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Abstract

Vehicular Ad-hoc Network (VANET) is considered to be a viable technology for inter-

vehicle communications for the purpose of improving road safety and efficiency. The En-

hanced Distribution Channel Access (EDCA) mechanism and multichannel operations are

introduced to ensure the Quality of Service (QoS). Therefore, it is necessary to create an

accurate vehicular network simulator that guarantees the vehicular communications will

work as described in the protocols.

A comprehensive vehicular network simulator should consider the interaction between

mobility models and network protocols. In this dissertation, a novel vehicular network

simulation environment, VANET Toolbox, designed using discrete-event system (DES) is

presented. The APP layer DES Module of the proposed simulator integrates vehicular mo-

bility operations with message generation functions. The MAC layer DES module supports

single channel and multichannel EDCA operations. The PHY layer DES module supports

bit-level processing. Compared with packet-based simulator such as NS-3, the proposed

PHY layer is more realistic and accurate.

The EDCA scheme is evaluated and compared with the traditional Carrier-Sensing Mul-

tiple Access (CSMA) scheme, with the simulations proving that data with different priorities

can coexist in the same channel. The multichannel operation for the EDCA scheme is also

analyzed in this dissertation. The multichannel switching operation and coordination may

cause packet dropping or increased latency to the communication. The simulations show

that with heavy network traffic, multichannel communication performs better than single

channel communication. From the perspective of safety-related messages, the multichannel

operation is able to isolate the interference from the non-safety messages in order to achieve

a better packet delivery rate and latency. On the other hand, the non-safety messages can

achieve high throughput with reasonable latency from multichannel communication under

heavy load traffic scenario.
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Chapter 1

Introduction

1.1 Motivation

In 2016, National Highway Traffic Safety Administration (NHTSA) announced that

37,461 people were killed in 34,436 vehicle crashes, an average of 102 per day [1]. Self-

driving technology is one strategy that promises to save lives. The automotive sector has

been focused on technologies that enable self-driving vehicles for years [2–6]. Currently, the

self-driving technologies are focusing on the auxiliary sensors such as the Light Detection and

Ranging (LiDAR) technology [7] and vision cameras [8,9]. Unfortunately, most sensors are

facing restrictions. For instance, the commercially available LIDAR devices are as expensive

as $75,000 USD, which is even higher than the cost of a general vehicle itself [10]. The vision

camera technology usually needs a line of sight environment. On the contrary, the wireless

communication technology is not strictly constrained by the transmission environment and,

due to its low cost, it has already been widely adopted by varieties of portable devices such

as phones [11] and laptops.

Over the past several years, wireless communication and networks have become impor-

tant across several domains, including the automotive sector. Ever since the first generation

analog communication system in 1970 to the high speed digital networks we use everyday,

wireless networks have been improving dramatically. Consequently, the automotive sector

has started to leverage wireless communication networks in order to increase the situational
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awareness level of self-driving cars as well as the reliability of the information they gather

from the surrounding environment. These vehicles using wireless communication technol-

ogy enables them to talk to each other with shared safety and mobility information; these

vehicles are called connected vehicles. Connectivity promises more situational awareness,

thus achieving the ability of these vehicles to save lives [12].

Vehicular networking has been extensively researched over the past two decades [13].

Given the complex nature of the operating environment, including the rapidly changing

network topology [14], time-varying physical characteristics of the propagation medium

[15, 16], and the need for a robust medium access control (MAC) protocol [17], vehicular

networking is a challenging research area being addressed by both academia and industry.

Figure 1.1: Interoperability on VANET/DSRC: V2I and V2V. The figure shows examples
of BSMs via V2V and left turn signal via V2I. A simplified Finite State Machine (FSM) of
EDCA in VANET/DSRC is also shown.

Vehicular Ad-hoc Networks (VANETs) are one type of Mobile Ad-hoc Networks (MANETs)

that are specifically designed for moving cars. A VANET supports two types of communica-

tions: vehicle-to-vehicle (V2V) [18] and vehicle-to-infrastructure (V2I) communications [19],

as shown in Figure 1.1. For V2V communications, the vehicles are equipped with an On

Board Unit (OBU). The V2V communication is deployed between the vehicular OBUs for

the purpose of road safety and traffic management applications [20]. Measurements for V2V

DSRC are presented in [18]. For V2I communications, a RoadSide Unit (RSU) is installed

to traffic infrastructure, such as traffic lights. The V2I communication is performed between
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the RSUs and the OBUs [21,22].

