
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2019

PMKS+: Recreating a Legacy Application
Dimitrios Tsiakmakis
Worcester Polytechnic Institute

Griffin Daniel Cecil
Worcester Polytechnic Institute

Michael Teijiro Taylor
Worcester Polytechnic Institute

Praneeth Appikatla
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Tsiakmakis, D., Cecil, G. D., Taylor, M. T., & Appikatla, P. (2019). PMKS+: Recreating a Legacy Application. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/7041

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/7041?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7041&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

PMKS+: Recreating a Legacy Application

Major Qualifying Project

Written By:

Praneeth Appikatla (CS)

Griffin Cecil (CS)

Michael Taylor (CS)

Dimitrios Tsiakmakis (CS)

Advisors:

Professor David C. Brown (CS)

Professor Pradeep Radhakrishnan (ME)

April 25, 2019

1

Abstract

The goal of this project was to recreate the Planar Mechanism Kinematic Simulator

(PMKS), a legacy, open-source web application, on a modern web platform with an enhanced

user experience. The conversion included support for multiple browsers and improvements to the

graphical user interface. This application was developed using the latest technologies in web

development. Through multiple evaluations testing the interface and functions, we were able to

create a similar application to PMKS that has an improved user interface experience.

2

Acknowledgements

We would like to thank Professor Radhakrishnan and Professor Brown for supporting us

through this project. We would also like to thank Dr. Matthew Campbell of Oregon State

University for creating the open-source application, PMKS, on which our work is built. Finally,

we would like to thank the students of the Mechanical Engineering department of WPI who

participated in our user studies and helped us improve the user experience in our application.

3

Table of Contents

I. Abstract ... 1

II. Acknowledgments... 2

III. Table of Contents.. 3

IV. Authorship... 6

1. Introduction... 7

2. Research Statement & Goals.. 9

3. What is PMKS.. 10

4. Literature Review.. 11

4.1. Interface Development.. 11

4.2. Interface Evaluation.. 15

5. Methodology... 19

5.1. Migration Options... 19

5.2. Web App Justification.. 19

5.3. User Interface Evaluation... 20

5.4. Interface Design... 21

5.5. Linkage Creation Methods... 21

5.6. System Design.. 22

5.7. Simulator Class... 25

5.8. Animation... 25

5.9. Application Testing... 25

5.10. PMKS+ User Evaluations... 26

6. Migration Options... 27

6.1. Migration Methods.. 27

6.2. Migration Platforms.. 28

6.3. Migration Tools... 29

7. Web App Justification.. 32

7.1. Rationale... 33

7.2. Results... 36

8. User Interface Evaluation... 37

8.1. Evaluation Strategy... 37

8.2. Evaluation Procedure.. 40

8.3. Data Analysis.. 41

4

9. Interface Design.. 44

9.1. Preliminary UI Mockups... 44

9.2. Iteration 1.. 45

9.3. Iteration 2.. 46

9.4. Iteration 3.. 48

9.5. Iteration 4.. 50

9.6. Iteration 5.. 53

9.7. Iteration 6.. 58

9.8. Iteration 7.. 62

10. Linkage Creation Methods... 65

10.1. Linkage Table... 65

10.2. Grid... 66

10.3. Final Decision... 69

10.4. Context Menu.. 70

11. System Design.. 72

11.1. Analysis of Existing Application Design.. 72

11.2. New System Architecture... 73

11.3. Grid Component States... 75

12. Simulator Class... 79

12.1. Simulation Loop.. 79

12.2. Joint Traversal Algorithm... 81

12.3. Circle Intersection Solver.. 85

13. Animation.. 87

13.1. CSS Animations.. 88

13.2. Custom Typescript Solution.. 89

13.3. Animation Controls... 91

14. Application Testing.. 94

14.1. Browser Compatibility.. 94

14.2. Software Testing.. 100

15. PMKS+ User Evaluations.. 104

15.1. Individual Evaluation.. 104

15.1.1. Procedure... 101

15.1.2. Target Users... 101

15.1.3. Evaluations Script.. 102

15.2. Final User Evaluations... 105

15.3. Differences with PMKS Evaluation.. 105

15.4. Data Analysis... 106

5

16. Conclusions.. 111

17. Discussion... 113

18. Future Work... 115

19. References.. 120

Appendix A: PMKS User Evaluation Response Form............................... 124

Appendix B: PMKS+ User Evaluation Response Form............................. 131

Appendix C: Individual Evaluation Script.. 137

Appendix D: Individual Evaluation Paper Examples................................ 140

6

Authorship

 The following table describes to which sections and chapters of the report each team

member contributed. After initial drafts, all team members conducted peer reviews for all the

sections.

Chapter Author(s)

1 Cecil

2 Appikatla, Tsiakmakis

3 Tsiakmakis

4 Appikatla, Cecil, Taylor, Tsiakmakis

5 Appikatla, Cecil, Taylor, Tsiakmakis

6 Taylor

7 Appikatla

8 Cecil

9 Tsiakmakis

10 Taylor

11 Taylor

12 Appikatla, Cecil, Taylor

13 Cecil

14 Taylor

15 Cecil

16 Taylor, Tsiakmakis

17 Cecil, Tsiakmakis

18 Taylor

7

Chapter 1

Introduction

Following global standards is key when developing any website. Not only can they help

determine what tools to use to expand website functionalities, but they can also define the design

of the interface that is going to improve the overall user experience. By applying globally

accepted standards, one can ensure that a website will be compatible with current and future

operating systems and browsers.

The Planar Mechanics Kinematic Simulator (PMKS) is a web application that is neither

compatible with multiple browsers nor future-proof. PMKS is currently used by the Mechanical

Engineering Department at Worcester Polytechnic Institute (WPI) to study the behavior and

usage of planar linkages. With Apple’s recent update to the Safari 12 browser, support for

Netscape Plugin Application Programming Interface (NPAPI) plugins has come to an end (Safari

Technology (2018)). This includes Microsoft Silverlight, a plugin required to run PMKS. With

no support for Mac, running PMKS is a much greater burden for Apple product owners. In order

to remain a useful tool that aides student’s learning, PMKS must migrate to a more accessible

platform. This requires conforming to modern web standards and technology. We have named

this new version PMKS+.

The second chapter of this report describes our team’s goals and objectives while

completing this project. Chapter 3 provides an overview of PMKS. Chapter 4 details the research

our team conducted on interface evaluation and development. Chapter 5 describes the methods

our team used to create, test, evaluate, and implement PMKS+. Chapters 6 and 7 discuss our

research and findings for migrating options to PMKS+. Chapter 8 describes the testing

conducted to identify which aspects of the user interface to improve, while chapter 9 discusses

the iterative process for developing our user interface. Chapter 10 details the various methods

considered for creating linkages in PMKS+. Chapter 11 presents the system architecture and

design of PMKS+. Chapter 12 describes the Simulator class that performs calculations on

linkages, while Chapter 13 discusses the techniques used for animation in PMKS+. Chapter 14

reports the testing our team performed to ensure that PMKS+ met our compatibility and

performance standards. Chapter 15 details the evaluation methods used during and after

8

development. Chapter 16 concludes the development of PMKS+ while chapter 17 includes

discussion on our team’s findings as well as future improvements that should be made to the

system. Finally, Chapter 18 discusses the future work that can be implemented to improve the

usability and efficiency of PMKS+.

9

Chapter 2

Research Statement & Goals

In order for a website to reach its full potential, a developer must follow the global

standards of web development. Prior to beginning, a developer must consider what tools they

will use, what design their interface will have, and what functions their website will provide.

Application of the global standards that are provided by the World Wide Web Consortium

(W3C) can ensure compatibility and accessibility of a website.

PMKS has useful functions but limited compatibility with modern browsers. As of now,

PMKS can only be used in Internet Explorer and does not provide support for any alternatives.

This is a major problem for its users. Since many Mechanical Engineering students thoroughly

study linkages for classes and their Major Qualifying Projects, it would be ideal to have software

that could be useful to them for a long time.

Our goal was to develop a similar application that offered the same functionalities as

PMKS, but that conformed to modern web standards and had a new interface that would improve

the user experience. We developed these improvements by gathering feedback from Mechanical

Engineering students on the current PMKS application and designing an interface to address any

points of concern. Our focus was not to develop an entirely different application but to provide

the Mechanical Engineering department with a new tool that improves the user experience. In

summary, our goals were to:

● Incorporate beneficial features from PMKS into PMKS+, so that previous users feel

comfortable with it.

● Ensure PMKS+ is compatible with most major browsers.

● Enhance the user experience by redesigning and improving both the features and the user

interface of PMKS, based on user feedback.

● Deliver a new application that is appropriately documented and maintainable.

10

Chapter 3

What is PMKS?

The Planar Mechanical Kinematic Simulator (PMKS) is an open source software used to

simulate the kinematics and kinetics of planar mechanisms (also referred to as linkages) through

user defined joints, links, and forces. The initial kinematics version of the software was designed

by Dr. Matthew Campbell of Oregon State University (that included parts of Prof.

Radhakrishnan’s dissertation) and is maintained by its Design Engineering Lab. A previous

Major Qualifying Project group at WPI integrated the kinetics aspect into PMKS, which

provided new features such as the ability to apply forces as well as to calculate and export static

and dynamic joint reaction forces. Currently, PMKS is used in two Mechanical Engineering

courses at WPI and some courses at Oregon State University.

11

Chapter 4

Literature Review

4.1 Interface Development

4.1.1 Interface Design

When first considering the design of a graphical interface, developers work to establish

standards prior to creating prototypes. These baselines help them make decisions about various

aspects of the design of a system; from the fonts and color choices of text to the organization of

menus. Alongside more general design rules for user interface design, this task analysis governs

the choices developers make to create a system that allows access to the widest audience without

inhibiting or frustrating them. The origins of the PMKS web application include very little

documentation about the creation process and even less detailing decisions with regard to its

design. It is unknown whether any considerations to design for a target audience, or to organize

menus in a simple and coherent way were taken. As a consequence, our team must design and

evaluate the existing system while creating design criteria and analysis methods from scratch.

4.1.2 General Design Rules

 Though we based the majority of our changes to the system based on feedback and

evaluations conducted with user testing, there were certain, near-universal practices that we also

considered. Through years of research, many practices in design have come to be expected of

applications, especially those on the web. These principles can be applied to any system and

improve various aspects of design that help users navigate, perform, and understand the

information of applications.

 According to Terry Felke-Morris in his book Basics of web Design: HTML5 and CSS3

(2016), the basic principles for designing an interface are as follows:

● Repetition: Repeat visual elements throughout the design

When applying the principle of repetition, the web design should repeat one or more

12

elements throughout the page. The repeating aspect ties the work together. Whether it is

color, shape, font, or image, repetition of elements helps to unify a design.

● Contrast: Add visual excitement and draw attention

To apply the principle of contrast, emphasize the differences between page elements in

order to make the design interesting and direct attention. For example, there should be

good contrast between the background color and the text color on a web page.

● Proximity: Group related items

When applying the principle of proximity, related items are placed physically close

together. Unrelated items should have space separating them. Placing interface items

close together gives visual clues to the logical organization of the information or

functionality.

● Alignment: Align elements to create visual unity

When applying this principle, each element on the page should line-up (vertically or

horizontally) with another element. This helps to reduce layout complexity.

Following these basic visual design principles can help develop an interface that is

targeted for the audience and help them accomplish their tasks. Morris (2016) also gives

significant importance to considering the accessibility of a website when developing it. Some of

his key points are:

● Content must be perceivable

Perceivable content is easy to see or hear. All the graphic and multimedia content that is

used in a website should also be available in text, such as descriptions for images, closed

captions for videos, and transcripts for audio.

● Interface components in the content must be operable

Operable content has interactive features that can be used or operated with either a mouse

or a keyboard.

● Content and controls must be understandable

Content must be easy to read, organized in a consistent manner, and provide helpful error

messages when appropriate.

13

● Content should be robust enough with current and future user agents

Robust content is written to follow World Wide Web Consortium recommendations and

should be compatible with multiple operating systems, browsers, and assistive

technologies such as screen reader applications.

The World Wide Web Consortium (W3C) is active in the cause of promoting accessibility

in websites by creating guidelines and standards that are applicable to web content developers,

authoring-tool developers and browser developers. A web page that is designed to be accessible

is typically more usable for all. The following design principles guide W3C’s work:

● Web for All

The social value of the Web is that it enables human communication, commerce and

opportunities to share knowledge. One of W3C’s primary goals is to make these benefits

available to all people, whatever their hardware, software, network infrastructure, native

language, culture, geographical location, or physical or mental ability.

● Web on Everything

The number of different kinds of devices that can access the Web has grown immensely.

Mobile phones, smart phones, personal digital assistants, interactive television systems,

voice response systems, kiosks and even certain domestic appliances can all access the

Web.

● Web for Rich Interaction

The Web was invented as a communications tool intended to allow anyone, anywhere to

share information. For years, the Web was considered a “read-only” tool by many. Blogs

and wikis brought more authors to the Web, and social networking emerged from the

flourishing market for content and personalized Web experiences. W3C standards have

supported this evolution thanks to strong architecture and design principles.

● Web of Data and Services

Some people view the Web as a giant repository of linked data while others as a giant set

of services that exchange messages. The two views are complementary, and which to use

often depends on the application.

14

● Web of Trust

The Web has transformed the way we communicate with each other. In doing so, it has

also modified the nature of our social relationships. People now “meet on the Web” and

carry out commercial and personal relationships, in some cases without ever meeting in

person. W3C recognizes that trust is a social phenomenon, but technology design can

foster trust and confidence. As more activity moves on-line, it will become even more

important to support complex interactions among parties around the globe.

Shneiderman and Plaisant in their book Designing the User Interface: Strategies for

Effective Human-Computer Interaction (2016) present a comprehensive list of some additional

essential guidelines for developers to follow without needing to evaluate their audience or tasks.

The following is a summary of some of these guidelines for interface design that are applicable

to our objective:

● The display should be familiar to the user and related to the tasks

● Users should not be required to remember information between pages

● Only present data that is relevant to the user

● Minimize user input

 In addition, Shneiderman and Plaisant (2016) present several design principles that hold

more weight than the aforementioned guidelines. These principles may be summarized as

follows:

● Cater to the user’s skill level - User expertise may vary from beginners to experts.

Beginners require assistance and introductions to functionality while experts want to

exert control over the system.

● Define tasks - Creating a task analysis that helps the designer understand the task

frequency of the system leads to development with users in mind.

● Golden Rules - These general principles include consistency in presentation, functionality

feedback, error prevention, and ease of undoing mistakes.

15

 Following these guidelines will produce an appealing, agreable system for users of any

skill level. Our first objective in evaluating the current PMKS system constitutes ensuring that

these principles have been enforced throughout the user experience. Although user testing will

aid in understanding their effectiveness, we can evaluate many of these principles through

performing our own evaluations using associated quantitative metrics. This point will be further

discussed within the Interface Evaluation section of the methodology.

4.2 Interface Evaluation

 In order to improve a graphical user interface, there must be data pointing to aspects of

the design which require improvement. In other words, there must be evidence to show that users

are struggling or dissatisfied with the interface. Without this evidence, developers are liable to

design a system based on their personal beliefs and preferences, regardless of what users want.

To avoid this situation, testing must be done in order to collect user opinions on a system. This

testing involves creating an evaluation strategy, conducting testing sessions, and evaluating the

collected data.

Prior to testing, creating an evaluation strategy involves establishing and prioritizing

usability requirements, defining data to collect, and identifying the constraints of the testing

environment (Stone et al., 2005). Rubin (1994) describes that evaluation requires multiple testing

periods throughout the development lifecycle to validate any changes made. This iterative testing

pattern allows teams to continuously improve the design of a system and adapt to changes in

design standards and evolving technologies while also simplifying the handoff of design

improvement to other teams.

4.2.1 Usability Requirements

 Usability requirements identify the actions that a system should be able to accomplish

 When assessing PMKS, our team identified several requirements that are necessary for

the interface to satisfy, which the current iteration may or may not accomplish. Our evaluations

were developed to address these goals and our progress toward accomplishing them. They are as

follows:

16

● Users should be able to create basic linkages easily and with a small number of actions.

● Students should be able to apply prior knowledge and practices with regard to linkages.

● Users should be able to reset the system and begin from scratch.

● Users should be able to learn to create different types of linkages directly through the site.

● Users should feel in control of animations.

4.2.2 Usability Dimensions

 Usability dimensions help to prioritize system requirements and can be broken up into

five categories: effective, efficient, engaging, error-tolerant, and easy to learn (Stone et al.,

2005). Evaluations of user interfaces should consider the impact of each of these dimensions on

the ability of the target audience to use the system. By assigning each category a weight based on

their relevance and importance in an application, the interface can be refined to include

necessities and omit unnecessary aspects. For example, if the efficiency of a system is given a

weight of 30% while engaging is given 15% then the design of the system would focus on

performing tasks quickly and requiring fewer actions by users but would not necessarily

incorporate superfluous stylings or animations to engage the user.

