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Abstract 
Tearing of the ulnar collateral ligament (UCL) is one of the most common injuries for baseball 

pitchers. During a pitch, the UCL experiences high levels of stress between the cocking and 

acceleration phase due to a valgus moment. Because this stress cannot be directly measured in 

vivo, a pitching robot with numerous biomimetic features was created to gain a better 

understanding of these forces during a fastball pitch. This robotic research platform was then used 

to design a brace that reduces the amount of stress the ligament undergoes, potentially prolonging 

the play time for athletes. The robotic arm, in the form of a human skeletal replica, featured seven 

independently, pneumatically actuated Hydro Muscles and a biomimetic UCL. When the brace 

was used on the robotic arm, the force on the artificial UCL decreased during the pitching phases 

which validated its effectiveness.  
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Chapter 1: Introduction 
Baseball, also known as America’s favorite pastime, has been consistently growing in 

participation since 1969 (Participation statistics.2013). As a result of this growth, the number of 

injuries has also increased, specifically in young pitchers. Due to the repetitive nature of the throw, 

tears of the ulnar collateral ligament (UCL) in the elbow are very common in baseball pitchers 

(OrthoInfo, 2018). The UCL tears since it undergoes high amounts of stress during the late cocking 

phase of a baseball pitch, which is where external rotation of the shoulder and arm is at its 

maximum (Weeks & Dines, 2015).  

The exact stresses of the UCL during a pitching motion cannot be measured directly, as the 

ligament is not compatible with in vivo sensors. In general, UCL material properties are very 

limited since most studies have been done on cadaveric models. Therefore, there is a need for a 

better understanding of baseball biomechanics and the impact a pitch has on the UCL. This is 

necessary to learn how to prevent injury, or prolong the playing time of the athlete before the need 

of a surgical intervention.  

The overall goal of this project was to create a brace that will reduce the stresses the UCL 

undergoes during a baseball pitch, allowing for the aforementioned injury prevention. In order to 

do so, a testing mechanism was created, using a skeletal arm model, to mimic the movement of a 

fast ball baseball pitch. Through biomechanical analysis, muscles in the upper arm and shoulder 

that play a major role in the pitching motion were selected. Hydro Muscles, pneumatic actuators 

resembling biological muscles, were used to produce a human-like fastball pitch, and leather was 

used to act as a synthetic UCL, due to its similar material properties. Measurements were then 

taken on this material using a linear displacement sensor. To test the effectiveness of the brace, the 

skeletal arm was interfaced with it, and measurements of the synthetic UCL with and without the 

brace were recorded.  

In Chapter 2, the conducted background research is introduced for a better understanding 

of the project. This includes more knowledge on baseball and baseball biomechanics, existing 

elbow braces on the market for baseball players, human arm anatomy and UCL properties, and, 

lastly, background research used for the robotic arm which includes various types of linear 

displacement sensors, and Hydro Muscles and its applications. Chapter 3 lists the project 

objectives attained to achieve the goal. Chapter 4 describes the methodology used to create the 

robot and brace design. Chapter 5 describes the experiments conducted with and without the brace 

using the robotic arm. Chapter 6 details the results obtained from the experiments. Chapter 7 

discusses these results pertaining to the effectiveness of the brace as well as limitations of the 

project. Lastly, Chapter 8 concludes the project, reiterating the goals and results, as well as 

addresses improvements and future directions for this project.  
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Chapter 2: Background 

2.1 Baseball Pitch 

 Originally a gentleman's game, baseball was created in the late 1800’s, since then it has 

grown in popularity exceptionally (History Staff, 2019). Baseball has evolved into a multi-billion 

dollar business where those who excel, earn millions of dollars to play professionally. These kind 

of incentives have changed the sport of baseball at the youth level dramatically over the past 

several decades. Participation of high school players has increased from approximately 360,157 to 

almost half a million since 1969 (Participation statistics.2013).  

Unfortunately there is a high physical demand for high school players that are hoping to 

excel in this sport, which may lead to career altering or ending injuries. Common baseball related 

injuries include tearing of the rotator cuff or Ulnar Collateral Ligament (UCL). When the UCL 

tears, players must undergo a UCL reconstructive surgery, commonly known as Tommy John 

Surgery. This surgery can set players back 8-14 months before they return to their previous level 

of play (Johns Hopkins Medicine, 2019). The number of UCL surgeries has been surging upward 

over the past several decades at an alarming rate at the professional and youth levels. In an 

interview with Dr. Mininder Kocher, Associate Director of the Division of Sports Medicine and 

Professor of Orthopaedic Surgery at Harvard Medical School, claims that he, alone, performs over 

30 Tommy John surgeries on youth athletes every year. But where is this surge coming from? 

 Research shows that pitching more often, for a longer period of time drastically increases 

one’s risk of injury. For example, when a player pitches competitively for more than 8 months per 

year, it increases the odds of surgery by five times. Pitching more than 100 competition innings in 

a year triples the risk of a serious elbow or shoulder injury and with more than 80 pitches in a game 

the chance of surgery almost quadruples (Fleisig & Andrews, 2012). Opportunities to participate 

in more games per year was made possible by the creation of organizations such as the Amateur 

Athletic Union (AAU) and Perfect Game Incorporated. The AAU created a travel baseball league 

for excelling athletes in 1983 and Perfect Game Incorporated was created in 1995 for youth to be 

exposed to a college and professional level environment (AAU Baseball, 2019; Perfect Game, 

2019). Players who are part of these teams start preparing for their seasons in the early winter 

months, play on the weekends of the school season, through the summer, and well into the fall. 

Therefore, pitchers tend to pitch for about 8 months in a calendar year, if not more. This can 

increase the number games played per calendar year from 20 games to 70 games meaning 

anywhere from 70-100+ innings are pitched, plus time in the field accumulating on their arms 

(Johns Hopkins Medicine, 2019). 