One of the applications provided by VANET is road safety, which is one of the primary

motivations for implementing vehicular communications. The National Highway Traffic

Safety Administration (NHTSA) defined several scenarios of DSRC in DOT-HS-821-014

[23]. The maximum delay for the vehicles to receive these emergency messages affects their

ability to handle actions in order to avoid accidents. Reference [24] states that vehicular

networks have the potential to save time and save lives. Therefore, vehicular network

applications can be classified into two types: safety-related applications, and efficiency

applications (non-safety applications).

In 2011, Vehicle Safety Communications Applications (VSC-A) organization summarized

eight crash scenarios based on the statistics of vehicle accidents obtained from the US

government with respect to frequency, cost, and casualties [25]. To address these crash

scenarios, VSC-A proposed several safety applications such as Emergency Electronic Brake

Lights (EEBL) [26], Blind Spot Warning (BSW)/Lane Changing Warning (LCW) [27], and

Intersection Movement Assist (IMA) [28]. These safety applications are often evaluated in

the vehicular mobility models [29]. In order to guarantee the safety applications will work as

described in the standards, it is necessary to create accurate vehicular network simulations.

1.2 State-of-the-Art

Vehicular network simulation can be classified into hardware simulations and software

simulations. One example of hardware simulation is the Mcity project of University of

Michigan, which owns a 32-acre mock city and 1,500 vehicles [30]. The cost of Mcity in

2015 is 10 million dollars with an extra 15 million dollars invested in 2018 [31]. On the

other hand software simulations are another option to provide an evaluation environment

of vehicular network performance with low cost and decent accuracy.

A software vehicular network simulator is usually complicated because it has to consider

vehicular mobility and communication network simultaneously. The position and speed of

vehicles may impact the quality of wireless communications, and the shared information

over a vehicular communication network could influence the vehicular path and mobility
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decisions. This strong interaction requires the traffic mobility simulators to work closely

with vehicular network simulators [32].

Unfortunately, compatibility issues have become a significant challenge because both

types of simulators have been designed to be controlled separately. This interaction has

almost never been considered as the primary goal when designing simulators. Over the past

few years, vehicular network researchers have worked hard to create an interface between

the two simulation fields and several achievements have been proposed. Based on the level

of interactions, we classify the simulators as joint simulators and integrated simulators.

Figure 1.2: Interaction in Joint Network and Traffic Simulator. Vehicular traffic flows are
created by vehicular traffic simulator and passed to the network simulator via the 3rd party
communication interface. The network simulator then performs network simulation based
on the traces information and returns the results through the communication interface. The
vehicular traffic simulator alters the vehicles’ movement according to the network commu-
nication result.

For the joint simulators shown in Figure 1.2, an interface is created to associate the

existing traffic mobility simulators and network simulators. An example is the iTetris [33]

project, which associates the traffic simulator SUMO [34, 35] with the network simulator

NS-2 [36, 37], NS-3 [38, 39], or OMNET [40]. Another example is using TraCI [41–43] to

connect SUMO to other simulator like OMNet++ or MATLAB. The interface here plays a

role of relaying messages between the simulators. Traffic flows are extracted from SUMO

and sent to the network simulator through the interface, and instructions from the network

simulators are sent to SUMO to alter the traffic. The advantage of this cross-layer joint

approach is to enjoy the benefits of both well-developed simulators. However, one limitation
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is the design complexity of the interface as it needs to let both simulators run simultaneously.

Another limitation is the configuration complexity, as the users usually need to tweak a large

number of parameters on both simulators to make the simulation work correctly.

Figure 1.3: Interaction in Integrated Network and Traffic Simulator. The vehicular trace
information is passed to the network simulator directly, where the latter performs network
simulation and returns the results. Then the vehicular traffic simulator alters the vehicles’
movements in real time.

Another solution is to combine network and traffic simulators into one single simulator

for the purpose of full interaction. This type of simulator is referred to as an integrated

simulator as shown in Figure 1.3, which has the capability to have both simulators work

and interact flawlessly. Several examples are MoVes [44], NCTUns simulator [45] and,

VISSIM [46]. The limitations mainly come from the oversimplified network or mobility

models. For example, several simulators only have a basic radio propagation model with

CSMA/CA as the MAC layer [47].

The PHY layer model in NS-3 integrates several VANET characteristic components

at the packet level. One difference between MATLAB and NS-3 platform in a VANET

simulation is how the PHY layer is implemented. The proposed MATLAB-based VANET
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simulator in this dissertation performs all the signal processing on the bit level and transmits

wireless signals using the MATLAB WLAN System Toolbox as in [48], which increases

accuracy when compared to NS3 with respect to model bit error rates at the receiver end [49].

