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Abstract

In the field of operations research and combinatorial optimization, many real-world prob-

lems can be modeled using semidefinite programming. Semidefinite programming is a

type of convex optimization in which we aim to optimize a linear function, in this case,

the trace of the product of a matrix and the variable matrix X, while subject to nonlinear

constraints. In linear programming, each decision variable xi is subject to nonnegativity

constraints, while in semidefinite programming, the decision matrix X is required to be

positive semidefinite.

Semidefinite programming is best known for its contribution to the Max-Cut problem,

which is NP-complete. In 1994, Goemans and Williamson’s relaxation of this integer

quadratic program into a semidefinite program was able to produce an approximate so-

lution within 0.878 of the exact solution, the best known-polynomial time approximation

for this problem to date. This breakthrough brought newfound attention to semidefinite

programming and its ability to approximate hard, combinatorial optimization problems.

In this report, we examine an interior point method developed by Helmberg, Rendl,

Vanderbei, and Wolkowicz. We develop the theory behind it, bringing together concepts

from Linear Programming, Mathematical Optimization, Discrete Optimization, and Nu-

merical Methods. We then discuss the algorithm’s limitations in practice and expansions

for its generalization.

We then explore the application of semidefinite programming to the Quadratic Assign-

ment Problem (QAP), another NP-hard problem. The Quadratic Assignment Problem

was first introduced in 1957 by Koopmans and Beckmann as a model for assigning eco-

nomic activities to a set of locations. The problem is most typically described as assigning

n facilities to n locations, minimizing the quadratic objective function that arises from

the product of both the distance between these locations and the flow between these

facilities. This model has many applications such as optimizing travel time between hos-

pital buildings, the amount of wiring between computer components, or the placement

of keys on a typewriter.

Finally, we discuss a relaxation of the QAP formulation into a semidefinite program by

Zhao, Karisch, Rendl, and Wolkowicz. We solve these relaxations using the NEOS solver,

a web service for numerical optimization problems hosted by the Wisconsin Institute for

Discovery and the University of Wisconsin in Madison, which uses an optimized version

of the interior point method described above. We provide a comprehensive explanation

of the NEOS formulation of these problems and the interpretation of their solutions in

order to solve these semidefinite programs and be able to use these results in practice.
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Chapter 1

Introduction

Semidefinite programming is a very powerful way of modeling convex optimization prob-

lems. In semidefinite programming, we aim to optimize a linear function, the trace of the

product of a matrix and the variable matrix X, while subject to nonlinear constraints.

This is contrary to linear programming in which each decision variable xi is subject to

nonnegativity constraints, while in semidefinite programming, the decision matrix X is

required to be positive semidefinite.

Semidefinite programming has been used to approximate solutions to many hard, combi-

natorial problems. Its most successful contribution in this domain is the solution to the

semidefinite relaxation of the Max-Cut problem, which is NP-complete. In 1994, Goe-

mans and Williamson’s relaxation of this integer quadratic program into a semidefinite

program was able to produce an approximate solution within 0.878 of the exact solution,

the best known-polynomial time approximation for this problem to date.

In this report, we examine an interior point method developed by Helmberg, Rendl,

Vanderbei, and Wolkowicz. This method draws inspiration from concepts from linear

programming, such as the central path, to find the optimal solution to the semidefinite

program. We first develop the theory behind this method and then discuss a MATLAB

implementation of the algorithm.

We then explore the application of semidefinite programming to the Quadratic Assign-

ment Problem (QAP), another NP-hard problem, typically described as the assignment

of n facilities to n locations. The goal of the QAP is to minimize the quadratic objec-

tive function that arises from the product of both the distance between these locations

and the flow between these facilities. This model has many applications such as opti-

mizing travel time between hospital buildings, the amount of wiring between computer

components, or the placement of keys on a typewriter.

1
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Finally, we discuss a relaxation of the QAP formulation into a semidefinite program by

Zhao, Karisch, Rendl, and Wolkowicz. We develop the theory behind the relaxation

and then solve these relaxations using the NEOS solver, a web service for numerical

optimization problems hosted by the Wisconsin Institute for Discovery and the University

of Wisconsin in Madison, which uses an optimized version of the interior point method

described above. We provide a comprehensive explanation of the NEOS formulation of

these problems and the interpretation of their solutions in order to solve these semidefinite

programs and be able to use these results in practice.



Chapter 2

Optimization Background

I present the following background information on various optimizations methods/topics

that are required for the understanding of this report.

2.1 Properties of Matrices

Recall that a symmetric n x n matrix A is positive semidefinite if zTAz ≥ 0 ∀ z ∈ Rn.
Equivalently, if all eigenvalues of A are nonnegative, the matrix A is positive semidefinite.

A square matrix can uniquely be written as the sum of a symmetric and skew-symmetric

matrix. Suppose A is a symmetric matrix. Then A = 1
2(A + AT ) + 1

2(A − AT ). Note

that 1
2(A+AT ) is a symmetric matrix and 1

2(A−AT ) is a skew-symmetric matrix.

2.2 Semidefinite Programming

The general form of the semidefinite primal problem (SDP) is as follows:

3
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Semidefinite Primal (SDP)

maximize 〈C,X〉

subject to 〈Ai, X〉 = bi

X � 0

whereMn is the vector space of symmetric n xn matrices,

A :Mn → Rk,

C ∈Mn, b ∈ Rk,
and 〈W,V 〉 = tr(WV T ).

We now show that any linear program (LP) can be formulated as an SDP. Recall that a

linear program is written in the form:

Linear Programming Primal (P)

maximize cTx

subject to Ax = b

x ≥ 0

where c ∈ Rn, A ∈ Rm x n (i.e., the set of real matrices),

and b ∈ Rm.
(2.1)

We can rewrite this LP as an SDP in the following way. Let

C =


c1 0 . . . 0

0 c2 . . . 0
...

...
. . .

...

0 0 . . . cn

 , X =


x1 0 . . . 0

0 x2 . . . 0
...

...
. . .

...

0 0 . . . xn

 ,

Ai =


Ai1 0 . . . 0

0 Ai2 . . . 0
...

...
. . .

...

0 0 . . . Ain

 i = 1, ...,m
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and b =


b1

b2
...

bn

 .

Then,

CX =


c1x1 0 . . . 0

0 c2x2 . . . 0
...

...
. . .

...

0 0 . . . cnxn

 ,

tr(CX) = c1x1 + c2x2 + ...+ cnxn

and

〈A1, X〉 =

〈
A11 0 . . . 0

0 A12 . . . 0
...

...
. . .

...

0 0 . . . A1n




x1 0 . . . 0

0 x2 . . . 0
...

...
. . .

...

0 0 . . . xn


〉

= tr




A11x1 0 . . . 0

0 A12x2 . . . 0
...

...
. . .

...

0 0 . . . A1nxn



 = A11x1 +A12x2 + ...+A1nxn = b1

Expanding this for i = 1, ...,m, the LP becomes the SDP exactly. For example, take the

LP

maximize 3x1 + x2

subject to x1 + x2 = 5

7x1 + x2= 10

x1, x2 ≥ 0

(2.2)

C =

(
3 0

0 1

)
, X =

(
x1 0

0 x2

)

CX =

(
c1x1 0

0 c2x2

)
=

(
3x1 0

0 x2

)

tr(CX) = 3x1 + x2
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A1 =

(
1 0

0 1

)
, A2 =

(
7 0

0 1

)
, b =

(
5

10

)

〈A1, X〉 =

〈(
1 0

0 1

)
,

(
x1 0

0 x2

)〉
= tr

(
x1 0

0 x2

)
= x1 + x2

〈A2, X〉 =

〈(
7 0

0 1

)
,

(
x1 0

0 x2

)〉
= tr

(
7x1 0

0 x2

)
= 7x1 + x2

Finally, because of the non-negativity constraints on x in the LP, X must be positive

semidefinite. Thus, the LP formulation is equivalent to the form:

maximize 〈C,X〉

subject to 〈Ai, X〉 = bi

X � 0

whereMn is the vector space of symmetric n xn matrices

A :Mn → Rk

C ∈Mn, b ∈ Rk

Recall that the dual of a linear program takes the form:

Linear Programming Dual (D)

minimize bT y

subject to AT y ≥ c
y ≥ 0

where c ∈ Rn, A ∈ Rm x n

b ∈ Rm

Thus, the dual of (2.2) is
minimize 5y1 +10y2

subject to y1 + 7y2 ≥ 3

y1 + y2 ≥ 1

y1, y2 ∈ R
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Recall that the duality gap is the difference between the primal and dual solutions,

or cTx − bT y. Note that strong duality (where the duality gap is 0 at optimality, i.e.

cTx∗ = bT y∗) does not always hold for SDPs.

2.3 Interior Point/Barrier Methods

The following ideas are adapted from [1]. Interior point methods (also known as barrier

methods) are a class of algorithms that are used to solve convex optimization problems.

Interior point methods explore the interior of the feasible region as opposed to the simplex

method which explores the corner point feasible solutions. The simplex method suffers

from the potential of becoming “stuck” in these corners, causing the algorithm to slow

down. However, interior point methods do not suffer from this problem and can be used

to speed up the convergence to an optimal solution.

A barrier function is a continuous function whose value increases to negative infinity

(in the case of a maximization problem) as the function approaches the boundary of

the feasible region of a given optimization problem. These functions are used to replace

inequality constraints in the formulation of the primal or dual with a term that penalizes

in the objective function, keeping the algorithm from reaching the corner points of the

feasible region, avoiding the problem of becoming stuck as described above.

The most popular of these barrier functions is the logarithmic function, which can be

used to replace the non-negativity constraints on x. Let us consider the form of the

primal given in (2.1). Introducing a logarithmic barrier function to the primal would

convert the formulation to the following:

maximize cTx+ µ
∑

j log xj

subject to Ax = b

For example, the objective function for (2.2) would now be

ζ(x, µ) = 3x1 + x2 + µlog(x1) + µlog(x2).

Note that as µ becomes small, ζ(x, µ) approaches the original objective function of the

primal (see Figure (2.1) below). Recall that at each iteration of the simplex method, the

algorithm considers a corner point solution in which the non-basic variables have a value

of 0. Also recall that the logarithmic function approaches −∞ as x approaches zero.

Thus, the logarithmic term in the objective function keeps the current feasible solution

away from the corner points of the feasible region.
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Figure 2.1: The level sets of the barrier function for various values of µ. Adapted
from [1].

2.4 Lagrangian Multipliers

The following ideas are also adapted from [1]. Let us now consider an optimization

problem of the form

maximize f(x)

subject to g(x) = 0.

Recall that ∇f , the gradient of f, is the direction in which f increases most rapidly. To

find the critical points and maximum of f , we set the gradient of f to zero. However,

because g(x) = 0, we now must consider a gradient in which it is orthogonal to the set

of feasible solutions {x : g(x) = 0}. At each feasible point, ∇g(x) is a vector that is

orthogonal to this feasible set at x. So, in order for x∗ to be a critical point, it must be

feasible and ∇f(x∗) must be proportional to ∇g(x∗). Thus,

g(x∗) = 0,

∇f(x∗) = λ∇g(x∗),
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where λ is called a “Lagrange multiplier”. The same idea can be extended to an opti-

mization problem with multiple constraints where

g(x∗) = 0,

∇f(x∗) =
m∑
i=1

λi∇g(x∗).