It’s not only the high volume of throwing that has led to the uptick in UCL injuries, but it 

is also the impulse each individual throw has on the arm. The overhead throwing motion is 

inherently unnatural for the body to perform, and the average velocity of a fastball baseball has 

risen in the past few decades from 90 mph to around 92.5 mph as of 2015 (Doran, 2015). While 

this jump may not seem significant, a 90 mph pitch already is pushing the maximum threshold of 

the UCL and any further increase can have significant consequences. This speed forces joints into 

highly torqued positions that they are not naturally intended to be in.  

During a pitch the forearm can reach up to 190 degrees of external rotation (Oyama, 2012). 

This happens during the transition from the cocking phase of a pitch to the acceleration phase. 

There are six stages to a baseball pitch, windup, early cocking, late cocking, acceleration, 

deceleration, and follow-through. Figure 1 below displays each of these stages. 
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Figure 1. Phases of Pitching (Physiopedia contributors, 2019) 

The windup phase is when the pitcher keeps their center of gravity on their back leg, then 

elevates the lead leg and separates the throwing hand from the glove. The early cocking phase 

begins when the lead leg reaches maximum height and the standing leg then initiates pelvic rotation 

and forward tilt. The shoulder then starts to externally rotate through the use of the supraspinatus, 

infraspinatus, and teres minor, positioning the humeral head on the glenoid. Other muscles, such 

as the middle trapezius, rhomboid, and levator scapulae move the glenoid in order to provide the 

humerus with a stable base for rotation. The leading leg that is elevated then lands in line with the 

stance foot, pointing towards home plate. This foot contact then begins the late cocking phase. 

During late cocking the arm is flexed, through activation of the biceps muscle, the humerus 

undergoes abduction and extreme external rotation while the scapula is retracted. There are a 

number of muscles involved in order to create this large rotation. The teres minor and infraspinatus 

are two of the main muscles to cause external rotation of the humerus. Scapula retraction is 

achieved by the contraction of the subscapularis, pectoralis major and latissimus dorsi. The torso 

continues to rotate and is tilted forward and laterally and the knee of the leading leg begins to 

extend. The termination of the late cocking phase and the beginning of the acceleration phase is 

when the shoulder and elbow reach maximum external rotation. The lower half of the body, also 

known as the trunk, continues to rotate and tilt during acceleration as the knee extends and the hip 

of the lead leg flexes. This provides a more stable base and increases the angular momentum of 

the trunk which in turn increases the velocity of the ball. The humerus horizontally adducts and 

then internally rotates forcefully within 58 milliseconds. In order to create such a quick change of 

direction, the subscapularis, pectoralis major, and latissimus dorsi reach maximum activity. The 

serratus anterior also reaches maximum activity to protract the scapula to provide a stable glenoid 

for the humerus to rotate. The elbow also extends from 90 degrees to 120 degrees by the 

contraction of the triceps and the ball is released, ending the acceleration phase. In deceleration 

the arm continues to adduct and internally rotate, and the shoulder soft tissues dissipate the forces 

caused from the acceleration phase. The teres minor, infraspinatus, and posterior deltoid are 

responsible for this dissipation. The humeral head is restricted from translation, horizontal 

adduction, and internal rotation by the highly activated teres minor. Elbow extension and forearm 

pronation are further decelerated by the biceps and brachialis. Lastly, the follow-through phase is 

where the body continues to move forward with the arm until motion stops and muscle firing 

decreases (T Seroyer et al., 2010). When combined with an intent for maximum velocity, these 

actions occur over milliseconds and focus the energy transferred from the legs, through trunk and 

arm building up into the elbow just before release creating high forces running through the UCL.  
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2.2 Existing Braces 

Braces aimed toward baseball players that currently exist include postoperative braces or 

general compression braces for comfort. In terms of braces that are used to help prevent injuries 

for throwing, there are very few, and more specifically to support the UCL during throwing, 

virtually none. In a throwing motion the shoulder can rotate at upwards of 7,500 degrees per second 

and the elbow can rotate at over 2,200 degrees per second (T Seroyer et al., 2010). This puts an 

incredible amount of stress on the UCL. To limit the high torque effect that occurs in the UCL 

during the throwing motion, there needs to be a high resistance to force, which is hard to create in 

a brace that needs such a fluid and high range of motion in such a short time period.  

Postoperative braces tend to restrict athletic motion which is not useful for supporting a 

dynamic pitching movement. Braces needed for rehabilitation possess options of fixed protection, 

locked articulation, adjustable range of motion, or dynamic and static progression (Fusaro, Orsini, 

Sforza, Rotini, & Benedetti, 2014). Therefore, these types of braces cannot be used in practice or 

in games. Braces that are typically used during active play are typically compressive braces. 

Compressive braces are beneficial to increase blood flow throughout the arm and stabilize muscles 

which are primarily just for the athletes comfort (Fleet Feet Hartford, 2019). Unfortunately, these 

braces are typically just a layer of fabric and do not provide any resistance or support needed to 

prevent injury to the elbow. Typical postoperative braces and compressive braces resemble the 

braces shown in Figures 2 and 3. 

 
 

 One brace that is found to be preventative for injuries is the Bauerfeind Elbow Brace. This 

brace’s primary function is to prevent overextension of the elbow at the very end of the throwing 

motion (Bauerfeind, 2016). Not only is this brace supposedly able to be used preventatively, but it 

can also be used post operatively for protection. The Bauerfeind 

brace is shown in Figure 4. 

The research behind this brace claims that during the follow 

through stage of the pitch, the bones collide together which can cause 

injury to ligaments after a repeated number of throws. Unfortunately 

the anterior band of the UCL is not incorporated in resisting 

extension of the radius and ulna from the humerus, its primary 

function is to resist transversal stress across the elbow joint. The 

Bauerfeind Brace provides many promising aspects, but 

unfortunately the effectiveness has not been clinically proven 

(Snyder, 2016). This leaves room for the preventative brace market 

to grow, especially in resisting the valgus forces the elbow is 

subjected to while throwing. 

