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1 Abstract

The goal of this Major Qualifying Project, or MQP, is to create an autonomous sailboat, known as
”The Wide Awake”, that builds upon lessons learned from previous WPI Sailbot projects. The team
used the International Robotics Sailing Regatta (IRSR) rules to guide the creation of the boat for the
2019 competition. These guidelines included, but were not limited to, the following challenges: preci-
sion navigation, fleet race, and endurance. The final products of this MQP were a more mechanically
and technically reliable boat, a better navigation system, and a user-friendly guide on how to run and
manage ”The Wide Awake”.

i



Contents

1 Abstract i

2 Introduction 1

3 Background 2
3.1 What is a sailboat? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2 The physics of sailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.3 Right of Way Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4 International Robotic Sailing Regatta (IRSR) . . . . . . . . . . . . . . . . . . . . . . . 4
3.5 Data about Lake Quinsigamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6 Previous WPI Sailbots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.6.1 Mechanical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6.2 Electrical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.7 Software System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Purpose 12

5 Methodology 13
5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Mechanical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2.1 Keel Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.2 Rigid Sail Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3 Electrical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.1 Arduino MEGA with Ethernet and USB Shield . . . . . . . . . . . . . . . . . . 21
5.3.2 Teensy 3.5 with ESP8266WiFi Chip . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.3 CTRE HERO Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.4 Maretron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Software System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.1 Course Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.2 Reusable Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Preliminary Calculations 38

7 Future Recommendations 39
7.1 Mechanical Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Hardware Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Software Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Appendices 41
8.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 Roll and Pitch Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.3 User Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.3.1 Mechanical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ii



8.3.2 Hardware and Software Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.4 Code Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.4.1 Arduino Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.4.2 HERO Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.4.3 Teensy Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.5 Testing Kit List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iii



List of Figures

1 Parts of a Sailboat [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Points of Sail [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Right of Way Rules [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Weather Data for June 2016 [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Weather Data for June 2017 [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Weather Data for June 2018 [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 NACA 0012 Airfoil used for keel shape . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8 NACA 63018 Airfoil used for keel bulb . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9 Keel hull insert design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10 Keel hull insert FEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
11 Deflection due to carbon fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
12 Mast insert for rigid sail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
13 Dyneema cable trusses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
14 Stiffened section of rigid sail mast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
15 Hardware Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
16 Arduino with shields setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
17 12V to 5V 2A converters for Arduino setup and rudder servo . . . . . . . . . . . . . . 22
18 Teensy with ESP8266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
19 Cl/Cd v Alpha for Rigid Sail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
20 HERO Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
21 Pinout of Gadgeteer cable from Talon User Manual . . . . . . . . . . . . . . . . . . . . 28
22 Maretron unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
23 Code Process for Endurance/Long Distance Challenge . . . . . . . . . . . . . . . . . . 31
24 Code Process for Precision Navigation Challenge . . . . . . . . . . . . . . . . . . . . . 32
25 Code Process for Station Keeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
26 Rounding a buoy diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
27 Lane cost layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
28 Wind heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
29 Calculations of roll and pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
30 Continuation of calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
31 Kit of parts list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



List of Tables

1 Trim tab LED Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 AT commands used in code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Trim tab angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 NMEA-0183 Sentence Character Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Pros and Cons of Lane Sailing Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



2 Introduction

The 2018-2019 Sailbot Major Qualifying Project (MQP) is a continuation of two previous MQPs. The
basic description of this project is to create an autonomous sailboat that consists of design and control
components dictated by the rules of the International Robotic Sailing Regatta (IRSR). The goal for
this year’s MQP team is to improve upon previous systems to develop a boat that is easier to control
and is more user friendly through the creation of user guides. The tasks that the boat will need to
accomplish are as follows:

- A navigation test to maneuver around a triangular course marked by buoys
- A fleet race that uses manual control to maneuver around a triangular course
- An endurance test that has the boat sail around a rectangular course for seven hours
- A station keeping test that requires the boat stay within a 40x40 meter box for five minutes before
exiting
- A payload test that moves cargo 200 meters, either autonomously or manually
- A collision avoidance test with a manned boat
- A search test that has the boat find an object within a 100 meter radius

Systems that the team improved upon included the keel, rudders, and wing sail. The previous keel
moved the center of gravity from a position slightly aft of the center of the hull to seven inches further
back. This caused the back of the boat to sit deeper in the water, while the bow was almost completely
in the air. The shorter length of the previous rudders made turning difficult at times. Lastly, the wing
sail had issues with stiffness and communication. The thin carbon fiber mast had too much play, and
would cause flexure of up to 20 degrees at some points; this caused major issues at the point where the
mast interacted with the boat. Another issue with the wingsail was its lack of communication with
the rest of the boat. With those two major problems, the wingsail had to be replaced with a cloth sail
for the 2018 boat. With all of these ideas in mind, the team created a more controllable boat that is
easier to build upon in the future.
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3 Background

3.1 What is a sailboat?

Figure 1: Parts of a Sailboat [1]

A sailboat is a boat that derives its locomotion from the wind. By catching the wind in its sail, a
sailboat is able to harness the effort from the wind and translate it to a driving force. Depending on
the amount of main sheet let out using a winch, the sail angle of the boat changes, providing optimal
sailing in different conditions.

The sail also creates a heeling moment about the hull, which means that the boat will lean under
the influence of the wind on the sails, while simultaneously creating forward lift. If left with no system
to right this applied moment, a sailboat would capsize immediately. However, sailboats are fitted with
keels, which deliver a moment opposite to that of the sail. The hull provides buoyancy to this system,
and guides water around the boat to assist in steering. The boat’s rudders are also used for steering
of the sailboat, where pushing the tiller towards starboard and port turns the boat towards port and
starboard, respectively.

3.2 The physics of sailing

Piloting a sailboat is a fairly simple process. The sailor hoists the sail upwards and the wind propels
the boat based upon the position of the sail. However, taking a closer look uncovers much more of the
physics required for this activity. Like airplane wings, sails function using Bernoulli’s principle. This
principle states that increased speed results in decreased pressure, therefore keeping the net energy
the same. The sail is almost always curved to generate lift. The wind moving around the downwind
side of the sail is forced to follow a longer route, while the wind moving around the upwind side of
the sail is allowed to move faster, creating lift. The coupled forces of lift from the sail and the keel
propel the boat forward, allowing a sailor to traverse the water.

In order for a sailboat to move, the sailor must know the six points of sail. The six points of sail
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are based upon the wind direction in relation to how far the boat’s sail is pulled in or let out. The
first point of sail is the ninety-degree area around the direction of the wind. This is called the “no-go
zone”, which is also referred to as sailing in irons (Labeled 1 in Figure 2). This zone is too close
to the wind to sail effectively because the sail’s lift force does not have a significant forward vector
component to sail. It is possible, however, to sail by zigzagging across the zone, allowing one to head
upwind. Upwind sailing is sailing towards the direction from which the wind is blowing. It includes
two points of sail: Close-Hauled and Close Reaching (Labeled 2 and 3 in Figure 2).

Sailing across the wind is called Beam Reaching (Labeled 4 in Figure 2). Downwind sailing refers
to sailing in the direction the wind is blowing. It includes both Broad Reaching and Running (La-
beled 5 and 6 in Figure 2). These same points of sail can be assigned whether the wind is blowing
over the right or left side of the boat as shown in the diagram below.

Figure 2: Points of Sail [2]

3.3 Right of Way Rules

Another concept all sailors need to understand while sailing are right of way situations, which happen
when two boats occupy the same water space. A sailboat will sometimes have right of way over a
motorboat depending on relative maneuverability and speed. A sailbot always has right of way with
a power boat or canoe/kayak, unless it is overtaking such or the power craft is constrained in some
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manner. Determining right of way between two sailboats is based on a the following few rules. First,
right of way depends on where the wind is coming from and which direction the sailboat is facing.
If the boats are on different tacks (sails on different sides of each boat), then the sailboat on the
starboard tack (wind coming from the starboard side, with sails out on the port, or left, side) is the
vessel with the right of way. The boat on port tack (wind coming from the starboard side) must
change its course. If the two boats are on the same tack, the leeward (downwind) boat has the right
of way, and the windward (vessel traveling upwind) boat must give way. Some examples of right of
way situations can be seen in Figure 3, where the P stands for port tack, the S stands for starboard
tack, and the wind is heading straight down the figure.