Furthermore, in a MATLAB/Simulink model, it is feasible to replace the simulated wireless

channel with real radio hardware such as USRP [50,51].

1.3 Research Contributions

In this dissertation, we present an integrated vehicular network simulator, VANET Tool-

box, works in MATLAB/Simulink environment, as shown in Figure 1.4. VANET Toolbox

covers the main stack of vehicular network protocols including the application (APP) layer,

the medium access control (MAC) layer, and the physical (PHY) layer. Several mobility

models including car following, lane changing, as well as intersection management are em-

bedded in the APP layer. The design purpose of VANET Toolbox is to provide a framework

of a vehicular simulation environment so that more developers can continue to improve it.

Figure 1.4: Overview of VANET Toolbox Library and Simulation Panel. The left section
is the VANET Library containing Simulink blocks of VANET Toolbox. The right section
shows examples of running simulation via Simulink model or VANET UI Panel.
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The contributions of this paper are summarized as followings:

• The proposed novel vehicular network simulation environment is an integrated type

simulator combining both vehicle traffic simulation and network simulation together.

It supports a hybrid of time-driven and event-driven simulation environment. The

design framework of multichannel operation is provided in details and it can be applied

to any DES programming language.

• The performance of single channel communication is evaluated with the proposed

simulation environment. The proposed bit-level PHY layer shows its accuracy when

compared with packet-level NS-3. The simulations prove that the EDCA scheme in

the single channel scenario is able to allow data with different priorities to coexist in

the same channel and the EDCA scheme is effective in ensuring the quality of service

(QoS) of safety-related messages with higher priority. Two coordinated lane changing

schemes based on single channel V2V communication are evaluated and the overall

traffic efficiency can be enhanced by the vehicular communication.

• The performance of a multichannel EDCA mechanism is evaluated with all four ACs

traffic levels enabled, i.e., the data flows within 4ACs × 7channels = 28ACs. The

results prove that the multichannel scheme will bring a high packet delivery ratio and

a high throughput to the overall network traffic, while at the same time the chan-

nel switching operation may cause a obvious impact on safety-related services with

strict latency requirements. Additionally, a cooperative SCH/AC reservation scheme

is proposed, which could adaptively decide the SCH frequency as well as AC prior-

ity according to the SCH/AC information received from nodes with at most two-hop

distance. The simulation result shows the proposed scheme is able to increase the

channel utilization with multiple priorities, thereby reducing the contention probabil-

ity to achieve an improvement on packet delivery latency.
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1.4 Dissertation Outline

The rest of this dissertation proposal is organized as follows: Chapter 2 discusses the

theoretical fundamentals used in this work. This chapter starts from the classification of

a system, then introduces the concept of a general Discrete-Event System (DES). A DES

can be described by Automata or State Transition Diagram. A DES simulator is usually

designed based on timed automata or event scheduling scheme. Next, this chapter explains

the three basic elements in a MATLAB DES and shows how to create a simple MATLAB

DES step-by-step. Finally, the theory and protocols of a vehicular network are introduced.

In Chapter 3, a prototype vehicular network simulator, VANET Toolbox, is devised and

implemented. The chapter focuses on the structure of APP, MAC and PHY layers and

the implementations of these layers using MATLAB DES. Then, other simulator related

features are also implemented. These features are necessary to a vehicular network simu-

lator and implemented using MATLAB/Simulink. Finally, the methods to create a model

using VANET Toolbox are shown and the advantages and limitations of each methods are

discussed.

In Chapter 4, the performance of VANET Toolbox is evaluated. The analysis starts from

the computational costs in terms of events of a general vehicular network model. Then, a

case study of V2V communication is performed. We first show how the EDCA protocol

ensures the quality-of-service (QoS) of messages with higher priority under heavy network

traffic. Next, two lane-changing schemes based on V2V communications are proposed. The

limitations of VANET Toolbox are provided at the end of the chapter.

Chapter 5 describes the multichannel operations including channel switching operation

and coordination. The design framework of multichannel operation in DES is provided and

the its implementation in MATLAB/Simulink is also provided. A series of simulations on

both single channel and multichannel communication are conducted. The results shown

that multichannel operations are able to guarantee the QoS of safety-related services with

respect to a lower latency and a higher packet delivery ratio meanwhile providing high

throughput to non-safety services.