Figure 3. Compressive Brace (McDavid, 2019) Figure 2. Postoperative Brace (Ortho Depot, 2019) 

Figure 4. Bauerfeind Elbow 

Brace (Bauerfeind, 2016) 
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2.3 Ulnar Collateral Ligament 

The ulnar collateral ligament is a bundle of three triangular shaped bands: the posterior, 

transverse and anterior bands, and is on the inside part of the elbow (Andrews, Dugas, Cain, & 

Jost, 2012, Labott, Aibinder, Dines, & Camp, 2018). The orientation of each of the sections is 

shown in Figure 5 below.  

The anterior band (AB) is known as the 

longest ligament of the elbow. According to recent 

studies, the length is between 51.7 to 53.9 mm and 

the width ranges from 4.0 to 7.6 mm (Labott et al, 

2018). It joins the ulna and humerus together 

resisting valgus stress. Overhead throwing athletes 

commonly injure their AB due to cyclic loading of 

valgus stress on the elbow during the cocking and 

acceleration phases of the throw (Andrews et al, 

2012). The injury results in pain, instability, 

decreased velocity and reduced accuracy during 

performance (Labott et al, 2018). Usually, it 

requires surgical intervention for a faster 

recuperation.  

Very little research has been done on the UCL in vivo, most of it has been on cadaveric 

models. Valgus moment tests have been performed to measure the mechanical material properties 

but have stated that in vivo UCL’s undergo higher stresses during athletic performance. The lack 

of in vivo tests and measurements has been an obstacle to better the understanding of the 

biomechanics of the ligament. There is little information about the material properties of the 

elbow’s UCL. Literature claims that human ligament specimens share general material properties. 

CES Edupack 2018 software defines the Young’s Modulus of human ligament to range from 0.08 

to 0.3 GPa. The range of the modulus is so large because the properties of ligaments depends on 

the composition and structure of the specific specimen. This was found when another study 

demonstrated an even larger Young’s Modulus range of 0.05 and 0.45 GPa (Dolan & Drew, 2005)  

2.4 Linear Displacement Sensors 

 There are many sensors that can be used to 

measure stresses, or displacements, of a material. 

Some common sensors include strain gauges, Hall 

Effect sensors, and stretch sensors. Strain gauges are 

widely used to measure the mechanical change in 

length of a material (Liu & Yang, 2016). The gauge 

features a thin wire that is organized in grid pattern 

and outputs an electrical resistance that is proportional to the amount of strain in the material 

(National Instruments, 2019). This configuration can be seen in Figure 6, above.  

Figure 5. Ulnar Collateral Ligament Bands (LMH 

Health, 2019) 

Figure 6. Strain Gauge (Culler, 2017) 
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Strain gauges need to be applied directly onto the material that 

it is measuring. This usually calls for it to be glued, making it useful 

for only one material, and unable to be interchangeable. This is 

disadvantageous because these sensors are relatively expensive.  

The second type of sensor, the Hall Effect sensor, uses a 

magnet to activate it (Electronics Tutorials, 2019). The sensor outputs 

a voltage that is proportional to the change in distance from the magnet 

to the sensor, Figure 7. Typical benefits of using this type of sensor 

include its long life and low cost, although it becomes slightly 

inaccurate if the magnet is not directly perpendicular to the sensor 

(Honeywell, 2019).  

The last sensor, a stretch sensor, also outputs a resistance 

like a strain gauge. Stretch sensors use a conductive rubber 

material that when placed between two alligator clips can measure 

the change in length due to the particles getting further apart. The 

rubber resembles a typical black cord, Figure 8, but consists of 

carbon-black rubber. The readings from a stretch sensor may be 

slightly inaccurate, but it is useful in measuring stretching motions 

and is low in cost, like a Hall Effect sensor (Adafruit, 2018).  

 

2.5 Hydro Muscles 

Hydro Muscles are a type of hydraulically, or pneumatically, actuated muscles that 

resemble biological muscle. They were developed by Professor Marko Popovic in 2014 to allow 

for a more comfortable user interface with exoskeletons as opposed to the use of a rigid 

exoskeleton or a rigid-link manipulator (McCarthy et al., 2014). Hydro Muscles expand and 

contract linearly when they are pressurized and depressurized. They elongate axially and become 

stiff without allowing for radial expansion. When they contract they become soft radially. The 

elongation and contraction of the muscle is shown in Figure 9 below.  

 

Hydro Muscles are typically 

used to apply a pulling force much 

like biological muscles. This is 

similar to the more popular artificial 

muscles, McKibben muscles. 

McKibben muscles become stiff 

when they are contracted and soften 

when elongated. These muscles 

expand radially while contracting 

axially, therefore they lose a 

substantial amount of energy. 

Hydro Muscles consist of an outer sheathing that is soft and inelastic, typically polyester 

is used for this outer layer. The polyester allows axial expansion but limits radial expansion, which 

increases the efficiency and exceeds that of McKibben muscles. The inner portion of the muscle 

is a smooth, elastic tube such as latex. The tube has two caps at each end, one of which is a valve 

Figure 7. Hall Effect Sensor 

(Core Electronics, 2013) 

Figure 8. Stretch Sensor (Sector67, 

2019) 

Figure 9. Hydro Muscle Relaxed and Pressurized (Curran, Colpritt, 

Sullivan, & Moffat, 2018) 
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for the pressure source. These materials are low in cost making Hydro Muscles cost-effective as 

well as simple to create. 

They are activated by pressurizing them with either air or water. Ordinary tap water can be 

used at a pressure of 0.59 MPa. Another option is to use compressed air at approximately 100 psi 

(Sridar et al., 2016). Unlike other wearable exo-musculatures that need a large number of 

independently controllable units, Hydro Muscles can be actuated using one source to drive 

multiple muscles (McCarthy et al., 2014). 

