from 41 to 105. When the constraint (35) is expressed as a polynomial function,
DGM2G found the solution with the objective function value 55.85 with almost
no constraint violations (< 10−8). The consensus value for the objective function
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based on the GAMS and LGO solvers is 85.35. However, depending on what is an
acceptable degree of constraint violation, there can be many solutions.

Overall, compare with the LGO and the GAMS solvers, the above results are
indicative that the DGM2G is a capable global optimization algorithm, less so
for DGM1G. To facilitate deployment (not too many knobs for the users) both
algorithms were deliberately designed with no user tuneable parameters. The above
experience with fractional objective functions and constraints suggests that the
DGM is not as robust as LGO when dealing fractional functions.

As the dimension in all problems is small we do not give any detail analysis of
other performance indicators.

A more detailed comparative study of the DGM using a large number of real
world problems is the subject of our future research. Results with the above test
problems demonstrate that LGO and DGM have their own strength; together they
can be very useful in production optimization. For engineering applications it is
better to have a broad spectrum of global optimization solvers, some methods are
more appropriate than others for some special optimization opportunities.

The LGO has now been incorporated into the Shell Hydrocarbon Field Planning
Tool (HFPT). Comparative studies of HFPT/LGO against off-the-shelf 3rd party
integrated production system software have shown that LGO can come up with
better alternative solutions. In the case of a optimal gas lift allocation problem to
maximize production [15], the HFPT/LGO combination came up with better gas lift
allocation and usage (see Figure 4), which has resulted in better oil production (see
Figure 5). At the current oil price of some US$70/barrel, the difference observed
may have significant impact on the field development strategy and revenue.
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