4.2.3 Usability Metrics

 As previously discussed, design evaluation constitutes an iterative process that requires

multiple testing sessions in order to re-evaluate changes to the interface. Performing multiple

evaluations at different stages requires consistency in metrics used in order to compare and

determine the success of attempted improvements. Common metrics that may be gathered,

regardless of changes made to the system, include the time it takes to complete specific tasks, the

error rate of users when performing a task, and the user’s subjective satisfaction. Each of these

metrics, both qualitative and quantitative, can be used as evidence to show improvement,

worsening, or stagnation in a design.

Constantine and Lockwood (1999) describe several “Advanced Metrics” which gather

information through user testing and self-evaluation of a system. These metrics provide a

17

thorough understanding of the capabilities and limitations of an interface. The metrics our group

deemed relevant to this study are essential efficiency, task visibility, and layout complexity.

Essential efficiency compares the number of steps a user must take to complete a task to

the ideal number of steps previously defined based on the number of necessary actions

(Constantine and Lockwood, 1999). This measurement produces quantitative evidence regarding

the effectivity and efficiency of a system. The following formula produces the essential

efficiency (EE) based on Sessential, the number of ideal steps to accomplish a task compared to

Senacted, the number steps actually taken to accomplish a task:

𝐸𝐸 = 100 ∗
𝑆𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙

𝑆𝑒𝑛𝑎𝑐𝑡𝑒𝑑

 Task visibility describes the user’s ability to see functionality related to the tasks they

must perform (Constantine and Lockwood, 1999). Determining the visibility of the system also

helps evaluate how easy an application is to learn to use, and its overall efficiency. The following

formula determines the task visibility (TV) based on the total number of enacted steps to

complete a use case, Stotal, multiplied by the sum of visibility for each task, 𝛴𝑉𝑖:

𝑇𝑉 = 100 ∗ (
1

𝑆𝑇𝑜𝑡𝑎𝑙
∗ ∑𝑉𝑖)

 Layout complexity evaluates the placement of objects on screen by measuring the

distance and differences (size, alignment, angle, etc.) between their positioning (Constantine and

Lockwood, 1999). This measurement assesses a system’s efficiency and can aid in creating an

engaging, easy-to-use interface. Layout complexity defines the following formula using the

variables listed below:

𝐿𝑈 = 100 ∗ (
(𝑁ℎ + 𝑁𝑤 + 𝑁𝑡 + 𝑁𝑙 + 𝑁𝑏 + 𝑁𝑟) − 𝑀

6 ∗ 𝑁𝑐 − 𝑀
)

LU = Layout Complexity

Nh = Number of objects with different heights

Nw = Number of objects with different widths

18

Nt = Number of objects aligned to the top of the page

Nl = Number of objects aligned to the left side of the page

Nb = Number of objects aligned to the bottom of the page

Nr = Number of objects aligned to the right side of the page

Nc = Total number of objects

M = Variable to ensure quantity does not fall below zero

19

Chapter 5

Methodology

 In this chapter we detail the steps our team took to accomplish the goals established in

Chapter 2. Each section describes the actions taken by one or more team members in a

chronological order. The following chapters include detailed explanations on the decisions made

in each section of the methodology.

5.1 Migration Options

Before deciding between a web and desktop application, we considered the options

available to us behind each approach. This included the programming language, framework, and

method of migration. Through research, and by considering recommendations on technologies

provided by Professor Lane Harrison of the Computer Science department at WPI, we finalized

our migration strategy. We decided to use Angular, a web framework developed by Google, as

our development platform. This framework utilizes HTML5, CSS, and the TypeScript language

to assist in building and designing website interfaces (Angular, 2018). Lastly, we decided to do a

partial redesign of the application as our migration method because it would keep the existing

structure of the PMKS code the same, as well as allow us to redesign parts of the application as

needed. Section 6.1, Migration Methods, further discusses the various migration methods we

looked at and Section 6.3, Migration Tools, discusses various tools and technologies for those

methods.

5.2 Web App Justification

After considering each migration option, we needed to choose between creating a web or

desktop application. First, we listed important criteria for developing an application. These

criteria were then given weights based on priority. Each migration platform option was given a

score for each criteria which, in turn was multiplied by the criteria weight and summed for

comparison. The criteria and scores were represented in a decision matrix shown in Figure 5.2.

In the end, we decided on a web application because its assets met our project goals better, as

20

indicated by its higher score. Section 6.2, Migration Platforms, lists the various advantages and

disadvantages of web and desktop applications, which assisted in justifying the scores for each

platform. Section 7, Web App Justification, further details our process in selecting a platform for

PMKS+ and provides rationales for criteria weights and the values assigned to each.

5.3 User Interface Evaluation

Before beginning the conversion, we evaluated the current state of the PMKS system and

determined the initial changes that needed to be made to the user interface. Based on our

research into evaluations of user interfaces discussed in Section 4.2, our team developed a

process to gather quantitative and qualitative feedback from users in order to improve the design

of our system. The creation and design of our evaluation is detailed in Section 6, User Interface

Evaluation.

 Evaluations were completed during two sessions that took place on October 3rd and 10th,

2018. Each session included 16 subjects placed at individual computers in a single room. All

subjects started the evaluation at the same time and completed both the assigned tasks and

accompanying questionnaire at their own pace.

In addition, six one-on-one sessions were conducted which paired each individual subject

with a proctor who recorded the subject’s observations. This allowed subjects to interact with the

system in an uninhibited manner and express their opinions immediately. These sessions were

scheduled at separate times from the larger group sessions. The subjects were given as much

time as necessary to complete each step of the evaluation.

Our team compared the results gathered through these sessions and the user evaluations

performed with PMKS+, described in section 5.10, to find evidence of improvement in our new

application. Figure 5.1 details the timeline for evaluation.

Figure 5.1: A timeline of the evaluation process between PMKS and PMKS+.

21

5.4 Interface Design

After evaluating the previous interface of the application and conducting the interface

evaluation survey, we worked to design a new user interface for PMKS+. Although we had some

ideas about the design before the two tasks mentioned, we decided it was best to complete those

two tasks first and design the interface around the feedback received.

As mentioned in our research statement, our goal was to create an application that is

similar to PMKS, in functionality and design. Such an application should feel familiar to existing

PMKS users while providing a better user experience for all users.

During B-term, we incorporated our design choices into weekly iterations of our

application. Every week we made changes to the interface of the application, sought opinions

from our advisors, and incorporated their feedback in the next iteration of the interface while still

adding more interface components. Chapter 9 details the various iterations of the interface

leading up to the current design. In that section, we will also discuss the justifications for each

interface element of our application.

5.5 Linkage Creation Methods

 We quickly identified linkage creation as a major area in need of improvement in PMKS.

The process of specifying links in a table using the coordinates of attached joints, though

accurate, proved cumbersome and unintuitive to the user. In an effort to fix this issue, our team

sought a way to create joints and links that mimicked the method for drawing linkages by hand.

 Our team found that keeping a table which tracks the location and details of links and

joints allows users to identify items on the grid more easily and edit the position of these objects

accurately. This table was also expanded to distinguish between joints and links, and also to

include information on the forces affecting the linkage. We also created a method to help the

user identify what actions they may perform in PMKS+. Initially, we bound many of the user

actions, such as connecting joints and setting a joint to ground, to specific key presses. Later, we

assigned these actions to descriptive options in a context sensitive menu that is accessed by right-

clicking on a part of the linkage. The design and implementation of these creation methods are

discussed in Chapter 10.

22

5.6 System Design

 The system architecture of PMKS was used as a source of inspiration for PMKS+. To

accomplish this, we analyzed and mapped out the architecture in PMKS and looked for ways to

mirror it in our new design. We found that Silverlight’s “page component” system (Figure 5.1)

could be emulated through Angular’s own variation of components called “Angular

components” (Figure 5.2). This allowed us to maintain the overall structure of PMKS within

PMKS+ using the more modern Angular Framework.

Figure 5.1: System architecture of PMKS

23

Figure 5.2: System architecture of PMKS+

As functionality in the grid component expanded, our team began facing issues with

overlapping user input. It was difficult to distinguish when a left mouse click should allow a user

to drag a joint, and when it should be used to set a link between joints. To overcome this

obstacle, we refactored the code in the Grid Component so that it followed a branching sequence

of states to determine which action would get triggered on user input. By simplifying these

conditionals to a state the component was in, it would be easier to rearrange and remap actions to

user input. A diagram of this sequence can be seen below in Figure 5.3.

24

Figure 5.3: The state diagram for mouse interactions in the grid.

25

5.7 Simulator Class

 The Simulator Class is responsible for calculating kinematic data from user defined

joints, links, and forces. Our team used the structure and algorithms from the old PMKS to

construct a new simulator for PMKS+. We identified three major components of the simulator.

These were the position solver, joint traversal algorithm, and the simulation loop. The position

solver calculates a joint’s position, the joint traversal algorithm runs the position solver at each

joint, and the simulation loop runs the joint traversal algorithm for each time step in the

simulation. We divided these components between group members and coded them individually.

After each component was completed, they were joined together and connected to the rest of the

application. The details on each component can be found in Chapter 12.

5.8 Animation

 Creating animations in PMKS+ began with identifying the tools necessary to produce

proper linkage animations. Using feedback from the user evaluations, and the previous version as

a model, we determined aspects of the animations that were good and those that needed to be

improved.

Using the JavaScript Keyframes library, our team attempted to create CSS keyframe

animations to move the links in our system. This method of animation was unsuccessful due to

incompatibilities between the imported jQuery module and our Angular environment. There

were also discrepancies between CSS animations and the scalable vector graphics used in our

system. The initial process for creating these keyframes and the reasons for its incompatibility

are detailed in Section 13.1.

 Based on our findings from using the library, we decided that the best solution going

forward was to develop the functionality manually using TypeScript. This process involved

taking in coordinates of each point and relocating each SVG element accordingly. The rationale

behind this decision and its implementation are discussed in section 13.2.

5.9 Application Testing

 While developing each component, unit tests were written to test the current functionality

and as a safeguard for future changes. Once a component was completed, integration test cases

were written to ensure that the component was always sending and receiving the correct data.

26

 Once the three main components of our application (the linkage table, grid, and

mainpage) were completed and linked, more advanced test cases were employed. In these tests,

we not only tested if the application was working, but also if it would still work under unusual

actions. For example, even if degrees of freedom is 1, there are some instances where our

implementation of the simulator class cannot simulate linkage movement. In this case, PMKS+

should stop simulating and not attempt to animate.

5.10 PMKS+ User Evaluations

Following the completion of iteration five of our interface design (as described in Section

9.6) our team performed short user evaluations of PMKS+ to gather feedback and further

improve our design. We performed these evaluations with five subjects in separate, one-on-one

sessions. The details of these individual evaluations are discussed further in Section 15.1.

Upon completing iteration 6 of interface design, our team performed an additional user

evaluation in order to determine whether our application accomplished the task of improving on

the PMKS+ design. This evaluation mimicked the first evaluation described in Section 5.3 and

was performed with 19 users. The results were then compared with our findings from PMKS in

order to determine whether our design improved user satisfaction, accuracy, and understanding.

27

Chapter 6

Migration Options

In this section, we analyze the different options for migrating PMKS. First, we look into

the migration methods. Afterwards, we look into the platforms that support these methods.

6.1 Migration Methods

Our team identified 2 potential methods of migration for PMKS: porting and rewriting.

Porting the application was the most straightforward option. It meant recycling the

source code when possible and “tweaking” it into a working state. In order to port PMKS, we

needed to find tools that supported C#/XAML, the Silverlight programming languages. We also

needed to look into modern substitutes for any deprecated functionality that was directly

provided by the Silverlight framework.

Rewriting the code meant using a new coding language to recreate the software. This

option would be best if the migration platform did not offer adequate support for C#/XAML.

Rewriting the code offered two varying levels of redesign.

● A complete redesign of PMKS would call for a full evaluation of the PMKS source code.

This would involve analyzing the code and looking for areas of structural improvement.

In doing this, we could create a more organized and optimized software. This choice also

comes with significant risks. Poor design choices could require us to return to the

planning phase several times.

● A partial redesign of PMKS would be a mix between a complete redesign and a port. In

this option, we would rewrite the new PMKS in a modern language while keeping the

structure and flow of the original source code. This would allow us to focus our attention

on specific areas of the user experience rather than the underlying code. To accomplish

this, we would need to identify the components in PMKS and have a conversion plan for

each. Compared to a complete redesign, a partial redesign is much quicker. It is also less

prone to major structural issues since our team would have a working model of the

28

software to reference. However, this option would lack the opportunity for low-level

structural optimizations that a complete redesign would provide.

6.2 Migration Platforms

We looked into two potential platforms for migrating PMKS: a web app and a desktop

app. A desktop app is a piece of software hosted and accessed locally on a computer. Desktop

applications are typically limited by the hardware in which they run on. These applications must

be developed for particular operating systems and may have additional hardware requirements to

function properly (Bychkov, 2013). On the other hand, a web app is a piece of software that is

stored on a server and presented through a web browser (Pop, 2005). While both web and

desktop applications are used today, they have innate differences that are used to justify their use

in specific cases. We will discuss the advantages and disadvantages of a these two platforms.

Web App Advantages

● Accessibility: Web apps have the advantage of being quickly reachable via a link in a

web browser. Additionally, no additional installations are required to run HTML5 web

applications.

● Compatibility: Since web apps can be accessed through any web browser connected to

the internet, it is possible to target a wide variety of devices and operating systems

simultaneously.

Web App Disadvantages

● Language Restriction: Since the advent of HTML5, many web apps have conformed to

using HTML5/JavaScript as their front end language. Plugins like Silverlight, and Adobe

Flash that allowed the use of other programming languages are being deprecated in favor

of HTML5/JavaScript. Because of this, it has become very difficult to reuse legacy

Silverlight code in modern web apps.

● Computing Power: Due to the language restrictions defined above, computing power on

web apps is more limited than desktop alternatives. JavaScript has a very difficult time

leveraging hardware during computation intensive operations(Mozilla Contributors,

2019).

29

● Performance: A study comparing the performance of web applications and desktop

applications looked at the time for different tasks to complete (Pop, 2005). On average,

the tasks were 2.3 times slower on a web application then a desktop application.

● Connectivity: A web application relies on a constant connection to the Internet. Poor

connection or absence of one can cause performance issues (Avesta Group, 2015).

Desktop App Advantages

● Language Restriction: Desktop apps are supported by a wide range of languages

ranging from C to JavaScript. This makes porting a much more straightforward operation.

● Computing Power: Due to the support of low-level languages such as C, desktop apps

are better able to utilize local system hardware.

Desktop App Disadvantages

● Accessibility: Desktop apps require an installation process which may require

administrative rights (something that isn’t always an option on public computers). Once

installed, they live on the user’s computer and take up space. Updates must also be

distributed to each computer on which the program is installed (Avesta Group, 2015).

● Compatibility: Since desktop apps are run and managed locally, allowing for cross-

platform support requires tailoring development to each operating system’s standards.

6.3 Migration Tools

 In this section, we look into the specific tools available for desktop and web apps.

Web App Porting

1. CSHTML5 is a paid solution for developers wanting to continue coding web apps in C#.

This solution works as a plugin for Visual Studio and allows developers to code in C#

while taking advantage of the latest technology in HTML5. The software is available via

subscription for $119 per month or $1,999 for a perpetual license (C#/XAML for

HTML5, 2018).

2. Blazor is an experimental Microsoft framework aimed at allowing developers to code

client-side C# code for web apps. Unlike Silverlight, Blazor takes advantage of a new

30

web technology known as Web-Assembly. Web-Assembly is a low-level web language

that developers leverage to create web compilers for languages other than JavaScript.

While promising, Blazor is still in a very early, experimental phase. Microsoft does not

recommend using it in production-level apps (Roth, 2018).

Web app Rewriting

1. KnockoutJS: KnockoutJS is a JavaScript library used to create rich, client-side user

interfaces. It is structured using the Model-View-ViewModel design pattern to create a

development environment similar to Silverlight. After its release, it was used by many as

a tool for Silverlight migration (Sanderson, 2011). A major disadvantage to Knockout is

its future support. KnockoutJS was released in 2010 and hasn’t received and update since

March of 2017 (Best, 2017). The creator has moved on to other projects such as the

Blazor framework described above.

2. Angular: Angular is a Google framework used to structure code and build user

interfaces. Angular focuses on organization and the concept of component based

programming. This concept relies on splitting the application into different components

that work together. Like KnockoutJS, Angular is structured using the Model-View-

ViewModel design pattern (Darwin, 2017). Angular is best used in websites that contain

complex user interfaces with many interconnected components.