Chapter 1 9

1.5 Resulting Peer-Reviewed Publications and Software Projects

Throughput this dissertation, I have published my research work in high-impact, peer-

reviewed venues.

Peer-Reviewed Journal Papers

• L. Wang and A.M. Wyglinski, ”Multichannel EDCA Operations for Vehicular Net-

works via Discrete Event System”, IEEE Access, submitted, 2019. Impact factor:

3.557 (2017).

• L. Wang, R. Iida and A. M. Wyglinski, ”Vehicular Networking Simulation Environ-

ment via Discrete Event System Modeling,” IEEE Access, under 2nd review, 2019.

Impact factor: 3.557 (2017).

Peer-Reviewed Conference Papers

• L. Wang, R. Iida and A. M. Wyglinski, “Performance Analysis of Multichannel EDCA-

based V2V Communications via Discrete Event System”, submitted, in Vehicular

Technology Conference (VTC Fall), 2019 IEEE 90th, Sept 2019.

• L. Wang, R. Iida and A. M. Wyglinski, ”Coordinated Lane Changing Using V2V

Communications,” in Vehicular Technology Conference (VTC Fall), 2018 IEEE 88th,

Aug 2018.

• L. Wang, R. Iida and A. M. Wyglinski, ”Performance Analysis of EDCA for IEEE

802.11p/DSRC based V2V Communication in Discrete Event System,” in Vehicular

Technology Conference (VTC Fall), 2017 IEEE 86th, Sept 2017.

Software Project: VANET Toolbox

The vehicular network simulator, VANET Toolbox, is open source and can be downloaded

from the File Exchange MATLAB Central by searching ‘VANET Toolbox’. A Github link

for the VANET Toolbox repository is also provided in [52].
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Chapter 2

Fundamentals of DES Simulation

and Vehicular Network

This chapter introduces all necessary knowledge to build a MATLAB discrete event

system (DES). The chapter starts from the definition of a system. From the classification

of systems, DES is defined as a discrete-state and event-driven system. A DES can be

simulated by timed automata or event scheduling scheme. Next, the basic elements (entity,

event,action) of a MATLAB DES are introduced and a sample MATLAB DES is created

step by step. The last section of this chapter discusses DSRC/WAVE standards, which are

the theoretical basis of VANET Toolbox.

2.1 Discrete Event Systems

A Discrete event system (DES) is a special class of systems, which is an abstract model

of a real discrete-state event-driven system to be simulated [53]. The abstract system may

include numerous system states that occur at discrete instants of time. The transitions of

system states are described as Events. The idea of event-driven is similar to the interrupt

feature in computer systems. A computer system is designed to cope with asynchronous

events that may occur at any time. These events are independent to the computer clock.

Therefore, the technology, especially with computers involved, is usually an event-driven
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Figure 2.1: Systems overview and Discrete Event Systems. Discrete Event System is clas-
sified as a discrete-state event-trigger system. A hybrid system including both time-driven
and event-driven DES is suitable for network PHY layer simulation.

system such as communication systems with message timeout features.

2.1.1 Discrete Event System Concept

When a system can be described as a set of discrete states, and the state transitions

are caused by events which occur instantaneously, this system is a Discrete Event System

(DES), i.e., a DES is a discrete-state, event-driven system, and its state transitions are

entirely caused by the asynchronous discrete events over time as shown in Figure 2.1. In

a DES, ‘time’ is no longer the key factor to drive the system. The set of events replace

the role of time and serves the purpose of driving a DES, with each ‘event’ causing a state

transition. A DES may be modeled in either continuous time or in discrete time.

Even though a DES is defined as a discrete-state, event-driven dynamic system, it is
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worth noting that a hybrid DES is more general when both time-driven and event-driven

are present, as shown in Figure 2.1. For example, the operating system (OS) in a computer

is designed to not only respond to asynchronous events occurring at any time but also pro-

cessing functions synchronized by the computer clock. A hybrid DES may be deterministic

or stochastic, and it can be modeled in either discrete or continuous time. More details

about the classification of systems are provided in Appendix A.

The event set E is thought of as an alphabet of a DES. A sequence of events taken

from the event set E becomes a string. A language defined over an event set E is a set of

finite-length strings formed from events taken from E. Suppose an event set is E = {a, b, g},

a example of language L can be L = {ε, a, abb}, in which ε is empty string, a is a single

event and abb is a string of events taken from E with duplicate events.

As mentioned in the previous sections, a continuous state system can be modeled either

by differential equations for continuous-time system or difference equations for a discrete-

time system. Modeling a discrete event system is more complicated. In this section, a

basic modeling mechanism, named Automata, for discrete event system is introduced. The

concept of an automaton is shown through the state transition diagram (see Figure 2.2).

