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Abstract 

 

The goal of this project was to recreate the Planar Mechanism Kinematic Simulator 

(PMKS), a legacy, open-source web application, on a modern web platform with an enhanced 

user experience. The conversion included support for multiple browsers and improvements to the 

graphical user interface. This application was developed using the latest technologies in web 

development. Through multiple evaluations testing the interface and functions, we were able to 

create a similar application to PMKS that has an improved user interface experience.  
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Chapter 1 

Introduction 

Following global standards is key when developing any website. Not only can they help 

determine what tools to use to expand website functionalities, but they can also define the design 

of the interface that is going to improve the overall user experience. By applying globally 

accepted standards, one can ensure that a website will be compatible with current and future 

operating systems and browsers.  

The Planar Mechanics Kinematic Simulator (PMKS) is a web application that is neither 

compatible with multiple browsers nor future-proof. PMKS is currently used by the Mechanical 

Engineering Department at Worcester Polytechnic Institute (WPI) to study the behavior and 

usage of planar linkages. With Apple’s recent update to the Safari 12 browser, support for 

Netscape Plugin Application Programming Interface (NPAPI) plugins has come to an end (Safari 

Technology (2018)). This includes Microsoft Silverlight, a plugin required to run PMKS. With 

no support for Mac, running PMKS is a much greater burden for Apple product owners. In order 

to remain a useful tool that aides student’s learning, PMKS must migrate to a more accessible 

platform. This requires conforming to modern web standards and technology. We have named 

this new version PMKS+. 

The second chapter of this report describes our team’s goals and objectives while 

completing this project. Chapter 3 provides an overview of PMKS. Chapter 4 details the research 

our team conducted on interface evaluation and development. Chapter 5 describes the methods 

our team used to create, test, evaluate, and implement PMKS+. Chapters 6 and 7 discuss our 

research and findings for migrating options to PMKS+. Chapter 8 describes the testing 

conducted to identify which aspects of the user interface to improve, while chapter 9 discusses 

the iterative process for developing our user interface. Chapter 10 details the various methods 

considered for creating linkages in PMKS+. Chapter 11 presents the system architecture and 

design of PMKS+. Chapter 12 describes the Simulator class that performs calculations on 

linkages, while Chapter 13 discusses the techniques used for animation in PMKS+. Chapter 14 

reports the testing our team performed to ensure that PMKS+ met our compatibility and 

performance standards. Chapter 15 details the evaluation methods used during and after 
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development. Chapter 16 concludes the development of PMKS+ while chapter 17 includes 

discussion on our team’s findings as well as future improvements that should be made to the 

system. Finally, Chapter 18 discusses the future work that can be implemented to improve the 

usability and efficiency of PMKS+. 
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Chapter 2 

Research Statement & Goals 

In order for a website to reach its full potential, a developer must follow the global 

standards of web development. Prior to beginning, a developer must consider what tools they 

will use, what design their interface will have, and what functions their website will provide. 

Application of the global standards that are provided by the World Wide Web Consortium 

(W3C) can ensure compatibility and accessibility of a website. 

PMKS has useful functions but limited compatibility with modern browsers. As of now, 

PMKS can only be used in Internet Explorer and does not provide support for any alternatives. 

This is a major problem for its users. Since many Mechanical Engineering students thoroughly 

study linkages for classes and their Major Qualifying Projects, it would be ideal to have software 

that could be useful to them for a long time. 

Our goal was to develop a similar application that offered the same functionalities as 

PMKS, but that conformed to modern web standards and had a new interface that would improve 

the user experience. We developed these improvements by gathering feedback from Mechanical 

Engineering students on the current PMKS application and designing an interface to address any 

points of concern. Our focus was not to develop an entirely different application but to provide 

the Mechanical Engineering department with a new tool that improves the user experience. In 

summary, our goals were to: 

● Incorporate beneficial features from PMKS into PMKS+, so that previous users feel 

comfortable with it. 

● Ensure PMKS+ is compatible with most major browsers. 

● Enhance the user experience by redesigning and improving both the features and the user 

interface of PMKS, based on user feedback.  

● Deliver a new application that is appropriately documented and maintainable. 
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Chapter 3 

What is PMKS? 

The Planar Mechanical Kinematic Simulator (PMKS) is an open source software used to 

simulate the kinematics and kinetics of planar mechanisms (also referred to as linkages) through 

user defined joints, links, and forces. The initial kinematics version of the software was designed 

by Dr. Matthew Campbell of Oregon State University (that included parts of Prof. 

Radhakrishnan’s dissertation) and is maintained by its Design Engineering Lab. A previous 

Major Qualifying Project group at WPI integrated the kinetics aspect into PMKS, which 

provided new features such as the ability to apply forces as well as to calculate and export static 

and dynamic joint reaction forces. Currently, PMKS is used in two Mechanical Engineering 

courses at WPI and some courses at Oregon State University. 
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Chapter 4 

Literature Review 

4.1 Interface Development 

4.1.1 Interface Design 

When first considering the design of a graphical interface, developers work to establish 

standards prior to creating prototypes. These baselines help them make decisions about various 

aspects of the design of a system; from the fonts and color choices of text to the organization of 

menus. Alongside more general design rules for user interface design, this task analysis governs 

the choices developers make to create a system that allows access to the widest audience without 

inhibiting or frustrating them. The origins of the PMKS web application include very little 

documentation about the creation process and even less detailing decisions with regard to its 

design. It is unknown whether any considerations to design for a target audience, or to organize 

menus in a simple and coherent way were taken. As a consequence, our team must design and 

evaluate the existing system while creating design criteria and analysis methods from scratch. 

 

4.1.2 General Design Rules  

 Though we based the majority of our changes to the system based on feedback and 

evaluations conducted with user testing, there were certain, near-universal practices that we also 

considered. Through years of research, many practices in design have come to be expected of 

applications, especially those on the web. These principles can be applied to any system and 

improve various aspects of design that help users navigate, perform, and understand the 

information of applications.  

 

 According to Terry Felke-Morris in his book Basics of web Design: HTML5 and CSS3 

(2016), the basic principles for designing an interface are as follows: 

 

● Repetition: Repeat visual elements throughout the design 

When applying the principle of repetition, the web design should repeat one or more 
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elements throughout the page. The repeating aspect ties the work together. Whether it is 

color, shape, font, or image, repetition of elements helps to unify a design. 

● Contrast: Add visual excitement and draw attention 

To apply the principle of contrast, emphasize the differences between page elements in 

order to make the design interesting and direct attention. For example, there should be 

good contrast between the background color and the text color on a web page. 

● Proximity: Group related items 

When applying the principle of proximity, related items are placed physically close 

together. Unrelated items should have space separating them. Placing interface items 

close together gives visual clues to the logical organization of the information or 

functionality. 

● Alignment: Align elements to create visual unity 

When applying this principle, each element on the page should line-up (vertically or 

horizontally) with another element. This helps to reduce layout complexity. 

 

Following these basic visual design principles can help develop an interface that is 

targeted for the audience and help them accomplish their tasks. Morris (2016) also gives 

significant importance to considering the accessibility of a website when developing it. Some of 

his key points are: 

 

● Content must be perceivable  

Perceivable content is easy to see or hear. All the graphic and multimedia content that is 

used in a website should also be available in text, such as descriptions for images, closed 

captions for videos, and transcripts for audio. 

● Interface components in the content must be operable 

Operable content has interactive features that can be used or operated with either a mouse 

or a keyboard. 

● Content and controls must be understandable  

Content must be easy to read, organized in a consistent manner, and provide helpful error 

messages when appropriate. 
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● Content should be robust enough with current and future user agents 

Robust content is written to follow World Wide Web Consortium recommendations and 

should be compatible with multiple operating systems, browsers, and assistive 

technologies such as screen reader applications. 

  

The World Wide Web Consortium (W3C) is active in the cause of promoting accessibility 

in websites by creating guidelines and standards that are applicable to web content developers, 

authoring-tool developers and browser developers. A web page that is designed to be accessible 

is typically more usable for all. The following design principles guide W3C’s work: 

● Web for All 

The social value of the Web is that it enables human communication, commerce and 

opportunities to share knowledge. One of W3C’s primary goals is to make these benefits 

available to all people, whatever their hardware, software, network infrastructure, native 

language, culture, geographical location, or physical or mental ability. 

● Web on Everything 

The number of different kinds of devices that can access the Web has grown immensely. 

Mobile phones, smart phones, personal digital assistants, interactive television systems, 

voice response systems, kiosks and even certain domestic appliances can all access the 

Web. 

● Web for Rich Interaction 

The Web was invented as a communications tool intended to allow anyone, anywhere to 

share information. For years, the Web was considered a “read-only” tool by many. Blogs 

and wikis brought more authors to the Web, and social networking emerged from the 

flourishing market for content and personalized Web experiences. W3C standards have 

supported this evolution thanks to strong architecture and design principles. 

● Web of Data and Services 

Some people view the Web as a giant repository of linked data while others as a giant set 

of services that exchange messages. The two views are complementary, and which to use 

often depends on the application.  
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● Web of Trust 

The Web has transformed the way we communicate with each other. In doing so, it has 

also modified the nature of our social relationships. People now “meet on the Web” and 

carry out commercial and personal relationships, in some cases without ever meeting in 

person. W3C recognizes that trust is a social phenomenon, but technology design can 

foster trust and confidence. As more activity moves on-line, it will become even more 

important to support complex interactions among parties around the globe. 

 

Shneiderman and Plaisant in their book Designing the User Interface: Strategies for 

Effective Human-Computer Interaction (2016) present a comprehensive list of some additional 

essential guidelines for developers to follow without needing to evaluate their audience or tasks. 

The following is a summary of some of these guidelines for interface design that are applicable 

to our objective: 

 

● The display should be familiar to the user and related to the tasks 

● Users should not be required to remember information between pages 

● Only present data that is relevant to the user 

● Minimize user input 

 

 In addition, Shneiderman and Plaisant (2016) present several design principles that hold 

more weight than the aforementioned guidelines. These principles may be summarized as 

follows: 

 

● Cater to the user’s skill level - User expertise may vary from beginners to experts. 

Beginners require assistance and introductions to functionality while experts want to 

exert control over the system. 

● Define tasks - Creating a task analysis that helps the designer understand the task 

frequency of the system leads to development with users in mind. 

● Golden Rules - These general principles include consistency in presentation, functionality 

feedback, error prevention, and ease of undoing mistakes. 
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 Following these guidelines will produce an appealing, agreable system for users of any 

skill level. Our first objective in evaluating the current PMKS system constitutes ensuring that 

these principles have been enforced throughout the user experience. Although user testing will 

aid in understanding their effectiveness, we can evaluate many of these principles through 

performing our own evaluations using associated quantitative metrics. This point will be further 

discussed within the Interface Evaluation section of the methodology. 

 

4.2 Interface Evaluation 

  

 In order to improve a graphical user interface, there must be data pointing to aspects of 

the design which require improvement. In other words, there must be evidence to show that users 

are struggling or dissatisfied with the interface. Without this evidence, developers are liable to 

design a system based on their personal beliefs and preferences, regardless of what users want. 

To avoid this situation, testing must be done in order to collect user opinions on a system. This 

testing involves creating an evaluation strategy, conducting testing sessions, and evaluating the 

collected data. 

Prior to testing, creating an evaluation strategy involves establishing and prioritizing 

usability requirements, defining data to collect, and identifying the constraints of the testing 

environment (Stone et al., 2005). Rubin (1994) describes that evaluation requires multiple testing 

periods throughout the development lifecycle to validate any changes made. This iterative testing 

pattern allows teams to continuously improve the design of a system and adapt to changes in 

design standards and evolving technologies while also simplifying the handoff of design 

improvement to other teams. 

 

4.2.1 Usability Requirements 

 Usability requirements identify the actions that a system should be able to accomplish

 When assessing PMKS, our team identified several requirements that are necessary for 

the interface to satisfy, which the current iteration may or may not accomplish. Our evaluations 

were developed to address these goals and our progress toward accomplishing them. They are as 

follows: 
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● Users should be able to create basic linkages easily and with a small number of actions. 

● Students should be able to apply prior knowledge and practices with regard to linkages. 

● Users should be able to reset the system and begin from scratch. 

● Users should be able to learn to create different types of linkages directly through the site. 

● Users should feel in control of animations. 

 

4.2.2 Usability Dimensions 

 Usability dimensions help to prioritize system requirements and can be broken up into 

five categories: effective, efficient, engaging, error-tolerant, and easy to learn (Stone et al., 

2005). Evaluations of user interfaces should consider the impact of each of these dimensions on 

the ability of the target audience to use the system. By assigning each category a weight based on 

their relevance and importance in an application, the interface can be refined to include 

necessities and omit unnecessary aspects. For example, if the efficiency of a system is given a 

weight of 30% while engaging is given 15% then the design of the system would focus on 

performing tasks quickly and requiring fewer actions by users but would not necessarily 

incorporate superfluous stylings or animations to engage the user. 

 

4.2.3 Usability Metrics 

 As previously discussed, design evaluation constitutes an iterative process that requires 

multiple testing sessions in order to re-evaluate changes to the interface. Performing multiple 

evaluations at different stages requires consistency in metrics used in order to compare and 

determine the success of attempted improvements. Common metrics that may be gathered, 

regardless of changes made to the system, include the time it takes to complete specific tasks, the 

error rate of users when performing a task, and the user’s subjective satisfaction. Each of these 

metrics, both qualitative and quantitative, can be used as evidence to show improvement, 

worsening, or stagnation in a design. 

Constantine and Lockwood (1999) describe several “Advanced Metrics” which gather 

information through user testing and self-evaluation of a system. These metrics provide a 
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thorough understanding of the capabilities and limitations of an interface. The metrics our group 

deemed relevant to this study are essential efficiency, task visibility, and layout complexity.  

Essential efficiency compares the number of steps a user must take to complete a task to 

the ideal number of steps previously defined based on the number of necessary actions 

(Constantine and Lockwood, 1999). This measurement produces quantitative evidence regarding 

the effectivity and efficiency of a system. The following formula produces the essential 

efficiency (EE) based on Sessential, the number of ideal steps to accomplish a task compared to 

Senacted, the number steps actually taken to accomplish a task: 

𝐸𝐸 =  100 ∗
𝑆𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙

𝑆𝑒𝑛𝑎𝑐𝑡𝑒𝑑
 

 

 Task visibility describes the user’s ability to see functionality related to the tasks they 

must perform (Constantine and Lockwood, 1999). Determining the visibility of the system also 

helps evaluate how easy an application is to learn to use, and its overall efficiency. The following 

formula determines the task visibility (TV) based on the total number of enacted steps to 

complete a use case, Stotal, multiplied by the sum of visibility for each task, 𝛴𝑉𝑖: 

𝑇𝑉 =  100 ∗  (
1

𝑆𝑇𝑜𝑡𝑎𝑙
∗ ∑𝑉𝑖) 

  

 Layout complexity evaluates the placement of objects on screen by measuring the 

distance and differences (size, alignment, angle, etc.) between their positioning (Constantine and 

Lockwood, 1999). This measurement assesses a system’s efficiency and can aid in creating an 

engaging, easy-to-use interface. Layout complexity defines the following formula using the 

variables listed below: 

 

𝐿𝑈 =  100 ∗  (
(𝑁ℎ  +  𝑁𝑤  +  𝑁𝑡  +  𝑁𝑙  +  𝑁𝑏  +  𝑁𝑟)  −  𝑀

6 ∗  𝑁𝑐  −  𝑀
) 

 

LU = Layout Complexity 

Nh = Number of objects with different heights 

Nw = Number of objects with different widths 
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Nt = Number of objects aligned to the top of the page 

Nl = Number of objects aligned to the left side of the page 

Nb = Number of objects aligned to the bottom of the page 

Nr = Number of objects aligned to the right side of the page 

Nc = Total number of objects 

M = Variable to ensure quantity does not fall below zero 
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Chapter 5 

Methodology 

 

 In this chapter we detail the steps our team took to accomplish the goals established in 

Chapter 2. Each section describes the actions taken by one or more team members in a 

chronological order. The following chapters include detailed explanations on the decisions made 

in each section of the methodology. 