Figure 3: Right of Way Rules [3]

3.4 International Robotic Sailing Regatta (IRSR)

The International Robotic Sailing Regatta, also known as IRSR, is a robotic sailing competition where
teams from all over the world build autonomous sailboats and come to compete in multiple challenges.
There are multiple divisions and multiple challenges within each division. The Sailbot division boats
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are no larger than two meters long and they compete in many categories listed above in the intro-
duction. After once again winning last year’s competition, the IRSR will be hosted by Worcester
Polytechnic Institute in June of 2019.
The rules for the IRSR as of June 2014 are as follows [4]:

1. Overall length including hull, all spars and foils oriented in their fore and aft directions and at
their maximum extensions if applicable, shall not exceed 2 meters measured parallel to the waterline.
Sensors and their mountings are not included in the overall length measurement. Floating waterline
must be clearly marked for use during measurement.

2. Beam shall not exceed 3 meters overall width at zero heel angle.

3. Number of hulls, depth, mast height, number of masts, sail area, and number of sails are unre-
stricted subject to the following event limitations:
(a) The draft in normal sailing condition shall not exceed 1.5 meters.
(b) Total overall height from the lowest underwater point to the highest point on the largest rig shall
not exceed 5 meters. Sensors and their mountings are not included in the height measurement.

4. Teams shall provide a suitable stand to support the boat in a vertical position while fully assembled
for the purposes of judging.

5. Boats shall not have any direct human contact during on-the-water events except as permitted by
the event Notice of Competition and Sailing Instructions

6. External control shall be limited as specified in the event Notice of Competition and Sailing In-
structions, however a means for full remote radio control is required at all times during competition
to allow avoidance of collisions with other boats

7. Data transfer from the boat to shore is unlimited, but shall be on an approved frequency.

8. Radio frequencies used by each boat shall comply with host country regulations and are subject to
approval before competition.

9. In each event, boats shall compete by sailing only (no alternate sources of propulsion).

10. Construction materials are not restricted provided they cannot cause environmental damage dur-
ing operation. In particular, lead ballast must be completely sealed.

11. Power for onboard control systems may be provided by any source other than biological, and must
be fully contained within the vessel.

12. The configuration of the boat shall not change during the course of any event. (i.e. components
cannot be jettisoned or added during the race). Bilge pumps are permitted as long as they do not
provide additional propulsion to the vessel.

5



13. Any parts may be replaced or repaired between events as necessary.

14. Sail configuration changes (hoisting/dousing) are allowed during a race provided such a change is
initiated and executed only by the onboard systems.

15. In case of uncertainty about interpretation of these rules, please contact the event organizers for
clarification.

3.5 Data about Lake Quinsigamond

In order to develop a better understanding of the sailing conditions that the boat would be encoun-
tering, the team looked at the weather data for the first week of June for 2016, 2017, and 2018, which
coincides with the week of IRSR. With this data, it was found that there were, on average, thirteen
days of fog and thirteen days of precipitation. During that first week, it was also found that the aver-
age wind speed was about fifteen miles per hour, which is important in regards to sail design. Below
are graphs containing temperature, precipitation, and wind information during the first week of June
2016, 2017, and 2018. 2017 looked to be a little hotter than 2016 and 2018, with the temperatures
reaching close to 90 degrees by the end of the week. However, in 2016 and 2018, the temperatures
stayed around 80. It also showed that both years had at least one day of rainfall, with a wind speed
range between 12 mph and 25 mph on June 9, 2016 [5].

Figure 4: Weather Data for June 2016 [6]
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Figure 5: Weather Data for June 2017 [6]

Figure 6: Weather Data for June 2018 [6]

3.6 Previous WPI Sailbots

The two previous MQP sailbots are from the 2016-2017 and 2017-2018 academic years. Each had its
own pros and cons that allowed the current team to learn more about the operations of the boat and
what improvements would need to be made over the 2018-2019 academic year.

3.6.1 Mechanical Systems

The mechanical systems of the boat are necessary for its motion, and are comprised of several sub-
systems. The two previous competition boats consisted of a sail, winch system, keel, rudders, and a
hull they built themselves. During the 2017-2018 year, a movable ballast was also added. The surfaces

7



of the boat generate different forces and interactions to provide an effective sailing vessel. By utilizing
the 2017-2018 team’s hull and movable ballast, the problem of integrating more effective and dynamic
righting systems became the focus of this year’s MQP on the mechanical side. This was done though
improvements of the keel, rudders, and rigid wing.

Hull
The 2016-2017 sailbot’s mechanical systems focused on manufacturing a hull utilizing a form donated
by the U.S. Naval Academy. The fabrication process included creating an internal structure made of
plywood, fiberglassing over the structure, then creating a plywood and fiberglass deck to complete the
system. This process was also used for the 2017-2018 sailbot. However, the team decided to design
their own hull form with inspiration from racing yachts by creating a wider stern to make the boat
easier to balance while rolling. Designing the hull from scratch also allowed for less water intrusion and
more control into how the manufacturing could affect the mechanical and control system development.

Sails
There are two types of sails that have been utilized over the years: rigid and cloth. Even though both
types of sails had been created, the final boats in previous years only used a cloth sail. This was due
to the incompatibility of the rigid sails and the boat designs. The first rigid sail was designed as an
MQP back in 2017, but was unable to be used on the boat. For the 2017-2018 boat, another was
designed in order to better fit the requirements for the rigid wing, which were as follows:

1. Must effectively sail under normal wind conditions under all points of sail
2. Must be able to depower itself completely
3. Must be wirelessly connected to the boat’s controls
4. Should not be taller than 3.5 m
5. Must be easily disassembled for transport.

The design fit almost all of these criteria, but the mast was too flimsy, creating give in the z di-
rection of almost 20 degrees in certain conditions. With this much flexibility, the sail was not useful
for proper and effective sailing.

There were also many connection issues trying to operate the sail wirelessly through the boat’s con-
trols. These problems included dropped messages between the Teensy and the BeagleBone Black, and
lack of serial communication between the ESP8266 Wifi Chip and the Teensy. This is something that
this year’s MQP team has worked on to improve.

Winch System
A winch was designed for the 2017-2018 sailbot that would allow for better tensioning so the main-
sheet would not get tangled while slack. This system was implemented after the rigid wing issues were
discovered, as mentioned previously.
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Keel
The keel, as designed, was structurally deficient in providing balanced moments. This was in respect
to the moments generated by the sail and those generated by the force of components on the boat.
Some other issues that were discovered had to do with the structural integrity of the keel itself when
a moment was exerted along the bottom of the hull. The keel had a tendency to create a larger than
expected drag.

Movable Ballast
One final system that was new to the 2017-2018 boat was the moveable ballast, which was made to
help balance the boat’s roll when heeling. This is the secondary system that provides righting mo-
ments to the boat by swinging a lead mass over the side of the boat to simulate a person hiking out.
It consisted of a lead weight on a carbon fiber rod that was connected to custom gearbox designed
by the previous team. This was then connected to a Mitsubishi window motor, which was run by a
TalonSR motor controller, and then had its output inputted into a SCAMP. The SCAMP was a board
that was originally created two years ago that would take inputs and convert them into NMEA2000
messages. Currently, the system generates a significant amount of variability in control. The gears
include improper meshing and the shafts maintain a significant amount of play when moving.

Rudders
Another system that was changed were the rudders, as the 2016-2017 boat had only one, while the
2017-2018 boat had two that operated through one servo.

3.6.2 Electrical Systems

The electrical system of the Sailbot has essentially stayed the same for the last two years (from 2016-
2018). The main communication system of the boat is the NMEA2000 bus, which provided both
power and communication to devices connected on the bus. The power that was provided was a 12
volt battery connected to a fuse box. This then split off into four different components, all meeting
the waterproofing standards with its waterproof connectors. The components included the winch, the
movable ballast, the BeagleBone Black with ethernet, and the motor controllers for the rudder. The
Airmar sensor, used for GPS and wind direction, already used the NMEA2000 standard, which is
another reason the NMEA2000 was chosen as the CAN bus standard. This led to the creation of the
SCAMP two years ago, which would take CAN communication coming from the motor controllers,
and then convert them to NMEA2000 messages so all communications were in the same standard
when reaching the BeagleBone Black.

