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Abstract 
 

The Tele-Robotic Intelligence Nursing Assistant (TRINA) assists nurses working with 

infectious patients by performing highly repetitive tasks. The project focused on fabricating a 

new version of the 2017-2018 Telenursing RoboPuppet through the addition of motors and 

sensors that provide haptic feedback to the user while simultaneously resisting gravity when the 

user releases the device. The addition of a simulation environment to visualize the 

forward/inverse kinematics as well as fully functioning hand controls for TRINA allows for a 

more user friendly working system. This article discusses the process of the fabrication and 

implementation of the circuitry, hardware, and programming for the first iteration of the active 

version of the Telenursing RoboPuppet.  
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1. Introduction 

 
A nurse’s duty to help those in need does not stop when patients are infected with a 

contagious disease. Last year, an MQP tackled this issue through the use of a project developed 

at Duke University as the basis for their research. With a direct focus on the Tele-Robotic 

Intelligent Nursing Assistant (TRINA), referred to as Baxter, to safely and efficiently combat 

infectious diseases, the control system developed last year, affectionately referred to as the 

“RoboPuppet”, was improved upon. The two main objectives of this year’s project was to design 

a slimmer, more manageable RoboPuppet as well as develop a complete simulation of Baxter 

inside of the Matlab programming environment. By adding functioning hand controls to the 

RoboPuppet, as well as motors and hall effect encoders to each of the joints, the arms could be 

more efficiently used and controlled. The hand controls allow the user to be able to control 

Baxter’s end effectors while the joint motors allow the RoboPuppet to make use of the forward 

and inverse kinematics of the arms. This addition shifts the focus of the user from operating the 

robot to helping the patient in more effective and efficient ways. The forward and inverse 

kinematics were solved not only for the RoboPuppet, but also for Baxter by creating a table of 

the DH parameters of each robot. The team was successful in creating a more usable RoboPuppet 

as well as developing a useful simulation environment in which the kinematics and gravity 

compensation could be accurately tested. 
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2. Background 
Last year, the MQP team developed a new and innovative way of controlling Baxter’s 

two arms through the use of a 3D printed puppet, affectionately referred to as the “RoboPuppet”. 

The RoboPuppet is made to be an intuitive control system for nurses to care for patients or to 

perform repetitive tasks. This system was created in order to assist nurses in controlling Baxter 

and make their work much more effective and efficient.  

This year, our team was tasked with improving on last year’s system to make it even 

more efficient and user-friendly. This was done through the modification of last year’s passive 

robot by adding various sensors and motors to control each joint of the arm. The motors are 

embedded into the parts in an interchanging order where they begin integrated into the part 

themselves to create axial rotation, then are outboard in order to create a translational rotation. 

This is all done to mirror the design of the Baxter robot.  

This project also involved the development of a complete simulation environment that 

allowed complicated movements and mathematics to be properly tested and visualized. With 

these modifications and additions, the RoboPuppet is one step closer to aiding nurses in their 

quests to save lives.  
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3. System Overview  
 
3.1 Mechanical Overview  

Mechanically, this project focused on redesigning and fabricating an intuitive input 

device for TRINA in the form of the first completed active version of the RoboPuppet. The 

design of the two 7DOF arms were primarily accomplished by last year’s MQP group. Upon 

review of their design it became apparent that the foresight of the original RobotPuppet design 

was made to be functional over practical for their users. The goal of the mechanical portion of 

this year’s design was to make the arms more user friendly to people of all sizes, as well as 

develop an intuitive design for a hand controller that be adapted to both the new active robot and 

the passive robot.  

The past design was difficult for people of a smaller stature to use. The design from last 

year was made using rapid additive manufacturing, commonly referred to as 3D printing. The 

parts were individually printed and assembled into two arms of a much higher tolerance than the 

previous group’s project.    

 
3.2 Electrical Overview 

For the active RoboPuppet, several components were implemented to a printed circuit 

board to ensure functionality for joint angle sensing, motor control, and hand control. The 

Teensy 3.5 microcontroller was used to process the angle data as well as communicate with the 

servo driver, both via Inter-integrated circuit (I2C) protocol. AMS_AS5048B hall effect 

encoders were attached to each of the 7 angles on both arms (14 total) to detect the change in 

angle. This was done by installing a tiny neodymium magnets into the joints, where the encoder 

would detect the change in magnetic field, associate it with a voltage, and turn that voltage into 

digital logic via an analog to digital converter. Servos were also included to implement force 

feedback with the purpose of having the robot maintain position when let go. These 14 servos 

were connected to an I2C servo driver, which allowed the 14 servos to be driven at once. The 

Teensy’s PWM pins could not have performed this task as the Teensy can only drive up to 12 

PWM outputs at a time. The servos were also externally powered, which takes load off the 

Teensy so it can focus on powering the sensors and hand controls. The printed circuit board 

designed implemented the Teensy, I2C driver, wire connections for the sensors and hand 
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controls, a 3.3V regulator to make sure all the hall effect encoders ran at 3.3V, pull-up resistors 

to help with I2C communication, as well as a barrel jack for externally powering the servos. 

 
3.3 Software Overview 

In addition to the physical RoboPuppet that was designed and manufactured for this 

project, a complete three-dimensional visualization environment was also created. The purpose 

of this simulation environment was to be able to accurately visualize the movement of Baxter 

and the RoboPuppet, as well as accurately test the derived equations for forward and inverse 

kinematics and gravity compensation. MATLAB was used because it facilitates the creation of 

easy-to-use control interfaces and visuals while maintaining the high level of performance 

needed to run the simulation. A complete model of Baxter was rendered in the simulation so that 

the movements could be accurately expressed in real-time situations. All of the kinematics and 

math for the simulation was done in MATLAB since most of the kinematics revolves around 

matrix multiplications. This allowed the simulation to run as quickly and as efficiently as 

possible, while still retaining the easy-to-understand visuals presented with the simulation. 
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4. Design and Methodology  
 
4.1 Mechanical Components 
 
4.1.1 Arms 

The design of the arms is based on the original Baxter robot. This was to maintain a 

proper ratio from each section of the arms. The bulky nature of the original design lent much to 

be desired for future iterations. The parts were assembled into the arm following the instructions 

of last year’s design. 

The primary design was handed to us from the previous group. The parts given to us were 

within the ratio of Baxter’s arm joints. We optimized the parts to make the sections more user 

friendly for the potential users of this device while leaving the lengths untouched. The parts 

needed to have their “waist” reduced to be as minimal as possible while maintaining their 

structural integrity. To accomplish this, the parts needed to be individually analyzed for their 

limiting factor. This is the section of the part that is the weakest and has the highest chance of 

becoming deformed and breaking. This is easy to find with the weakest point in the part being 

the thinnest section. 

 

 

 

 

 

 

 

 

Figure 1 Part 5 before and after it was slimmed for user friendliness. 

 

Once the part’s slimming limiting factor is identified, it is a test of creativity to reduce the 

parts as best as possible. With some parts having a limiting factor of a clean internal sweep, it 

was apparent that the wall of the part needed to be concentric with the rotation of the internal 

sweep. These parts were the sections of the arms that carried external motors. These parts rotated 
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axially. The limiting factor for the other set of parts tended to be where the external structure 

began to form that would attach the external encoder mounts. These parts were primarily 

slimmed down using a flat surface with just enough room for a clean fillet feature to the external 

structures like the encoder mount. The edges of all of the pieces that may come into contact with 

the user were then touched up by the fillet tool in order to create a smoother surface. 

The range of motion for the active arms was based off of the original Baxter robot. The 

range could not exceed what the Baxter robot could reach itself. If it were to exceed what the 

actual Baxter robot could do, there would be a distinct error where the feedback would not match 

the proper rotation of the parts of the remote control. With this in mind, the ratio of the length of 

each arm and the angle of effect of each joint had to be exact. 

 
4.1.2 Hands 

The hand designs for the Baxter RoboPuppet were made with several design 

requirements in mind. The hand had to be: easy for people of a small stature to manipulate, 

intuitive for someone not technically adept, comfortable to hold and use, be able to detect the 

user leaving the device, be able to switch Baxter’s hands into different positions, and be able to 

open and close Baxter’s fingers in unison.  

The first aspects of the design that were tackled were the most basic functional 

requirements. The hands needed to open and close the mechanical hands from Baxter, toggle 

between positions, and sense the presence of the user. Grasping at low hanging fruit, detecting 

user presence was the initial aspect tackled. This could have been done in one of two ways. It 

could have been done with the addition of a heat sensing material that would have been adhered 

to the outside of the hand control and wired internally and would detect a person’s body heat, or 

an internally placed button/switch that would detect a person’s hand pressure when gripping the 

device. I chose the latter, due to its cheaper part cost, ease of coding complexity, and internal 

mounting process.  



13 | P a g e  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 A screenshot of the specs of the limit switch used in the hand controls from McMaster-Carr. 

