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Abstract 
 
 
The Computer Enabled Robotic Base Enhancing Remote Unmanned Security (CERBERUS) 

platform was a partially implemented robotic sentry with working tele-operation.  This project 

sought to add autonomous functionality to the CERBERUS platform.  This objective was 

partially realized in that an autonomous infrastructure was created.  The framework still requires 

further testing due to prohibitive mechanical failures which impeded testing. 
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Executive Summary 
 
  
The United States Air Force (USAF) has many unmanned bases that require monitoring in 

remote areas throughout the United States.  The combination of the sheer number of facilities 

that necessitate security and the remote nature of some facilities makes it impractical to use 

humans to secure these sites.  This is where robotic security comes in.  Having autonomous 

security robots deployed at these sites would allow the USAF to monitor the sites in real time 

without having to deploy human resources to the locations. 

 

The CERBERUS robot was created to remedy this problem.  The robot is responsible for a 

facility with a 1200 ft perimeter and must be able to autonomously navigate to the site of a 

perimeter breach within two minutes and transmit video back to United States Air Force 

employees.  Once autonomous terminates, CERBERUS should transition from autonomous 

operation to teleoperation allowing USAF members to drive the platform and manipulate 

CERBERUS’ cameras in order to perform a thorough assessment of the situation.  The full 

sequence of robot operation is summarized below in Figure 1. 

 

Figure 1: CERBERUS Operation Flow 
This graphic illustrates the flow of events for a fully functional CERBERUS platform. 

 
The previous team began the process of creating a robot for this application; however, only 

certain parts of the project have been completed.  Upon inheriting this project, the robot was able 

to function in teleoperation mode and the cameras were able to transmit video as desired; 
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Recieves 
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Disturbance
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Operator Drives 
back  to Charging 
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however, the robot lacked any autonomous capabilities.  The purpose of this project was to build 

upon the existing platform and integrate autonomous functionality with the pre-existing tele-

operation. 

 

To that end, we created an autonomous concept of operation which defined eight observation  

points reached through the execution of eight distinct trajectories.  The execution of one such 

trajectory is shown below in Figure 2.  This strategy simplified autonomous functionality so that 

it could be implemented through a simple set of motor actions where the specific sequence is 

selected based upon which observation point is chosen as the destination.   

 

Figure 2: Autonomous Observation Points with Single Turn Trajectory 
This image shows the configuration of the eight observation points along with 

the execution of a single-turn trajectory. 



 x 

In this project we also worked with the GPS in order to gain viable location data that can be used 

to validate correct trajectory execution in the future.  Our configuration produced a raw data 

stream that was accurate to the ninth decimal place, an example of which can be seen below in 

Table 1.   

Latitude Longitude 
42.16571761 71.48010757 
42.16571982 71.47999851 
42.16571721 71.47999117 
42.1657171 71.48001415 
42.16573001 71.48001792 
42.16576736 71.47993297 
42.16576757 71.47992894 

Table 1: Sample of  GPS Data 
These values are a small unfiltered subsection from the GPS output 

 
Due to hardware failures, autonomous functionality still requires more testing at the culmination 

of this project.  Nonetheless, this project succeeded in creating an architecture for an autonomous 

protocol that will be easily integrated with varied perimeter detection systems and easily 

improved through further sensor integration. 
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1. Introduction 
 
 
Each year the United States Air Force issues design challenges in pursuit of innovative solutions 

to a variety of problems.  The CERBERUS platform began as a response to one such challenge 

issued in 2017.  This particular challenge called for the creation of a Robotic Sentry using an All-

Terrain Wheelchair Platform. 

 

1.1 The Robotic Sentry Challenge 
 
The CERBERUS robot was created to monitor remote, unmanned Air Force facilities.  

According to the challenge document found in Appendix A, the robot is responsible for a facility 

with a 1200 ft perimeter.  The CERBERUS robot must be able to autonomously navigate to the 

site of a perimeter breach within two minutes and transmit video back to United States Air Force 

employees.  At this time, CERBERUS should transition from autonomous operation to 

teleoperation allowing USAF members to drive the platform and manipulate CERBERUS’ 

cameras.  This allows USAF personnel to perform a thorough assessment of the situation.  

 

Figure 3: CERBERUS Operation Flow 
This graphic illustrates the flow of events for a fully functional CERBERUS platform. 

 
Because CERBERUS will be functioning outside in unknown conditions, the platform must be 

able to traverse gravel, grass, 1ft puddles and 1ft snow drifts.  For storage, the robot must return 
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to a docking station when it is not in use in order to charge while in a standby state, ready to 

respond should a perimeter breach arise. 

 

1.2 Current State of the Art 
 
In order to execute the tasks detailed in Figure 1, the CERBERUS platform must have three key 

functionalities: charging, autonomy, and tele-operation.  The previous team began the process of 

creating a robot for this application; however, they only implemented the tele-operation 

component.  As illustrated below in Figure 4, there was still a lot of functionality to be added in 

order to create a fully functional platform. 

 

Figure 4: CERBERUS Functionalities 
This diagram shows the components necessary for a fully functional platform. 

The implemented functionalities are shown in green. 

 
Upon inheriting this project, the robot was able to function in teleoperation mode and the 

cameras were able to transmit video as desired, but the robot had no charging or autonomous 
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capabilities.  As a result, our project sought to implement the next large missing component: 

autonomy. 

  



 4 

2. CERBERUS Crash Course 
 
 
One of the first challenges of this project was to understand the existing system.  In this chapter 

we examine strategies used in the development of platforms similar to CERBERUS.  We then 

assess the initial CERBERUS implementation in order to understand both the strengths and 

weaknesses of the platform.  This system appraisal helped us to understand the optimal approach 

to adding autonomy to the robot. 

 

2.1 Existing Methods of Autonomous Navigation 
 
In achieving autonomous operation for CERBERUS, we faced three main challenges.  First, we 

had to implement some form of path planning from the platform’s original location to the 

destination position.  Then, in order to ensure accurate navigation to the desired endpoint, we 

needed to repeatedly localize the platform in order to verify the robot’s position in relation to the 

destination.  Lastly, we had to implement obstacle avoidance during autonomous navigation. 

 

There are several existing autonomous path planning methodologies that could be applied to the 

CERBERUS platform in order to implement the path planning functionality.  Many robots 

employ a two-fold approach creating a global path composed of waypoints and then using local 

cost maps to navigate between waypoints.  These local cost maps can be obtained using 

Dijkstra’s algorithm to find optimal paths (Berczi, Ostafew, Stenning, Barfoot, Jones, 

Tornabene, Osinski, & Daly; 2014).  These types of path planning functionalities can be 

achieved through pre-existing ROS stacks, some of which even include obstacle avoidance 

(Dimitrov, Wills, & Padir; 2015).  This obstacle detection has been implemented through a 

variety of systems ranging from LIDAR arrays to computer vision systems.  In our case, this may 
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be an appropriate application for the WALBOT radar device.  Integrating the obstacle detection 

with the local cost map allows for efficient navigation while avoiding obstacles along the way 

(Dimitrov, Wills, & Padir; 2015). 

 

In order to accurately execute this path planning, the robot needed to be able to localize.  There 

are several methods of localization that can be achieved without using devices such as GPS.  

Firstly, computer vision can be used to localize a robot when used in conjunction with distinct 

geometric finials.  With geometric finials, there are pre-existing image processing libraries in C 

that can be used to generate a location and orientation of the platform relative to the finials based 

on the image of the distinct shapes (Gu, Ohi, Lassak, Strader, Kogan, Hypes, Harper, Hu, 

Gramlich, Kavi, Watson, Cheng, & Gross; 2017).  However, this may pose issues when 

implemented in an environment where the weather is uncertain.  Unfavorable visibility could 

result in distorted images and inaccurate position calculations.  One method of improving the 

accuracy of position estimation based on vision is combining it with data from other onboard 

sensors such as encoders and IMUs (Veth & Raquet, 2007).  In addition, several autonomous 

systems have experienced success with using ranging radios in order to estimate position (Gu et 

al., 2017).  These radios can be placed at the robot’s docking station in order to provide a 

consistent reference for platform localization as the robot traverses the predicted waypoints. 

 
2.2 Existing Docking and Charging Systems 
 
Just as there are several established methods of autonomous navigation, there are also many 

implementations of robot charging stations that could be used as a basis for the CERBERUS 

charging station design.  Firstly, there are several charging systems that are completely wireless 

which eliminates the need for precise docking (Balakrishnan, Growthaman, Jaya Kumaran, & 
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Sabhapathy, 2015) (Li, 2017).  However, we are required to use the two 12 V batteries supplied 

with the Action Trackchair and these wireless charging systems may not integrate well with our 

existing power system.   

In the case that we need to create a physical connection, many docking stations make use of 

physical guidance aides in order to help the robot properly align with the docking station in order 

to create a high-fidelity connection (Luo, Liao, Su & Lin; 2005).  In addition to physical systems 

to assist with alignment, some robots made use of fixed waypoints in close proximity to the 

docking station in order to help correctly align their platform (Berczi et al., 2015).  Another 

option for docking alignment is the use of three-dimensional fiducials which, through vision 

processing, can be used to ascertain not only the distance from the docking station but also angle 

relative to the station as well (Dimitrov, Wills, & Padir; 2015).  However, as this method is 

reliant upon vision processing it is also subject to disruption should visibility be limited.  

Another option is to make use of ranging radios for this application as well.  These would be able 

to help the robot locate its home base and align properly so as to successfully dock with the 

charging station (Gu et al., 2018). 

 
2.3 Mechanical Design Analysis 
 
The original Action Trackchair infrastructure was modified in an attempt to optimize the chassis 

for the desired CERBERUS functionality. The modified mechanical system implemented on the 

Action Track Chair framework sought to emulate the original chassis’ low center of gravity in 

order to retain the platform’s stability and resulting effectiveness on rough terrain.  In addition, 

the mechanical design emphasized containing all electronic components in order to protect them 
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from puddles or snow-drifts that the robot must navigate.  With these goals in mind, the original 

Action Trackchair chassis was modified as seen below in Figure 5. 