Central Processing
Both systems used a Beaglebone Black as the central processor, but grew in the control structure and
number of sensors over the years. They both utilized an Airmar 220WX WeatherStation that mea-
sured the GPS location of the boat, wind measurements, and contained a 9-axis IMU. This allowed
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the boat to determine its location, wind speed and direction, current heading, and current heel angle
in order to operate autonomously.

Communication
The BeagleBone Black and the NVIDIA TX2 are connected to the onboard Wifi router and the long-
distance radio through Ethernet. This allowed the systems to communicate both software updates and
boat telemetry information. Wifi could be used along with Ethernet, but can only be used when the
boat is in range. Wifi allows for short range communication for data intensive tasks, such as deploying
the code.

Microcontrollers and Motor Controllers
A custom unit was developed that was simpler to program using the Arduino IDE, an Integrated De-
velopment Environment (IDE) that is familiar to many robotics engineering students at WPI. They did
so by using an ATmega328p microcontroller that ran off an 8 MHz clock, a MCP2515 CAN controller
that used SPI to communicate between the microcontroller and the NMEA bus, and a VNH2SP30
motor driver IC. For the 2017-2018 Sailbot, PWM motor controllers drove the winch motor, while the
custom PWM controller controlled the rudder servo over the CAN bus. As mentioned previously, they
utilized a CAN bus to control the ballast and winch, and a driver IC to reduce the complexity and
footprint of the PCB. This worked to cut down on the amount of time that had to be spent debugging.
All of the CAN busses were then connected to the NMEA2000 bus that allowed for communication
throughout the boat.

A few more design aspects went into the 2017-2018 boat to fix the microcontrollers, such as choosing
a higher clock speed to allow for more complex algorithms to be used while also allowing the boat
to be more deterministic in certain scenarios. They went with a new microcontroller that had better
built-in CAN peripherals that could allow for direct communication between the bus and the controller
without requiring external hardware to check voltages.

On-boards Displays and Cameras
One requirement for the team was keeping track of all systems on the boat externally by displaying
their status. In order to achieve this, they selected an ePaper display with no backlight. It does not
create a power drain while also making it easy to read on a sunny day, which was important for when
the team was out on the water.

A camera connected to a Raspberry Pi Zero ran OpenCV for hue and saturation segmentation to
help with buoy detection. Once detected, the buoy’s location would be sent over the wifi connection
to the Beaglebone Black, where it would generate the algorithm to create the correct heading to move
to the desired location. The custom boards for the winch were then notified to reel in or take out the
mainsheet to move the sail in the correct direction. All of these actions were communicated over an
Inter-Process Communication (IPC) mechanism, which allowed for code to run simultaneously on the
boat and in simulation.
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3.7 Software System

In terms of software, not much is known about the previous boats due to lack of documentation. The
most that was available was the use of OpenCV and a camera to do buoy tracking.This was done by
creating waypoints around the buoys and using the camera detection to make sure the boat was still
on the correct course. However, this was mostly achieved through putting in the waypoints manually
and using the camera to correct itself rather than doing navigation planning.

The processes on the boat are run by the software on the BeagleBone Black. This system ran by us-
ing a publisher-subscriber architecture, which runs by sharing messages between individual processes,
known as nodes. Each node provides a different function to the system. The three main nodes were
the Primary Control Node, the State Estimator Node, and the CAN Node. The Primary Control Node
controlled the path planning and overall decision making of the robot. The State Estimator Node
provided the wind, heading, and position data, which was used to produce motor control outputs.
The CAN Node communicated these outputs to the motor controllers on the CAN bus. There are
other nodes in the system, but they were used mostly for debugging.

Visual Buoy Identification
Last year’s Sailbot used a special colorspace transform that was used to pre-filter noise. While the
filtering found the buoy in a frame, a particle filter estimates the location of the buoy. This system
worked out fairly well, but the boat would often detect a buoy and continue in its general direction
instead of turning to face the buoy.
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4 Purpose

An autonomous sailboat has many real life applications, including long term data collection and con-
tinuous monitoring. An autonomous sailboat does not need a crew and utilizes the wind to generate
movement, so long sailing times can be achieved due to low power consumption. With no need to
refuel with food and gasoline, the only limiting factor is battery life. Instruments can be included
on the open hull and deck to monitor and test the surrounding environment as there is no need for
crew accommodations. Due to the Sailbot’s use of wind, it can also move to provide coverage to a
large coastline or body of water. The applications extend to scientific, military, and rescue capabilities.

The purpose of this MQP was to create an autonomous sailboat that built upon lessons learned
from the previous Sailbot projects, as well as find ways to improve the longevity of this project by
creating more documentation and informational videos for sailbot operation. In the following chapters,
the team will describe the mechanical, electrical, and software design choices and their use. While
the team is utilizing the same hull as last year’s project, the paper will be going into detail about the
changes that occured in the boat’s keel, rudders, and sail. The change in the hardware architecture
will be described, as well as some of the software system flows.
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5 Methodology

5.1 System Overview

On an autonomous sailboat, there are several parts that help to control and propel the sailboat. These
systems can be expressed through three different categories. The mechanical components which gov-
ern the performance of the boat and physically interact with environment, the electrical components
which interact with the mechanical components and cause for the communication throughout the boat
and the software components which send and process the signals required for guiding the boat and
controlling its movement.

5.2 Mechanical Systems

For the mechanical systems, all equations to model the physics of the boat and its coinciding systems,
such as the keel and the sail, were integrated together to better inform design choices. Once all of
the forces were calculated, the systems themselves were developed. The three major components that
needed improvement were the keel, rigid sail, and the rudders. To improve the keel, force diagrams
were developed to determine the best angle and mounting location. With a mounting angle and posi-
tion determined, the airfoil and fixturing methods could be selected, which assisted other forces acting
upon the boat. Stiffening components were added to the wingsail to help cut down the wing’s flexi-
bility. This included using new materials for the wing and creating sturdier mounting point to affix
the wing to the hull. Lastly, the rudders were redesigned for autonomous control for better trimming
capabilities. Evaluating the implications and integration of better-tuned control surfaces serves to
create a sailboat that could sail more effectively.

5.2.1 Keel Design

The keel is the most important component to the stability of the boat; without a keel, a sailboat
would turn over with any wind and not sail straight. Keels extend downward from the hull and act
as a cantilever for the forces of the sail acting to roll the boat over. In order to achieve this, keels
are made of heavy ballast, usually lead. By adding extra weight to the boat, one has to consider the
benefits and costs with that decision. Weight is favorably eliminated on boats to decrease the amount
of effort needed to propel the boat. Because the keel needs to resist the forces of the sail and be as
light as possible, the farther the center of mass is placed from the waterline of the boat, the lower the
mass of the keel will be. This requires anchoring a heavy chunk of lead far from the boat with as light
of a connection as possible. To accomplish this task, this year’s team worked to create a keel that
is balanced between the front and the back of the boat, and able to provide an acceptable righting
moment to the hull while maintaining a lightweight structure.

Keel Mass
The mass of the keel is derived from the equations for calculating the righting moment of a sail of
certain force and the moment supplied by the weight of the sail. The equation for the righting moment
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is represented by the function:

Mr = −Rh[Rsin(λ)cos(λ)(1+cos(θ))+Fs(cos(λ)2-sin(λ)2cos(Θ))]+RbFbsin(Θ)

Where Mr is the righting moment, Rh is the height distance between the center of mass of the keel
and the center of effort of the keel, R is the hydrodynamic drag force, λ is the angle between the boat
and point of sail, θ is the hydrodynamic drag angle, Fs is the force of the sail, Θ is the heel angle,
Rb is the height distance between the center of buoyancy of the boat and the center of gravity of the
keel, and Fb is the buoyancy force. Each of these values is calculated from other primary values seen
in the appendix.

The mass of the keel is directly related to the righting moment and the torque supplied by the
mass of the sail. Solving these equations out led the team to find a required torque of 1000 in.-lbs.
Using this torque, lengths and masses were selected to work with. Once the length was chosen to be
40 inches, the necessary ballast was calculated to be 25 lbs.

Keel Shape
To allow the keel to move through the water, selection of appropriate airfoils must take place. Using
a symmetrical airfoil is important to a sailboat as the lift that is generated by a keel must occur on
both sides of the boat. This is unlike an airplane, which mostly needs to generate vertical lift. The
airfoil shape of NACA 0012 was chosen for its symmetrical shape and its efficiency at the speeds the
boat needs to operate at in the water. This is shown below in Figure 7. Given that the angle of attack
of the keel relative to the point of sail of the boat is between 3 and 5 degrees normally, the NACA
profile needs to have a low coefficient of drag at these angles.