3. React: React is a Facebook developed framework used to create large applications where

data is constantly changing and needs to be updated on screen. React accomplishes this

by using web page templates rather than static text. This allows web pages to reused and

refitted with different content. Unlike Angular, React does not enforce a specific design

pattern. Instead, it leaves structure up to the developer. (Vaughn, 2013). React is best

used in websites that require displaying constantly changing data over templates.

4. VueJS: Vue is a framework that combines the templating of React with the component

based programming of Angular. It is designed to be lightweight and easy to learn. A

major risk to using to Vue is that it is new and not supported by a company (You, 2016).

31

Desktop App Porting

1. Universal Windows Platform (UWP): UWP is the standard platform for developing

apps on Windows 10. Microsoft plans to support UWP for the foreseeable future.

However, UWP is not supported on older Windows versions (7, 8), as well as competing

operating systems (Mac, Linux). UWP apps are distributed and updated through the

Windows store. UWP also provides support for utilizing the Mobilize.NET Silverlight

Bridge. This bridge is a Microsoft funded tool that scans source code and converts

Silverlight functionality to UWP (Satran, 2018).

2. Windows Presentation Foundation (WPF): Windows Presentation Foundation is the

older way of developing Windows apps. It supports all current Windows operating

systems since Windows XP. It is a superset of Silverlight, making a port to WPF much

more practical. WPF support is being phased out in favor of UWP (Warren, 2018).

Desktop App Rewriting

1. Both UWP and WPF provide the tools to rewrite PMKS. Since the platform supports C#

code, it would be possible to reuse portions of the existing code when needed. This

allows for an incremental redesign which would in turn help isolate the development of

components.

32

Chapter 7

Web App Justification

The first major decision that our team made was whether to create a desktop app or web

app. In order to choose between the two, we created a decision matrix, shown below in Table

5.2. This process was used to identify the advantages and disadvantages of each platform.

Through this process, we identified various criteria that were important for the development of

the application. Each criterion was given a weight to correlate to its level of importance. The

team then discussed the options after conducting preliminary research and assigned each type of

application a value for each criteria.

Development Criteria Weight Web App Web Total Desktop Desktop

Total

Ease of conversion 10 4 40 4 40

Optimization 4 3 12 4 16

User Convenience 6 5 30 3 18

Team Experience 8 4 32 4 32

Documentation 4 3 12 2 8

Total 126 114

Table 5.2: Decision matrix for comparing web and desktop applications

33

7.1 Rationale

The weight of each criterion of the decision matrix was assigned by its importance to the

goals of the project. The process of assigning scores for each criteria took into account the

benefits of each type of application relative to the criteria. The team deliberated together on each

value that was assigned. For the team experience criterion, each member rated their experience

with each type of application. The ratings were then averaged to produce a more accurate

evaluation of team experience.

Ease of conversion:

Conversion was the most important criterion because it could impact the time it takes to

complete the project as well as compatibility with multiple platforms. This criterion takes into

account the compatibility of each type of application with different operating systems and

hardware because ensuring compatibility can be more difficult for different options. A lower

value for this field considers the option more difficult for conversion while a higher value would

be easier to convert.

 Web App - PMKS is written using the C# language. We assigned a web app a value of 4

for ease of conversion to due to its poor compatibility with C#. Creating a web app would require

the code to be rewritten in another language, most likely JavaScript. On the other hand,

converting code from one language to another is still easier than having to write the application

from scratch. Since a web application runs through a browser and is not restricted to certain

hardware or operating system, the conversion would only involve creating one application.

 Desktop - We assigned a desktop app a value of 4 because the conversion process from

the current web-based application to a locally-run application would not require the least amount

of code to be rewritten. Most of the current C# code would not need to be rewritten. The XAML

files could also be reused but would need substitutions for any Silverlight dependencies.

However, the conversion process would be problematic when developing for multiple operating

34

systems. As a result, this process would have similar complexity to creating a web app, and

therefore a similar amount of work.

Optimization:

Optimization refers to the act of making an application run more efficiently and use fewer

resources. Considering the scope of the application, this is not a major priority. As a result, we

assigned a weight of 4 for this criteria.

Web App - We assigned the web app a 3 because web applications perform slower than

their desktop counterparts. This is due to the limitations of JavaScript when compared to lower

level languages such as C. The speed is also dependent on the strength of the internet connection.

Poor network connection (or having none at all) could can affect the use of the app.

Desktop - We gave the desktop app a value of 4 due to its ability to access more of a

computer’s resources. Desktop applications typically work faster to complete certain tasks and

the application is also not dependent on a network connection.

User Convenience:

User convenience refers to the application’s accessibility to end users and the difficulty to

update the application. This includes obtaining initial access to the application as well as keeping

it updated with future releases. User convenience is one of the main goals of our project which

justifies its weight of 6.

Web App - Web app received a 5 because of the convenience of accessing it through a

web browser. Developing an app with cross-browser support would allow any computer with an

Internet connection to access it. Users also would not have to worry about updating local files as

any updates would be applied upon reconnecting with the server. However, this also means that

the application cannot be run locally on a computer without Internet connection.

35

Desktop - We assigned desktop a 3 because of the downloading process required and the

difficulty of distribution. If made available to everyone, the desktop application would require an

initial download and local storage in order to use it. These local applications would also require

users to download updates when needed, making the program harder to maintain. However, one

benefit is that the application can be run without an Internet connection. In terms of providing

the application to the university, if the software is stored on WPI’s servers and requires

connection to the WPI VPN or use of a WPI computer, the ease of access becomes much lower.

Team Experience:

Team experience takes into account the skills that this project team can apply to both

types of applications. This includes experience with languages and with creating similar

applications. Since our experience can influence the quality of the final product, it was given a

weight of 8. In this section we take into account the experience of all team members and average

it to create an overall score.

Web App - Web app received a 4 because the team has some experience working with

them although not in the scale or context that this project requires. Three out of the four team

members have taken a course on web development and have completed various projects

including web applications. While the team does not have experience with C# and Silverlight

which are used in the current application, we are familiar with creating web applications

specifically using HTML5 and JavaScript.

Desktop - Desktop app received a 4 because all members of the team have worked on

creating desktop apps. We have completed a Software Engineering course which entailed

creating a complex desktop application using Java. However, the team does not have much

experience with the C# language which would be used for developing this type of application.

Therefore, the team experience rating for the desktop app was the same as the web app.

Documentation:

Proper documentation would aid our development when working with new languages and

frameworks. In many cases, documentation exists for very similar projects, as well as about

36

methods for migrating Silverlight applications. Although it can be useful, additional

documentation is not necessary as proper documentation exists for languages and libraries

associated with C#, Silverlight and the potential languages we might work with. Due to the

benefits that proper documentation can have give, the criterion received a weight of 4.

Web App - Many Silverlight conversion projects have been performed in the past few

years due to the lack of cross-browser support and the announcement of Silverlight’s

discontinuation. This has led to documentation, articles, and questions supporting further

conversion of these apps. This criteria received a value of 3 as a result.

Desktop - The lack of conversion projects from Silverlight web apps to desktop

applications resulted in less documentation. The documentation of C# still exists to help with

development. As a result, desktop app received a value of 2 in this category.

7.2 Results

After assigning each option a value for all criteria, they were multiplied by their

respective weights and summed. The overall score for the web app was 124, while the score for

the desktop app was 114. As a result, decided that the web app was more suitable for our project.

According to Table 5.2, the main advantage of the web app over the desktop app was user

convenience as a web app can be accessed using a web browser with internet connection.

37

Chapter 8

User Interface Evaluation

Improving the graphical user interface of PMKS first required our team to know how

well the current version performed. Although there are tests to evaluate an interface’s

performance through direct measurement, the best method of gathering feedback on a system is

through testing with subjects. Our team performed a total of three separate evaluations, the first

was performed using PMKS and occurred before development began. The second and third were

conducted using PMKS+ and were performed during development. These evaluations served as

an indicator of our users’ preferences and opinions about the system as well as how well we were

meeting their needs.

The evaluation process required that we create a procedure that could be used with

different versions of the system at various stages in development in order to objectively measure

the benefits of any changes made in design. We developed an evaluation strategy that detailed

the most important aspects to focus on when evaluating PMKS and PMKS+. This strategy was

based on relevant usability dimensions, the objectives we would accomplish by evaluating the

system, the metrics that would be collected and analyzed, and our target audience.

8.1 Evaluation Strategy

In order to properly direct our focus on improving the design of PMKS, our team

assigned the following weights to each usability dimension defined in Section 4.2.2. An

explanation for the attribution of each value follows the breakdown below.

● Effective - 25%

● Efficient - 20%

● Engaging - 10%

● Error Tolerant - 25%

● Easy to Learn - 20%

38

 Effectiveness refers to the application’s ability to complete its assigned job with few user

steps as errors. Our main objective when recreating PMKS was to create an application capable

of replacing the older version. PMKS+ should provide all required functionality to fulfil the

same tasks as PMKS and the conversion must function to the same standard.

Efficiency describes the speed with which users can accomplish their goals within a

system. The target audience of PMKS are engineering and robotics students who use the

application to complete class assignments. While not as important as its effectiveness, an

efficient application will prevent user frustration and aid in completing work quickly, a trait

desired by students.

Engaging applications serve to draw users in and entice them to use the service. PMKS

serves as a simulation that students will use because of their assigned work, regardless of the

appeal of the system. Our focus is on providing proper functionality and not on retaining users.

Error tolerance works conjointly with effectiveness and describes the system’s ability to

respond to user errors. Students must be expected to make mistakes when interacting with the

system and PMKS must be ready to handle these gracefully. In addition to preventing errors, the

system should fix problems users encounter or help users to restore the system to a working

state.

 Ease of learning is a significant dimension for any system that must cater to new users.

PMKS is currently used in multiple classes throughout the school year which requires many new

students to begin using the system. This leads to an audience of many beginners with very few

experts who continue to use the system. The interface must, therefore, be tailored to teaching

new users. This may include implementing tutorials, reducing the user’s short-term memory

needs, and pre-filling certain fields as examples.

Assigning values to these five dimensions aided our team in specifying the goals we

needed to accomplish to create a successful application. Our team sought to test each fully-

functional aspect of the PMKS interface from a semi-experienced user’s perspective. We also

39

attempted to establish a standard in linkage modeling by gathering feedback based on the

subjects’ use of other modeling software. These evaluations helped our team establish a starting

point and track our development progress toward completing the following objectives:

1. Allow users to effectively (accurately and with few/no errors) create complex linkages in

minimal time (i.e., create a four bar mechanism with DoF=1 in 2 minutes)

2. Minimize navigational errors when creating, deleting, exporting, and saving within

PMKS.

3. Identify aspects of other software, that PMKS is lacking, which may satisfy users more.

In order to evaluate our progress in accomplishing these three objectives, we assigned

subjects tasks related to those in the objectives to gather information based on associated metrics.

The questions were given in a questionnaire that served to gather data on the following metrics:

● Time taken

● Error rate

● Frequency of help

● Number of operations

● User satisfaction

These task evaluations required a pool of test subjects that reflected the target audience of

PMKS. Our team determined that the main demographic of PMKS are Mechanical Engineering

and Robotics Engineering students at Worcester Polytechnic Institute. Specifically, the

simulation sees the most use from the class Modeling and Analysis of Mechatronic Systems. The

subjects we chose for our evaluations were mechanical and robotics engineering majors enrolled

in the aforementioned class who had some experience with PMKS through the assigned

curriculum. This pool of subjects allowed our team to design toward the skill level of our target

audience and receive relevant feedback from the pertinent users themselves.

40

8.2 Evaluation Procedure

 The PMKS evaluation consisted of two different sessions. The first involved a large

group of subjects performing assigned tasks and completing a survey. The second involved one-

on-one sessions in which a proctor observed a single subject performing assigned tasks while

describing their thought process. Both evaluations followed the methods stated below and

collected information based on the metrics described above in the Evaluation Strategy (Section

8.1).

Session 1:

Subjects were seated at a computer and directed to a Google Form. Subjects answered the

questions found in the “Pre-Tasks Survey” section of this questionnaire. Once the subject

finished, they clicked “continue” in the form and moved on to the “Tasks” section. This section

of the form instructed students to complete two tasks using the software. First, subjects recreated

a linkage based on a given image, applied a force to it, and then exported the data. When finished

with each part, they answered the associated questions in the form. Next, subjects continued to

the second task which required them to open a preloaded file containing a diagram. They were

instructed to adjust the diagram within the software to match a provided image. When they

completed this task, the subjects moved on to the final section of the Google Form. They then

answered the “Post-Tasks Survey” questions and submitted the form when finished.

Session 2:

 Session 2 involved a one-on-one observation between a proctor and a test subject. The

session followed the same procedures as Session 1 and used the same online form for subject

responses. The session included new subjects that were not participants in Session 1. During this

session, subjects were asked to state their thought process out loud while working with the

software. Proctors recorded the subject’s remarks and actions on paper and intervened only if the

subject was unable to proceed with the given tasks.

The initial questions asked were used to gather data in order to measure the time taken

and error rate of users interacting with PMKS. This corresponds to the effectiveness, efficiency,

41

and error tolerance of the system. The questions that subjects answered while performing the

assigned tasks aimed to gather information about:

● Completion time

● Subject error rate

● Completion rate

Subjects ended by completing the Post-Tasks Survey. The questions in this survey aimed

to gather qualitative data on our target user’s preferences. This corresponds to the ease of

learning and engaging elements of the system. The survey asked for the following information:

● Subject thoughts

● Subject reactions (frustrations, impatience, etc.)

● Subject satisfaction

● Recommendations

The observers for the second session gathered data to establish the number of operations

a user made in the old system to accomplish tasks. This sections corresponds to gathering further

information on the effectiveness and efficiency of the system. Proctors that performed one-on-

one observations with subjects collected the following data in addition to the metrics above:

● Enacted steps

● Functionality frequency of use

● Subject’s remarks

8.3 Data Analysis

 We used the resulting data from these evaluations to form design choices for PMKS+

based on the metrics gathered. Users experienced a very high number of actions in order to

accomplish the most frequently used functionality of the system, creating a linkage. Based on

this finding, our new system must allow users to create links with a minimal number of steps.

We also found, based on the data shown in Figure 8.1, that there was not a correlation between

the users’ experience and the amount of time taken to complete the assigned tasks as we had

previously predicted to be true.

42

Figure 8.1: Subject experience with PMKS vs. time to complete the assigned task.

The majority of users also rated their usage of the system positively, giving an average of

4 out of 5 for their usage of the interface. They also rated their experience as on-par with other

modeling software. Figures 8.1 and 8.2 depict subject’s experience with other modeling software

and their comparison of that software to PMKS.

These findings aided our design of the PMKS+ interface during development. In

addition, these results were compared to evaluations performed on PMKS+ after iteration 6 of

development in order to evaluate the effectiveness of our changes. These comparisons and their

value are detailed in Chapter 15.

43

Figure 8.2: User experience with other simulation software.

Figure 8.3: User comparison of PMKS with other modeling software.

44

Chapter 9

Interface design

In this section, we describe the new interface design of PMKS+. First, we present

preliminary UI mockups developed before the initial interface evaluation of PMKS. Then, we

discuss the different iterations of the design, examine the changes made at every iteration, and

discuss the rationale for each choice and component.

9.1 Preliminary UI Mockups

Figures 9.1 and 9.2 show two UI mockups made during the preliminary stages of the

interface design. These mockups were made as a baseline to visualize design choices that we

would make in the future.

Figure 9.1: First mockup of the new interface design. Created using Balsamiq, a web app for

creating mockups

45

Figure 9.1 represents the first UI mockup that was developed for our project. We tried to

recreate the aesthetic of PMKS, but also add some new components such as buttons and a logo.

The toolbar, animation timeline and zoom were kept in the same location as was in PMKS in

order to be familiar for previous users.

Figure 9.2: Second mockup of the new interface design. Created using Wireframe.cc.

Figure 9.2 represents the second UI Mockup developed for our project. We added more

buttons for controlling the animation, moved the logo to the upper-right corner, changed the

toolbar to a static component at the left side of the screen, and added the toolbar tabs to provide

more space for functionality.

9.2 Iteration 1

Once development started, we began using HTML and CSS to design the interface. At

this stage, we prioritized implementing functionality over design. This led to our initial design

including very little styling (Figure 9.3).

46

Figure 9.3: First interface design iteration of PMKS+

 In this design, we used a bare minimum of color and effects. Cascading Style Sheets had

not been used at this iteration. It was composed of only 4 components, which are the header of

the page titled “PMKS”, the linkage input form, the grid, and the linkage table. At this iteration,

we did not have any rationale for the interface components and wanted to start adding

functionalities that existed in the previous PMKS application. During the next iteration and

onward, we made significant improvements to the styling and design of elements.

9.3 Iteration 2

 Figure 9.4 represents our second iteration of the interface. During this iteration, we added

more components and some initial styling. Below we describe the changes made in this iteration.

