
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2019-04-24

Multi-Robot Task Allocation and Scheduling with
Spatio-Temporal and Energy Constraints
Dharini Dutia
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Dutia, Dharini, "Multi-Robot Task Allocation and Scheduling with Spatio-Temporal and Energy Constraints" (2019). Masters Theses (All
Theses, All Years). 1298.
https://digitalcommons.wpi.edu/etd-theses/1298

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213005007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/1298?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Multi-Robot Task Allocation and Scheduling with
Spatio-Temporal and Energy Constraints

by

Dharini Dutia

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Masters of Science

in

Robotics Engineering Department

May 2019

APPROVED:

Professor Carlo Pinciroli, Advisor

Professor Zhi Li

Professor Andrew Trapp

Acknowledgements

“If it is just us, seems like an awful waste of space.”

— Carl Sagan

I would like to express immense gratitude to my advisor Prof. Carlo

Pinciroli for providing me with this opportunity, and developing a

research mindset which would help me greatly in my academic career.

This wouldn’t have been possible without his constant encouragement,

unwavering support, and scintillating conversations. A special thanks

to Prof. Zhi Li for being a great mentor and leading me to my first

publication. And committee member Prof. Andrew Trapp for his

insightful comments and straightforward advice.

I am grateful to my friends, peers, and colleagues, specifically team

member Arsalan, my nocturnal friend Nishan, previous team member

Heramb, my labmates Nathalie and Jayam for thorough discussions

and enriching me with different perspectives on my work.

Last but not the least, I would like to thank my parents for believing

me in at times when even I couldn’t; for being my pillar of strength

and supporting me in every possible way throughout my life.

Abstract

Autonomy in multi-robot systems is bounded by coordination among

its agents. Coordination implies simultaneous task decomposition,

task allocation, team formation, task scheduling and routing; collec-

tively termed as task planning. In many real-world applications of

multi-robot systems such as commercial cleaning, delivery systems,

warehousing and inventory management: spatial & temporal con-

straints, variable execution time, and energy limitations need to be

integrated into the planning module. Spatial constraints comprise of

the location of the tasks, their reachability, and the structure of the

environment; temporal constraints express task completion deadlines.

There has been significant research in multi-robot task allocation in-

volving spatio-temporal constraints. However, limited attention has

been paid to combine them with team formation and non-instantaneous

task execution time. We achieve team formation by including quota

constraints which ensure to schedule the number of robots required to

perform the task. We introduce and integrate task activation (time)

windows with the team effort of multiple robots in performing tasks

for a given duration. Additionally, while visiting tasks in space, energy

budget affects the robots operation time. We map energy depletion

as a function of time to ensure long-term operation by periodically

visiting recharging stations. Research on task planning approaches

which combines all these conditions is still lacking.

In this thesis, we propose two variants of Team Orienteering Prob-

lem with task activation windows and limited energy budget to for-

mulate the simultaneous task allocation and scheduling as an opti-

mization problem. A complete mixed integer linear programming

(MILP) formulation for both variants is presented in this work, im-

plemented using Gurobi Optimizer and analyzed for scalability. This

work compares the different objectives of the formulation like max-

imizing the number of tasks visited, minimizing the total distance

travelled, and/or maximizing the reward, to suit various applications.

Finally, analysis of optimal solutions discover trends in task selec-

tion based on the travel cost, task completion rewards, robot’s energy

level, and the time left to task inactivation.

iv

Contents

List of Figures vii

1 Introduction 1

1.1 Motivation . 2

1.2 Background . 3

1.3 Problem Statement . 5

1.4 Contributions . 6

1.5 Overview of the Thesis . 6

2 Related Work 7

2.1 Operations Research Background 8

2.1.1 Mixed Integer Linear Programming 8

2.1.2 Team Orienteering Problem 11

2.2 Task Allocation and Scheduling Background 12

2.3 Recharging Robots Background 15

3 Methodology 19

3.1 Problem Formulation . 19

3.2 Objective Function . 20

3.3 Core Constraints . 22

3.4 Activation Windows . 24

v

CONTENTS

3.5 Energy Limitations . 26

4 Experimental Evaluation 29

4.1 Experimental Setup . 30

4.2 Computation Time . 31

4.3 Solution Quality . 33

4.4 Trends in Optimal Solutions . 36

5 Conclusions 39

References 46

vi

List of Figures

2.1 Optimization Taxonomy [1] . 8

3.1 Time activation window of a single task i 25

4.1 (TOPTAW) Effect on computation time with change in number of

tasks, number of robots increase from top left to bottom right . . 32

4.2 (TOPEC) Effect on computation time with increasing number of

nodes (refer plots in top row); Effect on computation time with

varying max energy level, L and time budget, Tmax (refer bottom

two rows) . 34

4.3 (TOPTAW) Effect on solution quality with varying time budget

Tmax . 35

4.4 (TOPEC) Effect on solution quality with varying Tmax for given

energy level L . 35

4.5 (TOPTAW) Trends in optimal solution for selecting tasks based

of distance, rewards and deadline 37

4.6 (TOPEC) Trends in optimal solution for selecting tasks based on

distance and energy left . 38

vii

LIST OF FIGURES

viii

Chapter 1

Introduction

In multi-robot systems [2], each robot plays a small yet significant role in achieving

a global task. For example, in distribution centres [3], teams of robots transport

the inventory from one part of a large warehouse to another. The robots operate in

a shared environment and need to cooperate with each other. Suppose two robots

are assigned to collect objects from the same location and do not coordinate, they

might collide and block the path for other robots, sabotaging the entire operation.

To ensure coordination in such tasks, actions of the robots can be sequenced

by task planning. Task planning is a combination of task decomposition, task

allocation and scheduling [4]. Task decomposition deals with how to break down

the global task into subtasks which the robots can perform. The basic function

of task allocation and scheduling algorithms is to determine which robot would

do what and when. In other words, find a route which is a sequence of physical

locations for the robots to visit. In this work, we are only concerned with task

allocation and scheduling.

1

1. INTRODUCTION

1.1 Motivation

Real-world tasks are spread out in space and have some kind of temporal and or-

dering constraints. For example, in delivery systems, the delivery locations are far

from each other and a traveling cost is associated with moving from one location

to another. Also, robots need to follow a strict timeline in order to accomplish

urgent deliveries, which are within a certain time frame. Spatial constraints lay

out rules depending on the structure of the environment (for example, walls and

obstacles), which limit the mobility of the robots. Temporal constraints specify

the time period in which the task must be performed, while task ordering specifies

the ordering in which the tasks must be performed. Thus, incorporating these

spatial and temporal ordering constraints in the task allocation process poses a

challenge. This is because keeping track of schedules of multiple robots is in-

tractable [5]. There is plethora of research in multi-robot task allocation with

temporal and ordering constraints. However, limited attention has been paid to

integrate team formation with complex temporal models.

It is necessary to integrate robot’s energy limitations in the planning module.

For instance, in surveillance, monitoring tasks spread over large areas have to be

performed continuously for the entire day. A major consideration in deploying

a robotic system for such scenarios is the total time it can operate for. It is

important for robots to predict their energy level and reach back to base station

for recharging. For collaborative tasks such as foraging, collective transport [6],

exploration [7], where cooperation is the key to task completion, a robot low

on energy can jeopardize entire assignment. Automating the maintenance and

recharging process would allow for seamless operation of any commercial or in-

dustrial robotic system. Previous work emphasizes the need and complexity of

predicting energy consumption for ensuring long-term operation. However, the

literature still misses the fusion of time-critical planning, team formation, and

2

1.2 Background

on-the-fly recharging.

In this thesis, we propose an approach to incorporate team formation, time

scheduling, and energy limitations in task allocation. A combination of all these

features would produce highly applicable models to cover a larger domain of

real-world problems than existing research.