Figure 7: NACA 0012 Airfoil used for keel shape

To accommodate the lead mass that was fixtured to the bottom of the keel, a shape that is both
hydrodynamically efficient and has a large volume needed to be selected. Given that the NACA 0012
profile has such a small thickness, a larger airfoil with similar drag characteristics at the expected
angle of attack needed to be chosen. The keel bulb shape was eventually decided to be a revolved
NACA 63018 profile affixed to the bottom of the keel made of lead because of its high density and
small area.

Figure 8: NACA 63018 Airfoil used for keel bulb
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Keel Stiffness
The main issue with suspending a heavy mass cantilevered from a boat is the matter of reducing the
weight of the suspension method. In both the keel and the rigid wingsail, this proved to be an issue.
Naturally, the issue of reducing stress on cantilever masses manifests itself in many ways. People use
objects that are cantilevered every day, from bridges to buildings, consumer products to sports prod-
ucts. Most items are designed to use as little material as possible and provide the strongest stiffness.
The keel is essentially a lead mass isolated away from the hull. To support this mass, a lightweight, yet
stiff, structure must transfer the loads effectively into the hull. One solution that came to mind was
the use of I-beams. I-beams utilize the moments of inertia around a neutral axis to resist deflection and
are lighter than a full beam of similar properties. The team experimented with lamination of a birch
wood board and carbon fiber sides. These composites acted as an I-beam because the inside sandwich
piece of wood acts as a skinnier piece of carbon fiber in the deflection formula. This idea proved
difficult to manufacture due to problems with adhering the carbon fiber to the wood. An alternative
solution came from the world of sports; golf and hockey players put excessive amounts of force into
the equipment that they use. Golf players swing clubs that are designed to bend, but take large loads.
Hockey sticks similarly take heavy strokes and pressure from the players themselves. The keel needed
to be strong and flex with the rotation of the boat without shearing at the interaction point with the
hull. By using products like the hockey stick and golf club that are made to resist extreme forces,
the keel bulb could be cantilevered from the bottom of the boat. As previously mentioned, the keel
takes around 1000 in-lbs of torque and the components must be designed to be able to take these loads.

Integration
The keel must be removed from the boat for transportation and to reduce the stresses on the hull
when out of the water. This necessitated a mount in the boat as well an insert that attached to the
keel to assist with mounting inside the boat. For the mount in the boat, the idea was to rout a slot
in the bottom of the hull using a form to guide the router. This slot is oversized to allow for a new
glassed, internal structure to fit inside of the hull to add additional strength to the fixture. To allow
for the keel to be anchored in the new slot, a hull insert was designed and tested to observe the effects
of stress on the part. A mounting screw was inserted through the deck of the hull and attached to the
hull insert to secure the hull insert into the boat. To reduce the stress between the hockey stick and
the hull insert, rounded fillets spread the stress out over a larger distance.

Figure 9: Keel hull insert design
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This hull insert takes an incredible moment on its features. To help manage this moment, the hull has
a little bit of flexure to it to allow the hull insert to spread the force out through some of its features.
To resist the twisting forces commonly experienced by suspending a heavy mass on the end of a rod,
the hull insert extends down the length of the hull allowing for that twisting moments to be applied
to the hull and not about the main structure that is supporting the keel. Using Solidworks FEA, a
simulation was created to map the forces on the main joint.

Figure 10: Keel hull insert FEA

Shown in the above figure, the forces experienced by the hull insert are roughly 30% of the yield
strength of aluminum. This allows for the keel to heel at the angle it needs to keep the boat sailing
well.

5.2.2 Rigid Sail Design

A rigid wing sail acts as a plane wing that sticks out of the top of the sailboat. In addition to providing
driving force to the boat, a rigid wing sail contains its controls, controlling a trim tab that provides
lift to the boat in most sailing conditions. The original rigid wing sail was designed by a 2017 MQP
team of aerospace students. This wingsail was too stiff and heavy, as it was intended to be used on a
different boat and oversized for the need. The weight made the sail close to impossible to use and the
wingsail was too bulky to be effective. In 2018, a group of students in the WPI Robotics Club created
a lighter-weight sail and reduced the overall size. In doing so, the Robotics Club introduced new
techniques into the sail for reduction of weight, but overlooked some of the mechanical dependability
that the sail needs. By creating a lightweight and stiffer sail, the problems associated with flexibility
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and weight will be solved. In addition to the problems with stiffness, the sail does not protect itself
from capsizing, thus destroying the electronics components inside for controlling the sail angle.

Stiffening
The process of stiffening the sail came from researching lightweight structures such as radio towers
and the methods that those structures use to keep from failing. The primary design originated out of
the idea of using ropes with little elasticity secured and tightened to the top and bottom of the sail.
The first idea was to use an x pattern of criss-crossing ropes from a point closest to the mast to the
outside of the spars, where at both connections the ropes pass through carbon fiber ducts. This idea
failed for many reasons. The stiffness of the ropes is dependent on the stiffness of the anchoring at the
top and bottom of the sail on the edges of the spars, which puts a great amount of torque on the spar.
Additionally, this design allows the spar to act as a pulley at the point where it passes through the
duct closest to the mast. This pulls the duct outward to the edge of the spar instead of focusing the
forces around the mast. To remedy these design flaws, a reduction of the number of ropes is used, and
anchoring the ropes at both ends of the mast closest to the center allows them to pass only through
the outside ducts on the spars. The rope then passes over the mast and through the next spar outside
edge on the opposite side of the mast. This system allows for the rope on both sides to always be in
tension. Additionally, when the mast bends, the tensioned side will always be in greater tension than
the compression side. This system works for the part of the sail that is covered in a skin to reduce the
stress. At the connection with the boat a separate system is utilized. To remedy this, an insert was
designed to fit inside the shaft of the sail and reduce the bend on the carbon fiber mast. This part was
machined out of aluminum to the max shear of the carbon fiber and will distribute the load of boat
on the mast. This part’s curve was developed through the equation for displacement of a cantilever
beam with an applied moment on one end.

Figure 11: Deflection due to carbon fiber

When the mast bends, it contacts the aluminum profile and transfers some of its load on to the part,
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reducing the overall stress. It is similar to adding an internal chamfer to a part.

Figure 12: Mast insert for rigid sail

When testing this internal mast insert, a problem was discovered. The upper section of the sail was
rigid as it was tied together with the dyneema cable system and the lower section of the sail also
was rigid, but the connection between the two of these elements was a weak point. To remedy this
problem a stiffer section of the mast was created where the dyneema cables could be anchored to.
This stiffer section of the mast consists of a fiberglass tube with acetyl caps filled with expanding
polyurethane foam around the outside of the previous mast. This lower section couples with the mast
receptacle in the hull and provides a strong connection for the forces of the sail to be transferred onto
the boat. In creating this coupled joint with the hull receptacle an increase in stiffness was experienced
by 700%. Additionally with the integration of this stiffer section of the sail, the dyneema cables were
now accessible outside of the boat and could be tightened in the field.

Figure 13: Dyneema cable trusses
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Figure 14: Stiffened section of rigid sail mast

Waterproofing
The previous sail did not provide any waterproofing for the electronics contained within. This year,
a lightweight foam structure with an included waterproof container makes up the electronics housing
on the rigid sail. To turn on and off the trim tab, a hall-effect magnetic switch was used and a USB
plug to the rear of the enclosure was used for recharging the internal battery. To manufacture the new
system, layers of polyurethane foam were hot wire cut to different profiles and then glued together.
3D printed inserts were added to the locations of high stress such as the connection between the trim
tab and the sail.

5.3 Electrical Systems

For the electrical and software improvements, the first goal was to get the boat on the water to
test how well the boat operates under remote control via the ethernet bridges. However, the team
encountered many problems when trying to test, such as connection issues during RC, poor planning
for lake availability, or lack of batteries. Another issue that was mentioned in documentation from the
2017-2018 team was that the compass heading would sometimes be inconsistent, differing by almost 20
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degrees at times. However, the Airmar220WX Owner’s Guide and Installation Instructions [7] noted
that the Airmar must be mounted at least three feet from electronic devices to avoid any interference
with the magnetic compass, and free from any obstructions that might interfere with wind flow. This
is mentioned in the recommendations section for the 2019-2020 team.