47

Figure 9.4: Second interface design iteration of PMKS+

Tabs Above the Grid:

These tabs were also a part of the original PMKS. We decided to implement a similar tab

system in PMKS+ in order to provide familiarity to previous users. These tabs acted as

placeholders for future content. The tabs were simply buttons that would make each of their

contents visible. The tabs added were:

○ Linkage input

○ Open file

○ Save configuration

○ Export Kinematic Data

○ Get as URL

View Linkage Table Button:

We decided to add a button to hide the linkage table (located at the bottom of the page). .

We felt that seeing the full size of the grid was crucial and having too many joints could make

this difficult. While we wanted this table to float on top of the grid (as was in PMKS), we were

unable to get it to work this iteration.

48

Styling the Tabs and Linkage Table:

During this iteration, we began working with CSS. We added some colouring to the tabs

and also added some visual feedback such as highlighting the tab you are currently in, as shown

in the tabs in Figure 9.4. This initial styling was added in order to establish an overall theme for

our application.

This iteration, we faced some issues with the design. The buttons that made tab content

visible would not hide their contents if they were clicked again. If a user wanted to hide the

contents of a tab, he would have to refresh the entire page. Another issue we faced was from tab

contents being of varying size. This caused certain elements of the interface to shift up and down

when cycling between them. This issue was solved in a following iteration.

9.4 Iteration 3

In Iteration 3, we decided to add more components and styling to give the interface a

theme. In this iteration, we made the most changes so far in order to give a “personality” to the

application.

Figure 9.5: Third interface design iteration of PMKS+

49

Figure 9.5 shows the many changes we made in the positioning of various elements.

These changes are described below:

Logo:

 In this iteration we decided to add a placeholder logo to the application. A logo is

considered one of the most recognizable elements when it comes to a web application since it

serves as it’s identity. When considering popular web pages such as Facebook, Youtube and

Twitter, any users can clearly recognize the logo wherever they see it. When a user sees the

PMKS logo, they can clearly understand what web application they are using. The logo was

taken from the original website of the previous PMKS software.

About, Help, and Report Buttons:

 The About, Help, and Report buttons did not exist in the original PMKS. While these

buttons did not function yet, we felt it was important to place them in order to get feedback on

position and spacing. All three buttons would either redirect you to a new page or provide new

functionalities to the application. The About page gives information on version history, authors,

and repository access. The Help page would provide help tools, for new users such as visual

feedback, step by step actions and a user manual. The Reports page would provide a form where

users can fill out bug reports. All three buttons are just placeholders for now and their

functionality has not been implemented at this iteration.

Toolbar Header and Burger Button:

We also made many changes to the toolbar this iteration. The dashed lines next to the

“Toolbar” title serves as a button to hide the tab system in order to view the grid underneath.

Toolbar:

The toolbar was moved this iteration and placed above the grid. When clicking on a tab,

the contents appear floating above the grid. This was done to solve the issue of elements shifting

down when tabs were changed.

50

Linkage table:

 The linkage table’s position was changed to be on top of the grid and made to be always

visible. Users may view data relating to the links and joints that they input directly without

needing to take extra actions.

Get DoF Button:

We also added a “Get DOF” (Degrees of Freedom) button in this iteration. This button

displays the degrees of freedom of the current linkage mechanism. The button was placed above

the linkage table until we could find a better position for it.

Theme Colors

We also added additional coloring for the interface components. The color choices came

from the PMKS logo. We found that web pages such as Facebook and Youtube, style their

default coloring theme around the colors of their logo.

X and Y Axis

We added an X and a Y axis on the grid to help the user navigate the coordinate system

more easily. This axis was centered to match a Cartesian coordinate system.

9.5 Iteration 4

 During iteration four, we solidified many of our design choices, added more components,

and added other functions to improve user interaction.

51

Figure 9.5: Fourth interface design iteration of PMKS+

A major focus during this iteration was the proximity of elements, an interface design

principle we discussed in Chapter 4.1 Section B. Items in close proximity to one another should

have related functionality. The following discusses the specific changes made to each element:

Toolbar:

 Toolbar has been moved to the upper left side of the screen and is no longer attached to

the grid. We made this decision because similar applications such as SolidWorks and AutoCAD

include toolbars at the top of the screen. A user from those applications should expect a toolbar

to be placed at that position so we followed those expectations as closely as possible. The style

of the toolbars has also been changed in order to separate them from other buttons that exist in

the application.

Logo:

 In this iteration, we also considered the positioning of the logo. A logo placed in the top

center of the screen acts as a title, implying that the user will spend the majority of their time

reading while on the page. This style is similar to a newspaper and can be seen on news sites

such as the New York Times and the Wall Street Journal. A logo placed to the top-right or top-

left implies that the webpage is focused more on interactions. Examples of this include Youtube

52

and Facebook. The logo was placed in the top left based on cultural expectations of websites. In

the west, information is read from left to right and other modeling software follow the practice of

keeping their logo in the top left and in-line with the highest-level menu, which in our case is the

toolbar. We also added a border to the logo for emphasis, but reduced its size so it wouldn’t

occupy too much space.

About, Help, and Report Buttons:

These buttons had their text replaced with icons. We felt that easily distinguishable icons

could be more visually appealing and help to not overwhelm the user with too much text. The

icons used were found at the Material Design website.

Tables:

 The table showing all joint information now occupied the left side of the screen and

stretched from the top menu to the timeline on the bottom. This design mimics Solidworks’ use

of a side menu that holds important functionality and information. Users will be able to view

information about the grid in the closest proximity to it as possible. Tabs were added to the table

to cycle it between joints, links, and forces. The additional tables were added to provide more

information about the linkage system created by the user.

Animation Timeline:

 The timeline slider, which was previously located on the right side of the screen, was

moved to the bottom. This was done to mimic a chronological timeline, which is commonly read

left to right. . The default style was used initially and changed during future iterations. At this

stage it provided no functionality.

Animation Buttons:

 We also added buttons that would play or stop linkage animation. We decided that it

would help users control the animation itself, in case they want to make changes dynamically as

the animation plays.

53

DOF Button

 The DOF button was placed in the bottom left alongside the timeline because the two

correspond to similar functionality: the animation of the system. A linkage can only animate if its

degrees of freedom is equal to 1, therefore it made sense to put the DOF button next to the

animation timeline. . The DOF button was displayed through text because we had difficulty

representing its functionality through an icon.

Tooltips

 This iteration, we added tooltips, a textual hint that appears when hovering over a button.

These were added to help users understand the functionality behind a button without having to

click on it. Since we added the tooltips, some words from the tabs have been reduce or removed

in order to, as mentioned above, not overwhelm the user with too much text.

Figure 9.6: An example of a tooltip

9.5 Iteration 5

Iteration 5 was the next large update during our work in C-Term. Many new components

were added. Previous components were updated or changed to better scale and improve their

functionality. This iteration lasted longer than the previous ones, so the progress made was more

significant than any previous iterations.

As can be seen in Figure 9.6, the overall theme of the application has been changed and

updated to match our “activity-driven” design.

54

Figure 9.6: Fifth interface design iteration of PMKS+

Our main focus in Iteration 5 was to scale the components better and update the design

even further than the previous iterations. To achieve this, we needed to slightly redesign all the

components on the user interface to function and scale better. We shall go into further detail as to

the steps that were taken and the components that were changed and added.

Logo:

 The logo was slightly enlarged and we increased the border around it in order to

distinguish it better. Since the name of the application was changed to PMKS+, a new logo

needed to be designed. For this iteration we kept the same one. Having a logo return users to a

home page is a common practice and seen in websites such as Youtube, Facebook, and Twitter.

Since PMKS+ is a single-page application, clicking the logo should therefore refresh the page.

We decided to add this functionality to PMKS+ to cater to these user expectations.

About, Help and Report Buttons:

 The About, Help and Report buttons were also changed again. The black color and

pictures were really confusing and did not match the overall theme of the website so we decide

to revert to our previous design with words and neutral colors (Figure 9.7).

55

Figure 9.7: About, Help and Report buttons

Toolbar:

 Scaling and positioning the toolbar was one the biggest issues we had in previous

iterations. Besides the overall design, we had to reconsider the way it was implemented in the

code. Before Iteration 5, the toolbar were just buttons to hide or show their contents. The buttons

would just change the display of these components into none or block. This was a simple and a

fast implementation but it turned out to be hard to scale and even harder to position. We decided

to disregard this implementation and use the built-in Material Tabs in the Angular framework.

These new tabs performed better in terms of scalability and positioning, and they even had built

in transition animations that made the toolbar feel better when interacting with it. This update to

the toolbar also made us think about the “hide” functionality of the tabs. Looking at other toolbar

designs from software such as Microsoft Word, we came into the conclusion that the toolbar

should always be visible and that the tabs should change between the contents of the toolbar. In

terms of style changes, the toolbars tabs were redesigned to feel more like actual tabs. We added

more visual feedback such as changes to colors and depth that better indicate to the user which

tab is active, which tabs can be clicked, and how many tabs there are. For this iteration, the

toolbar components are as follows:

● Open File tab

Tab where a user can open a previous saved file (Figure 9.8).

Figure 9.8: Open file tab

56

● Save File tab

Tab where a user can save the current file (Figure 9.9).

Figure 9.9: Save file tab

● Analysis tab

Tab where a user can access the different analyses that can be produced (Figure 9.10).

Figure 9.10: Analysis tab

● Get URL tab

Tab where a user can get and copy the URL link of the current page (Figure 9.11).

Figure 9.11: Get URL tab

● Settings tab

Tab where a user can adjust different settings for the application. For now there is only

one setting that can adjust the units size (Figure 9.12).

Figure 9.12: Settings tab

Loading animation screen:

 In this iteration, we also added a loading screen to provide more visual feedback to the

user (Figure 9.13). The loading screen is a circle spinner that has an animation effect to visualise

loading state. The inspiration was drawn from other loading animations that exist in the

Windows operating system and in other websites such as YouTube.

57

Figure 9.13: Loading screen spinner

DOF textbox:

 In this iteration, the DOF button was changed into a text box. This change was done

because we had recently implemented an automatic DOF calculation each time a user modified

the linkage. PMKS had this feature and we felt it should be in PMKS+ as well.

Animation Buttons:

 The animation buttons were changed to match the theme of the application. This was

done by making the play and stop animation buttons round and give them a color similar to the

logo. The timeline was left unchanged this iteration.

Location textbox:

 Since majority of interactions with the grid were to be done with the cursor, we felt it

would help to display the current coordinates of the cursor at the bottom right of the grid. Our

goal with this was to improve cursor precision when drawing linkages on the grid.

Grid :

 The grid background was changed in this iteration to match the theme of an actual grid.

The background before was just dots. For this iteration we added grid lines.

58

Table:

 The table was moved slightly further away from the toolbar to separate it since their

functionalities are different. The tab system implemented in the toolbar was also implemented

here. In this iteration, only the Joints table was implemented because the other two tables didn’t

have functionality yet. The previous buttons of “clear table” and “refresh joints” were also

removed. The refresh joints buttons was removed because joint synchronization between the grid

and table was now done automatically. The buttons that remained, which are “add row”, “delete

row” and “update” were also changed to match the theme of the grid buttons. They were made

into rounds buttons with colors that matched the theme and the logo of the application.

Furthermore, the table was changed to a more of a minimalistic design without the color that it

had before. The font style and sizes were also changed to increase readability.

 Following this iteration, we decided that the user interface design was in a good state and

a more detailed design critique would be necessary for further improvements. To collect such

feedback, we conducted a design critique session with our advisors. During this session, we

presented our design to our advisors and went through all the elements of the design one by one.

The session produced valuable feedback that was implemented in Iteration 6 of the user

interface.

9.5 Iteration 6

 This iteration was done after the design critique session in order to further improve the

design based on the feedback our team received. After looking back at the basic design rules, we

re-examined each element of the interface to make sure they were properly placed and aligned.

Iteration 6 was smaller in duration compared to Iteration 5, but resulted in big improvements

overall as shown in Figure 9.14.

59

Figure 9.14: Sixth interface design iteration of PMKS+

 In this iteration, we redesigned many elements and also added some new elements that

we will describe below. Our goal was to change the overall theme once again to match our

project standards and our previously established design rules. We also used this iteration to

conduct a user evaluation, as described in Chapter 15. In the following subsections, we go into

more detail about all the elements that were changed or added.

Logo

 Since our new application is called PMKS+, we felt it necessary to replace the old logo.

The new one was still a placeholder and subject to change in a future iteration.

Buttons

 The theme of all buttons were changed once again. We wanted to make sure that users

could tell them apart from the tabs so we decided to give them their own design. All buttons

were given rounded corners, visual feedback when hovering and clicking, a new font and new

size. The only buttons that were different from these were the animation controls.

60

Figure 9.15: The new button design

File tab

 The previous open file and save file tabs on the toolbar were merged in order to create a

new tab called “File”. After some discussion, we decided to merge the “Open File” and “Save

File” tabs under a single, unified tab on the toolbar. These buttons had similar functionality and

could therefore be grouped to conserve space. We also added buttons to open and save linkage

files under this tab. When clicked, these buttons would bring up the native file manager

application on the user’s computer.

Figure 9.16: The new file tab

Analysis Tab

 In this iteration, we added a pop-up window to display further information about the

current linkage. This information appears when clicking on one of four buttons in the analysis

tab. Figure 9.17 shows the contents of the tab. Each button corresponds to a different type of

evaluation: static, dynamic, stress, and kinematic. In this iteration, these windows were just

placeholders and did not yet display information about the current linkage. As shown in Figure

9.18, the popup windows are tables with analysis information. They also include buttons that

would allow a user to export the data in the tables. When an analysis window is visible, the rest

of the page elements cannot be accessed and are greyed out until a user decides to close it by

clicking on the close button at the top right of the page.

Figure 9.17: The analysis tab

61

Figure 9.18: The analysis popup window

Table

 The tabs in the table were also resized. This was done to differentiate them from the

toolbar tabs since they each serve a different purpose. The Links and Forces tabs were greyed out

and disabled because they had no functionality at this iteration and we did not want them confuse

users during user evaluations. The previous buttons that existed in the table, besides the add joint

button, were also disabled and removed due to bugs in their functionality.

Animation Buttons

 The colors of the animation buttons were changed to a neutral grey. Feedback received

before the evaluation indicated that their colors were difficult to distinguish on screen. Thus, we

changed them to grey color to blend in with the other elements lining the bottom of the window.

62

Grid Control Buttons

 In this iteration, we also added new buttons for zooming and re-centering. These buttons

were placed at the bottom right of the grid because they relate to panning and zooming while the

other nearby buttons control animation. A user can now control the zooming of the grid with the

plus and minus buttons and can re-center the grid by clicking on the home button.

Grid

 The grid lines now properly correspond with the coordinates of the grid, making the grid

a more accurate representation of position compared to previous iterations. The axis lines were

also given a bigger stroke width to differentiate them from grid lines.

 In addition, we also worked on improving the alignment of elements and fixing visual

bugs that we found in previous iterations. We made sure that all elements were aligned properly

in their groups and that their sizes were appropriate.

9.5 Iteration 7

 This iteration was the final iteration of the user interface design. It was done after the

PMKS+ user evaluations. As can be seen in Figure 9.19, not many changes were made since

users were quite satisfied with the changes to the interface. More details about the evaluation

results can be found in Chapter 15. At this point, we were finished with the user interface

iterations and no further changes were made to the user interface in this MQP.

63

Figure 9.19: Final interface design iteration of PMKS+

In this iteration, we mostly applied feedback received from the PMKS+ user evaluations.

These changes included alignment issues, font color, button color and some extra elements.

Detail about each change are described in the following subsections.

Logo

 In this iteration we changed the logo to its final design. We decided to change it since our

previous logo was not obvious to the user in the application and did not match the design of the

application.

Grid Buttons

 The buttons were changed slightly to match in size and color. We also added a new

button that clears the grid without refreshing the page.

Animation Buttons

 We added some colors to the animation play and pause buttons. Based on feedback we

received, the grey color was implying that the buttons were disabled and blending in with the rest

64

of the grid elements. Thus, we changed the colors to green and red to that imply that they are

usable.

Animation Position

 According to feedback from our advisors, it was not clear which animation position a

user was currently at in the analysis tab. We decided to add a new text box next to the animation

timeline to show the current angle of the animation. With this, users can always see in which

animation position they are at and can select it in the analysis window.

65

Chapter 10

Linkage Creation Methods

In this section, we describe the methods of creating linkages, their individual

components, and the rationale for their inclusion in PMKS+.

10.1 Linkage Table

 The linkage table contains three separate tabs for creating elements. Links and joints can

be created through their respective tabs by appending a new row and manually specifying the

parameters for new elements. Forces are applied to an existing link through their own tab. Using

the linkage table is the most precise way to create and position elements because it requires exact

x and y values. Adding joints through the linkage table requires a minimum of six actions, one to

add the row, and one for each required linkage attribute (id, type, x, y, and connected link).