We can define the Lagrangian function, L(x, λ) = f(x)−
∑

i λig(x), which finds critical

points for both x and λ. Because the optimization problem is now an unconstrained

optimization problem, we can find the critical points by setting the Lagrangian function’s

first derivative equal to 0:

∂L

∂xj
=

∂f

∂xj
−
∑
i

yi
∂gi
∂xj

= 0 j = 1, 2, ..., n

∂L

∂yi
= −gi = 0 i = 1, 2, ...,m

These equations are referred to as the “first order optimality conditions”.

2.5 Newton’s Method

Newton’s method is an iterative method used to find roots of a real-valued function.

The method states that from the Taylor expansion of f(x) around x, f(x + ∆x) ≈
f(x) + f ′(x)∆x. If this equation is set equal to 0, then f ′(x)∆x = −f(x). Starting from

an initial guess x0 for the root to a function f , we can then solve for ∆x. This brings us

to a new point x1 for which the process described above repeats until we find the desired

root of the function.

2.6 Relaxations

Relaxations are a concept used in optimization to approximate solutions to difficult

problems. This is achieved by creating a feasible region in the relaxed space that is

larger than the feasible region of the original problem and that the objective function’s

relaxed value is greater than the objective function’s original value (in the case of a

maximization). Thus, the solution for the relaxed problem creates an upper bound on

the original problem that is hopefully “tight” in some sense on the original problem.
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The most famous example of a relaxation is most likely the relaxation of an integer linear

program into a linear program. This relaxation is achieved by removing the constraint

that the decision variables must be integer. Thus, for each xi ∈ Z+, the variable is relaxed

so that xi ∈ R+, increasing the size of the feasible region. The problem then becomes a

linear program. In this case, this transforms the NP-hard integer linear program into a

linear program that can be solved in polynomial time by the simplex method. Similar

relaxations can be applied to transform problems into an SDP.



Chapter 3

An Interior-Point Method for

Semidefinite Programming

I present a comprehensive study of the algorithm and underlying theory presented in An

Interior-Point Method for Semidefinite Programming from Helmberg, Rendl, Vanderbei,

and Wolkowicz [2].

3.1 Preliminaries

The following are basic definitions and mathematical concepts that are fundamental in

understanding the interior-point algorithm:

• Mn is the vector space of symmetric n x n matrices.

• Let U and V ∈Mn. The inner product of U and V is defined as:

〈U, V 〉 := tr(UV T ).

Note that if X � 0 and Z � 0, then 〈X,Z〉 � 0 [3].

• Let A,B ∈Mn. The Löwner partial order is denoted as A � B (or A ≺ B), which

means that A−B is positive semidefinite (or positive definite, respectively).

• The relation v ≤ w means the partial order induced by the cone of nonnegative

vectors, i.e. v ≤ w if and only if w − v belongs to this cone.

• For two matrices U = (uij) and V = (vij) of the same size, U ◦ V denotes the

Hadamard (or element-wise) product, (U ◦ V )ij = uij · vij . Note that 〈U, V 〉 is the
sum of all entries of U ◦ V : 〈U, V 〉 = eT (U ◦ V )e, where e is the all ones vector.

11
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• Let A be a linear operator from Mn → Rk. Then there exists a unique operator

AT , called the adjoint of A, from Rk to Mn such that, for all X in Mn and all

y ∈ Rk, the following “adjoint relation” holds:

〈A(X), y〉 = 〈X,AT (y)〉,

where the inner product on the left is the ordinary dot product of vectors and the

inner product on the right is the Frobenius inner product on matrices.

• For X in Mn, diag(X) denotes the vector in Rn that consists of the diagonal

elements of X. For a vector x in Rn, Diag(x) denotes the diagonal matrix inMn

whose diagonal elements are obtained from x.

For example,

A =

(
1 3

2 4

)
, diag(A) =

(
1

4

)
, Diag(diag(A)) =

(
1 0

0 4

)
.

Observe that diag(Diag(x)) = x for any vector x, while Diag(diag(A)) = A ◦ I for any

matrix A.

Note that both the Helmberg et al. paper and algorithm focus on the special case where

A(X) = diag(X), or AT (y) = Diag(y). For example, let k = 2, A1 =

(
1 0

0 0

)
,

A2 =

(
0 0

0 1

)
, and X =

(
5 9

3 7

)
.Then,

A(X) =


〈A1, X〉
〈A2, X〉

...

〈Ak, X〉

 =


〈(

1 0

0 0

)
, X

〉
〈(

0 0

0 1,

)
, X

〉
 =


tr

(
5 9

0 0,

)

tr

(
0 0

3 7,

)
 =

[
5

7

]
= diag(X)

y =

(
5

7

)

AT (y) =
∑k

i=1 yiAi = 5 ∗

(
1 0

0 0

)
+ 7 ∗

(
0 0

0 1

)
=

(
5 0

0 7

)
= Diag(y)
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3.2 The Primal

The authors begin by presenting a semidefinite linear program. It is named such because

its objective is to optimize a linear function subject to linear inequality and equality

constraints over a positive semidefinite matrix X.

Semidefinite Primal (SDP)

maximize tr CX

subject to A(X) = a

B(X) ≤ b
X � 0

whereMn is the vector space of symmetric n xn matrices

A :Mn → Rk, B :Mn → Rm

C ∈Mn, a ∈ Rk, b ∈ Rm

A(X) =


〈A1, X〉
〈A2, X〉

...

〈Ak, X〉

 , B(X) =


〈B1, X〉
〈B2, X〉

...

〈Bm, X〉



3.3 The Dual

Helmberg, et al. then derive the dual problem using Lagrangian methods through the

following:

Let w∗ denote the optimal objective value for the SDP. Let y ∈ Rk and t ∈ Rm+ be

Lagrange multipliers for the equality and inequality constraints, respectively. We can

see that

w∗ = max
X�0

min
t≥0,y∈Rk

tr(CX) + yT (a−A(X)) + tT (b−B(X)).

Proof:

Because X is a feasible solution to SDP, A(X) = a. Thus,

w∗ = max
X�0

min
t≥0,y∈Rk

tr(CX) + yT (a−A(X)) + tT (b−B(X))

w∗ = max
X�0

min
t≥0,y∈Rk

tr(CX) + tT (b−B(X))
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Because t ≥ 0 and B(X) ≤ b,

min
t≥0,y∈Rk

tT (b−B(X)) = 0.

Thus,
w∗ = max

X�0
min

t≥0,y∈Rk
tr(CX) + tT (b−B(X))

w∗ = max
X�0

tr(CX)

We can also see that

w∗ = max
X�0

min
t≥0,y∈Rk

tr(CX) + yT (a−A(X)) + tT (b−B(X))

≤ min
t≥0,y∈Rk

max
X�0

tr(C −AT (y)−BT (t))X + aT y + bT t (3.1)

Proof:

Given X ∈Mn, t ∈ Rm, y ∈ Rk,with X � 0 and t ≥ 0, define

ζ(X, t, y) = 〈C,X〉 −
k∑
i=1

yi〈Ai, X〉+ yTa+ tT b−
m∑
j=1

tj〈Bj , X〉

and let

w∗ = max
X�0

min
t≥0,y∈Rk

ζ(X, t, y).

Claim:

w∗ ≤ min
t≥0,y∈Rk

max
X�0

ζ(X, t, y)

Now fix t and y and define Z =
∑k

i=1 yiAi +
∑m

j=1 tjBj − C.

max
X�0

ζ(X, t, y) = max
X�0
〈C −

k∑
i=1

yiAi −
m∑
j=1

tjBj , X〉+ yTa+ tT b

= max
X�0
〈−Z,X〉+ yTa+ tT b

(3.2)

Case 1: Z � 0

Claim:

max
X�0

ζ(X, t, y) is unbounded

Because Z is not positive semidefinite, there exists w ∈ Rn such that wTZw < 0. Recall
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that the trace is invariant under cyclic permutations. Thus,

wTZw < 0

tr(wTZw) < 0

tr(ZwwT ) < 0

〈Z,wwT 〉 < 0

ForX = wwT , 〈−Z,X〉 > 0

ForX = αwwT , as α→∞, 〈−Z,X〉 → ∞

Thus, the inner maximization is unbounded when Z has at least one negative eigenvalue.

Again, for given vectors t and y, consider now:

Case 2: Z � 0

Recall that if Z � 0 and X � 0, then 〈Z,X〉 � 0. Thus,

v∗ = max
X�0
〈−Z,X〉 = max

X�0
−〈Z,X〉 = −max

X�0
〈Z,X〉 = 0.

and

max
X�0
〈−Z,X〉+ yTa+ tT b = yTa+ tT b.

The claim (3.1) with (3.2) then becomes

w∗ = max
X�0

min
t≥0,y∈Rk

〈C,X〉+

k∑
i=1

yi(ai − 〈Ai, X〉) +

m∑
j=1

tj(bj − 〈Bj , x〉)

≤ min
t≥0,y∈Rk

max
X�0

yTa+ tT b− 〈Z,X〉

= min

yTa+ tT b

∣∣∣∣∣∣ y ∈ Rk, 0 ≤ t ∈ Rm, C �
k∑
i=1

yiAi +
m∑
j=1

tjBj


Because X is feasible for SDP,

w∗ = max
{

min
t≥0,y∈Rk

〈C,X〉+
m∑
j=1

tj(bj − 〈Bj , X〉)
∣∣ 〈Ai, X〉 = ai, 〈Bj , X〉 ≤ bj , X � 0

}
.

Note that

〈C,X〉+

m∑
j=1

tj(bj − 〈Bj , X〉) =〈C,X〉+

k∑
i=1

yi(ai − 〈Ai, X〉) +

m∑
j=1

tj(bj − 〈B,X〉)

=

〈
C −

k∑
i=1

yiAi −
m∑
j=1

tjBj , X

〉
+ yTa+ tT b
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Thus,

w∗ = max
{

min
t≥0,y∈Rk

〈
C −

k∑
i=1

yiAi −
m∑
j=1

tjBj , X

〉
+ yTa+ tT b

∣∣ 〈Ai, X〉 = ai, 〈Bj , X〉 ≤ bj , X � 0
}

≤ min

yTa+ tT b

∣∣∣∣∣∣ y ∈ Rk, 0 ≤ t ∈ Rm, C �
k∑
i=1

yiAi +

m∑
j=1

tjBj



Notice that the original inner maximization of tr(C−AT (y)−BT (t))X+aT y+ bT t over

X is bounded from above only if Z � 0.

Thus, the weak dual of the problem, denoted as DSDP, is

Semidefinite Dual (DSDP)

minimize aT y + bT t

subject to AT (y) +BT (t)− C � 0

y ∈ Rk, t ∈ Rm+

The weak duality theorem for semidefinite programming states that given an X feasible

for the SDP and (y, t) feasible for the DSDP, then 〈C,X〉 ≤ yTa+ tT b.