1.2 Background

Gerkey and Mataric [8] devised a widely accepted taxonomy to categorize Multi-

Robot Task Allocation (MRTA) problem according to three criteria. First, they

classify robots according to their ability to perform single- or multi-tasks at a

time. Second, they distinguished between tasks that require single robots to

be performed, and tasks that require the coordinated effort of a team of robots.

Third, considering the time needed to complete a task, they distinguished between

instantaneous tasks and time-extended tasks. This work focuses on single-task

robots, and time-extended allocation, with flexibility over single/multi-robots

tasks.

A task allocation problem can be approached in two ways: centralized, and

distributed methods. In centralized approach, there is only one decision making

unit which is external to the robots. The robots just execute the route generated

by this unit. In distributed methods, each robot is a decision making unit and

communicates with other robots to coordinate their actions. Centralized alloca-

tion has the opportunity to produce optimal or near-optimal solutions, thanks to

the fact that it is assumed that all the relevant information is gathered at the

single decision point. In contrast, distributed approaches tend to produce ap-

proximate solutions because the individual decision makers typically work with

only local information.

3

1. INTRODUCTION

Task allocation is essentially an optimization problem, in which the objective

is to find the best assignment of tasks to robots. One of the most common

formalisms to capture the task allocation problem from a centralized standpoint is

Mixed Integer Linear Programming (MILP) [5; 9]. In MILP, the decision variables

(e.g., which tasks to perform and when) can take either integer or binary values,

hence the terms “mixed integer”. The objective function (e.g., the number of

tasks performed) and the constraints (e.g., a task requires at least Q robots) are

expressed as linear equations that involve the decision variables. In this thesis,

we will use this formalism to solve task allocation problems.

The Team Orienteering Problem with Time Windows (TOPTW) [10] tack-

les similar problems as in Multi-Robot Task Allocation with Temporal Ordering

Constraints (MRTA/TOC) [11]. In Team Orienteering, the goal is to find an op-

timal path to maximize the number of tasks visited within a time budget. This

time budget is suitable to model the global time limit in many time critical prob-

lems. Also, each task in the Team Orienteering Problem has a reward associated

to it. This makes it possible to encode priorities of tasks in the model. We use

Team Orienteering Problem formulation as the basis of our MILP model.

In long-term missions, task planning should also consider the limited lifetime

of any individual robot and enforce periodic recharging. Factors affecting en-

ergy depletion include distance covered, faulty hardware, unexpected maneuvers

and/or uncertainty in execution. Majority of the previous work maps energy as

a linear function of the distance covered. As distance covered is directly related

to travel time, energy becomes a constraint on how long the robots can operate.

To visit task locations spread over large areas, robots might need to consider

recharging along the way at some recharging stations. Automated recharging

process can be accomplished in two ways.

• Static recharging stations, considered as a fixed node in the environment.

4

1.3 Problem Statement

These nodes are added in the optimized route as per the energy consump-

tion.

• Mobile charger robots, predicting the energy levels of worker robots and

tracking their movements. The mobile charger robots meet the worker

robots at their low energy state and recharge them either by docking or

exchanging batteries.

We consider energy depletion to be linearly varying with distance travelled and

the charging stations to be fixed in the environment.

1.3 Problem Statement

We focus on two problems which are extensions of simultaneous multi-robot task

allocation and scheduling.

1. We first integrate task allocation, scheduling, team formation and task acti-

vation windows. The aim is to find optimal schedule of tasks having variable

start times, deadlines and fixed number of agents required to accomplish

those tasks. The type of tasks we focus on are spatially organizing tasks,

translating to position specific constraints.

2. Further, we look into enabling the robots to operate for larger periods of

time. The robots have energy budget limitations which might prevent them

from visiting all task locations in space. Depending on the problem, it is

desirable to instead visit as many tasks as possible within a given time

budget. For long-term autonomous operation, the problem is to find a

optimal solution which accounts for energy available in each agent of the

team and predict at which point in the route would the robot need to

recharge. According to the prediction, charging stations should be added

in the route.

5

1. INTRODUCTION

1.4 Contributions

We propose a variant of Team Orienteering Problem with Time Windows called as

Team Orienteering Problem with Task Activation Windows (TOPTAW), which

integrates quota requirements, task activation windows, and task duration in

the original model. Additionally, we propose another variant of Team Orien-

teering Problem called as Team Orienteering Problem with Energy Constraints

(TOPEC), to include energy limitations and recharging stations. These formula-

tions are tested on a range of problem sizes, i.e. varying a number of parameters

of the environment, to search for recurrent collective behaviours in the optimal

solutions.

1.5 Overview of the Thesis

This document is structured as follows: Chapter 2 covers the necessary pre-

requisite topics like Team Orienteering Problem and comments on relevant liter-

ature, and Chapter 3 provide the mathematical formulation of the problem using

Mixed Integer Linear Program (MILP). Finally, experimental results on compu-

tation time, solution quality and trends in the optimal solutions are summarized

in Chapter 4. The conclusion and future scope is discussed in Chapter 5.

6

Chapter 2

Related Work

This chapter compiles the literature reviewed on the topics related to the task

allocation and scheduling problem. In Section 2.1, we provide an introduc-

tion to standard problems in operations research domain and their current vari-

ants/applications. Section 2.2 covers Multi-Robot Task Allocation (MRTA) lit-

erature and its limitations. Finally, Section 2.3 illustrates different approaches

for solving the problem of recharging mobile robots and teams of robots.

Summary

Overall, this work belongs to mathematical optimization and swarm robotics.

The main keywords are linear programming, operations research, constrained

optimization, multi-robot systems, multi-robot task allocation, task scheduling,

routing with time windows, energy limitations, recharging robots, and persistent

coverage. For a more thorough coverage of the state of the art, refer to [12; 13;

14; 15; 16; 17; 18].

7

2. RELATED WORK

2.1 Operations Research Background

2.1.1 Mixed Integer Linear Programming

In the context of mathematical optimization, the term “programming” refers

to the concept of planning. When the equations involved in the optimization

problem are linear, we speak of “linear programming”. The technique of linear

programming was first invented by the Russian mathematician L. V. Kantorovich

and developed later by George B. Dantzig. NEOS Guide [1] provides an opti-

mization taxonomy, reported in Figure 2.1, focused mainly on the subfields of

deterministic optimization with a single objective function.

Figure 2.1: Optimization Taxonomy [1]

Linear programming deals with optimization problems that are deterministic,

continuous and linearly constrained. A linear programming problem is one in

which some function is either maximized or minimized relative to a given set of

alternatives. The function to be minimized or maximized is called the objective

function and the set of alternatives is called the feasible region determined by a

8

2.1 Operations Research Background

system of linear inequalities (constraints). Mixed integer refers to the combination

of integers and continuous decision variables. Below is an example of a MILP

model.

max or min c1x1 + c2x2 + · · ·+ cnxn (2.1)

st.a11x1 + a12x2 + · · ·+ a1nxn(≤,= or ≥)b1 (2.2)

a21x1 + a22x2 + · · ·+ a2nxn(≤,= or ≥)b2 (2.3)

. . .

am1x1 + am2x2 + · · ·+ amnxn(≤,= or ≥)bm (2.4)

lb <= xj <= ub, ∀j = 1, . . . , n (2.5)

Equation 2.1 represents the objective function of the formulation, where c are

the coefficients making the linear objective function and x is the decision variable

(output of the solver). This objective is subject to a set of requirements which

are enforced as constraints. As per these constraints, decisions are made which

becomes the value of the decision variable. Equations 2.2 - 2.4 combines the

equality and inequality constraints of the model. Finally, Equation 2.5 encode

the upper and lower value bound of each decision variable.