Figure 9.7: Adding a new joint via the linkage table.

We decided to incorporate this linkage creation method in PMKS+. It added a level of

precision to linkage creation that was otherwise not possible. Previous users of PMKS should

also find it as the most familiar method when migrating to the new system. Since it does not

conflict with any other functionality, there is low risk that the linkage table method will

compromise the usage of other methods.

66

10.2 Grid

The grid refers to the section of the interface that displays linkages on a cartesian

coordinate plane. Creating joints, links, and forces directly on the grid is a new feature provided

through PMKS+. This system was designed to mimic the actions performed when drawing a link

by hand. As such, it should feel natural and intuitive to the user.

We initially prototyped three methods of linkage creation: Click-Drag, Click-Click-

Connect, and Click-Click. In Click-Drag, a user holds down the cursor at the first endpoint,

moves it to the location of the second other endpoint, and releases. In Click-Click-Connect, the

user clicks to create individual, unlinked joints. These joints are then manually linked by the

user. In Click-Click, users click once to create a joint and again to specify the other. The joints

are linked automatically.

Due to technical constraints at the time, it was not possible to have all three methods run

simultaneously. Instead, we designated one as the default method, and the others as toggleable

options in the user settings. We crafted a list of criteria to rank each method and determine a

default. The criteria are:

● Hand Drawing Similarity

This refers to the method's similarity to drawing a link by hand. A method that scores

high here should feel natural and incorporate the actual hand motions of drawing a link

by hand.

● Efficiency

Creating linkages is the primary action a user must perform in PMKS+. Reducing the

number of actions this takes is essential in creating an alternative to the linkage table.

● Trackpad Usability

This refers to the method’s usability using laptop trackpads. An advantage PMKS+ has as

a web app is that it can be run on any modern computer in any location. Therefore, any

actions the user must perform should feel natural and smooth on both laptop trackpads

and with a mouse.

Using these criteria, we evaluated each of these linkage creation methods.

67

Click-Drag:

In Click-Drag, a user holds down the cursor at the first endpoint, moves it to the location

of the second endpoint, and releases.

Score:

● Similarity to hand-drawing: 5/5

Click-Drag was designed to mimic the actions of drawing a line on paper. When hand

drawing a line, the pencil is held down on one endpoint and dragged towards the other,

where it is released. This is similar to Click-Drag, where the cursor is held down from

one endpoint to the other.

● Efficiency: 5/5

Click-Drag is accomplished by a single click to create both joints and a mouse movement

to specify the distance between them.

● Trackpad Usage: 2/5

A drawback of Click-Drag is that long links need to be dragged long distances. Since

laptop trackpads are confined to a small range of motion, it is difficult and sometimes

impossible to create these links.

Final Score: 12/15

Click-Click-Connect:

 In Click-Click-Connect, links are created by creating two joints and linking them. This

method removing dragging so that it could be more usable on trackpad devices.

Score:

● Similarity to hand-drawing: 2/5

Click-Click-Connect is very disconnected from hand drawing links. Creating two points

and connecting them is not as natural and efficient as dragging from one point the other.

● Efficiency: 2/5

A problem with Click-Click-Connect is that it requires a minimum of 4 actions to

complete. Two clicks to create the joints, a mouse movement to specify the distance, and

an action to manually link the two together.

● Trackpad Usage: 5/5

68

Click-Click-Connect does not involve holding and dragging the cursor. This means that

trackpad users can easily place the second joint anywhere on screen.

Final Score: 9/15

Click-Click:

In Click-Click linkage creation, users click once to create a joint and again to specify the

other. The process automatically links the two joints, bringing the total number of clicks down to

two. Click-Click behaves similar to drawing, just without the obstacle of dragging in order to

help trackpad users. The process is detailed in Figure 10.2.

Score:

● Similarity to hand-drawing: 4/5

Click-Click functions similar to Click-Drag, just with the drag being replaced by a second

click. While the actions are similar, it does lack the feeling of dragging a pencil across a

paper.

● Efficiency: 4/5

Click-Click requires three actions to complete. One click for each joint and one mouse

move to specify the distance between them. The fourth action of linking is done

automatically after the second click. These three steps are illustrated in Figure 10.2

below.

● Trackpad Usage: 5/5

Click-Click requires no dragging, meaning trackpad users can comfortably place the

second joint anywhere on screen.

Final Score: 13/15

69

First Click Move Cursor Second Click

Figure 10.2: The three stages of creating a link in Click-Click

10.3 Final Decision

While Click-Drag was difficult to use on a trackpad, we did find it to be the fastest and

most natural way to drag links while using a mouse. Therefore, we decided to preserve its code

so that it could be used as a toggleable alternative in the future.

Click-Click-Connect scored low in all areas except trackpad usage. The disconnect from

hand drawing and the efficiency required made it a very unnatural method. We also discovered

that Click-Click-Connect introduced another problem outside of the three criteria being

measured. By using Click-Click-Connect, it was possible for the user to leave unlinked joints in

grid. This is a critical flaw because the kinematic calculations performed in PMKS+ assume that

the system is comprised of only a single linkage. Such an error could lead to incorrect

calculations being performed. Due to these flaws, we felt it was necessary to reject Click-Click-

Connect completely.

We decided that Click-Click should be the default option in PMKS+ because it proved to

be the most usable linkage creation method that worked on both mouse and trackpad. While

Click-Drag performed slightly better in efficiency and hand drawing similarity, we felt it was

more important to set the method that was most usable on all devices to default.

70

10.4 Context Menu

In this section, we describe the context sensitive menu, a feature in PMKS+ that allows

users to perform additional actions from a right mouse button click. The context menu in

PMKS+ extends a user’s interactivity with the Grid Component. This allows users to edit joint

and link attributes directly from the grid. The action can be performed in as few as two clicks

(one to open the menu and another to select the action).

10.4.1 Advantages

We outlined three advantages that a context menu brings.

● Straightforward. The context menu is the most direct way to modify elements of a

linkage in the grid. Rather than searching for the joint or link in the linkage table, a user

can right click on it in the grid and modify its properties directly.

● Descriptive. The context menu textually lists out features it can perform. It is easy for a

user to understand what actions are available to them and what each action does.

● Intuitive. Many web and desktop interfaces such as Google Chrome and the Windows

home screen incorporate context menus. Users expect such functionality to exist on a

right mouse click.

10.4.2 Disadvantages

● Speed. Because each interaction takes at least two clicks, repetitive tasks can become

tedious. Users will have to click at least twice to complete each action. Hotkeys are much

better for performing frequent tasks. Hotkeys can be held down meaning that the

minimum number of clicks required is only once per task.

● Simplicity. Features provided through the context menu should be very simple. Complex

actions such as setting a joint’s precise x and y coordinates are better performed in the

linkage table.

10.4.3 Activities Bound to the Context Menu

Based on the strengths and weaknesses outlined above, we decided to bind the following

actions to the context menu:

71

● Creating Joints: User feedback on the Click-Click linkage creation method indicated

that users were unintentionally clicking on the screen and creating links. By binding link

creation to a context menu, we are minimizing this error by requiring them to confirm the

action through a click. A downside to this is that link creation will require two more

clicks than what was previously possible. We felt that this change was necessary to

prevent accidental link creation. It also frees up the mouse click to perform other features

such as screen panning.

● Deleting Joints: Deleting a joint is a one time action. All the data required for the

deletion process can be gathered by the initial right-click on a joint.

● Ground/Input Toggle: Setting a joint as a ground or input joint is a simple toggle action.

Since there can be many grounded joints in a linkage, a hotkey could also exist as an

alternative for this action.

● Linking Joints: The context menu is able to trigger only the start of the linking state. The

action of selecting a second joint to link to follows the “Click-Click” style for connecting

joints.

● Adding Forces: Adding a force requires 2 clicks. The first click sets its coordinates and

the second one sets its magnitude and direction. Similar to linking joints, the context

menu is used to trigger the first action. .

Right clicking on the grid

itself

Right clicking on a joint Right clicking on a link

Figure 10.3: The context menu when interacting with three different objects in the grid.

72

Chapter 11

System Design

11.1 Analysis of Existing Application

In this section, we examine the design and structure of the PMKS source code and its

relation to the structure of PMKS+.

11.1.1 What is Microsoft Silverlight?

 PMKS was developed using the Microsoft Silverlight framework. Silverlight is a

deprecated web framework used to develop internet applications. Silverlight applications are

accessed via an internet browser and enabled through a plugin. Silverlight leverages C# and

XAML to provide an alternative to the standard JavaScript and HTML web development

environment. XAML allows for rich media visuals and C# enables powerful, type-enforced

computations. Silverlight applications are structured around the Model-View-ViewModel design

pattern. This pattern separates user interface (View) and data (Model) while still allowing for

intercommunication via a translation entity (ViewModel) (Stieglitz, 2017).

11.1.2 Code Structure

The PMKS Source code is structured around three components. The User Interface,

Simulator, and Model. Each of these components are called through the MainPage class in

PMKS (As seen in Figure 11.1).

● The User Interface (UI) refers to the visuals displayed on screen to the user. This

includes the coordinate grid, animation timeline, and any other user input fields.

● The Simulator is a set of mathematical functions used to calculate degrees of freedom,

movement curves, and all other kinematic analysis. These functions are all abstracted into

a single Simulator Object that PMKS can call upon when necessary.

● The Model refers to the data structures used to store all user defined data. This includes

the forces, joints, links and materials of the linkage.

73

Figure 11.1: A diagram showing the three main components in PMKS and their parental relationship

towards MainPage class.

11.1.3 Code Flow

Whenever the set of on-screen linkages are modified, PMKS will execute a set of steps to

calculate and reanimate the linkages. These steps are:

1. Save the new data to the Model

2. Call the Simulator object to check the degrees of freedom of the linkage.

3. If it returns 1, ask the simulator to calculate the full movement of the linkages and

calculate the curves each joint moves along. Else, end the function and draw the static

linkages on screen.

4. Draw the movement curves as lines on the coordinate grid (UI).

5. Animate the linkages by moving them along the movement curves.

11.2 New System Architecture

 In this section we describe the system architecture behind the PMKS+ application.

11.2.1 Design Pattern

PMKS+ follows the Model-View-Controller architectural design pattern, In Model-View

Controller, software components are organized by functionality. Components in the View

directly control what is shown on screen to the user. These include the Grid, LinkageTable,

74

Toolbar and AnimationBar components. Components in the Model are responsible for storing

persistent data and logic in the program. The Model is represented by the Simulator Class, which

stores the linkage data and runs all kinematic calculations. Components in the Controller mediate

the flow of data between the model and all other components. The MainPage also acts as this

controller by using a 2-way data binding, (a data synchronization system provided by the

Angular Framework), to synchronize the array of joints and linkages between components. This

means that any time the user modifies the linkage in one component, the change will

immediately be reflected in all other components. This is especially important when

synchronizing data between the LinkageTable and Grid component.

Figure 11.2: PMKS+ Component Diagram. Components are grouped by their functionality in the Model-

View-Controller design pattern

11.2.2 Primary Classes

There are two main data types stored in PMKS+: Joints and Links. Every instance of

these classes created by the user are defined in the MainPage component via an array.

75

● A Joint represents a single point of connection between two or more links. It

contains the following five attributes:

○ Location: x and y coordinates

○ Links: A list of different links the joint is connected to.

○ Type: The type of joint (revolute, prismatic, pin-in-slot, or gear).

○ Ground: A boolean that indicates whether the joint is connected to the

grounded link.

○ SVG: A reference to the graphic image of the Joint on screen.

● A Link represents the connection of two or more Joints. It contains the following

two attributes:

○ Joints: An array representing the number of joints that make up the link.

○ SVG: A reference to the graphic image of the Link on screen.

11.3 Grid Component States

Overlapping user input binds became an issue as functionality in the Grid Component

expanded. An example of this is the way the left mouse button interacts with joints. When a user

presses the left mouse button down on a joint, they can drag it across the grid to change its

location. However, if the user had started creating a link (with click-click link creation), pressing

on a joint would instead create a link between the joint being created and the joint clicked on.

Complex user input conditions such as these needed to be more readable and organized in the

code. And since more functionality was going to be added, it would only become more difficult

to track which actions were bound to which button and if any new actions would cause overlap.

To overcome this obstacle, the code in the grid component was refactored to incorporate

states. Each state would limit the amount of functionality a user could perform at a given time,

making it difficult for overlapping actions to exist. To model this, we created a state diagram

(figure 11.4) and mapped out each potential state and the actions it takes to get there.

11.3.1 Benefit to the Developers

When a user interacts with the grid, our new design checks which state the program is in

and runs the corresponding function. For instance, if a user clicks on a joint, the program will

check the state. If it is in the waiting state, the program will run the function to begin moving the

76

joint. If it is in the linking state, the program will instead run the function to link the clicked on

joint with the previously selected joint. This refactor improved the readability of our code and

also helped ensure that we were not developing features with overlapping user input.

77

Figure 11.3: The state component diagram for the Grid Component.

78

11.3.2 Benefit to the User

States are represented by visual indicators to the user. These indicators help the user

understand what functionality is available to them without exposing the inner workings of the

code. For example, the linking state is represented by a thin preview line connecting the user’s

mouse cursor to the joint they are linking from. This line signals to the user that their next action

will be connected to the joint on the other end of the preview line. Figure 11.4 demonstrates this

signal as shown to the user.

The link creation state. It is

indicated by a thin black

preview line and an opaque

starting joint.

The linking state. It is

indicated by a thin blue

preview line and blue

highlights around joints that

are going to be linked.

The moving state. It is

indicated by a red outline

around the joints currently

being moved.

Figure 11.4: Visual hints of states for users.

79

Chapter 12

Simulator Class

PMKS utilizes a standalone Simulator Class to perform kinematic analysis. Such analysis

includes finding the degrees of freedom and the full movement of linkages. Once calculated,

these analysis values are sent to the PMKS+ interface for linkage animation, or directly to the

user for manual kinematic analysis.

12.1 Simulation Loop

The simulation loop is the main function executing during linkage movement

calculations. A properly formed linkage rotates links either partially or fully around each

grounded joint in the system. The simulation loop runs an algorithm that determines the position

of each joint every 16.7 milliseconds (each of these millisecond intervals is referred to as a time

step) during its motion and saves its output in a Time-Sorted List object. By rendering the

linkage’s position every 16.7 milliseconds we were able to run the linkage animations at 60 FPS.

Figure 12.1: Object Diagram for the Time-Sorted List.

A Time-Sorted List is a matrix comprised of rows of positional data. Each row (referred

to as a TSLRow in Figure 12.1) contains a time step and a list of each joint in the linkage

(referred to as a TSLJoint). Each TSLJoint stores a joint’s id, position, velocity, and acceleration

at the current time step. Depending on the range of a linkage, a Time-Sorted List may contain 1

to 360 TSLRows. This represents the 360 time-steps required to calculate a full 360o rotation.

80

Figure 12.2: Activity diagram for the simulator loop.

Input linkage rotates around

the grounded input.

Able to calculate joint

positions at each time step.

Input linkage has rotated a

full 360° and calculated joint

positions at each increment.

Figure 12.3: Scenario A for simulator termination.

81

Input linkage rotates around

the grounded input.

Linkage is unable to move

further in the current

direction.

Simulation reverses until

reaching the starting position.

Figure 12.4: Scenario B for simulator termination.

For each time step of the input linkage, the Simulator will attempt to calculate all joint

positions. Figure 12.2 details the activity of the simulator at each time step. If calculations were

successful, it will save the locations of each joint to the output matrix, increment the angle

rotation, and continue. The simulation will terminate when either:

A: The input linkage has made a full 360° rotation. (Figure 12.3)

B: An input linkage is unable to rotate any further. (Figure 12.4)

In the former case, the simulation will end because all joint positions have been

calculated. For the latter, the linkage cannot go further and can only move backwards. In order to

simulate a full range of motion, the simulation will reverse direction until it reaches its starting

position. Since the new joint positions will be the same as they were going forwards (only in

reversed order), the time sorted list will append a reversed copy of itself.

12.2 Joint Traversal Algorithm

 To calculate each joint’s position, the Simulator visits every joint in the linkage and

attempts to derive their new position using one of four techniques.

1. Grounded joints never move and are always located at their starting position.

2. Joints connected to the input joint are solved by rotating themselves one degree around

the input.

82

3. Joints connected to at least two known joints can be solved using circle intersection

(described in Section 12.3)

4. Joints not connected to two known joints can be solved using the non-dyadic position

solver. This equation was included in PMKS but was not implemented in PMKS+ during

the course of this project.

Joint Traversal Steps

Before running through the algorithm, we move each joint into the unknown joint array.

This array keeps track of which joints have yet to be solved. Since grounded joints do not move,

we can begin by moving all grounded joints out of this array and setting their current position to

their starting position. Next, we examine each joint connected to the grounded input. The new

positions of these joints can be solved by rotating their position one degree around the input.