Applications of Hydro Muscles include uses for orthotic or exoskeletal systems. Some of 

these systems include elbow or knee exo-musculatures which will allow the user to exert more 

force that may be needed for physical therapy, daily assistance, or an augmentation system. 

Another system is a flapping wing system, where a Hydro Muscle mimics the pectoral muscle 

making a down flap motion when it depressurizes (Sridar et al., 2016). Most recently, Hydro 

Muscles were used to create a humanoid walking robot in which the muscles were attached to an 

artificial skeleton in place of biological muscles. The robot successfully demonstrated a walking 

gait cycle which sets the stage for clinical applications, prosthetics, military defense, or other 

applications (Curran et al., 2018). 
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Chapter 3: Project Objectives 
  This project aimed to gain a better understanding of pitching biomechanics and the stresses 

endured by the UCL in an overhead throw. This was done by creating a testing mechanism, using 

Hydro Muscles to actuate a human-like fastball baseball pitch, in which stress measurements were 

taken on. With more knowledge about the stresses in the UCL, a way to prevent future UCL 

injuries was developed. 

 To prevent UCL injuries, the goal of this project was to design a brace that will reduce the 

amount of valgus torque the arm undergoes during a pitch, and therefore reduce the amount of 

stress going through the UCL. The testing mechanism mentioned above was used to validate the 

braces effect. 

 The objectives for this project are outlined below: 

 

1. Build a model that mimics the movement of a fastball baseball pitch using a skeletal frame 

with the following biomimetic features:  

a. Hydro Muscles, replacing the essential muscles in the arm and shoulder. 

b. An artificial Ulnar Collateral Ligament (UCL), resembling the material properties 

of a biological UCL. 

2. Use the skeletal model to identify and measure the phases in which there were significant 

spikes in the stress on the artificial UCL throughout the pitch. 

3. Build a device that can help prevent UCL tears in amateur and/or professional athletes. 

 . The device will decrease the stress on the UCL without inhibiting the athlete’s 

performance, potentially prolonging play time without injury. 

4. Test effectiveness of device using the skeletal model. 

 . The throwing motion with the brace should be the same as without it. 

a. Force on the UCL should be less with the brace than without. 
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Chapter 4: Methodology 

4.1 Skeletal Model 

4.1.1 Hydro Muscles 

The Hydro Muscles were used to produce the 

movement of the skeletal arm model. They are created by 

using latex tubing, polyester sheathing, various barbed plugs, 

clamps, and fishing line. Figure 10 shows the components of 

the Hydro Muscles.  

The latex tubing had a 1/2” OD and 1/4” ID, the 

polyester sheathing fit closely over the tubing, and the barbed 

plugs were glued at the ends of the tube, using Gorilla glue. 

Lastly, the clamps were tightened near the ends of the Hydro 

Muscles and fishing line was tied at the ends of the plugs to 

attach them to the skeletal arm.  

 

The steps listed below detail how to construct a Hydro Muscle: 

1. Cut the latex tubing to the desired length. Be sure to make this a clean, flat cut otherwise 

angled cuts may cause leakages. 

2. Cut the polyester sheathing 1/4” longer than the latex tubing. 

3. Insert the latex tubing into the sheathing. 

4. Slide the worm clamps on both ends of the tubing.  

5. Insert the barbed hose fitting on one end partially. Coat the end of the fitting with Gorilla 

glue before inserting it completely. 

6. Insert the barbed plug on the other end partially. Coat the end of the plug with Gorilla glue 

before inserting it completely. 

7. Tighten the clamps as tightly as possible. Be sure to position the clamps so that they are 

around the portion of tubing where the fitting or plug is inserted.  

8. Coat the ends of the polyester sheathing with clear nail polish to prevent fraying. 

9. Use a needle to create two small holes at the top surface of the barbed plug. Thread the 

fishing line through the holes to create a loop in order for the Hydro Muscles to be attached 

to the model. 

 

 In order to determine the initial muscle lengths, the desired change in length were measured. 

To find this, a string was attached at the insertion point for a specific muscle and fed through an 

eye hook at its origin. The skeletal arm was then moved to its angle of flexion were an initial mark 

was made on the string. Then the arm was rearranged to its angle of extension were a mark was 

made to the final location of the string. The distance between each of the marks on the string were 

measured at it represents the change in length the Hydro Muscle must achieve. This procedure was 

repeated for each of the selected muscles. A linear regression was created to determine the 

relationship between the original length of the latex tube and its change in length, Appendix A.  

 The muscles were chosen based off of mechanisms of action to keep the model simple 

enough to feasibly build. Therefore, a total of seven muscles in the shoulder and upper arm were 

mimicked. These muscles were the teres minor, infraspinatus, triceps brachii, middle deltoid, 

Figure 10. Hydromuscle Materials 

and Construction (Curran et al., 2018) 
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biceps brachii, subscapularis, and pectoralis major. The teres minor provided lateral rotation, the 

infraspinatus provided horizontal abduction, the triceps extension of the elbow joint, the deltoid 

abduction of the shoulder joint, the biceps flexion of the elbow joint, the subscapularis medial 

rotation, and the pectoralis horizontal adduction. 

4.1.2 Skeleton 

 Orthopedic surgery training bones were used to resemble a human right arm. These bones 

were held together in such a way that they could articulate in the same way as a human arm. In the 

case of the elbow joint, each major ligament bundle was simulated using leather. This was because 

leather has similar elastic properties to that of a human ligament, which would allow a similar 

mechanical change. Eye hooks were inserted at the point of insertion and origin for each muscle, 

allowing an easy Hydro Muscle attachment and guided movement.  