 

The second aspect that needed to be considered was how the user would utilize the hand 

control to interact with Baxter’s hands. This involved the ability to open and close all of Baxter’s 

fingers uniformly, as well as the ability to switch between several hand positions. With Baxter 

currently having only two hand positions it would have been easy to implement a switch, 

however with the foresight of the implementation of multiple different hand positions this 

appeared to not be the most efficient idea. All switches available to our group were not able to be 

reprogrammed or restructured to switch between more than two hand positions. This meant that 

we needed a more flexible system. The development of a system that can be adapted for later 

development on Baxter led us towards using a potentiometer. This allows the different points in 

the rotation of the potentiometer to determine the position that the hands will be in.  
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Figure 3 A graph showing how the potentiometer will read its range of motion to determine the hand 

position of Baxter.  

 
The determination of the hand position was easily adapted into the potentiometer system. 

Future adaptations of Baxter’s hand design can use this same system for future hand iterations 

that may be more flexible in their positioning.  

 
 

 

 

 

 

 

 

 

Figure 4 A screenshot of the McMaster Carr webpage showing the potentiometer used in the hand design. 
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The final component needed was the ability to open and close the hand in unison. The 

initial thought was to have a single component operate as a method to open the hand and another 

component to shut the hand. This involved two small buttons, one that would operate the 

opening function of the robot and the other would operate the closing function. After creating the 

part in Solidworks, shown in the figure below, it proved to be an inefficient design with more 

parts than necessary. The fewer the parts and the less complex the design, the easier the build 

and maintenance will be for all groups that may be involved with the project.  

 

 

 

 

 

 

 

 

 

Figure 5 A photo of the initial design with two buttons. 

 

This led to the realization that there only needed to be a single component to open and 

close the hand. With the component for the hand switch already decided to be a potentiometer, 

the obvious choice was a second potentiometer. This allows for the hand control to have 

symmetry that will allow for people to have an easy time operating Baxter.  

The final, and most important aspect for comfort of the user was the geometry of the 

hand control itself. This started with an initial design that did not account for the comfort of the 

user. It only accounts for the space needed to integrate all of the components. The initial design, 

shown on the left in figure 6, utilized the left over attachment process from the last group. This 

involved two large holes that would be used to secure the parts together using pins.  
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Figure 6 A cross section of the Solidworks of the initial design of the hand control with a single 

potentiometer, two buttons and a limit switch (Left). The initial hand control design would interact with the 7th digit 

part of the RoboPuppet (Right). 
 

With dimensions of 1in x 1.5in x 2in this design was too small for even the smallest users 

to find useful. Once a version was realized using additive manufacturing, the first redesign was 

implemented. This involved making the design larger in its base footprint as well as taller to 

allow for a user of even large hands to hold it easily. The second iteration of this design was 

much larger with a base of 2in x 2in and a height of 3in. This design was also the first to 

incorporate rounded edges for the comfort of the user, shown below.  
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Figure 7 An assembly showing the difference in size from the initial design to the second design.  

 
Once the second hand control was printed, it was clear that we were moving in the right 

direction but not totally there. The third version of this design was actually printed as different 

versions of the same part. This was to determine the optimal size for the hands of both larger 

users and smaller users. Versions were printed at both 1.75in x 1.75in base dimensions and 1.5in 

x 1.5in base dimensions. This was to find the “goldilocks zone” for the waist dimensions of the 

hand control. The 1.75in x 1.75in version was more comfortable for users over the height of      

5’ 5” while the 1.5in x 1.5in was better suited for people under 5’ 5”, like our project advisor. 

With this in mind, a final base size was determined at 1.6in x 1.6in. This size was comfortable 

for both larger and smaller users.  
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Figure 8 Version 3 of the hand control before it was split open. 

 
With the dimensions of the design realized, and all of the components picked out, it was 

time to start the building process. There is a slot inserted into the hand control where the user’s 

palm or pointer finger could be (dependent on how they hold the control) with two 4/40th holes 

for the limit switch to be secured. Then there were two recessed holes implemented 90 degrees 

from the placement of the limit switch for the potentiometers to screw into. The recess is for the 

potentiometer to fit snugly into the device. The last feature that was added to the hand controls 

was a slot for the wiring to easily leave the hand housing. This was put at the base and back of 

the control to be as out of the way of the user as physically possible. The building process was 

incredibly difficult. The hand housing did not allow for much room to install the components. 

This led to several failed attempts to screw in the potentiometers. This process did not need to be 

this difficult. So a plan was put in place to make a fourth and final iteration of the hand control 

that was easier for the manufacturer. 

The fourth iteration of the hand control design involved splitting the hand control in half 

and developing a pin system with the same 4/40th screws that were used to secure the limit 

switch. From experience it is known that there needs to be at least 0.1in of plastic in order to 

create a solid design that is not prone towards self-destruction. With this in mind, and the 
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knowledge that these screws are made purely to secure the parts together and will not be resisting 

any significant force, there were three pin and hole systems put into place within each hand. This 

led to the 3D printing of two parts for each hand for the first time.  

 
 

 

 

 

 

 

 

 

 

Figure 9 CAD of the final hand design showing the pin system as well as the mounting components 

 
The holes for the potentiometer tended to be a bit small and hard to initially screw in. to 

fix this the holes were worked with a hot soldering iron to make them soft and malleable. Once 

they were softened, even a little, it was significantly easier to screw the potentiometer into the 

part. The potentiometer was then secured using a hex nut that it came with. The limit switch 

easily slid into place once all support material was removed but would have a lot of trouble if 

there was even the smallest amount of support material obstructing its placement. 

 
 

Figure 10 The completed final version of the hand control for the Baxter Robot.  
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The hand controls then needed to be attached to the 7th digit of the puppet’s arms as a 

single piece. The previous design, as mentioned earlier, involved two 1/4in holes that would 

secure the hand control to the 7th digit of the RoboPuppet. This was not efficient in a design 

where we needed to be weight conscious. With this in mind the entire system was redesigned to 

be two flat components that would be friction welded/epoxied together. This involved 

redesigning the top of the 7th digit to be flat to allow another component to be secured to it.  

 

 

 

 

 

 

 

Figure 11 Completed hand controls with end parts attached to it. 

 
4.2 Electrical System 

This chapter will discuss the electrical design and implementation of electrical 

subsystems in the Passive and Active RoboPuppet arms. This section will involve the sensing 

capabilities, motor implementation for force feedback, and the designing of the printed circuit 

board to create a more professional looking product. 

 

4.2.1 Sensors 
In order to control the much larger Baxter robot, it was important to be able to sense the 

movement in the controller so Baxter could move accordingly. For the passive and active 

RoboPuppet versions, potentiometers and hall effect encoders were used, respectively. Each arm 

had 14 sensors, 7 for each arm to be able to cover the 7 degrees of freedom (DOF) arms. This 

section will go through the selection of these sensors as well as extra steps required in their 

implementation.  
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For the passive RoboPuppet, simple potentiometers were used due to the fact they were 

small, compact, and easy to use for the primitive design. They were selected for the previous 

year’s passive arm development and were kept for this year’s design as well. The potentiometers 

used were 270 degree analog potentiometers. This means they don’t have a full 360 degree range 

of motion, a small disadvantage but not a catastrophic one. A picture of the potentiometer used 

can be shown in Figure 12.  

 

 

 

 

 

 

 

 

 

 
Figure 12 Potentiometer used for Passive RoboPuppet angle sensing. 

 

Calibration for these devices were performed last year to make sure turning the 

potentiometer to a certain input angle matched the output angle, thereby making the 

measurement reliable. More in-depth information on this calibration process can be found in last 

year’s paper. Assuming everything is calibrated properly, the next step was to recreate the 

passive arms to be slimmer and a higher quality material, as discussed in the mechanical 

engineering part of this paper. To connect the potentiometers, a printed circuit board was made 

as an Arduino Mega shield. This means the board was modelled in the shape of the Mega and 

connected directly to the Arduino. A picture of the circuit board and Arduino Mega as well as the 

board diagram in the PCB development software KiCad is shown in Figure 13 and 14. 
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Figure 13 Arduino Mega 2560 and PCB Shield. 

 

 
Figure 14 Passive RoboPuppet PCB layout. 

 

This PCB was printed by robotics student, Nicholas Hollander in the summer of 2018. 

One copy was used to connect an older iteration of the passive arm. Another copy connected the 

new passive arm wires to the Arduino Mega. The design was simple as the only connections 

were a 5V voltage line, a ground line, and 14 analog inputs. The design for the active arm 
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sensors and connections were much more complex, however, involving more than just a voltage, 

ground and data line.  

The active version of the Telenursing RoboPuppet was designed to be a more robust 

version of the passive arms. This was in regards to the sensing capabilities as well as 

implementing feedback to the controller. The haptic feedback from the motors will be discussed 

in a later section. This section will discuss the sensors used to detect joint angle changes so that 

Baxter can move accordingly. Hall effect encoders are a special type of sensor that measures the 

magnitude of a magnetic field and associates the strength of a field with a voltage value, leading 

to a wide range of applications. These applications include proximity sensing, speed detection, 

and positioning. For this particular project, these types of sensors were used to measure the angle 

of a joint of a robot arm. To make this possible small, disk shaped neodymium magnets were fit 

into sockets of the active arms to line up with the sensors. Using this method, turning any joint 

would turn the magnet, and thereby triggering the sensors. 