 

 
Figure 5: Initial CERBERUS Implementation 

This image shows the CERBERUS robot as it was when we began work on the project. 

 
The previous team removed some of the original chassis in order to reshape the robot and added 

steel sheeting to protect from the elements.  Additionally, they moved the motors and 

consolidated the robot electronics into two boxes at the front and rear of the robot. 

 

Although the original mechanical systems achieved certain criteria such as successfully 

protecting the robot electronics, the design fell short in several areas as well.  Table 2 describes 

the different strengths and flaws of the original mechanical design. 
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Mechanical Design Strengths Mechanical Design Flaws 
• The system is stable and has a low 

center of gravity.  It is equipped to 
traverse uneven terrain. 

• There is no vibration damping.  This 
causes instability for the security 
camera and other components. 

• All electronics are self-contained in 
designated electronics boxes. 

• The batteries are press-fit into the 
chassis restricting access to system 
electronics. 

 • Steel externals are not securely 
attached, unnecessarily heavy, and not 
waterproof. 

 • Robotic motion is inconsistent. 
 • Internal components, such as the 

coolant pump, are unsecured. 
 • Coolant lines inhibit access to system 

electronics. 
Table 2: Mechanical Design Assessment 

This table details the strengths and weaknesses of the initial mechanical design 

 
The main issue with the original mechanical system was that it severely inhibited robot 

maintenance.  Due to incorrectly estimated tolerances, the batteries were press-fit into the chassis 

restricting access to all of the electronic systems which were located behind the batteries.  In 

addition, there were several components that were not mechanically stable.   For one, the motors 

were subject to significant oscillation during robot operation.  This instability impacted the 

reliability of robot operation.  Similarly, the security camera had no stabilization which meant 

that during operation, the picture was highly unstable.  In addition, the screws used throughout 

the device could not handle the vibrations experienced during operation and often fell out.  As 

such, further improvements could be implemented in order to remedy these existing issues with 

the initial mechanical design. 
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2.4 Control Systems & Electronics Analysis 

The CERBERUS robot required several independent electronic and sensing systems in order to 

achieve full functionality.  The originally implemented electronic system can be seen below in 

Figure 6. 

 

Figure 6: CERBERUS Electronics 
This diagram shows the functional electronic system on the CERBERUS platform. 

 
As with the mechanical systems, we began by taking stock of the system in order to understand 

its strengths and its flaws.  The results of this assessment are detailed below in Table 3. 
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Control System Strengths Control System Flaws 
• HERO board is compatible with Talon 

Motor Controllers 
• Daisy chained platforms lead to 

excessive data transmission 
• E-Stop stops all systems and enables 

safe testing 
• No sensing systems whatsoever 

meaning no localization or obstacle 
detection capabilities. 

 • No reliable battery monitoring 
Table 3: CERBERUS Control System Assessment 

This table details the strengths and weaknesses of the original control system. 

At the most basic level, CERBERUS must be able to turn on and off, run the motors, connect to 

the Desktop application, charge, perform health and battery monitoring, and run its sensors and 

cameras.  The system shown above in Figure 6 was capable of turning the platform on and off, 

running the motors, running the security camera, and communicating with the desktop.  The 

most significant system weakness was the complete lack of sensing capability.  The platform 

possessed a robust sensor array; however, none of the sensing components had been integrated 

into the system.  Table 4 below details the sensors that remained unconnected and the 

functionality associated with each sensor. 

Sensor Functionality 

RTK GPS Combined GPS and 9 degree of freedom IMU 
unit which could be used for localization. 

Walabot RADAR RADAR array for obstacle detection. 

ZED Camera Camera equipped for vision processing which 
could be used for obstacle detection. 

Table 4: Unimplemented Sensors 
This table describes the sensor that were present on the  

CERBERUS platform but not integrated into the existing control system. 

Integrating these sensors would help remedy some of the issues we identified namely 

localization and obstacle detection.  As a result, analyzing the potential of these sensors provided 

a viable avenue to begin our autonomous implementation.   

Additionally, there was no system in place for charging the robot other than the provided Action 

Track Chair Charger.  Consequently, the robot would require a charging system for its two 12 
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sealed lead acid (SLA) batteries though that task was outside the scope of our project.  

Additionally, current battery monitoring methods were unreliable and needed to be re-

implemented as well. 

2.5 Software Application Analysis 
 
Several of the software components of this system had been implemented when we began work. 

But, there was still room for improvement.  The previous group established communication 

between the robot platform and a simulated USAF computer.  To facilitate this communication, 

they created the user interface application seen below in Figure 7.   

 

Figure 7: CERBERUS Desktop Application 
This is a picture of the CERBERUS Application view for security camera manipulation. 

 
This application allowed camera manipulation and remote robot control.  As before, we assessed 

the system and the strengths and weaknesses of the existing software application are detailed in 

the following Table. 
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Software Application Strengths Software Application Flaws 
• Clean and easy to use • Threads do not terminate on their own. 
• Runnable on any OS • Camera and Tele-operation cannot run 

concurrently due to an issue related to 
a shared library. 

 • No functionality related to autonomy 
Table 5: Desktop Software Application Assessment 

This table details the strengths and flaws of the original software application. 

Although the camera implementation itself was functional, the vision thread could not function 

concurrently with robot teleoperation.  Additionally, software for autonomous operation did not 

exist.   

 

2.6 Chapter Summary 
 
The research found in this chapter helped us to understand the many different avenues we could 

pursue as we tried to implement autonomous operation.  The subsequent analysis of the existing 

system allowed us to understand the resources we were working with and analyze which 

autonomy strategies would be most effective on this specific platform.  Using this information, 

we created our proposed approach. 
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3. Proposed Approach 
 
 
In tackling this project, we began by setting project goals.  As the project progressed, these goals 

evolved to emphasize our focus on autonomy.  Using these goals, we were able to understand the 

project scope in order to organize project execution. 

 

3.1 Project Goals 
 
The following details found in Table 6 constitute our initial goals for the continuing development 

of the CERBERUS platform.  The Must Haves encompass the work that needs to be done in 

order to achieve basic robot functionality and satisfy the initial use-case.  The Nice to Haves 

encompass work that we would like to do in order to not only produce a functional robot, but a 

robust one as well.  Lastly, the Reach Goals represent ways the robot can be improved and 

augmented to go beyond simply fulfilling the original use-case.  The goals in bold are associated 

specifically with autonomy. 
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Must Haves Nice to Haves Reach Goals 
Tele-operation which allows 
for successful robot docking 
in 90% of docking attempts 
by a proficient robot operator 

Improved mechanical design 
to promote ease of access for 
robot maintenance 

Autonomous navigation 
home 
 

Receive a goal position and 
orientation 

Improved motor stability 
 

Autonomous Docking 
 

Autonomously navigate to 
within 10 ft of goal position  

Sturdier screws 
 

Redesigned robot externals 
 

Achieve a final orientation 
within 45° of target 
orientation 

Improved weatherproofing 
 

Improved GUI 
 

Avoid obstacles during 
autonomous navigation 

Stabilized cameras 
 

 

Reach final position and 
orientation within 2 
minutes 

Accurate battery monitoring 
 

 

Initiate video transmission 
upon reaching goal position 
and orientation 

  

Transition to teleoperation 
upon reaching goal position 
and orientation 

  

Docking and Charging 
system operating while the 
robot is in standby mode 

  

Table 6: Project Goals 
This table represents the initial project goals. 

Goals associated with autonomy are shown in bold. 

During the course of the project, these goals were amended to focus more exclusively on 

autonomy.  Additionally, the autonomy goals shifted as we created a concrete autonomous 

concept of operation.  The revised goals are shown below in Table 7. 
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Must Haves Nice to Haves Reach Goals 
Receive a goal position 
 

Improved mechanical design 
to promote ease of access for 
robot maintenance 
 

Improved GUI 
 

Autonomously navigate to 
within 10 ft of goal position  
 

Improved motor stability 
 

 

Avoid obstacles during 
autonomous navigation 
 

Stabilized cameras 
 

 

Reach final position and 
orientation within 2 minutes 
 

  

Initiate video transmission 
upon reaching goal position 
and orientation 
 

  

Transition to teleoperation 
upon reaching goal position 
and orientation 
 

  

Table 7: Revised Autonomy-Focused Project Goals 
This table shows our revised list of goals which were selected in order to  

focus our efforts exclusively on autonomous operation. 

We chose to limit our project scope to autonomous operation and to that end, we eliminated any 

goals that did not directly affect our autonomous implementation.  Additionally, our concept of 

autonomous operation evolved to no longer require orientation related goals because we devised 

an autonomous concept that worked independently of specific disturbance locations on the 

perimeter.  Since the robot no longer had a specific point to observe, manipulating robot 

orientation was no longer applicable to successful autonomous execution. 

 

We retained several Nice to Have and Reach goals that are not strictly associated with autonomy; 

however, we thought they were appropriate to include as they were goals that affect autonomous 

functionality even if they are not strictly part of the autonomy protocol.  For instance, although 

ease of access for maintenance is not outwardly associated with autonomy, working on this 
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aspect of the robot proved integral to our success.  We had to work on this aspect of the robot in 

order to make the platform suitable for the development of autonomy.  Similarly, the GUI may 

seem disjoint from autonomy, but in fact it could be modified to add functionality to the desktop 

application in order to send goal locations to the autonomous protocol. 

 

3.2 Autonomous Implementation Strategy 
 
Once we took the time to gain a comprehensive understanding of the system, we needed to 

identify the best approach to autonomy.  As previously discussed, the CERBERUS platform 

provided several untapped resources in the form of different sensing systems that could be used 

to implement autonomy.  Additionally, our background research revealed several different 

approaches to autonomy, many of which proved feasible options for CERBERUS.   