Proof: Let X be feasible for SDP and let (y, t) be feasible for DSDP. Then, with

Z := AT (y) +BT t− C,

〈C,X〉 = 〈AT (y) +BT (t)− Z,X〉

=

〈
k∑
i=1

yiAi +
m∑
j=1

tjBj − Z,X

〉

=
k∑
i=1

yi〈Ai, X〉+
m∑
j=1

tj〈Bj , X〉 − 〈Z,X〉

Because X is feasible for the SDP and (y, t) is feasible for the DSDP, 〈Ai, X〉 = ai for

each i and 〈Bj , X〉 ≤ bj for each j. Likewise, X � 0 and Z � 0. Thus,

k∑
i=1

yi〈Ai, X〉+

m∑
j=1

tj〈Bj , X〉 − 〈Z,X〉 ≤
k∑
i=1

yiai +

m∑
j=1

tjbj − 〈Z,X〉 ≤ yTa+ tT b,

since 〈Z,X〉 ≥ 0.
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3.4 Setting Up the Algorithm

Helmberg, et al. introduce a primal-dual interior-point algorithm that solves the prob-

lems SDP and the DSDP simultaneously.

We study the non-degenerate case and omit the limit process that extends this to handle

degeneracies. Assume that X strictly satisfies the inequalities of the primal problem,

i.e. b − B(X) > 0 and X � 0. Also assume that the equality constraints on X are

linearly independent; i.e., rank(A(·)) = k. When A and B are applied to nonsymmetric

matrices, we will assume the skew-symmetric parts are mapped to zero, which implies

that A(M) = A(MT ) and B(M) = B(MT ).

3.4.1 The Dual Barrier Problem

The authors present the barrier problem for DSDP, called the dual barrier problem.

Dual Barrier Problem

minimize aT y + bT t− µ(log detZ + eT log t)

subject to AT (y) +BT (t)− C = Z

t ≥ 0, Z � 0

where µ ∈ R+ is called the barrier parameter, log(t) is computed entrywise, and e is the

all ones vector.

3.4.2 The Lagrangian

For each µ > 0, there exists a corresponding Lagrangian:

Lµ(X, y, t, Z) = aT y + bT t− µ(log detZ + eT log t) + 〈Z + C −AT (y)−BT (t), X〉

The first-order optimality constraints of the Lagrangian are as follows:

∇XLµ =Z + C −AT (y)−BT (t) = 0 (3.3)

∇yLµ =a−A(X)= 0 (3.4)

∇tLµ =b−B(X)− µt−1= 0 (3.5)

∇ZLµ =X − µZ−1= 0 (3.6)
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Proof:

∇XLµ =
∂〈Z + C −AT (y)−BT (t), X〉

∂X

=
∂tr((Z + C −AT (y)−BT (t))X)

∂X
= Z + C −AT (y)−BT (t)

∇yLµ =
∂(aT y + 〈Z + C −AT (y)−BT (t), X〉)

∂y

=
∂(aT y + 〈−AT (y), X〉)

∂y

=
∂(aT y − 〈y,A(X)〉)

∂y

=
∂(aT y − tr(y

∑k
i=1AiX))

∂y

= a− tr(
∑k

i=1AiX)

= a−A(X)

We use without proof that,
∂detW
∂W

= (detW )(W−1)

Thus, ∇ZLµ =
∂(−µlog detZ)

∂Z

= (detZ)(Z−1) · 1

detZ
· −µ

= µZ−1

when there are no singularities (i.e., assume that Z is invertible).

3.4.3 The Central Trajectory

Because log detZ and log ti are strictly concave, there is a unique solution (Xµ, yµ, tµ, Zµ)

for each 0 ≤ µ ≤ ∞. This set of solutions, parameterized by µ, is called the central

trajectory.

Given a point (X, y, t, Z) that is on the central trajectory:

µ =
tr(ZX)

n
=
tT (b−B(X))

m
=
tr(ZX) + tt(b−B(X))

n+m
(3.7)
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Proof:

µt−1 = b−B(X) (from (3.5))

µ ∗m = tT (b−B(X))

m

n+m
µ =

tT (b−B(X))

n+m

µZ−1 = X (from (3.6), assuming Z invertible)

µI = XZ

µ ∗ tr(I) = tr(XZ)

µ ∗ n = tr(XZ)

n

m+ n
µ =

tr(ZX)

m+ n

µ =
tr(ZX) + tT (b−B(X))

n+m

Note that tr(ZX) + tT (b−B(X)) is the duality gap.

Proof:

Z = AT (y) +BT (t)− C

〈Z,X〉 =
∑

yi〈Ai, X〉+
∑

tj〈Bj , X〉 − 〈C,X〉

tr(ZX) + tT b− tTB(X) =
∑

yi〈Ai, X〉+
∑

tj〈Bj , X〉 − 〈C,X〉+ tT b− tTB(X)

tr(ZX) + tT b− tTB(X) = yTa+ tT b− 〈C,X〉

since a−A(X) = 0 gives yTa =
∑
yi〈Ai, X〉.

3.5 The Interior-Point Algorithm

The actual algorithm by Helmberg et al. is as follows:

We start with a quadruple (X, y, t, Z) such that X � 0, Z � 0, t > 0, and b−B(X) > 0.

We calculate the parameter µ such that:

µ =
tr(ZX) + tT (b−B(X))

2(n+m)
, (3.8)
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where the division by 2 is a heuristic known to perform well from linear programming

[2].

Then we find the directions ∆X,∆y,∆t,∆Z so that the new point (X+∆X, y+∆y, t+

∆t, Z + ∆Z) lies on the central trajectory at the value µ. However, a linearization is

required because (3.5) and (3.6) are nonlinear. For the algorithm, Helmberg et al. use

the linearization: ZX − µI = 0.

Thus we rewrite (3.3) to (3.6) as the function:

Fµ(s) = Fµ(X, y, t, Z) :=


Z + C −AT (y)−BT (t)

a−A(X)

t ◦ (b−B(X))− µe
ZX − µI


. :=


Fd

Fp

FtB

FZX


The solution s∗ to Fµ(s) = 0 satisfies the first order optimality conditions (3.3) to (3.6)

and thus is the optimal solution to the barrier problem. In order to find the direction

∆s = (∆X,∆y,∆t,∆Z) to s∗, we use Newton’s Method.

Thus, Fµ + ∆Fµ(∆s) = 0, where we are given

∆Fµ(∆s) = ∆Fµ(∆X,∆y,∆t,∆Z) =


∆Z −AT (∆y)−BT (∆t)

−A(∆X)

∆t ◦ (b−B(X))− t ◦B(∆X)

Z∆X + ∆ZX


.

The direction ∆s is the solution to the system of equations:

∆Z −AT (∆y)−BT (∆t) = −Fd (3.9)

−A(∆X) = −Fp (3.10)

∆t ◦ (b−B(X))− t ◦B(∆X) = −FtB (3.11)

Z∆X + ∆ZX = −FZX (3.12)

This linear system can be solved for (∆X,∆y,∆t,∆Z).

∆Z = −Fd +AT (∆y) +BT (∆t) (3.13)

Note that ∆Z is the sum of symmetric matrices and, thus, is symmetric. Then this is

substituted into (3.12) to get:

∆X̃ = µZ−1 −X + Z−1FdX − Z−1(AT (∆y) +BT (∆t))X (3.14)
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Proof:
Z∆X + ∆ZX = −FZX

Z∆X + (−Fd +AT (∆y) +BT (∆t))X = −FZX

Z∆X + (−Fd +AT (∆y) +BT (∆t))X = −ZX + µI

Z∆X + ZX − µI + (−Fd +AT (∆y) +BT (∆t))X = 0

Z∆X + ZX − µI − FdX + (AT (∆y) +BT (∆t))X = 0

∆X +X − µZ−1 − Z−1FdX + Z−1(AT (∆y) +BT (∆t))X = 0

∆X = −X + µZ−1 + Z−1FdX − Z−1(AT (∆y) +BT (∆t))X

Let ∆X be ∆X̃. Note that ∆X̃ is not generally symmetric. Since we extended 〈·, ·〉 by
mapping skew-symmetric matrices to zero, the projection ∆X of ∆X̃ onto the symmetric

subspace takes the same value under operator A(·).

Substituting (3.14) into (3.10), we get the first equation for ∆y and ∆t:

O11(∆y) +O12(∆t) = v1 (3.15)

where O11 and O12 are linear operators:

O11(·) := A(Z−1AT (·)X)

O12(·) := A(Z−1BT (·)X)

and v1 is the vector:

v1 := µA(Z−1)− a+A(Z−1FdX)

Proof:

∆X = −X + µZ−1 + Z−1FdX − Z−1(AT (∆y) +BT (∆t))X

−A(∆X) = −Fp

−A(−X + µZ−1 + Z−1FdX − Z−1(AT (∆y) +BT (∆t))X) = −Fp

A(X)−A(µZ−1)−A(Z−1FdX) +A(Z−1(AT (∆y) +BT (∆t))X) = −Fp

A(X)−A(µZ−1)−A(Z−1FdX) +A(Z−1AT (∆y)X) +A(Z−1BT (∆t)X) = −Fp

O11(∆y) +O12(∆t) = µAZ−1 −A(X) +A(Z−1FdX)− Fp

O11(∆y) +O12(∆t) = µAZ−1 −A(X) +A(Z−1FdX)− a+A(X)

O11(∆y) +O12(∆t) = µAZ−1 +A(Z−1FdX)− a

O11(∆y) +O12(∆t) = v1
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At last, substituting (3.14) into (3.11), we get:

O21(∆y) +O22(∆t) = v2 (3.16)

where O21 and O22 are linear operators:

O21(·) := B(Z−1AT (·)X)

O22(·) := (b−B(X)) ◦ t−1 ◦ (·) +B(Z−1BT (·)X)

and v2 is the vector:

v2 := µt−1 − b+ µB(Z−1) +B(Z−1FdX)

Proof:

∆X = −X + µZ−1 + Z−1FdX − Z−1(AT (∆y) +BT (∆t))X

∆t ◦ (b−B(X))− t ◦B(∆X) = −FtB

∆t ◦ (b−B(X))− t ◦B(−X + µZ−1 + Z−1FdX − Z−1(AT (∆y) +BT (∆t))X) = −FtB

∆t ◦ (b−B(X)) + t ◦B(X)− µt ◦B(Z−1)− t ◦B(Z−1FdX)+

t ◦B(Z−1(AT (∆y)X) + t ◦B(Z−1BT (∆t)X) = −FtB

t−1◦∆t ◦(b−B(X))+B(X)−µB(Z−1)−B(Z−1FdX)+B(Z−1(AT (∆y)X)+B(Z−1BT (∆t)X)

= −t−1 ◦ FtB

t−1◦∆t ◦(b−B(X))+B(X)−µB(Z−1)−B(Z−1FdX)+O21(∆y)+B(Z−1BT (∆t)X) = −t−1◦FtB

O22(∆t) +B(X)− µB(Z−1)−B(Z−1FdX) +O21(∆y) = −t−1 ◦ FtB

O21(∆y) +O22(∆t) +B(X) = µB(Z−1) +B(Z−1FdX)− t−1 ◦ FtB

O21(∆y) +O22(∆t) +B(X) = µB(Z−1) +B(Z−1FdX)− (b−B(X)) + µt−1

O21(∆y) +O22(∆t) +B(X) = v2 +B(X)

O21(∆y) +O22(∆t) = v2

Note that (3.15) and (3.16) are linear in the entries of ∆y and ∆t and do not involve

the matrices ∆X and ∆Z. So in conclusion, we solve (3.15) and (3.16) for ∆y and ∆t.