Figure 15: Hardware Schematic

The team ran into some problems with the winch, as it only worked intermittently in past years. One
problem was the winch would only run in the clockwise direction, and never in the counterclockwise
direction. The team tried to figure out a solution to this problem, but they have tried re-soldering
the board, which did not fix the problem. After testing both the motor and the encoder, the team
determined that it was the motor controller that was the issue. After testing the motor controller by
running the winch, it was determined that it was a signal problem between the motor controller and
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the NMEA bus. This was determined because, while the ballast motor controller lit up either a red or
green light depending on the direction the ballast was being run in, the winch motor controller only
ever lit up a red light for the clockwise direction. It was suggested by last year’s team to power cycle
the boat, but after doing so, the winch still did not work. After all of these issues, the team decided
to redesign the entire system, even replacing the BeagleBone Black with an ArduinoMega connected
to an Ethernet and USB shield for ethernet communication and communication with other systems.

5.3.1 Arduino MEGA with Ethernet and USB Shield

Figure 16: Arduino with shields setup

After multiple issues regarding old code and the BeagleBone Black, it was decided that a full hardware
redesign was required. This would allow for the project to continue moving forward instead of being
stalled like it had been for the previous months. Thus began the process of trying to decide between
different boards that would be easier to interface with. The team considered three boards: an Arduino
MEGA with multiple shields, a Teensy 3.5 or 3.6, and a Nucleo-F746ZG. There were pros and cons
associated with each, but it finally came down to what could be implemented the quickest with the
time constraint of about 4 weeks at hand.

With the time as a key factor, the Arduino MEGA with multiple shields was chosen. This was
due to the team’s previous knowledge of working with the Arduino IDE, and the public resources
available. The issue with using the Teensy 3.5 or 3.6 was that there were not as many external re-
sources, and the team was worried about how much the Teensy would actually be able to communicate
with the rest of the boat. The reasoning behind not selecting the Nucleo was having to figure out how
to integrate everything with it in a quick amount of time.

Once the MEGA was selected, the shields would then have to be selected for integration with the
other parts of the system. One of these shields had to be an ethernet shield so that the Arduino could
host a webserver and then connect to the router via an ethernet cord. The second shield that was
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selected was a CAN bus shield. The purpose of the CAN bus shield was so that the TalonSRX motor
controller could be used to control the movable ballast. However, upon further testing, it was realized
the the CAN bus shield would not allow for the TalonSRX to initialize, as it could only operate with
a RoboRIO or a CTRE HERO board.

After reading through the TalonSRX’s user manual [8], it was thought that all would have to happen
was initialize the TalonSRX’s ID, and then it would be able to be used by any CAN device. The
team borrowed a RoboRIO from another group on campus and then proceeded to set the ID of the
TalonSRX to “0”. With this completed, the team then brought the Talon back to the lab to work on
developing the handshake between the CAN shield and motor controller itself. Using a logic analyzer,
the CAN message sequence was found, and was programmed to send the message from the Arduino,
through the CAN bus shield, and to the Talon. However, the handshake didn’t work. This left the
team with the only option being to purchase a CTRE HERO off the shelf, removing the need to keep
using the CAN bus shield in the system.

The now-second shield that would have to be used was the USB shield. This was originally thought
to run a few things: the HERO, the Maretron, and the controller for the system. A multi-USB port
was purchased to run all of these things. However, after some testing, it was quickly discovered that
this would not work for the communication for all three systems. This was later solved with more
HERO testing, which will be later explained in section 5.3.3.

Figure 17: 12V to 5V 2A converters for Arduino setup and rudder servo

The final hardware portion of the Arduino that had to be fixed came about when starting to work on
the code. It was realized that the Arduino would only fully function when plugged into a laptop to
be programmed. Once it was unplugged, the Arduino had problems keeping the web server running
and keeping up any communication with the rigid wing’s Teensy. It was found that, once both of the
shields were plugged in and the rudder was being powered by the Arduino, it pulled too much current
for full function. To alleviate this issue, two 12V to 5V 2A converters were inserted: one to operate
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the Arduino, and the other to operate the power and ground for the rudder. Signal for the rudder is
controlled by the HERO board.

5.3.2 Teensy 3.5 with ESP8266WiFi Chip

Figure 18: Teensy with ESP8266

The Teensy 3.5 works as the main controller for the rigid wing. Most of this system stayed the same
from the previous year, with just some minor changes. A lot of the changes consisted of soldering onto
new prototyping boards for cleaner connections and easier visuals while programming. The biggest
change, however, had to do with the programming of the components. This consisted of programming
different LED sequences, communication between the ESP and the Teensy, and then communication
between the Teensy and the Arduino.

For the LED sequences, all that had be done was initialize the LED pins, and then program to be
high at depending upon the different states. The sequences can be seen in the table below.
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LED sequence Meaning

Only Red Maximum Lift

Only Yellow Maximum Drag

Red and Yellow Zero Lift

Red, Yellow, White, White Lost Communication

Table 1: Trim tab LED Sequences

To develop lift, the rigid sail needs to be angled at either maximum lift, maximum drag, or no lift.
To find the proper angles for the sail to be located in relation to the apparent wind, the airfoil of the
wing is analyzed. To find the angles of attack that generate the most lift and drag a graph of Cl/Cd
vs Alpha is observed. Cl stands for the coefficient of lift, Cd stands for coefficient of drag and Alpha
is the angle of attack. A higher value of Cl/Cd signifies a greater overall lift and a lower value signi-
fies a greater overall drag. Shown in the graph below are the values for the airfoil shape of the wingsail.

Once the new Serial port was created, multiple commands could be written in order to start communi-
cating between the Teensy and the Arduino. This could be done using the “ESP8266 AT Instruction
Set” [10], and testing using sample code online. This allowed to make sure the communication was
functional. This simple loop checked for which serial port was available, and then would wait for a
user to type in an input into the serial monitor’s text window. Using this, the sequence of AT com-
mands could be selected in order to go through the process of sending UDP messages. It did this by
connecting to the boat’s Wifi, starting the UDP connection, sending a message using that connection,
then closing the connection when finished. This can be better demonstrated in the table below, taken
from the AT Instruction Set.
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AT Command Response What it does

AT OK Test AT Startup

AT+CWMODE=3 OK Queries the current WiFi mode,
and sets it to SoftAP and

Station Mode

AT+CWJAP=”sailbot”,... WIFI DISCONNECT Connects to the
”Passphrase123” WIFI CONNECTED AP with the SSID of ”sailbot”

WIFI GOT IP with the password ”Passphrase123”
OK

AT+CIPMUX=1 OK Enables 1 connection

AT+CIPSTART=1,”UDP”,... OK Opens a UDP connection
”192.168.0.21”,80,... 1, CONNECT on the one opened connection at the

1112,0 IP address of 192.168.0.21. This
is open on port 80.

AT+CIPSEND=1,6 OK Sends a message of 6 bytes on the
connection

AT+CIPCLOSE=1 OK Closes the 1 connection

Table 2: AT commands used in code

With the AT commands initialized, the Teensy then waits to receive the message from the Arduino
containing the number of the button that was pressed, which correlates to different rigid wing states.
The response will be seen as “+IPD,1,1:X”, where “X” is the value of the button press. For the
maximum drag and maximum lift states, the trim tab rotates to be in the same direction as the wind
sensor. This is calculated by checking the encoder values being returned by the wind sensor. If the
sensor is returning a value less than 730, then the wind is blowing from the port side. Otherwise, the
wind is blowing from the starboard side.

To determine the angle that the trim tab needs to move to be in either maximum lift or maximum
drag, the team used the Joukovsky 0015 airfoil (the shape of the rigid sail) and a Reynolds number
of 24, 141 calculated from the chord width of the sail, the expected wind, and the density of the air
[11]. This produced the following values:
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Figure 19: Cl/Cd v Alpha for Rigid Sail

At an angle of 58.5 degrees, the wingsail generates the greatest amount of overall lift. This is the
condition of maximum lift. At an angle greater than 15 degrees, the wingsail generates the least
amount of overall lift and the greatest amount of drag. This condition is the maximum drag position.
Lastly, at an angle 0 degrees, the rigid sail develops no lift and reduced drag.