 

For our autonomy we could either attempt to use the ZED Camera’s vision processing 

capabilities, the GPS, or the IMU as the main sensing strategy for our autonomy.  Obviously, the 

ideal solution would combine several of these options in order to produce a more robust system; 

however, we wanted to limit our focus to one strategy initially in order to focus our efforts in one 

direction. To that end, we did some preliminary work with each sensing strategy and analyzed 

the benefits and drawbacks of each as seen in Table 8. 
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Vision Processing GPS IMU 
Pros Cons Pros Cons Pros Cons 

+ Use one 
system for 
localization 
and obstacle 
avoidance 

- Extremely 
processing 
heavy, 
potentially 
slow 

+ Low 
processing 
load 

- Requires 
line of site to 
satellite. 

+ Low 
processing 
load 

- Dead 
reckoning, 
meaning it 
cannot 
correct 
course  

+ Able to 
self-correct 

- Requires 
installation of 
onboard CPU, 
graphics, etc. 

+ Able to 
self-correct 

 + Easy to 
integrate 
with existing 
electronics 

 

 - Requires 
implementation 
of a whole new 
ROS based 
system 

+ Easy to 
integrate 
with existing 
electronics 

   

 - Susceptible to 
error if there 
are changes in 
the 
environment, 
e.g. snow 

    

Table 8: Autonomous Sensor Comparison 
This table details the benefits and drawbacks of using  three different 

strategies for our autonomous implementation. 

This analysis led us to conclude that the GPS was the most viable candidate as the primary 

sensing method for our autonomy.  Ideally we wanted to combine GPS localization with the IMU 

to achieve more robust autonomy; however, we decided to focus on using the GPS initially 

because unlike the IMU, the GPS could compensate for error as the robot was in the progress of 

executing its autonomous trajectory. 

 

3.3 Project Schedule 
 
In order to execute this project, we created the initial project schedule seen below in the Gantt 

chart (Figure 8). 
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Figure 8: Project Schedule 

This Gantt Chart shows the large-scale schedule created at project initialization. 
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3.4 Chapter Summary 
 
By creating project goals, we were able to identify autonomy as the singular focus of our project.  

This provided a well-defined project scope so that we could begin analyzing different methods of 

executing this goal.  Using our research and understanding of the platform, we identified 

different autonomy strategies and selected a GPS driven autonomy as the starting point of our 

project execution. 
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4. Implementation & Methodology 
 
 

After researching different approaches to autonomy, we re-assessed the parameters of our 

problem.  Within our specific system, autonomy could be simplified in order to eliminate a lot of 

the complexity found in traditional autonomous robotic systems.  To that end, we created a new 

autonomy strategy. 

 
 
4.1 Autonomous Operation Strategy 
 
Knowing that the robot is operating within a 300 ft square facility was key to coming up with 

this new strategy to simplify our autonomous operation.  The robot needed to provide a clear 

view of all points on the site’s perimeter.  The Security Camera used for perimeter observation 

has a nighttime range of 90 ft which means that the robot must be within 90 ft of the point of 

interest upon the termination of autonomous operation. Since nighttime conditions could vary, 

we decided to include a safety margin of 20 ft to ensure that the robot is transmitting a clear 

image of the disturbance.  Thus, when the robot reaches the final destination of its autonomy, it 

needed to be at a position that is at most 70 ft from the location of the reported disturbance. 

 

The other challenge in determining how the robot’s autonomous should function was that the 

method of disturbance reporting was undefined.  We did not know how the robot would receive 

the point of interest and as such, we sought to create a system that would be simple and easily 

integrated with any perimeter reporting system.  In the interest of simplification, we identified 

eight distinct destinations or “observation points,” seen below in Figure 9, which allow the robot 

to be within 70ft of all points on the perimeter fence. 
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Figure 9: Autonomous Observation Points with Single Turn Trajectory 
This image shows the configuration of the eight observation points along with 

the execution of a single-turn trajectory. 

This strategy eliminates uncertainty of an unknown reporting system by assuming that the any 

data received will be translated into a command to go to one of the eight observation points.  By 

identifying eight autonomous destinations, the functionality is simplified to traversing eight 

predefined trajectories.  These trajectories can be further simplified into two general types of 

trajectories: single turn trajectories and multi-turn trajectories.  Figure 3 shown above illustrates 

the execution of a single turn trajectory.  In all cases the robot begins by driving straight in order 

to safely disengage from its charging station.  In the case of a single turn trajectory, the robot 

then turns to the correct heading and proceeds straight until it reaches the observation point.  If 

the robot is proceeding to one of the observation points behind the charging station, then it must 
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execute a slightly more complex multi-turn trajectory; however, even the multi-turn trajectories 

are quite simple as shown below in Figure 10. 

 

 

Figure 10: Multi-Turn Trajectory 
This image shows the robot navigating to an observation point  

that requires a multi-turn trajectory. 

 
In this case the robot drives forward as before, but then turns 90° in the appropriate direction and 

drives forward until it has cleared the charging station.  From there the robot is able to emulate 

the single-turn trajectory behavior and simply turn to the correct heading and drive directly to its 

destination.  Using these two trajectory models, the robot is able to reach all eight destinations 

that allow it to monitor all points on the facility’s perimeter. 
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4.2 Autonomous Implementation 
 
When beginning to implement the autonomous protocol, the first thing to consider was what 

hardware was going to be responsible for handling autonomous operation.  We began by 

assessing the control flow of the system and identified the communication pathway observed 

below in Figure 11. 

 

 

Figure 11: Motor Control Flow 
This diagram shows the sequence of devices responsible for motor operation. 

The location selected for the autonomous code is shown in green. 

 

The autonomy logic needed to be able to receive an activation signal from an external system in 

order to model response to whatever perimeter detection method the USAF decided to use.  To 

emulate that behavior, we decided to use a signal from the desktop application to trigger 

autonomous operation.  Outside of the activation signal though, it was important that the rest of 

the autonomy processing be self-contained on the platform.  Since the main action of the 

autonomous is simply to run the motors in various ways, we wanted to optimize motor control 

and minimize signal transmission in order to eliminate opportunities for error.  As a result, we 
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found that the HERO development board should be responsible for housing the autonomy logic.  

Since the HERO was directly connected to the motor controllers this eliminated any excess data 

transmission and provided both the most secure and efficient platform for autonomy. 

 

Additionally, the HERO board was a good candidate because it was optimized for motor control 

using the Talon SRX motor controllers.  The Talon SRX motor controllers have a C# API made 

for HERO development boards which made it simple to write voltages to the motors through the 

Talon motor controllers. 

 

Once the correct hardware for autonomy was identified, the next question was how to organize 

the actual autonomy logic.  Since our autonomous was made up of eight distinct actions 

depending upon a singular input, the implementation was essentially a large case statement as 

shown below in Figure 12. 
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Figure 12: Autonomous Code Flow 
This diagram shows the logic flow of the autonomy code. 

 
The code has each trajectory hard-coded and simply chooses the correct sequence of motor 

events to execute depending upon the value of the external signal. 

 

4.3 GPS Functionality 
 
In creating our autonomous implementation, we wanted to use the RTK GPS module for 

localization and although the functionalities are not currently linked, we worked with the GPS in 

order to gain viable location data that can be used to validate correct trajectory execution in the 

future.  In order to acquire raw data from the RTK GPS module we used server and client scripts 

written in python to establish a socket connection and receive longitude and latitude data.  This 
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produced a raw data stream with nine decimal places worth of data, an example of which can be 

seen below in Table 9.   

 

Latitude Longitude 
42.16571761 71.48010757 
42.16571982 71.47999851 
42.16571721 71.47999117 
42.1657171 71.48001415 
42.16573001 71.48001792 
42.16576736 71.47993297 
42.16576757 71.47992894 

Table 9: Sample of  GPS Data 
These values are a small unfiltered subsection from the GPS output 

 
GPS data was recorded at points approximately 50ft apart and illustrated a change on the order of 

.02 degrees giving the GPS a functional resolution of around .0004 degrees per ft.  This 

resolution is sufficient to use for robot localization and can be improved through a simple data-

smoothing filter.  The full GPS output can be found in Appendix D. 

 

Within the system we developed the python script to be integrated with the code on the 

Raspberry Pi as both systems employ python scripts.  This creates the system architecture seen 

below in Figure 13. 
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Figure 13: System Architecture with GPS 
This diagram shows the robot control flow with the GPS added and the location of the addition highlighted in green 

 
This requires that the GPS data be included in the packet sent from the Raspberry Pi to the 

HERO board so that the autonomy implementation on the HERO can actually use the GPS data 

to improve execution accuracy. 

 

4.4 Chapter Summary 
 
We began our implementation by defining our autonomous concept of operation which 

simplified our autonomous protocol to navigating to eight observation points.  We then identified 

the correct location for the autonomous control logic and implemented our autonomous protocol 

on the HERO development board.  Additionally, we worked with the GPS in order to acquire 

data to the raspberry pi.  The autonomous protocol still requires testing as a broken motor 

controller inhibited our ability to test the implementation.  However, our implementation 

established a framework for autonomy and data acquisition from the GPS. 
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5.  Mechanical and Electrical Improvements 
 
 
While autonomy was the main goal of this project, along the way we implemented other 

alterations to the robot infrastructure both as design improvements and in response to failure 

within the system. 

 

5.1 Batteries 
 
Upon initial examination of the platform it became evident that the original batteries in the 

system could no longer hold charge.  The original system ran on two 12 V, 100Ah sealed lead 

acid batteries connected in series to provide a 24 V power source.  These batteries were 

problematic not only because they no longer held a charge, but also because they were press-fit 

into the chassis restricting access to the electronics box, the silver box in the first image, which is 

situated in the empty space behind the batteries shown below in Figure 14’s second image. 

 

Figure 14: Batteries and Electronics Box 
This image shows the location of the robot electronics and how they are inaccessible due to the location of the batteries. 
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This was highly problematic because all the components necessary for system development 

including the raspberry pi, HERO board, and RTK GPS, were completely inaccessible.  In order 

to remedy this issue, we sought to replace the original batteries with smaller versions that would 

still be capable of powering the system. 