These sensors were chosen for a multitude of reasons. These include full 360-degree 

rotation, meaning they lack a dead zone unlike the potentiometers. The sensors also have a 14-bit 

digital output allowing for a more accurate and robust angle reading. This digital output comes 

from a built in analog to digital converter on the breakout board for the sensor. Voltage values 

associated with the detected magnetic field strength was converted to a digital value, that being a 

14-bit angle reading. Digital communication is another advantage for board as the signals are 

less vulnerable to noise that may interfere with communication. Using Inter-integrated Circuit 

(I2C) communication protocol, data is more reliably transferred from the sensors to the 

processing unit, the Teensy 3.5 microcontroller. Another strength the hall effect encoders have is 

they are easier to manipulate mechanically. This comes from the fact the potentiometers are 

implanted in the passive bot, making it hard to troubleshoot once installed. The hall effect 

encoders, however, are external and not only can be removed to replace if necessary, but have 

wires that can be easily removed and replaced. Ribbon cables soldered to male header pins 

connected to female headers soldered to the encoder breakout boards make this easy 

implementation possible. Pictures of this connection scheme is shown in Figure 15. 
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Figure 15 Header pins and connection to hall effect encoder. 

There were also some challenges that came with using the hall effect encoders. One 

important challenge was the cost. Each encoder was approximately 15 -18 dollars apiece, being 

almost twice the price of the potentiometers. With a substantial budget in possible future 

iterations of this project, this challenge can be overcome, but the price of these sensors is 

definitely something to take into account. Another roadblock with these sensors, more 

specifically the AMS_AS5048B sensors bought last year for the project, was that they are hard to 

find according to many electrical component vendors like DigiKey, Mouser, and Arrow. 

Therefore, replacing them is almost impossible. To counter this, similar looking AS5061 hall 

effect encoders can be used to replace the 5048Bs enough to do the job. More information on the 

differences and potential challenges with these replacements will be discussed later in the 

section. Another caveat of the sensors is the size of the breakout boards. On some of the joints, 

particularly the side joints, the rectangular boards containing the sensors jut out and make use of 

the puppet a little more difficult and can also interfere with wires draped down the arm. Also the 

large sized boards can interfere with the mechanical movement of the arms if not fit perfectly. 

This was mitigated by shaving off some of the corners in order for everything to fit better.  

To digitally communicate with the Teensy 3.5 microcontroller, I2C protocol was used. 

This was an advantageous system compared to other communication systems due to the reduced 

number of wires necessary. In a typical I2C device, connections are at voltage, ground, data 
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(SDA), and clock (SCL). These four wires are all that’s necessary for a device to be hooked up in 

I2C. Compare this to Serial Peripheral Interface (SPI) where a Master In Slave Out (MISO) and 

Master Out Slave In (MOSI) may be necessary in addition to a slave select (SS), clock (SCK), 

voltage and ground. For this particular application, only MISO would have been necessary as 

data is only going way. It was still important to reduce wires on the arm wherever possible.  
Unlike SPI interface, I2C does not have a slave select function, so it needs another way to 

determine what device it is “talking” to. This is done by using addressing. An address frame is 

put at the beginning of a data sequence transmitted by the master device to see if any of its slave 

devices have a matching address. If there is a match, a low voltage acknowledgement (ACK) is 

sent and data can be transmitted. For this particular system, the default address of the AS5048B 

is 0x40. Since unique addresses are needed to communicate with multiple devices at once, there 

needed to be a way to change addresses to distinguish one sensor from another. Luckily, the 

AS5048B has pins called A1 and A2, which can be either pulled high or low (to voltage or 

ground) to change the devices address by 0x01 or 0x02, respectively. This was able to make it so 

4 unique sensors could be read at once, with addresses 0x40, 0x41, 0x42, and 0x43. Instead of 

connecting these pins high on the circuit board, it was easier to connect them on the sensor 

breakout board. This is shown below in Figure 16. 
 

 

 

 

 

 

 

 

 

Figure 16 Address Configuration on AS5048B breakout board. 

 
Since there were 14 sensors, there needed to be something else that accounted for more 

sensors. The solution was another feature of the AS5048B, that being one-time programming 
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(OTP). A built in function in a user created Arduino library specifically for these sensors allows 

a user to manually change the address of a AS5048B. This is a permanent function as the new 

address is burned into the chip and cannot be changed after the one time.  After this process was 

done to 10 of the 14 chips, 14 unique addresses were available, allowing the Teensy 3.5 to 

decipher between each slave device 

An important factor to consider was the voltage drawn by the sensors. The 

AMS_AS5048B sensors have a capability to be configured in a 3.3V setting or a 5V setting. 

Below is a diagram from the datasheet showing the difference of each configuration.  

 

Figure 17 5V and 3.3V operation configurations for AS5048B. 

 
On the breakout board, capacitors C1 and C2 and installed, so the board is in 3.3V 

operation automatically. This works out because a lower voltage level is safer for the system in 

general as the Teensy 3.5 pins are 5V tolerant, but have a rating barely above 5V, so having 3.3V 

on each I2C pin is the safer option. On each hall effect encoder, the 5V pin and 3.3V pin were 

shorted with solder, being right next to each other. This ensured the system being in 3.3V 

operation. On the circuit board connecting the Teensy to the sensor wires, a 3.3V regulator was 

implemented to make sure the Teensy was only sending 3.3V to each sensor, making sure the 

encoders weren’t getting fried themselves. 

 
4.2.2 Motors 

The main difference between the active and passive arms is the use of haptic feedback. 

More specific information on the calculations involved with gravity compensation can be found 



27 | P a g e  
 

in the software chapter of this report. Electrically, the feedback was implemented with the use of 

servos. The previous year’s project selected the Towerpro MG90D servos specifically as a result 

of their ability to rotate continuously, relatively compact size, and ability to produce large 

amounts of torque for their size. 

To drive all 14 motors on the active RoboPuppet, a PCA9685 16 channel servo driver 

was used. The Teensy 3.5 has digital pulse width modulation (PWM) ports able to drive servos. 

However, the Teensy 3.5 and 3.6 can only control 12 PWM inputs at a time. Therefore, using 

these pins would not be applicable for the RoboPuppet application. To solve this problem, I2C is 

used once again, this time with the slave device being the servo driver. This device is shown in 

Figure 18. 

 
Figure 18 PCA9685 16 Channel I2C Driver. 

 

Oddly enough, the default address for the servo driver was 0x40, but changing the 

address was quite simple. On the top right of the chip, there are address jumpers that can be 

soldered to configure a new address. This is shown in Figure 19. 

 



28 | P a g e  
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 19 Address Configuration on I2C Driver Breakout Board. 

 

For this project A4 was soldered to create a new address of 0x50 (0x16 higher than 0x40) 

This was chosen to make sure there was no chance of interference with any of the addresses of 

the hall effect encoders. The LED also has an address of 0x70 which indicates if the chip is 

plugged in correctly. All of the I2C devices are connected to the same I2C line in the final 

version of the circuit board. 

To safely implement all 14 servos to the design of the active RoboPuppet, it was a good 

idea to externally power all of the motors. This is because the Teensy 3.5 is already providing 

power to 14 hall effect encoders, so to give it the burden of doing that on top of controlling 14 

servos would be unwise. Therefore, different methods of externally powering the servos were 

examined. One method was a wall plug in AC adapter, one that would be plugged into the board 

via a barrel jack. The other method was a battery pack that had 4 AA batteries. Both ways had 

strengths and weaknesses. The power jack can be easily plugged into a wall, but reduces 

mobility of the RoboPuppet. The battery pack does not require a restricting cable to the wall, but 

the batteries eventually run out of power. In the design, both methods were implemented as 

options. Both components supply approximately 5V 2A and can be shown in Figure 20 below. 
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Figure 20 External Power Supplies for Servo Driving. 

 

It is important to know for whoever operates the RoboPuppet that both power supplies 

cannot be on at the same time, for there is a risk to damage the system. The I2C servo driver 

makes it so Vcc which takes power from the Teensy and V+ which is the supply power to the 

servos, do not intersect, so the power supplies of the microcontroller and external supply are 

completely independent. Also installed on the servo driver is a space for a through hole 

capacitor. According to Adafruit, the creators of the board, it is helpful to have a capacitor with a 

value of n * 100uF with n being the number of servos in the system. Since 14 servos were used, a 

1500uF electrolytic capacitor like the one in Figure 21 was chosen.  
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Figure 21 1500uF electrolytic capacitor. 

 

The purpose of this is to compensate for the many servos relying on one power supply. 

When the servos move, the power supply may dip and fluctuate and behave erratically. A 

capacitor that can account for every motor should solve this potential issue.  

 
4.2.3 Circuit Boards 

To combine all of the electrical components of the active RoboPuppet, a printed circuit 

board was designed and manufactured. This board contained and connected the components so 

that the whole RoboPuppet system could operate properly. This section discusses important 

components of the board not discussed earlier as well as the steps and process of creating this 

system, from breadboarding to a more professional looking printed circuit board. 