 3D printed plastic rings were attached to the model to mimic the arm’s bulk. These were 

printed using PLA and included 4 hexagonal shapes removed in uniform spacing around the inside 

of the ring. These holes were sized so that a standard nut could be pasted in the void, which would 

accept a threaded rod. The rings themselves were sized to simulate the circumference of an 

example arm at 4 different locations along the arm. These provided a framework for which a brace 

could be placed over to simulate the structure of the arm. The 4 rods were tightened to attach the 

rings to the arm and the excess material was removed, to keep the rods flush with the outer surface 

of the rings. 

4.1.3 Structure 

The arm assembly, specifically the scapula, was attached to a 10 inch wide board, which 

was used to support the Hydro Muscles. The board was attached to a metal frame using hinges, 

and a control board, with plastic tubing and electrical equipment, sat on top of the metal frame. 

The metal frame consisted of 80/20 T-slotted aluminum, and the control board was composed of 

8 solenoid valves connected to a central air supply and an Arduino.  

In order to simulate the twisting of a pitcher’s torso during the throw, the base of the board 

was attached to a protrusion in the metal frame with springs of a spring constant .4605N/m. This 

and a gate catch on the posterior support, allowed the arm assembly to twist synchronous with the 

more classical throwing motion of the arm. The gate catch was controlled with another Hydro 

Muscle in order to simplify the overall system. 
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Figure 11. Arm Model Assembly 

4.1.4 Air Tank and Valves 

 In order for the Hydro Muscles to be activated pneumatically, a compressed air tank was 

used. Although this air tank is capable of supplying compressed air of up to 150 psi, it was operated 

it at 100 psi to ensure the muscles would not burst. Eight 5-to-2 way Solenoid valves that served 

as a connection between the air pump and electronic controllers. The solenoid valves were supplied 

with 0.2 amperes per valve and 24 volts collectively. 5-to-2 way means that the valves have five 

ports and two flow positions. One port is the air inlet to supply pressure, two of the ports allow air 

to be regulated when air is flowing out, and two ports power the system. The two flow positions 

of the valves are either on or off, meaning air is being supplied to or cut off from the muscles (US 

Solid, 2018). The valves also had a flow control valve connected to them which regulated the flow 

of the air coming out of the hose side of the valve. These controlled the speed at which the muscles 

contracted. The air tank, solenoid valves, and muscles were all attached using 1/4” diameter 

pneumatic tubing and push connects. Single and branched push connects were used to double-up 

some of the muscles in order for them to exert more force. 

4.2 Sensor and Controls 

4.2.1 Sensors 

 Various sensors were considered to measure the stress on the UCL, including Hall Effect 

sensors, strain gauges, and stretch sensors. The movement of the mechanism presents many 

challenges in using hall-effect sensors as it is not a linear movement. Strain gauge sensors are 
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expensive and the attachment to the mechanism impacts the reading from the testing. Stretch 

sensors, also known as conductive rubber, were chosen as the most convenient for the project’s 

dynamics and its economic cost. This sensor measures stretch forces, when stretched the resistance 

of the conductive rubber changes (Adafruit, 2018). Due to the fact that the expected 

displacement/stretch is significantly small, it was decided to combine the stretch sensor with the 

leather used as the biomimetic UCL, Figure 12. By doing so the sensor will be limited to stretch 

when the leather is being stretched, there for being closer to the real UCL anatomic motion. Small 

3D printed plates were designed to build the right sensor 

connections. On the place a point of the leather was glued. 

Then the stretch sensor was also glued to the leather and a 

cable was modified to fit next to the leather’s end while 

keeping a connection with the rubber. This will allow 

accessibility to the voltage reading of the rubber. Another 

plate was glued on top to guard exposed wires and secure 

the sensor mechanism together. With this mechanism it’s 

aimed to measure the resistance levels during the pitch 

motion with and without the brace. The lower the resistance 

corresponds to high force as the rubber is being stretched 

due to the force. The higher the resistance the lesser the 

force. 

4.2.2 Arduino Mega 

 An Arduino Mega was used for the electronic controller of the solenoid valves. The board 

used was the Arduino MEGA 2560 which featured 54 digital I/O pins and was connected to a 

computer with a USB cord. This was more than suitable for the application since each of the 8 

valves required its own digital pin. Arduino was also used to receive information from the stretch 

sensor. Two codes were written in the program to synchronize the firing of each of the muscles 

individually, and start/stop the recording of data from the sensor and export the data to a comma-

separated values (CSV) file (Appendix B; Appendix C).  

4.3 Brace Design 

Two braces designs were chosen to mitigate the forces on the UCL in different ways. The 

first used passive tension, from strips of elastic, integrated into a soft sleeve, secured distally and 

proximally with nylon straps. This idea came about by consulting with the WPI Athletic trainers 

who have degrees in physiology and are experts in treating motion restriction in sports. They 

suggested having a compressive brace that has some form of elastic feature. Therefore, the idea 

came about to use strips of elastic that run across the UCL. One of the bands would run from the 

outer side of the upper arm across the UCL to the back of the forearm. The second band should 

run opposite, from the inside of the forearm across the UCL to the top of the bicep. The strips of 

elastic would form an “x” pattern across the UCL over a soft sleeve. This was designed to take 

part of the load from the UCL and instead have it run through the elastic bands. These bands, for 

ease of use across different sizes could be easily adjustable since different throwers have different 

size arms. 

The second design used rigid components to eliminate all but the single primary degree of 

freedom of the elbow joint. This design included a rigid single-articulated bar placed on the 

Figure 12. Sensor Materials and Stretch 

Sensor Configuration 
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posterior side of the arm. This was contained within a neoprene sleeve which was secured with 

velcro down the length of it and with a proximal and a distal nylon strap. This brace would force 

the lower arm to maintain the varus/valgus positioning of the humerus, greatly reducing, if not 

fully eliminating, the valgus stress in the elbow joint and the major force on the UCL. 