 

In order to determine the appropriate replacement, we assessed the power requirements of the 

system and found that 100 Ah was much more than the system mandated.  The original Action 

Track Chair platform was built to operate for a full day while carrying the entire weight of a 

human being.  Because both the period of operation and physical load were significantly reduced 

in our case, it was clear that we could reduce the ampere-hours of the batteries.  When 

determining the maximum power requirements, we began by defining the maximum required 

period of operation which we found to be an hour.  The autonomous execution time is limited to 

2 minutes, and we estimate that operators will not use the platform in tele-op mode for extended 

periods of time during an actual threat assessment; however, we allotted an hour of continued use 

in order to facilitate operator training sessions.  Maximum current draw is encountered upon 

system initialization and as such Equation 1 was used in conjunction with component data sheets 

to find a conservative estimate of the necessary ampere-hours to be 40 Ah. 

 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝐴ℎ ≈)𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑒𝑡	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑑𝑟𝑎𝑤	𝑎𝑡	𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

 

Using this as an upper-bound and including a safety factor, we selected two 12 V, 55 Ah sealed 

lead acid batteries to replace the original 100 Ah set.  These batteries had the added advantage of 

being smaller than the originals.  The new batteries were 9 inches by 5.5 inches by 8.4 inches as 
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opposed to the originals which were significantly larger measuring 12 inches by 6.7 inches by 

8.5 inches.  This created much more space in the chassis and made the batteries both easily 

replaceable should they die again and removable to allow access to the electronics housed behind 

them.  As before, the new batteries were wired in series to provide a 24 V source. 

 

5.2 Wire Management for Testability 
 
One of the difficulties of the original platform was that it was not at all configured to facilitate 

further development.  All of the pertinent electronics were contained in a box that is not only 

located at the back of the robot but also restricted by coolant system that runs through the 

container’s lid making it difficult to fully remove.  In order to mitigate this inaccessibility, we 

added extension wires to all development components so that code can be modified and loaded 

to the robot without necessitating any disassembly.  This also allows for concurrent code 

modification and testing which simplifies the development process immensely. 

 

5.3 Coolant System Fidelity 
 
One issue that we encountered was leaking antifreeze from the coolant pump.  The pump had 

been secured in one orientation and when turned onto the other side it did not retain integrity.  In 

order to combat this the source of the leak was identified and sealed.  The pump was then re-

secured in the orientation known to be reliable. 

 
5.4 Chapter Summary 
 
Through the improvements described in this chapter, namely replacing the batteries, we were 

able to achieve our goal of improving accessibility to the robot electronics.  Although this may 

not have been our primary goal, this work was integral as we could not develop on the robot 
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without it.  Additionally, these improvements will pay dividends in the future as the robot is now 

far better equipped for further development and maintenance. 
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6. Recommendations & Further Development 
 
 
After our work on CERBERUS this year, the platform still requires more work in order to 

achieve complete functionality.  In this section we detail all of the areas identified for further 

improvement as well as any suggestions we have come up with from our experience working 

with the platform this year. 

 

6.1 Further Work on Autonomy 
 
Our project has established a framework for autonomy; however, there is still extensive room for 

improvement.  Some of the next major steps are outlined here: 

 
1. Add GPS data to the data packets sent from the raspberry pi to HERO in order to 

incorporate it into the autonomous as a method of localization and error correction. 

2. Add an IMU to the system for accurate turning. 

3. Implement the Walabot RADAR or ZED camera for obstacle detection. 

4. Add a menu to the desktop application that allows the user to select desired observation 

point for the autonomous destination. 

 

We recommend that any future contributors purchase a new IMU unit for the robot because the 

existing IMU is not meant for developers and as such, it is very hard to manipulate.  Purchasing 

an IMU unit with a C# API that could easily interface with the HERO board would be a 

relatively simple method of making the autonomy significantly more reliable and robust. 
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Taking it a step further than that, the platform could even benefit from consolidating the control 

logic.  Currently several boards are daisy-chained together and data and commands have a long 

path to travel.  If either the raspberry pi or the HERO could be eliminated, the platform could be 

significantly simplified.  This would streamline data transmission and also make future 

development much easier. 

 

Lastly, when implementing obstacle detection, we recommend using the WALABOT unit 

because that would be much straightforward to implement than the ZED camera.  The 

WALABOT can be run from a development board whereas the ZED camera would require a 

massive overhaul of the entire system.  The ZED camera would require the entire electronics 

system to be refactored and routed through an onboard computer to provide the graphics 

processing required by the ZED camera.  In contrast, the WALABOT radar could be connected 

in much the same way as the GPS or IMU and would not disrupt the current system architecture. 

 

6.2 Miscellaneous Improvements 
 
Although our project dealt with autonomy, in working with the robot we recognized several 

unrelated areas that could benefit from improvement.  Some of our recommendations for these 

improvements include: 

1. Eliminate sheet-metal plating and replace it with a watertight housing.  A shell made out 

of fiber-glass may work well. 

2. Redesign the electronics box in order to make it watertight.  Additionally, this box could 

be modified so that the coolant system attachments do not impede access to the box’s 

internal components. 
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3. Add vibration damping and improve stability for components such as the security camera 

and the motors. 

4. Secure all internal components to the chassis with dedicated mounts. 

5. Secure wireless communication that is currently occurring via Wi-Fi bullet. 

6. Fully implement battery estimation 

7. Improve internal wire management 

8. Fix the desktop application so that tele-operation and camera observation can run 

simultaneously. 

9. Correctly terminate the threads in the desktop application. 

 

6.3 General Recommendations 
 
In working on this project, we encountered many unforeseen challenges, many of which resulted 

from a lack of understanding of the existing system.  We repeatedly encountered roadblocks that 

were difficult to surmount because there was little to no documentation of the CERBERUS 

system.  In order to facilitate successful development on this platform in the future, we have 

created the document found in Appendix B, the CERBERUS User’s Guide, which should assist 

future developers when working with the CERBERUS platform.  Hopefully this will help them 

to avoid the challenges that we faced. 

 

6.4 Chapter Summary 
 
Our work this year laid the groundwork for the autonomous component of the CERBERUS 

platform, but there is still extensive work to be done both on the robot’s autonomy and on other 

systems as well.  There are multiple ways to proceed from here.  Future contributors could 
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continue with the concrete steps outlined in section 6.1 above.  However, a better approach may 

be to refactor the system entirely.  After working with CERBERUS for a year, it is clear to us 

that if this robot is to be a viable candidate for continued development and eventual deployment, 

it could benefit from an overhaul of the control system architecture with an emphasis on 

effective system engineering. 
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Appendix A: AFRL Challenge Document 
 

Robotic Sentry Using All-Terrain Wheelchair Platform 
 
Background: The need for active security around facilities such as prisons, high value storage, 
missile silos, hazardous waste storage and political borders has created a demand for robots that 
can respond to breaches, alarms, or general inspection to reduce the workload on humans. A new 
generation of wheelchairs from Action Trackchair is designed for use in all terrains and offers a 
starting point to address a robust, robotic monitoring and response capability for these situations. 
  
A New Design Concept: The Robotic Sentinel  
Using the Action Trackchair (provided by the manufacturer) as a platform, develop a robotic 
sentinel that meets the security requirements of secure facilities, as indicated by the design 
scenario below. Design sensors, communications, control systems, programming, and systems 
management (power, maintenance, control) approaches that can be tested on the Trackchair as 
part of the project.  
 
Scenario:  
You’ve been asked to provide 24/7 security coverage of remote fenced in areas around an 
underground storage facility. The facility has two perimeter fences with a 10ft gap between 
them. Most of the surface between the fences is a 3ft sidewalk but there are areas that have 
gravel, grass and in some cases puddles up to 1ft deep. During winter months, snow drifts up to 
1ft deep may be encountered. These facilities are square, 2 acre compounds which means you 
have a 1200ft perimeter to monitor.  
 
There are dozens of these facilities so it is impossible to provide 24/7 human coverage of each 
site. You have stationary sensors and closed circuit TV so you know when there is a disturbance 
at each site. However, when there is an alarm you must quickly investigate the reason and if 
possible send a sentry to the breach within 2 minutes of an alarm to collect and provide more 
detailed information. The design goal is to design and build a robot that can do the job.  
 
The robot shall be able to be stored in a standby condition in a small shelter that provides it with 
power, communication and shelter from the elements. Upon deployment, the sentry shall 
disconnect from the electrical connections, leave the shelter, proceed to a point designated before 
leaving the shelter via the shortest route, and position itself facing the area of interest to standby 
for further instruction. The approach to calculation and response to these requirements (i.e., real 
time onboard calculation vs. preprogrammed routes, obstacle avoidance, and location 
determination) will be part of the design process.  
 
Skills Needed for This Work: (1) Basic understanding of robotics. (2) Control system theory 
for closed loop navigation. (3) Mechanical and Electrical design skills for mounting and 
constructing components. (4) Understanding of wireless audio/video data transmission and 
communications. (4) Test planning and testing skills to ensure capability and durability of a 
finished design.  
Sponsor: James W. Poindexter, AFRL /RXMS, james.poindexter@us.af.mil, (937) 904- 4596 
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Appendix B: CERBERUS User Guide 
 
 
Running the Robot 

1. Connect Wi-Fi Bullet to personal computer using a POE (Power Over Ethernet) cable 

2. Set your laptop’s IP address to be static 

3. Turn on robot (pull up the big red button on top) 

4. Turn on electronics (small black button in red square case on top of the robot) 

4.1. You should see the security camera rotate as the robot initializes 

5. Ping IP address 192.168.1.66 (on board wifi bullet) 

5.1. You should see more LEDs light up on the bullet when it establishes the connection 

6. Login to raspberry Pi from linux terminal ($ ssh pi@192.168.1.66) 

6.1. Password: CERB 666! 

7. Open CERBERUS UI Java Application in IntelliJ(preferably) 

8. Connect controller to computer 

9. Search for “getVendorId” and “getProductId” methods in CERBERUS UI code. Change 

the IDs there to your controller’s hardware IDs 

10. In “Main” class, make sure the client object is using “2000” as TCP port, so that it can 

match the port of “server.py”  which would be running on Raspberry Pi as soon as it 

boots 

11. Run tele-op thread 

 

Moving the Security Camera 

1. Launch the CERBERUS application 
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2. Click “Connect Cameras”, if it appears 

3. click on the arrow keys on the right side application screen to move the camera. 