Suppose an event set is E = {a, b, g}. The circles in Figure 2.2 represent states and

the arrows indicate the transitions between states. The state space of the automaton is

X = {x, y, z}. The tags above the state transition arrows are event elements from the

event set E. The transition function of the automaton is denoted as f : X × E → X.

For example, f(x, g) = y means the automaton is in state x. After event g happens, the

automaton transits the state to y, i.e., x → y. The trigger of event a may be either an

external input to the system, or an event generated by the system itself. The initial state

is denoted by x0, and a subset Xm ⊆ X named marked states is identified as double circles.

Marked states indicate states that have special meanings.

Table 2.1: All transition functions showing in Figure 2.2.

f(x, a) = x f(x, g) = y

f(z, g) = z f(z, b) = x

f(y, b) = b f(y, a) = f(y, g) = z



Chapter 2 13

Figure 2.2: A simple automaton with state transition. States x, y, z may transit to another
state via state transition functions caused by events.

All transition functions shown in the automaton of Figure 2.2 are listed in Table 2.1.

From the transition functions, we observe the state may not change even after an event is

occurred, as in f(x, a) = x, where the state remains in x after event a happened. Further-

more, different events triggered on the same states may cause the same state transition,

such as f(y, a) = f(y, g) = z. In this case, both event a and event g can transit the initial

state y to state z. Thus, it is difficult to distinguish between event a and event g by only

observing the state transition y → z.

A deterministic automaton is defined in Eq. (2.1). The annotations in the deterministic

automaton are summarized in Table 2.2. A deterministic automaton indicates the state

transition function f is derived from X × E → X, that is, only one state transition occurs

within the same events. In contrast, for the nondeterministic automaton, the state transi-

tion function f is defined by X × E → 2X . In this case, more than one state transitions

may occur with the same event.

G = (X,E, f,Γ, x0, Xm). (2.1)

The automaton G starts in the initial state x0 and after an event e ∈ Γ(x0) ⊆ E has

occurred, it transits the state from x0 to f(x0, e) ∈ X. Then, the process continues based
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Table 2.2: Notations and Definitions of a DES automaton .

Notations: Definitions: Instances:

E discrete event set E = {a, b, g}

e an element event of E e = a

ε a string contains no events ε = emptystring

|s| length of string s |ε|== 0

X state space X = {x, y, z}

Xm set of marked states Xm ⊆ X

x0 initial state

f transition function f(z, b) = x

Γ(x) feasible event function of automaton at x Γ(x)→ f(x, e)

on which state transition function f is inputed or generated to the system. Some examples

of state transition functions are listed as:

f(x, ε) = x

f(y, bab) = f(f(y, ba), b) = f(f(f(y, b), a), b) = f(f(y, a), b) = f(z, b) = x

2.1.2 Discrete Event Simulation

The above section has described how the state of a DES evolved as a result of event

occurrences over time. The goal of this section is to use a model in order to obtain explicit

mathematical expressions for quantities of interest. Simulation is a process through which a

system model is evaluated numerically, and the data from this process are used to estimate

various quantities of interest [53]. Several discrete-event simulation models are introduced

in this section.

Timed Automata

The automaton G = (X,E, f,Γ, x0) we mentioned previously is referred to untimed

automaton as time is not involved. In order to define a timed model of a DES, a Clock
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Figure 2.3: Clock Structure of a DES with Single Event E = {α}.

Structure is introduced. We start from the simplest DES, that is, a single event E = {α} in a

DES shown in Figure 2.3. The feasible event set is Γ(x) = {α} for all x ∈ X. The notations

of the automaton G = (X,E, f,Γ, x0) are recorded in Table 2.2. The event sequence in

this DES is ~e = {e1, e2, ..., ek} and e1 = e2 = ... = ek = α. Event Lifetime denoted by vk

is defined as the length of the time interval of two successive events. For the single event

DES, the kth lifetime of the event is defined as:

vk = tk − tk−1, k = 1, 2, ..., k, vk ∈ R+. (2.2)

At time tk−1, the kth event, ek, is enabled with a lifetime vk. A timer attached to ek

starts to count down from vk. At time tk = tk1 + vk, the timer reaches 0, ek has to occur,

a state transition is caused from xk−1 to xk. Then, the same process repeats with the

(k + 1)th event, ek+1.