Now we begin looking at the remaining unknown joints. If a joint is connected to two known

joints, it can be solved using the circle intersection solver. If not, it is moved into a new array for

ignored joints. Once all unknown joints are set as solved or ignored, we run the algorithm again

on the ignored joints. This loop will continue running as long as a single joint is able to be solved

at each time step. This process is outlined in Figure 12.5.

83

Figure 12.5: Joint Traversal Activity Diagram

Figures 12.6 a-b demonstrate the process using a 6-bar linkage with multiple grounded

and ungrounded joints. If the position of any joints cannot be determined during a time step, a

special, “non-dyadic” solver is used to find the remaining joints.. In PMKS, this solver was very

slow and computation intensive, so it is only run if the joints could not be found via the other

methods. Due to the complexity of this solver, it deferred as a task for future developers of

PMKS+.

84

1. All grounded joints are set

as known.

2. All joints connected to the

grounded input are solved by

rotating their position one

degree.

3. Joint C is not connected to

two known joints so it is

ignored.

Figure 12.6-a: Example of the Joint Traversal Algorithm on a 6-bar linkage.

4. Joint D is connected to

known Joints B and E. It is

solved using the Circle

Intersection Solver.

5. Joint F is not connected to

two known joints so it is

ignored.

6. All joints have been solved

or ignored. Recheck ignored

joints for solvability.

Figure 12.6-b: Example of the Joint Traversal Algorithm on a 6-bar linkage.

85

7. Ignored joint C is now

connected to two known

joints (B and D). It can be

solved using the Circle

Intersection Solver.

8. Ignored Joint F is now

connected to two known

joints so it is solved using the

Circle Intersection Solver.

9. All Joint Positions are now

known.

Figure 12.6-c: Example of the Joint Traversal Algorithm on a 6-bar linkage.

12.3 Circle Intersection Solver

 If a Joint is connected to two or more Joints whose positions have been solved at the

current time step, the Joint’s new position can be derived using the Circle Intersection Method.

In this method, circles are drawn around the two known joints. The radius of each circle is the

length of the linkage connecting the known Joint to the unknown one. The point of circle

intersection that is closer to the unknown Joint is the unknown Joint’s new position. If there is no

circle intersection at all, the linkage has reached its maximum rotation in its current direction and

must reverse.

86

Joint B is rotated 1° to new

position of B’. Joint C’s

position is currently

unknown.

Two circles are formed from

the two know joints

connected to C.

Joint C is moved to the closer

intersection point.

Figure 12.7: Example of using the intersection of two circles to find the new position of Joint C.

https://www.36degreesnorth.co/how-to/
https://www.36degreesnorth.co/how-to/
https://www.36degreesnorth.co/how-to/
https://www.36degreesnorth.co/how-to/

87

Chapter 13

Animation

 PMKS featured animations which moved links along a path for a set period of time and

repeated that movement until the user paused the animation. Figures 13.1 and 13.2 show two

frames in the animation of a four-bar system. The ungrounded endpoints of each link move

across the drawn lines while the grounded points remain at their respective locations.

Figures 13.1 and 13.2: Two instances in the animation of a four-bar system provided by PMKS.

 Based on the functionality of PMKS, our team created a list of requirements that PMKS+

must accomplish in order to adequately animate linkages. This list includes:

● Moving the endpoints of a single link along two separate paths for a period of time.

● Drawing the rotation curves that each ungrounded endpoint moves along.

● Pausing and manually advancing the animation.

● Produce smooth animations based on the output of the simulator.

 This led our team to consider several options for animating our cross-browser system.

The main options included utilizing CSS animations by defining keyframes and creating custom

animation functions to move each SVG element. In addition, our team researched the built-in

SMIL animations which act on SVG. The option we chose needed to fit each of the requirements

88

described above. For this reason, we decided against using SMIL animations. Although they

were built to handle SVG, this functionality could not animate based on the coordinate positions

produced by the simulator. Our group chose to attempt to implement CSS animations before

ultimately creating our own custom functionality.

13.1 CSS Animations

 The first method our group attempted to implement was CSS animations using an

imported jQuery library. CSS animations include keyframe definitions which specify points in

time during an animation where an object would be located. Using each of these points, the

system moves the object to each location while interpolating the in-between points in order to

create a smooth animation. CSS keyframes provide a means to create animations based on

specific points in time that circumvents the asynchronous behaviours of Javascript and

Typescript. Normally these keyframes are static but our system required the dynamic creation of

the coordinates of each link based on the user’s input.

13.1.1 JQuery.Keyframes

 jQuery.Keyframes is a jQuery library that provides functionality to dynamically create

and assign keyframes to elements with CSS stylesheets. SVG elements contain their own

stylesheet and may therefore have their own specific keyframes. jQuery.Keyframes also includes

functionality to pause and update keyframes, further incentivising its use. Our original plan was

to use the coordinates produced by the Simulator Class for each link to define and attach

keyframes to their SVG stylesheets. We would then update these stylesheets each time a joint or

link is changed by the user. The problems with this solution came from the interactions between

CSS and SVG elements as well as discrepancies between the imported library and our Angular

environment.

13.1.2 Issues with CSS Animations

 Although CSS animations use keyframes to define states of an object at a certain point in

time, they cannot act on the properties of objects in the same way. When defining the keyframes

of an SVG element, the x and y positions are required for movement. Inputting these values will

move the entire element to the specified coordinate. When specifying a keyframe in PMKS+, we

needed only a single endpoint to move to the given location, while the other endpoint would

89

move to a separate location. This requires editing the properties representing each coordinate in

the SVG, something that CSS cannot do. It is possible to produce something similar by

combining translation of the element with rotation, but the math required to produce the

animation in a dynamic environment produces a far greater problem. In addition, the

jQuery.Keyframes library is incompatible with Typescript. Importing the library’s functions

results in unresolved references that cannot be fixed. These problems led our team to approach

animation through a different method.

13.2. Custom Typescript Solution

 The final option for animating links in a way which meets the established requirements

was to create the functionality using Typescript. Designing our own functions allowed our team

to create animations that perform exactly as needed, though with much more development time

and effort required. This solution also creates the possibility for further improvements to the

animation system including obtaining data about elements at specific points in time.

Figure 13.3: The animation process after the Grid Component receives the output of the

simulator class

90

 As shown in Figure 13.3, the animation process begins with a list of the coordinates that

each joint in the system moves through while in motion. Each joint is then relocated based on its

next position in the list. This relocation is repeated until the list is exhausted, by which point the

joints have returned to their original positions. The entire process then repeats with each joint’s

list restarting at their initial coordinates and the joints are relocated in the same manner.

Although each step in time is not interpolated, the animation is made smooth by providing a

small enough interval between relocations to draw the links at 60 frames per second.

 This process uses the output of the simulator class (discussed in Chapter 12) as the

positioning data for each joint. Once the simulator has determined how the linkage moves, the

animation simply displays these results to the user. This process also handles when linkages

reverse their direction. In these situations, the simulator output includes the reversed positions of

each joint in the proper order. The animation only needs to loop through each time step in order

to properly show reversing.

 Drawing each link at a set rate required making the naturally-asynchronous Typescript

work in a synchronous manner. This involved creating a timeout function which changed the

position of a link, waits a set period of time, and then repeats to move the link to the next

position. Although the code succeeds in animating multiple links based on the provided

coordinates for each endpoint, the process is very intensive and involves several instances of a

recursive function running indefinitely. If the animation is allowed to play forever in this way,

the browser will eventually crash. The solution to this problem is to play the animation

recursively until it returns to its starting position and then run the same function again, thus

resetting the recursion. An alternative to forcing the asynchronous function to run in this way is

to play the animation for a certain amount of cycles and then stopping until the user chooses to

start again.

 In order to initially test the validity of our animation functions, our team used exported

data from PMKS as inputs for the linkages in our current system. This data included the

coordinates for each link’s endpoints at a 0.0167 second interval (60 per second). As previously

discussed in Chapter 11, the Simulator in PMKS+ produces the same position values that are

calculated in PMKS, therefore this data acted as a viable substitute preceding the accurate output

of the PMKS+ Simulator.

91

Drawing the curves which simulate the movement of each endpoint of a link involved a

similar process to moving the individual endpoints themselves. The system creates a new SVG

for each curve and places them onto the grid on a layer beneath the links and joints. The endpoint

of a link and its rotation curve share a common path so in order to create the SVG, we provided

the same inputs used to animate the connected link. Each curve was created as a path element

which took the input series of coordinates and connected them using lines. Figure 13.3 shows the

rotation curve of a joint in an animated linkage.

Figure 13.4: A single animated link, the top joint rotates around the input joint on the given

circle.

Our Typescript animations provided the functionality to accomplish our objectives in

animating linkages. When comparing the visuals between PMKS and PMKS+, there is very little

difference between the quality of animation. In the future, the next improvements that should be

made to the system include highlighting key positions in the animation and optimizing

performance when large numbers of components are being animated.

13.3 Animation Controls

As previously discussed in Chapter 9, the PMKS+ interface includes an animation

component with several controls. These controls include a play, start, and slide input, as shown

in Figure 13.4.

92

Figure 13.5: From left; the start, pause, and slide input animation controls.

The play and pause buttons set the state of the animations. Pressing play will start the

animation of a linkage only if, for each joint in the system, the simulator has calculated a degrees

of freedom of one and returned valid positional data. The pause button will halt the animation

whenever it is playing at its current position, as shown in Figures 13.5 and 13.6, and pressing

play again will make the animation reset. The animation will also halt when a user adds to the

linkage, repositions an existing joint, or makes any other changes to the system.

Figure 13.6 (Left) and Figure 13.7 (Right): The linkage moves from its initial position when the

play button is pressed, shown left, and stops when the pause button is pressed, shown right.

The slide input allows the user to control the set time of the animation. When the

simulator calculates that the linkage has a DoF of one, setting the slide bar to any position will

also set the linkage to its positioning at a corresponding angle. The bar takes in an input of 0

through 1 and multiplies this number by the largest angle of the animation. As an example, if the

animation includes 300 different angles and the user sets the slider to 0.5 then the linkage will be

set to its position at the 150th angle. Figure 13.8 demonstrates the slide input set to 0 degrees

while Figure 13.9 shows the same animation set to 180 degrees.

93

Figure 13.8: The animation of a linkage set to 0 degrees using the slide input.

Figure 13.9: The same animation as in Figure 13.7 set to 180 degrees using the slide

input.

94

Chapter 14

Application Testing

 In this section we discuss all the testing our team conducted with PMKS+.

14.1 Browser Compatibility

 In this section, we go into detail about the tests we performed to check for browser

compatibility for PMKS+. The browsers tested were Google Chrome, Mozilla Firefox, Microsoft

Edge, Opera, Safari and Internet Explorer. The tests we conducted were:

1. Load up the application.

2. Click on all elements, such as tabs and buttons and get the expected result.

3. Make sure that elements of the interface scale to fit the space, so that they are all

at their intended positions when the browser is in full window mode.

4. Draw on the grid.

5. Animate a simple linkage to make sure animation works.

In the following subsections, we go into more detail about each browser test. For each

browser, we did not stress test all possible drawings or animations. We tested a four bar linkage

and its animation to see how it performed in different browsers and checked to see if there were

compatibility issues. Further testing was conducted and is discussed in details in section 14.2.

14.1.1 Chrome

Since the application was primarily developed for Google Chrome, the tests we

conducted for this browser were all successful. Since this test was our most successful one, we

decided to use this test as our standard for comparison with other browsers.

95

Google Chrome Compatibility Test

Test steps Compatibility test comments

First The application loaded and goes through the loading animation. All interface

elements loaded as well.

Second After selecting all elements, we concluded that elements worked as expected.

Third The application scaled appropriately in full window size. There were some

issues when the window size becomes too small as some elements

disappeared. For full window size, the scaling was as expected in 1920x1080

resolution of 100% scaling (Windows OS). As you can see in the two pictures

below, the About, Help and Report buttons hid behind the toolbar when the

window size changed.

Fourth The drawing worked as intended. All drawings showed up and the grid mouse

interactions worked as intended

Fifth Animation worked as intended. All animations were smooth and quick.

Conclusion PMKS+ is fully compatible with Google Chrome.

14.1.2 Mozilla Firefox

 Mozilla Firefox was the second browser we decided to test for compatibility. We faced a

lot of issues with it as can be seen below from the comments on each step.

96

Mozilla Firefox Compatibility Test

Test steps Compatibility test comments

First Application loaded. All elements loaded apart from the grid X and Y axis.

Some elements had a slightly different styling like the animation timeline, as

can be seen in the pictures below. After further development, the X and Y axis

were fixed.

Chrome:

Firefox:

Second All elements, besides the grid context menu, worked as intended. Mozilla

Firefox was not detecting the right clicking on grid in an older version

therefore the context menu was not appearing. In a new version the context

menu appeared so we could test its compatibility

Third Everything scaled as intended in full size window same as Google Chrome

but the browser had issues when run with a smaller window size.

Fourth We could not draw in the grid using the mouse since the context menu could

not appear in an older version. In a newer version of Firefox, the drawing

worked but the Y-axis was reversed so all drawings would appear in the

opposite y-axis position.

Fifth Since we could not draw in the grid, we could not test the animations in an

older version. In a newer version of Firefox, animations worked as intended.

Conclusion The application loaded up and scaled, but the grid was not fully compatible

with Mozilla Firefox in older versions. In newer versions, PMKS+ was

compatible with the browser but has issues with the Y-axis translation and all

drawings are reversed. This was due to SVG height and width properties

being defined in a different format than in other browsers. This was fixed with

an updated Mozilla Firefox browser version.

97

14.1.3 Opera

 Opera (Version 60) was the third browser we tested and was as successful as Google

Chrome.

Opera Compatibility Test

Test steps Compatibility test comments

First Application loaded but had a slight delay compared to Google Chrome. All

elements loaded as well

Second All elements worked as intended.

Third The application scaled as intended. Opera had same issues with smaller

window sizes like Chrome

Fourth Drawing worked as intended and was similar to Chrome.

Fifth Animation worked as intended.

Conclusion PMKS+ is fully compatible with Opera Version 60 and is the second fully

compatible browser.

14.1.4 Microsoft Edge

 Microsoft Edge (Version 44) was the fourth browsed we tested in our browser

compatibility tests. Microsoft Edge proved to be as successful as Chrome and Opera.

98

Microsoft Edge Compatibility Test

Test steps Compatibility test comments

First Application loaded similarly to Google Chrome. All elements loaded as well.

We noticed some differences in alignment.

Chrome:

Edge:

Second All elements worked as intended.

Third The applications scaled as intended. There were some issues with the close

window button on the analysis windows. The same window issues applied

here as well.

Fourth Drawing worked as intended.

Fifth Animation worked as intended. The animation slider performed slightly

different from other browsers. The slider, instead of going only forwards from

1 to 100 percent, goes backwards to 1 when it reaches 100 and then forward

again. This is likely a style of sliders specific to Microsoft Edge..

Conclusion PMKS+ is fully compatible with Microsoft Edge Version 44. For each test,

Edge performed similarly to Chrome.

99

14.1.5 Internet Explorer

 Internet Explorer (Version 11) was the fifth browser we tested for compatibility. PMKS

was only working in Internet Explorer. Unfortunately, PMKS+ does not load up at all in this

browser and hence, all the tests failed. Since official support for this browser is going away in

January 2020, we do not need to ensure its compatibility for PMKS+.

Internet Explorer Compatibility Test

Test steps Compatibility test comments

First Application did not load and was stuck at the loading animation.

Second Since application did not load up, this could not be tested.

Third Step could not be completed.

Fourth Step could not be completed.

Fifth Step could not be completed.

Conclusion PMKS+ is not compatible with Internet Explorer Version 11.

14.1.6 Safari

 Safari (Version 12) was the last browser we tested for compatibility. While some features

worked, there were a lot of issues with the grid as mentioned below.

100

Safari Compatibility Test

Test steps Compatibility test comments

First Application loaded all elements.

Second The application did not calculate the correct mouse coordinate values for the

y-axis. This created an unexpected result when creating a link through the

context menu or when dragging joints. The direction of vertical panning was

also reversed. Joint and link creation methods through the table worked

correctly. All other elements worked as intended.

Third The application scaled as intended. Safari had the same issues with smaller

window sizes similar to Chrome.

Fourth Due to the error with the mouse coordinates, links created through the context

menu are created in the wrong location. Joint and link creation through the

table work as intended.

Fifth Animation works as intended. Animations are smooth and quick similar to

Chrome.

Conclusion PMKS+ was only partially compatible with Safari Version 12 because of the

unexpected behavior of the grid. The browser passes a negative value used in

the function for calculating screen coordinates. This issue was corrected after

the test was conducted and the application now works on Safari as intended.

14.2 Software Testing

 In this section, we outline the various methods of software testing that were used for

PMKS+.