 

Finding the Wi-Fi Bullet’s Address in Range 

1. In Ubuntu Terminal use nmap command, for example : 

$ nmap 192.168.1.0-99 

or 

$ nmap 192.168.1.* 

  Raspberry Pi 

2. From Ubuntu Terminal use the command: 
ssh pi@192.168.1.66 

3. use “ls” command to see which files are present in Raspberry Pi. “server.py” is the one 

that runs when pi is booted.  

4. server.py is run from .bashrc file. The command that runs it is located at the end of the 

.bashrc file. It can be viewed by “ls -a” command. 

 

HERO Board Development 

 
1. Install Visual Studio 

2. Install .net framework extension 

3. Open HERO solution file in Visual Studio 

4. Plug HERO into computer via micro-usb port on the HERO 

5. Modify Script 

6. Run Script 
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6.1. This auto-uploads to the HERO board 

6.2. Make sure that Visual Studio can see the HERO board by going to Project  -->  

[project name] Properties --> .NET Micro Framework--> Device  and check from the 

comboBox if the HERO board shows up. 

 

Tip: Should you need to update the HERO firmware; you can do this via the normal USB port on 

the board. (You will need your own USB A to A cable) 

 

Suggested Resources for HERO 

1. HERO Board code examples: 

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages 

2. HERO User’s Guide: 

https://www.ctr-electronics.com/downloads/pdf/HERO%20User's%20Guide.pdf 

3. Talon SRX User Guide: 

https://www.ctr-electronics.com/Talon%20SRX%20User's%20Guide.pdf 

4. Talon SRX Software Reference: 

https://www.ctr-

electronics.com/downloads/pdf/Legacy%20Talon%20SRX%20Software%20Reference%

20Manual.pdf 
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Appendix C: Action TrackChair Information 
 
 
The mechanical systems for this robot were designed using the Action Track Chair, an all-terrain 

wheelchair, as the base chassis (Figure 1).  The Action Track Chair uses a low center of gravity 

to avoid tipping when traversing rough terrain.  In addition, the chair has a built-in 

electromagnetic parking brake to ensure stability when stopping on uneven topography. 

 

Figure 15: Un-Modified Action Trackchair Chassis 

The Action Trackchair is a tracked vehicle powered by two 24V DC motors.  These motors are 

powered by two 12V batteries connected in series creating a 24V supply.  Before modifications, 

the Action Trackchair chassis had an estimated range of 10 miles and a maximum speed of 

approximately 3 mph.  These specifications made the chair a suitable base for the CERBERUS 

platform as they allow the platform to navigate to any point in the compound in under two 

minutes as required by the USAF specifications.  
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Appendix D: GPS Log 
 
 
Trial 1 

No Fix 
No Fix 
lat = 4216.5723558  lat_dir = N   lon = 07148.0138056   lon_dir = W 
No Fix 
No Fix 
No Fix 
No Fix 
lat = 4216.5773254  lat_dir = N   lon = 07148.0120262   lon_dir = W 
No Fix 
No Fix 
No Fix 
lat = 4216.5718360  lat_dir = N   lon = 07148.0154508   lon_dir = W 
No Fix 
No Fix 
lat = 4216.5692455  lat_dir = N   lon = 07148.0169763   lon_dir = W 
lat = 4216.5731713  lat_dir = N   lon = 07148.0151373   lon_dir = W 
lat = 4216.5732084  lat_dir = N   lon = 07148.0150802   lon_dir = W 
No Fix 
No Fix 
No Fix 
No Fix 
lat = 4216.5695150  lat_dir = N   lon = 07148.0178784   lon_dir = W 
No Fix 
No Fix 
lat = 4216.5733498  lat_dir = N   lon = 07148.0152054   lon_dir = W 
No Fix 
No Fix 
lat = 4216.5676211  lat_dir = N   lon = 07148.0192253   lon_dir = W 
lat = 4216.5733548  lat_dir = N   lon = 07148.0150527   lon_dir = W 
lat = 4216.5733063  lat_dir = N   lon = 07148.0150381   lon_dir = W 
No Fix 
No Fix 
lat = 4216.5664595  lat_dir = N   lon = 07148.0202372   lon_dir = W 
No Fix 
lat = 4216.5781315  lat_dir = N   lon = 07148.0134732   lon_dir = W 
No Fix 
lat = 4216.5781630  lat_dir = N   lon = 07148.0134802   lon_dir = W 
lat = 4216.5781499  lat_dir = N   lon = 07148.0134930   lon_dir = W 
lat = 4216.5781800  lat_dir = N   lon = 07148.0134640   lon_dir = W 
lat = 4216.5781531  lat_dir = N   lon = 07148.0134025   lon_dir = W 
lat = 4216.5782072  lat_dir = N   lon = 07148.0133277   lon_dir = W 
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lat = 4216.5782000  lat_dir = N   lon = 07148.0133342   lon_dir = W 
lat = 4216.5781623  lat_dir = N   lon = 07148.0134135   lon_dir = W 
lat = 4216.5781623  lat_dir = N   lon = 07148.0134135   lon_dir = W 
lat = 4216.5781915  lat_dir = N   lon = 07148.0134626   lon_dir = W 
lat = 4216.5781870  lat_dir = N   lon = 07148.0134251   lon_dir = W 
lat = 4216.5781108  lat_dir = N   lon = 07148.0134095   lon_dir = W 
lat = 4216.5781324  lat_dir = N   lon = 07148.0133652   lon_dir = W 
lat = 4216.5782225  lat_dir = N   lon = 07148.0133489   lon_dir = W 
lat = 4216.5781785  lat_dir = N   lon = 07148.0133878   lon_dir = W 
lat = 4216.5781303  lat_dir = N   lon = 07148.0134650   lon_dir = W 
lat = 4216.5780850  lat_dir = N   lon = 07148.0134494   lon_dir = W 
lat = 4216.5781065  lat_dir = N   lon = 07148.0134403   lon_dir = W 
lat = 4216.5780814  lat_dir = N   lon = 07148.0134317   lon_dir = W 
lat = 4216.5779811  lat_dir = N   lon = 07148.0135240   lon_dir = W 
lat = 4216.5779338  lat_dir = N   lon = 07148.0135227   lon_dir = W 
lat = 4216.5779622  lat_dir = N   lon = 07148.0134480   lon_dir = W 
lat = 4216.5778296  lat_dir = N   lon = 07148.0134862   lon_dir = W 
lat = 4216.5778259  lat_dir = N   lon = 07148.0134775   lon_dir = W 
lat = 4216.5778064  lat_dir = N   lon = 07148.0134383   lon_dir = W 
lat = 4216.5778739  lat_dir = N   lon = 07148.0134387   lon_dir = W 
lat = 4216.5777611  lat_dir = N   lon = 07148.0134923   lon_dir = W 
lat = 4216.5763956  lat_dir = N   lon = 07148.0150670   lon_dir = W 
lat = 4216.5766056  lat_dir = N   lon = 07148.0147903   lon_dir = W 
lat = 4216.5766956  lat_dir = N   lon = 07148.0146999   lon_dir = W 
No Fix 