The next thing to focus on was developing the communication between the ESP8266 wifi chip and the
Teensy 3.5. The previous team looked to do this by creating TCP communication, which allows for
streams of data to be exchanged between the board and the chip. One issue with this was that they
set the Serial port incorrectly based upon where they had the ESP chip connected to the Teensy. They
defined it as Serial4, which is supposed to be connected to pins 31 and 32 for RX and TX. However,
the RX and TX were connected to pins 9 and 10, which are associated with Serial2. Instead of dealing
with all of this, it was just defined as “ESPSerial” in the code, and associated with pins 9 and 10 [9].
This was done using the SoftwareSerial.h library in Arduino.

Lift type Required angle (degrees) Servo value rotating left Servo value rotating right

Maximum Lift 58.5 87 113

Maximum Drag 15 72 128

Table 3: Trim tab angles

The servo values were found using trigonometry. The required angle had to be the angle between the
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”0” position and the new position of the trim tab. With that, the team then had to find out what the
range of servo values gave them the correct positions. This range was 55 to 150, which was found by
just sending the values to the servo and seeing where the trim tab ended up. From there, using the
tangent of the angle, the length of the shortest side between the ”0” position and the aft-most point
of the trim tab could be found. Using this length, the corresponding servo value could be found that
would put the aft-most point of the trim tab in the correct position.

5.3.3 CTRE HERO Board

Figure 20: HERO Board

After purchasing the HERO board, integration with the full boat started to go quickly. By following
the directions in the HERO User Manual [12], setup went fairly smoothly. The biggest things to
note were knowing which ports were associated with which functions, and that you had to use the
USB-A to A to initialize the board before being able to start programming using the MiniUSB ca-
ble. The HERO is programmed using C# with VisualStudio17 currently being the recommended IDE.

The first step in the process of getting the HERO to function with the components was to con-
nect one set of the CAN cables (yellow and green) from Talon to the CAN ports on the board, which
are color-coded. The other set of CAN cables had to be terminated with a 120 ohm resistor. For this,
the team just ended up putting two 10 ohm resistors and one 100 ohm resistor in series between the
two wires. Once the CAN cables were connected and the HERO was plugged in using the MiniUSB,
the board was powered, thus powering the TalonSRX. When this was done correctly, the LEDs on
the Talon would alternate flashing orange, notifying the team that the CAN bus was connected, but
the robot was not initialized. Knowing this was the case, the next step was to start connecting the
board in a way so that it was powered by the boat, not the computer programming it. A power and a
ground port were located next to the CAN ports on the board, so the inserted leads were taken from
those ports to a connector that would lead to the fuse box.

After powering the board and initializing the Talon, the next step was to test the Talon’s func-
tionality. The HERO’s user manual comes with a lot of sample code snippets to help get started, so
this process was quick. All that was required was to put that code sample into VisualStudio, plug in a
Logitech controller, and then turn the whole system on. With this in place, the movable ballast could
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move along its full range by pushing the left joystick on the controller forward or backward, which
was associated with joystick axis 1.

Once the Talon was fully functional, the next step of the process was to determine how to com-
municate with the rudder. It was already being powered via one of the 2A converters (see section
5.3.1), so the last portion was to determine what signals to send it. After some thought and read-
ing through the user manual, the best way to do this was to treat the rudder’s servo as a PWM
controller. To correctly plug this in, a Gadgeteer cable from CTRE was required. Page 10 of the
HERO User Manual gives all of the pinouts depending on the required connection. The team de-
cided to use Port 3, then connected Pin 9 to the signal pin of the servo. At first, the team tried to
just connect using the female end of the Gadgeteer cable and connecting to the servo pin. However,
when the whole system was moved to the boat before testing, this was starting to cause shorting issues.

Figure 21: Pinout of Gadgeteer cable from Talon User Manual

To alleviate this, the team instead cut the female port off and just soldered connection from the de-
sired wire that would go to the rudder. After the sample code was implemented, the rudder could be
controlled by moving the right joystick left and right, which was associated with joystick axis 2.

After having full control of both the rudders and the movable ballast, it was determined that the
next step would be to figure out the communication between the Arduino and the HERO. This would
help to create the communication throughout the entire boat, from HERO to Arduino to Teensy. For
this communication, the best option was to communicate through UART. To do this, Gadgeteer pins
4 and 5 on Port 1 had to be connected to pins 18 and 19 respectively on the Arduino. This coincided
with Serial1 [13] on the MEGA, thus making the process a little easier when reading in data. The
only data that was originally being sent was one way from the HERO to the Arduino containing the
number associated with the button press of the Logitech controller. For autonomous implementation,
information would also have to be sent from the Arduino to the HERO to give control commands to
the ballast and the servo.

The last major factor in creating full functionality of the robot was to start receiving feedback from
the movable ballast. The previous team had already developed a breakout board that utilized an
AS5048A magnetic rotary encoder to determine the position of the ballast depending on its rotation.
To use this, I2C communication had to be implemented between the HERO and the board. When
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using I2C communication with the HERO, all of the ports create the same connection, so it did not
matter which port the team selected to use. In this case, Port 4 was used, and pin 9 was connected
to SCL, pin 8 to SDA, pin 1 to 3.3 V, and pin 10 to ground. After seeing how the I2C board was
previously installed onto the board, it was determined that slave address 0x40 was the correct address
for communication based upon the pads that were selected on the breakout board. The best resource
that was used in determining how to write I2C for the HERO was found in a CTRE github page
regarding using a sonar sensor [14].

5.3.4 Maretron

Figure 22: Maretron unit

Using the Maretron on the boat was a big step for the team this year. While using old code earlier
in the year, it was thought that maybe something had happened to the Airmar sensor, as all of its
log files were returning straight zeroes. However, after downloading the Maretron software using the
Maretron’s User Manual, the team was able to hook up the system to a NMEA2000 bus with the
Airmar, plug the Maretron into the computer with the software, and test the system outside. This
began returning full values for everything that would be needed for the project, such as the GPS
coordinates, wind direction, wind speed, roll, pitch, and yaw.

Once it was found that the Airmar was indeed working, the next step was to figure out how to
read NMEA-0183 sentences. Using information found at [15], a simple parser was created that would
look for the starting few characters, “$–”, and then save data according to the three character code
that came after the start. The three character codes are listed accordingly:
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Three character code Information

GGA GPS fixed data

GLL Geographic position in lat/long

GSA GPS and active satellites

GSV Satellites in view

HDT True heading

RMC Recommended minimum navigation info

Table 4: NMEA-0183 Sentence Character Codes

These codes could be read from a serial stream that would go through the a USB-B cable from the
Maretron to the USB shield on the Arduino, providing full information, such as GPS coordinates, roll,
pitch, yaw, current heading, and wind direction.

5.4 Software System

By improving the remote control, the team can better the autonomous controls by mimicking its RC
operation. For buoy detection, there will be on-water testing in different weather scenarios to check
how well it picks up the color and size of buoys. After that is improved, this can then be applied
in order to create a better navigation planning system for the boat to complete three of the courses.
This year’s Sailbot team has learned from previous team’s software designs. They originally decided
on a continuing the system developed by the 2017 Sailbot team. However, after wrestling with the
code for months, it was decided to start from scratch after the electronics redesign.

5.4.1 Course Logic

When looking to develop the navigation strategies for the boat, the team first looked at the different
challenges presented by the 2018 competition, as it was assumed that the challenges will be similar
for the 2019 competition. The main challenges that the team are focusing on to base the navigation
strategies on are the fleet race, endurance test, precision navigation, station keeping, and search.

Fleet Race
For the fleet race, teams are challenged to sail via remote control with the other boats from the
starting line, around a buoy, and back. The biggest portion of this competition is having the remote
control programming working well to make the boat easier to sail. Throughout the process of de-
signing, however, the team has encountered many setbacks in improving upon this code. First, there
was very little documentation to direct the team. This led to lots of research on the Bazel website
to determine how to correctly set up the run environment and install the 16.04 Ubuntu virtual machine.