14.2.1 Unit Testing

 Unit testing is a type of testing that ensures that functions at the lowest level are returning

correct values. Unit testing is run in a standalone interface-less environment that mirrors the

application environment. All interaction is coded in a separate test file that creates the

application and runs through test cases sequentially. Because there is no interface, unit testing is

101

fast and can be run quickly to ensure new functionality does not break previously developed

systems (Shore & Warden, 2008).

 Our program utilized the Jasmine test framework, the official Angular testing

environment. In this framework, Angular creates specific testing files for each component

created. Each testing file mirrors the environment created in the regular application (Angular,

2018).

 An example of unit testing in our application is with joint creation and movement. In this

test, we create a joint at (1, 1) and call the joint move function to move the joint up two units and

to the right three. Afterwards, we test to ensure that the joint is now located at (4, 3).

14.2.2 Integration Testing

Integration testing is a type of software testing that takes the individual components

tested in unit testing and tests the interaction between each other (Shore & Warden, 2008). Each

integration test should be limited to testing a single action (i.e. creating a joint, moving a joint,

etc.). There are three main approaches for Integration Testing:

● Bottom-Up: Bottom up testing tests the lowest levels of the program first before moving

to higher, parent-level components. This is advantageous if errors are more likely to

happen in child components.

● Top-Down: Top down testing tests the highest levels of the program first and then moves

to lower levels. Top-Down is the opposite of Bottom-Up approach and should be used if

errors are more likely to occur in parent components.

● Big-Bang: Big-Bang testing tests the entire application at once. Big bang is the most time

consuming approach and is only used if components are tightly coupled together.

(Software Development Fundamentals, n.d.)

For PMKS+, we utilized a bottom-up testing approach. We chose bottom up testing

because all user interaction is performed in child components. The parent component (the

MainPage) is invisible to the user and only exists to synchronize data between other components.

Because of this, most sources of error originated from a child component so logically, we

decided to check these first.

102

 The Jasmine testing framework was also used to ensure that correct values were being

recorded before being sent to separate components. These tests can be viewed as checkpoints

that ensure correct data has been gathered before being sent and allows us to identify points of

failure quickly. This process is detailed in Figure 14.1.

Figure 14.1 A diagram showcasing how test cases can be used to ensure the correct data is being passed

between components.

Since Jasmine tests are run through the Angular command line, we found it difficult to

test the interaction between the GUI and the application. For this, we used Augury, an unofficial

Angular testing extension for the Google Chrome browser. Augury lists variables of Angular

components in real time while the application is running (Angular Augury, 2018). This allows us

to interact with the user interface and check to ensure the correct values were being set. For

example, we can create a joint via the grid and reference Augury to ensure the joint was created

and synchronized between components (Figure 14.2).

103

Figure 14.2 The Augury interface displaying detailed joint information about PMKS+ while it is running.

104

Chapter 15

PMKS+ User Evaluations

This chapter will focus on the user interface evaluations conducted during development

of PMKS+. These evaluations include testing performed with individual subjects after iteration

five of development and the large-group sessions performed after iteration six of development.

15.1 Individual Evaluations

 In order to gather feedback about the interface design of PMKS+, our team conducted

evaluations with individual participants. The focus of these evaluations was to determine

whether the results of the users’ interactions with the interface matched their expectations for

what would happen.

15.1.1 Procedure

 The evaluations were conducted with a single proctor and subject. The proctor issued the

evaluation in two separate parts. The first had the subject look at sets of two diagrams each

showing different versions of the interface with modifications to color and layout. The subjects

would then indicate which version they preferred. The second had the proctor instruct the subject

to complete tasks directly within PMKS+. Before each task, the proctor would ask the subject

what actions they were expecting to perform to complete the task. After each task, the proctor

asked the subject for their opinion on the actions they performed and how those actions differed

from their expectations. The proctor recorded each of the subject’s answers by hand.

5.1.2 Target Users

 The target users for this evaluation were identified based on their college major and past

experience with PMKS. This pool included Mechanical Engineering and Robotics Engineering

105

students as these are the main target audience of PMKS+. We also chose subjects with no prior

experience with PMKS in order to eliminate pre-existing biases toward the system’s design.

15.1.3 Evaluation Script

 During evaluations, the proctor read a script (included in Appendix B) detailing the

questions and instructions for the subject. The proctor did not answer any questions relating to

PMKS+ or make further actions not detailed by the script. If the subject determined that they

could not continue, the proctor would complete the step, make a record of the assistance, and

have the subject continue from there. The full script can be found in Appendix A. The

accompanying diagrams can be found in Appendix B.

15.2 Final User Evaluations

 Our team set up the final evaluation of PMKS+ to mirror the evaluation we performed on

the original PMKS application as discussed in Chapter 8. The evaluation consisted of two

separate sessions. The first involved a large group of subjects completing tasks within the

application. The second included a proctor that observed individual subject’s interactions with

PMKS+. A description of these methods can be found in the Session 1 and Session 2

descriptions of Chapter 8. Subjects were able to access PMKS+ on a temporary Heroku cloud

server (Heroku). These servers allowed us to quickly patch any outstanding bugs found prior to

the evaluation.

15.3 Differences with PMKS Evaluation

Although our team used the same structure and methods as used for the PMKS eval for

our evaluation of PMKS+, there were several changes made to the tasks and questions in the

Google Form that subjects were required to complete. Some questions and tasks were excluded

due to time constraints during development while others were included to gather feedback on

aspects of the new system.

The first difference between the two evaluations is the exclusion of forces, and

subsequently, the output of kinematic analysis. The original evaluations included tasks that

required users to apply a force to and perform a static analysis of the linkage they built. Forces

106

were not implemented in PMKS+ prior to the evaluations. Similarly, many of the aspects of

analysis (forces, torque, acceleration, etc.) were omitted as well. The questions relating to these

tasks were removed from the existing evaluation and replaced with questions relating to the new

aspects of PMKS+.

Our team included additional questions to determine which elements of the system

subjects interacted with and the process by which they made those decisions. These questions

included asking users about their expectations when creating links and what influenced these

expectations. We also asked users for feedback on the new methods for creating linkages, as well

as their comparison between PMKS and PMKS+.

15.4 Data Analysis

The group evaluation of PMKS+ included a much smaller sample size than the previous

evaluations conducted on PMKS. The results include only 18 subjects, a steep drop compared to

the previous 39 participants. The number of possible subjects available in March was

significantly less than in October because the number of Mechanical Engineering classes that use

PMKS as part of their curriculum was higher in October. Subjects were required to have some

experience with PMKS which limited the pool of possible subjects to students from these

classes. This disparity resulted in less reliable data for the group evaluation, thereby hindering

our ability to draw conclusions. Instead, our analysis aims to identify possible areas of

improvement or decline between PMKS and PMKS+. The one-on-one evaluations maintained a

pool of five subjects similarly to the one-on-one sessions conducted in October. The results from

these were used to modify the user interface for iteration seven of design.

The experience level of subjects throughout our evaluations ranged from only slight

experience with PMKS to around 6 hours of experience. This variance gave us a good

distribution of past experience providing some evidence of subject performance based on time

spent with PMKS. For both the PMKS and PMKS+ evaluations, subjects were given the same

task to complete. Comparing the times that subjects took to complete this task to the amount of

experience subjects have shows evidence of past users being comfortable and able to transfer

skills from PMKS to PMKS+. Figure 15.1 details the amount of time subjects of both the PMKS

and PMKS+ evaluations took to complete the given task.

107

Figure 15.1: Subject experience vs. time to complete task for both sets of evaluations.

This data suggests an overall decrease in the time required to complete the given task. On

average, the amount of time subjects using PMKS+ required was 3.66 minutes while those using

PMKS required 6.87 minutes on average. The trend lines provided show a similar decrease

between evaluations in time needed to complete the given task as subject experience increases.

These trends suggest that skills acquired in PMKS may transfer to PMKS+. This could make

previous users more comfortable and familiar with PMKS+.

 In addition, more than 70% of subjects that used PMKS+ made three or fewer mistakes

while performing tasks during the evaluation. In contrast, about 50% of subjects that used PMKS

made a similar number of mistakes with almost 45% making 4 or more. These mistakes included

creating too many links or joints, resetting the application, and similar actions. Figure 15.2 shows

a comparison between the number of mistakes subjects made in the two evaluations. These data

points suggest that PMKS+ could help users make less mistakes and therefore has improved

usability over PMKS.

108

Figure 15.2: Subject error rates while performing tasks with PMKS and PMKS+.

 Our evaluations also gathered some information about subject preferences and opinions.

First, subjects in both evaluations were asked to rate the difficulty of creating links in their given

applications. The average rating for PMKS+ is 4.06, which is slightly higher than the 3.64 given

to PMKS. Although slight, this increase could suggest an improvement in creation methods

catering to the expectations and experience of users. The data relating to this question is found in

figure 15.3.

Furthermore, figures 15.4 and 15.5 show data comparing PMKS+ to PMKS and other

simulation software including SolidWorks and Working Model. The majority of subjects rated

using PMKS+ as a better experience than PMKS. In addition, these subjects also rated their use

of PMKS+ as either as good or better than their use of other simulation software. These results

show that PMKS+ may meet or exceed some standards set by its predecessor and other leading

software.

109

Figure 15.3: Subject rating of the difficulty of creating links between PMKS and PMKS+.

Figure 15.4: Subject preference between PMKS and PMKS+.

110

Figure 15.5: Subject comparison between PMKS+ and other simulation software.

 In addition to the data collected above, our team also found several recurring opinions

provided through written feedback from subjects. Many reported that although creating joints

was easy, subjects wanted to position joints using exact values. The most prominent suggestions

to achieve this were to simply forgo using the mouse for creation methods and use only the table

as well as allowing joints to “snap” to the grid so that they automatically align with common

increments. Subjects took issue with selecting exact coordinates only when editing and not when

creating joints.

Some subjects also made comparisons between creating objects in other simulation

software such as Working Model and CAD to PMKS+. The most common suggestion stems

from creating objects in these software. Within these programs, creating objects or shapes takes

place in a creating state where many user actions change to focus only on creating while other

actions are limited until the state ends. There were also several subjects that suggested the joints

and links shown on the grid could be better connected to the table displaying their information by

showing a number or symbol on the grid to identify them. Also, subjects wanted better labels and

more explanations for buttons. For example, subjects found that the button “Set as Ground”

which could be used to set a joint as grounded or ungrounded did not convey both options

clearly.

111

Chapter 16

Conclusions

The objective of this project was to create a modern successor to the PMKS application.

To accomplish this, we defined four major goals.

1. Develop PMKS+ to be a similar application to PMKS, so that previous users feel

comfortable with it.

2. Work on the compatibility issues that PMKS had to make PMKS+ work on most major

browsers.

3. Enhance the user experience by redesigning and improving both the features and the user

interface of PMKS based on user feedback.

4. Deliver a new application that is appropriately documented and maintainable.

PMKS+ successfully met all of these goals. First, it carried over important features from

PMKS such as the linkage table and grid. This allowed users of the previous system to feel

comfortable using the new system. Our user evaluations suggest that users with more experience

in PMKS were more proficient with PMKS+ and completed tasks faster than those with less

experience.

Next, we developed PMKS+ in Typescript and HTML using the Angular framework.

This framework is supported by most major browsers including Google Chrome, Mozilla

Firefox, Microsoft Edge, and Safari.

In addition, we enhanced the user experience by adding mouse interactions and a context

menu to the grid as well as a toolbar. The context sensitive menu and the mouse interactions

allowed users to directly modify the linkage from the grid visualization itself. The toolbar

provided a familiar way for users to interact with program functions. User evaluations show that

subjects who used PMKS+ were, on average, faster than those who used PMKS. The majority of

these subjects also preferred PMKS+ to its predecessor. We also implemented the Model-View-

Controller design pattern to ensure that the system architecture is straightforward and simple. We

set up a unit test environment using Angular to ensure that future changes to the codebase do not

break existing functionality.

112

Finally, we structured the system architecture to be easy to understand by designing it

around the Model-View-Controller framework. This framework is fairly common in web

applications and also taught to WPI students in most Software Engineering courses.

Additionally, we provided code documentation through inline comments and a developer manual

to make sure that PMKS+ is maintainable.

The usability requirements detailed in Section 4.2.1 describe the goals we hoped to

accomplish through our evaluations. First, we sought to allow users to easily create linkages with

few actions required. The number of minimum steps required to create a linkage decreased from

30 steps in PMKS to 13 in PMKS+. Additionally, based on the previously discussed evaluation

results, we found that users could effectively apply prior experience from PMKS into PMKS+ in

order to more effectively use the application. We also ensured that users had the ability to reset

the system, learn to create linkages, and efficiently control the animations.

113

Chapter 17

Discussion

This section describes the pedagogical value of this project and how our experiences

studying at WPI contributed to its success.

Our first challenge as a team was to gather the appropriate knowledge to complete this

project by researching migration options and web-design frameworks. We also sought advice

from experts to make sure we selected the right tools to facilitate the development of PMKS+.

Through this research and preparation, we gained valuable insight into the implications and

process behind choosing the proper framework and environment for developing web

applications. Our decision to use Angular also provided us valuable experience with a common

framework in professional environments and large-scale applications. The experience we gained

through “Webware: Computational Technology for Network Information Systems” course

greatly influenced our initial decisions.

The majority of projects our team members have worked on in the past have had very

short timespans. Work done for computer science classes is limited to one or two terms of eight

weeks each. Prior to this project, our experience with applications in a development cycle

spanning multiple years was very low. We were able to gain experience in developing not only

for short-term goals but also for an application that can be transferred to a new team in the

future. Our having taken the “Software Engineering” class at WPI provided experience with

group projects in a major development environment that aided our cohesion and synergy as a

team.

We decided to have group meetings and meetings with our advisors to keep track of the

project’s progress. Our meetings with our advisors were held weekly where we discussed and

presented work that was done the previous week and talked about the schedule for the next week

to keep our advisors informed. We also gathered expert feedback on interface and linkage design

during these meetings. Additionally, in order to keep track of our work, all of the team members

wrote individual reports for every step of the project that was being done. For group meetings,

114

we followed a similar format to the advisor meetings, where we would inform each other of the

progress done, problems faced and future work to be done. We also allocated the work in these

meetings to make sure every team member was contributing to the project.

 During this project, we followed a model-view-controller architectural pattern in

designing the main components of the application. Our time in the “Object-Oriented Analysis

and Design” class helped us to separate the functions of each component properly and restrict

access to classes to their associated components. After using this design pattern, we found that

maintaining proper encapsulation helped us protect our objects from unintentional changes that

could cause errors in the system.

 The evaluations our team conducted throughout the project were invaluable in gaining

feedback for improving PMKS+. Creating these evaluations gave us a clearer understanding of

the importance of gathering user feedback and developing for the user. At the beginning of

development, parts of our initial designs included features that worked well from a developer’s

perspective. After consultations with experts and conducting evaluations with prospective users,

we found that our perspective of what worked best in PMKS+ did not match the users’

expectations. The design process requires that developers consider the user from the very

beginning. During the user evaluations, we were able to incorporate the evaluation techniques we

learned through the “Human-Computer Interactions” course.

Through this project, we learned more about web development and design frameworks,

how to properly redesign a legacy application and how to drive development through user

evaluations, contextual inquiries and heuristic evaluations from experts. Although it does not

have all the features that PMKS has, PMKS+ has the proper foundation and documentation to

ensure future development can generate a worthy successor of PMKS that can further help with

the studies of linkages.

115

Chapter 18

Future Work

Due to time and knowledge constraints, our team was unable to develop certain features

in PMKS+. These features were not necessary to meet the original goals of our project and were

therefore left for future development. Below we discuss the features that we think will further

improve the functionality and usability of PMKS+.

Mechanical Analysis

 PMKS had the ability to perform static, dynamic, and stress analysis on a linkage. This

analysis includes calculations for calculating Centers of Mass, Moments of Inertia, and Torque.

While our current application does not provide the calculations for such analysis, it does show a

preview window for the values before downloading. Further steps for the future include

performing the calculations for each type of analysis, populating the preview windows with

important values, and then allowing the download of the full analysis report to a spreadsheet.

Saving and Sharing Linkages

 PMKS provided the option of saving a linkage either through a spreadsheet or a web

URL. PMKS + would require us to develop a system to externally store linkage data that can

later be reinterpreted by the application. PKMS did this by directly storing the linkage data in the

URL through url variables.

Non-Dyadic Solver

 While our current simulator class can solve movement for most simple linkages, it will

occasionally run into situations where the linkage has a correct degree of freedom but can’t be

solved. This situation arises when two unknown joints are unable to be solved via circle

intersection. This problem is illustrated below in figure 18.1.

116

Identify all ground and input

positions and label their

positions as known. Note that

Joint G is the input. A

previous example (Shown in

Figure 12.6) used Joint A as

the input.

Joint B is connected to the

input so it can be solved by

revolving it around the input.