lat = 4216.5763317  lat_dir = N   lon = 07148.0150056   lon_dir = W 
lat = 4216.5747538  lat_dir = N   lon = 07148.0151735   lon_dir = W 
lat = 4216.5750417  lat_dir = N   lon = 07148.0150541   lon_dir = W 
lat = 4216.5763814  lat_dir = N   lon = 07148.0139432   lon_dir = W 
lat = 4216.5763081  lat_dir = N   lon = 07148.0143667   lon_dir = W 
lat = 4216.5761979  lat_dir = N   lon = 07148.0142011   lon_dir = W 
lat = 4216.5778839  lat_dir = N   lon = 07148.0127350   lon_dir = W 
lat = 4216.5765914  lat_dir = N   lon = 07148.0139219   lon_dir = W 
lat = 4216.5766208  lat_dir = N   lon = 07148.0140719   lon_dir = W 
lat = 4216.5758517  lat_dir = N   lon = 07148.0147907   lon_dir = W 
lat = 4216.5777845  lat_dir = N   lon = 07148.0139596   lon_dir = W 
lat = 4216.5775780  lat_dir = N   lon = 07148.0139805   lon_dir = W 
lat = 4216.5774996  lat_dir = N   lon = 07148.0138794   lon_dir = W 
lat = 4216.5776243  lat_dir = N   lon = 07148.0134857   lon_dir = W 
lat = 4216.5779635  lat_dir = N   lon = 07148.0124061   lon_dir = W 
lat = 4216.5771506  lat_dir = N   lon = 07148.0125684   lon_dir = W 
lat = 4216.5778288  lat_dir = N   lon = 07148.0123793   lon_dir = W 
lat = 4216.5784743  lat_dir = N   lon = 07148.0125273   lon_dir = W 
lat = 4216.5782311  lat_dir = N   lon = 07148.0127260   lon_dir = W 
lat = 4216.5791966  lat_dir = N   lon = 07148.0120588   lon_dir = W 
lat = 4216.5793333  lat_dir = N   lon = 07148.0119925   lon_dir = W 
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lat = 4216.5787676  lat_dir = N   lon = 07148.0125797   lon_dir = W 
lat = 4216.5793004  lat_dir = N   lon = 07148.0120260   lon_dir = W 
lat = 4216.5796698  lat_dir = N   lon = 07148.0119877   lon_dir = W 
lat = 4216.5795370  lat_dir = N   lon = 07148.0120742   lon_dir = W 
lat = 4216.5794273  lat_dir = N   lon = 07148.0121997   lon_dir = W 
lat = 4216.5790154  lat_dir = N   lon = 07148.0123820   lon_dir = W 
lat = 4216.5790154  lat_dir = N   lon = 07148.0123820   lon_dir = W 
lat = 4216.5781739  lat_dir = N   lon = 07148.0128126   lon_dir = W 
lat = 4216.5781459  lat_dir = N   lon = 07148.0129886   lon_dir = W 
lat = 4216.5782458  lat_dir = N   lon = 07148.0132757   lon_dir = W 
lat = 4216.5784505  lat_dir = N   lon = 07148.0130583   lon_dir = W 
lat = 4216.5786472  lat_dir = N   lon = 07148.0131581   lon_dir = W 
lat = 4216.5785678  lat_dir = N   lon = 07148.0132702   lon_dir = W 
lat = 4216.5789325  lat_dir = N   lon = 07148.0129999   lon_dir = W 
lat = 4216.5789309  lat_dir = N   lon = 07148.0128599   lon_dir = W 
lat = 4216.5791401  lat_dir = N   lon = 07148.0128263   lon_dir = W 
lat = 4216.5791550  lat_dir = N   lon = 07148.0128368   lon_dir = W 
lat = 4216.5790504  lat_dir = N   lon = 07148.0129650   lon_dir = W 
lat = 4216.5787147  lat_dir = N   lon = 07148.0133201   lon_dir = W 
lat = 4216.5783046  lat_dir = N   lon = 07148.0136581   lon_dir = W 
lat = 4216.5788511  lat_dir = N   lon = 07148.0130055   lon_dir = W 
lat = 4216.5794678  lat_dir = N   lon = 07148.0121221   lon_dir = W 
lat = 4216.5788588  lat_dir = N   lon = 07148.0122693   lon_dir = W 
lat = 4216.5789112  lat_dir = N   lon = 07148.0122128   lon_dir = W 
lat = 4216.5786550  lat_dir = N   lon = 07148.0128391   lon_dir = W 
lat = 4216.5788053  lat_dir = N   lon = 07148.0129137   lon_dir = W 
lat = 4216.5786424  lat_dir = N   lon = 07148.0131828   lon_dir = W 
lat = 4216.5787436  lat_dir = N   lon = 07148.0133415   lon_dir = W 
lat = 4216.5789610  lat_dir = N   lon = 07148.0132020   lon_dir = W 
lat = 4216.5788325  lat_dir = N   lon = 07148.0134517   lon_dir = W 
lat = 4216.5787428  lat_dir = N   lon = 07148.0134965   lon_dir = W 
lat = 4216.5787262  lat_dir = N   lon = 07148.0134017   lon_dir = W 
lat = 4216.5787262  lat_dir = N   lon = 07148.0134017   lon_dir = W 
lat = 4216.5783415  lat_dir = N   lon = 07148.0137388   lon_dir = W 
lat = 4216.5785645  lat_dir = N   lon = 07148.0134051   lon_dir = W 
lat = 4216.5787211  lat_dir = N   lon = 07148.0132361   lon_dir = W 
lat = 4216.5780617  lat_dir = N   lon = 07148.0135386   lon_dir = W 
lat = 4216.5784671  lat_dir = N   lon = 07148.0132957   lon_dir = W 
lat = 4216.5787566  lat_dir = N   lon = 07148.0130590   lon_dir = W 
lat = 4216.5785401  lat_dir = N   lon = 07148.0134353   lon_dir = W 
lat = 4216.5784899  lat_dir = N   lon = 07148.0135328   lon_dir = W 
lat = 4216.5778728  lat_dir = N   lon = 07148.0141191   lon_dir = W 
lat = 4216.5777633  lat_dir = N   lon = 07148.0139128   lon_dir = W 
lat = 4216.5779748  lat_dir = N   lon = 07148.0136070   lon_dir = W 
lat = 4216.5785698  lat_dir = N   lon = 07148.0133425   lon_dir = W 
lat = 4216.5782108  lat_dir = N   lon = 07148.0135714   lon_dir = W 
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lat = 4216.5785533  lat_dir = N   lon = 07148.0133681   lon_dir = W 
lat = 4216.5785987  lat_dir = N   lon = 07148.0131475   lon_dir = W 
lat = 4216.5789803  lat_dir = N   lon = 07148.0128647   lon_dir = W 
lat = 4216.5792491  lat_dir = N   lon = 07148.0126935   lon_dir = W 
lat = 4216.5789285  lat_dir = N   lon = 07148.0129550   lon_dir = W 
lat = 4216.5795684  lat_dir = N   lon = 07148.0122346   lon_dir = W 
lat = 4216.5795812  lat_dir = N   lon = 07148.0121819   lon_dir = W 
lat = 4216.5794355  lat_dir = N   lon = 07148.0126139   lon_dir = W 
lat = 4216.5795665  lat_dir = N   lon = 07148.0126973   lon_dir = W 
lat = 4216.5798157  lat_dir = N   lon = 07148.0125933   lon_dir = W 
lat = 4216.5798173  lat_dir = N   lon = 07148.0127919   lon_dir = W 
lat = 4216.5800264  lat_dir = N   lon = 07148.0125810   lon_dir = W 
lat = 4216.5802001  lat_dir = N   lon = 07148.0121757   lon_dir = W 
lat = 4216.5803006  lat_dir = N   lon = 07148.0122288   lon_dir = W 
lat = 4216.5800362  lat_dir = N   lon = 07148.0124451   lon_dir = W 
lat = 4216.5799989  lat_dir = N   lon = 07148.0124095   lon_dir = W 
lat = 4216.5805387  lat_dir = N   lon = 07148.0120859   lon_dir = W 
lat = 4216.5804137  lat_dir = N   lon = 07148.0122864   lon_dir = W 
 