Since all linear functions are convex, mixed integer linear programming prob-

lems are intrinsically easier to solve than non-linear problem types. The flexi-

bility of MILP is what makes them the widely preferred method [19] in process

scheduling problems. However, consider a model has n binary variables, there

would be 2n possible configurations to search from. There are several techniques

to speed-up the generation of an optimal solution. One of them is the Branch

and Bound technique. Initially, the integrality restrictions are removed and the

problem is solved as a Linear Programming (LP) problem. This is known as

LP relaxation of the original MILP. Usually, a perfect fit for the original prob-

9

2. RELATED WORK

lem is not found by simply relaxing the integer constraints. The next step is to

select some variable (restricted as an integer), whose optimal value in the LP

relaxation is fractional. This becomes the branching variable and we get two

different branches, this process is continued till a solution is found which fits the

integer bounds, which can be considered the best solution found so far known as

incumbent. The generated search tree is explored for other such solutions having

better values of the objective function. If they exist we have an optimality gap,

otherwise we have found our optimal solution. The practitioner can also improve

the computation runtime by providing integer bounds in the constraint set of the

model despite defining them while the decision variable declaration. This helps in

tightening the formulation by removing undesirable fractional solutions, termed

as cutting planes. Some solvers use pre-existing knowledge of the defined problem

and tighten the model to get solutions faster. Additionally, heuristic algorithms

can be applied to sacrifice optimality and find a solution to the problem faster.

This technique provides an initial feasible solution or incumbent to kick-start the

search of optimal solution.

Several commercial and open source optimization solvers are available in the

user can simply focus on formulating the model rather than dealing with details

of actual solution algorithm. Notable softwares include IBM ILOG CPLEX Op-

timization Studio [20] and Gurobi Optimizer [21]. These have optimization IDE

as well as support to model in other languages like C++, Python, MATLAB, R,

etc.

Some useful guidelines to formulating a MILP problem, as summarized from

[22] are:

1. If-then statements The idea is to force both “if” and “then” condition to

depend upon another binary decision variable. When the “if” condition is

satisfied the binary variable becomes 1 and switches on the “then” condi-

10

2.1 Operations Research Background

tion.

2. Enforce at least k out of p constraints Instead of one binary variable we

have “p” binary decision variables. Each of them activates when their

corresponding constraint is true. These binary variables can be summed

over to equal the value “k”.

3. Non-linear product terms To deal with non-linear products, i.e. a multipli-

cation of multiple decision variables, equate the entire non-linear term with

a single variable. This variable is bounded by the lower and upper limits of

the non-linear product term.

For elaborate description with examples, refer [22].

2.1.2 Team Orienteering Problem

The Orienteering Problem (OP) was introduced in 1987 by Golden, Levy and

Vohra [23]. This problem differs from the Traveling Salesman Problem (TSP)

by two major points: first the tasks have to be performed within a global dead-

line, termed as the given time budget Tmax; second there is a reward associated

with each task and the robots are supposed to maximize the rewards collected

by visiting the tasks. Vansteenwegen et al. [10] presents an overview of bench-

mark instances of the Orienteering Problem (TOP). The practical applications,

solution approaches and open problems of TOP are discussed. Gunawan, Lau

and Vansteenwegen [12] surveys the research on all the variants of TOP and lists

their best known solutions.

Van der Maerwe et al. [15] formulate a variant of the Team Orienteering Prob-

lem with Time Windows (TOPTW) called the Cooperative Orienteering with

Time Windows (COPTW). This problem includes team formation by ensuring

that the servicing tasks cannot start before all the required vehicles have arrived.

Yu et al. [24] introduces the Correlated Orienteering Problem (COP) formulated

11

2. RELATED WORK

as Mixed Integer Quadratic Programming (MIQP) model to find optimal tours

for persistently monitoring a spatially correlated field. Spatial correlations ob-

served are time-invariant, for example traffic congestion at one intersection would

be correlated to the same situation at another intersection. The idea is to record

and observe these correlations. A quadratic score function is added in the objec-

tive to capture these spatial correlations making the COP a non-linear extension

of the Orienteering Problem.

2.2 Task Allocation and Scheduling Background

Gini et al. [5], and Nunes et al. [11] categorize the extensive research present in

the multi-robot task allocation domain and help identifying possible solutions to

this problem. This work emphasizes the importance of problems in which tasks

are allocated according to time, distance and priority. The requirements change

with the applications: search and rescue focuses on quick execution; deadlines

matter in surveillance; in disaster response, proper ordering is necessary. All the

variants of this problem consider a set of tasks mapped as a node on a acyclic

graph, used to find an optimal route/schedule.

Proposed approaches in literature for task allocation are categorized into cen-

tralized, distributed or market-based approaches. In centralized approach, there

is only one decision making unit which is external to the robots. In distributed

methods, each robot is a decision making unit and communicates with other

robots to coordinate their actions. Market-based approaches use auctions where

the robots place bid on the tasks, and the lowest cost bid gets that task.

Multi-robot Task Allocation (MRTA) problem can be formulated as a Mixed

Integer Linear Programming (MILP) model, and can be decomposed by different

strategies, to improve scalability. The problem is viewed as a constraint optimiza-

12

2.2 Task Allocation and Scheduling Background

tion problem in Koes et al. [13]. The formulation attempts to simultaneously

allocate tasks and determine a continuous time schedule to maximize team utility.

The tasks considered are associated with a finite duration and specific abilities of

the robots in a heterogeneous swarm. Task activation window is not considered in

this model. But several real-valued timing decision variables for travel, starting

execution, waiting and working are used. This model is the core of a heuris-

tic solver, Anytime Scheduling, which allows re-planning under a fixed planning

horizon.

Real-time tasks have a upper and lower time bounds for starting task execu-

tion. Gombolay et al. [14] considers these interval temporal constraints, along

with spatial proximity restrictions on robots, to formulate a MILP model. The

focus is on sequencing of tasks and not on preparing an exact time schedule at

which the robots are supposed to perform a task. The main idea of this work

is to blend real-time processor scheduling and MILP program to develop a fast

task sequencer named Tercio. In this sequencer, MILP is solved by a third-party

optimizer, which becomes input to a fast task sequencer. This hybrid approach

is tested on KUKA Youbots [25] for assembling a mock airplane fuselage.

Prorok et al. [26] look into the problem of finding an optimal distribution

of multi-task robots capabilities among the set of multi-robot tasks. A differen-

tiable objective function minimized by gradient descent is used. The optimization

returns transition rates with which a particular edge is chosen.

Market-based approaches are competitive schemes where each agent places a

bid on the task as per its self-determined worth. Gerkey and Mataric [27] de-

veloped a distributed, auction-based, dynamic task allocation technique called

MURDOCH. As tasks appear randomly, an agent broadcasts a message to the

swarm with information regarding the attributes of the task. Robots place bids on

this task and the auctioneer processes and assigns it. This whole process is depen-

13

2. RELATED WORK

dent on distributed communication, however the method encompasses message

drops and communication lag. The optimality of such assignments is not dis-

cussed. It is tested for simple single robot tasks as well as collective box-pushing,

for which the constraints were customized. The whole system is independently

allocating, executing and recharging. However, this approach claims to be dy-

namic, yet there is no provision for reintroducing tasks if the agents were busy

the first time around. It is dynamic in the sense that it is reactive to changes in

the environment like robot failures. Nunes and Gini [28] developed auction-based

algorithm, TeSSI, for the type of tasks having temporal constraints, which exper-

imentally performs better than other decentralized approaches. The bids placed

to the central auctioneer, have individually calculated the travel cost, smallest of

which would be allocated the task, thus satisfying the global objective.