After setting up the virtual machine, the team found that the joystick controller was not working. One
of the problems is there are two modes to a Logitech Gamepad Controller: X and D. Mode X is for
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XInput and D is for direct input. XInput means there is no customization and should work natively
with every game. Direct input is used for customized controls, thus being the desired mode for the
team; however, by switching between the two modes, they created two different filters on the virtual
machine. This caused the joystick to be “confused” in the virtual machine and not run at all. Once
they deleted the XInput filter, the joystick then was able to run in joystick testers, such as Jstest (a
Ubuntu tester) and HTML5 Gamepad Tester (a web browser). Because both software developers were
using a virtual machine on a MacOS, there are two joysticks automatically added and seen by the
machine. This caused problems because the code reads from the joystick input file “/dev/input/js0”,
but the joystick is actually sending inputs to “/dev/input/js2”. Once js0 was changed to js2 in the
code, the RC control code started reading inputs from the joystick.

After the redesign, which is discussed in section 4.1.2, to start RC, the user only has to push the
“start” button on the controller to turn on the controller, and use the left joystick to control the
ballast and the right joystick to control the rudders.

Endurance Test
The endurance test requires the team to create a program that will allow the boat to sail about a
rectangular, 1 nautical mile long course for up to seven hours. After discussing as a group about how
to approach this task, it was decided that the program would be codependent on navigation code as
well as camera tracking of buoys. This year, the team developed an idea as to how to correct this
with buoy detection strategies. As for the endurance test, the robot would need to sail along a path
towards a buoy, and sail about the starboard side of the buoy before continuing on. The biggest issue
regarding this was determining how best to round buoys. The process for this is shown in the following
flow chart:

Figure 23: Code Process for Endurance/Long Distance Challenge

Precision Navigation
For the precision navigation challenge, robots are tasked with navigating a triangular course and then
sailing between two buoys, which act as the finish line. The plan was to have most of this code
be reused from other challenges, including the buoy navigation and sailing along a path challenges.
The main difference for this challenge was that a buoy count needed to be implemented so that the

31



robot knew when to round the base of the triangle. Once it had done so, it looked to find a gate
to sail through to finish the race. This changed the logic slightly because the robot was to detect
the starboard-most buoy, and find the midpoint between the two and try to sail between them. The
process for this challenge is shown in the following flow chart:

Figure 24: Code Process for Precision Navigation Challenge

Station Keeping
The point of this challenge is to have the robot enter a 40 meter squared area, stay within it for five
minutes, and then exit within thirty seconds of the end of the five minutes. With that in mind, the
original plan of attack was to have the robot use the same gate navigation from precision navigation,
go into the box, set up an “obstacle gate” about the edges of the box, sail within it for five minutes,
and then use gate navigation when it hits five minutes on the onboard clock to exit. After discussion,
the team realized this might not work. First, the boat can be remote controlled to enter the box for
the first time. A second thing is that it would be easier for the boat to try and stay in one spot rather
than having it sailing in circles. To fix the second issue, it was thought that it might be better to have
the boat attempt to sail into irons to stop sailing once it entered the box. However, this also would
not work due to the fact that it is extremely difficult for the sail to get out of irons to exit. For the
final idea, the robot would enter the square and send the rigid wing a signal to create zero lift, making
it unable to sail for the five minutes, then move the sail into a max lift position once the end of the
five minutes hits. The process for this challenge is as follows:

Figure 25: Code Process for Station Keeping

Search
The goal of the search challenge is to have the robot find a randomly placed buoy within 100 meters
of the start point during a five minute time window, tap the buoy, and then signal back to land that
the buoy has been found. The original idea with this was to use the A* search algorithm to look at
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all the nodes, then returning the best path once the buoy has been found. One major issue with this
was having to change the path limitations to account for wind direction and path width. The team
will try to utilize the lane detection code to work on this for competition, but as for now, it is outside
of the scope of the MQP itself.

5.4.2 Reusable Code

One of the other major goals that the team was focusing on was creating code that can be reusable
across the different activities. For this case, it was decided that the two major reusable functions
should be the buoy rounding and sailing along a path.

Buoy Rounding
The idea behind the buoy rounding was that almost every challenge utilizes a buoy in some way, which
led to different types of strategies. The original idea for this was to focus solely on using the camera
to measure where the boat was in reference to the buoy. However, after discussing with advisors, it
was found that the camera would only be able to detect the buoy within 10 meters. Due to this,
a new plan of setting a waypoint in front of the buoy was decided upon. It was thought that this
would allow the boat to get within ten meters of the buoy and then sail about it, but that was not
completely correct. One of the major flaws in that idea was that the team was treating the boat as
though it were a land vehicle or a motorized boat. Even if the boat was able to make it straight to
the waypoint in front of the buoy, it would have a really hard time approaching the waypoint required
to sail about the buoy due to having to follow either a straight line or a curved path. After this, it
was determined it might be better to set the waypoint to the starboard side of the buoy so that the
boat could navigate along a further distance rather than try to make a short turn to get around the
buoy. This can be shown below:

Figure 26: Rounding a buoy diagram

Sailing along a path
Sailing along a path is the most important piece because it is what allows the robot to sail from
point A to B. This is one of the parts that has taken some of the most thinking due to how much
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information the robot needs to receive before it can operate. The first idea was to focus on avoiding
objects and shore detection. To solve this problem, solutions were researched based on autonomous
movement along rivers, open water, and on non-sailboats. There were three main solutions that were
determined, which are outlined below:

Pros Cons

- 360 degree view of what’s around the - The sail could block camera
robot views depending on location

360 Degree - Just reuse the camera detection code to - Boat shape isn’t constant even with
Camera Mount determine the shoreline wing sail

- Based on similarities, not absolutes - Might have to use two different
cameras

IMU/GPS/digital - Already use some of the sensors - Have to manually set waypoints
compass currently on the boat - Might be too much onboard

Integration - Calculation consist mostly of processing with what is already
linear algebra being done

- Based upon GPS location at the - If the boat doesn’t reset when it
beginning of each turn. rounds a buoy, the ”lanes”

GPS ”lanes” - Can change width of lane by will be wrong
determining how many degrees wide the - Not much information on this

lane should be

Table 5: Pros and Cons of Lane Sailing Ideas

After going through this pros-and-cons table, it seemed the best option would be to create a 360
degree camera mount that can be mounted at the top of the mast. The camera setup was to be a
CCD camera mounted in the bottom of a pneumatic tube. At the top would be a convex lens that
would reflect the camera’s direction to get a 360 view. However, for the purpose of this project, it
was slightly outside of the scope, as the environment would be mostly controlled, and it could be too
heavy on the top of the mast. To alleviate this issue, the 360 camera idea was dropped. The new idea
would be to check where the latitude and longitude coordinates of the shore or docks and then create
an obstacle along a parallel latitude and longitude that would not allow for the boat to sail across.

Once this was determined, there were a series of heuristics that had to be decided upon in order
to start the process of developing the code. These include: wind direction from the Airmar, a lane
to sail through based on latitude and longitude, and the distance to waypoint. Using these, the team
will begin the process of integrating the code with last year’s code in order to be able to start boat
simulations.
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Lane Detection

Figure 27: Lane cost layout

When looking to create reusable code as mentioned in Section 4, one of the major things that the
team focused on was the idea of “lane” detection. With this idea, the team would be able to create
“lanes” between buoys on each section of a course. The robot would then be able to navigate freely
using a combined heuristic to reach the goal destination. The goal destination would be placed at the
maximum distance at which the camera can locate a buoy. This would allow for the camera detection
to take over to do the buoy rounding, as mentioned in section 4. The starting position is set when
the boat has finished a tack or gybe or starting a challenge. From there, the biggest challenge is
to determine the lane width. To determine the width, the boat would take in its GPS coordinates
and then convert them to their local Cartesian coordinates, measuring everything in meters. Using
the NMEA-0183 standard, the latitude and longitude coordinates are returned in degree and decimal
minutes (DDM), which is equivalent to XX (Degree) XX.XXX’. In order to correctly convert this into
the Cartesian coordinates in meters, the DDM coordinates need to be converted into Decimal Degrees
(DD), which is equivalent to XXXX.XXX. This can then be converted using the knowledge that each
degree latitude is equivalent to 111000 meters per degree, and each degree longitude is equivalent to
the cosine of the latitude in DD multiplied by the length of degrees in miles at the equator, which is
60 nautical miles. The calculations used to do this can be seen below:
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latitude.d = Latitude minutes /60
latitude.DD = Latitude degrees + latitude.d
Latitude in meters = latitude.DD/111000
Longitude in meters = (cos(latitude.DD)(60))/111000

Due to the length of the boat begin two meters, it was decided that a safe distance lane width
would be about twelve meters, with six meters on either side of the starting position. The next step
would be to set up a grid consisting of 1x1 meter squares that the boat can perform A* through.
Anything outside of the twelve meter lane would be considered to have a highly exponential cost, and
the cost increases radially from the straight line path as well. This is indicated in Figure XX, as the
greener the square is, the lower the cost.