Then we substitute into (3.13) to solve for ∆Z and then substitute into (3.12) to solve

for ∆X̃, for which we only take the symmetric part.
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Now that we have (∆X,∆y,∆t,∆Z), we step to (X + ∆X, y + ∆y, t + ∆t, Z + ∆Z),

However, this might violate the nonnegativity of t and b − B(X) and the positive defi-

niteness of either X or Z. So then we perform a “line search” to find constants αp and

αd such that t+ αd ∆t and b−B(X + αp ∆X) are strictly positive and X + αp ∆X and

Z + αd ∆Z are positive definite. Given αp and αd, we step to the new point:

X + αp∆X (3.17)

y + αd∆y (3.18)

t+ αd∆t (3.19)

Z + αd∆Z (3.20)

We then update µ using (3.8) and then repeat. The algorithm continues until (X, y, t, Z)

satisfies primal feasibility and dual feasibility and the duality gap is sufficiently small.

Thus concludes the interior-point algorithm.

3.6 MATLAB Code

3.6.1 Overview

Helmberg et al. provide MATLAB code that implements the algorithm described above.

However, it solves a SDP with no inequality constraints (thus, the b and B(X) terms

disappear in the primal problem and the bT , BT (t), and t terms disappear in the dual.

It also uses the special case where A(X) = diag(X) and AT (y) = Diag(y) (see example

above). The code is available in Appendix A. The comments have been updated to reflect

the numbered equations in this paper here to aid with clarity.

The function psd_id(C), takes an input of C, a symmetric matrix, and outputs phi, the

optimal value of the SDP (i.e. trace(CX); X, the optimal matrix of the DSDP; and

y, the optimal dual vector. At each iteration of the algorithm, it outputs the following

information:[
iteration num (∆y)T yT αp αd (aT y − trace(CX)) trace(CX) aT y

]

Note that aT y − trace(CX) is the duality gap, where aT y is the value of the dual and

trace(CX) is the value of the primal.
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So for example, psd_id(C) with

C =

(
1 1

1 2

)
,

outputs

[
10.0000 0.0000 −0.0000 2.0000 3.0000

1.0000 1.0000 0.0000 1.2500 1.2500

]
,

which signifies an iteration number of 10,

(∆y)T =
[
0.0000 −0.0000

]
,

yT =
[
2.0000 3.0000

]
,

αp = 1.0000, αd = 1.0000, (aT y − trace(CX)) = 0.0000, trace(CX) = 1.2500, and

aT y = 1.2500. Note that because the duality gap is 0.0000, the solution is optimal at 10

iterations.

The code for the algorithm is not intuitive, so here I will present an explanation of some

of the code and its syntax. I begin with line 30, dy = (Zi.∗X) (mu∗diag(Zi)−a). After a

“MATLAB translation”, this equation is equivalent to solving the equation (Z−1◦X)∆y =

µ ∗ diag(Z−1)− a, which is equivalent to solving (3.15).

Proof:

First, observe the following properties of diag(M) and Diag(u), where M is an n x n

matrix and u is an n x 1 vector:

diag(Diag(u)) = u (3.21)

Diag(diag(M)) = M ◦ I (3.22)

diag(M +N) = diag(M) + diag(N) (3.23)

diag(αM) = α ∗ diag(M) (3.24)

diag(MN) = (M ◦NT ) ∗ e (3.25)

diag(MDiag(u)) = diag(M ◦ u) (3.26)

diag(MDiag(u)N) = (M ◦NT ) ∗ u (3.27)
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From (3.15) and because there are no inequality constraints:

A(Z−1AT (∆y)X) = µ ∗A(Z−1)− a+A(Z−1FdX)

diag(Z−1Diag(∆y)X) = µ ∗ diag(Z−1)− a+ diag(Z−1(Z + C −AT (y))X)

diag(Z−1Diag(∆y)X) = µ ∗ diag(Z−1)− a+ diag(Z−1(Z + C −Diag(y))X)

Then by (3.27),

(Z−1 ◦X)∆y = µ ∗ diag(Z−1)− a+ diag(Z−1(Z + C −Diag(y))X),

since X is symmetric. Recall also that Z = AT (y)− C.

Z + C −AT (y) = 0

Z + C −Diag(y) = 0

(Z−1 ◦X)∆y = µ ∗ diag(Z−1)− a+ diag(Z−1(Z + C −Diag(y))X)

(Z−1 ◦X)∆y = µ ∗ diag(Z−1)− a+ diag(Z−1 ∗ 0 ∗X)

(Z−1 ◦X)∆y = µ ∗ diag(Z−1)− a

Another notable part of the algorithm is the line search. In line 35, an αp value is ar-

bitrarily initialized to be 1. Then a Cholesky factorization is performed on X + αp∆X

(3.17), which decomposes a positive definite matrix into the product of a lower triangular

matrix and its conjugate transpose. Note that, the actual factorization is not important,

but rather the determination of whether the matrix itself is not positive definite if the

factorization fails. This is because every positive definite matrix has a Cholesky decom-

position [4]. Thus, we determine whether X is still positive definite. If not, the step size

was too large and the new point for the next iteration of the algorithm will have left the

feasible region. Thus, the step size is scaled down by an arbitrary factor of αp ∗ 0.8 until

the new point is feasible. A similar technique is used for the line search on the dual for

αd.

Something else to note about the algorithm is that, as expected, when the input matrix

C is not symmetric, the code enters a seemingly infinite loop.

3.6.2 Limitations

I now present a list of generalizations/assumptions within the MATLAB code which can

be improved upon to make a more flexible algorithm:
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• The absence of inequality constraints

• A(X) = diag(X) and AT (y) = Diag(y)

• The tolerance is 1.0000e-06

• αp is initialized to 1

• If αp creates an infeasible new value for X, αp = αp ∗ 0.8

• Once a feasible X is found, the αp value is chosen as 0.95 ∗ αp

• If αp + αd > 1.8, then µ =
µ

2

In general, all of the numerical values presented here seem arbitrary. Future develop-

ment to improve this algorithm could include incorporating inequality constraints or

conducting a sensitivity analysis on the parameters mentioned above. The analysis can

test the effect of changes to these parameters on the performance and convergence of the

algorithm.



Chapter 4

The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) was first introduced in 1957 by Koopmans

and Beckmann as a model for assigning economic activities to a set of locations [5].

The problem is normally associated with assigning n facilities to n locations, minimizing

the quadratic objective that arises from the product of both the distance between these

locations and the flow between these facilities.

4.1 QAP Formulation

The trace formulation of the QAP is as follows:

Quadratic Assignment Problem (QAP)

minimize tr (AXBXT − 2CXT )

subject to X ∈ Πn (4.1)

where A and B are symmetric n x n matrices, C is a n x n matrix, and Πn is the set of

n x n permutation matrices. Note that we omit the parenthesis in the objective function

for the majority of the rest of the report.

For example,

Π2 =

{(
1 0

0 1

)
,

(
0 1

1 0

)}
,
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Π3 =




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 0 1

0 1 0

 ,


0 1 0

1 0 0

0 0 1

 ,


0 1 0

0 0 1

1 0 0

 ,


0 0 1

1 0 0

0 1 0

 ,


0 0 1

0 1 0

1 0 0




,

It is well-known that the QAP contains the TSP, so thus it is NP-Hard [5]. Cases of the

QAP where n = 30 have been shown to be very hard to solve in practice [5].

I now present an example from the Network-Enabled Optimization System (NEOS) [6].

Consider the facilities location problem. Let A be the matrix where aij represents the

flow between facilities i and j, B be the matrix where bkl represents the distance between

locations k and l, and C be the matrix where cik is the cost of placing facility i at location

k. Let

A =


0 22 53 53

22 0 40 62

53 40 0 55

53 62 55 0

 , B =


0 3 0 2

3 0 0 1

0 0 0 4

2 1 4 0

 , and C =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

The optimal solution is

X =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 .

The interpretation of this solution is that assigning facility 3 to location A, facility 4 to

location B, facility 1 to location C, and facility 2 to location D minimizes the sum of

the product of the distance between these facilities and the flow between these facilities.

The optimal trAXBXT − 2CXT value is 790.
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4.2 Applications of the QAP

For the following examples, we use the following formulation of the QAP:

Quadratic Assignment Problem (QAP)

minΠ∈Sn

∑n
i=1

∑n
j=1 aΠ(i)Π(j)bij

where Sn is the set of permutation matrices, aΠ(i)Π(j) is the “flow” between facility Π(i)

and Π(j), and bij is the distance location i and j. In other words, the product aΠ(i)Π(j)bij

is the cost of assigning facility Π(i) to location i and facility Π(j) to location j.

4.2.1 Campus Planning

Dickey and Hopkins used the QAP to model planning the layout of a college campus

[7]. Suppose a college wants to build a set of n buildings, each with its own purpose

(i.e. campus center, dining hall, library, dorm, etc.). The campus has n predetermined

locations in which these buildings can be built. For each building, Π(i) and Π(j), there

is a number of people, aΠ(i)Π(j), that walk between those buildings per week, otherwise

known as the traffic/flow between those buildings. For each location i and j, bij is the

distance between those locations. The authors’ objective is to minimize the total weekly

walking distance between buildings.

4.2.2 Hospital Layout

Elshafei adapted the QAP to the design and layout of Ahmed Maher Hospital in Cairo,

which is composed of 6 departments, each in a separate building [8]. The formulation

of this problem is very similar to that of the campus planning problem, except now the

objective is to minimize patient flow between buildings per year. Though the mathemat-

ical model is the same as the campus planning, this application is noteworthy because

of the problem’s potential for high societal impact. Elshafei describes how one building,

the Out-patient department, had become extremely overcrowded with patients as they

must move between the 17 clinics in the building. By applying the QAP to the hospital’s

layout, he aimed to minimize the total distance traveled by patients, hoping to decrease

the amount of medical delays and bottlenecks within buildings.
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4.2.3 Minimizing wire length

Steinberg described a “backboard wiring” problem that consisted of placing computer

components to minimize the total amount of wiring required to connect them [9]. Let

aΠ(i)Π(k) be the number of wires that connects components Π(i) and Π(j) and let bij be

the “distance” between locations i and j on the backboard. Steinberg considered multiple

metrics to measure distance including the 1-norm, the 2-norm, and the squared 2-norm.