  

Figure 13. Brace Concepts and Final Prototype 
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Chapter 5: Experiments 
 The following chapter details the tests that were performed in order to replicate a human-

like baseball pitch in the robotic arm. Many trials of this arm motion were also executed to collect 

accurate sensor displacement data, with and without the designed brace. 

 Before data collection began, it was necessary to ensure the motion of the arm resembled 

that of a fastball baseball pitch. This required the Arduino program to run multiple times while 

examining the outputted motion of the arm. As described in the methodology, the 8 Solenoid 

valves were supplied with 100 psi from an air tank, 19 volts from a voltage amplifier, 5 volts from 

the computer operating the Arduino code, and 1.6 amps. Since the muscles could not be attached 

to the skeleton when they were contracted, once the current was turned on, all the muscles were 

expanded to allow origins to be attached easily. To ensure the delays and activation of the muscles 

in the code were correct, the motion of the skeletal was arm without any masses on it was tested. 

This helped refine certain aspects that would cause the model to not move in the correct way. 

Adjustments to the code as well as to the physical model had to be made when the desired motion 

was not reached. Some of these adjustments included activating certain muscles at different times, 

changing the length of the fishing line that connected the Hydro Muscles to the bones, or modifying 

the connection of the shoulder joint. Once the motion without any masses was correct, 3D printed 

rings were added to the model as base surfaces for testing the brace. Similar modifications, as the 

ones mentioned previously, had to be made to revert to the acceptable motion. More Hydro 

Muscles were created to account for the extra mass, from the rings, that needed to be moved and 

change the direction that some of the muscles would be pulling. This created the correct pitching 

motion, ready to begin collecting displacement data from the sensor.  

Multiple iterations of testing were performed to receive data on the behavior of the UCL 

during the baseball pitch. During each of these tests, a button is pressed to activate the firing of the 

muscles, causing the arm to move, and begin data collection from the sensor. The attached stretch 

sensor delivered data to the Arduino where it was then exported to excel. A total of 24 tests were 

run to ensure accurate and consistent data was being collected. These tests conducted alternated 

between iterations without the brace attached to the arm and tests with the brace applied. The data 

collected from both types of tests were then compared to see if there was a difference in resistance, 

and thus length change, between the application of the brace, versus without it.  

After approximately 5 tests of each with and without the brace, the sensor was removed 

and calibrated. This was done by hanging the sensor by one end from the frame of the arm model, 

starting the data recording, and then hanging known masses from the other end. The data was 

recorded using the same code as used in the throwing tests. The masses were hung in increments 

of ½ lbs with the change in resistance being recorded to determine a relationship between 

resistance and force. 
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Chapter 6: Results 

6.1 Comparison of Human and Robotic Arm Pitch 

 In order to move forward with the force-sensing tests, ensuring that the model was moving 

accurately was needed. This section compares the motion of the robotic arm, with that of a subject 

pitcher, as well as videos of professional pitchers. The time lapsed during the throw of the robot 

and a professional pitcher were considered.  

The arm path between the control pitcher and the robotic arm draw to be very similar. Both 

the test pitcher and the robotic arm started out with an early cocking elbow angle of roughly 33 

degrees. These angles were approximated using the Hudl Technique application as seen below.  

As the elbow rapidly accelerated forward, the control pitcher reached an elbow angle just 

past 150 degrees at which the ball began to roll off the fingers. This would be considered the 

release point in the throwing motion, as the arm is reaching maximum extension and is created 

with a 56 degree angle of separation from the core axis to fingertip. The robotic arm was able to 

create a similar angle which was determined to be its release point, just past 150 degrees, and is 

met with a 70 degree angle of separation from the core axis.  

 

Figure 14. Early Cocking of Test Pitcher Figure 15. Early Cocking of Robot 
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Based on video analysis, a pitcher’s trunk will rotate approximately 110 degrees around 

the z axis. This will occur in about .5 seconds, resulting in a rotation speed of approximately 220 

degrees/second (Drysdale, 2012). The arm itself rotated about 100 degrees in .5 seconds, reaching 

a speed of 200 degrees/second. 

 

6.2 UCL Forces with and without the Brace 

In this section, readings from the stretch sensor are reported. The sensor was used to 

measure the displacement of the synthetic UCL which was associated with the force the UCL 

experienced. The relationship between force and the outputted resistance from the sensor are also 

displayed in this section.  

As mentioned in Chapter 5, Experiments, the mechanism was tested with and without the 

brace 24 times each, 8 were not considered due to inaccuracy and noise of the reading, 4 were 

inconclusive and 12 were considered acceptable results. Readings were only considered when the 

sensor ended with +/- 1 ohm from its starting resistance. 

After 12 acceptable tests without the brace, it was found that on average the stretch sensor 

changed by -5.588 Ohms when the brace was not applied. The change in resistance peaked during 

the early cocking, acceleration, and deceleration stages of the throws. When the sensor was 

calibrated, the addition of ½ lbs of force changed the resistance of the sensor approximately -2.04 

Ohms each time. The trendline from this data resulted in the following equation:  

F(R) =  −1.05R − 0.116 

This relationship, when applied to the tests, resulted in a peak force of 1.07 lbs (4.957 N). The 

graphs for these two experiments can be seen in Figures 18 and 19. 

After 12 acceptable tests with the brace were performed, the stretch sensor showed an 

average maximum change of -2.399 Ohms when the brace was applied. The resistance change 

peaked during the early cocking and acceleration stages of the throws. This showed a similar 

pattern to the resistance change of the tests without the brace. Utilizing the sensor calibration, the 

peak force was found to be 0.382 lbs (1.922 N). This showed a 61.23% reduction in peak force on 

the UCL when the brace was applied to the arm, shown in Figure 20. 