The other issue that arises with using the lane method alone is the fact that the boat is not self-
propelled. With this being the case, another set of heuristics had to be taken into account to correctly
plan the course for the boat. A paper written by C. Petres, M.-A. Romero-Ramirez, and F. Plumet
also researched this topic [16], revealing the figure below.

Figure 28: Wind heuristic

This accounts for the different points of sail for the boat, therefore making sailing upwind a high cost
move, as well as sailing along the downwind line. Another position it takes into account is the current
heading of the boat. Although a possible position might be for the boat to turn to the position behind
itself and sail, that will cost higher, as that maneuver will take more time. Therefore, the least costly
maneuver will be if the boat can continue upon its current heading.

Overall, the combination of these two methods will produce the following heuristic to solve for h(n) for
lane navigation planning using the equation f(n) = g(n)+h(n), where f(n) is the estimated total cost
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through n to the goal, g(n) is the cost so far to reach the node, and h(n) is the estimated cost from
n to the goal. To solve for h(n), the following equations are used, partially using heuristics developed
by processes in [16]:
- For wind direction:
- If upwind:

Pu =

{
dist(Pw,P ), if 0 < |φ| < φupwind.

0, elsewhere.
(1)

- If downwind:

Pd =

{
dist(Pw,P ), if 0 < |φ− π| < φdownwind.

0, elsewhere.
(2)

- For lane width with “x” being x value of the start location, and having 6 meters on either side:

Multiplier =



1, if x− 1.5 < x < x+ 1.5.

10, if x− 3 < x < x− 1.5 or x+ 1.5 < x < x+ 3.

50, if x− 4.5 < x < x− 3 or x+ 3 < x < x+ 4.5.

100, if x− 6 < x < x− 4.5 or x+ 4.5 < x < x+ 6.

1000, if x < x− 6 or x > x+ 6.

(3)

- Where Pl is the value of “x” multiplied by the multiplier
- Pdist is the straight line distance between the current location and the goal

Therefore, h(n) = Pu+ Pd+ Pl + Pdist
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6 Preliminary Calculations

In order to understand the dynamics of the boat, modeling must be utilized. This modeling will
inform design choices such as centers of effort and centers of mass for different components of the
boat. To better balance the boat in multiple scenarios, a MathCad script was developed to analyze
the moments in the two axis of roll and pitch.

By utilizing the dynamic ability to change sail angle and pitch arbitrarily, the team was able to
see how different parts of the boat responded to the changes in environment. This also aided in
developing a design that took a multi-axis approach to solving for conditional requirements. These
calculations can be found in Appendix 8.2.
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7 Future Recommendations

7.1 Mechanical Recommendations

The mechanical systems in the boat always benefit from being lighter, as the boat decreases in weight,
it increases in speed. Some of the areas of the boat where weight can be reduced are in the electronics
enclosures, the balancing of the rigid sail and the sensor mast that holds the Airmar.

An additional mechanical improvement to boat is waterproofness. The cable glands that protect
electronics and their enclosures are not designed for water submersion, hopefully this never hap-
pens in the boat. Additionally, the connections through the hull of the boat are not as waterproof as
they can be, redesigning the deck mounted joints would help to improve this risk of failure on the boat.

The moveable ballast is driven by a powerful motor but sometimes over rotates and locks itself in
a damaging position where it can not turn back the other way under its own power. A system that
integrates a clutch that limits the movement of the arm back and forth would help to remedy this
problem.

7.2 Hardware Recommendations

Battery Change
The current battery used in the boat is a lead acid battery. These batteries are inexpensive for the
capacities they can achieve but compromise in weight and maximum current draw. Currently the
peak draw from the boat while motors are running exceeds this current rating, dramatically reducing
the lifetime of the battery. This also limits the maximum sailing time that the boat is capable of.

Better solutions can be found using lithium-polymer or lithium ion battery technologies. Both of
these battery types support a much higher energy density for both their size and weight. This would
allow the boat to use a much smaller and lighter battery with greater sailing capabilities. These
batteries can also provide much more current than lead acid batteries without damaging themselves.

This improved current capability would mean that the boat would have more power available during
operation and that batteries would survive many more recharge cycles.

Airmar Location
A second hardware recommendation would be to try and move the Airmar to a different position on
the boat. As of right now, the Airmar is positioned at the back of the boat, which is about half a meter
above the electronics housed in the hull. After reading through the user manual, the team thought it
might be better to move the Airmar to a position that is at least a meter from the back of the boat.
This should help with any inaccuracies within data readings. This was meant to be achieved by the
team this year, but ended up being put on the back burner after the hardware redesign.
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7.3 Software Recommendations

One major recommendation for the software portion of the project would be to try and move into
working with a more robust programming language. While programming using the Arduino IDE
benefitted the team in the short time line allotted, using a language such as C or C++ might help
with some other issues. This could definitely come into play as further development in pursued on the
current system.
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8.2 Roll and Pitch Calculations

Figure 29: Calculations of roll and pitch

Figure 30: Continuation of calculations
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8.3 User Manual

For the user manual, the team created a YouTube channel for videos to help with this process. Navigate
to https://www.youtube.com/channel/UCTJcecIIHhpFGg6Isr1fq9w to find the videos.

8.3.1 Mechanical Setup

The mechanical setup videos are as follows:
1. Rudder installation
2. Rigid wing installation
3. Movable ballast installation
4. Charging the rigid wing
5. Keel installation
To prepare for any water testing, follow the ”Kit Walk-through” video.

8.3.2 Hardware and Software Setup

An electronic schematic can be found in section 5.3.

1. Once all the wires are connected to each other, make sure to plug in the batteries labeled with
a B or D, and then turn on the boat with the gray magnet piece. (Reference YouTube “Turn on
boat/rigid sail”). If the boat does not turn on right away, the first thing to check is the fuse. If the
fuse is blown, check to see which LED has illuminated next to a fuse. Then follow the leads from
that fuse. Check for any shorts, which are commonly found at the section where the HERO board is.
If the fuse is fine, the batteries might be dead. These batteries go through charge rather quickly (a
future recommendation is to change them), so make sure you are always charging the batteries.

2. The trim tab electronics enclosure can also be turned on with the magnet. Make sure to the
keep the magnet piece away from the electronic enclosure once it is turned on/off, because the magnet
could switch the state of the enclosure if held too close.

3. To control the boat, we used a wireless LogitechF710 controller. For the controller, the team
decided to make the left joystick the axis to control the movable ballast by moving it left and right.
Joystick axis 2 was chosen to control the rudders. The rudders could be controlled by moving the
right joystick left and right.

4. All of this can be referenced in “Running RC” on the WPI Sailbot channel
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8.4 Code Description

All code can be accessed on the WPI Sailbot GitHub page, located at
https://github.com/wpisailbot/sailbot1819NEW. Make sure you are in the sailbot1819NEW code, as
that was what was written for this year’s MQP. Other repositories can be used for reference.

8.4.1 Arduino Code

The main code for the Arduino was written using the Arduino IDE. The program to run on the
Arduino is named ”WebServerTestArduino”. The point of this code is to set up the web server that
can be run through the router housed within the same container. The code also allows for serial
communication between itself and the HERO, and UDP messaging with the Teensy.

8.4.2 HERO Code

The HERO code was written in C# using VisualStudio 2017. The program to run on here is ”HERO
Serial Example”. This runs all of the controls for the components of the main hull and lets them be
controlled by the LogitechF710 wireless controller.

8.4.3 Teensy Code

The Teensy code was written using the Arduino IDE with the Teensy plugin, which can be found
at https://www.pjrc.com/teensy/td download.html. Once that is fully installed, then code can be
uploaded. Use ”rigidWingStateMachine” for this board. It allows for serial communication between
the ESP8266 Wifi chip and for UDP messaging with the Arduino. Any further questions regarding
any of this code should be able to be found in the comments.
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8.5 Testing Kit List

This list contains all that is required for water testing. You can find a walk-through on the WPI
Sailbot YouTube channel.

Figure 31: Kit of parts list
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