4.2.4 Typewriter Keyboard Design

Burkard and Offermann used QAPs to arrange keys on a keyboard such that the time

needed to write a text is minimized [10]. Suppose a keyboard has n symbols that need

to be placed in n positions. Then aΠ(i)Π(j) denotes the frequency of the appearance of

the pair of symbols Π(i) and Π(j) and bij denotes the time needed to press the key in

position i after pressing the key in position j. The optimal solution for the QAP then

minimizes the average time for writing a piece of text.

4.3 SDP Relaxations

I now present Zhao, Karish, Rendl and Wolkowicz’s Semidefinite Programming Relax-

ations for the Quadratic Assignment Problems. They present a semidefinite relaxation,

which in general are successful in providing tight relaxations for hard combinatorial

problems, such as the QAP. [11]

4.3.1 Preliminaries

• The space of t x t symmetric matrices is denoted asMn.

• e is the vector of ones and ei is the i-th unit vector. E is the matrix of all ones.

• E := {X : Xe = XT e = e} is the set of matrices with rows and columns that sum

to one. This is referred to as the set of assignment constraints.

• Z := {X : Xij ∈ {0, 1}}. This is referred to as the set of (0,1)-matrices.

• O := {X : XXT = XTX = I} is the set of orthogonal matrices, where I is the

identity matrix.

• The Kronecker product, or tensor product, of two matrices is denoted as A⊗B.
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Let A be an m x n matrix and B be a p x q matrix. Then, A⊗B is the following

mp x nq block matrix:

A⊗B =


a11B a12B . . . a1nB
...

...
. . .

...

am1B am2B . . . amnB


From [11], note that

– (A⊗B)(U ⊗ V ) = AU ⊗BV

– vec(AY B) = (BT ⊗A)vec(Y ), where vec(Y ) denotes the vector formed from

the columns of the matrix Y

– (A⊗B)T = AT ⊗BT

• The matrix Y ∈Mn2+1 is partitioned into the following blocks:
y00 Y 01 . . . Y 0n

Y 10 Y 11 . . . Y 1n

...
...

. . .
...

Y n0 Y n1 . . . Y nn

 ,

where 0-based indexing is used for the rows and columns. When considering a

block Y ik, Y(i,j),(k,l) is the element (j, l) of block (i, k). Y0,1:n2 , indicates the row

vector produced by selecting columns 1 through n2 of the 0-th row of Y .

The authors present a “first” SDP relaxation for the QAP. This comes from “lifting” the

problem into a higher-dimensional space of symmetric matrices. The authors note that

the QAP is a quadratic problem with a binary (0 or 1) choice in addition to various other

constraints that ensure that X is a permutation matrix. Note that these permutation

matrices can be represented by binary vectors vec(X). This embedding in Mn2+1 is

obtained by

(
1

vec(X)

) (
1, vec(X)T

)
.

For example, let n = 3 and

X =


0 1 0

1 0 0

0 0 1

 .
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.

Then,

vec(X) =



0

1

0

1

0

0

0

0

1



.

.

(
1

vec(X)

) (
1, vec(X)T

)

=



1

0

1

0

1

0

0

0

0

1



(
1 0 1 0 1 0 0 0 0 1

)
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=



1 0 1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 1



,

which we note is symmetric, positive semidefinite, and is a 10 x 10, or (32 +1) x (32 +1),

matrix.

Zhao et al.’s relaxation comes from the dual of the (homogenized) Lagrangian dual.

The authors note that the SDP relaxation is equivalent to the Lagrangian relaxation for

certain constrained problems.

4.3.2 Converting the QAP

Permutation matrices Πn can be characterized as the intersection of (0, 1) matrices with

E and O, i.e. Πn = E ∩ Z = O ∩ Z. Recall that a matrix, A, is orthogonal if AAT = I.

The QAP can then be rewritten as:

QAPE
minimize tr AXBXT − 2CXT

subject to XXT = XTX = I

Xe = XT e = e

X2
ij −Xij = 0, ∀ i, j

(4.2)

We now prove that the constraints of (4.2) require that X ∈ Πn for the case of n = 2,

making (4.2) an equivalent formulation to (4.1). However, the authors note that these

constraints are redundant in QAPE , as having any two of the three constraints demon-

strates that X ∈ Πn as shown below:

Proof: Let n = 2. Then
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X =

(
x11 x12

x21 x22

)
and e =

(
1

1

)
.

,

Case 1: XXT = XTX = I and Xe = XT e = e

XXT =

(
x11 x12

x21 x22

)(
x11 x21

x12 x22

)
=

(
x2

11 + x2
12 x11x21 + x12x22

x21x11 + x22x12 x2
21 + x2

22

)

=

(
1 0

0 1

)

=⇒ x2
11 + x2

12 = 1

x11x21 + x12x22 = 0 (4.3)

x21x11 + x22x12 = 0

x2
21 + x2

22 = 1

Xe =

(
x11 x12

x21 x22

)(
1

1

)
=

(
x11 + x12

x21 + x22

)
=

(
1

1

)
.

XT e =

(
x11 x21

x12 x22

)(
1

1

)
=

(
x11 + x21

x12 + x22

)
=

(
1

1

)
.

=⇒ x11 + x12 = 1 (4.4)

x21 + x22 = 1 (4.5)

x11 + x21 = 1 (4.6)

x12 + x22 = 1 (4.7)

=⇒ x11 = 1− x12 (4.8)
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x21 = 1− x22

x21 = 1− (1− x12)

=⇒ x21 = x12

x22 = 1− x12 (4.9)

Now plugging in (4.8) and (4.9) into (4.3), we get:

x11x21 + x12x22 = 0

(1− x12)x12 + x12(1− x12) = 0

x12 − x2
12 + x12 − x2

12 = 0

2x12 − 2x2
12 = 0

x12 − x2
12 = 0

x12 = x2
12

=⇒ x12 ∈ {0, 1}

Case 1a: x12 = 0

From (4.4) - (4.7):
=⇒ x21 = 0

x11 = 1

x22 = 1

Thus,

X =

(
1 0

0 1

)
.

Case 1b: x12 = 1

From (4.4) - (4.7):

=⇒ x21 = 1

x11 = 0

x22 = 0
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Thus,

X =

(
0 1

1 0

)
.

Finally, we can conclude X ∈ Π2.

Case 2: XXT = XTX = I and X2
ij −Xij = 0

XXT =

(
x11 x12

x21 x22

)(
x11 x21

x12 x22

)
=

(
x2

11 + x2
12 x11x21 + x12x22

x21x11 + x22x12 x2
21 + x2

22

)

=

(
1 0

0 1

)

=⇒ x2
11 + x2

12 = 1 (4.10)

x11x21 + x12x22 = 0 (4.11)

x21x11 + x22x12 = 0 (4.12)

x2
21 + x2

22 = 1 (4.13)

X2
ij −Xij = 0

X2
ij = Xij

=⇒ Xij = {0, 1}

Case 2a: x11 = 1

From (4.10) - (4.13):
x2

12 = 0 =⇒ x12 = 0

x21 = 0

x2
22 = 1 =⇒ x22 = 1

Thus,

X =

(
1 0

0 1

)
.

Case 2b: x11 = 0
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From (4.10) - (4.13):
x2

12 = 1 =⇒ x12 = 1

x22 = 0

x2
21 = 1 =⇒ x21 = 1

Thus,

X =

(
0 1

1 0

)
.

Finally, X ∈ Π2.

Case 3: Xe = XT e = e and X2
ij −Xij = 0

Xe =

(
x11 x12

x21 x22

)(
1

1

)
=

(
x11 + x12

x21 + x22

)
=

(
1

1

)
.

XT e =

(
x11 x21

x12 x22

)(
1

1

)
=

(
x11 + x21

x12 + x22

)
=

(
1

1

)
.

=⇒ x11 + x12 = 1

x21 + x22 = 1

x11 + x21 = 1

x12 + x22 = 1

X2
ij −Xij = 0

X2
ij = Xij

=⇒ Xij = {0, 1}

Similar to the proofs above, X ∈ Π2. Thus we can conclude for X with n = 2, X ∈ Π2. It

is clear to see that we can expand this proof to conclude that for X of size n, X ∈ Πn.

Though these constraints are redundant, the authors note that they are not redundant

in the SDP relaxation as shown below.

4.3.3 The Relaxation

The authors then present the SDP relaxation directly obtained from the QAP. This

happens from lifting the vectors x = vec(X) into the matrix spaceMn2+1.
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Let X ∈ Πn be a permutation matrix and let x = vec(X) and c = vec(C). The objective

function for QAP then becomes

q(X) = tr(AXBXT − 2CXT )

= xT (B ⊗A)x− 2cTx

= tr(xxTB ⊗A− 2cTx)

= tr(LQYX),

where LQ and YX are (n2 + 1) x (n2 + 1) matrices defined as the following:

LQ :=

(
0 −vec(C)T

−vec(C) B ⊗A

)
,

and

YX :=

(
x0 xT

x xxT

)
.

Recall that 〈U, V 〉 = tr(UV T ) is the sum of all entries of U ◦ V : 〈U, V 〉 = eT (U ◦ V )e.

Note also that now the quadratic objective function of the QAP is a linear function in

the SDP relaxation.

We now relax the combinatorial restriction of YX , X ∈ Πn with more manageable con-

straints. There are three constraints on the matrix Y : it is positive semidefinite, the

top-left component y00 = 1, and it is rank-one. In order to guarantee that the matrix Y

is built from a permutation X, the authors add additional constraints. For example, the

(0, 1) constraints X2
ij − x0Xij = 0 are equivalent to the restriction that the diagonal of

Y is equal to its first row (or column).

The following is equivalent to QAP:

QAPO
minimize tr(AXBXT − 2CXT )

subject to XXT = I

XTX = I

||Xe− e||2 + ||XT e− e||2 = 0

X2
ij −Xij = 0 ∀ i, j

The authors then use Lagrangian duality to arrive at the SDP relaxation. They note that

there is no duality gap between the Lagrangian relaxation and the dual, so solving the

SDP relaxation is equivalent to solving the Lagrangian relaxation. This means we can
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find the optimal solution of the dual of the SDP in the Lagrangian relaxation of (QAPE)

and then find the optimal matrix X where the Lagrangian reaches its minimum. This

X is then a good approximation for the original QAP.

The authors first arrive at the following equation by adding the (0, 1) and row-column

constraints to the objective function using Lagrange multipliers Wij and u0.

µO = min
XXT =XTX=I

max
W,u0

tr(AXBXT − 2CXT ) +
∑
i,j

Wij(X
2
ij −Xij) + u0(||Xe− e||2 + ||XT e− e||2))

Then the authors interchange the max and min to get

µO ≥ µL := max
W,u0

min
XXT =XTX=I

tr(AXBXT − 2CXT ) +
∑
i,j

Wij(X
2
ij −Xij)+

u0(||Xe− e||2 + ||XT e− e||2).

The authors then homogenize the objective function by multiplying by a constrained

scalar x0 and increasing the dimension of the problem by 1. This homogenization helps

to simplify the transition to a SDP problem.