5.1 Migration Options 

Before deciding between a web and desktop application, we considered the options 

available to us behind each approach. This included the programming language, framework, and 

method of migration. Through research, and by considering recommendations on technologies 

provided by Professor Lane Harrison of the Computer Science department at WPI, we finalized 

our migration strategy. We decided to use Angular, a web framework developed by Google, as 

our development platform. This framework utilizes HTML5, CSS, and the TypeScript language 

to assist in building and designing website interfaces (Angular, 2018). Lastly, we decided to do a 

partial redesign of the application as our migration method because it would keep the existing 

structure of the PMKS code the same, as well as allow us to redesign parts of the application as 

needed. Section 6.1, Migration Methods, further discusses the various migration methods we 

looked at and Section 6.3, Migration Tools, discusses various tools and technologies for those 

methods.   

5.2 Web App Justification 

After considering each migration option, we needed to choose between creating a web or 

desktop application. First, we listed important criteria for developing an application. These 

criteria were then given weights based on priority. Each migration platform option was given a 

score for each criteria which, in turn was multiplied by the criteria weight and summed for 

comparison. The criteria and scores were represented in a decision matrix shown in Figure 5.2. 

In the end, we decided on a web application because its assets met our project goals better, as 
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indicated by its higher score. Section 6.2, Migration Platforms, lists the various advantages and 

disadvantages of web and desktop applications, which assisted in justifying the scores for each 

platform. Section 7, Web App Justification, further details our process in selecting a platform for 

PMKS+ and provides rationales for criteria weights and the values assigned to each. 

   

5.3 User Interface Evaluation 

Before beginning the conversion, we evaluated the current state of the PMKS system and 

determined the initial changes that needed to be made to the user interface. Based on our 

research into evaluations of user interfaces discussed in Section 4.2, our team developed a 

process to gather quantitative and qualitative feedback from users in order to improve the design 

of our system. The creation and design of our evaluation is detailed in Section 6, User Interface 

Evaluation. 

 Evaluations were completed during two sessions that took place on October 3rd and 10th, 

2018. Each session included 16 subjects placed at individual computers in a single room. All 

subjects started the evaluation at the same time and completed both the assigned tasks and 

accompanying questionnaire at their own pace. 

In addition, six one-on-one sessions were conducted which paired each individual subject 

with a proctor who recorded the subject’s observations. This allowed subjects to interact with the 

system in an uninhibited manner and express their opinions immediately. These sessions were 

scheduled at separate times from the larger group sessions. The subjects were given as much 

time as necessary to complete each step of the evaluation. 

Our team compared the results gathered through these sessions and the user evaluations 

performed with PMKS+, described in section 5.10, to find evidence of improvement in our new 

application. Figure 5.1 details the timeline for evaluation. 

 

Figure 5.1: A timeline of the evaluation process between PMKS and PMKS+. 
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5.4 Interface Design 

After evaluating the previous interface of the application and conducting the interface 

evaluation survey, we worked to design a new user interface for PMKS+. Although we had some 

ideas about the design before the two tasks mentioned, we decided it was best to complete those 

two tasks first and design the interface around the feedback received. 

As mentioned in our research statement, our goal was to create an application that is 

similar to PMKS, in functionality and design. Such an application should feel familiar to existing 

PMKS users while providing a better user experience for all users.  

During B-term, we incorporated our design choices into weekly iterations of our 

application. Every week we made changes to the interface of the application, sought opinions 

from our advisors, and incorporated their feedback in the next iteration of the interface while still 

adding more interface components. Chapter 9 details the various iterations of the interface 

leading up to the current design. In that section, we will also discuss the justifications for each 

interface element of our application. 

5.5 Linkage Creation Methods 

 We quickly identified linkage creation as a major area in need of improvement in PMKS. 

The process of specifying links in a table using the coordinates of attached joints, though 

accurate, proved cumbersome and unintuitive to the user. In an effort to fix this issue, our team 

sought a way to create joints and links that mimicked the method for drawing linkages by hand. 

 Our team found that keeping a table which tracks the location and details of links and 

joints allows users to identify items on the grid more easily and edit the position of these objects 

accurately. This table was also expanded to distinguish between joints and links, and also to 

include information on the forces affecting the linkage. We also created a method to help the 

user identify what actions they may perform in PMKS+. Initially, we bound many of the user 

actions, such as connecting joints and setting a joint to ground, to specific key presses. Later, we 

assigned these actions to descriptive options in a context sensitive menu that is accessed by right-

clicking on a part of the linkage. The design and implementation of these creation methods are 

discussed in Chapter 10. 
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5.6 System Design 

 The system architecture of PMKS was used as a source of inspiration for PMKS+. To 

accomplish this, we analyzed and mapped out the architecture in PMKS and looked for ways to 

mirror it in our new design. We found that Silverlight’s “page component” system (Figure 5.1) 

could be emulated through Angular’s own variation of components called “Angular 

components” (Figure 5.2). This allowed us to maintain the overall structure of PMKS within 

PMKS+ using the more modern Angular Framework.  

 

 

Figure 5.1: System architecture of  PMKS 
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Figure 5.2: System architecture of PMKS+ 

 

As functionality in the grid component expanded, our team began facing issues with 

overlapping user input. It was difficult to distinguish when a left mouse click should allow a user 

to drag a joint, and when it should be used to set a link between joints. To overcome this 

obstacle, we refactored the code in the Grid Component so that it followed a branching sequence 

of states to determine which action would get triggered on user input. By simplifying these 

conditionals to a state the component was in, it would be easier to rearrange and remap actions to 

user input. A diagram of this sequence can be seen below in Figure 5.3. 
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Figure 5.3: The state diagram for mouse interactions in the grid. 
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5.7 Simulator Class 

 The Simulator Class is responsible for calculating kinematic data from user defined 

joints, links, and forces. Our team used the structure and algorithms from the old PMKS to 

construct a new simulator for PMKS+. We identified three major components of the simulator. 

These were the position solver, joint traversal algorithm, and the simulation loop. The position 

solver calculates a joint’s position, the joint traversal algorithm runs the position solver at each 

joint, and the simulation loop runs the joint traversal algorithm for each time step in the 

simulation. We divided these components between group members and coded them individually. 

After each component was completed, they were joined together and connected to the rest of the 

application. The details on each component can be found in Chapter 12. 

5.8 Animation 

 Creating animations in PMKS+ began with identifying the tools necessary to produce 

proper linkage animations. Using feedback from the user evaluations, and the previous version as 

a model, we determined aspects of the animations that were good and those that needed to be 

improved. 

Using the JavaScript Keyframes library, our team attempted to create CSS keyframe 

animations to move the links in our system. This method of animation was unsuccessful due to 

incompatibilities between the imported jQuery module and our Angular environment. There 

were also discrepancies between CSS animations and the scalable vector graphics used in our 

system. The initial process for creating these keyframes and the reasons for its incompatibility 

are detailed in Section 13.1. 

 Based on our findings from using the library, we decided that the best solution going 

forward was to develop the functionality manually using TypeScript. This process involved 

taking in coordinates of each point and relocating each SVG element accordingly. The rationale 

behind this decision and its implementation are discussed in section 13.2. 

5.9 Application Testing 

 While developing each component, unit tests were written to test the current functionality 

and as a safeguard for future changes. Once a component was completed, integration test cases 

were written to ensure that the component was always sending and receiving the correct data. 
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 Once the three main components of our application (the linkage table, grid, and 

mainpage) were completed and linked, more advanced test cases were employed. In these tests, 

we not only tested if the application was working, but also if it would still work under unusual 

actions. For example, even if degrees of freedom is 1, there are some instances where our 

implementation of the simulator class cannot simulate linkage movement. In this case, PMKS+ 

should stop simulating and not attempt to animate. 

  

5.10 PMKS+ User Evaluations 

Following the completion of iteration five of our interface design (as described in Section 

9.6) our team performed short user evaluations of PMKS+ to gather feedback and further 

improve our design. We performed these evaluations with five subjects in separate, one-on-one 

sessions. The details of these individual evaluations are discussed further in Section 15.1. 

Upon completing iteration 6 of interface design, our team performed an additional user 

evaluation in order to determine whether our application accomplished the task of improving on 

the PMKS+ design. This evaluation mimicked the first evaluation described in Section 5.3 and 

was performed with 19 users. The results were then compared with our findings from PMKS in 

order to determine whether our design improved user satisfaction, accuracy, and understanding.  
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Chapter 6 

Migration Options 

In this section, we analyze the different options for migrating PMKS. First, we look into 

the migration methods. Afterwards, we look into the platforms that support these methods. 

6.1 Migration Methods 

Our team identified 2 potential methods of migration for PMKS: porting and rewriting.  

 

Porting the application was the most straightforward option. It meant recycling the 

source code when possible and “tweaking” it into a working state. In order to port PMKS, we 

needed to find tools that supported C#/XAML, the Silverlight programming languages. We also 

needed to look into modern substitutes for any deprecated functionality that was directly 

provided by the Silverlight framework. 

 

Rewriting the code meant using a new coding language to recreate the software. This 

option would be best if the migration platform did not offer adequate support for C#/XAML. 

Rewriting the code offered two varying levels of redesign. 

● A complete redesign of PMKS would call for a full evaluation of the PMKS source code. 

This would involve analyzing the code and looking for areas of structural improvement. 

In doing this, we could create a more organized and optimized software. This choice also 

comes with significant risks. Poor design choices could require us to return to the 

planning phase several times.  

● A partial redesign of PMKS would be a mix between a complete redesign and a port. In 

this option, we would rewrite the new PMKS in a modern language while keeping the 

structure and flow of the original source code. This would allow us to focus our attention 

on specific areas of the user experience rather than the underlying code. To accomplish 

this, we would need to identify the components in PMKS and have a conversion plan for 

each. Compared to a complete redesign, a partial redesign is much quicker. It is also less 

prone to major structural issues since our team would have a working model of the 
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software to reference. However, this option would lack the opportunity for low-level 

structural optimizations that a complete redesign would provide. 

6.2 Migration Platforms 

We looked into two potential platforms for migrating PMKS: a web app and a desktop 

app. A desktop app is a piece of software hosted and accessed locally on a computer. Desktop 

applications are typically limited by the hardware in which they run on. These applications must 

be developed for particular operating systems and may have additional hardware requirements to 

function properly (Bychkov, 2013). On the other hand, a web app is a piece of software that is 

stored on a server and presented through a web browser (Pop, 2005). While both web and 

desktop applications are used today, they have innate differences that are used to justify their use 

in specific cases. We will discuss the advantages and disadvantages of a these two platforms.  

Web App Advantages 

● Accessibility: Web apps have the advantage of being quickly reachable via a link in a 

web browser. Additionally, no additional installations are required to run HTML5 web 

applications. 

● Compatibility: Since web apps can be accessed through any web browser connected to 

the internet, it is possible to target a wide variety of devices and operating systems 

simultaneously. 

Web App Disadvantages 

● Language Restriction: Since the advent of HTML5, many web apps have conformed to 

using HTML5/JavaScript as their front end language. Plugins like Silverlight, and Adobe 

Flash that allowed the use of other programming languages are being deprecated in favor 

of HTML5/JavaScript. Because of this, it has become very difficult to reuse legacy 

Silverlight code in modern web apps. 

● Computing Power: Due to the language restrictions defined above, computing power on 

web apps is more limited than desktop alternatives. JavaScript has a very difficult time 

leveraging hardware during computation intensive operations(Mozilla Contributors, 

2019). 
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● Performance: A study comparing the performance of web applications and desktop 

applications looked at the time for different tasks to complete (Pop, 2005). On average, 

the tasks were 2.3 times slower on a web application then a desktop application. 

● Connectivity: A web application relies on a constant connection to the Internet. Poor 

connection or absence of one can cause performance issues (Avesta Group, 2015). 

Desktop App Advantages 

● Language Restriction: Desktop apps are supported by a wide range of languages 

ranging from C to JavaScript. This makes porting a much more straightforward operation.  

● Computing Power: Due to the support of low-level languages such as C, desktop apps 

are better able to utilize local system hardware. 

Desktop App Disadvantages 

● Accessibility: Desktop apps require an installation process which may require 

administrative rights (something that isn’t always an option on public computers). Once 

installed, they live on the user’s computer and take up space. Updates must also be 

distributed to each computer on which the program is installed (Avesta Group, 2015). 

● Compatibility: Since desktop apps are run and managed locally, allowing for cross-

platform support requires tailoring development to each operating system’s standards. 

6.3 Migration Tools 

 In this section, we look into the specific tools available for desktop and web apps.  

Web App Porting 

1. CSHTML5 is a paid solution for developers wanting to continue coding web apps in C#. 

This solution works as a plugin for Visual Studio and allows developers to code in C# 

while taking advantage of the latest technology in HTML5. The software is available via 

subscription for $119 per month or $1,999 for a perpetual license (C#/XAML for 

HTML5, 2018). 

2. Blazor is an experimental Microsoft framework aimed at allowing developers to code 

client-side C# code for web apps. Unlike Silverlight, Blazor takes advantage of a new 
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web technology known as Web-Assembly. Web-Assembly is a low-level web language 

that developers leverage to create web compilers for languages other than JavaScript. 

While promising, Blazor is still in a very early, experimental phase. Microsoft does not 

recommend using it in production-level apps (Roth, 2018). 

Web app Rewriting 

1. KnockoutJS: KnockoutJS is a JavaScript library used to create rich, client-side user 

interfaces. It is structured using the Model-View-ViewModel design pattern to create a 

development environment similar to Silverlight. After its release, it was used by many as 

a tool for Silverlight migration (Sanderson, 2011). A major disadvantage to Knockout is 

its future support. KnockoutJS was released in 2010 and hasn’t received and update since 

March of 2017 (Best, 2017). The creator has moved on to other projects such as the 

Blazor framework described above. 

2. Angular: Angular is a Google framework used to structure code and build user 

interfaces. Angular focuses on organization and the concept of component based 

programming. This concept relies on splitting the application into different components 

that work together. Like KnockoutJS, Angular is structured using the Model-View-

ViewModel design pattern (Darwin, 2017). Angular is best used in websites that contain 

complex user interfaces with many interconnected components. 

3. React: React is a Facebook developed framework used to create large applications where 

data is constantly changing and needs to be updated on screen. React accomplishes this 

by using web page templates rather than static text. This allows web pages to reused and 

refitted with different content. Unlike Angular, React does not enforce a specific design 

pattern.  Instead, it leaves structure up to the developer. (Vaughn, 2013). React is best 

used in websites that require displaying constantly changing data over templates. 

4. VueJS: Vue is a framework that combines the templating of React with the component 

based programming of Angular. It is designed to be lightweight and easy to learn. A 

major  risk to using to Vue is that it is new and not supported by a company (You, 2016). 
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Desktop App Porting 

1. Universal Windows Platform (UWP): UWP is the standard platform for developing 

apps on Windows 10. Microsoft plans to support UWP for the foreseeable future. 

However, UWP is not supported on older Windows versions (7, 8), as well as competing 

operating systems (Mac, Linux). UWP apps are distributed and updated through the 

Windows store. UWP also provides support for utilizing the Mobilize.NET Silverlight 

Bridge. This bridge is a Microsoft funded tool that scans source code and converts 

Silverlight functionality to UWP (Satran, 2018). 

2. Windows Presentation Foundation (WPF): Windows Presentation Foundation is the 

older way of developing Windows apps. It supports all current Windows operating 

systems since Windows XP. It is a superset of Silverlight, making a port to WPF much 

more practical. WPF support is being phased out in favor of UWP (Warren, 2018). 