 

Figure 16. Release Point of Test Pitcher Figure 17. Release Point of Robot 
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Figure 18. Change in Resistance Through Time Grpah 

 

 

 

 

 
Figure 19. Relationship between Force and Change in Resistance Graph 
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Figure 20. Force on the UCL During a Baseball Pitch Graph 
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Chapter 7: Discussion 

7.1 Analysis of Robot Kinematics  

The pitching motion is a complex and fast movement that can be divided into six phases; 

windup, early cocking, late cocking, acceleration, deceleration, and follow-through. During the 

early cocking phase, Figure 14 and 15, the smaller preloaded angle allows a higher rotational 

velocity through the pitching motion as the elbow moves towards full extension, upon, and through 

release. This would be considered the release point in the throwing motion, as the arm reaches 

maximum extension. At this point there was a 70 degree core axis angle of the model compared to 

that of the test pitcher’s 56 degree angle. While this difference of roughly 14 degrees may seem 

alarming, in terms of an average pitcher it would be completely normal since pitching angles often 

vary in individuals. Pitchers also may experience a humeral drop that can occur mid-outing due to 

an onset of shoulder fatigue from a large amount of repetitions. Having a smaller angle would also 

be better for the research because when the elbow drops below 90 degrees at the shoulder joint, a 

higher stress is created in the elbow during the pitch. Finding not only the phase at which the force 

is greatest, but also the humeral angle. Therefore, at its initial cocking phase, through its release, 

the robotic arm angles were relatively close to the pitching angles of the control pitcher which 

rendered the most accurate results. 

This arm was not without its limitations though. First, the model used in this test did not 

use every muscle in the arm. In order to keep the model manageable, only 6 muscles were used; 

one for each direction of the desired degrees of freedom. This only allowed a portion of the muscles 

in the shoulder and arm to impact the motion. Another limitation was that in the body itself, the 

scapula moves across the ribcage, increasing the horizontal abduction of the shoulder joint. The 

arm bones used were attached to the pivoting board by bolting it through the scapula which 

restricted it from fully mimicking natural motion. The arm itself also did not have the correct mass 

as a biological arm, nor did it have the mass of the hand and ball at the distal end. The incorrect 

masses meant that, though the timing of the peak forces may be accurate, the numeric values are 

not the same as the actual force going through a pitcher’s arm. The mass was reduced because the 

pneumatic Hydro Muscles from the current model were not strong enough to maintain the correct 

motion with additional weight. The last limitation of the model was the valves. Because the valves 

only had two-states, on or off, the speed of the muscle actuation could not be controlled throughout 

the pitch and was the same speed for the whole test. The pitching motion requires a slow wind up 

and then a fast actuation of the muscles, therefore the muscles had to move quickly for the whole 

test to reach the desired throwing speed. This caused the initial cocking motion of the arm to be 

exaggerated and jerky. 

 

7.2 Analysis of the Brace’s Impact 
The data gathered from the stretch sensor during the throwing tests were able to reveal 

information about the throw. In addition, several shortcomings of the sensor and brace were 

discovered. These limitations could result in the data to not be as accurate as they could have been. 

The force on the UCL was reduced by 61.23% with the application of the brace. This 

implies that use of the brace could prevent injury to the UCL or increase the number of pitches 

one executes before injury. This brace was not tested on a human pitcher to ensure that the throw 

would be unimpeded, but was tested with everyday movements, Figure 21, displaying no 
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noticeable impediment to movements. This was the only brace tested on the arm model, as the first 

design was found to not provide adequate support when it was produced. The elastic bands only 

provided tension on the fabric, simply pulling the fabric up and down the arm without supporting 

the arm itself. 

 
Figure 21. Brace Prototype Being Worn 

The sensor faced limitations as after prolonged periods of tension, the stretch sensor would 

not retract to its original state immediately. This caused for later readings to be potentially 

inaccurate. Therefore, tests were only considered if the stretch sensor was able to start and end at 

the same resistance. This sensor was utilized because the change in length of the UCL was 

expected to be larger than what a strain gage would be able to handle. The cost of both sensors 

also directed us to the use of a stretch sensor over a strain gage. 

 The base material of the brace could also benefit from a change. Neoprene has enough 

stretch to conform to the arm and provides a padding layer between the hard shank and the arm, 

but it is not very breathable and has a tendency to tear if stretched too far. Due to these limitations, 

the brace had to be sized for its specific application, in this case for the arm. This prevented the 

brace from being tested on a pitcher as the pitcher’s arm dimensions did not match those of the 

model. A more breathable material is also essential for use by pitchers as they are very particular 

about putting anything on their pitching arm and comfort is essential in order for anyone to actually 

want to use the brace. 
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Chapter 8: Conclusion 
This project was aimed to create a brace to reduce UCL tears in baseball pitchers since it 

is one of the most common injuries in these players. This was tested using a mechanical, 

biomimetic arm model that would move in a similar way to a baseball pitcher. The arm also was 

used to determine when, during the pitch, the UCL reached its maximum force. A skeletal system 

was created which featured Hydro Muscles, a spring-loaded hinge, and a synthetic UCL. The 

Hydro Muscles replicated 3 antagonistic pairs in the upper arm and shoulder and caused the 

skeletal arm to move. The spring system rotated the skeletal arm which simulated trunk rotation 

of the body. Lastly, the synthetic UCL was created using leather and attached to the arm in an 

anatomically correct orientation. Both the Hydro Muscles and the hinge were controlled by eight 

5-to-2 way Solenoid valves which were connected to an Arduino board. The Arduino was also 

connected to a sensor which was attached on the synthetic UCL. This sensor took measurements 

of the displacement of the material which was then used to find the force going through the 

artificial UCL.  

 A brace was then designed to specifically target support for the UCL. Tests without the 

brace yielded a peak in the force during the acceleration stage of the pitch. When compared to tests 

with the brace, the force was reduced by 61.23%, while still seeing peaks at the same stages. These 

results, though informative, could be improved with changes to the brace, sensor, and model. 