An event has three status values: active, enabled, and occurring. The event α is active

as long as it is feasible in the the current state, i.e., α ∈ Γ(x). The event ek is enabled when

the last event, ek−1, occurs and a state transition is caused. An event is occurring when its

timer ticks down to 0, and a state transition takes place.

Suppose t is any time instant tk−1 ≤ t ≤ tk+1 as shown in Figure 2.3. Then, t divides

the time interval [tk−1, tk] into two sections, named clock of the kth event:

yk = tk − t, (2.3)

and age of the kth event is:
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Figure 2.4: Clock Structure of a DES with double Events E = {α, β}.

zk = t− tk−1. (2.4)

Subsequently, we get the expression:

vk = zk + yk. (2.5)

Based on the analysis above, a DES can be specified by the clock sequence of events,

that is, ~v = {v1, v2, ..., vk}.

A DES with more than one event is more complicated. Suppose a DES has two events,

E = {α, β}, and both events are always feasible, i.e., Γ(x) = {α, β} for all x ∈ X. Then,

two clock sequences of lifetimes for both events are specified by:

~vα = {vα,1, vα,2, ..., vα,k}, ~vβ = {vβ,1, vβ,2, ..., vβ,k}, . (2.6)

Starting from time t0 in Figure 2.4, both event α and event β are enabled, thus which

event will occur first becomes a question. The winner is selected by comparing vα,1 with
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vβ,1 and selecting the event with the shortest lifetime. Suppose vα,1 < vβ,1, then event α

will be the first event to occur at time t1 = t0 + vα,1.

Once event α has occurred, the state transition x0 → x1 is caused and the DES needs to

figure out which event occurs next. Since event β is still enabled at time t1, the clock value

of β is yβ,1 = vβ,1 − vα,1. At the same time, a new α is enabled. Since the old α just took

place, the new α is defined with a new lifetime vα,2, selecting from the given clock sequence

Eq. (2.6). If vβ,1 < vα,2, β has a smaller clock value than α, then β is selected to occur at

time t2 = t1 + yβ,1.

To summarize, the mechanism of choosing the next event for a DES with more than one

events is by comparing clock values and picking the event with the smallest clock value.

Whenever an event has occurred, its clock is reset to a new lifetime value from its clock

sequence.

The event scheduling scheme

Simulation is a systematic means for generating sample paths of a DES, as shown in

Figure 2.3 and 2.4. The event scheduling scheme is one approach to generate a sample path.

Recall that E is a countable event set, and X is a countable state space. The initial state

x0 ∈ X is given at time t0 = 0 and the feasible events set is Γ(x) ⊆ i. Each state has a

feasible events set Γ(x), the events from Γ(x) are the only events which may occur at this

state.

For the initial event x0, its feasible events set is Γ(x0). Suppose a feasible event i ∈ Γ(x0),

has a clock value is attached, which indicates the period required before event i occurs. The

clock value for an event i is yi and its lifetime is vi. For all i ∈ Γ(x0), we have yi = vi.

More generally, a state x, including the initial state x0, has clock values yi where i ∈ Γ(x).

The triggering event e
′

is the next event which will occur at that state x, i.e., the event

chosen with the smallest clock value (see Eq. (2.7)). When event e
′

occurs at state x, a

new state x
′

is generated from the state transition function f(x, e
′
).

e
′

= arg min
i∈Γ(x)

{yi}. (2.7)
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The inter-event time , y∗, represents the amount of time spent at state x and is calculated

by:

y∗ = min
i∈Γ(x)

{yi}. (2.8)

The updated time is obtained by t
′

= t + y∗. Once the new state x
′

is generated, the

clock values for all feasible events are updated. If an event i ∈ Γ(x
′
) and i 6= e

′
remains

feasible in the new state x
′
, then recall event β in Figure 2.4, where the new clock value

is y
′
i = yi − y∗. For all events which are not feasible in x but become feasible in x

′
, i.e.,

e
′ ∈ Γ(x

′
) but e

′
/∈ Γ(x), a set of new lifetimes are supplied by the DES.

In the event scheduling scheme, whenever an event i is enabled at time tn, its next

occurrence is scheduled at time tn + vi, where vi is a lifetime sample supplied by the DES.

Thus, a Scheduled Event List (SEL) replaces maintaining the clock values yi, i ∈ Γ(x) where:

L = {(ek, tk)}, k = 1, 2, ...,mL. (2.9)

given that m is the number of events in the events set E, mL is the number of feasible events

for the current state, i.e., m = |E|,mL = |Γ(x)|,mL ≤ m. The SEL is always ordered on a

smallest-scheduled-time-first basis and shown in Figure 2.5.