Desktop App Rewriting 

1. Both UWP and WPF provide the tools to rewrite PMKS. Since the platform supports C# 

code, it would be possible to reuse portions of the existing code when needed. This 

allows for an incremental redesign which would in turn help isolate the development of 

components. 
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Chapter 7 

Web App Justification 

The first major decision that our team made was whether to create a desktop app or web 

app. In order to choose between the two, we created a decision matrix, shown below in Table 

5.2. This process was used to identify the advantages and disadvantages of each platform. 

Through this process, we identified various criteria that were important for the development of 

the application. Each criterion was given a weight to correlate to its level of importance. The 

team then discussed the options after conducting preliminary research and assigned each type of 

application a value for each criteria.  

 

Development Criteria Weight Web App Web Total Desktop Desktop 

Total 

Ease of conversion 10 4 40 4 40 

Optimization 4 3 12 4 16 

User Convenience 6 5 30 3 18 

Team Experience 8 4 32 4 32 

Documentation 4 3 12 2 8 

Total   126  114 

 

Table 5.2: Decision matrix for comparing web and desktop applications 
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7.1 Rationale 

The weight of each criterion of the decision matrix was assigned by its importance to the 

goals of the project. The process of assigning scores for each criteria took into account the 

benefits of each type of application relative to the criteria. The team deliberated together on each 

value that was assigned. For the team experience criterion, each member rated their experience 

with each type of application. The ratings were then averaged to produce a more accurate 

evaluation of team experience.  

 

Ease of conversion: 

Conversion was the most important criterion because it could impact the time it takes to 

complete the project as well as compatibility with multiple platforms. This criterion takes into 

account the compatibility of each type of application with different operating systems and 

hardware because ensuring compatibility can be more difficult for different options. A lower 

value for this field considers the option more difficult for conversion while a higher value would 

be easier to convert. 

 

 Web App - PMKS is written using the C# language. We assigned a web app a value of 4 

for ease of conversion to due to its poor compatibility with C#. Creating a web app would require 

the code to be rewritten in another language, most likely JavaScript. On the other hand, 

converting code from one language to another is still easier than having to write the application 

from scratch. Since a web application runs through a browser and is not restricted to certain  

hardware or operating system, the conversion would only involve creating one application. 

 

 Desktop - We assigned a desktop app a value of 4 because the conversion process from 

the current web-based application to a locally-run application would not require the least amount 

of code to be rewritten. Most of the current C# code would not need to be rewritten. The XAML 

files could also be reused but would need substitutions for any Silverlight dependencies. 

However, the conversion process would be problematic when developing for multiple operating 
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systems. As a result, this process would have similar complexity to creating a web app, and 

therefore a similar amount of work.  

 

Optimization: 

Optimization refers to the act of making an application run more efficiently and use fewer 

resources. Considering the scope of the application, this is not a major priority. As a result, we 

assigned a weight of 4 for this criteria.  

  

Web App - We assigned the web app a 3 because web applications perform slower than 

their desktop counterparts. This is due to the limitations of JavaScript when compared to lower 

level languages such as C. The speed is also dependent on the strength of the internet connection. 

Poor network connection (or having none at all) could can affect the use of the app.  

 

Desktop - We gave the desktop app a value of 4 due to its ability to access more of a 

computer’s resources. Desktop applications typically work faster to complete certain tasks and 

the application is also not dependent on a network connection. 

 

User Convenience: 

User convenience refers to the application’s accessibility to end users and the difficulty to 

update the application. This includes obtaining initial access to the application as well as keeping 

it updated with future releases. User convenience is one of the main goals of our project which 

justifies its weight of 6. 

 

Web App - Web app received a 5 because of the convenience of accessing it through a 

web browser. Developing an app with cross-browser support would allow any computer with an 

Internet connection to access it. Users also would not have to worry about updating local files as 

any updates would be applied upon reconnecting with the server. However, this also means that 

the application cannot be run locally on a computer without Internet connection. 
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Desktop - We assigned desktop a 3 because of the downloading process required and the 

difficulty of distribution. If made available to everyone, the desktop application would require an 

initial download and local storage in order to use it. These local applications would also require 

users to download updates when needed, making the program harder to maintain. However, one 

benefit is that the application can be run without an Internet connection. In terms of providing 

the application to the university, if the software is stored on WPI’s servers and requires 

connection to the WPI VPN or use of a WPI computer, the ease of access becomes much lower. 

 

Team Experience: 

Team experience takes into account the skills that this project team can apply to both 

types of applications. This includes experience with languages and with creating similar 

applications. Since our experience can influence the quality of the final product, it was given a 

weight of 8. In this section we take into account the experience of all team members and average 

it to create an overall score. 

 

Web App - Web app received a 4 because the team has some experience working with 

them although not in the scale or context that this project requires. Three out of the four team 

members have taken a course on web development and have completed various projects 

including web applications. While the team does not have experience with C# and Silverlight 

which are used in the current application, we are familiar with creating web applications 

specifically using HTML5 and JavaScript. 

 

Desktop - Desktop app received a 4 because all members of the team have worked on 

creating desktop apps. We have completed a Software Engineering course which entailed 

creating a complex desktop application using Java. However, the team does not have much 

experience with the C# language which would be used for developing this type of application. 

Therefore, the team experience rating for the desktop app was the same as the web app. 

 

Documentation: 

Proper documentation would aid our development when working with new languages and 

frameworks. In many cases, documentation exists for very similar projects, as well as about 



 

36 

methods for migrating Silverlight applications. Although it can be useful, additional 

documentation is not necessary as proper documentation exists for languages and libraries 

associated with C#, Silverlight and the potential languages we might work with. Due to the 

benefits that proper documentation can have give, the criterion received a weight of 4.  

 

Web App - Many Silverlight conversion projects have been performed in the past few 

years due to the lack of cross-browser support and the announcement of Silverlight’s 

discontinuation. This has led to documentation, articles, and questions supporting further 

conversion of these apps. This criteria received a value of 3 as a result.  

 

Desktop - The lack of conversion projects from Silverlight web apps to desktop 

applications resulted in less documentation. The documentation of C# still exists to help with 

development. As a result, desktop app received a value of 2 in this category. 

7.2 Results 

After assigning each option a value for all criteria, they were multiplied by their 

respective weights and summed. The overall score for the web app was 124, while the score for 

the desktop app was 114. As a result, decided that the web app was more suitable for our project. 

According to Table 5.2, the main advantage of the web app over the desktop app was user 

convenience as a web app can be accessed using a web browser with internet connection. 
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Chapter 8 

User Interface Evaluation 

Improving the graphical user interface of PMKS first required our team to know how 

well the current version performed. Although there are tests to evaluate an interface’s 

performance through direct measurement, the best method of gathering feedback on a system is 

through testing with subjects. Our team performed a total of three separate evaluations, the first 

was performed using PMKS and occurred before development began. The second and third were 

conducted using PMKS+ and were performed during development. These evaluations served as 

an indicator of our users’ preferences and opinions about the system as well as how well we were 

meeting their needs. 

The evaluation process required that we create a procedure that could be used with 

different versions of the system at various stages in development in order to objectively measure 

the benefits of any changes made in design. We developed an evaluation strategy that detailed 

the most important aspects to focus on when evaluating PMKS and PMKS+. This strategy was 

based on relevant usability dimensions, the objectives we would accomplish by evaluating the 

system, the metrics that would be collected and analyzed, and our target audience. 

8.1 Evaluation Strategy 

In order to properly direct our focus on improving the design of PMKS, our team 

assigned the following weights to each usability dimension defined in Section 4.2.2. An 

explanation for the attribution of each value follows the breakdown below. 

 

● Effective - 25% 

● Efficient - 20%  

● Engaging - 10% 

● Error Tolerant - 25% 

● Easy to Learn - 20% 
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 Effectiveness refers to the application’s ability to complete its assigned job with few user 

steps as errors. Our main objective when recreating PMKS was to create an application capable 

of replacing the older version. PMKS+ should provide all required functionality to fulfil the 

same tasks as PMKS and the conversion must function to the same standard. 

 

Efficiency describes the speed with which users can accomplish their goals within a 

system. The target audience of PMKS are engineering and robotics students who use the 

application to complete class assignments. While not as important as its effectiveness, an 

efficient application will prevent user frustration and aid in completing work quickly, a trait 

desired by students. 

 

Engaging applications serve to draw users in and entice them to use the service. PMKS 

serves as a simulation that students will use because of their assigned work, regardless of the 

appeal of the system. Our focus is on providing proper functionality and not on retaining users. 

 

Error tolerance works conjointly with effectiveness and describes the system’s ability to 

respond to user errors. Students must be expected to make mistakes when interacting with the 

system and PMKS must be ready to handle these gracefully. In addition to preventing errors, the 

system should fix problems users encounter or help users to restore the system to a working 

state. 

 

 Ease of learning is a significant dimension for any system that must cater to new users. 

PMKS is currently used in multiple classes throughout the school year which requires many new 

students to begin using the system. This leads to an audience of many beginners with very few 

experts who continue to use the system. The interface must, therefore, be tailored to teaching 

new users. This may include implementing tutorials, reducing the user’s short-term memory 

needs, and pre-filling certain fields as examples. 

 

Assigning values to these five dimensions aided our team in specifying the goals we 

needed to accomplish to create a successful application. Our team sought to test each fully-

functional aspect of the PMKS interface from a semi-experienced user’s perspective. We also 
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attempted to establish a standard in linkage modeling by gathering feedback based on the 

subjects’ use of other modeling software. These evaluations helped our team establish a starting 

point and track our development progress toward completing the following objectives: 

 

1. Allow users to effectively (accurately and with few/no errors) create complex linkages in 

minimal time (i.e., create a four bar mechanism with DoF=1 in 2 minutes) 

2. Minimize navigational errors when creating, deleting, exporting, and saving within 

PMKS. 

3. Identify aspects of other software, that PMKS is lacking, which may satisfy users more. 

 

In order to evaluate our progress in accomplishing these three objectives, we assigned 

subjects tasks related to those in the objectives to gather information based on associated metrics. 

The questions were given in a questionnaire that served to gather data on the following metrics: 

 

● Time taken 

● Error rate 

● Frequency of help 

● Number of operations 

● User satisfaction 

 

These task evaluations required a pool of test subjects that reflected the target audience of 

PMKS. Our team determined that the main demographic of PMKS are Mechanical Engineering 

and Robotics Engineering students at Worcester Polytechnic Institute. Specifically, the 

simulation sees the most use from the class Modeling and Analysis of Mechatronic Systems. The 

subjects we chose for our evaluations were mechanical and robotics engineering majors enrolled 

in the aforementioned class who had some experience with PMKS through the assigned 

curriculum. This pool of subjects allowed our team to design toward the skill level of our target 

audience and receive relevant feedback from the pertinent users themselves. 
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8.2 Evaluation Procedure 

 The PMKS evaluation consisted of two different sessions. The first involved a large 

group of subjects performing assigned tasks and completing a survey. The second involved one-

on-one sessions in which a proctor observed a single subject performing assigned tasks while 

describing their thought process. Both evaluations followed the methods stated below and 

collected information based on the metrics described above in the Evaluation Strategy (Section 

8.1). 

 

Session 1: 

Subjects were seated at a computer and directed to a Google Form. Subjects answered the 

questions found in the “Pre-Tasks Survey” section of this questionnaire. Once the subject 

finished, they clicked “continue” in the form and moved on to the “Tasks” section. This section 

of the form instructed students to complete two tasks using the software. First, subjects recreated 

a linkage based on a given image, applied a force to it, and then exported the data. When finished 

with each part, they answered the associated questions in the form. Next, subjects continued to 

the second task which required them to open a preloaded file containing a diagram. They were 

instructed to adjust the diagram within the software to match a provided image. When they 

completed this task, the subjects moved on to the final section of the Google Form. They then 

answered the “Post-Tasks Survey” questions and submitted the form when finished. 

 

Session 2: 

 Session 2 involved a one-on-one observation between a proctor and a test subject. The 

session followed the same procedures as Session 1 and used the same online form for subject 

responses. The session included new subjects that were not participants in Session 1. During this 

session, subjects were asked to state their thought process out loud while working with the 

software. Proctors recorded the subject’s remarks and actions on paper and intervened only if the 

subject was unable to proceed with the given tasks. 

 

The initial questions asked were used to gather data in order to measure the time taken 

and error rate of users interacting with PMKS. This corresponds to the effectiveness, efficiency, 
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and error tolerance of the system. The questions that subjects answered while performing the 

assigned tasks aimed to gather information about: 

● Completion time 

● Subject error rate 

● Completion rate 

 

Subjects ended by completing the Post-Tasks Survey. The questions in this survey aimed 

to gather qualitative data on our target user’s preferences. This corresponds to the ease of 

learning and engaging elements of the system. The survey asked for the following information: 

● Subject thoughts 

● Subject reactions (frustrations, impatience, etc.) 

● Subject satisfaction 

● Recommendations 

  

The observers for the second session gathered data to establish the number of operations 

a user made in the old system to accomplish tasks. This sections corresponds to gathering further 

information on the effectiveness and efficiency of the system. Proctors that performed one-on-

one observations with subjects collected the following data in addition to the metrics above: 

● Enacted steps 

● Functionality frequency of use 

● Subject’s remarks 

 

8.3 Data Analysis 

 We used the resulting data from these evaluations to form design choices for PMKS+ 

based on the metrics gathered. Users experienced a very high number of actions in order to 

accomplish the most frequently used functionality of the system, creating a linkage. Based on 

this finding, our new system must allow users to create links with a minimal number of steps. 

We also found, based on the data shown in Figure 8.1, that there was not a correlation between 

the users’ experience and the amount of time taken to complete the assigned tasks as we had 

previously predicted to be true. 
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Figure 8.1: Subject experience with PMKS vs. time to complete the assigned task. 

 

The majority of users also rated their usage of the system positively, giving an average of 

4 out of 5 for their usage of the interface. They also rated their experience as on-par with other 

modeling software. Figures 8.1 and 8.2 depict subject’s experience with other modeling software 

and their comparison of that software to PMKS. 

 

These findings aided our design of the PMKS+ interface during development. In 

addition, these results were compared to evaluations performed on PMKS+ after iteration 6 of 

development in order to evaluate the effectiveness of our changes. These comparisons and their 

value are detailed in Chapter 15. 
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Figure 8.2: User experience with other simulation software. 

 

 
 

Figure 8.3: User comparison of PMKS with other modeling software. 
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Chapter 9 

Interface design 

In this section, we describe the new interface design of PMKS+. First, we present 

preliminary UI mockups developed before the initial interface evaluation of PMKS. Then, we 

discuss the different iterations of the design, examine the changes made at every iteration, and 

discuss the rationale for each choice and component. 

9.1 Preliminary UI Mockups 

Figures 9.1 and 9.2 show two UI mockups made during the preliminary stages of the 

interface design. These mockups were made as a baseline to visualize design choices that we 

would make in the future. 

 

 

Figure 9.1: First mockup of the new interface design. Created using Balsamiq, a web app for 

creating mockups 

  



 

45 

Figure 9.1 represents the first UI mockup that was developed for our project. We tried to 

recreate the aesthetic of PMKS, but also add some new components such as buttons and a logo. 

The toolbar, animation timeline and zoom were kept in the same location as was in PMKS in 

order to be familiar for previous users.  

 

 

Figure 9.2: Second mockup of the new interface design. Created using Wireframe.cc. 

 

Figure 9.2 represents the second UI Mockup developed for our project. We added more 

buttons for controlling the animation, moved the logo to the upper-right corner, changed the 

toolbar to a static component at the left side of the screen, and added the toolbar tabs to provide 

more space for functionality. 

 

9.2 Iteration 1 

Once development started, we began using HTML and CSS to design the interface.  At 

this stage, we prioritized implementing functionality over design. This led to our initial design 

including very little styling (Figure 9.3). 
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Figure 9.3: First interface design iteration of PMKS+ 

 

 In this design, we used a bare minimum of color and effects. Cascading Style Sheets had 

not been used at this iteration.  It was composed of only 4 components, which are the header of 

the page titled “PMKS”, the linkage input form, the grid, and the linkage table. At this iteration, 

we did not have any rationale for the interface components and wanted to start adding 

functionalities that existed in the previous PMKS application. During the next iteration and 

onward, we made significant improvements to the styling and design of elements. 