µO ≥ µL = max
W

min
XXT =XTX=I,x20=1

tr[AXBXT +W (X ◦X)T

+u0(||Xe||2 + ||XT e||2)− x0(2C +W )XT ]− 2x0u0e
T (X +XT )e+ 2nu0

They then introduce a Lagrange multiplier w0 for the constraint on x0 and Lagrange

multipliers Sb for XXT = I and So for XTX = I to the lower bound µR :

µO ≥ µL ≥ µR := max
W,Sb,So,u0,w0

min
X,x0

tr[AXBXT + u0(||Xe||2 + ||XT e||2) +W (X ◦X)T

+w0x
2
0 + SbXX

T + SoX
TX]− tr(x0(2C +W )XT )

−2x0u0e
T (X +XT )e− w0 − tr(Sb)− tr(So) + 2nu0

The authors note that there can be duality gaps in each of the Lagrangian relaxations.

Now define x := vec(X), yT := (x0, x
T ) and wT := (w0, vec(W )T ).

Thus,
µR := max

W,Sb,So,u0
min
y

yT [LQ +Arrow(w) +B0Diag(Sb)

+O0Diag(So) + u0D]y − w0 − tr(Sb)− tr(So), (4.14)

where LQ is defined as above and the linear operators
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Arrow(w) :=

(
w0 −1

2w
T
1:n2

−1
2w1:n2 Diag(w1:n2)

)
,

B0Diag(S) :=

(
0 0

0 I ⊗ Sb

)
,

O0Diag(S) :=

(
0 0

0 So ⊗ I

)
,

D :=

(
n −eT ⊗ eT

−e⊗ e I ⊗ E

)
+

(
n −eT ⊗ eT

−e⊗ e E ⊗ I

)
.

.

We note without proof that there is a hidden semidefinite constraint in (4.14), i.e. the

inner minimization problem is bounded below only if the Hessian of the quadratic form

is positive semidefinite. In this case, the quadratic form has minimum value 0. This

produces the following SDP:

DO
maximize − w0 − tr(Sb)− tr(So)

subject to LQ +Arrow(w) +B0Diag(Sb) +O0Diag(So) + u0D � 0

The authors then arrive at an SDP relaxation of (QAPO) as the Lagrangian dual of DO.

They introduce a dual matrix variable Y � 0:

SDPO
minimize tr LQY

subject to b0diag(Y ) = I

o0diag(Y ) = I

arrow(Y ) = e0

tr(DY ) = 0

Y � 0

(4.15)

where the arrow operator, acting on the (n2 + 1) x (n2 + 1) matrix Y is the adjoint

operator to Arrow(·) and is defined by:

arrow(Y ) := diag(Y )− (0, Y0,1:n2)T ,
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i.e. the arrow constraint guarantees that the diagonal and 0-th row (or column) are

identical. For example, let

X =

(
x11 x12

x21 x22

)
, x =


x11

x12

x21

x22

 ,

,

YX :=

(
x0 xT

x xxT

)
=



1 x11 x21 x12 x22

x11 x2
11 x21x11 x12x11 x22x11

x21 x11x21 x2
21 x12x21 x22x21

x12 x11x12 x21x12 x2
12 x22x12

x22 x11x22 x21x22 x12x22 x2
22



arrow(Y ) := diag(Y )− (0, Y0,1:n2)T

=



1

x2
11

x2
21

x2
12

x2
22


−



0

x11

x21

x12

x22



=



1

x2
11 − x11

x2
21 − x21

x2
12 − x12

x2
22 − x22


.

The block-0 diagonal operator and off-0 diagonal operator acting on Y are defined by

b0diag(Y ) :=

n∑
k=1

Y(k,·),(k,·)

and

o0diag(Y ) :=
n∑
k=1

Y(·,k),(·,k),
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where Y(k,·),(k,·) indicates selecting the diagonal blocks of Y and Y(·,k),(·,k) indicates se-

lecting the (k, k)th entry of each block of Y . Let us consider the example of YX given

above. Then

b0diag(Y ) :=

n∑
k=1

Y(k,·),(k,·) = Y(1,·),(1,·) + Y(2,·),(2,·)

=

(
x2

11 x21x11

x11x21 x2
21

)(
x2

12 x22x12

x12x22 x2
22

)

o0diag(Y ) :=

n∑
k=1

Y(·,k),(·,k) = Y(·,1),(·,1) + Y(·,2),(·,2)

=

(
x2

11 + x12x11 + x11x12 + x2
12 x21x11 + x22x11 + x21x12 + x22x12

x11x21 + x12x21 + x11x22 + x12x22 x2
21 + x22x21 + x21x22 + x2

22

)

These are the adjoint operators of B0Diag(·) and O0Diag(·), respectively. The block-

0-diagonal operator guarantees that the sum of the diagonal blocks equals the identity.

The off-0-diagonal operator guarantees that the trace of each diagonal block is 1, while

the trace of the off-diagonal blocks is 0. These come from the orthogonality constraints,

XXT = I and XTX = I, respectively.

The authors then prove that the optimal solution to (SDPO) provides the permutation

matrix X = Mat(x) that solves the QAP, where Mat(X) denotes the matrix formed

from the vector x.



Chapter 5

NEOS Solver

5.1 NEOS Background

The NEOS solver is a web service used for solving numerical optimization problems.

It is hosted by the Wisconsin Institute for Discovery and the University of Wisconsin

in Madison and makes use of distributed high-performance machines. Though it solves

many types of optimization problems we will be focusing on its Semidefinite Programming

optimization solver “csdp”, which uses a computationally optimized version of the interior

point method described above.

5.2 NEOS Example

We present the following linear programming example.

maximize x1 + 2x2

subject to x1 ≤ 4

x1 + x2 = 7

x1, x2 ≥ 0

Recall the formulation of a SDP from (3.2). Then

43
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a1 = 7 a =
[
7
]

A1 =

[
1 0

0 1

]
A(x) =

[
〈A1, X〉

]

AT (y) = y1A1

b1 = 4 b =
[
4
]

B1 =

[
1 0

0 0

]
B(x) =

[
〈B1, X〉

]

BT (t) = t1B1

C =

[
1 0

0 2

]
X =

[
x1 0

0 x2

]

Thus, the primal problem becomes:

maximize tr(

[
1 0

0 2

][
x1 0

0 x2

]
)

subject to
[
7
]
−

[
〈

[
1 0

0 1

]
,

[
x1 0

0 x2

]
〉

]
= 0

[
4
]
−

[
〈

[
1 0

0 0

]
,

[
x1 0

0 x2

]
〉

]
≥ 0

[
x1 0

0 x2

]
� 0

We can easily verify through matrix algebra that these formulations are equivalent.

The dual problem then becomes:
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minimize
[
7
] [
y1

]
+
[
4
] [
t1

]

subject to y1

[
1 0

0 1

]
+ t1

[
1 0

0 0

]
−

[
1 0

0 2

]
� 0

y1 ∈ R, t1 ∈ R+

Again, through matrix algebra, we can see that this formulation is equivalent to the dual

formulation:

minimize 7y1 + 4t1

subject to y1 + t1 ≥ 1

y1 ≥ 2

y1 ∈ R, t1 ≥ 0

However, the NEOS Solver cannot handle inequality constraints in the primal problem,

so we present a new LP with only equality constraints:

Primal

maximize x1 + 2x2

subject to 5x1 + x3 = 4

x1 + 3x2 = 7

x1, x2, x3 ≥ 0

Dual

minimize 4y1 + 7y2

subject to 5y1 + y2 ≥ 1

3y2 ≥ 2

y1 ≥ 0

y1, y2 ∈ R
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a1 = 4 a2 = 7

a =

[
4

7

]

A1 =


5 0 0

0 0 0

0 0 1

 A2 =


1 0 0

0 3 0

0 0 0



A(x) =

[
〈A1, X〉
〈A2, X〉

]
AT (y) = y1A1 + y2A2

C =


1 0 0

0 2 0

0 0 0

 X =


x1 0 0

0 x2 0

0 0 x3



Z = y1A1 − y2A2 − C =


5y1 + y2 − 1 0 0

0 3y2 − 2 0

0 0 y1


Thus, the primal problem becomes:

maximize tr




1 0 0

0 2 0

0 0 0



x1 0 0

0 x2 0

0 0 x3




subject to a =

[
4

7

]
−



〈


5 0 0

0 0 0

0 0 1

 ,

x1 0 0

0 x2 0

0 0 x3

〉

〈


1 0 0

0 3 0

0 0 0

 ,

x1 0 0

0 x2 0

0 0 x3

〉


=

[
0

0

]

The dual problem becomes:
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minimize

[
4

7

]T [
y1 y2

]

subject to y1


5 0 0

0 0 0

0 0 1

+ y2


1 0 0

0 3 0

0 0 0

−


1 0 0

0 2 0

0 0 0

 � 0

y ∈ R (5.1)

5.3 Creating the NEOS File

The following is the SDPA Sparse File Format as described in [12]. The format was

designed for SDP problems in which the matrices Fi, i = 0, ...m are block diagonal with

sparse blocks. The file format consists of 6 sections:

1. Comments. The file can begin with any line of comments. Each line of comments

must begin with ’“’ or ’*’.

2. The first line after the comments contains m, the number of constraint matrices.

Additional text on this line after m is ignored.

3. The second line after the comments contains nblocks, the number of blocks in the

block diagonal structure of the matrices. Additional text on this line after nblocks

is ignored.

4. The third line after the comments contains a vector of numbers that gives the sizes

of the individual blocks. The special characters ’,’, ’(’, ’)’, ’{’, and ’}’ can be used

as punctuation and are ignored. Negative numbers may be used to indicate that a

block is actually a diagonal submatrix. Thus a block a size of ”-5“ indicates a 5 by

5 block in which the only diagonal elements are nonzero.

5. The fourth line after the comments contains the objective function vector c.

6. The remaining lines of the file contain entries in the constraint matrices, with one

entry per line. The format for each line is < matno >< blkno >< i >< j >

< entry >. Here, < matno > is the number of the matrix to which this entry

belongs, < blkno > specifies the block within this matrix, < i > and < j > specify

a location within the block, and < entry > gives the value of the entry in the

matrix. Note that since all matrices are assumed to be symmetric, only entries in

the upper triangle of a matrix are given.
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Let us recall the example (5.1). Let the constraint matrix in (5.1) be rewritten as:

y1F1 + y2F2 − F0 � 0

where

F1 =


5 0 0

0 0 0

0 0 1

 , F2 =


1 0 0

0 3 0

0 0 0

 , and F0 =


1 0 0

0 2 0

0 0 0

 .
We can decompose F0 into the following block matrix:

F0 =


1 0 0

0 2 0

0 0 0

 =


Block 1 0 0

0 Block 2 0

0 0 Block 3

 (5.2)

Following a similar structure for F1 and F2, the NEOS file format takes the following

form:

(a) Comments. None

(b) m, the number of constraint matrices = 2

(c) nblocks, the number of blocks in the block diagonal structure of the matrices

= 3 (as determined by (5.2))

(d) The sizes of the individual blocks = 1, 1, 1

(e) Objective function vector c = 4, 7

(f) Entries in the constraint matrices, with one entry per line in the format:

< matno >< blkno >< i >< j >< entry >. < matno > is the num-

ber of the matrix to which this entry belongs, < blkno > specifies the block

within this matrix, < i > and < j > specify a location within the block, and

< entry > gives the value of the entry in the matrix:

Thus for (5.2), each corresponding row in < matno > < blkno > < i >

< j > < entry > form is:

0 1 1 1 1.0

0 2 1 1 2.0

0 3 1 1 0.0
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The corresponding Sparse File Format for the entire formulation is then:

2

3

1 1 1

4.0 7.0

0 1 1 1 1.0

0 2 1 1 2.0

0 3 1 1 0.0

1 1 1 1 5.0

1 2 1 1 0.0

1 3 1 1 1.0

2 1 1 1 1.0

2 2 1 1 3.0

2 3 1 1 0.0

We then upload this to the NEOS solver in a MATLAB .m file.