The Initialize function sets the initial state to x0 and the initial simulation time t0 = 0.

And it is also triggers the Random Variate Generator to create event lifetimes vk for all

feasible events Γ(x). With a Schedule Event List (SEL) initialized, in which all entries are

stored in increasing order of scheduled times, including e1 being the triggering event and t1

being the time when e1 occurs, the DES simulation usually repeats the following six steps:

Step 1. Remove entry (e1, t1) from SEL.

Step 2. Update the simulation Time t
′

= t1.

Step 3. Update the State to new state x
′

according to x
′

= f(x, e1).

Step 4. Delete all (ek, tk) from SEL such that ek /∈ Γ(x
′
).
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Figure 2.5: The Event Scheduling scheme in computer simulation.

Step 5. Add unscheduled feasible event(s) to SEL. For such event i, the event time is

Time + vi, in which Time is set from Step 2 and vi is obtained from the Random Variate

Generator.

Step 6. Based on the smallest-scheduled-time-first scheme introduced in the last sec-

tion, the SEL is reordered.

A DES simulator on computers based on the Scheduled Event List scheme has the

following components:

1. Initialization Routine: Initializes all simulation data at the start stage of the simula-

tion.
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2. Data Registers: Stores data for estimation purposes.

3. state list: Stores all states variables.

4. State Update routine: Based on the next event, updates the state, i.e., x
′

= f(x, e
′
).

5. Time variable: Stores the simulation time t.

6. Time Update Routine: Decides which is the next event to occur and advances the

simulation time t to the occurrence time of that event.

7. Scheduled Event List (SEL): All scheduled events are stored in the list with their

occurrence time.

8. Random Variate Generation Routines: Computer generates random numbers and are

transformed into random variates based on the event lifetime distributions.

9. Report Generation Routine: Computes various interest based on the data collected

during the simulation.

10. Main Program: Coordinates all components including Initialization, State and Time,

then repeat the SEL steps introduced above. It is also responsible for stopping a

simulation and generating the reposts.

The Process-oriented Simulation Scheme

In a DES, users or applications are often contending for service due to the limit of

resources. These users or applications are considered as ’entities’. The entities flow through

the DES via a process, and a process is a sequence of events separated by time intervals.

During a time interval, an entity is either under service or waiting for service. The process-

oriented simulation scheme consists of several processes, one for each users or applications.

A DES simulator based on the process-oriented simulation scheme has the following

components:

1. Entities: Objects requesting service, e.g., data in a communication network. The

entity type is characterized by process in the DES and a DES may contain more than
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one type of entity types. For instance, in a communication network, data unit in

network layer is network entity and in MAC layer is frame entity. Both entities follow

different processes.

2. Attributes: A specific entity is attached with a unique attribute information containing

this entity’s attributes.

3. Resources: Objects providing service, e.g., CPUs in a computer, routers in a com-

munication network. Time delay mainly comes from service waiting time or service

processing time.

4. Queues: A container of entities who are requesting and waiting for the same resource.

An entity in a DES is either in the process of being served or waiting in some queue.

5. Process: A process is a sequence of functions including Logic functions and Time delay

functions. A logic function is an instantaneous action such as checking if a resource

is available or updating a data structure. The time delay function usually holds the

entity for some period of time. There are two types of time delay functions:

(a) Specified time: The delay is a fixed value. For instance, a service time in the

simulation only depends on some preset service time distribution.

(b) Unspecified time: The delay is not fixed depending on the state of the system.

For instance, the entity waiting period before receiving the requested source.

The process-oriented simulation scheme is suitable for queuing systems. For example,

the messages in the computer network are as entities flowing through a network of queues

and servers. An event scheduling scheme is more general to model DES. A DES simulation

language is usually based on the process-oriented simulation scheme, but also equipped with

event scheduling scheme to model features that the process-oriented scheme cannot handle.

Discrete Event Simulation Tools

In order to simulate a specific DES of interest, one has two options: either build a DES

simulator or use an existing DES simulator. Based on the event scheduling scheme and/or
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process-oriented scheme, it is possible to create a DES model using standard computer

languages such as C++. However, building a DES simulator is outside the scope of this

proposal. As our goal is to simulate a DES of vehicular network, choosing some existing

DES simulator is preferred. Several commercially available DES simulation software have

been created, almost all of them are Object-Oriented Programming (OOP) with Graphical

User Interface (GUI). Some of the DES software are introduced below:

• General Purpose Simulation System (GPSS) was developed by IBM and is current

available through Minuteman Software with the most recent version, GPSS/H [54].