 

9.3 Iteration 2 

 Figure 9.4 represents our second iteration of the interface. During this iteration, we added 

more components and some initial styling. Below we describe the changes made in this iteration. 
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Figure 9.4: Second interface design iteration of PMKS+ 

 

Tabs Above the Grid: 

These tabs were also a part of the original PMKS. We decided to implement a similar tab 

system in PMKS+ in order to provide familiarity to previous users. These tabs acted as 

placeholders for future content. The tabs were simply buttons that would make each of their 

contents visible. The tabs added were: 

○ Linkage input 

○ Open file 

○ Save configuration 

○ Export Kinematic Data 

○ Get as URL 

 

 

View Linkage Table Button: 

We decided to add a button to hide the linkage table (located at the bottom of the page). . 

We felt that seeing the full size of the grid was crucial and having too many joints could make 

this difficult. While we wanted this table to float on top of the grid (as was in PMKS), we were 

unable to get it to work this iteration.  
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Styling the Tabs and Linkage Table: 

During this iteration, we began working with CSS. We added some colouring to the tabs 

and also added some visual feedback such as highlighting the tab you are currently in, as shown 

in the tabs in Figure 9.4. This initial styling was added in order to establish an overall theme for 

our application. 

 

This iteration, we faced some issues with the design. The buttons that made tab content 

visible would not hide their contents if they were clicked again. If a user wanted to hide the 

contents of a tab, he would have to refresh the entire page. Another issue we faced was from tab 

contents being of varying size. This caused certain elements of the interface to shift up and down 

when cycling between them. This issue was solved in a following iteration. 

 

 

9.4 Iteration 3 

In Iteration 3, we decided to add more components and styling to give the interface a 

theme. In this iteration, we made the most changes so far in order to give a “personality” to the 

application. 

 

Figure 9.5: Third interface design iteration of PMKS+ 
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Figure 9.5 shows the many changes we made in the positioning of various elements. 

These changes are described below: 

 

Logo: 

 In this iteration we decided to add a placeholder logo to the application. A logo is 

considered one of the most recognizable elements when it comes to a web application since it 

serves as it’s identity. When considering popular web pages such as Facebook, Youtube and 

Twitter, any users can clearly recognize the logo wherever they see it. When a user sees the 

PMKS logo, they can clearly understand what web application they are using. The logo was 

taken from the original website of the previous PMKS software. 

 

About, Help, and Report Buttons: 

 The About, Help, and Report buttons did not exist in the original PMKS. While these 

buttons did not function yet, we felt it was important to place them in order to get feedback on 

position and spacing. All three buttons would either redirect you to a new page or provide new 

functionalities to the application. The About page gives information on version history, authors, 

and repository access. The Help page would provide help tools, for new users such as visual 

feedback, step by step actions and a user manual. The Reports page would provide a form where 

users can fill out bug reports. All three buttons are just placeholders for now and their 

functionality has not been implemented at this iteration. 

 

Toolbar Header and Burger Button: 

We also made many changes to the toolbar this iteration. The dashed lines next to the 

“Toolbar” title serves as a button to hide the tab system in order to view the grid underneath.  

 

Toolbar: 

The toolbar was moved this iteration and placed above the grid. When clicking on a tab, 

the contents appear floating above the grid. This was done to solve the issue of elements shifting 

down when tabs were changed. 
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Linkage table: 

 The linkage table’s position was changed to be on top of the grid and made to be always 

visible. Users may view data relating to the links and joints that they input directly without 

needing to take extra actions. 

 

Get DoF Button: 

We also added a “Get DOF” (Degrees of Freedom) button in this iteration. This button 

displays the degrees of freedom of the current linkage mechanism. The button was placed above 

the linkage table until we could find a better position for it. 

 

Theme Colors 

We also added additional coloring for the interface components. The color choices came 

from the PMKS logo. We found that web pages such as Facebook and Youtube, style their 

default coloring theme around the colors of their logo. 

 

X and Y Axis 

We added an X and a Y axis on the grid to help the user navigate the coordinate system 

more easily. This axis was centered to match a Cartesian coordinate system. 

 

9.5 Iteration 4 

 During iteration four, we solidified many of our design choices, added more components, 

and added other functions to improve user interaction. 
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Figure 9.5: Fourth interface design iteration of PMKS+ 

 

A major focus during this iteration was the proximity of elements, an interface design 

principle we discussed in Chapter 4.1 Section B. Items in close proximity to one another should 

have related functionality. The following discusses the specific changes made to each element: 

 

Toolbar: 

 Toolbar has been moved to the upper left side of the screen and is no longer attached to 

the grid. We made this decision because similar applications such as SolidWorks and AutoCAD 

include toolbars at the top of the screen. A user from those applications should expect a toolbar 

to be placed at that position so we followed those expectations as closely as possible. The style 

of the toolbars has also been changed in order to separate them from other buttons that exist in 

the application.  

 

Logo: 

 In this iteration, we also considered the positioning of the logo. A logo placed in the top 

center of the screen acts as a title, implying that the user will spend the majority of their time 

reading while on the page. This style is similar to a newspaper and can be seen on news sites 

such as the New York Times and the Wall Street Journal. A logo placed to the top-right or top-

left implies that the webpage is focused more on interactions. Examples of this include Youtube 
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and Facebook. The logo was placed in the top left based on cultural expectations of websites. In 

the west, information is read from left to right and other modeling software follow the practice of 

keeping their logo in the top left and in-line with the highest-level menu, which in our case is the 

toolbar. We also added a border to the logo for emphasis, but reduced its size so it wouldn’t 

occupy too much space. 

 

About, Help, and Report Buttons: 

These buttons had their text replaced with icons. We felt that easily distinguishable icons 

could be more visually appealing and help to not overwhelm the user with too much text. The 

icons used were found at the Material Design website. 

 

Tables: 

 The table showing all joint information now occupied the left side of the screen and 

stretched from the top menu to the timeline on the bottom. This design mimics Solidworks’ use 

of a side menu that holds important functionality and information. Users will be able to view 

information about the grid in the closest proximity to it as possible. Tabs were added to the table 

to cycle it between joints, links, and forces. The additional tables were added to provide more 

information about the linkage system created by the user. 

 

Animation Timeline: 

 The timeline slider, which was previously located on the right side of the screen, was 

moved to the bottom. This was done to mimic a chronological timeline, which is commonly read 

left to right. . The default style was used initially and changed during future iterations. At this 

stage it provided no functionality. 

 

Animation Buttons: 

 We also added buttons that would play or stop linkage animation. We decided that it 

would help users control the animation itself, in case they want to make changes dynamically as 

the animation plays. 
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DOF Button 

 The DOF button was placed in the bottom left alongside the timeline because the two 

correspond to similar functionality: the animation of the system. A linkage can only animate if its 

degrees of freedom is equal to 1, therefore it made sense to put the DOF button next to the 

animation timeline. . The DOF button was displayed through text because we had difficulty 

representing its functionality through an icon. 

 

Tooltips 

 This iteration, we added tooltips, a textual hint that appears when hovering over a button. 

These were added to help users understand the functionality behind a button without having to 

click on it. Since we added the tooltips, some words from the tabs have been reduce or removed 

in order to, as mentioned above, not overwhelm the user with too much text. 

 

 

 

Figure 9.6: An example of a tooltip 

 

9.5 Iteration 5 

Iteration 5 was the next large update during our work in C-Term. Many new components 

were added. Previous components were updated or changed to better scale and improve their 

functionality. This iteration lasted longer than the previous ones, so the progress made was more 

significant than any previous iterations. 

 

As can be seen in Figure 9.6, the overall theme of the application has been changed and 

updated to match our “activity-driven” design.  
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Figure 9.6: Fifth interface design iteration of PMKS+ 

 

Our main focus in Iteration 5 was to scale the components better and update the design 

even further than the previous iterations. To achieve this, we needed to slightly redesign all the 

components on the user interface to function and scale better. We shall go into further detail as to 

the steps that were taken and the components that were changed and added. 

 

Logo: 

 The logo was slightly enlarged and we increased the border around it in order to 

distinguish it better. Since the name of the application was changed to PMKS+, a new logo 

needed to be designed. For this iteration we kept the same one. Having a logo return users to a 

home page is a common practice and seen in websites such as Youtube, Facebook, and Twitter. 

Since PMKS+ is a single-page application, clicking the logo should therefore refresh the page. 

We decided to add this functionality to PMKS+ to cater to these user expectations. 

 

About, Help and Report Buttons: 

 The About, Help and Report buttons were also changed again. The black color and 

pictures were really confusing and did not match the overall theme of the website so we decide 

to revert to our previous design with words and neutral colors (Figure 9.7). 
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Figure 9.7: About, Help and Report buttons 

 

Toolbar: 

 Scaling and positioning the toolbar was one the biggest issues we had in previous 

iterations. Besides the overall design, we had to reconsider the way it was implemented in the 

code. Before Iteration 5, the toolbar were just buttons to hide or show their contents. The buttons 

would just change the display of these components into none or block. This was a simple and a 

fast implementation but it turned out to be hard to scale and even harder to position. We decided 

to disregard this implementation and use the built-in Material Tabs in the Angular framework. 

These new tabs performed better in terms of scalability and positioning, and they even had built 

in transition animations that made the toolbar feel better when interacting with it. This update to 

the toolbar also made us think about the “hide” functionality of the tabs. Looking at other toolbar 

designs from software such as Microsoft Word, we came into the conclusion that the toolbar 

should always be visible and that the tabs should change between the contents of the toolbar. In 

terms of style changes, the toolbars tabs were redesigned to feel more like actual tabs. We added 

more visual feedback such as changes to colors and depth that better indicate to the user which 

tab is active, which tabs can be clicked, and how many tabs there are. For this iteration, the 

toolbar components are as follows: 

 

● Open File tab 

Tab where a user can open a previous saved file (Figure 9.8). 

 

Figure 9.8: Open file tab 
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● Save File tab 

Tab where a user can save the current file (Figure 9.9). 

 

Figure 9.9: Save file tab 

 

● Analysis tab 

Tab where a user can access the different analyses that can be produced (Figure 9.10). 

 

Figure 9.10: Analysis tab 

 

● Get URL tab 

Tab where a user can get and copy the URL link of the current page (Figure 9.11). 

 

Figure 9.11: Get URL tab 

 

● Settings tab 

Tab where a user can adjust different settings for the application. For now there is only 

one setting that can adjust the units size (Figure 9.12). 

 

Figure 9.12: Settings tab 

 

Loading animation screen: 

 In this iteration, we also added a loading screen to provide more visual feedback to the 

user (Figure 9.13). The loading screen is a circle spinner that has an animation effect to visualise 

loading state. The inspiration was drawn from other loading animations that exist in the 

Windows operating system and in other websites such as YouTube. 
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Figure 9.13: Loading screen spinner 

 

 

 

DOF textbox: 

 In this iteration, the DOF button was changed into a text box. This change was done 

because we had recently  implemented an automatic DOF calculation each time a user modified 

the linkage. PMKS had this feature and we felt it should be in PMKS+ as well. 

 

Animation Buttons: 

 The animation buttons were changed to match the theme of the application. This was 

done by making the play and stop animation buttons round and give them a color similar to the 

logo. The timeline was left unchanged this iteration. 

 

Location textbox: 

 Since majority of interactions with the grid were to be done with the cursor, we felt it 

would help to display the current coordinates of the cursor at the bottom right of the grid. Our 

goal with this was to  improve cursor  precision when drawing linkages on the grid. 

 

Grid : 

 The grid background was changed in this iteration to match the theme of an actual grid. 

The background before was just dots. For this iteration we added grid lines. 
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Table: 

 The table was moved slightly further away from the toolbar to separate it since their 

functionalities are different. The tab system implemented in the toolbar was also implemented 

here. In this iteration, only the Joints table was implemented because the other two tables didn’t 

have functionality yet. The previous buttons of “clear table” and “refresh joints” were also 

removed. The refresh joints buttons was removed because joint synchronization between the grid 

and table was now done automatically. The buttons that remained, which are “add row”, “delete 

row” and “update” were also changed to match the theme of the grid buttons. They were made 

into rounds buttons with colors that matched the theme and the logo of the application. 

Furthermore, the table was changed to a more of a minimalistic design without the color that it 

had before. The font style and sizes were also changed to increase readability. 

 Following this iteration, we decided that the user interface design was in a good state and 

a more detailed design critique would be necessary for further improvements. To collect such 

feedback, we conducted a design critique session with our advisors. During this session, we 

presented our design to our advisors and went through all the elements of the design one by one. 

The session produced valuable feedback that was implemented in Iteration 6 of the user 

interface. 

 

9.5 Iteration 6 

 This iteration was done after the design critique session in order to further improve the 

design based on the feedback our team received. After looking back at the basic design rules, we 

re-examined each element of the interface to make sure they were properly placed and aligned. 

Iteration 6 was smaller in duration compared to Iteration 5, but resulted in  big improvements  

overall as shown in Figure 9.14.  
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Figure 9.14: Sixth interface design iteration of PMKS+ 

  

 In this iteration, we redesigned many elements and also added some new elements that 

we will describe below. Our goal was to change the overall theme once again to match our 

project standards and our previously established design rules. We also used this iteration to 

conduct a user evaluation, as described in Chapter 15. In the following subsections, we go into 

more detail about all the elements that were changed or added. 

 

Logo 

 Since our new application is called PMKS+, we felt it necessary to replace the old logo. 

The new one was still a placeholder and subject to change in a future iteration. 

 

Buttons 

 The theme of all buttons were changed once again. We wanted to make sure that users 

could tell them apart from the tabs so we decided to give them their own design. All buttons 

were given rounded corners, visual feedback when hovering and clicking, a new font and new 

size. The only buttons that were different from these were the animation controls. 
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Figure 9.15: The new button design 

File tab 

 The previous open file and save file tabs on the toolbar were merged in order to create a 

new tab called “File”. After some discussion, we decided to merge the “Open File” and “Save 

File” tabs under a single, unified tab on the toolbar. These buttons had similar functionality and 

could therefore be grouped to conserve space. We also added buttons to open and save linkage 

files under this tab. When clicked, these buttons would bring up the native file manager 

application on the user’s computer. 

 

Figure 9.16: The new file tab 

Analysis Tab 

 In this iteration, we added a pop-up window to display further information about the 

current linkage. This information appears when clicking on one of four buttons in the analysis 

tab. Figure 9.17 shows the contents of the tab. Each button corresponds to a different type of 

evaluation: static, dynamic, stress, and kinematic. In this iteration, these windows were just 

placeholders and did not yet display information about the current linkage. As shown in Figure 

9.18, the popup windows are tables with analysis information. They also include buttons that 

would allow a user to export the data in the tables. When an analysis window is visible, the rest 

of the page elements cannot be accessed and are greyed out until a user decides to close it by 

clicking on the close button at the top right of the page. 

 

 

Figure 9.17: The analysis tab 
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Figure 9.18: The analysis popup window 

Table  

 The tabs in the table were also resized. This was done to differentiate them from the 

toolbar tabs since they each serve a different purpose. The Links and Forces tabs were greyed out 

and disabled because they had no functionality at this iteration and we did not want them confuse 

users during user evaluations. The previous buttons that existed in the table, besides the add joint 

button, were also disabled and removed due to bugs in their functionality.  

 

Animation Buttons 

 The colors of the animation buttons were changed to a neutral grey. Feedback received 

before the evaluation indicated that their colors were difficult to distinguish on screen. Thus, we 

changed them to grey color to blend in with the other elements lining the bottom of the window. 
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Grid Control Buttons 

 In this iteration, we also added new buttons for zooming and re-centering. These buttons 

were placed at the bottom right of the grid because they relate to panning and zooming while the 

other nearby buttons control animation. A user can now control the zooming of the grid with the 

plus and minus buttons and can re-center the grid by clicking on the home button. 