Joint C can be solved by

circle intersection only if it is

connected to two known

joints. There is only 1 known

joint adjacent to it so it is

unsolvable using circle

intersection.

Figure 18.1: An example of a linkage that cannot be solved using circle intersection.

To solve this linkage, an alternative to the circle intersection method must be applied. In

PMKS this method was called the Non-Dyadic solver. Since this method is much more

complicated than traditional position solving, we decided to leave this method out. In the future,

Professor Radhakrishnan (who wrote the original position solver) plans to implement this

method.

Force Simulation

 While forces can be applied in PMKS+, their effect on the simulation is ignored. We

chose to omit force simulation because it was not required for us to simulate basic movement.

The current implementation provides ample room to integrate forces into simulator calculations.

Custom Link Geometry

 One of the more complex features we left out was the use of custom link geometry. In

reality, a link’s geometry is not restricted to the joints that define it. Rather it can be any shape

and joints can exist anywhere. We chose to restrict link geometry to joints similar to the old

117

system as we did not want to run into any major design problems implementing a new feature

such as this. We also felt there was no reason to introduce custom link geometry unless there was

proper collision simulation behind it. Collision simulation would require us to add more complex

physics simulation to the simulator class, something we did not have the time for. Without

collision simulation, custom linkage geometry would only exist to add extra visual fidelity to the

linkage in the grid.

Before deciding to postpone development, we designed a system architecture that could

incorporate custom link geometry. Links would be defined not by joints, but by guiding points

known as nodes. A full description of the classes can be seen below. Figure 18.2 shows the class

diagram containing each class.

● A Node represents a geometry guiding point in a link. These are used to help define the

shape of a single linkage without acting as a point of connection between other links.

While the simulator does not currently take into account geometry, Nodes provide a

platform for such functionality in the future.

● A Vertex is the the abstract parent class of Nodes and Joints.

● L, T, and C-Link classes are special instances of Links that use nodes to define their

geometry. Since they are defined by classes, we are able to define new functions and

attributes on top of the existing ones in the Link class. Such functionality includes the

ability to easily adjust the curve of a C-Link and the fillet inside T and L-Links.

Figure 18.2: A class diagram representing the class hierarchy.

118

Interactive tutorial

 An interactive tutorial would provide a guided approach to help users learn PMKS+. An

interactive tutorial would run through the basic steps of PKMS+ and blur out any parts of the

interface not currently in use to help focus the user on certain tasks. Additionally, an instruction

list could be displayed to help inform the user of the exact steps that need to be taken to complete

each task. A mock-up of what such a tutorial could look like can be seen below in Figure 18.3.

Figure 18.3.: A mock-up of what an interactive tutorial of PMKS+ would look like.

 An interactive tutorial would need to be updated when any major changes are done to the

system. Due to the rapidly changing elements of our interface during development, we decided

that it would be better to leave out an interactive tutorial until more features are finalized for

PMKS+.

Implementation

 PMKS+ was designed to be iterated on by Professor Radhakrishnan and WPI students in

the future. Additions to the simulator class could be implemented by ME students. These include

mechanical analysis, linkage collision, non-dyadic loop solving, and force simulation.

119

Meanwhile, additions to the UI and architecture could be implemented by Computer Science

students. These include saving linkages, user settings, linkage geometry, and an interactive

tutorial.

120

Chapter 19

References

Albert, W., & Tullis, T. (2013). Measuring the user experience: Collecting, analyzing, and

presenting usability metrics (2nd ed.) Newnes.

Angular. (2018). Retrieved from https://angular.io/

Angular Augury. (2018). Retrieved from https://augury.rangle.io/

Avesta Group. (2015). Desktop applications vs. web apps. Retrieved from

https://www.avestagroup.net/DetailsEN.aspx?PostID=1006&CataType=5&CataID=1

006

Best, M. (2017). Knockout release version 3.4.2. Retrieved from

https://github.com/knockout/knockout/releases/tag/v3.4.2

Bychkov, D. (2013). Desktop vs. web applications: A deeper look and comparison. Retrieved

from https://www.seguetech.com/desktop-vs-web-applications/

Castilho, B. (2015). Migrating from XAML to HTML5 with wijmo. Retrieved from

https://www.grapecity.com/en/blogs/migrating-from-xaml-to-html5-with-wijmo/

Constantine, L. L., & Lockwood, L. A. D. (1999). Software for use: A practical guide to the

models and methods of usage-centred design. New York: ACM Press.

Darwin, P. (2017). Angular architecture overview. Retrieved from

https://angular.io/guide/architecture

Eberhardt, C. (2012). KnockoutJS vs. silverlight. Retrieved from

https://www.codeproject.com/Articles/365120/KnockoutJS-vs-Silverlight

Felke-Morris, T. A. (2016). Basics of web design. (Third ed.) Boston [u.a.]: Pearson.

https://angular.io/
https://www.avestagroup.net/DetailsEN.aspx?PostID=1006&CataType=5&CataID=1006
https://www.avestagroup.net/DetailsEN.aspx?PostID=1006&CataType=5&CataID=1006
https://github.com/knockout/knockout/releases/tag/v3.4.2
https://github.com/knockout/knockout/releases/tag/v3.4.2
https://www.seguetech.com/desktop-vs-web-applications/
https://www.seguetech.com/desktop-vs-web-applications/
https://www.grapecity.com/en/blogs/migrating-from-xaml-to-html5-with-wijmo/
https://www.grapecity.com/en/blogs/migrating-from-xaml-to-html5-with-wijmo/
https://angular.io/guide/architecture
https://angular.io/guide/architecture
https://www.codeproject.com/Articles/365120/KnockoutJS-vs-Silverlight
https://www.codeproject.com/Articles/365120/KnockoutJS-vs-Silverlight

121

Fracker, M. L. (2010). Scaling usability in terms of requirements: A method for evaluating user

interfaces. Proceedings of the Human Factors and Ergonomics Society Annual

Meeting, 54(6), 576-580. doi:10.1177/154193121005400607

Furda, A., Fidge, C., Zimmermann, O., Kelly, W., & Barros, A. (2018). Migrating enterprise

legacy source code to microservices: On multitenancy, statefulness, and data

consistency. Software, IEEE, 35(3), 63-72. doi:10.1109/MS.2017.440134612

Gaherwar, M. (2018). Blazor: Running C# in the browser using web assembly. Retrieved from

https://dzone.com/articles/blazor-running-c-on-browser-using-web-assembly

Google. (2019). Angular Docs. Retrieved February 4, 2019, from https://angular.io/

Heroku. Cloud Application Platform, www.heroku.com/

James, J. (2011). How to replace flash and silverlight with HTML5. Retrieved from

https://www.techrepublic.com/blog/web-designer/how-to-replace-flash-and-silverlight-

with-html5/

Knockout JS: Helping you build dynamic JavaScript UIs with MVVM and ASP.NET

(2011, Mar 23,).[Video/DVD] Las Vegas, Nevada: MIX11.

Krug, S. (2013). Don't make me think: A common sense approach to web usability. Pearson

Education.

Mozilla Contributors (2019) Intensive JavaScript MDN Web Docs. Retrieved from

developer.mozilla.org/en-US/docs/Tools/Performance/Scenarios/Intensive_JavaScript.

Microsoft (Producer), & Sardo, G. (Director). (2011). HTML5 for Silverlight Developers.

[Video/DVD] Microsoft. Retrieved from

https://channel9.msdn.com/events/MIX/MIX11/HTM14

Pop, P. (2002). Comparing Web Applications with Desktop Applications: An Empirical Study.

http://orbit.dtu.dk/en/publications/comparing-web-applications-with-desktop-

applications-an-empirical-study(a3dccce2-12ed-4cb4-97cc-c89a73eca245).html

https://dzone.com/articles/blazor-running-c-on-browser-using-web-assembly
https://angular.io/
https://dzone.com/articles/blazor-running-c-on-browser-using-web-assembly
https://dzone.com/articles/blazor-running-c-on-browser-using-web-assembly
https://www.techrepublic.com/blog/web-designer/how-to-replace-flash-and-silverlight-with-html5/
https://www.techrepublic.com/blog/web-designer/how-to-replace-flash-and-silverlight-with-html5/
https://channel9.msdn.com/events/MIX/MIX11/HTM14

122

Ramel, D. (2018). Blazor, for .NET Web Apps using WebAssembly. Retrieved from

https://visualstudiomagazine.com/articles/2018/03/23/blazor-alpha.aspx

Roth, D. (2018). Blazor FAQ. Retrieved from https://github.com/aspnet/Blazor/wiki/FAQ

Rubin, J., & Chisnell, D. (2011). Handbook of Usability Testing: How to Plan, Design, and

Conduct Effective Tests. John Wiley & Sons.

Radhakrishnan, P., and Campbell, M. (2012), An Automated Kinematic Analysis Tool for

Computationally Synthesizing Planar Mechanisms ASME 2012 International Design

Engineering Technical Conferences & Computers and Information in Engineering

Conference (IDETC/CIE); August 12-15., Chicago, IL

Safari Technology Preview Release Notes (2018).

https://developer.apple.com/safari/technology-preview/release-notes/

Satran, M., Whitney, T., Jacobs, M., Weston, S. & Das, D. (2018). What's a Universal Windows

Platform (UWP) App? Retrieved from https://docs.microsoft.com/en-

us/windows/uwp/get-started/universal-application-platform-guide

Shneiderman, B., & Plaisant, C. (2016). Designing the User Interface: Strategies for Effective

Human-Computer Interaction (Fifth ed.). Reading, MA: Addison-Wesley.

Shore, J., & Warden, S. (2008). The art of agile development (1. ed. ed.). 1005 Gravenstein

Highway North, Sebastopol, CA 95472: O'Reilly. Retrieved from

https://www.jamesshore.com/Agile-Book/

Silverlight support roadmap. (2014). Retrieved from

https://blogs.msdn.microsoft.com/webapps/2014/01/16/silverlight-support-roadmap/

Software Development Fundamentals. (n.d.). Integration Testing. Retrieved from

http://softwaretestingfundamentals.com/integration-testing/

https://visualstudiomagazine.com/articles/2018/03/23/blazor-alpha.aspx
https://visualstudiomagazine.com/articles/2018/03/23/blazor-alpha.aspx
https://github.com/aspnet/Blazor/wiki/FAQ
https://github.com/aspnet/Blazor/wiki/FAQ
https://channel9.msdn.com/events/MIX/MIX11/HTM14
https://channel9.msdn.com/events/MIX/MIX11/HTM14
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://www.jamesshore.com/Agile-Book/
https://blogs.msdn.microsoft.com/webapps/2014/01/16/silverlight-support-roadmap/
https://blogs.msdn.microsoft.com/webapps/2014/01/16/silverlight-support-roadmap/
https://blogs.msdn.microsoft.com/webapps/2014/01/16/silverlight-support-roadmap/

123

Stieglitz, N. (2017). Silverlight Migration Strategies. Atlanta, GA: Wintellect LLC. Retrieved

from https://www.wintellect.com/wp-content/uploads/2017/05/SilverlightMigration-

1.pdf

Stone, D. L., Jarrett, C., Woodroffe, M., & Minocha, S. (2005). User Interface Design and

Evaluation. Amsterdam: Elsevier.

Vaughn, B. (2013). React: Main concepts. Retrieved from https://reactjs.org/docs/hello-

world.html

Warren, G., Hogenson, G., Cai, S., Robertson, C., Casey, L., Jones, M., Al-Hashmi, B. (2018).

Get started with WPF. Retrieved from https://docs.microsoft.com/en-

us/visualstudio/designers/getting-started-with-wpf?view=vs-2017

White, S., Satran, M. & Koren, A. (2017). Move from windows phone silverlight to UWP.

Retrieved from https://docs.microsoft.com/en-us/windows/uwp/porting/wpsl-to-uwp-

root

Whitney, T., Satran, M., Jacobs, M., Das, D. & devfables. (2018). What's a universal windows

platform (UWP) app? Retrieved from https://docs.microsoft.com/en-

us/windows/uwp/get-started/universal-application-platform-guide

You, E. (2016). What is Vue.js. Retrieved from https://vuejs.org/v2/guide/

https://www.wintellect.com/wp-content/uploads/2017/05/SilverlightMigration-1.pdf
https://www.wintellect.com/wp-content/uploads/2017/05/SilverlightMigration-1.pdf
https://reactjs.org/docs/hello-world.html
https://reactjs.org/docs/hello-world.html
https://docs.microsoft.com/en-us/visualstudio/designers/getting-started-with-wpf?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/designers/getting-started-with-wpf?view=vs-2017
https://docs.microsoft.com/en-us/windows/uwp/porting/wpsl-to-uwp-root
https://docs.microsoft.com/en-us/windows/uwp/porting/wpsl-to-uwp-root
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://vuejs.org/v2/guide/

124

Appendix A: PMKS User Evaluation Response Form

125

126

127

128

129

130

131

Appendix B: PMKS+ User Evaluation Response Form

132

133

134

135

136

137

Appendix C: Individual Evaluation Script

1. When responding to questions, be as specific as possible and include all parts of your

thought process. When performing tasks in the application, state any thoughts that you

have out loud. The proctor will not be able to answer any questions you have. If you

believe you cannot accomplish a task, inform the proctor and they will complete the

current step for you. The proctor will record your answers in writing. If you need a

question repeated ask the proctor.

2. For your reference, Image A shows a linkage. This linkage is composed of three links, the

colored bars, and connected by 4 joints, the circles. We will refer to the 2D plane that

these objects are on as the “Grid”.

3. What is the significance of the black colored joint? In other words, what does the join

being black signify?

4. What is the significance of the green colored joint? In other words, what does the joint

being green signify?

5. (If the subject could not tell the purpose of the joints, the proctor will explain with the

following) The black joint signifies a grounded joint. The green joint signifies the input

joint.

6. Look at images B and C. Which design do you prefer?

7. We will now work with the application. Navigate to the opened tab in Google Chrome.

8. Direct your attention to the table on the left side of the screen. Describe what the table is

displaying and what parts of the grid relate to the table. You may interact with the table

while answering.

9. What do you expect would happen if you were to click on the grid? Drag the grid? Right-

click on the grid?

10. We will now ask you to create a single link in the application. First, describe the process

you believe you will need to follow in order to create a link. For this task, a link is

composed of two joints which act as endpoints and are connected with a bar.

138

11. Click on an empty space on the grid. Once you have done that, click on another empty

space to create a link. Was this process different than what you expected? What did you

like about the process? What did you dislike?

12. What do you expect would happen if you were to click on the link at this moment?

13. What do you expect would happen if you were to click on a joint at this moment?

14. What do you expect would happen if you were to drag a joint at this moment?

15. Now, hold down the shift key and click on a joint on the grid. Describe what happened

when you clicked on the joint. What does this action signify?

16. Now, click on an empty space on the grid so that the joint is un-highlighted. Then, right

click on a joint. Which method, shift-clicking or right-clicking, do you prefer to select a

joint? Which method is clearer in what it does?

17. Next, you are going to create another link and attach one of its endpoints to an existing

joint from the original link. Before using the application, how do you expect to attach a

new link to the existing one? Now, try to attach a new link.

18. Add another link attached to the end of the newly created link so that it is similar in shape

to the diagram shown in Image D. Also, try to match the colors of the colors of the joints.

Don’t forget to share your thought process out loud.

19. (If the system needs to be reset due to the user input too many joints/reaching an error

state, the proctor should take control of the system, refresh the page, and create a 4-bar

linkage, recording the subject’s trial as a failure)

20. Direct your attention to the icons at the bottom of the screen.

21. Click on the box that says DoF at the bottom left of the screen. This is a temporary step to

perform necessary calculations.

22. What do you expect to happen when you press the green button to the right of the DoF

box?

23. What do you expect to happen when you press the red button to the right of that?

139

24. What do you expect the slider that runs along the length of the screen to do?

25. Now, press the green button. How does what happen differ from what you expected?

26. Now, press the red button. What do you expect to happen if you press the play button

again?

27. Move the slider at the bottom of the screen. Does the movement of the linkage match

what you expected?

28. What is your opinion on the design and layout of these elements, the buttons and slider?

140

Appendix D: Individual Evaluation Paper Examples

Screenshot demonstrating PMKS+ with colored elements.

Screenshot demonstrating PMKS+ with monochrome elements.

141

Image A

Screenshot used to ask subjects whether they could identify grounded and input joints.

142

Image B

Screenshot showing an example of the PMKS table.

Image C

Screenshot showing an example of the PMKS+ table.

143

Image D

A screenshot of a standard linkage built in PMKS+.

	Worcester Polytechnic Institute
	Digital WPI
	April 2019

	PMKS+: Recreating a Legacy Application
	Dimitrios Tsiakmakis
	Griffin Daniel Cecil
	Michael Teijiro Taylor
	Praneeth Appikatla
	Repository Citation

	tmp.1559929325.pdf.Up3za