Das et al. [29] present a Consensus-based Parallel Auction and Execution

(CBPAE) algorithm for assisting the elderly by fall detection, food delivery, med-

ication reminder, cleaning and surveillance. The bidding process for the next task

is done simultaneously to the execution of the current task. Also, the task at-

tributes and statuses are locally stored, hence it is possible that some robots

might be bidding based on out-dated information. The algorithm recognizes this

situation as deadlock and claim to solve it by consensus which increases the com-

munication overhead.

MILP solutions cannot possibly account for uncertainties in execution and

system dynamics. Probabilistic models can be developed including such uncer-

tainties. Hanna [30] proposes to tackle the uncertainty in execution by a two-step

process: task selection by Markov decision process (MDP) and allocation using

auctions. The tasks considered here do not have any temporal or ordering con-

ditions for simplicity. The execution probability distribution help estimate the

possible amount of resources would be utilized to perform the task. An expected

14

2.3 Recharging Robots Background

reward is calculated for all such possibilities and the decision is made to maxi-

mize this reward. After a local choice is made, bids are placed for task allocation

which is not discussed in detail.

Another distributed strategy to allocate tasks as per task priorities is pre-

sented by Khaluf and Ramming [31]. Task priorities are determined from task

deadlines. The objective is to select tasks using allocation probability matrix

such that the tasks are executed by the deadline and the number of robot trials

required to accomplish the task are reduced. By robot trials it is implied that a

task require more than one trial to be completed. Each task is divided into parts

or trial to be accomplished within a deadline. Hence the total number of robots

required to finish the task is the product of k parts of the tasks and number of

robots required for each trial. Using the success probability of the event, where

n robots finish k parts of a task within a deadline, the total number of robots N

required to complete the task, is determined. A major drawback of this work is

that there is minimum interaction between robots.

2.3 Recharging Robots Background

Kanan et al. [32] first introduced the Autonomous Recharging Problem (ARP)

for mobile robots to consider their energy level before scheduling tasks. The

paper describes in detail the concepts associated with ARP. The robots should

be aware of their energy level, and take it into account while deciding which tasks

to perform. Recharging is provide using two ways: static recharging stations

or mobile recharging stations. Static recharging stations are dispersed at fixed

locations in the environment. Multiple robots coordinating the visit to static

recharging stations is a subproblem of ARP. Mobile recharging approaches involve

a moving recharger robot having different mechanisms for docking with the worker

15

2. RELATED WORK

robot to recharge it. It is the responsibility of mobile recharger robots to predict

and track the energy levels of worker robots.

Cheng et al. [33] estimate the energy consumption by approximating a non-

linear energy function depending on a drone’s payload. Other reviewed research

map energy depletion as a linear function of distance travelled.

Sundar and Rathinam [34] considered the routing problem for a fuel-constrained

Unmanned Aerial vehicle (UAV), where the environment also has refueling depots

and the UAV can recharge at any of them before it runs out of fuel. A mixed in-

teger Linear Programming (MILP) formulation as well as a heuristic is presented

to solve the problem. In [35], Sundar et al. devise an approximation algorithm

for the same problem, along with construction and improvement heuristics. Levy

et al. [36] discuss a variable neighbourhood search based approach for the above

problem. All of these approaches assume that all the task locations are accessible

and can be visited without any time constraints. Hamann et al. [37] discuss the

problem of efficiently positioning static charging stations in an warehouse.

Mitchell et al. [16] consider the problem of persistent coverage with multiple

fuel constrained robots. A MILP formulation for the multi-robot version for fuel

constrained robots is presented, along with a heuristic approach. To deal with

the problem of tasks with unknown task costs, subsequent tasks in a cycle are

dropped without considering the optimality of the path. Mitchell et al. [38]

develop a greedy algorithm for deciding which targets to drop in a stochastic

setting. A MILP model for stochastic task costs is formulated by introducing a

chance constraint.

Mathew et al. [39] discuss rendezvous locations for charging robots with fuel-

constrained robots, assuming that paths of the fuel-constrained robots are pre-

viously known. The recharging problem is formulated as a generalized travelling

salesman problem (GTSP), and then transformed into an Asymmetric Travelling

16

2.3 Recharging Robots Background

Salesman Problem (ATSP) using Noon-Bean Transformation [40]. A multi-robot

version of this problem and its applications for persistent long-term coverage is

discussed as an extension in [17]. Maini et al. [41] find routes for the charger

robots and fuel-constrained worker robots in a greedy algorithm.

Kamra et al. [18] formulate a Mixed Integer Quadratic Program (MIQP)

for timed deliveries by delivery robots to fuel constrained worker robots. The

delivery robots have to return to a control center if their fuel is depleting. A

user-defined control parameter is used to decide late/early deliveries vs travel

costs. To improve scalability, approximation algorithms for MIQP problem is

developed in [42].

17

2. RELATED WORK

18

Chapter 3

Methodology

This chapter provides in-depth details of generating optimal solutions by math-

ematical modelling of the proposed variants of the Team Orienteering Problem.

These include simultaneous task allocation and scheduling for task activation

windows in the first variant and energy limitations in the second. Section 3.1

defines the problem mathematically, Section 3.2 and Section 3.3 present the core

formulation. Section 3.4 adds task temporal deadlines and team formation, and

Section 3.5 adds energy limitations, to the core formulation.

3.1 Problem Formulation

The Simultaneous Multi-Robot Task Allocation and Scheduling problem can

be expressed as an optimization problem using Mixed-Integer Linear Program

(MILP). Consider an environment E ∈ R2 in a 2-D Euclidean space, and T ∈ R+

tasks spread around in E. This environment is mapped on a graph G consisting

of set of nodes N = S ∪ T ∪E representing the start position, task locations and

robot end positions, respectively. The goal is to assign the tasks to K robots. To

achieve that we need the following inputs:

19

3. METHODOLOGY

• Start location S and desired end position E of robots

• Location of each task pi in space

• Distance and time tij required to travel the edges of the fully-connected

graph G, assuming unit velocity of all the robots

• Total time budget for the system, Tmax

The choice of decision variables changes with the application and structure of

the environment, as a result changes the objective function. The core decision

variables (outputs) of this problem are:

• xijk ∈ {0, 1}: Binary. 1 if, for robot k, vertex i is followed by a vertex j,

otherwise 0.

• yi ∈ {0, 1} : Binary. 1 if vertex i is visited by any robot k.

The underlying Team Orienteering Problem can thus be stated as, Given a set

of task locations T , robots start location S and end location E, find the optimal

paths for each robot r ∈ K such that the robots maximize the number of tasks

visited in a given time budget Tmax.

Having stated this, we add time window and energy constraints. Additional

input information and decision variables are explained in subsequent sections

(Section 3.4 & 3.5). Note that as the Orienteering Problem is NP-Hard [23], the

variants are NP-Hard too.

3.2 Objective Function

The simplest objective is to maximize the number of tasks performed, which maps

to the binary decision variable yi,∀i ∈ T . This can be formalized as:

max
∑
i∈T

yi (3.1)

20

3.2 Objective Function

If each task is associated with a reward or score, Ri,∀i ∈ T , the objective

becomes maximizing the overall score. Here, yi is 1 if task i is visited by any

robot k. So, it does not matter how many robots visit task i, the reward would

considered only once. Mathematically:

max
∑
i∈T

Riyi (3.2)

If the application involves two objectives with unequal priorities, i.e. one of

the objective is more important than the other, a scaling factor can be used.

Here, we want to maximize the tasks visited while minimizing the total distance

traveled. To get the total distance traveled, we can use the binary decision

variable xijk. If an edge ij is present (xijk = 1) and the distance between the

nodes i and j is represented by tij, the distance traveled while traversing that

edge would become tijxijk. Summing this for all robots and edges we get the

total distance traveled. This is scaled by a factor γ, and is always kept < 1.