 

Grid 

 The grid lines now properly correspond with the coordinates of the grid, making the grid 

a more accurate representation of position compared to previous iterations. The axis lines were 

also given a bigger stroke width to differentiate them from grid lines. 

 

 In addition, we also worked on improving the alignment of elements and fixing visual 

bugs that we found in previous iterations. We made sure that all elements were aligned properly 

in their groups and that their sizes were appropriate. 

 

9.5 Iteration 7  

 This iteration was the final iteration of the user interface design. It was done after the 

PMKS+ user evaluations. As can be seen in Figure 9.19, not many changes were made since 

users were quite satisfied with the changes to the interface. More details about the evaluation 

results can be found in Chapter 15. At this point, we were finished with the user interface 

iterations and no further changes were made to the user interface in this MQP. 
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Figure 9.19: Final interface design iteration of PMKS+ 

 

In this iteration, we mostly applied feedback received from the PMKS+ user evaluations. 

These changes included alignment issues, font color, button color and some extra elements. 

Detail about each change are described in the following subsections. 

 

Logo 

 In this iteration we changed the logo to its final design. We decided to change it since our 

previous logo was not obvious to the user in the application and did not match the design of the 

application.  

 

Grid Buttons 

 The buttons were changed slightly to match in size and color. We also added a new 

button that clears the grid without refreshing the page. 

 

Animation Buttons 

 We added some colors to the animation play and pause buttons. Based on feedback we 

received, the grey color was implying that the buttons were disabled and blending in with the rest 
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of the grid elements. Thus, we changed the colors to green and red to that imply that they are 

usable. 

 

Animation Position  

 According to feedback from our advisors, it was not clear which animation position a 

user was currently at in the analysis tab. We decided to add a new text box next to the animation 

timeline to show the current angle of the animation. With this, users can always see in which 

animation position they are at and can select it in the analysis window. 

 

 

 

 

 

 

  



 

65 

Chapter 10 

Linkage Creation Methods 

In this section, we describe the methods of creating linkages, their individual 

components, and the rationale for their inclusion in PMKS+. 

10.1 Linkage Table 

 The linkage table contains three separate tabs for creating elements. Links and joints can 

be created through their respective tabs by appending a new row and manually specifying the 

parameters for new elements. Forces are applied to an existing link through their own tab. Using 

the linkage table is the most precise way to create and position elements because it requires exact 

x and y values. Adding joints through the linkage table requires a minimum of six actions, one to 

add the row, and one for each required linkage attribute (id, type, x, y, and connected link). 

 

 

 
 

Figure 9.7: Adding a new joint via the linkage table. 

 

 

We decided to incorporate this linkage creation method in PMKS+. It added a level of 

precision to linkage creation that was otherwise not possible. Previous users of PMKS should 

also find it as the most familiar method when migrating to the new system. Since it does not 

conflict with any other functionality, there is low risk that the linkage table method will 

compromise the usage of other methods. 
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10.2 Grid 

The grid refers to the section of the interface that displays linkages on a cartesian 

coordinate plane. Creating joints, links, and forces directly on the grid is a new feature provided 

through PMKS+. This system was designed to mimic the actions performed when drawing a link 

by hand. As such, it should feel natural and intuitive to the user.  

We initially prototyped three methods of linkage creation: Click-Drag, Click-Click-

Connect, and Click-Click. In Click-Drag, a user holds down the cursor at the first endpoint, 

moves it to the location of the second other endpoint, and releases. In Click-Click-Connect, the 

user clicks to create individual, unlinked joints. These joints are then manually linked by the 

user. In Click-Click, users click once to create a joint and again to specify the other. The joints 

are linked automatically. 

Due to technical constraints at the time, it was not possible to have all three methods run 

simultaneously. Instead, we designated one as the default method, and the others as toggleable 

options in the user settings. We crafted a list of criteria to rank each method and determine a 

default. The criteria are: 

● Hand Drawing Similarity  

This refers to the method's similarity to drawing a link by hand. A method that scores 

high here should feel natural and incorporate the actual hand motions of drawing a link 

by hand. 

● Efficiency  

Creating linkages is the primary action a user must perform in PMKS+. Reducing the 

number of actions this takes is essential in creating an alternative to the linkage table. 

● Trackpad Usability  

This refers to the method’s usability using laptop trackpads. An advantage PMKS+ has as 

a web app is that it can be run on any modern computer in any location. Therefore, any 

actions the user must perform should feel natural and smooth on both laptop trackpads 

and with a mouse. 

Using these criteria, we evaluated each of these linkage creation methods. 
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Click-Drag: 

In Click-Drag, a user holds down the cursor at the first endpoint, moves it to the location 

of the second endpoint, and releases. 

Score: 

● Similarity to hand-drawing: 5/5 

Click-Drag was designed to mimic the actions of drawing a line on paper. When hand 

drawing a line, the pencil is held down on one endpoint and dragged towards the other, 

where it is released. This is similar to Click-Drag, where the cursor is held down from 

one endpoint to the other. 

● Efficiency: 5/5 

Click-Drag is accomplished by a single click to create both joints and a mouse movement 

to specify the distance between them. 

● Trackpad Usage: 2/5 

A drawback of Click-Drag is that long links need to be dragged long distances. Since 

laptop trackpads are confined to a small range of motion, it is difficult and sometimes 

impossible to create these links. 

 

Final Score: 12/15 

Click-Click-Connect: 

 In Click-Click-Connect, links are created by creating two joints and linking them. This 

method removing dragging so that it could be more usable on trackpad devices.  

Score: 

● Similarity to hand-drawing: 2/5 

Click-Click-Connect is very disconnected from hand drawing links. Creating two points 

and connecting them is not as natural and efficient as dragging from one point the other. 

● Efficiency: 2/5 

A problem with Click-Click-Connect is that it requires a minimum of 4 actions to 

complete. Two clicks to create the joints, a mouse movement to specify the distance, and 

an action to manually link the two together. 

● Trackpad Usage: 5/5 
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Click-Click-Connect does not involve holding and dragging the cursor. This means that 

trackpad users can easily place the second joint anywhere on screen. 

 

Final Score: 9/15 

Click-Click: 

In Click-Click linkage creation, users click once to create a joint and again to specify the 

other. The process automatically links the two joints, bringing the total number of clicks down to 

two. Click-Click behaves similar to drawing, just without the obstacle of dragging in order to 

help trackpad users. The process is detailed in Figure 10.2. 

Score: 

● Similarity to hand-drawing: 4/5 

Click-Click functions similar to Click-Drag, just with the drag being replaced by a second 

click. While the actions are similar, it does lack the feeling of dragging a pencil across a 

paper. 

● Efficiency: 4/5  

Click-Click requires three actions to complete. One click for each joint and one mouse 

move to specify the distance between them. The fourth action of linking is done 

automatically after the second click. These three steps are illustrated in Figure 10.2 

below. 

● Trackpad Usage: 5/5 

Click-Click requires no dragging, meaning trackpad users can comfortably place the 

second joint anywhere on screen. 

Final Score: 13/15 

 

 



 

69 

First Click Move Cursor Second Click 

 

Figure 10.2: The three stages of creating a link in Click-Click 

 

10.3 Final Decision 

While Click-Drag was difficult to use on a trackpad, we did find it to be the fastest and 

most natural way to drag links while using a mouse. Therefore, we decided to preserve its code 

so that it could be used as a toggleable alternative in the future. 

Click-Click-Connect scored low in all areas except trackpad usage. The disconnect from 

hand drawing and the efficiency required made it a very unnatural method. We also discovered 

that Click-Click-Connect introduced another problem outside of the three criteria being 

measured. By using Click-Click-Connect, it was possible for the user to leave unlinked joints in 

grid. This is a critical flaw because the kinematic calculations performed in PMKS+ assume that 

the system is comprised of only a single linkage. Such an error could lead to incorrect 

calculations being performed. Due to these flaws, we felt it was necessary to reject Click-Click-

Connect completely. 

We decided that Click-Click should be the default option in PMKS+ because it proved to 

be the most usable linkage creation method that worked on both mouse and trackpad. While 

Click-Drag performed slightly better in efficiency and hand drawing similarity, we felt it was 

more important to set the method that was most usable on all devices to default. 
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10.4 Context Menu 

In this section, we describe the context sensitive menu, a feature in PMKS+ that allows 

users to perform additional actions from a right mouse button click. The context menu in 

PMKS+ extends a user’s interactivity with the Grid Component. This allows users to edit joint 

and link attributes directly from the grid. The action can be performed in as few as two clicks 

(one to open the menu and another to select the action). 

 

10.4.1 Advantages 

We outlined three advantages that a context menu brings. 

● Straightforward. The context menu is the most direct way to modify elements of a 

linkage in the grid. Rather than searching for the joint or link in the linkage table, a user 

can right click on it in the grid and modify its properties directly. 

● Descriptive. The context menu textually lists out features it can perform. It is easy for a 

user to understand what actions are available to them and what each action does. 

● Intuitive. Many web and desktop interfaces such as Google Chrome and the Windows 

home screen incorporate context menus. Users expect such functionality to exist on a 

right mouse click. 

 

10.4.2 Disadvantages 

● Speed. Because each interaction takes at least two clicks, repetitive tasks can become 

tedious. Users will have to click at least twice to complete each action. Hotkeys are much 

better for performing frequent tasks. Hotkeys can be held down meaning that the 

minimum number of clicks required is only once per task. 

● Simplicity. Features provided through the context menu should be very simple. Complex 

actions such as setting a joint’s precise x and y coordinates are better performed in the 

linkage table. 

 

 

10.4.3 Activities Bound to the Context Menu 

Based on the strengths and weaknesses outlined above, we decided to bind the following 

actions to the context menu: 
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● Creating Joints: User feedback on the Click-Click linkage creation method indicated 

that users were unintentionally clicking on the screen and creating links. By binding link 

creation to a context menu, we are minimizing this error by requiring them to confirm the 

action through a click. A downside to this is that link creation will require two more 

clicks than what was previously possible. We felt that this change was necessary to 

prevent accidental link creation. It also frees up the mouse click to perform other features 

such as screen panning.  

● Deleting Joints: Deleting a joint is a one time action. All the data required for the 

deletion process can be gathered by the initial right-click on a joint. 

● Ground/Input Toggle: Setting a joint as a ground or input joint is a simple toggle action. 

Since there can be many grounded joints in a linkage, a hotkey could also exist as an 

alternative for this action. 

● Linking Joints: The context menu is able to trigger only the start of the linking state. The 

action of selecting a second joint to link to follows the “Click-Click” style for connecting 

joints. 

● Adding Forces: Adding a force requires 2 clicks. The first click sets its coordinates and 

the second one sets its magnitude and direction. Similar to linking joints, the context 

menu is used to trigger the first action. . 

 

   

Right clicking on the grid 

itself 

Right clicking on a joint Right clicking on a link 

Figure 10.3: The context menu when interacting with three different objects in the grid.  
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Chapter 11 

System Design 

11.1 Analysis of Existing Application 

In this section, we examine the design and structure of the PMKS source code and its 

relation to the structure of PMKS+. 

11.1.1 What is Microsoft Silverlight? 

 PMKS was developed using the Microsoft Silverlight framework. Silverlight is a 

deprecated web framework used to develop internet applications. Silverlight applications are 

accessed via an internet browser and enabled through a plugin. Silverlight leverages C# and 

XAML to provide an alternative to the standard JavaScript and HTML web development 

environment. XAML allows for rich media visuals and C# enables powerful, type-enforced 

computations. Silverlight applications are structured around the Model-View-ViewModel design 

pattern. This pattern separates user interface (View) and data (Model) while still allowing for 

intercommunication via a translation entity (ViewModel) (Stieglitz, 2017). 

11.1.2 Code Structure 

The PMKS Source code is structured around three components. The User Interface, 

Simulator, and Model. Each of these components are called through the MainPage class in 

PMKS (As seen in Figure 11.1). 

● The User Interface (UI) refers to the visuals displayed on screen to the user. This 

includes the coordinate grid, animation timeline, and any other user input fields.  

● The Simulator is a set of mathematical functions used to calculate degrees of freedom, 

movement curves, and all other kinematic analysis. These functions are all abstracted into 

a single Simulator Object that PMKS can call upon when necessary.  

● The Model refers to the data structures used to store all user defined data. This includes 

the forces, joints, links and materials of the linkage. 
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Figure 11.1: A diagram showing the three main components in PMKS and their parental relationship 

towards MainPage class. 

11.1.3 Code Flow 

Whenever the set of on-screen linkages are modified, PMKS will execute a set of steps to 

calculate and reanimate the linkages. These steps are: 

1. Save the new data to the Model 

2. Call the Simulator object to check the degrees of freedom of the linkage. 

3. If it returns 1, ask the simulator to calculate the full movement of the linkages and 

calculate the curves each joint moves along. Else, end the function and draw the static 

linkages on screen. 

4. Draw the movement curves as lines on the coordinate grid (UI). 

5. Animate the linkages by moving them along the movement curves. 

11.2 New System Architecture 

 In this section we describe the system architecture behind the PMKS+ application.  

11.2.1 Design Pattern 

PMKS+ follows the Model-View-Controller architectural design pattern, In Model-View 

Controller, software components are organized by functionality. Components in the View 

directly control what is shown on screen to the user. These include the Grid, LinkageTable, 
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Toolbar and AnimationBar components. Components in the Model are responsible for storing 

persistent data and logic in the program. The Model is represented by the Simulator Class, which 

stores the linkage data and runs all kinematic calculations. Components in the Controller mediate 

the flow of data between the model and all other components. The MainPage also acts as this 

controller by using a 2-way data binding, (a data synchronization system provided by the 

Angular Framework), to synchronize the array of joints and linkages between components. This 

means that any time the user modifies the linkage in one component, the change will 

immediately be reflected in all other components. This is especially important when 

synchronizing data between the LinkageTable and Grid component. 

 

 

Figure 11.2: PMKS+ Component Diagram. Components are grouped by their functionality in the Model-

View-Controller design pattern 

11.2.2 Primary Classes 

There are two main data types stored in PMKS+: Joints and Links. Every instance of 

these classes created by the user are defined in the MainPage component via an array. 

 



 

75 

● A Joint represents a single point of connection between two or more links. It 

contains the following five attributes: 

○ Location: x and y coordinates 

○ Links: A list of different links the joint is connected to. 

○ Type: The type of joint (revolute, prismatic, pin-in-slot, or gear). 

○ Ground: A boolean that indicates whether the joint is connected to the 

grounded link. 

○ SVG: A reference to the graphic image of the Joint on screen. 

● A Link represents the connection of two or more Joints. It contains the following 

two attributes: 

○ Joints: An array representing the number of joints that make up the link. 

○ SVG: A reference to the graphic image of the Link on screen. 

11.3 Grid Component States 

Overlapping user input binds became an issue as functionality in the Grid Component 

expanded. An example of this is the way the left mouse button interacts with joints. When a user 

presses the left mouse button down on a joint, they can drag it across the grid to change its 

location. However, if the user had started creating a link (with click-click link creation), pressing 

on a joint would instead create a link between the joint being created and the joint clicked on. 

Complex user input conditions such as these needed to be more readable and organized in the 

code. And since more functionality was going to be added, it would only become more difficult 

to track which actions were bound to which button and if any new actions would cause overlap.  

To overcome this obstacle, the code in the grid component was refactored to incorporate 

states. Each state would limit the amount of functionality a user could perform at a given time, 

making it difficult for overlapping actions to exist. To model this, we created a state diagram 

(figure 11.4) and mapped out each potential state and the actions it takes to get there. 