A microcontroller is necessary for any version of the RoboPuppet to process data and 

perform other tasks. Important factors when choosing a microcontroller include the processing 

power, memory capabilities, and number of specific ports, among other things. The passive bot 

used an Arduino Mega, not powerful or compact chip, but one that has enough analog ports to 

perform the low level processes. Arduinos in general are also well supported by not only 

manufacturers but the community as well. For the active bot, the Teensy 3.5 was chosen for 

many reasons. One being the 256KB of RAM allowing for fast processing power. The ability to 

connect to a breadboard or PCB was also favorable to make it easy to test and install. The team 

from last year chose a Teensy 3.6, which has small differences from the 3.5. The 3.5 was chosen 
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due to it being five dollars cheaper, as well as all the pins being 5V tolerant rather than the 3.6 

having only 3.3V tolerant pins. For any Teensy microcontroller, software called Teensyduino 

was available. This allows a Teensy board to be programmed with Arduino code, combining the 

robustness of the Teensy as a unit with the open source documentation of Arduino. Overall the 

Teensy 3.5 was an excellent choice to be the microcontroller tasked with conducting processes 

for the active RoboPuppet. 

In order to provide hand controls for Baxter, hand units were printed and installed onto 

the ends of the passive and active arms. On these hand control units, two potentiometers were 

installed in addition to a limit switch. A picture of this layout can be seen in Figure 22. 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 22 Hand control design. 

 

The limit switch had one side connected to analog data, the other connected to a voltage 

line. Upon triggering the switch, the two sides are connected electrically, creating the analog 

input to pull high. In the case of the RoboPuppet, this can be used to indicate that the device is 

being operated, temporarily disabling the force feedback, allowing the arms to be manipulated. 

Each hand had three analog inputs, creating six total pins on the Teensy 3.5 needed to be set 

aside for analog input. A voltage and ground line also ran through each hand, resulting in 5 total 

wires per hand. A rectangular connector connected to the PCB with 10 slots was enough to 

accommodate all of these hand control connections.  

Before a printed circuit board could be made, a breadboard design was necessary to make 

sure the connections between the hall effect encoders and the Teensy were reliable. The Teensy 
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had to detect the presence of an I2C device using an example Scanner Arduino file. If the Teensy 

could detect all of the sensor addresses at once, then the breadboard design was successful. 

Before a final, optimized connection scheme was determined a couple components were 

considered to mitigate any potential problems regarding I2C connection and wire connection in 

general. I2C buffers were originally implemented to boost a signal over distance. I2C signal 

strength has been known to deteriorate over long distances and this challenge was taken into 

consideration. However, after testing it was determined that these amplifiers were not necessary 

to the design and were therefore removed to maintain simplicity. I2C communication was still 

reliable even with the longest wires on the active RoboPuppet. If future designers want to 

incorporate these buffers to improve robustness of the communication, they are welcome to do 

so, however these are not vital. Another conclusion from breadboard testing was that all 14 

sensors could be tied to one I2C line. Having only one SDA and one SCL line for all the sensors 

allowed for the design to be much simpler and easier to troubleshoot. It was possible to split the 

I2C ports as the Teensy 3.5 had more than one set, but the design decision to put every I2C 

device on the same line proved to be effective. 

To produce a professional looking circuit board, as recommended by last year’s 

RoboPuppet team, a printed circuit board was produced. There are many options when it comes 

to software available to create PCB schematics and boards. Among those are Autodesk’s Eagle, 

Altium, and KiCad. Any of these softwares would have been good choices for software, however 

this project went with KiCad for a few reasons. One being the software being completely free 

and open sourced, unlike Eagle which is considerably expensive. There was also more comfort 

with using KiCad. The issue came from the fact that KiCad is not necessarily user friendly. That 

being said, there is no known PCB software that can be described as “user friendly” and what is 

considered the best choice depends on the user and their experience.  

 The first step in PCB creation is to create a schematic. This is simply a basic drawing of 

how all of your components will connect. In this stage, it doesn’t matter where your components 

are in the workspace, just as long as everything is connected the way you want. For this project, 

many different versions of schematics were drawn up. The final schematic can be shown below 

in Figure 23. 
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Figure 23 KiCad Schematic for Active RoboPuppet. 

 

Components in schematics are known as symbols and are just placeholders. In this 

schematic we can see symbols of the Teensy 3.5, 5-3.3V regulator, pull-up resistors, barrel jack, 

the I2C servo driver, and several rectangular connectors. Some symbols may look nothing like 

the actual component, as is the case with the servo driver. The four rectangular connectors are 

present to connect wires from the hall effect encoders to the board as well as the connections for 

the hand controls. Two major things had to be taken to account when setting up the schematic. 

One being that all the grounds were connected to each other. This would make later steps much 

easier. Also it was important to make sure voltage from the Teensy and voltage from an external 

power supply would not cross, making power to motors and power to encoders completely 

independent. After everything was configured, it was time to transfer this schematic to a board 

design. 

 To associate symbols in a schematic with appropriately sized shapes where components 

would go, footprints are used. These are through hole or surface mount configurations that will 

eventually hold electrical components. A collection of footprints is put together in a netlist and 

then transferred to a pcbnew file. After this, the footprints in the board file are rearranged to how 

the board should be. The final board layout is shown in Figure 24. 
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Figure 24 Final PCB Layout. 

 

On this final board layout are red and green lines called traces. These are the wires that 

connect everything on the PCB. Red traces go on the front of the board, while green traces go on 

the back of the board. Having two paths of wires allows for more compact spacing and makes 

board design a lot easier. Traces with the same color cannot intersect, so drawing the wires on 

the board becomes a little bit of a puzzle. In some cases, vias are necessary to connect a top trace 

to a bottom trace if the board calls for it. This particular design had 3 vias in total. To ensure all 

the ground pins for every component was connected a ground plane was used. This plane at the 

center of the board grounded everything to each other. Another important step was to edge cut 

the board, finalizing the size. It was ideal to minimize the size of the board in order to minimize 

the manufacturing cost overseas. As long as it is below 100mm x 100mm in area, the board 

would stay at a fixed price of 2 dollars. After the PCB was finalized, it was ordered off the 

internet and delivered a few business days later. A copy of a bare PCB can be seen in Figure 25. 
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Figure 25 Bare Printed Circuit Board. 

 

After these boards were delivered, the components including the Teensy, servo driver, 

and more, were then soldered onto the board. The circuit board was then tested after everything 

was connected. A picture of everything on the circuit board level can be seen in Figure 26. 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 26 Fully Connected PCB for Active RoboPuppet. 

 

 

 



36 | P a g e  
 

4.3 Software Analysis  
 
4.3.1 High Level Overview  

In addition to the physical RoboPuppet that was designed and manufactured for this 

project, a complete three-dimensional visualization environment was also created. This 

simulation environment was developed so that a user could properly visualize the movement of 

Baxter and the RoboPuppet as well as accurately test the derived equations for forward and 

inverse kinematics and gravity compensation. Due to the usability and functionality of the 

MATLAB programming software and language, the simulation environment for this project was 

written completely in MATLAB. This programming language facilitates the creation of easy-to-

use control interfaces and visuals while maintaining the high level of functionality and efficiency 

needed to run the simulation. 

 

4.3.2 Simulation Software Architecture 
The architecture for the three-dimensional simulation environment can be divided into 

three different parts: the kinematics of the robot, visualization of Baxter, and control interface. In 

doing so, a closer and more in-depth look can be taken into exactly how the software functions. 

 

4.3.2.1 Kinematics 

This chapter discusses the forward and inverse kinematics of the Rethink Baxter robot, as 

well as the implemented gravity compensation policy used in the three-dimensional visualization 

software. 

 

4.3.2.1.1 Reference Frames 

 Since the basis for a successful simulation environment is reliant upon the correct 

derivation of the kinematics of the robot, reference frames must be set for each link of each arm 

of the robot. In order to do so, the two arms must be analyzed so that the most useful reference 

frames for each arm can be set. Fortunately, the two arms are exact mirrors of each other. This 

allows the following derivations to be much simpler as only one derivation must be done, rather 

than two. 

 The two arms both have seven degrees of freedom and seven revolute joints. Each arm 

has an offset shoulder and elbow joint (two degrees of freedom) as well as an offset wrist joint 
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(three degrees of freedom). A set of naming conventions was also created in order to correctly 

label and thereafter refer to each joint. These naming conventions are found in Table 1.1: 

 

Joint Name Motion 

S0 Shoulder Roll 

S1 Shoulder Pitch 

E0 Elbow Roll 

E1 Elbow Pitch 

W0 Wrist Roll 

W1 Wrist Pitch 

W2 Wrist Yaw 

 
Table 1.1 Naming Conventions for Each Joint. 

Now that each joint can be properly referred to, the reference frames for each arm can be 

made. As stated before, each arm is an exact mirror of each other. Baxter is designed with this in 

mind so that the Denavit-Hartenberg (DH) Parameters are identical for each arm. As such, only 

the derivations for Baxter’s right arm will be shown. In doing so, redundancy is lessened, and the 

actual derivation of the kinematics is emphasized. Figure 1 portrays the reference frame of 

Baxter’s left arm using standard Cartesian coordinates. 
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Figure 27 Baxter’s Right Arm’s Cartesian Reference Frame. [1] 

  
Once a proper reference frame has been created for the arm, a table of DH parameters can 

be solved for by looking at the position and orientation of each joint (see Table 1.2). This table of 

parameters is necessary not only to accurately and completely solve for and derive the 

kinematics equations for the arm but also to find the relation between the end-effector and the 

base.  