Otherwise, it would overpower the objective to visit tasks and end up making the

distance traveled to be 0. It is then subtracted from the main objective, forming

a multi-objective function, mathematically represented as:

max

(∑
i∈T

yi −
∑
k∈K

∑
i∈N

∑
j∈N

γtijxijk

)
, γtijxijk < 1, i 6= j (3.3)

Note these functions use binary decision variables. The problem might require

a continuous variable to be maximized or minimized. For example, maximizing

the time left to task inactivation after the robot’s arrival. In other words, given

the task end time aendi , and robot arrival time sijk, the time left to complete the

21

3. METHODOLOGY

task is aendi − sijk. Summing this over all robots and edges, we get:

max

(∑
k∈K

∑
i∈N

∑
j∈N

xijk(aendi − sjk)

)
, i 6= j (3.4)

This way single objective and multi-objective functions can be included in a

model. The objective functions used for respective variants is further commented

on in Section 4.1.

3.3 Core Constraints

For the given decision variables and problem statement described in Section 3.1,

the following constraints complete the core formulation for this work, which is

based on the Team Orienteering Problem formulation.

To ensure path integrity, all robots should start and end at the given start and

end nodes. Equation 3.5 ensures the number of robots leaving the start node are

equal to the total number of robots. Similarly, Equation 3.6 ensures the number

of robots entering the end node are equal to the total number of robots.

∑
k∈K

∑
j∈T∪E

xsjk = |K|, ∀s ∈ S, k ∈ K (3.5)∑
k∈K

∑
i∈S∪T

xiek = |K|, ∀e ∈ E, k ∈ K (3.6)

Equation 3.7 represents connectivity constraints. If a robot enters a node, it

should leave it. Equations 3.8 and 3.9 maps the edge selection decision variable

xijk to the task selection decision variable yi to impose connectivity and update

22

3.3 Core Constraints

the selection.

∑
i∈S∪T

xihk =
∑

j∈T∪E

xhjk, ∀h ∈ T,∀k ∈ K, (3.7)∑
i∈S∪T

xihk ≤ yh, ∀h ∈ T,∀k ∈ K (3.8)∑
j∈T∪E

xhjk ≤ yh, ∀h ∈ T,∀k ∈ K (3.9)

The task visitation is not a hard constraint, in other words it is not required

to definitely visit all the tasks in T . Equation 3.10 allows the robots to drop some

tasks by allowing the task selection decision variable yi to be less than or equal

to 1.

yi ≤ 1, ∀i ∈ T (3.10)

This implies if there is not enough time to visit all tasks, visit whichever tasks

are possible to complete. So the solver would still produce an optimal solution

with fewer tasks, instead of no solution.

Time limit constraint characterizes a problem as a variant of the orienteering

problem. Equation 3.11 implies that the total time (= distance as the robots

have unit velocity) traveled for the entire assignment should be less than or equal

to Tmax.

∑
i∈N\s

∑
j∈N\s

tijxijk ≤ Tmax ∀k ∈ K, i 6= j (3.11)

This constraint ensures that each robot returns to the end location before the

time Tmax runs out.

23

3. METHODOLOGY

3.4 Activation Windows

Consider each task i ∈ T have to be performed within an activation window,

consisting of task start time astarti and task end time aendi . Each task require

task duration, TDi time to finish the task. Also, each task has attributes related

to quota, Q, which is a set of positive whole numbers indicating the number of

robots required to perform the task.

The Team Orienteering Problem with Task Activation (Time) Windows (TOPT

AW) is stated as, Given a set of task locations T , robots start location S and end

location E, quota requirements, task duration and task activation windows, find

the optimal paths for each robot r ∈ K such that the robots maximize the number

of tasks performed within the task activation window [astart, aend] by fulfilling the

quota Q for the duration TDi, in a given time Tmax.

In addition to the decision variables defined in Section 3.1, we need a decision

variable which represents time to schedule the tasks. There are two possible ways

to model that: discrete representation of time or continuous representation of

time [19]. Discretizing time gives an approximate solution to the actual problem.

To achieve a sufficient degree of accuracy, discretization of time must be done

by keeping the intervals as small as possible. The computation time increases if

the number of time intervals is large. Consequently, there is a tradeoff between

solution accuracy and time taken to find that solution. On the other hand,

continuous-time models allow to use any time instance on the scale, making it

easier to introduce the concept of task start and end time.

Thus, we define: sik : Arrival time at vertex i for robot k (refer Figure 3.1).

Equation 3.12 ensures that the required number of robots visit the task by

making the summation of edge selection decision variable xijk over all k ∈ K to

be equal to the quota for that task.

24

3.4 Activation Windows

Figure 3.1: Time activation window of a single task i

∑
k∈K

∑
i∈S∪T

xijk = qjyj, ∀j ∈ T (3.12)

It is important for each of the robots in the team to reach the task at the

same time. Equation 3.13 calculates the timeline for each robot. The arrival time

at task j for robot k is calculated by taking the arrival time of previously visited

task i by that robot, add the duration of task TDi and time required to travel

from task i to j, i.e. tij. The whole travel time is bounded by Tmax in Equation

3.14, this replaces Equation 3.11 in the core constraints.

sik + tij + TDi − sjk ≤M(1− xijk), ∀i, j ∈ T,∀k ∈ K (3.13)∑
i∈S∪T

∑
j∈T∪E

(tij + TDi)xijk ≤ Tmax, ∀k ∈ K, i 6= j (3.14)

where M is a large constant.

Equations 3.15 and 3.16 restrict the robot’s arrival to the task activation

window. The maximum arrival time at any task would be the task end time

minus the task duration, so the robots would get enough time to accomplish the

task even if they arrive at the last moment.

astarti ≤ sik, ∀i ∈ T,∀k ∈ K (3.15)

sik ≤ aendi − TDi, ∀i ∈ T,∀k ∈ K (3.16)

25

3. METHODOLOGY

3.5 Energy Limitations

Energy limitations are added by tracking energy levels of the robots. Initially,

every robot has maximum energy level L. We assume the energy consumption to

be distance-based, with each robot using one unit of energy per unit of distance

covered. Thus, the robot can visit recharging depots D along the way to recharge

themselves and visit locations which were otherwise infeasible.

The Team Orienteering Problem with Energy Constraints (TOPEC) is stated

as, Given a set of task locations T , depot locations D, robots start location S and

end location E, find the optimal paths for each robot r ∈ K with energy level L

such that the robots maximize the number of tasks visited by recharging along the

way, while minimizing the total distance traveled, in a given time Tmax.

We need two additional decision variables to represent the capacity and energy

levels. Thus, we define:

• pijk to indicate the number of units held as robot k traverses the edge from

i to j.

• ri ∈ [0, L]: Amount of energy left in the robot when it visits task i.

These constraints are similar to the formulation in Mitchell et al. [16]. Note

that the energy level decision variable ri is not separate for each robot, because

only one robot is visiting a task. So whichever robot visits the task i, the energy

remaining in that robot is represented by ri.

The capacity and flow constraints serve as subtour elimination constraints as

they ensure that the set of tasks assigned to each robot comprises of a single

26

3.5 Energy Limitations

closed tour.

∑
i∈N\s

(psik − pisk) =
∑

i∈T\s,j∈N

xijk, ∀k ∈ K (3.17)∑
j∈N\{i}

(pjik − pijk) =
∑
j∈N

xijk, ∀i ∈ T \ s,∀k ∈ K (3.18)∑
j∈N\{i}

(pjik − pijk) = 0, ∀i ∈ D \ {s},∀k ∈ K (3.19)

0 ≤ pijk ≤ |T |xijk, ∀i, j ∈ N, ∀k ∈ K (3.20)

Equation 3.17 captures the flow through the starting node. Here, the robot

acquires
∑

i∈T\s,j∈N xijk units, which is equal to the number of targets assigned

to the robot k. This capacity is then reduced by 1, as per Equation 3.18, if the

corresponding target is contained in the robots assigned set. As the robot passes

through recharging depots, this target capacity is prevented from changing, as

given by Equation 3.19. This prevents recharging detours from disrupting the

continuity of a robots tour. Equation 3.20 ensures that the target capacity for

each robot does not exceed |T |.