 

11.3.1 Benefit to the Developers 

When a user interacts with the grid, our new design checks which state the program is in 

and runs the corresponding function. For instance, if a user clicks on a joint, the program will 

check the state. If it is in the waiting state, the program will run the function to begin moving the 
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joint. If it is in the linking state, the program will instead run the function to link the clicked on 

joint with the previously selected joint. This refactor improved the readability of our code and 

also helped ensure that we were not developing features with overlapping user input. 
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Figure 11.3: The state component diagram for the Grid Component.  
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11.3.2 Benefit to the User 

States are represented by visual indicators to the user. These indicators help the user 

understand what functionality is available to them without exposing the inner workings of the 

code. For example, the linking state is represented by a thin preview line connecting the user’s 

mouse cursor to the joint they are linking from. This line signals to the user that their next action 

will be connected to the joint on the other end of the preview line. Figure 11.4 demonstrates this 

signal as shown to the user. 

 

   

The link creation state. It is 

indicated by a thin black 

preview line and an opaque 

starting joint. 

The linking state. It is 

indicated by a thin blue 

preview line and blue 

highlights around joints that 

are going to be linked. 

The moving state. It is 

indicated by a red outline 

around the joints currently 

being moved. 

 

Figure 11.4: Visual hints of states for users.   



 

79 

Chapter 12 

Simulator Class 

 

PMKS utilizes a standalone Simulator Class to perform kinematic analysis. Such analysis 

includes finding the degrees of freedom and the full movement of linkages. Once calculated, 

these analysis values are sent to the PMKS+ interface for linkage animation, or directly to the 

user for manual kinematic analysis. 

12.1 Simulation Loop 

The simulation loop is the main function executing during linkage movement 

calculations. A properly formed linkage rotates links either partially or fully around each 

grounded joint in the system. The simulation loop runs an algorithm that determines the position 

of each joint every 16.7 milliseconds (each of these millisecond intervals is referred to as a time 

step) during its motion and saves its output in a Time-Sorted List object. By rendering the 

linkage’s position every 16.7 milliseconds we were able to run the linkage animations at 60 FPS. 

 

 

Figure 12.1: Object Diagram for the Time-Sorted List. 

  

A Time-Sorted List is a matrix comprised of rows of positional data. Each row (referred 

to as a TSLRow in Figure 12.1) contains a time step and a list of each joint in the linkage 

(referred to as a TSLJoint). Each TSLJoint stores a joint’s id, position, velocity, and acceleration 

at the current time step. Depending on the range of a linkage, a Time-Sorted List may contain 1 

to 360 TSLRows. This represents the 360 time-steps required to calculate a full 360o rotation. 
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Figure 12.2: Activity diagram for the simulator loop. 

 

 
 

 

Input linkage rotates around 

the grounded input. 

Able to calculate joint 

positions at each time step. 

Input linkage has rotated a 

full 360° and calculated joint 

positions at each increment. 

 

Figure 12.3: Scenario A for simulator termination. 
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Input linkage rotates around 

the grounded input. 

Linkage is unable to move 

further in the current 

direction. 

Simulation reverses until 

reaching the starting position. 

 

Figure 12.4: Scenario B for simulator termination. 

 

For each time step of the input linkage, the Simulator will attempt to calculate all joint 

positions. Figure 12.2 details the activity of the simulator at each time step. If calculations were 

successful, it will save the locations of each joint to the output matrix, increment the angle 

rotation, and continue. The simulation will terminate when either: 

A: The input linkage has made a full 360° rotation. (Figure 12.3) 

B: An input linkage is unable to rotate any further. (Figure 12.4) 

 

In the former case, the simulation will end because all joint positions have been 

calculated. For the latter, the linkage cannot go further and can only move backwards. In order to 

simulate a full range of motion, the simulation will reverse direction until it reaches its starting 

position. Since the new joint positions will be the same as they were going forwards (only in 

reversed order), the time sorted list will append a reversed copy of itself. 

12.2 Joint Traversal Algorithm 

 To calculate each joint’s position, the Simulator visits every joint in the linkage and 

attempts to derive their new position using one of four techniques. 

1. Grounded joints never move and are always located at their starting position. 

2. Joints connected to the input joint are solved by rotating themselves one degree around 

the input. 
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3. Joints connected to at least two known joints can be solved using circle intersection 

(described in Section 12.3) 

4. Joints not connected to two known joints can be solved using the non-dyadic position 

solver. This equation was included in PMKS but was not implemented in PMKS+ during 

the course of this project. 

 

Joint Traversal Steps 

Before running through the algorithm, we move each joint into the unknown joint array. 

This array keeps track of which joints have yet to be solved. Since grounded joints do not move, 

we can begin by moving all grounded joints out of this array and setting their current position to 

their starting position. Next, we examine each joint connected to the grounded input. The new 

positions of these joints can be solved by rotating their position one degree around the input. 

Now we begin looking at the remaining unknown joints. If a joint is connected to two known 

joints, it can be solved using the circle intersection solver. If not, it is moved into a new array for 

ignored joints. Once all unknown joints are set as solved or ignored, we run the algorithm again 

on the ignored joints. This loop will continue running as long as a single joint is able to be solved 

at each time step. This process is outlined in Figure 12.5. 
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Figure 12.5: Joint Traversal Activity Diagram 

 

Figures 12.6 a-b demonstrate the process using a 6-bar linkage with multiple grounded 

and ungrounded joints. If the position of any joints cannot be determined during a time step, a 

special, “non-dyadic” solver is used to find the remaining joints.. In PMKS, this solver was very 

slow and computation intensive, so it is only run if the joints could not be found via the other 

methods. Due to the complexity of this solver, it deferred as a task for future developers of 

PMKS+. 
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1. All grounded joints are set 

as known. 

2. All joints connected to the 

grounded input are solved by 

rotating their position one 

degree. 

3. Joint C is not connected to 

two known joints so it is 

ignored. 

 

Figure 12.6-a: Example of the Joint Traversal Algorithm on a 6-bar linkage. 

 

   

4. Joint D is connected to 

known Joints B and E. It is 

solved using the Circle 

Intersection Solver. 

5. Joint F is not connected to 

two known joints so it is 

ignored. 

6. All joints have been solved 

or ignored. Recheck ignored 

joints for solvability. 

 

Figure 12.6-b: Example of the Joint Traversal Algorithm on a 6-bar linkage. 
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7. Ignored joint C is now 

connected to two known 

joints (B and D). It can be 

solved using the Circle 

Intersection Solver. 

8. Ignored Joint F is now 

connected to two known 

joints so it is solved using the 

Circle Intersection Solver. 

9. All Joint Positions are now 

known. 

 

Figure 12.6-c: Example of the Joint Traversal Algorithm on a 6-bar linkage. 

 

12.3 Circle Intersection Solver 

 If a Joint is connected to two or more Joints whose positions have been solved at the 

current time step, the Joint’s new position can be derived using the Circle Intersection Method. 

In this method, circles are drawn around the two known joints. The radius of each circle is the 

length of the linkage connecting the known Joint to the unknown one. The point of circle 

intersection that is closer to the unknown Joint is the unknown Joint’s new position. If there is no 

circle intersection at all, the linkage has reached its maximum rotation in its current direction and 

must reverse. 
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Joint B is rotated 1° to new 

position of B’. Joint C’s 

position is currently 

unknown. 

 

Two circles are formed from 

the two know joints 

connected to C. 

Joint C is moved to the closer 

intersection point. 

 

Figure 12.7: Example of using the intersection of two circles to find the new position of Joint C.  

https://www.36degreesnorth.co/how-to/
https://www.36degreesnorth.co/how-to/
https://www.36degreesnorth.co/how-to/
https://www.36degreesnorth.co/how-to/
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Chapter 13 

Animation 

 PMKS featured animations which moved links along a path for a set period of time and 

repeated that movement until the user paused the animation. Figures 13.1 and 13.2 show two 

frames in the animation of a four-bar system. The ungrounded endpoints of each link move 

across the drawn lines while the grounded points remain at their respective locations. 

 

 

Figures 13.1 and 13.2: Two instances in the animation of a four-bar system provided by PMKS. 

 

 Based on the functionality of PMKS, our team created a list of requirements that PMKS+ 

must accomplish in order to adequately animate linkages. This list includes: 

● Moving the endpoints of a single link along two separate paths for a period of time. 

● Drawing the rotation curves that each ungrounded endpoint moves along. 

● Pausing and manually advancing the animation. 

● Produce smooth animations based on the output of the simulator. 

 

 This led our team to consider several options for animating our cross-browser system. 

The main options included utilizing CSS animations by defining keyframes and creating custom 

animation functions to move each SVG element. In addition, our team researched the built-in 

SMIL animations which act on SVG. The option we chose needed to fit each of the requirements 
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described above. For this reason, we decided against using SMIL animations. Although they 

were built to handle SVG, this functionality could not animate based on the coordinate positions 

produced by the simulator. Our group chose to attempt to implement CSS animations before 

ultimately creating our own custom functionality. 

13.1 CSS Animations 

 The first method our group attempted to implement was CSS animations using an 

imported jQuery library. CSS animations include keyframe definitions which specify points in 

time during an animation where an object would be located. Using each of these points, the 

system moves the object to each location while interpolating the in-between points in order to 

create a smooth animation. CSS keyframes provide a means to create animations based on 

specific points in time that circumvents the asynchronous behaviours of Javascript and 

Typescript. Normally these keyframes are static but our system required the dynamic creation of 

the coordinates of each link based on the user’s input. 

13.1.1 JQuery.Keyframes 

 jQuery.Keyframes is a jQuery library that provides functionality to dynamically create 

and assign keyframes to elements with CSS stylesheets. SVG elements contain their own 

stylesheet and may therefore have their own specific keyframes. jQuery.Keyframes also includes 

functionality to pause and update keyframes, further incentivising its use. Our original plan was 

to use the coordinates produced by the Simulator Class for each link to define and attach 

keyframes to their SVG stylesheets. We would then update these stylesheets each time a joint or 

link is changed by the user. The problems with this solution came from the interactions between 

CSS and SVG elements as well as discrepancies between the imported library and our Angular 

environment. 

13.1.2 Issues with CSS Animations 

 Although CSS animations use keyframes to define states of an object at a certain point in 

time, they cannot act on the properties of objects in the same way. When defining the keyframes 

of an SVG element, the x and y positions are required for movement. Inputting these values will 

move the entire element to the specified coordinate. When specifying a keyframe in PMKS+, we 

needed only a single endpoint to move to the given location, while the other endpoint would 
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move to a separate location. This requires editing the properties representing each coordinate in 

the SVG, something that CSS cannot do. It is possible to produce something similar by 

combining translation of the element with rotation, but the math required to produce the 

animation in a dynamic environment produces a far greater problem. In addition, the 

jQuery.Keyframes library is incompatible with Typescript. Importing the library’s functions 

results in unresolved references that cannot be fixed. These problems led our team to approach 

animation through a different method. 

13.2. Custom Typescript Solution 

 The final option for animating links in a way which meets the established requirements 

was to create the functionality using Typescript. Designing our own functions allowed our team 

to create animations that perform exactly as needed, though with much more development time 

and effort required. This solution also creates the possibility for further improvements to the 

animation system including obtaining data about elements at specific points in time. 

 

 

Figure 13.3: The animation process after the Grid Component receives the output of the 

simulator class 
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 As shown in Figure 13.3, the animation process begins with a list of the coordinates that 

each joint in the system moves through while in motion. Each joint is then relocated based on its 

next position in the list. This relocation is repeated until the list is exhausted, by which point the 

joints have returned to their original positions. The entire process then repeats with each joint’s 

list restarting at their initial coordinates and the joints are relocated in the same manner. 

Although each step in time is not interpolated, the animation is made smooth by providing a 

small enough interval between relocations to draw the links at 60 frames per second.  

 This process uses the output of the simulator class (discussed in Chapter 12) as the 

positioning data for each joint. Once the simulator has determined how the linkage moves, the 

animation simply displays these results to the user. This process also handles when linkages 

reverse their direction. In these situations, the simulator output includes the reversed positions of 

each joint in the proper order. The animation only needs to loop through each time step in order 

to properly show reversing. 

 Drawing each link at a set rate required making the naturally-asynchronous Typescript 

work in a synchronous manner. This involved creating a timeout function which changed the 

position of a link, waits a set period of time, and then repeats to move the link to the next 

position. Although the code succeeds in animating multiple links based on the provided 

coordinates for each endpoint, the process is very intensive and involves several instances of a 

recursive function running indefinitely. If the animation is allowed to play forever in this way, 

the browser will eventually crash. The solution to this problem is to play the animation 

recursively until it returns to its starting position and then run the same function again, thus 

resetting the recursion. An alternative to forcing the asynchronous function to run in this way is 

to play the animation for a certain amount of cycles and then stopping until the user chooses to 

start again. 

 In order to initially test the validity of our animation functions, our team used exported 

data from PMKS as inputs for the linkages in our current system. This data included the 

coordinates for each link’s endpoints at a 0.0167 second interval (60 per second). As previously 

discussed in Chapter 11, the Simulator in PMKS+ produces the same position values that are 

calculated in PMKS, therefore this data acted as a viable substitute preceding the accurate output 

of the PMKS+ Simulator. 
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Drawing the curves which simulate the movement of each endpoint of a link involved a 

similar process to moving the individual endpoints themselves. The system creates a new SVG 

for each curve and places them onto the grid on a layer beneath the links and joints. The endpoint 

of a link and its rotation curve share a common path so in order to create the SVG, we provided 

the same inputs used to animate the connected link. Each curve was created as a path element 

which took the input series of coordinates and connected them using lines. Figure 13.3 shows the 

rotation curve of a joint in an animated linkage. 

 

Figure 13.4: A single animated link, the top joint rotates around the input joint on the given 

circle. 

 

Our Typescript animations provided the functionality to accomplish our objectives in 

animating linkages. When comparing the visuals between PMKS and PMKS+, there is very little 

difference between the quality of animation. In the future, the next improvements that should be 

made to the system include highlighting key positions in the animation and optimizing 

performance when large numbers of components are being animated. 

13.3 Animation Controls 

As previously discussed in Chapter 9, the PMKS+ interface includes an animation 

component with several controls. These controls include a play, start, and slide input, as shown 

in Figure 13.4. 
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Figure 13.5: From left; the start, pause, and slide input animation controls. 

 

The play and pause buttons set the state of the animations. Pressing play will start the 

animation of a linkage only if, for each joint in the system, the simulator has calculated a degrees 

of freedom of one and returned valid positional data. The pause button will halt the animation 

whenever it is playing at its current position, as shown in Figures 13.5 and 13.6, and pressing 

play again will make the animation reset. The animation will also halt when a user adds to the 

linkage, repositions an existing joint, or makes any other changes to the system.  

 

  

 

Figure 13.6 (Left) and Figure 13.7 (Right): The linkage moves from its initial position when the 

play button is pressed, shown left, and stops when the pause button is pressed, shown right. 

 

The slide input allows the user to control the set time of the animation. When the 

simulator calculates that the linkage has a DoF of one, setting the slide bar to any position will 

also set the linkage to its positioning at a corresponding angle. The bar takes in an input of 0 

through 1 and multiplies this number by the largest angle of the animation. As an example, if the 

animation includes 300 different angles and the user sets the slider to 0.5 then the linkage will be 

set to its position at the 150th angle. Figure 13.8 demonstrates the slide input set to 0 degrees 

while Figure 13.9 shows the same animation set to 180 degrees. 
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Figure 13.8: The animation of a linkage set to 0 degrees using the slide input. 

 

 

 

Figure 13.9: The same animation as in Figure 13.7 set to 180 degrees using the slide 

input.  
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Chapter 14 

Application Testing  

 In this section we discuss all the testing our team conducted with PMKS+. 

14.1 Browser Compatibility 

 In this section, we go into detail about the tests we performed to check for browser 

compatibility for PMKS+. The browsers tested were Google Chrome, Mozilla Firefox, Microsoft 

Edge, Opera, Safari and Internet Explorer. The tests we conducted were:  

1. Load up the application. 

2. Click on all elements, such as tabs and buttons and get the expected result. 

3. Make sure that elements of the interface scale to fit the space, so that they are all 

at their intended positions when the browser is in full window mode. 