 In order to do so, four variables are assigned to each joint on the arm. Firstly, the variable 

a (sometimes referred to as r) is assigned to describe the length of the common normal. For 

revolute joints, such as the ones on Baxter, this is the radius about the previous z-axis. Next, 𝛼 is 

assigned to describe the angle about the common normal. This is calculated by the finding the 

angle from the old z-axis to the new z-axis. These two variables are used to relate the size and 

shape of the link being analyzed to the arm itself. The other two variables, d and 𝜃, are used to 

relate the relative position of the links to the arm itself. The variable d describes the offset along 

the previous z-axis to the common normal. In the case of Baxter’s arms, joints three and five are 

variable since they are offset from the previous joint. Finally, the variable 𝜃 describes the angle 

about the previous z-axis, from the old x-axis to the new x-axis. 
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Joint (i) ai-1 𝛼i-1 di 𝜃i 

1 0 0 0 𝜃1 

2 L1 -90° 0 𝜃2+90° 

3 0 90° L2 𝜃3 

4 L3 -90° 0 𝜃4 

5 0 90° L4 𝜃5 

6 L5 -90° 0 𝜃6 

7 0 90° 0 𝜃7 

Table 1.2 DH Parameters for Baxter’s Seven Degree of Freedom Right Arm. 
  

Now that the DH parameters have been found according to the conventions above, the 

forward kinematics of the arms can be derived. 

 
4.3.2.1.2 Forward Kinematics 

 In general, the process for solving the forward kinematics of a serial-chain robot is 

straight-forward and as follows: given the proper joint angles of the robot, calculate the position 

and orientation (pose) of the end-effector. The solution consists of a homogeneous matrix T: 

	

% 𝑇''() * = , % 𝑅''() * . 𝑃''() 0

0 0 0 1

3 

 

where the upper left 3x3 matrix, expressed as R, is the orientation (or rotation) of the end-

effector and the upper right 3x1 matrix, expressed as P, is the position of the end-effector. This 

matrix is found by inputting the DH parameters found in Table 1.2 into the following equation: 
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% 𝑇''() * = ,

𝑐𝜃' −𝑠𝜃' 0 𝑎'()
𝑠𝜃'𝑐𝛼'() 𝑐𝜃'𝑐𝛼'() −𝑠𝛼'() −𝑑'𝑠𝛼'()
𝑠𝜃'𝑠𝛼'() 𝑐𝜃'𝑠𝛼'() 𝑐𝛼'() 𝑑'𝑐𝛼'()

0 0 0 1

3 

 

where 𝑐𝜃' = 𝑐𝑜𝑠𝜃', 𝑠𝜃' = 𝑠𝑖𝑛𝜃', 𝑐𝛼' = 𝑐𝑜𝑠𝛼', and 𝑠𝛼' = 𝑠𝑖𝑛𝛼' were used as abbreviations. 

 The solution is found by examining the arm on a link-by-link basis and then finally by 

multiplying each homogeneous transformation matrix together to find the final position and 

orientation of the end-effector. To do this, each row of the table of DH parameters is substituted 

into the above equation. This will produce seven neighboring homogeneous transformation 

matrices, one for each link: [1] 
 

[ 𝑇)= ] = ,

𝑐) −𝑠) 0 0
𝑠) 𝑐) 0 0
0 0 1 0
0 0 0 1

3 

 

[ 𝑇?) ] = ,

−𝑠? −𝑐? 0 𝐿?
0 0 0 0
−𝑐? 𝑠? 1 0
0 0 0 1

3 

 

[ 𝑇A? ] = ,

𝑐A −𝑠A 0 0
0 0 −1 −𝐿?
𝑠A 𝑐A 1 0
0 0 0 1

3 

 

[ 𝑇BA ] = ,

𝑐B −𝑠B 0 𝐿B
0 0 1 0
−𝑠B −𝑐B 0 0
0 0 0 1

3 

 

[ 𝑇CB ] = ,

𝑐C −𝑠C 0 0
0 0 −1 −𝐿B
𝑠C 𝑐C 0 0
0 0 0 1

3 

 

[ 𝑇DC ] = ,

𝑐D −𝑠D 0 −𝐿C
0 0 0 0
−𝑠D −𝑐D 1 0
0 0 0 1

3 

 

 
[ 𝑇ED ] = ,

𝑐E −𝑠E 0 0
0 0 −1 0
𝑠E 𝑐E 0 0
0 0 0 1

3 

 

 

where 𝑐' = 𝑐𝑜𝑠𝜃', 𝑠' = 𝑠𝑖𝑛𝜃', for i = 1, 2, …, 7 were used as substitutions.  

 Finally, each homogeneous transformation matrix was multiplied together in order to 

solve for the final transformation matrix [ 𝑇E= ]. 

 
[ 𝑇E= ] = [ 𝑇(𝜃)))

= ][ 𝑇(𝜃?)?
) ][ 𝑇(𝜃A)A

? ][ 𝑇(𝜃B)B
A ][ 𝑇CB (𝜃C)]% 𝑇(𝜃D)D

C *[ 𝑇ED (𝜃E)] 
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To simplify this process, the matrices were separated to denote which matrix pertained to 

the shoulder of the arm, elbow of the arm, and the wrist of the arm. Not only does this help 

visualize how the kinematics were being solved, but it also allows each two degree of freedom 

(2-dof) system and the three degree of freedom (3-dof) system to be separated from each other. 

To accomplish this, the following calculations were done: 
 

[ 𝑇E= ] = [ 𝑇(𝜃), 𝜃?)?
= ][ 𝑇(𝜃A, 𝜃B)B

? ][ 𝑇(𝜃E, 𝜃D, 𝜃E)E
B ] 

  

where: 

	

[ 𝑇(𝜃), 𝜃?)?
= ] = ,

−𝑐)𝑠? −𝑐)𝑐? −𝑠) −𝐿)𝑐)
−𝑠)𝑠? −𝑠)𝑐? 𝑐) 𝐿)𝑠)
−𝑐? 𝑠? 0 0
0 0 0 1

3 

[ 𝑇(𝜃A, 𝜃B)B
? ] = ,

𝑐A𝑐B −𝑐A𝑠B −𝑠A −𝐿A𝑐A
𝑠B 𝑐B 0 −𝐿?
𝑠A𝑐B −𝑠A𝑠B 𝑐A 𝐿A𝑠A
0 0 0 1

3 

[ 𝑇(𝜃E, 𝜃D, 𝜃E)E
B ] = ,

−𝑠C𝑠E + 𝑐C𝑐D𝑐E −𝑠C𝑐E − 𝑐C𝑐D𝑠E 𝑐C𝑠D 𝐿C𝑐C
𝑠D𝑐E −𝑠D𝑠E −𝑐D −𝐿B

𝑐C𝑠E + 𝑠C𝑐D𝑐E 𝑐C𝑐E − 𝑠C𝑐D𝑠E 𝑠C𝑠D 𝐿C𝑠C
0 0 0 1

3 

 
The final homogeneous transformation matrix is then calculated and the result is: 

 

[ 𝑇E= ] = 	

⎣
⎢
⎢
⎡𝑟)) 𝑟)? 𝑟)A 𝑥E=

𝑟?) 𝑟?? 𝑟?A 𝑦E=

𝑟A) 𝑟A? 𝑟AA 𝑧E=
0 0 0 1 ⎦

⎥
⎥
⎤
 

 
where: 

𝑟)) = T(𝑎𝑠B − 𝑐)𝑐?𝑐B)𝑠D − (𝑏𝑠C + (𝑎𝑐)𝑐?𝑠B)𝑐C)𝑐DV𝑐E + ((𝑎𝑐B + 𝑐)𝑐?𝑠B)𝑠C − 𝑏𝑐C)𝑠E 

𝑟)? = T(𝑎𝑐B − 𝑐)𝑐?𝑠B)𝑠C − 𝑏𝑐CV𝑐E + ((𝑎𝑠B − 𝑐)𝑐?𝑐B)𝑠D − (𝑏𝑠C + (𝑎𝑐B + 𝑐)𝑐?𝑠B)𝑐C)𝑐D)𝑠E 

𝑟)A = −(𝑎𝑠B − 𝑐)𝑐?𝑐B)𝑐D − (𝑏𝑠C + (𝑎𝑐B + 𝑐)𝑐?𝑐B)𝑐C)𝑠D 
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𝑟?) = −T(𝑑𝑠B + 𝑠)𝑐?𝑐B)𝑠D − (𝑓𝑠C + (𝑑𝑐B − 𝑠)𝑐?𝑠B)𝑐C)𝑐DV𝑐E − ((𝑑𝑐B − 𝑠)𝑐?𝑠B)𝑠C − 𝑓𝑐C)𝑠E 

𝑟?? = −T(𝑑𝑐B − 𝑠)𝑐?𝑠B)𝑠C − 𝑓𝑐CV𝑐E + ((𝑑𝑠B − 𝑠)𝑐?𝑐B)𝑠D − (𝑓𝑠C + (𝑑𝑐B + 𝑠)𝑐?𝑠B)𝑐C)𝑐D)𝑠E 