Trial 2 

lat = 4216.5717612  lat_dir = N   lon = 07148.0107573   lon_dir = W 
lat = 4216.5719818  lat_dir = N   lon = 07147.9998510   lon_dir = W 
lat = 4216.5717212  lat_dir = N   lon = 07147.9991170   lon_dir = W 
lat = 4216.5717103  lat_dir = N   lon = 07148.0014152   lon_dir = W 
lat = 4216.5730014  lat_dir = N   lon = 07148.0017919   lon_dir = W 
lat = 4216.5767359  lat_dir = N   lon = 07147.9932968   lon_dir = W 
lat = 4216.5767566  lat_dir = N   lon = 07147.9928942   lon_dir = W 
lat = 4216.5766355  lat_dir = N   lon = 07147.9933553   lon_dir = W 
lat = 4216.5763349  lat_dir = N   lon = 07147.9939599   lon_dir = W 
lat = 4216.5769294  lat_dir = N   lon = 07147.9922224   lon_dir = W 
lat = 4216.5770171  lat_dir = N   lon = 07147.9919162   lon_dir = W 
lat = 4216.5771657  lat_dir = N   lon = 07147.9915357   lon_dir = W 
lat = 4216.5771209  lat_dir = N   lon = 07147.9917117   lon_dir = W 
lat = 4216.5767134  lat_dir = N   lon = 07147.9927538   lon_dir = W 
lat = 4216.5762603  lat_dir = N   lon = 07147.9935935   lon_dir = W 
lat = 4216.5765689  lat_dir = N   lon = 07147.9928083   lon_dir = W 
lat = 4216.5764518  lat_dir = N   lon = 07147.9932466   lon_dir = W 
lat = 4216.5763648  lat_dir = N   lon = 07147.9928297   lon_dir = W 
lat = 4216.5763304  lat_dir = N   lon = 07147.9928642   lon_dir = W 
lat = 4216.5762893  lat_dir = N   lon = 07147.9928877   lon_dir = W 
lat = 4216.5763547  lat_dir = N   lon = 07147.9926076   lon_dir = W 
lat = 4216.5763250  lat_dir = N   lon = 07147.9927764   lon_dir = W 
lat = 4216.5762900  lat_dir = N   lon = 07147.9928860   lon_dir = W 
lat = 4216.5762553  lat_dir = N   lon = 07147.9929615   lon_dir = W 
lat = 4216.5761992  lat_dir = N   lon = 07147.9931893   lon_dir = W 
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lat = 4216.5763039  lat_dir = N   lon = 07147.9930400   lon_dir = W 
lat = 4216.5762560  lat_dir = N   lon = 07147.9929276   lon_dir = W 
lat = 4216.5762560  lat_dir = N   lon = 07147.9929276   lon_dir = W 
lat = 4216.5762575  lat_dir = N   lon = 07147.9930395   lon_dir = W 
lat = 4216.5760816  lat_dir = N   lon = 07147.9929222   lon_dir = W 
lat = 4216.5762778  lat_dir = N   lon = 07147.9930768   lon_dir = W 
lat = 4216.5759460  lat_dir = N   lon = 07147.9931471   lon_dir = W 
lat = 4216.5763720  lat_dir = N   lon = 07147.9929778   lon_dir = W 
lat = 4216.5764693  lat_dir = N   lon = 07147.9928021   lon_dir = W 
lat = 4216.5763227  lat_dir = N   lon = 07147.9926685   lon_dir = W 
lat = 4216.5765340  lat_dir = N   lon = 07147.9929319   lon_dir = W 
lat = 4216.5764581  lat_dir = N   lon = 07147.9929708   lon_dir = W 
lat = 4216.5762851  lat_dir = N   lon = 07147.9932420   lon_dir = W 
lat = 4216.5762693  lat_dir = N   lon = 07147.9931584   lon_dir = W 
lat = 4216.5762239  lat_dir = N   lon = 07147.9930390   lon_dir = W 
lat = 4216.5764189  lat_dir = N   lon = 07147.9932455   lon_dir = W 
lat = 4216.5761689  lat_dir = N   lon = 07147.9933196   lon_dir = W 
lat = 4216.5758055  lat_dir = N   lon = 07147.9935941   lon_dir = W 
lat = 4216.5756267  lat_dir = N   lon = 07147.9936930   lon_dir = W 
lat = 4216.5756450  lat_dir = N   lon = 07147.9934538   lon_dir = W 
lat = 4216.5752851  lat_dir = N   lon = 07147.9937605   lon_dir = W 
lat = 4216.5752752  lat_dir = N   lon = 07147.9936773   lon_dir = W 
lat = 4216.5754215  lat_dir = N   lon = 07147.9936336   lon_dir = W 
lat = 4216.5754173  lat_dir = N   lon = 07147.9937703   lon_dir = W 
lat = 4216.5755078  lat_dir = N   lon = 07147.9936298   lon_dir = W 
lat = 4216.5754614  lat_dir = N   lon = 07147.9939662   lon_dir = W 
lat = 4216.5754876  lat_dir = N   lon = 07147.9939196   lon_dir = W 
lat = 4216.5754333  lat_dir = N   lon = 07147.9938942   lon_dir = W 
lat = 4216.5754729  lat_dir = N   lon = 07147.9938770   lon_dir = W 
lat = 4216.5755463  lat_dir = N   lon = 07147.9936729   lon_dir = W 
lat = 4216.5756458  lat_dir = N   lon = 07147.9933207   lon_dir = W 
lat = 4216.5757049  lat_dir = N   lon = 07147.9932708   lon_dir = W 
lat = 4216.5757883  lat_dir = N   lon = 07147.9934093   lon_dir = W 
lat = 4216.5759376  lat_dir = N   lon = 07147.9929610   lon_dir = W 
lat = 4216.5758892  lat_dir = N   lon = 07147.9930564   lon_dir = W 
lat = 4216.5758971  lat_dir = N   lon = 07147.9930128   lon_dir = W 
lat = 4216.5759316  lat_dir = N   lon = 07147.9929343   lon_dir = W 
lat = 4216.5759218  lat_dir = N   lon = 07147.9928005   lon_dir = W 
lat = 4216.5759883  lat_dir = N   lon = 07147.9926601   lon_dir = W 
lat = 4216.5761003  lat_dir = N   lon = 07147.9923984   lon_dir = W 
lat = 4216.5761610  lat_dir = N   lon = 07147.9922848   lon_dir = W 
lat = 4216.5761143  lat_dir = N   lon = 07147.9924001   lon_dir = W 
lat = 4216.5762414  lat_dir = N   lon = 07147.9922886   lon_dir = W 
lat = 4216.5763455  lat_dir = N   lon = 07147.9919938   lon_dir = W 
lat = 4216.5763648  lat_dir = N   lon = 07147.9918728   lon_dir = W 
lat = 4216.5763109  lat_dir = N   lon = 07147.9916248   lon_dir = W 
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lat = 4216.5763390  lat_dir = N   lon = 07147.9915686   lon_dir = W 
lat = 4216.5763308  lat_dir = N   lon = 07147.9917103   lon_dir = W 
lat = 4216.5762945  lat_dir = N   lon = 07147.9919293   lon_dir = W 
lat = 4216.5763780  lat_dir = N   lon = 07147.9918347   lon_dir = W 
lat = 4216.5764779  lat_dir = N   lon = 07147.9917753   lon_dir = W 
lat = 4216.5764147  lat_dir = N   lon = 07147.9920205   lon_dir = W 
lat = 4216.5764612  lat_dir = N   lon = 07147.9917281   lon_dir = W 
lat = 4216.5764525  lat_dir = N   lon = 07147.9913655   lon_dir = W 
lat = 4216.5764525  lat_dir = N   lon = 07147.9913655   lon_dir = W 
lat = 4216.5764659  lat_dir = N   lon = 07147.9916458   lon_dir = W 
lat = 4216.5765278  lat_dir = N   lon = 07147.9915380   lon_dir = W 
lat = 4216.5765793  lat_dir = N   lon = 07147.9912352   lon_dir = W 
lat = 4216.5765956  lat_dir = N   lon = 07147.9910696   lon_dir = W 
lat = 4216.5765975  lat_dir = N   lon = 07147.9906785   lon_dir = W 
lat = 4216.5765450  lat_dir = N   lon = 07147.9907391   lon_dir = W 
lat = 4216.5765028  lat_dir = N   lon = 07147.9907274   lon_dir = W 
lat = 4216.5765646  lat_dir = N   lon = 07147.9904511   lon_dir = W 
lat = 4216.5764492  lat_dir = N   lon = 07147.9907317   lon_dir = W 
lat = 4216.5759972  lat_dir = N   lon = 07147.9911791   lon_dir = W 
lat = 4216.5760715  lat_dir = N   lon = 07147.9912381   lon_dir = W 
lat = 4216.5760927  lat_dir = N   lon = 07147.9912295   lon_dir = W 
lat = 4216.5762381  lat_dir = N   lon = 07147.9911489   lon_dir = W 
lat = 4216.5761557  lat_dir = N   lon = 07147.9913701   lon_dir = W 
lat = 4216.5762266  lat_dir = N   lon = 07147.9913692   lon_dir = W 
lat = 4216.5761134  lat_dir = N   lon = 07147.9917448   lon_dir = W 
lat = 4216.5760899  lat_dir = N   lon = 07147.9918391   lon_dir = W 
lat = 4216.5761516  lat_dir = N   lon = 07147.9915774   lon_dir = W 
lat = 4216.5761706  lat_dir = N   lon = 07147.9918806   lon_dir = W 
lat = 4216.5763061  lat_dir = N   lon = 07147.9917087   lon_dir = W 
lat = 4216.5763106  lat_dir = N   lon = 07147.9914263   lon_dir = W 
lat = 4216.5764418  lat_dir = N   lon = 07147.9912439   lon_dir = W 
lat = 4216.5763903  lat_dir = N   lon = 07147.9913272   lon_dir = W 
lat = 4216.5763250  lat_dir = N   lon = 07147.9913691   lon_dir = W 
lat = 4216.5763250  lat_dir = N   lon = 07147.9913691   lon_dir = W 
lat = 4216.5759339  lat_dir = N   lon = 07147.9914422   lon_dir = W 
lat = 4216.5757987  lat_dir = N   lon = 07147.9917341   lon_dir = W 
lat = 4216.5756855  lat_dir = N   lon = 07147.9918510   lon_dir = W 
lat = 4216.5761163  lat_dir = N   lon = 07147.9917244   lon_dir = W 
lat = 4216.5760772  lat_dir = N   lon = 07147.9915682   lon_dir = W 
lat = 4216.5764068  lat_dir = N   lon = 07147.9914285   lon_dir = W 
lat = 4216.5763615  lat_dir = N   lon = 07147.9911382   lon_dir = W 
lat = 4216.5761234  lat_dir = N   lon = 07147.9909071   lon_dir = W 
lat = 4216.5761597  lat_dir = N   lon = 07147.9910423   lon_dir = W 
lat = 4216.5766315  lat_dir = N   lon = 07147.9911055   lon_dir = W 
lat = 4216.5766877  lat_dir = N   lon = 07147.9907939   lon_dir = W 
lat = 4216.5768022  lat_dir = N   lon = 07147.9908187   lon_dir = W 
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lat = 4216.5763000  lat_dir = N   lon = 07147.9910361   lon_dir = W 
lat = 4216.5763324  lat_dir = N   lon = 07147.9911827   lon_dir = W 
lat = 4216.5764870  lat_dir = N   lon = 07147.9918293   lon_dir = W 
lat = 4216.5765820  lat_dir = N   lon = 07147.9917832   lon_dir = W 
lat = 4216.5770801  lat_dir = N   lon = 07147.9918097   lon_dir = W 
lat = 4216.5773653  lat_dir = N   lon = 07147.9917430   lon_dir = W 
lat = 4216.5768994  lat_dir = N   lon = 07147.9919804   lon_dir = W 