Energy constraints ensure that the robot does not run out of energy as it

traverses its route.

rj − ri + fij ≤M(1− xijk), ∀i, j ∈ T,∀k ∈ K, i 6= j (3.21)

rj − ri + fij ≥ −M(1− xijk), ∀i, j ∈ T,∀k ∈ K, i 6= j (3.22)

rj − L+ fij ≤M(1− xijk), ∀i ∈ D, ∀j ∈ T,∀k ∈ K (3.23)

rj − L+ fij ≥ −M(1− xijk), ∀i ∈ D, ∀j ∈ T,∀k ∈ K (3.24)

ri − fij ≥ −M(1− xijk), ∀i ∈ T,∀j ∈ D, ∀k ∈ K (3.25)

fijxijk ≤ L, ∀i, j ∈ D, ∀k ∈ K, i 6= j (3.26)

Equations 3.21 and 3.22 map the energy consumption to the edge selection

27

3. METHODOLOGY

decision variable, in other words if a certain edge is included in the solution, only

then the condition would be active. Precisely, ri − rj = fij if xijk = 1, where

fij is the energy required to travel the distance from task i to j. This pair of

constraints ensures that the energy lost between two nodes is equal to the energy

cost of travelling between them.

Equations 3.23 and 3.24 establish the condition that the energy level at a

target visited after leaving a depot is equal to the energy capacity minus the

energy cost of traversal. They depict the condition that L − rj = fij.

Equation 3.25 restricts the energy lost in approaching a depot to being at

most equal to the cost of travel from the preceding target. In other words,

it represents the condition that ri ≥ fij if xijk is active. Equation 3.26 restricts

direct paths between recharging sites to exist only between sites atmost L distance

away (assuming one unit of energy consumption per unit of distance covered).

28

Chapter 4

Experimental Evaluation

This chapter provides details of the implementation and summarizes the experi-

mental results. Section 4.1 explains the experimental setup and implementation

details. Section 4.2 determines the effect on model runtime with various param-

eters and Section 4.3 determines the effect on solution quality with change in

various parameters. Finally, the Section 4.4 discusses the notable findings from

the experiments.

Summary

All the experiments are run on a 100x100 unit sq. environment using the Python

module of Gurobi Optimizer software, implementation of which can be found at

[43]. Two performance parameters are used to quantify the results: computa-

tion time, the total runtime to generate optimal solution, and solution quality,

the number of tasks visited. A general observation is the exponential increase in

computation time with number of tasks/nodes. Quality tends to improve with in-

creasing the total time budget Tmax. A noteworthy trend in the optimal solutions

is that the robots tend to arrive at the tasks at the very last moment.

29

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup

The two variants of the Team Orienteering Problem are implemented and tested

separately. Both of these implementations are done using the Python module of

Gurobi Optimizer [21]. The implementation and usage information can be found

at the github repository [43].

The formulations are tested on a 100x100 unit sq. environment. The task lo-

cations, depot locations, robot start and end locations, all are dispersed randomly

within this environment. Details on other input data belonging to respective vari-

ant is discussed in the consecutive paragraphs.

The Team Orienteering Problem with Task Activation (Time) Windows, (TOP

TAW), uses Equation 3.2 as its objective function and core constraints in Section

3.3 plus the time window constraints in Section 3.4. The quota requirements Q

is chosen randomly in [1, K − 1], where K is the total number of robots. Task

duration is selected randomly in the range [1, 10] secs. The maximum start time

astarti is set to Tmax/2 and the interval between start and end time are generated

randomly in [1, 100] to produce solvable problems. Lastly, rewards are assigned

randomly in the range [1, 100].

The Team Orienteering Problem with Energy Constraints, (TOPEC), employs

Equation 3.3 as its objective function and core constraints in Section 3.3 plus the

energy constraints in Section 3.5. Maximum energy level L, and total time budget

Tmax is varied to infer trends in data.

More information of the environment are discussed in details in the subsequent

sections.

30

4.2 Computation Time

4.2 Computation Time

Computation time corresponds to the total runtime of the Gurobi solver spent to

find the optimal solution.

TOPTAW is executed for 5 sets of experiments with each set varying the

problem size, generating in total 113 data points. The problem size consists of

robots in range (2, 3, 4, 5, 8, 10) and the tasks increase from 5 to 50. The aim is

to study the relationship between computation time and problem size. Figure

4.1 compiles the plots for the selected range of robots. The x-axis represents the

number of tasks, and the y-axis converts the computation time in [0.003, 60.8]

secs to log scale. The general trend is increase in computation time with number

of tasks. As the number of robots increase, even lower number of tasks require

more computational runtime.

TOPEC is implemented for a single set of experiments with each set varying

the problem size, generating 40 data points on an average. The problem size

consists of robots in range (2, 3, 5) and the nodes in range (5, 10, 15, 20). The

number of nodes in the environment equates to the sum of number of tasks and

number of depots. The aim is to study the effect of increasing number of nodes

on the computation time. Figure 4.2 reports the plots for the selected range of

robots. The x-axis represents the number of nodes, and the y-axis averages the

computation time for each nodes. The time is mapped to log scale in the range

[0.01, 8745] secs. If Figures 4.2(a) and 4.2(b) are compared it can be observed

that the computation time increases with the number of nodes. An important

thing to note in Figure 4.2(b) is the problem instance with 5 robots, 7 tasks,

and 13 depots, i.e. 20 nodes is not fully optimal, it reached an optimality gap

of 0.03% in 8475 secs. This is because for higher number of robots it takes more

time to compute an optimal solution which satisfy all the constraints.

Next, we want to determine the effect of maximum energy level L and total

31

4. EXPERIMENTAL EVALUATION

Figure 4.1: (TOPTAW) Effect on computation time with change in number of
tasks, number of robots increase from top left to bottom right

32

4.3 Solution Quality

time budget Tmax on the computation time. Four sets of experiments are per-

formed, each with a unique combination values of L and Tmax. Refer to Figures

4.2(c) and 4.2(d) to find that with constant L = 100, changing Tmax from 100

to 200 reduces the computation time by a log factor of 10. This might be the

case because in the grid environment with width equal to the maximum energy

level, more distance can be traveled without recharging thus generating solution

quickly. Conversely, in Figures 4.2(e) and 4.2(f) with constant L = 75, changing

Tmax from 100 to 200 increases the computation time by a factor of 10. The en-

ergy level being low forces more recharging diversions creating more constraints

to satisfy, increasing the computation time. Note in Figure 4.2(f), the problem

instance with 3 robots, 12 tasks, and 8 depots, i.e. 20 nodes isn’t fully optimal,

it reached an optimality gap of 0.04% in 7915 secs. This is because the problem

size is large and requires more computation time to satisfy the constraints.

4.3 Solution Quality

The quality of the solution is defined by the number of tasks visited. Experiments

are performed to determine what factors affect the solution quality and why.

A sufficiently large problem size of 15 tasks and 5 robots is selected for

TOPTAW to compare the relation between solution quality and Tmax. The time

budget is varied from 100 to 2000 secs, having 7 distinct data points. Figure 4.3

suggests the number of tasks visited heavily depends on the time given to the

entire assignment (Tmax). If sufficient time is allotted, then more tasks can be

performed, otherwise tasks are dropped.