𝑟?A = (𝑑𝑠B − 𝑠)𝑐?𝑐B)𝑐D − (𝑓𝑠C + (𝑑𝑐B + 𝑠)𝑐?𝑠B)𝑐C)𝑠D 

 

𝑟A) = (ℎ𝑠D + (𝑔𝑐C + 𝑐?𝑠A𝑠C)𝑐D)𝑐E − (𝑔𝑠C − 𝑐?𝑠A𝑐C)𝑠E 

𝑟A? = −(𝑔𝑠C − 𝑐?𝑠A𝑐C)𝑐E − (ℎ𝑠D + (𝑔𝑐C + 𝑐?𝑠A𝑠D)𝑐D)𝑠E 

𝑟AA = −ℎ𝑐D + (𝑔𝑐C + 𝑐?𝑠A𝑠C)𝑠D 

 

and: 

𝑎 = 𝑠)𝑠A + 𝑐)𝑠?𝑐A 

𝑏 = 𝑠)𝑐A − 𝑐)𝑠?𝑠A 

𝑑 = 𝑐)𝑠A − 𝑠)𝑠?𝑐A 

𝑓 = 𝑐)𝑐A + 𝑠)𝑠?𝑠A 

𝑔 = 𝑠?𝑠B − 𝑐?𝑐A𝑐B 

ℎ = 𝑠?𝑐B + 𝑐?𝑐A𝑠B 

 

Using the same a-h terms as defined above, the translational terms are: 

𝑥E= = 𝐿)𝑐) + 𝐿?𝑐)𝑐? − 𝐿A𝑎 − 𝐿B(𝑎𝑠B − 𝑐)𝑐?𝑐B) − 𝐿C(𝑏𝑠C + (𝑎𝑐B + 𝑐)𝑐?𝑠B)𝑐C) 

𝑦E= = 𝐿)𝑠) + 𝐿?𝑠)𝑐? + 𝐿A𝑑 + 𝐿B(𝑑𝑠B + 𝑠)𝑐?𝑐B) + 𝐿C(𝑓𝑠C + (𝑑𝑐B + 𝑠)𝑐?𝑠B)𝑐C) 

𝑧E= = −𝐿?𝑠? + 𝐿A𝑐?𝑐A − 𝐿Bℎ + 𝐿C(𝑔𝑐C + 𝑐?𝑠A𝑠C) 

 
It is important to note that the origins of frames six and seven both exist at the joint of the 

wrist, therefore the translational terms as defined above only use the first five angle joints in their 

calculations. 

 To put these calculations to use in the simulation, a similar approach was taken in 

MATLAB to solve for the kinematics. Fortunately, MATLAB can handle complex calculations 

without the need of completely and numerically solving for each variable of the homogeneous 

transformation matrix as was done above. This was done by creation a script in MATLAB that 
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contained two functions: transform and DHMatrix. The first function, transform, takes 

each of the seven joint angles, as well as the desired joint number as inputs, and solves for the 

homogenous transformation up to that joint. Its output contains the x,y,z coordinates obtained 

from the upper right 3x1 position matrix of the transformation matrix. The function DHMatrix 

takes the DH parameters of the current joint as an input and outputs the associated homogeneous 

transformation matrix. 

 To work as a complete unit, the function transform is first called. The lengths used in 

this function will be of Baxter’s arm and are defined as follows: 

 

Length Value (mm) 

L0 270.35 

L1 69.00 

L2 364.35 

L3 69.00 

L4 374.29 

L5 10.00 

L6 368.30 

Table 1.3 Lengths of Baxter’s Linkages 
  

Then, each row of the table of DH parameters is put into the proper homogenous 

transformation matrix variable through the use of DHMatrix. This function uses the general 

solution of forward kinematics, % 𝑇''() *, as expressed above to calculate each matrix accurately 

and efficiently. Now that each of the transformation matrices for each link are separately defined, 

a switch case is used to determine the extent of the calculations done. For example, if the 

function call is transform(0,0,0,0,0,0,0,6), the function will calculate the forward 

kinematics up until the final joint (given by the input 6), with each joint angle being zero. If the 

last input in the function call was a different number, for example a three, the calculations would 
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be done up until the third joint. After the homogeneous matrices are multiplied together, the 

program extracts the data for the 3x1 position matrix from the final homogeneous matrix and 

outputs those coordinates. 

 In order to test the functions and verify their results, the output of the MATLAB script is 

compared with the actual kinematics of Baxter.[1] Both calculations are computed assuming that 

each joint on Baxter’s arm is at zero: 
 

[ 𝑇E= ] = 	 ,

0 0 1 0.808
0 1 0 0
−1 0 0 −0.079
0 0 0 1

3 

 

 

Figure 28 Output of transform.m. 

 
 Note that, while the given solution of Baxter’s kinematics are expressed in meters, the 

output of transform.m is given in millimeters. 

 
4.3.2.1.3 Inverse Kinematics 

 In general, the process for solving the inverse kinematics of a serial-chain robot is as 

follows: given the position and orientation (or pose) of the end-effector of the robot, calculate the 

joint angles needed to achieve that pose. For robots such as Baxter, this solution begins with the 

forward kinematics equations solved for above and will be computed using the Newton-Raphson 

numerical approach. This approaches requires sufficient knowledge of Baxter’s movements as it 

requires a good initial guess and will only result in one solution. This method requires six scalar 
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functions to be defined, three of which are the three translational functions defined above, and 

the other three are three of the nine rotational matrix terms defined above.  

 To begin, the first three functions are defined as: 

 
𝑓)(Θ) = 𝐿)𝑐) + 𝐿?𝑐)𝑐? − 𝐿A𝑎 − 𝐿B(𝑎𝑠B − 𝑐)𝑐?𝑐B) − 𝐿C(𝑏𝑠C + (𝑎𝑐B + 𝑐)𝑐?𝑠B)𝑐C) − 𝑥E= 

𝑓?(Θ) = 𝐿)𝑠) + 𝐿?𝑠)𝑐? + 𝐿A𝑑 + 𝐿B(𝑑𝑠B + 𝑠)𝑐?𝑐B) + 𝐿C(𝑓𝑠C + (𝑑𝑐B + 𝑠)𝑐?𝑠B)𝑐C) − 𝑦E= 

𝑓A(Θ) = −𝐿?𝑠? + 𝐿A𝑐?𝑐A − 𝐿Bℎ + 𝐿C(𝑔𝑐C + 𝑐?𝑠A𝑠C) − 𝑧E= 

 
The second three functions will be chosen from the rotation matrix terms. In order to 

correctly solve for the inverse kinematics of Baxter using the Newton-Raphson solution method, 

these three terms must all be independent from each other. 
 

𝑓B(Θ) = −(𝑎𝑠B − 𝑐)𝑐?𝑐B)𝑐D − (𝑏𝑠C + (𝑎𝑐B + 𝑐)𝑐?𝑐B)𝑐C)𝑠D − 𝑟)A 

𝑓C(Θ) = (𝑑𝑠B − 𝑠)𝑐?𝑐B)𝑐D − (𝑓𝑠C + (𝑑𝑐B + 𝑠)𝑐?𝑠B)𝑐C)𝑠D − 𝑟?A 

𝑓D(Θ) = −(𝑔𝑠C − 𝑐?𝑠A𝑐C)𝑐E − (ℎ𝑠D + (𝑔𝑐C + 𝑐?𝑠A𝑠D)𝑐D)𝑠E − 𝑟A? 

 
Now that the functions are all defined, a set of vectors can also be defined in accordance 

with the Newton-Raphson method: 
 

{𝐹(Θ)} =

⎩
⎪
⎨

⎪
⎧
𝑓)(Θ)
𝑓?(Θ)
𝑓A(Θ)
𝑓B(Θ)
𝑓C(Θ)
𝑓D(Θ)⎭

⎪
⎬

⎪
⎫

 

{𝐹} =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜃)
𝜃?
𝜃A
𝜃B
𝜃C
𝜃D
𝜃E⎭
⎪⎪
⎬

⎪⎪
⎫
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With the vectors defined, a Taylor Series Expansion of {F} can be performed about {Q}: 

 

𝑓'({Θ} + {𝛿Θ}) = {𝐹(Θ)} +j
𝜕𝑓'
𝜕𝜃l

m

ln)

𝛿𝜃l + 𝑂({𝛿Θ?}), 𝑖 = 1, 2, … ,𝑚 

 

In accordance with the Newton-Raphson method, , [𝐽tu] = [𝐽tu(Θ)] = vwxy
wz{
|is 

introduced as the Newton-Raphson Jacobian Matrix. It is important to note that this matrix is not 

square, but 6x7. This greatly reduces the amount of computation required no matter how many 

joints a kinematically-redundant robot has beyond seven because only a 6x6 inversion is ever 

required in order to form a solution. Since many of the higher-order terms 𝑂({𝛿Θ?})	from the 

above Taylor Series Expansion are negligible when {𝛿Θ} is small, we can assume that they go to 

zero. The resulting equation is: 
 

𝑓'({Θ} + {𝛿Θ}) = 𝑓'{(Θ)} +j
𝜕𝑓'
𝜕𝜃l

m

ln)

𝛿𝜃l, 𝑖 = 1, 2, … ,𝑚 

= 𝑓'{(Θ)} + [𝐽tu]{𝛿Θ} = {0} 

	
 

 
This method calculates the solution in iterative steps. This is done because the basis of 

this method is that an good initial guess is given and one possible solution is found out of 

multiple. Because of this, a correction factor 𝛿Θ is calculated at each iterative step and 

{𝐹({Θ})} + [𝐽tu]{𝛿Θ} = {0} must be solved. One such possible solution is: 

 
{𝛿Θ} = −[𝐽tu]∗{𝐹({Θ})} 

 
where: 

 

[𝐽tu]∗ = [𝐽tu]~([𝐽tu][𝐽tu]~)() 
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In this solution, the iterations are not made to optimize the path in which the arms travel 

while attempting to find the desired end-effector location. Instead, a Moore-Penrose 

Pseudoinverse finds so that it is the minimum possible at each step. This is not the fastest way of 

solving this problem and does not account for the Jacobian velocity values of the robot, but since 

the simulation is developed purely to visualize the movement of Baxter as well as test the 

derived math, this solution is acceptable and provides sufficient results. 
 