The solution returned by the solver is as follows:

***CSDP***

CSDP 6.2.0

Iter: 0 Ap: 0.00e+00 Pobj: 3.0000000e+01 Ad: 0.00e+00 Dobj: 0.0000000e+00

Iter: 1 Ap: 9.00e-01 Pobj: 7.0047891e+00 Ad: 1.00e+00 Dobj: 2.7935874e+01

Iter: 2 Ap: 1.00e+00 Pobj: 4.7772865e+00 Ad: 1.00e+00 Dobj: 1.4079995e+01

Iter: 3 Ap: 1.00e+00 Pobj: 4.7834505e+00 Ad: 9.00e-01 Dobj: 5.7130994e+00

Iter: 4 Ap: 1.00e+00 Pobj: 4.8575350e+00 Ad: 1.00e+00 Dobj: 5.3223575e+00

Iter: 5 Ap: 1.00e+00 Pobj: 4.8921266e+00 Ad: 1.00e+00 Dobj: 5.1245360e+00

Iter: 6 Ap: 1.00e+00 Pobj: 4.9083073e+00 Ad: 1.00e+00 Dobj: 5.0245101e+00

Iter: 7 Ap: 1.00e+00 Pobj: 4.9183341e+00 Ad: 1.00e+00 Dobj: 4.9764336e+00

Iter: 8 Ap: 1.00e+00 Pobj: 4.9248623e+00 Ad: 1.00e+00 Dobj: 4.9539101e+00

Iter: 9 Ap: 1.00e+00 Pobj: 4.9333327e+00 Ad: 9.00e-01 Dobj: 4.9353871e+00

Iter: 10 Ap: 1.00e+00 Pobj: 4.9329916e+00 Ad: 1.00e+00 Dobj: 4.9340169e+00

Iter: 11 Ap: 1.00e+00 Pobj: 4.9333105e+00 Ad: 1.00e+00 Dobj: 4.9333755e+00

Iter: 12 Ap: 1.00e+00 Pobj: 4.9333318e+00 Ad: 1.00e+00 Dobj: 4.9333345e+00

Iter: 13 Ap: 1.00e+00 Pobj: 4.9333332e+00 Ad: 1.00e+00 Dobj: 4.9333335e+00

Iter: 14 Ap: 1.00e+00 Pobj: 4.9333333e+00 Ad: 9.00e-01 Dobj: 4.9333334e+00

Success: SDP solved

Primal objective value: 4.9333333e+00
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Dual objective value: 4.9333334e+00

Relative primal infeasibility: 4.90e-17

Relative dual infeasibility: 6.93e-10

Real Relative Gap: 1.54e-09

XZ Relative Gap: 1.88e-09

DIMACS error measures: 5.55e-17 0.00e+00 1.29e-09 0.00e+00 1.54e-09 1.88e-09

Elements time: 0.000073

Factor time: 0.000010

Other time: 0.088326

Total time: 0.088409

Solution:

6.666666871535291417e-02 6.666666678805729385e-01

1 1 1 1 1.275172612507736432e-08

1 2 1 1 4.936107289582052057e-09

1 3 1 1 6.666667000974137169e-02

2 1 1 1 7.999999999998541611e-01

2 2 1 1 2.066666666666715280e+00

2 3 1 1 7.289393479915185848e-13

Thus, the optimal value to the dual occurs at y∗ =
[
0.0667 0.667

]
.

The matrices returned by the results are:

Z =


5y1 + y2 − 1 0 0

0 3y2 − 2 0

0 0 y1

 =


0 0 0

0 0 0

0 0 0.0667



X =


x1 0 0

0 x2 0

0 0 x3

 =


0.79 0 0

0 2.06 0

0 0 0

 =⇒ x∗ =
[
0.79 2.06 0

]
.

5.4 Solving the QAP with NEOS

Using the SDP relaxation above, we can use this solver to solve QAPs. Let us

consider an example of QAP where n = 2.

Let

A =

[
0 10

10 0

]
and B =

[
0 5

5 0

]
.

.
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Because n = 2 (i.e. we are only considering 2 facilities and 2 locations) and A and

B are symmetric, this example does not provide a very interesting QAP. However,

as we will see, this problem size is small in order to be manageable to present here

in this report. To make the optimization problem nontrivial, we also introduce the

cost matrix C, where

C =

[
3 1

1 10

]
.

Thus, we expect that the optimal answer is

X∗ =

[
0 1

1 0

]
,

because of the high costs of placing facility 1 at location 1 and facility 2 at location

2.

Recall the SDP relaxation of the QAP from (4.15). We now apply this to our

example:

X =

(
x11 x12

x21 x22

)
x =


x11

x12

x21

x22


,

−vec(C) =


−3

−1

−1

−10



B ⊗A =

[
b11A b21A

b21A b22A

]
=


0 0 0 50

0 0 50 0

0 50 0 0

50 0 0 0
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LQ :=

(
0 −vec(C)T

−vec(C) B ⊗A

)
=



0 −3 −1 −1 −10

−3 0 0 0 50

−1 0 0 50 0

−1 0 50 0 0

−10 50 0 0 0


,

YX :=

(
x0 xT

x xxT

)
=



1 x11 x21 x12 x22

x11 x2
11 x21x11 x12x11 x22x11

x21 x11x21 x2
21 x12x21 x22x21

x12 x11x12 x21x12 x2
12 x22x12

x22 x11x22 x21x22 x12x22 x2
22



In order for NEOS to be able to solve this QAP, we need to reformulate the con-

straints in (4.15) such that they are all in the form tr(W Y ), where W ∈Mn+1.

Recall that the block-0-diagonal operator, b0diag(Y ), guarantees that the sum of

the diagonal blocks of Y equals the identity.

Thus,

(
x2

11 x21x11

x11x21 x2
21

)
+

(
x2

12 x22x12

x12x22 x2
22

)
=

(
1 0

0 1

)

=⇒ x2
11 + x2

12 = 1 (5.3)

x21x11 + x22x12 = 0 (5.4)

x11x21 + x12x22 = 0 (5.5)

x2
21 + x2

22 = 1 (5.6)

Note that (5.5) is redundant. Thus the constraints (5.3), (5.4), and (5.6) can

be converted into the following trace formulations using the following symmetric

matrices:
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tr





0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0


YX


= 1

tr





0 0 0 0 0

0 0 0.5 0 0

0 0.5 0 0 0

0 0 0 0 0.5

0 0 0 0.5 0


YX


= 0

tr





0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1


YX


= 1

Recall that the off-0-diagonal operator, o0diag(Y ) guarantees that the trace of each

diagonal block is 1, while the trace of the off-diagonal blocks is 0.

=⇒ x2
11 + x2

21 = 1 (5.7)

x2
12 + x2

22 = 1 (5.8)

x11x12 + x21x22 = 0 (5.9)

x12x11 + x22x21 = 0 (5.10)

Similarly, equations (5.6) - (5.7) can be rewritten as

tr





0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0


YX


= 1
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tr





0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


YX


= 1

tr





0 0 0 0 0

0 0 0.5 0 0

0 0.5 0 0 0

0 0 0 0 0.5

0 0 0 0.5 0


YX


= 0

tr





0 0 0 0 0

0 0 0.5 0 0

0 0.5 0 0 0

0 0 0 0 0.5

0 0 0 0.5 0


YX


= 0

Recall that the arrow constraint guarantees that the diagonal and 0-th row (or

column) are identical.

arrow(Y ) := diag(Y )− (0, Y0,1:n2)T = e0

diag(Y )− (0, Y0,1:n2)T =



1

x2
11

x2
21

x2
12

x2
22


−



0

x11

x21

x12

x22



=



1

x2
11 − x11

x2
21 − x21

x2
12 − x12

x2
22 − x22


=



1

0

0

0

0


= e0

=⇒ x2
11 − x11 = 0 (5.11)

x2
21 − x21 = 0 (5.12)

x2
12 − x12 = 0 (5.13)
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x2
22 − x22 = 0 (5.14)

Similarly, we can rewrite (5.11) - (5.14) as

tr





0 −0.5 0 0 0

−0.5 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


YX


= 0

tr





0 0 −0.5 0 0

0 0 0 0 0

−0.5 0 1 0 0

0 0 0 0 0

0 0 0 0 0


YX


= 0

tr





0 0 −0.5 0 0

0 0 0 0 0

−0.5 0 1 0 0

0 0 0 0 0

0 0 0 0 0


YX


= 0

tr





0 0 0 0 −0.5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−0.5 0 0 0 1


YX


= 0

Finally,

D :=

(
n −eT ⊗ eT

−e⊗ e I ⊗ E

)
+

(
n −eT ⊗ eT

−e⊗ e E ⊗ I

)
.

.

−eT ⊗ eT =
[
−1 −1

]
⊗
[
1 1

]
=
[
−1 −1 −1 −1

]
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−e⊗ e =

[
−1

−1

]
⊗

[
1

1

]
=


−1

−1

−1

−1



I ⊗ E =

[
1 0

0 1

][
1 1

1 1

]
=


1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1



E ⊗ I =

[
1 1

1 1

][
1 0

0 1

]
=


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


Thus,

D :=



2 −1 −1 −1 −1

−1 1 1 0 0

−1 1 1 0 0

−1 0 0 1 1

−1 0 0 1 1


+



2 −1 −1 −1 −1

−1 1 0 1 0

−1 0 1 0 1

−1 1 0 1 0

−1 0 1 0 1


.