Features of the brace that could be improved include the 3D printed joint and the base 

material. A different connection point, such as a bearing, could be implemented for the brace joint 

to decrease friction and allow for better elbow extension and flexion. Further research on a more 

elastic, breathable base material for the brace should be done. Durability, comfort, and 

compatibility between users and the brace could benefit from this newer information. If 

economically possible, the use of a different sensor, such as a strain gage, should be considered to 

increase accuracy of the results. Lastly, for the arm model, introducing more muscles in the 

shoulder, upper arm, and torso could result in a more accurate test. Articulating the scapula to 

allow for greater horizontal abduction could also yield more realistic results. The addition of more 

muscle or the replacement of the pneumatic Hydro Muscles to the hydraulic version could increase 

the strength of the model. This would allow the model to pitch faster, which would better match 

the speed of a throw, or hold more weight. The weight of the arm could be simulated by using 

masses at anatomically correct locations, specified in anthropometric charts, and by attaching a 

baseball to the distal end. The jerking of the arm could be improved by utilizing a dynamic flow-

rate control valve, allowing for both slow and fast muscle actuation of the same muscle in the same 

test. To further artificially mimic the human body, further research using sources, such as 

Biomechatronics by Marko Popovic, would be worthwhile to gain a better understanding of all 

features of the body. Biomechatronics provides recent developments in artificial tissues, prosthetic 

limbs, natural and synthetic actuators, and control systems that would enable our model to more 

closely resemble human attributes (Popovic, 2019). 
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Appendix A 

Hydro Muscle Linear Regression: 
 

Change in Length Initial Length 

1.5 1.75 

1.625 1.375 

2.75 2.375 

2.875 2.625 

3.25 3.25 

3.625 3.875 

4 4.5 
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Appendix B 
 
Valve Code: 

// Pin def 
const int buttonPin = 2; 
const int subs = 5;        //pin for subscapularis 
const int infra = 11;      //pin for infraspinatus 
const int pect = 9;         //pin for pectoralis 
const int teres = 25;      //pin for teres minor 
const int bicep = 7;       //pin for bicep 
const int tricep = 6;      //pin for tricep 
const int latch = 28;      //pin for latch 
 
void setup() { 
  // put your setup code here, to run once: 
  Serial.begin(115200); 
  pinMode(buttonPin, INPUT);  //pin giving feedback 
  pinMode(subs, OUTPUT); 
  pinMode(infra, OUTPUT); 
  pinMode(pect, OUTPUT); 
  pinMode(teres, OUTPUT); 
  pinMode(bicep, OUTPUT); 
  pinMode(tricep, OUTPUT); 
  pinMode(latch, OUTPUT); 
} 
 
void loop() {                //This is the sequence of performance 
  All_Expanded();            //normal state before button is pressed 
  if(digitalRead(buttonPin)==HIGH){  //when button is pressed this will be activated 
    delay(5000);         //5 seconds before sequence starts 
    Early_Cocking(); 
    All_Expanded(); 
  } 
 } 
 
void All_Expanded(){         //command for all muscles to be expanded 
  digitalWrite(subs, HIGH); 
  digitalWrite(infra, HIGH); 
  digitalWrite(pect, HIGH); 
  digitalWrite(teres, HIGH); 
  digitalWrite(bicep, HIGH); 
  digitalWrite(tricep, HIGH); 
  digitalWrite(latch, HIGH); 
 } 
 
void Early_Cocking(){     //command for pitching motion (cocking, late cocking, acceleration) 
  digitalWrite(subs, HIGH); 
  digitalWrite(infra, LOW); 
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  digitalWrite(pect, HIGH); 
  digitalWrite(teres, LOW); 
  digitalWrite(bicep, LOW); 
  digitalWrite(tricep, LOW); 
  digitalWrite(latch, HIGH); 
  delay(1000); 
  digitalWrite(subs, LOW); 
  digitalWrite(infra, HIGH); 
  digitalWrite(pect, LOW); 
  digitalWrite(teres, HIGH); 
  digitalWrite(latch, LOW); 
  digitalWrite(bicep, HIGH); 
  digitalWrite(tricep, LOW); 
  delay(1000); 
} 
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Appendix C 

Sensor Code: 
 
//Pin def 
 #define RESISTOR 10000 //This should be the same value of the used resistor   
 #define Ssensor A0  //This is the pin where the cord is connected tp 
 unsigned long minutes = 5000; 
 unsigned long firstTime = 0; 
 const int buttonPin = 2; 
 boolean buttonstate=false; 
 boolean button; 
  
   void setup(void) {  
     Serial.begin(9600); 
     pinMode(buttonPin, INPUT);  //pin giving feedback 
     Serial.print("Time"); 
     Serial.print(", "); 
     Serial.print("Analog reading"); 
     Serial.print(", "); 
     Serial.print("Voltage"); 
     Serial.print(", "); 
     Serial.println("Resistance");  
   }  
   
   void loop(void) { 
    button=digitalRead(buttonPin);  
    if (button==true){ 
    buttonstate=true; 
    firstTime = millis(); 
    } 
    if (buttonstate == true){ 
      Sensor(); 
    } 
   } 
  
  void Sensor(){ 
   int value;  
   int raw = 0; 
   int vin = 5; 
   float vout = 0; 
   float R1 = 10; 
   float R2 = 0; 
   float buffer = 0; 
   float Force = 0; 
   float conductance = 1000000; 
   if (millis()-firstTime <minutes*2){ 
       Serial.print(millis()-firstTime); 
       Serial.print(", "); 
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       value = analogRead(Ssensor);     //Read value  
       Serial.print(value);                 //Print value 
       Serial.print(", "); 
       vout = value * 5.0 / 1023.0 ;  
       buffer = (vin / vout)- 1; 
       R2 = R1 / buffer; 
       Serial.print(vout); 
       Serial.print(", "); 
       Serial.println(R2); 
       delay(99);  
      } 
    else { 
       void end(void); 
       button==false; 
       buttonstate == false; 
     } 
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