4.3.2.1.4 Gravity Compensation 

 Since both the joints and links have weight, a simple position control loop was 

implemented to compensate for gravity. At a high level, the angles of each joint are monitored so 

that they do not overshoot or undershoot the desired angle values. This allows for the monitoring 

of the angles during movement, as well as when the arms have reached their final positions and 

orientations and must be held in place. Although a more complicated gravity compensation 

policy can be implemented, the scope of this project did not necessarily require one. This is 

because the main focus of this simulation was to analyze the forward and inverse kinematics of 

both Baxter and the RoboPuppet while simultaneously developing a system to visualize their 

movements. The simple position control loop that is implemented in the software allows the 

robot to be accurate with its movement (less than half a millimeter) as well as hold its place, 

while maintaining the primary focus of the project. Since the Jacobian velocity matrix was not 

needed in the derivation of the inverse kinematics of the robot, the velocity is set at a constant so 

that its effects are negligible, specifically with regards to the current gravity compensation 

policy. 
 
4.3.2.2 Visualization and Control Interface 

With the main focus of this project being a complete three-dimensional simulation, the 

actual visualization of Baxter must be an accurate representation of what Baxter actually looks 

like and how Baxter actually moves. If the visualization is inaccurate, it is impossible to 

correctly understand how Baxter is moving through time and space.  
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Figure 29 Three-Dimensional Visualization of Baxter. 

 
To accomplish this, a full scale model of Baxter was created and loaded into MATLAB. 

This was done by using MATLAB’s various built-in functions to properly read a .stl file that was 

given to the main function call in the software. These files are CAD renderings of each link of 

Baxter’s arms, as well as a rough model of Baxter’s body. 

In order to properly control the simulation, a graphics user interface must be created for 

easy access to all of the necessary variables. Upon running the simulation, the user is greeted 

with the following screen, prompting them to input their desired joint angles for the calculation 

and subsequent animation of the forward kinematics of the robot: 

 



49 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

Figure 30 Forward Kinematics Control Interface. 

 
 By selecting “Inverse Kinematics (IK)” from the drop-down menu, the control interface 

for the inverse kinematics of the robot appear and the user is prompted to input the desired end-

effector position for the calculation and subsequent animation of the robot (see Figure 31). 

 
 

 

 

 

 

 

 

 

 

Figure 31 Inverse Kinematics Control Interface. 

 
 In order for the user to actually animate the simulated robot using inverse kinematics, the 

user must enable the inverse kinematics for either the right or left arm, or enable both. This is 
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done to increase the speed and efficiency of the simulation as there are many iterative steps that 

the calculations must go through in order to find the correct solution for the inverse kinematics of 

the robot using the Newton-Raphson method. 
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5. Testing 
 
5.1 Mechanical Testing 

The testing for this project was done by the creation of an assembly in Solidworks to see 

if parts crashed into one another, and by the realized fabrication of the parts. When an issue was 

not caught in the CAD design process it was solved by altering the plastic components of the arm 

itself.  

 There were components where the hall effect encoders did not fit with the given mounts 

and were easily fixed by redesigning either the parts or the mounts to not be in the way of the 

part. The parts were physically altered by applying heat to a desired area, making the plastic easy 

to mold, warp or cut. When pieces needed to be slightly angled due to the parts shifting from the 

mass of the arm itself, it was easy to address this issue by heading the mount and bending it to 

the angle desired.  

 The assembly process is not one to be taken lightly. It takes hours of sanding, altering, 

and stripping the pieces of any unwanted support material in order to get a clean final design. 

Once all of the parts were printed and shown to fit well, many of the mounts would print with 

small deformities that would not allow the encoders to be properly attached. This was rectified 

by heating the plastic until it was soft and pinching the part to make the mount holes the proper 

desired tightness.  

 Testing the parts was very trial and error based. This meant that even though the design 

worked in a Solidworks assembly, it did not mean that it would necessarily work in a real work 

situation. When parts would have issues or not like up it was important to methodically find the 

issue, starting with the possibility that the error was done by the manufacturer. These issues often 

are due to missed details in the stripping of the part of supports. Following manufacturer error 

that net most likely issue is in the shifting of parts due to gravity. It is common for things to start 

to move, which is easily fixed by reducing the tolerance of the part or physically adjusting part of 

the RoboPuppet to the issue at hand.  

 
5.2 Electrical Testing 

This section concerns the electrical testing portion of the project. It involves testing of the 

components to evaluate their functionality as well as determining optimal methods to assemble 

the system that will control the active RoboPuppet. 
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5.2.1 Hall Effect Encoder Testing 

To test the functionality of the hall effect encoders, they had to be hooked up individually 

to see if their I2C address was read by the microcontroller. At first, it was difficult to figure out 

how to exactly hook the sensors up so that they would read properly. According to the datasheet, 

there were two options to hook up the encoders, either in 3.3V operation or 5V operation. This 

diagram also shown earlier in this paper is shown below. 

 

 

 

 

 

 

 

 

Figure 32 5V and 3.3V operations for AS5048B. 

This would require a 100nF and a 10uF capacitor to counteract any inductance from the 

wire transmitting the I2C signal. A breadboard test was conducted, connecting a single hall effect 

encoder to a Teensy. The goal is to be able to run a built in Scanner Arduino function and read 

the address of the chip. A successful reading of the Arduino serial monitor can be shown in 

Figure 33. 

 

 

 

 

 

 

 

Figure 33 Confirmation of I2C communication in Arduino Serial Monitor. 
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Once this configuration was proven to work, another encoder set-up can be put on the 

breadboard. Figure 34 shows two sets of encoder circuits connected to a single Teensy I2C line. 

In this particular picture, encoders are not connected yet. 

 

 

 

 

 

 

 

 

 

Figure 34 Breadboard layout of hall effect encoder driving circuit. 

 
Another important aspect to consider is the use of pullup resistors on the SDA and SCL 

pins. The purpose of a pullup resistor is to “pull-up” a floating voltage to truly distinguish is a 

device is triggering the pin. It increases the robustness of the I2C communication and is found in 

almost every I2C application. For the Teensy 3.5 it is recommended that 4.7k ohm resistors are 

used for I2C. (PJRC) Eventually a series of breadboards were assembled to be able to chain 14 

encoder circuits on one SDA and SCL line. It was a messy wire configuration, but it was okay 

for a prototype knowing the PCB would be a lot neater and more professional looking. 

In this particular project design, it was found that one of the AS5048B hall effect 

encoders seemed to be defective and ordering a replacement proved to be difficult. To 

temporarily solve this, a similar sensor was purchased, the AS5601. The overall breadboard and 

eventual PCB design did not have to be altered drastically for one sensor. The only main 

difference was the ordering of the four connection pins, Vcc, GND, SDA, and SCL. After all 14 

sensors could be detected at once, the next step was to develop Arduino code that could iterate 

through the addresses and produce the angle reading based on the magnet in the arm’s position. 

The full code developed for this step can be found in the Appendix. User created Arduino 
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libraries for particular sensors made this step particularly easier than developing code from 

scratch. The code creates two arrays of sensors that has associated addresses. What the code does 

is first initialize the encoders, calibrating them to zero. After that it reads the joint angle value 

and prints the value to the serial monitor. 

 

5.2.2 Motor Testing 

To test the servos, a couple methods were used, one being more effective than the other. 

The initial idea was to simply use PWM pins on the Teensy to drive the servos and use external 

power knowing that having the Teensy drive motors and read encoder values at the same time 

would be a bad idea. Using PWM digital output to control motors was a good idea in theory, 

however there were problems that came with this method. According to the Teensyduino 

website, the Teensy can only output up to 12 PWM signals at once, making an application like 

this difficult with 14 servos needed to be used. The solution was to implement a servo driver that 

has 14 or more ports. As discussed earlier, the PCA9685 I2C PWM servo driver solved this 

issue. 14 of the 16 ports were used for the active RoboPuppet. Testing of this breakout board 

proved to be similar to testing the hall effect encoders due to the I2C communication. A 

breadboard layout can be found in Figure 35.  
 