lat = 4216.5770487  lat_dir = N   lon = 07147.9921129   lon_dir = W 
lat = 4216.5775855  lat_dir = N   lon = 07147.9923027   lon_dir = W 
lat = 4216.5772762  lat_dir = N   lon = 07147.9922716   lon_dir = W 
lat = 4216.5765897  lat_dir = N   lon = 07147.9918686   lon_dir = W 
lat = 4216.5764288  lat_dir = N   lon = 07147.9919714   lon_dir = W 
lat = 4216.5760872  lat_dir = N   lon = 07147.9918855   lon_dir = W 
lat = 4216.5760872  lat_dir = N   lon = 07147.9918855   lon_dir = W 
lat = 4216.5761125  lat_dir = N   lon = 07147.9917615   lon_dir = W 
lat = 4216.5758153  lat_dir = N   lon = 07147.9919401   lon_dir = W 
lat = 4216.5758710  lat_dir = N   lon = 07147.9923521   lon_dir = W 
lat = 4216.5761445  lat_dir = N   lon = 07147.9924277   lon_dir = W 
lat = 4216.5761315  lat_dir = N   lon = 07147.9925532   lon_dir = W 
lat = 4216.5762356  lat_dir = N   lon = 07147.9927303   lon_dir = W 
lat = 4216.5765122  lat_dir = N   lon = 07147.9924856   lon_dir = W 
lat = 4216.5766995  lat_dir = N   lon = 07147.9923336   lon_dir = W 
lat = 4216.5766834  lat_dir = N   lon = 07147.9923447   lon_dir = W 
lat = 4216.5766452  lat_dir = N   lon = 07147.9925378   lon_dir = W 
lat = 4216.5765590  lat_dir = N   lon = 07147.9929110   lon_dir = W 
lat = 4216.5766608  lat_dir = N   lon = 07147.9934666   lon_dir = W 
lat = 4216.5765226  lat_dir = N   lon = 07147.9938165   lon_dir = W 
lat = 4216.5765685  lat_dir = N   lon = 07147.9941778   lon_dir = W 
lat = 4216.5765731  lat_dir = N   lon = 07147.9943074   lon_dir = W 
lat = 4216.5764744  lat_dir = N   lon = 07147.9945365   lon_dir = W 
lat = 4216.5765588  lat_dir = N   lon = 07147.9948990   lon_dir = W 
lat = 4216.5765455  lat_dir = N   lon = 07147.9951922   lon_dir = W 
lat = 4216.5766851  lat_dir = N   lon = 07147.9952480   lon_dir = W 
lat = 4216.5767156  lat_dir = N   lon = 07147.9952657   lon_dir = W 
lat = 4216.5767543  lat_dir = N   lon = 07147.9952268   lon_dir = W 
lat = 4216.5769574  lat_dir = N   lon = 07147.9951451   lon_dir = W 
lat = 4216.5768450  lat_dir = N   lon = 07147.9948342   lon_dir = W 
lat = 4216.5769981  lat_dir = N   lon = 07147.9951617   lon_dir = W 
lat = 4216.5770013  lat_dir = N   lon = 07147.9953071   lon_dir = W 
lat = 4216.5770013  lat_dir = N   lon = 07147.9953071   lon_dir = W 
lat = 4216.5772182  lat_dir = N   lon = 07147.9948779   lon_dir = W 
lat = 4216.5769770  lat_dir = N   lon = 07147.9951118   lon_dir = W 
lat = 4216.5768481  lat_dir = N   lon = 07147.9950314   lon_dir = W 
lat = 4216.5766088  lat_dir = N   lon = 07147.9953099   lon_dir = W 
lat = 4216.5766241  lat_dir = N   lon = 07147.9954440   lon_dir = W 
lat = 4216.5767512  lat_dir = N   lon = 07147.9956462   lon_dir = W 
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lat = 4216.5767648  lat_dir = N   lon = 07147.9957746   lon_dir = W 
lat = 4216.5766633  lat_dir = N   lon = 07147.9958444   lon_dir = W 
lat = 4216.5767568  lat_dir = N   lon = 07147.9958840   lon_dir = W 
lat = 4216.5765989  lat_dir = N   lon = 07147.9958395   lon_dir = W 
lat = 4216.5768795  lat_dir = N   lon = 07147.9958634   lon_dir = W 
lat = 4216.5769287  lat_dir = N   lon = 07147.9959945   lon_dir = W 
lat = 4216.5771367  lat_dir = N   lon = 07147.9958827   lon_dir = W 
lat = 4216.5770835  lat_dir = N   lon = 07147.9962340   lon_dir = W 
lat = 4216.5770755  lat_dir = N   lon = 07147.9964946   lon_dir = W 
lat = 4216.5770901  lat_dir = N   lon = 07147.9963891   lon_dir = W 
lat = 4216.5772452  lat_dir = N   lon = 07147.9967194   lon_dir = W 
lat = 4216.5772464  lat_dir = N   lon = 07147.9966326   lon_dir = W 
lat = 4216.5775564  lat_dir = N   lon = 07147.9967022   lon_dir = W 
lat = 4216.5777259  lat_dir = N   lon = 07147.9965079   lon_dir = W 
lat = 4216.5779436  lat_dir = N   lon = 07147.9965989   lon_dir = W 
lat = 4216.5776832  lat_dir = N   lon = 07147.9968470   lon_dir = W 
lat = 4216.5775928  lat_dir = N   lon = 07147.9968012   lon_dir = W 
lat = 4216.5775928  lat_dir = N   lon = 07147.9968012   lon_dir = W 
lat = 4216.5770542  lat_dir = N   lon = 07147.9968118   lon_dir = W 
lat = 4216.5771359  lat_dir = N   lon = 07147.9971191   lon_dir = W 
lat = 4216.5767691  lat_dir = N   lon = 07147.9974318   lon_dir = W 
lat = 4216.5765898  lat_dir = N   lon = 07147.9974948   lon_dir = W 
lat = 4216.5757480  lat_dir = N   lon = 07147.9977214   lon_dir = W 
lat = 4216.5756693  lat_dir = N   lon = 07147.9977314   lon_dir = W 
lat = 4216.5761917  lat_dir = N   lon = 07147.9976945   lon_dir = W 
lat = 4216.5759213  lat_dir = N   lon = 07147.9978763   lon_dir = W 
lat = 4216.5760859  lat_dir = N   lon = 07147.9978638   lon_dir = W 
lat = 4216.5760352  lat_dir = N   lon = 07147.9975245   lon_dir = W 
lat = 4216.5759800  lat_dir = N   lon = 07147.9975292   lon_dir = W 
lat = 4216.5764215  lat_dir = N   lon = 07147.9975879   lon_dir = W 
lat = 4216.5763464  lat_dir = N   lon = 07147.9978543   lon_dir = W 
lat = 4216.5762926  lat_dir = N   lon = 07147.9977954   lon_dir = W 
lat = 4216.5766603  lat_dir = N   lon = 07147.9977788   lon_dir = W 
lat = 4216.5765522  lat_dir = N   lon = 07147.9976846   lon_dir = W 
lat = 4216.5765518  lat_dir = N   lon = 07147.9976094   lon_dir = W 
lat = 4216.5767287  lat_dir = N   lon = 07147.9977731   lon_dir = W 
lat = 4216.5767388  lat_dir = N   lon = 07147.9981536   lon_dir = W 
lat = 4216.5765318  lat_dir = N   lon = 07147.9982637   lon_dir = W 
lat = 4216.5765734  lat_dir = N   lon = 07147.9983014   lon_dir = W 
lat = 4216.5764871  lat_dir = N   lon = 07147.9981519   lon_dir = W 
lat = 4216.5765896  lat_dir = N   lon = 07147.9983578   lon_dir = W 
lat = 4216.5763138  lat_dir = N   lon = 07147.9982814   lon_dir = W 
lat = 4216.5763138  lat_dir = N   lon = 07147.9982814   lon_dir = W 
lat = 4216.5764157  lat_dir = N   lon = 07147.9983354   lon_dir = W 
lat = 4216.5764565  lat_dir = N   lon = 07147.9987102   lon_dir = W 
lat = 4216.5762172  lat_dir = N   lon = 07147.9989199   lon_dir = W 
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lat = 4216.5763888  lat_dir = N   lon = 07147.9989562   lon_dir = W 
lat = 4216.5766894  lat_dir = N   lon = 07147.9990603   lon_dir = W 
lat = 4216.5764795  lat_dir = N   lon = 07147.9991919   lon_dir = W 
lat = 4216.5764020  lat_dir = N   lon = 07147.9990838   lon_dir = W 
lat = 4216.5764036  lat_dir = N   lon = 07147.9992482   lon_dir = W 
lat = 4216.5766131  lat_dir = N   lon = 07147.9994711   lon_dir = W 
lat = 4216.5764230  lat_dir = N   lon = 07147.9996004   lon_dir = W 
lat = 4216.5767822  lat_dir = N   lon = 07147.9993498   lon_dir = W 
lat = 4216.5768577  lat_dir = N   lon = 07147.9995489   lon_dir = W 
lat = 4216.5769741  lat_dir = N   lon = 07147.9991748   lon_dir = W 
lat = 4216.5770841  lat_dir = N   lon = 07147.9993352   lon_dir = W 
lat = 4216.5773696  lat_dir = N   lon = 07147.9990953   lon_dir = W 
lat = 4216.5775555  lat_dir = N   lon = 07147.9993077   lon_dir = W 
lat = 4216.5775611  lat_dir = N   lon = 07147.9994075   lon_dir = W 
lat = 4216.5776798  lat_dir = N   lon = 07147.9992853   lon_dir = W 
lat = 4216.5778219  lat_dir = N   lon = 07147.9991817   lon_dir = W 
lat = 4216.5777007  lat_dir = N   lon = 07147.9991704   lon_dir = W 
lat = 4216.5777741  lat_dir = N   lon = 07147.9992102   lon_dir = W 
lat = 4216.5778935  lat_dir = N   lon = 07147.9994255   lon_dir = W 
lat = 4216.5778019  lat_dir = N   lon = 07147.9996942   lon_dir = W 
lat = 4216.5777642  lat_dir = N   lon = 07147.9999193   lon_dir = W 
lat = 4216.5778281  lat_dir = N   lon = 07147.9999543   lon_dir = W 
lat = 4216.5778281  lat_dir = N   lon = 07147.9999543   lon_dir = W 
lat = 4216.5781142  lat_dir = N   lon = 07148.0001182   lon_dir = W 
lat = 4216.5781701  lat_dir = N   lon = 07148.0002133   lon_dir = W 
lat = 4216.5785542  lat_dir = N   lon = 07148.0002435   lon_dir = W 
lat = 4216.5786673  lat_dir = N   lon = 07148.0004131   lon_dir = W 
lat = 4216.5787414  lat_dir = N   lon = 07148.0003432   lon_dir = W 
lat = 4216.5789685  lat_dir = N   lon = 07148.0002353   lon_dir = W 
lat = 4216.5789515  lat_dir = N   lon = 07148.0001067   lon_dir = W 
lat = 4216.5789772  lat_dir = N   lon = 07148.0001753   lon_dir = W 
lat = 4216.5788072  lat_dir = N   lon = 07148.0004669   lon_dir = W 
lat = 4216.5727233  lat_dir = N   lon = 07147.9864123   lon_dir = W 
lat = 4216.5726440  lat_dir = N   lon = 07147.9864356   lon_dir = W 
lat = 4216.5726902  lat_dir = N   lon = 07147.9865413   lon_dir = W 
lat = 4216.5725558  lat_dir = N   lon = 07147.9868216   lon_dir = W 
lat = 4216.5724140  lat_dir = N   lon = 07147.9869739   lon_dir = W 
lat = 4216.5723882  lat_dir = N   lon = 07147.9871499   lon_dir = W 
lat = 4216.5724913  lat_dir = N   lon = 07147.9874928   lon_dir = W 
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