4. Draw on the grid. 

5. Animate a simple linkage to make sure animation works. 

 

In the following subsections, we go into more detail about each browser test. For each 

browser, we did not stress test all possible drawings or animations. We tested a four bar linkage 

and its animation to see how it performed in different browsers and checked to see if there were 

compatibility issues. Further testing was conducted and is discussed in details in section 14.2. 

 

14.1.1 Chrome 

Since the application was primarily developed for Google Chrome, the tests we 

conducted for this browser were all successful. Since this test was our most successful one, we 

decided to use this test as our standard for comparison with other browsers. 
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Google Chrome Compatibility Test 

Test steps Compatibility test comments 

First  The application loaded and goes through the loading animation. All interface 

elements loaded as well. 

Second  After selecting all elements, we concluded that elements worked as expected. 

Third  The application scaled appropriately in full window size. There were some 

issues when the window size becomes too small as some elements 

disappeared. For full window size, the scaling was as expected in 1920x1080 

resolution of 100% scaling (Windows OS). As you can see in the two pictures 

below, the About, Help and Report buttons hid behind the toolbar when the 

window size changed. 

 
 

Fourth  The drawing worked as intended. All drawings showed up and the grid mouse 

interactions worked as intended 

Fifth  Animation worked as intended. All animations were smooth and quick.  

Conclusion PMKS+ is fully compatible with Google Chrome.  

 

 

14.1.2 Mozilla Firefox 

 Mozilla Firefox was the second browser we decided to test for compatibility. We faced a 

lot of issues with it as can be seen below from the comments on each step. 
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Mozilla Firefox Compatibility Test 

Test steps Compatibility test comments 

First  Application loaded. All elements loaded apart from the grid X and Y axis. 

Some elements had a slightly different styling like the animation timeline, as 

can be seen in the pictures below. After further development, the X and Y axis 

were fixed. 

 

Chrome:

 
Firefox: 

 
 

Second  All elements, besides the grid context menu, worked as intended. Mozilla 

Firefox was not detecting the right clicking on grid in an older version 

therefore the context menu was not appearing. In a new version the context 

menu appeared so we could test its compatibility 

Third  Everything scaled as intended in full size window same as Google Chrome 

but the browser had issues when run with a smaller window size. 

Fourth  We could not draw in the grid using the mouse since the context menu could 

not appear in an older version. In a newer version of Firefox, the drawing 

worked but the Y-axis was reversed so all drawings would appear in the 

opposite y-axis position. 

Fifth  Since we could not draw in the grid, we could not test the animations in an 

older version. In a newer version of Firefox, animations worked as intended. 

Conclusion The application loaded up and scaled, but the grid was not fully compatible 

with Mozilla Firefox in older versions. In newer versions, PMKS+ was 

compatible with the browser but has issues with the Y-axis translation and all 

drawings are reversed. This was due to SVG height and width properties 

being defined in a different format than in other browsers. This was fixed with 

an updated Mozilla Firefox browser version. 
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14.1.3 Opera 

 Opera (Version 60) was the third browser we tested and was as successful as Google 

Chrome.  

 

Opera Compatibility Test 

Test steps Compatibility test comments 

First  Application loaded but had a slight delay compared to Google Chrome. All 

elements loaded as well  

Second  All elements worked as intended.  

Third  The application scaled as intended. Opera had same issues with smaller 

window sizes like Chrome 

Fourth  Drawing worked as intended and was similar to Chrome. 

Fifth  Animation worked as intended. 

Conclusion PMKS+ is fully compatible with Opera Version 60 and is the second fully 

compatible browser. 

 

14.1.4 Microsoft Edge 

 Microsoft Edge (Version 44) was the fourth browsed we tested in our browser 

compatibility tests. Microsoft Edge proved to be as successful as Chrome and Opera. 
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Microsoft Edge Compatibility Test 

Test steps Compatibility test comments 

First  Application loaded similarly to Google Chrome. All elements loaded as well. 

We noticed some differences in alignment. 

 

Chrome: 

 
Edge: 

 

Second  All elements worked as intended. 

Third  The applications scaled as intended. There were some issues with the close 

window button on the analysis windows. The same window issues applied 

here as well. 

Fourth  Drawing worked as intended. 

Fifth  Animation worked as intended. The animation slider performed slightly 

different from other browsers. The slider, instead of going only forwards from 

1 to 100 percent, goes backwards to 1 when it reaches 100 and then forward 

again. This is likely a style of sliders specific to Microsoft Edge.. 

Conclusion PMKS+ is fully compatible with Microsoft Edge Version 44. For each test, 

Edge performed similarly to Chrome. 
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14.1.5 Internet Explorer 

 Internet Explorer (Version 11) was the fifth browser we tested for compatibility. PMKS 

was only working in Internet Explorer. Unfortunately, PMKS+ does not load up at all in this 

browser and hence, all the tests failed. Since official support for this browser is going away in 

January 2020, we do not need to ensure its compatibility for PMKS+. 

 

Internet Explorer Compatibility Test 

Test steps Compatibility test comments 

First  Application did not load and was stuck at the loading animation. 

Second  Since application did not load up, this could not be tested. 

Third  Step could not be completed. 

Fourth  Step could not be completed. 

Fifth  Step could not be completed. 

Conclusion PMKS+ is not compatible with Internet Explorer Version 11.  

 

14.1.6 Safari 

 Safari (Version 12) was the last browser we tested for compatibility. While some features 

worked, there were a lot of issues with the grid as mentioned below. 
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Safari Compatibility Test 

Test steps Compatibility test comments 

First  Application loaded all elements. 

Second  The application did not calculate the correct mouse coordinate values for the 

y-axis. This created an unexpected result when creating a link through the 

context menu or when dragging joints. The direction of vertical panning was 

also reversed. Joint and link creation methods through the table worked 

correctly. All other elements worked as intended.  

Third  The application scaled as intended. Safari had the same issues with smaller 

window sizes similar to Chrome. 

Fourth  Due to the error with the mouse coordinates, links created through the context 

menu are created in the wrong location. Joint and link creation through the 

table work as intended. 

Fifth  Animation works as intended. Animations are smooth and quick similar to 

Chrome. 

Conclusion PMKS+ was only partially compatible with Safari Version 12 because of the 

unexpected behavior of the grid. The browser passes a negative value used in 

the function for calculating screen coordinates. This issue was corrected after 

the test was conducted and the application now works on Safari as intended. 

 

 

 

14.2 Software Testing 

 In this section, we outline the various methods of software testing that were used for 

PMKS+. 

14.2.1 Unit Testing 

 Unit testing is a type of testing that ensures that functions at the lowest level are returning 

correct values. Unit testing is run in a standalone interface-less environment that mirrors the 

application environment. All interaction is coded in a separate test file that creates the 

application and runs through test cases sequentially. Because there is no interface, unit testing is 
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fast and can be run quickly to ensure new functionality does not break previously developed 

systems (Shore & Warden, 2008). 

 Our program utilized the Jasmine test framework, the official Angular testing 

environment. In this framework, Angular creates specific testing files for each component 

created. Each testing file mirrors the environment created in the regular application (Angular, 

2018). 

 An example of unit testing in our application is with joint creation and movement. In this 

test, we create a joint at (1, 1) and call the joint move function to move the joint up two units and 

to the right three. Afterwards, we test to ensure that the joint is now located at (4, 3).  

14.2.2 Integration Testing 

Integration testing is a type of software testing that takes the individual components 

tested in unit testing and tests the interaction between each other (Shore & Warden, 2008). Each 

integration test should be limited to testing a single action (i.e. creating a joint, moving a joint, 

etc.). There are three main approaches for Integration Testing: 

● Bottom-Up: Bottom up testing tests the lowest levels of the program first before moving 

to higher, parent-level components. This is advantageous if errors are more likely to 

happen in child components. 

● Top-Down: Top down testing tests the highest levels of the program first and then moves 

to lower levels. Top-Down is the opposite of Bottom-Up approach and should be used if 

errors are more likely to occur in parent components. 

● Big-Bang: Big-Bang testing tests the entire application at once. Big bang is the most time 

consuming approach and is only used if components are tightly coupled together. 

(Software Development Fundamentals, n.d.) 

  

For PMKS+, we utilized a bottom-up testing approach. We chose bottom up testing 

because all user interaction is performed in child components. The parent component (the 

MainPage) is invisible to the user and only exists to synchronize data between other components. 

Because of this, most sources of error originated from a child component so logically, we 

decided to check these first. 
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 The Jasmine testing framework was also used to ensure that correct values were being 

recorded before being sent to separate components. These tests can be viewed as checkpoints 

that ensure correct data has been gathered before being sent and allows us to identify points of 

failure quickly. This process is detailed in Figure 14.1. 

 

 
Figure 14.1 A diagram showcasing how test cases can be used to ensure the correct data is being passed 

between components. 

 

Since Jasmine tests are run through the Angular command line, we found it difficult to 

test the interaction between the GUI and the application. For this, we used Augury, an unofficial 

Angular testing extension for the Google Chrome browser. Augury lists variables of Angular 

components in real time while the application is running (Angular Augury, 2018). This allows us 

to interact with the user interface and check to ensure the correct values were being set. For 

example, we can create a joint via the grid and reference Augury to ensure the joint was created 

and synchronized between components (Figure 14.2). 
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Figure 14.2 The Augury interface displaying detailed joint information about PMKS+ while it is running. 
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Chapter 15 

PMKS+ User Evaluations 

This chapter will focus on the user interface evaluations conducted during development 

of PMKS+. These evaluations include testing performed with individual subjects after iteration 

five of development and the large-group sessions performed after iteration six of development. 

15.1 Individual Evaluations 

 In order to gather feedback about the interface design of PMKS+, our team conducted 

evaluations with individual participants. The focus of these evaluations was to determine 

whether the results of the users’ interactions with the interface matched their expectations for 

what would happen. 

 

15.1.1 Procedure 

 

 The evaluations were conducted with a single proctor and subject. The proctor issued the 

evaluation in two separate parts. The first had the subject look at sets of two diagrams each 

showing different versions of the interface with modifications to color and layout. The subjects 

would then indicate which version they preferred. The second had the proctor instruct the subject 

to complete tasks directly within PMKS+. Before each task, the proctor would ask the subject 

what actions they were expecting to perform to complete the task. After each task, the proctor 

asked the subject for their opinion on the actions they performed and how those actions differed 

from their expectations. The proctor recorded each of the subject’s answers by hand. 

5.1.2 Target Users 

 

 The target users for this evaluation were identified based on their college major and past 

experience with PMKS. This pool included Mechanical Engineering and Robotics Engineering 
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students as these are the main target audience of PMKS+. We also chose subjects with no prior 

experience with PMKS in order to eliminate pre-existing biases toward the system’s design. 

15.1.3 Evaluation Script 

 

 During evaluations, the proctor read a script (included in Appendix B) detailing the 

questions and instructions for the subject. The proctor did not answer any questions relating to 

PMKS+ or make further actions not detailed by the script. If the subject determined that they 

could not continue, the proctor would complete the step, make a record of the assistance, and 

have the subject continue from there. The full script can be found in Appendix A. The 

accompanying diagrams can be found in Appendix B. 

15.2 Final User Evaluations 

 Our team set up the final evaluation of PMKS+ to mirror the evaluation we performed on 

the original PMKS application as discussed in Chapter 8. The evaluation consisted of two 

separate sessions. The first involved a large group of subjects completing tasks within the 

application. The second included a proctor that observed individual subject’s interactions with 

PMKS+. A description of these methods can be found in the Session 1 and Session 2 

descriptions of Chapter 8. Subjects were able to access PMKS+ on a temporary Heroku cloud 

server (Heroku). These servers allowed us to quickly patch any outstanding bugs found prior to 

the evaluation.  

15.3 Differences with PMKS Evaluation 

Although our team used the same structure and methods as used for the PMKS eval for 

our evaluation of PMKS+, there were several changes made to the tasks and questions in the 

Google Form that subjects were required to complete. Some questions and tasks were excluded 

due to time constraints during development while others were included to gather feedback on 

aspects of the new system. 

The first difference between the two evaluations is the exclusion of forces, and 

subsequently, the output of kinematic analysis. The original evaluations included tasks that 

required users to apply a force to and perform a static analysis of the linkage they built. Forces 
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were not implemented in PMKS+ prior to the evaluations. Similarly, many of the aspects of 

analysis (forces, torque, acceleration, etc.) were omitted as well. The questions relating to these 

tasks were removed from the existing evaluation and replaced with questions relating to the new 

aspects of PMKS+. 

Our team included additional questions to determine which elements of the system 

subjects interacted with and the process by which they made those decisions. These questions 

included asking users about their expectations when creating links and what influenced these 

expectations. We also asked users for feedback on the new methods for creating linkages, as well 

as their comparison between PMKS and PMKS+. 

15.4 Data Analysis 

The group evaluation of PMKS+ included a much smaller sample size than the previous 

evaluations conducted on PMKS. The results include only 18 subjects, a steep drop compared to 

the previous 39 participants. The number of possible subjects available in March was 

significantly less than in October because the number of Mechanical Engineering classes that use 

PMKS as part of their curriculum was higher in October. Subjects were required to have some 

experience with PMKS which limited the pool of possible subjects to students from these 

classes. This disparity resulted in less reliable data for the group evaluation, thereby hindering 

our ability to draw conclusions. Instead, our analysis aims to identify possible areas of 

improvement or decline between PMKS and PMKS+. The one-on-one evaluations maintained a 

pool of five subjects similarly to the one-on-one sessions conducted in October. The results from 

these were used to modify the user interface for iteration seven of design. 

The experience level of subjects throughout our evaluations ranged from only slight 

experience with PMKS to around 6 hours of experience. This variance gave us a good 

distribution of past experience providing some evidence of subject performance based on time 

spent with PMKS. For both the PMKS and PMKS+ evaluations, subjects were given the same 

task to complete. Comparing the times that subjects took to complete this task to the amount of 

experience subjects have shows evidence of past users being comfortable and able to transfer 

skills from PMKS to PMKS+. Figure 15.1 details the amount of time subjects of both the PMKS 

and PMKS+ evaluations took to complete the given task.  
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Figure 15.1: Subject experience vs. time to complete task for both sets of evaluations. 

This data suggests an overall decrease in the time required to complete the given task. On 

average, the amount of time subjects using PMKS+ required was 3.66 minutes while those using 

PMKS required 6.87 minutes on average. The trend lines provided show a similar decrease 

between evaluations in time needed to complete the given task as subject experience increases. 

These trends suggest that skills acquired in PMKS may transfer to PMKS+. This could make 

previous users more comfortable and familiar with PMKS+. 

 In addition, more than 70% of subjects that used PMKS+ made three or fewer mistakes 

while performing tasks during the evaluation. In contrast, about 50% of subjects that used PMKS 

made a similar number of mistakes with almost 45% making 4 or more. These mistakes included 

creating too many links or joints, resetting the application, and similar actions. Figure 15.2 shows 

a comparison between the number of mistakes subjects made in the two evaluations. These data 

points suggest that PMKS+ could help users make less mistakes and therefore has improved 

usability over PMKS.  
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Figure 15.2: Subject error rates while performing tasks with PMKS and PMKS+. 

 Our evaluations also gathered some information about subject preferences and opinions. 

First, subjects in both evaluations were asked to rate the difficulty of creating links in their given 

applications. The average rating for PMKS+ is 4.06, which is slightly higher than the 3.64 given 

to PMKS. Although slight, this increase could suggest an improvement in creation methods 

catering to the expectations and experience of users. The data relating to this question is found in 

figure 15.3. 