 
Figure 35 Breadboard testing for I2C Servo Driver. 

 
The only connection to the Teensy was SDA and SCL, Voltage and Ground. A single 

motor was tested to make sure the chip worked. A built in example function from the Adafruit 

website tested the servo’s sweeping abilities. The board was proven successful when the motors 
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activated and rotated when the program ran. After the I2C board was proven functional, it could 

be implemented into the PCB.  

 

5.2.3 PCB Testing/Troubleshooting 

To hook up the PCB, most of the components had to be through hole soldered. 

Components that weren’t through hole soldered were surface mounted like the 3.3V regulator 

and the barrel jack. The encoder wires had to be pressed down with crimp connectors to pierce 

through the metal spikes, connecting the wires to the board via the rectangular connectors. The 

wires had to be connected one at a time because the I2C interface seemed to be very picky with 

connections. The wire configuration had to be very precise because any short would kill the I2C 

signal, resulting in the serial monitor of the scanning function to read “No I2C devices found.” 

Making sure every set of hall effect encoder wires connected to the board took some time, but it 

was eventually achieved. The crimp connector connections can be seen in Figure 36. 

 

 

 

 

 

 

 

 

 

Figure 36 Wire Connection from Sensors to PCB. 

 
 
5.3 Software Testing  

Thankfully, testing the simulation was relatively straight forward and consisted of 

standard debugging practices. Firstly, to test the derived equations for miscalculations, separate 

MATLAB scripts were created that solved for the forward or inverse kinematics separately. 

Later on, these scripts were implemented into the final program that ran the simulation. This 
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proved to be an effective way of solving for and testing the equations that were originally 

derived by hand because MATLAB handled most of the calculations. This allowed the equations 

derived by hand to be directly compared to the solutions solved for in MATLAB. 

 From here, standard debugging practices were used so that the program could be first 

checked for syntax errors within the code. Once the syntax errors had been fixed, the logic of the 

code could then be checked and tested. “Milestones” were placed at every major aspect of the 

code to ensure that it was working all of the way throughout the program. These “milestones” 

came in the form of basic print statements, as well as outputs of more intense calculations. Once 

all of the calculations and logic of the code was reviewed, the movement of the simulated robot 

Baxter could finally be checked. With all of these different parts working in conjunction with 

each other, the simulation ran flawlessly and efficiently. 
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6. Recommendations  
 
6.1 Mechanical Recommendations 

For next year’s team, it would be well advised to have one or multiple people that are 

very well adept at using Solidworks and know how to expertly manipulate PLA plastic. The 

mechanical design focus for next year should be on the integration of the wiring to a smooth 

internal channel within the RoboPuppet. This will make the entire design easier for the user and 

less likely to be pulled apart by an awkward angle. This can be accomplished by either a total 

redesign of the internal components of the puppet, or a redesign of the outside of the components 

to account for a sleeve that can be placed over the parts.  

 The other major aspect that can be improved mechanically is the shape of the hand 

control to be more intuitive and comfortable for users. The control is currently in the shape of an 

extruded rounded square, or a “squ-ircle”. This design is not uncomfortable, however can be 

vastly improved upon by making it more ergonomic towards an actual human hand.  

Another aspect that should be looked into is making the hand control more slip resistant. 

This can be done using a rubberized dip or spray such as, “plasti-dip”. However, if you are to do 

this you will need to take special care to not have any of the components, or component housings 

damaged by this process. Look into the way that sculptors and ceramic artists ensure that their 

pieces have even coatings of glaze while also being selective on where the glazes touch. 

The arms are held together using a D-axle, which has a single flat surface as its key point. 

This means that the part holding it together will be strong, however does not always have a good 

grip. With this in mind the RoboPuppet is in need of constant tightening of the collars that hold 

the axle to the motors. This can be possibly solved by using a material like locktite on the collar, 

or by replacing the axles with one that is less likely to slip or come loose from the collar’s key.  

In conclusion there are several different ways that this design can be improved upon that 

can easily take an entire MQP group. When fabricating the plastic components do not use a low 

quality printer. Having a high tolerance in your parts is what will ultimately be the deciding 

factor to your design working or not. Parts like the hand housing utilized an exceptionally sight 

margin for error and the Prusa 3D printers in the Higgins MQP lab were more than sufficient at 

accomplishing everything required of it. It is easier to purchase your own filament and print 

using the Higgins Prusa printers than to have parts printed by Foisie.  
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6.2 Electrical Recommendations 

This year, major strides were made to optimize the electrical workings of the active 

RoboPuppet. A functional PCB was developed in addition to being able to connect everything to 

one system. As well as this version of the RoboPuppet was, there is room for improvement for 

the next group of students who may work on this project. The most impactful recommendation 

for the future would probably be replacing sensors so that they are all the same model. The only 

reason there is a mix of old AS5048B sensors with a new AS5061 sensor is that during the 

development process of this project, AS5048B sensors were not available anywhere on the 

internet to buy, therefore leading to believe they were not being sold anymore. At the time of the 

writing of this paper, however, they are, in fact, in stock. In conclusion, a recommendation 

would be to keep the sensors consistent throughout the arms. It would be preferable to stay with 

the old AS5048B sensors for a few reasons, one being that it would be cheaper to fully replace 

(only one sensor rather than many), the male header pin installation would be intuitive and easy 

to use, and AS5061 sensors have a fixed address of 0x36, so an I2C multiplexer, or mux would 

have to be implemented in the future iterations of the PCB. An example would be the TCA9548 

1-8 I2C Multiplexer breakout board from Adafruit, as shown in Figure 37. 

 

 

 

 

 

 

 

Figure 37 TCA9548A I2C Multiplexer. 

This way a microcontroller like the Teensy can sort through the ports with the same 

address. This board would have to be included in any future circuit design regarding fixed 

address sensors like the AS5061. This is the more expensive route to take, but it is an option. If 

14 sensors are used, then 2 muxes are necessary to account for the 16 I2C lines. 

 



59 | P a g e  
 

6.3 Software Recommendations 
The simulation that was developed for the 2018-2019 Telenursing RoboPuppet MQP 

focused mainly on the derived equations and calculations needed for a working model of Baxter 

in MATLAB. This simulation did not focus on the interactivity between the RoboPuppet and the 

simulation and Baxter. This was done to ensure that the focus of the project was on the 

kinematics of the robot and the compensation of gravity in Baxter’s arms. This was an important 

step in the process because the current active RoboPuppet would be rendered useless without 

them in terms of integrating it with Baxter. This means that without the correct calculations 

being done and tested for through the use of a simulation, next year’s team would have to focus 

more on the calculations, rather than the integration between the RoboPuppet and Baxter. With 

this component being complete, more work can be done on the communication between 

RoboPuppet and Baxter through the use of programming languages and environments such as 

Python and ROS. In conclusion, the work done this year is only a step in the process of the 

bigger picture. Next year’s team will be able to more easily and more readily expand upon the 

current active RoboPuppet because of the derivation of the kinematics equations and the focus on 

creating a working gravity compensation policy that was done this year. 
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7. Appendices 
 
Ardunio code for testing hall effect encoders 
 
#include <AS5601.h> 

#include <ams_as5048b.h> 
#define LEFT_ARM 7 
#define RIGHT_ARM 6 
#define U_DEG 3 
 
AMS_AS5048B left_sensors[LEFT_ARM] = {AMS_AS5048B(0x47), AMS_AS5048B(0x46), 
AMS_AS5048B(0x40), AMS_AS5048B(0x49), AMS_AS5048B(0x48), AMS_AS5048B(0x4C), 
AMS_AS5048B(0x44)}; 
AMS_AS5048B right_sensors[RIGHT_ARM] = {AMS_AS5048B(0x42), AMS_AS5048B(0x45), 
AMS_AS5048B(0x4B), AMS_AS5048B(0x44), AMS_AS5048B(0x4A), AMS_AS5048B(0x43)}; 
                                                                             
 
AS5601 new_sensor1; 
 
void setup() { 
  Serial.begin(4800); 
  Wire.begin(); 
  Wire.setSCL(19); 
  Wire.setSDA(18); 
  while (!Serial); 
  for (int i = 0; i < LEFT_ARM; i++) { 
    left_sensors[i].begin(); 
    left_sensors[i].setZeroReg(); 
  } 
 
  for (int j = 0; j < RIGHT_ARM; j++) { 
    right_sensors[j].begin(); 
    right_sensors[j].setZeroReg(); 
  } 
} 
void loop() { 
  for (int i = 0; i < LEFT_ARM; i++) 
  { 
    Serial.print("Sensor "); 
    Serial.print(i); 
    Serial.print(" | angle: "); 
    Serial.println(left_sensors[i].angleR(U_DEG, true)); 
    delay(500); 
  } 
 
  for (int j = 0; j < RIGHT_ARM; j++) 
  { 
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    Serial.print("Sensor "); 
    Serial.print(j +7 ); 
    Serial.print(" | angle: "); 
    Serial.println(right_sensors[j].angleR(U_DEG, true)); 
    delay(500); 
  } 
 Serial.print("Sensor 13"); 
 Serial.print(" | angle: "); 
 Serial.println(new_sensor1.getAngle()); 
 delay(500); 
} 
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