Similar analysis can be performed on the TOPEC formulation. The data used

here is from the same four sets of experiment data obtained by varying L and

Tmax previously used to study computation time. Consider Figure 4.4(a), the

33

4. EXPERIMENTAL EVALUATION

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: (TOPEC) Effect on computation time with increasing number of
nodes (refer plots in top row); Effect on computation time with varying max
energy level, L and time budget, Tmax (refer bottom two rows)

34

4.3 Solution Quality

Figure 4.3: (TOPTAW) Effect on solution quality with varying time budget Tmax

solution quality for Tmax = 200 is higher for each problem set than Tmax = 100.

As the energy level is higher in Figure 4.4(b), the formulation performs better

than the previous case for same number of robots and tasks. The red line acts as

a reference for ideal scenarios where no tasks are dropped.

(a) Maximum energy level, L=75 (b) Maximum energy level, L=100

Figure 4.4: (TOPEC) Effect on solution quality with varying Tmax for given
energy level L

35

4. EXPERIMENTAL EVALUATION

4.4 Trends in Optimal Solutions

We now search for trends in optimal selection of tasks, in other words, given

certain restrictions how task selection is affected. For that we gather all the

collected data, and record the distance between each consecutive nodes of the

optimal route generated. We then take this stream of data and calculate the

frequency of instances for which a certain range of distances repeat. As the grid

size is 100x100, the range is [0, 100].

For TOPTAW (see Figure 4.5) we record additional information: the rewards

associated to the visited nodes and the time left to complete the task after the

robot’s arrival. Figure 4.5(a) presents the three frequency plots generated from

690 data points. The distance graph shows the random distribution of tasks in

space. A notable inference is that the robot’s tend to arrive at the tasks at the

very last moment, as the time left is < 10 secs for most of the tasks visited.

When rewards are introduced in another experiment generating 1061 data

points. In Figure 4.5(b)), we can see that the robots try to visit tasks that are

far away, and try to arrive earlier to collect those rewards.

To prevent the tasks from being performed at the last moment, we exploited

the objective function in Equation 3.4 in this problem and collected the 381 data

points. Figure 4.5(c) shows improvement in the time left after arrival.

Additionally, the difference in distance data for TOPEC is shown in Figure

4.6. As the Tmax increases in Figure 4.6(b), the robots get time to visit farther

tasks as opposed to the situation in Figure 4.6(a). The same reasoning is applied

to Figures 4.6(c) and 4.6(d).

36

4.4 Trends in Optimal Solutions

(a) Experiment with unit rewards

(b) Randomly assigned rewards to tasks

(c) Maximizing the time left after arrival as the objective function

Figure 4.5: (TOPTAW) Trends in optimal solution for selecting tasks based of
distance, rewards and deadline

37

4. EXPERIMENTAL EVALUATION

(a) Robots: 3, L: 100, Tmax: 100 (b) Robots: 3, L: 100, Tmax: 200

(c) Robots: 3, L: 75, Tmax: 100 (d) Robots: 3, L: 75, Tmax: 200

Figure 4.6: (TOPEC) Trends in optimal solution for selecting tasks based on
distance and energy left

38

Chapter 5

Conclusions

This work focuses on the problem of simultaneous task allocation and schedul-

ing for multi-robot systems. We formulate two variants of Team Orienteering

Problem. The first, Team Orienteering Problem with Task Activation Windows

(TOPTAW) consists of task activation windows, task duration and quota require-

ments. It is an approach to solve simultaneous task allocation and scheduling

for cooperative tasks having temporal ordering constraints and team formation.

The second, Team Orienteering Problem with Energy Constraints (TOPEC) in-

volves recharging stations and energy limitations. This formulation integrates

autonomous recharging of robots while allocating tasks and finding an optimal

time schedule.

From the optimal solutions, we infer that computational runtime exponen-

tially increases with the number of tasks. Optimal solutions for TOPTAW are

generated as quick as 24 secs for 40 tasks and 8 robots. The optimal solutions

tend to select task in which the robots perform the tasks at the very last moment.

Optimal solutions for TOPEC, produced within 7429 secs for 7 tasks, 8 depots

and 5 robots, are comparatively slower. In addition, the task selection heavily

depends on the traveling distance when the energy is limited.

The next step is to combine simultaneous task allocation and scheduling with

39

5. CONCLUSIONS

team formation and energy limitations in a single model. The temporal rela-

tionships among tasks in the combined is more complex due to the addition of

energy limitations which maps to operational time limitations. The challenge is

in finding valid inequalities to generate optimal solutions faster. Such formula-

tion can model a larger domain of problems found in real-world applications like

warehousing, delivery systems, search and rescue, and surveillance, than existing

research. This work would be demonstrated in a multi-robot physics simulator

ARGoS [44], along with an implementation on a physical multi-robot test-bed.

40

References

[1] “Morgridge Institute for Research and Wisconsin Institute for Discovery,

NEOS Server,.” https://neos-guide.org/. vii, 8

[2] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a

review from the swarm engineering perspective,” Swarm Intelligence, vol. 7,

pp. 1–41, Mar. 2013. 1

[3] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating Hundreds of

Cooperative, Autonomous Vehicles in Warehouses,” AI Magazine, vol. 29,

p. 9, Mar. 2008. 1

[4] Z. Yan, N. Jouandeau, and A. A. Cherif, “A Survey and Analysis of Multi-

Robot Coordination,” International Journal of Advanced Robotic Systems,

vol. 10, p. 399, Dec. 2013. 1

[5] M. Gini, “Multi-Robot Allocation of Tasks with Temporal and Ordering

Constraints,” in Thirty-First AAAI Conference on Artificial Intelligence,

Feb. 2017. 2, 4, 12

[6] E. Tuci, M. H. M. Alkilabi, and O. Akanyeti, “Cooperative Object Transport

in Multi-Robot Systems: A Review of the State-of-the-Art,” Frontiers in

Robotics and AI, vol. 5, 2018. 2

[7] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated

41

https://neos-guide.org/

REFERENCES

multi-robot exploration,” IEEE Transactions on Robotics, vol. 21, pp. 376–

386, June 2005. 2

[8] B. P. Gerkey and M. J. Matari, “A Formal Analysis and Taxonomy of Task

Allocation in Multi-Robot Systems,” The International Journal of Robotics

Research, vol. 23, pp. 939–954, Sept. 2004. 3

[9] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy for

multi-robot task allocation,” The International Journal of Robotics Research,

vol. 32, pp. 1495–1512, Oct. 2013. 4

[10] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden, “The orienteering

problem: A survey,” European Journal of Operational Research, vol. 209,

no. 1, pp. 1–10, 2011. 4, 11

[11] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task

allocation problems with temporal and ordering constraints,” Robotics and

Autonomous Systems, vol. 90, pp. 55–70, Apr. 2017. 4, 12

[12] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem: A

survey of recent variants, solution approaches and applications,” European

Journal of Operational Research, vol. 255, no. 2, pp. 315–332, 2016. 7, 11

[13] M. Koes, I. Nourbakhsh, and K. Sycara, “Heterogeneous multirobot coordi-

nation with spatial and temporal constraints,” in Proceedings of the Twen-

tieth National Conference on Artificial Intelligence (AAAI), pp. 1292–1297,

AAAI Press, June 2005. 7, 13

[14] M. Gombolay, R. Wilcox, and J. Shah, “Fast Scheduling of Multi-Robot

Teams with Temporospatial Constraints,” MIT Web Domain, June 2013. 7,

13

42

REFERENCES

[15] M. Van der Merwe, J. Minas, M. Ozlen, and J. Hearne, “The cooperative

orienteering problem with time windows.” Optimization Online, 2014. 7, 11

[16] D. Mitchell, M. Corah, N. Chakraborty, K. Sycara, and N. Michael,

“Multi-robot long-term persistent coverage with fuel constrained robots,” in

2015 IEEE International Conference on Robotics and Automation (ICRA),

pp. 1093–1099, May 2015. 7, 16, 26

[17] N. Mathew, S. L. Smith, and S. L. Waslander, “Multirobot Rendezvous Plan-

ning for Recharging in Persistent Tasks,” IEEE Transactions on Robotics,

vol. 31, pp. 128–142, Feb. 2015. 7, 17

[18] N. Kamra and N. Ayanian, “A mixed integer programming model for timed

deliveries in multirobot systems,” in 2015 IEEE International Conference

on Automation Science and Engineering (CASE), pp. 612–617, Aug. 2015.