Furthermore, figures 15.4 and 15.5 show data comparing PMKS+ to PMKS and other 

simulation software including SolidWorks and Working Model. The majority of subjects rated 

using PMKS+ as a better experience than PMKS. In addition, these subjects also rated their use 

of PMKS+ as either as good or better than their use of other simulation software. These results 

show that PMKS+ may meet or exceed some standards set by its predecessor and other leading 

software. 
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Figure 15.3: Subject rating of the difficulty of creating links between PMKS and PMKS+. 

 

Figure 15.4: Subject preference between PMKS and PMKS+. 
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Figure 15.5: Subject comparison between PMKS+ and other simulation software. 

 In addition to the data collected above, our team also found several recurring opinions 

provided through written feedback from subjects. Many reported that although creating joints 

was easy, subjects wanted to position joints using exact values. The most prominent suggestions 

to achieve this were to simply forgo using the mouse for creation methods and use only the table 

as well as allowing joints to “snap” to the grid so that they automatically align with common 

increments. Subjects took issue with selecting exact coordinates only when editing and not when 

creating joints.  

Some subjects also made comparisons between creating objects in other simulation 

software such as Working Model and CAD to PMKS+. The most common suggestion stems 

from creating objects in these software. Within these programs, creating objects or shapes takes 

place in a creating state where many user actions change to focus only on creating while other 

actions are limited until the state ends. There were also several subjects that suggested the joints 

and links shown on the grid could be better connected to the table displaying their information by 

showing a number or symbol on the grid to identify them. Also, subjects wanted better labels and 

more explanations for buttons. For example, subjects found that the button “Set as Ground” 

which could be used to set a joint as grounded or ungrounded did not convey both options 

clearly.  
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Chapter 16 

Conclusions 

The objective of this project was to create a modern successor to the PMKS application. 

To accomplish this, we defined four major goals.  

1. Develop PMKS+ to be a similar application to PMKS, so that previous users feel 

comfortable with it. 

2. Work on the compatibility issues that PMKS had to make PMKS+ work on most major 

browsers. 

3. Enhance the user experience by redesigning and improving both the features and the user 

interface of PMKS based on user feedback. 

4. Deliver a new application that is appropriately documented and maintainable. 

 

PMKS+ successfully met all of these goals. First, it carried over important features from 

PMKS such as the linkage table and grid. This allowed users of the previous system to feel 

comfortable using the new system. Our user evaluations suggest that users with more experience 

in PMKS were more proficient with PMKS+ and completed tasks faster than those with less 

experience. 

Next, we developed PMKS+ in Typescript and HTML using the Angular framework. 

This framework is supported by most major browsers including Google Chrome, Mozilla 

Firefox, Microsoft Edge, and Safari.  

In addition, we enhanced the user experience by adding mouse interactions and a context 

menu to the grid as well as a toolbar. The context sensitive menu and the mouse interactions 

allowed users to directly modify the linkage from the grid visualization itself. The toolbar 

provided a familiar way for users to interact with program functions. User evaluations show that 

subjects who used PMKS+ were, on average, faster than those who used PMKS. The majority of 

these subjects also preferred PMKS+ to its predecessor. We also implemented the Model-View-

Controller design pattern to ensure that the system architecture is straightforward and simple. We 

set up a unit test environment using Angular to ensure that future changes to the codebase do not 

break existing functionality.  
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Finally, we structured the system architecture to be easy to understand by designing it 

around the Model-View-Controller framework. This framework is fairly common in web 

applications and also taught to WPI students in most Software Engineering courses. 

Additionally, we provided code documentation through inline comments and a developer manual 

to make sure that PMKS+ is maintainable. 

The usability requirements detailed in Section 4.2.1 describe the goals we hoped to 

accomplish through our evaluations. First, we sought to allow users to easily create linkages with 

few actions required. The number of minimum steps required to create a linkage decreased from 

30 steps in PMKS to 13 in PMKS+. Additionally, based on the previously discussed evaluation 

results, we found that users could effectively apply prior experience from PMKS into PMKS+ in 

order to more effectively use the application. We also ensured that users had the ability to reset 

the system, learn to create linkages, and efficiently control the animations. 
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Chapter 17 

Discussion 

This section describes the pedagogical value of this project and how our experiences 

studying at WPI contributed to its success. 

Our first challenge as a team was to gather the appropriate knowledge to complete this 

project by researching migration options and web-design frameworks. We also sought advice 

from experts to make sure we selected the right tools to facilitate the development of PMKS+. 

Through this research and preparation, we gained valuable insight into the implications and 

process behind choosing the proper framework and environment for developing web 

applications. Our decision to use Angular also provided us valuable experience with a common 

framework in professional environments and large-scale applications. The experience we gained 

through “Webware: Computational Technology for Network Information Systems” course 

greatly influenced our initial decisions. 

The majority of projects our team members have worked on in the past have had very 

short timespans. Work done for computer science classes is limited to one or two terms of eight 

weeks each. Prior to this project, our experience with applications in a development cycle 

spanning multiple years was very low. We were able to gain experience in developing not only 

for short-term goals but also for an application that can be transferred to a new team in the 

future. Our having taken the “Software Engineering” class at WPI provided experience with 

group projects in a major development environment that aided our cohesion and synergy as a 

team. 

We decided to have group meetings and meetings with our advisors to keep track of the 

project’s progress. Our meetings with our advisors were held weekly where we discussed and 

presented work that was done the previous week and talked about the schedule for the next week 

to keep our advisors informed. We also gathered expert feedback on interface and linkage design 

during these meetings. Additionally, in order to keep track of our work, all of the team members 

wrote individual reports for every step of the project that was being done. For group meetings, 
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we followed a similar format to the advisor meetings, where we would inform each other of the 

progress done, problems faced and future work to be done. We also allocated the work in these 

meetings to make sure every team member was contributing to the project. 

 During this project, we followed a model-view-controller architectural pattern in 

designing the main components of the application. Our time in the “Object-Oriented Analysis 

and Design” class helped us to separate the functions of each component properly and restrict 

access to classes to their associated components. After using this design pattern, we found that 

maintaining proper encapsulation helped us protect our objects from unintentional changes that 

could cause errors in the system. 

 The evaluations our team conducted throughout the project were invaluable in gaining 

feedback for improving PMKS+. Creating these evaluations gave us a clearer understanding of 

the importance of gathering user feedback and developing for the user. At the beginning of 

development, parts of our initial designs included features that worked well from a developer’s 

perspective. After consultations with experts and conducting evaluations with prospective users, 

we found that our perspective of what worked best in PMKS+ did not match the users’ 

expectations. The design process requires that developers consider the user from the very 

beginning. During the user evaluations, we were able to incorporate the evaluation techniques we 

learned through the “Human-Computer Interactions” course. 

Through this project, we learned more about web development and design frameworks, 

how to properly redesign a legacy application and how to drive development through user 

evaluations, contextual inquiries and heuristic evaluations from experts. Although it does not 

have all the features that PMKS has, PMKS+ has the proper foundation and documentation to 

ensure future development can generate a worthy successor of PMKS that can further help with 

the studies of linkages.  
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Chapter 18 

Future Work 

Due to time and knowledge constraints, our team was unable to develop certain features 

in PMKS+. These features were not necessary to meet the original goals of our project and were 

therefore left for future development. Below we discuss the features that we think will further 

improve the functionality and usability of PMKS+. 

 

Mechanical Analysis 

 PMKS had the ability to perform static, dynamic, and stress analysis on a linkage. This 

analysis includes calculations for calculating Centers of Mass, Moments of Inertia, and Torque. 

While our current application does not provide the calculations for such analysis, it does show a 

preview window for the values before downloading. Further steps for the future include 

performing the calculations for each type of analysis, populating the preview windows with 

important values, and then allowing the download of the full analysis report to a spreadsheet. 

 

Saving and Sharing Linkages 

 PMKS provided the option of saving a linkage either through a spreadsheet or a web 

URL. PMKS + would require us to develop a system to externally store linkage data that can 

later be reinterpreted by the application. PKMS did this by directly storing the linkage data in the 

URL through url variables. 

 

Non-Dyadic Solver 

 While our current simulator class can solve movement for most simple linkages, it will 

occasionally run into situations where the linkage has a correct degree of freedom but can’t be 

solved. This situation arises when two unknown joints are unable to be solved via circle 

intersection. This problem is illustrated below in figure 18.1. 
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Identify all ground and input 

positions and label their 

positions as known. Note that 

Joint G is the input. A 

previous example (Shown in 

Figure 12.6) used Joint A as 

the input. 

Joint B is connected to the 

input so it can be solved by 

revolving it around the input. 

Joint C can be solved by 

circle intersection only if it is 

connected to two known 

joints. There is only 1 known 

joint adjacent to it so it is 

unsolvable using circle 

intersection. 

 

Figure 18.1: An example of a linkage that cannot be solved using circle intersection. 

 

To solve this linkage, an alternative to the circle intersection method must be applied. In 

PMKS this method was called the Non-Dyadic solver. Since this method is much more 

complicated than traditional position solving, we decided to leave this method out. In the future, 

Professor Radhakrishnan (who wrote the original position solver) plans to implement this 

method.  

 

Force Simulation 

 While forces can be applied in PMKS+, their effect on the simulation is ignored. We 

chose to omit force simulation because it was not required for us to simulate basic movement. 

The current implementation provides ample room to integrate forces into simulator calculations. 

 

Custom Link Geometry 

 One of the more complex features we left out was the use of custom link geometry. In 

reality, a link’s geometry is not restricted to the joints that define it. Rather it can be any shape 

and joints can exist anywhere. We chose to restrict link geometry to joints similar to the old 
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system as we did not want to run into any major design problems implementing a new feature 

such as this. We also felt there was no reason to introduce custom link geometry unless there was 

proper collision simulation behind it. Collision simulation would require us to add more complex 

physics simulation to the simulator class, something we did not have the time for. Without 

collision simulation, custom linkage geometry would only exist to add extra visual fidelity to the 

linkage in the grid. 

 

Before deciding to postpone development, we designed a system architecture that could 

incorporate custom link geometry. Links would be defined not by joints, but by guiding points 

known as nodes. A full description of the classes can be seen below. Figure 18.2 shows the class 

diagram containing each class. 

 

● A Node represents a geometry guiding point in a link. These are used to help define the 

shape of a single linkage without acting as a point of connection between other links. 

While the simulator does not currently take into account geometry, Nodes provide a 

platform for such functionality in the future. 

● A Vertex is the the abstract parent class of Nodes and Joints. 

● L, T, and C-Link classes are special instances of Links that use nodes to define their 

geometry. Since they are defined by classes, we are able to define new functions and 

attributes on top of the existing ones in the Link class. Such functionality includes the 

ability to easily adjust the curve of a C-Link and the fillet inside T and L-Links. 

 

 

Figure 18.2: A class diagram representing the class hierarchy. 
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Interactive tutorial 

 An interactive tutorial would provide a guided approach to help users learn PMKS+. An 

interactive tutorial would run through the basic steps of PKMS+ and blur out any parts of the 

interface not currently in use to help focus the user on certain tasks. Additionally, an instruction 

list could be displayed to help inform the user of the exact steps that need to be taken to complete 

each task. A mock-up of what such a tutorial could look like can be seen below in Figure 18.3. 

 

 

Figure 18.3.: A mock-up of what an interactive tutorial of PMKS+ would look like. 

 

 An interactive tutorial would need to be updated when any major changes are done to the 

system. Due to the rapidly changing elements of our interface during development, we decided 

that it would be better to leave out an interactive tutorial until more features are finalized for 

PMKS+. 

Implementation 

 PMKS+ was designed to be iterated on by Professor Radhakrishnan and WPI students in 

the future. Additions to the simulator class could be implemented by ME students. These include 

mechanical analysis, linkage collision, non-dyadic loop solving, and force simulation. 
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Meanwhile, additions to the UI and architecture could be implemented by Computer Science 

students. These include saving linkages, user settings, linkage geometry, and an interactive 

tutorial. 
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Appendix A: PMKS User Evaluation Response Form 
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Appendix B: PMKS+ User Evaluation Response Form 
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Appendix C: Individual Evaluation Script 

 

1. When responding to questions, be as specific as possible and include all parts of your 

thought process. When performing tasks in the application, state any thoughts that you 

have out loud. The proctor will not be able to answer any questions you have. If you 

believe you cannot accomplish a task, inform the proctor and they will complete the 

current step for you. The proctor will record your answers in writing. If you need a 

question repeated ask the proctor. 

 

2. For your reference, Image A shows a linkage. This linkage is composed of three links, the 

colored bars, and connected by 4 joints, the circles. We will refer to the 2D plane that 

these objects are on as the “Grid”.  

 

3. What is the significance of the black colored joint? In other words, what does the join 

being black signify? 

 

4. What is the significance of the green colored joint? In other words, what does the joint 

being green signify? 

 

5. (If the subject could not tell the purpose of the joints, the proctor will explain with the 

following) The black joint signifies a grounded joint. The green joint signifies the input 

joint. 

 

6. Look at images B and C. Which design do you prefer? 

 

7. We will now work with the application. Navigate to the opened tab in Google Chrome. 

 

8. Direct your attention to the table on the left side of the screen. Describe what the table is 

displaying and what parts of the grid relate to the table. You may interact with the table 

while answering. 

 

9. What do you expect would happen if you were to click on the grid? Drag the grid? Right-

click on the grid? 

 

10. We will now ask you to create a single link in the application. First, describe the process 

you believe you will need to follow in order to create a link. For this task, a link is 

composed of two joints which act as endpoints and are connected with a bar. 
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11. Click on an empty space on the grid. Once you have done that, click on another empty 

space to create a link. Was this process different than what you expected? What did you 

like about the process? What did you dislike? 

 

 

12. What do you expect would happen if you were to click on the link at this moment? 

 

13. What do you expect would happen if you were to click on a joint at this moment? 

 

14. What do you expect would happen if you were to drag a joint at this moment? 

 

 

15. Now, hold down the shift key and click on a joint on the grid. Describe what happened 

when you clicked on the joint. What does this action signify? 

 

16. Now, click on an empty space on the grid so that the joint is un-highlighted. Then, right 

click on a joint. Which method, shift-clicking or right-clicking, do you prefer to select a 

joint? Which method is clearer in what it does? 

 

17. Next, you are going to create another link and attach one of its endpoints to an existing 

joint from the original link. Before using the application, how do you expect to attach a 

new link to the existing one? Now, try to attach a new link. 

 

18. Add another link attached to the end of the newly created link so that it is similar in shape 

to the diagram shown in Image D. Also, try to match the colors of the colors of the joints. 

Don’t forget to share your thought process out loud. 

 

19. (If the system needs to be reset due to the user input too many joints/reaching an error 

state, the proctor should take control of the system, refresh the page, and create a 4-bar 

linkage, recording the subject’s trial as a failure) 

 

20. Direct your attention to the icons at the bottom of the screen. 

 

21. Click on the box that says DoF at the bottom left of the screen. This is a temporary step to 

perform necessary calculations. 

 

22. What do you expect to happen when you press the green button to the right of the DoF 

box? 

 

23. What do you expect to happen when you press the red button to the right of that? 
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24. What do you expect the slider that runs along the length of the screen to do? 

 

25. Now, press the green button. How does what happen differ from what you expected? 

 

26. Now, press the red button. What do you expect to happen if you press the play button 

again? 

 

27. Move the slider at the bottom of the screen. Does the movement of the linkage match 

what you expected? 

 

28. What is your opinion on the design and layout of these elements, the buttons and slider? 
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Appendix D: Individual Evaluation Paper Examples 

 

Screenshot demonstrating PMKS+ with colored elements. 

 
 

Screenshot demonstrating PMKS+ with monochrome elements. 
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Image A 

 
Screenshot used to ask subjects whether they could identify grounded and input joints. 
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Image B 
 

Screenshot showing an example of the PMKS table. 

 
 
Image C 
 

Screenshot showing an example of the PMKS+ table. 
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Image D 
 

A screenshot of a standard linkage built in PMKS+. 
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