=



4 −2 −2 −2 −2

−2 2 1 1 0

−2 1 2 0 1

−2 1 0 2 1

−2 0 1 1 2



tr





4 −2 −2 −2 −2

−2 2 1 1 0

−2 1 2 0 1

−2 1 0 2 1

−2 0 1 1 2


Y


= 0

Now that we have written the SDP in the appropriate trace formulation, we can

write this in the following NEOS format:
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12

1

5

1 0 1 1 1 0 0 0 0 0 0 0

0 1 1 2 -3

0 1 1 3 -1

0 1 1 4 -1

0 1 1 5 -10

0 1 2 5 50

0 1 3 4 50

1 1 2 2 1

1 1 3 3 1

2 1 2 3 0.5

2 1 4 5 0.5

3 1 3 3 1

3 1 5 5 1

4 1 2 2 1

4 1 3 3 1

5 1 4 4 1

5 1 5 5 1

6 1 2 3 0.5

6 1 4 5 0.5

7 1 2 3 0.5

7 1 4 5 0.5

8 1 2 1 -0.5

8 1 2 2 1

9 1 3 1 -0.5

9 1 3 3 1

10 1 3 1 -0.5

10 1 3 3 1

11 1 5 1 -0.5

11 1 5 5 1

12 1 1 1 4

12 1 1 2 -2

12 1 1 3 -2

12 1 1 4 -2

12 1 1 5 -2

12 1 2 2 2

12 1 2 3 1
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12 1 2 4 1

12 1 2 5 0

12 1 3 3 2

12 1 3 4 0

12 1 3 5 1

12 1 4 4 2

12 1 4 5 1

12 1 5 5 2

Running this through NEOS, we get a result of

***CSDP***

CSDP 6.2.0 Iter: 0 Ap: 0.00e+00 Pobj: 0.0000000e+00 Ad: 0.00e+00 Dobj:

0.0000000e+00 Iter: 1 Ap: 8.10e-01 Pobj: 7.1573064e+01 Ad: 1.00e+00 Dobj:

3.6137687e+02 Iter: 2 Ap: 9.00e-01 Pobj: 5.6097143e+01 Ad: 1.00e+00 Dobj:

2.4056889e+02 Iter: 3 Ap: 9.00e-01 Pobj: 8.1840637e+01 Ad: 9.00e-01 Dobj:

1.0822547e+02 Iter: 4 Ap: 9.00e-01 Pobj: 9.3477282e+01 Ad: 9.00e-01 Dobj:

9.6114477e+01 Iter: 5 Ap: 9.00e-01 Pobj: 9.5748843e+01 Ad: 1.00e+00 Dobj:

9.6001781e+01 Iter: 6 Ap: 9.00e-01 Pobj: 9.5975021e+01 Ad: 1.00e+00 Dobj:

9.6000371e+01 Iter: 7 Ap: 9.00e-01 Pobj: 9.5997640e+01 Ad: 1.00e+00 Dobj:

9.6000324e+01 Iter: 8 Ap: 7.29e-01 Pobj: 9.5999266e+01 Ad: 1.00e+00 Dobj:

9.6000334e+01 Iter: 9 Ap: 9.00e-01 Pobj: 9.5999880e+01 Ad: 1.00e+00 Dobj:

9.5999972e+01 Iter: 10 Ap: 9.00e-01 Pobj: 9.5999988e+01 Ad: 1.00e+00 Dobj:

9.6000000e+01 Iter: 11 Ap: 9.00e-01 Pobj: 9.5999998e+01 Ad: 1.00e+00 Dobj:

9.6000001e+01 Iter: 12 Ap: 9.00e-01 Pobj: 9.6000000e+01 Ad: 1.00e+00 Dobj:

9.6000000e+01

Success: SDP solved

Primal objective value: 9.6000000e+01

Dual objective value: 9.6000000e+01

Relative primal infeasibility: 2.71e-10

Relative dual infeasibility: 3.30e-11

Real Relative Gap: 8.59e-10

XZ Relative Gap: 1.34e-09

DIMACS error measures: 4.06e-10 0.00e+00 6.60e-11 0.00e+00 8.59e-10 1.34e-09

Elements time: 0.000114

Factor time: 0.000026

Other time: 0.146613

Total time: 0.146753
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Solution:

6.803568439823433778e+01 -6.231030688341003820e-01 -1.465566783148969243e+01

-6.379912196018396209e+00 4.899989571851686065e+01 4.017669631137942510e+00

-2.663732109682846794e+00 6.728580685520780591e+00 -7.501875109767191852e+00

1.150209635379108519e+01 2.073043064280190251e+01 1.111192206617806164e+02

1 1 1 1 4.444768826486286457e+02

1 1 1 2 -2.226027316663216311e+02

1 1 1 3 -2.232385519455731639e+02

1 1 1 4 -2.212384413235612328e+02

1 1 1 5 -2.226036566449621716e+02

1 1 2 2 2.906227942128041377e+02

1 1 2 3 1.114846378880911004e+02

1 1 2 4 1.111192206617806164e+02

1 1 2 5 -5.000000000000000000e+01

1 1 3 3 2.732387669398175944e+02

1 1 3 4 -5.000000000000000000e+01

1 1 3 5 1.111192206617806164e+02

1 1 4 4 2.712383370435842380e+02

1 1 4 5 1.114846378880911004e+02

1 1 5 5 2.773130998548965067e+02

2 1 1 1 1.000000000181110904e+00

2 1 1 2 2.376167431058704333e-09

2 1 1 3 9.999999976597725437e-01

2 1 1 4 9.999999975371330896e-01

2 1 1 5 2.432204255985238665e-09

2 1 2 2 2.414396749908329419e-09

2 1 2 3 -1.042168640638686077e-11

2 1 2 4 -2.742189118088287405e-11

2 1 2 5 2.312112553495608790e-09

2 1 3 3 9.999999976930158407e-01

2 1 3 4 9.999999974544827586e-01

2 1 3 5 1.698277311473289179e-11

2 1 4 4 9.999999974741624609e-01

2 1 4 5 5.695538803599437962e-12

2 1 5 5 2.469924055218392698e-09

Which, by the results of the second matrix,
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YX :=

(
x0 xT

x xxT

)
=



1 x11 x21 x12 x22

x11 x2
11 x21x11 x12x11 x22x11

x21 x11x21 x2
21 x12x21 x22x21

x12 x11x12 x21x12 x2
12 x22x12

x22 x11x22 x21x22 x12x22 x2
22



≈



1 0 1 1 0

0 0 0 0 0

1 0 1 1 0

1 0 1 1 0

0 0 0 0 0


=⇒ x2

11 = 0

x2
21 = 1

x2
12 = 1

x2
22 = 0

=⇒ X =

[
0 1

1 0

]
which are the results expected. Thus, we have demonstrated how to use the SDP

relaxation of the QAP and the NEOS solver to solve for a solution and interpret

its results.



Chapter 6

Conclusion and Future Work

Semidefinite programming is a powerful way to model combinatorial optimization

problems to approximate their solutions. In this report we examined an interior

point algorithm for solving SDPs and discussed the limitations and areas for ex-

pansion of the MATLAB code that implements this algorithm. Besides, modifying

the MATLAB code for this method, other algorithms could also be studied that

could provide solutions that converge faster.

We then went on to study an SDP relaxation of the QAP and used the NEOS solver

to obtain solutions to this relaxation. Similar to the algorithm, other relaxations

exist that could be examined to provide tighter bounds on the problem, creating

more efficient optimization schemes.
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Appendix A

MATLAB Code

1 function [phi,X, y] = psd_ip(C)

2 % solves: max trace(CX) s.t. X psd, diag(X) = a; a = ones(n,1)/4

3 % min a'y s.t. Diag(y) − C psd, y unconstrained,

4 % input: C ... symmetric matrix

5 % output: phi ... optimal value of primal, phi =trace(CX)

6 % X ... optimal primal matrix

7 % y ... optimal dual vector

8 % call: [phi, X, y] = psd_ip(C);

9

10 %outputArg1 = inputArg1;

11 %outputArg2 = inputArg2;

12

13 digits = 6; % 6 significant digits of phi (tolerance)

14 [n,nl] = size(C); % problem size

15 a = ones(n,1)/4; % any a>0 works just as well

16 X = diag(a); % initial primal matrix is pos. def.

17 y = sum(abs(C))' * 1.1; % initial y is chosen so that...

18 Z = diag(y) − C; % intial dual slack Z is pos. def.

19 phi = a'*y; % initial dual cost

20 psi = C(:)' * X(:); % initial primal cost

21 mu = Z(:)' * X(:)/(2*n); % initial complementarity, (Eq. 2.6) ...

with no inequality constraints

22 iter=0; % iteration count

23

24 disp([' iter alphap alphad gap lower upper']);

25

26 while phi − psi > max([1,abs(phi)]) * 10^(−digits)
27 iter = iter + 1; % start a new iteration

28 Zi = inv (Z); % inv(Z) is needed explicitly

29 Zi = (Zi + Zi')/2; % symmetrize inv(Z)

30 dy = (Zi.*X) \ (mu * diag(Zi) −a); %solve for dy from (Eq. 2.13)
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31 dX = − Zi * diag(dy) * X + mu * Zi − X; %back substitute for ...

dX (Eq. 2.12)

32 dX = (dX + dX')/2; %symmetrize dX

33

34 %line search on primal

35 alphap = 1; %initial steplength

36 [dummy,posdef] = chol(X + alphap * dX); %test if pos def

37 while posdef > 0 % not pos def

38 alphap = alphap * .8; %scale back (went too far with step ...

size)

39 [dummy,posdef] = chol(X + alphap *dX); %check to now see ...

if pos def

40 end

41 if alphap < 1, alphap = alphap * .95; end % stay away from ...

boundary

42 % line search on dual; dZ is handled implicitly: dZ = diag(dy) ...

(Eq. 2.11);

43 alphad = 1; %initial steplength

44 [dummy,posdef] = chol(Z + alphad * diag(dy));

45 while posdef > 0 % not positive definite

46 alphad = alphad * .8;

47 [dummy,posdef] = chol(Z + alphad *diag(dy));

48 end

49 if alphad < 1, alphad = alphad * .95; end % stay away from ...

boundary

50 %update

51 X = X + alphap * dX; %(Eq. 2.15)

52 y = y + alphad * dy; %(Eq. 2.16)

53 Z = Z + alphad * diag(dy); %(Eq. 2.18)

54 mu = X(:)' * Z(:) / (2*n); %(Eq. 2.6)

55 if alphap + alphad > 1.8, mu = mu/2; end %speed up for long ...

steps

56 phi = a' * y; psi = C(:)' * X(:);

57 %display current iteration

58 disp([ iter dy' y' alphap alphad (phi−psi) psi phi]);

59

60 end % end of main loop



Appendix B

Interior Point Method Equation

Cheat Sheet

Semidefinite Primal (SDP)

maximize tr CX

subject to A(X) = a

B(X) ≤ b
X � 0

whereMn is the vector space of symmetric n xn matrices

A :Mn → Rk, B :Mn → Rm

C ∈Mn, a ∈ Rk, b ∈ Rm

A(X) =


〈A1, X〉
〈A2, X〉

...

〈Ak, X〉

 , B(X) =


〈B1, X〉
〈B2, X〉

...

〈Bm, X〉


Semidefinite Dual

minimize aT y + bT t

subject to AT (y) +BT (t)− C � 0

y ∈ Rk, t ∈ Rm+

Dual Barrier Problem

minimize aT y + bT t− µ(log detZ + eT log t)

subject to AT (y) +BT (t)− C = Z

t ≥ 0, Z � 0
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Lagrangian

Lµ(X, y, t, Z) = aT y + bT t− µ(log detZ + eT log t) + 〈Z + C −AT (y)−BT (t), X〉

First Order Conditions

∇XLµ =Z + C −AT (y)−BT (t)= 0

∇yLµ = a−A(X) = 0

∇tLµ = b−B(X)− µt−1 = 0

∇ZLµ = X − µZ−1 = 0
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