7, 17

[19] C. A. Floudas and X. Lin, “Mixed integer linear programming in process

scheduling: Modeling, algorithms, and applications,” Annals of Operations

Research, vol. 139, no. 1, pp. 131–162, 2005. 9, 24

[20] IBM, “Cplex optimization studio.” https://www.ibm.com/analytics/

cplex-optimizer. 10

[21] L. Gurobi Optimization, “Gurobi optimizer reference manual.” http://www.

gurobi.com, 2018. 10, 30

[22] J. C. Smith and Z. C. Taskin, “A tutorial guide to mixed-integer program-

ming models and solution techniques,” Optimization in Medicine and Biol-

ogy, pp. 521–548, 2008. 10, 11

43

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com
http://www.gurobi.com

REFERENCES

[23] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval

Research Logistics (NRL), vol. 34, no. 3, pp. 307–318, 1987. 11, 20

[24] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem and its

application to persistent monitoring tasks,” IEEE Trans. Robotics, vol. 32,

no. 5, pp. 1106–1118, 2016. 11

[25] KUKA, “Youbots.” http://www.youbot-store.com/. 13

[26] A. Prorok, M. A. Hsieh, and V. Kumar, “Fast Redistribution of a Swarm of

Heterogeneous Robots,” EAI Endorsed Transactions on Scalable Informa-

tion Systems, vol. ”3”, pp. 249–255, May 2016. 13

[27] B. P. Gerkey and M. J. Mataric, “Sold!: auction methods for multirobot

coordination,” IEEE Transactions on Robotics and Automation, vol. 18,

pp. 758–768, Oct. 2002. 13

[28] E. Nunes and M. Gini, “Multi-Robot Auctions for Allocation of Tasks with

Temporal Constraints,” in Twenty-Ninth AAAI Conference on Artificial In-

telligence, Feb. 2015. 14

[29] G. P. Das, T. M. McGinnity, S. A. Coleman, and L. Behera, “A Distributed

Task Allocation Algorithm for a Multi-Robot System in Healthcare Facili-

ties,” Journal of Intelligent & Robotic Systems, vol. 80, pp. 33–58, Oct. 2015.

14

[30] H. Hanna, “Decentralized approach for multi-robot task allocation problem

with uncertain task execution,” in 2005 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 535–540, Aug. 2005. 14

[31] Y. Khaluf and F. Rammig, “Task Allocation Strategy for Time-Constrained

Tasks in Robots Swarms,” The 2018 Conference on Artificial Life: A Hybrid

44

http://www.youbot-store.com/

REFERENCES

of the European Conference on Artificial Life (ECAL) and the International

Conference on the Synthesis and Simulation of Living Systems (ALIFE),

pp. 737–744, July 2013. 15

[32] B. Kannan, V. Marmol, J. Bourne, and M. B. Dias, “The Autonomous

Recharging Problem: Formulation and a market-based solution,” in 2013

IEEE International Conference on Robotics and Automation, pp. 3503–3510,

May 2013. 15

[33] C. Cheng, Y. Adulyasak, and L.-M. Rousseau, Formulations and Exact Al-

gorithms for Drone Routing Problem. July 2018. 16

[34] K. Sundar and S. Rathinam, “Route planning algorithms for unmanned

aerial vehicles with refueling constraints,” in 2012 American Control Con-

ference (ACC), pp. 3266–3271, IEEE, 2012. 16

[35] K. Sundar and S. Rathinam, “Algorithms for Routing an Unmanned Aerial

Vehicle in the Presence of Refueling Depots,” IEEE Transactions on Au-

tomation Science and Engineering, vol. 11, pp. 287–294, Jan. 2014. 16

[36] K. S. David Levy and S. Rathinam, “Heuristics for routing heterogeneous

unmanned vehicles with fuel constraints,” Mathematical Problems in Engi-

neering, no. 131450, p. 12, 2014. 16

[37] H. Hamann, C. Markarian, F. M. a. d. Heide, and M. Wahby, “Pick, Pack,

& Survive: Charging Robots in a Modern Warehouse based on Online

Connected Dominating Sets,” in 9th International Conference on Fun with

Algorithms (FUN 2018) (H. Ito, S. Leonardi, L. Pagli, and G. Prencipe,

eds.), vol. 100 of Leibniz International Proceedings in Informatics (LIPIcs),

(Dagstuhl, Germany), pp. 22:1–22:13, Schloss DagstuhlLeibniz-Zentrum fuer

Informatik, 2018. 16

45

REFERENCES

[38] D. Mitchell, N. Chakraborty, K. Sycara, and N. Michael, “Multi-robot per-

sistent coverage with stochastic task costs,” in 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 3401–3406, Sept

2015. 16

[39] N. Mathew, S. L. Smith, and S. L. Waslander, “A graph-based approach

to multi-robot rendezvous for recharging in persistent tasks,” in 2013 IEEE

International Conference on Robotics and Automation, pp. 3497–3502, May

2013. 16

[40] C. E. Noon and J. C. Bean, “An efficient transformation of the generalized

traveling salesman problem,” INFOR: Information Systems and Operational

Research, vol. 31, no. 1, pp. 39–44, 1993. 17

[41] P. Maini and P. B. Sujit, “On cooperation between a fuel constrained UAV

and a refueling UGV for large scale mapping applications,” in 2015 Interna-

tional Conference on Unmanned Aircraft Systems (ICUAS), pp. 1370–1377,

June 2015. 17

[42] N. Kamra, T. K. S. Kumar, and N. Ayanian, “Combinatorial Problems in

Multirobot Battery Exchange Systems,” IEEE Transactions on Automation

Science and Engineering, vol. 15, pp. 852–862, Apr. 2018. 17

[43] D. Dutia, “task planning, NESTLab.” https://github.com/NESTLab/

task_planning, 2018. 29, 30

[44] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,

N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gam-

bardella, and M. Dorigo, “ARGoS: a modular, parallel, multi-engine simula-

tor for multi-robot systems,” Swarm Intelligence, vol. 6, no. 4, pp. 271–295,

2012. 40

46

https://github.com/NESTLab/task_planning
https://github.com/NESTLab/task_planning

	Worcester Polytechnic Institute
	Digital WPI
	2019-04-24

	Multi-Robot Task Allocation and Scheduling with Spatio-Temporal and Energy Constraints
	Dharini Dutia
	Repository Citation

	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Problem Statement
	1.4 Contributions
	1.5 Overview of the Thesis

	2 Related Work
	2.1 Operations Research Background
	2.1.1 Mixed Integer Linear Programming
	2.1.2 Team Orienteering Problem

	2.2 Task Allocation and Scheduling Background
	2.3 Recharging Robots Background

	3 Methodology
	3.1 Problem Formulation
	3.2 Objective Function
	3.3 Core Constraints
	3.4 Activation Windows
	3.5 Energy Limitations

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Computation Time
	4.3 Solution Quality
	4.4 Trends in Optimal Solutions

	5 Conclusions
	References