Using the building blocks (macros) provided by GPSS/H, users can create process-

oriented simulation models in terms of block diagrams.

• SIMulation ANalysis (SIMAN) was developed by Pegden [55] and its latest version,

’Arena’, is equipped with GUI [56]. Arena supports event scheduling scheme and

process-oriented scheme with animation during the simulation. It is currently available

through Rockwell automaton.

• SIMSCRIPT was developed by Markowitz at the Rand Corporation. The most recent

version, SIMSCRIPT III [57], is available through the CACI Products Company. It

supports both process-oriented and event scheduling scheme.

• Simulation Language for Alternative Modeling (SLAM) was developed by Pegden and

Pritsker [58] and is available through the Pritsker Corporation. It supports both

process-oriented and event scheduling schemes. SLAM provides GUI and animation

for the modeling process.

• EXTEND is available through Imagine That, Inc. The feature of EXTEND is that

users can create their own OOP objects to extend the libraries for different applications

[59]. It supports hierarchical modeling and GUI as well as animation.

• SimEvents is a toolbox of MATLAB through The MathWorks, Inc [60]. SimEvents

Toolbox was required to operate with Simulink, which is a time-driven simulator

within MATLAB suite. Since MATLAB R2016a version, SimEvents is integrated with
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a MATLAB Discrete Event System (DES) system block. The MATLAB DES system

block allows users to create a event-driven system using MATLAB OOP languages.

Therefore, the new SimEvents toolbox with MATLAB DES supports both time-driven

and event-driven components in a hybrid way. More features are introduced in the

next section.

There are other DES softwares such as GASP IV [61], SIMPAS [62], SIMULA [63],

SIM++ [64] that are specifically target specific type of DES such as manufacturing systems

and computer networks. In this proposal, the vehicular network simulator is developed by

SimEvents with MATLAB DES, we will mainly focus on MATLAB DES and may introduce

some SimEvents blocks when needed.

2.2 MATLAB Discrete Event System (DES)

MATLAB/Simulink is a numerical computing environment developed by the Math-

Works. By using MATLAB languages, one can perform matrix calculations, plot functions

and data, create user interfaces (UI) and cooperate with other programming languages such

as C/C++, Java, Python. As of 2017, engineers and scientists on the order of million use

MATLAB across industry and academia in engineering, science and economics [65].

SimEvents toolbox was working only in Simulink and providing a discrete-event simula-

tion environment with blocks. Since R2016a, a new system object named MATLAB.Discrete-

-EventSystem joined the SimEvents family. This system object allows users to create an

event-driven entity-flow system in object-oriented programming (OOP) MATLAB language,

and use it in Simulink as a system block. The new SimEvents with MATLAB DES covers

both MATLAB and Simulink platforms, which greatly extends the flexibility and scalability

when modeling DES.

2.2.1 Features of MATLAB DES

A MATLAB DES has the following features:

• Simulink is a time-driven platform and MATLAB DES is an event-driven system.

Therefore, a model developed by MATLAB DES supports both time-driven and
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event-driven components. This feature makes MATLAB DES suitable for design-

ing network/communication related simulation systems as the physical (PHY) layer

of network is time related while the other layers are events-driven type.

• MATLAB DES allows users to take advantage of a rich collection of MATLAB tools

such as WLAN System Toolbox, signal processing, and visualization. This feature

makes MATLAB DES beyond a pure DES simulator, which makes it possible to

develop a more comprehensive and complex system.

• The vehicular network simulator we developed using MATLAB DES is convenient to

cooperate with hardware such as the USRP software defined radio. The expandability

of MATLAB/Simulink saves a significant mount of time for developers as they do

not need to test different tools during the developing process to support one specific

feature. This all-in-one feature of MATLAB DES increases the development efficiency

and decreases the chance of incompatible problems.

Since MATLAB R2017b version, MATLAB DES supports code generation. This feature

allows users to convert MATLAB code into C++ code so that the simulaiton speed is greatly

increased. A MATLAB DES has three elements: Entity, Event and Action.

Entity

The elements flow in a DES are called SimEvents entities. SimEvents entities contain

static information and can be MATLAB built-in data type, structured/bus data types.

A MATLAB DES may have one or more entity storages, with each storage containing

SimEvents entities. These entities are sorted in certain order in the storages, such as a

FIFO queue, a priority queue. A MATLAB DES can take entity as input or output, i.e., a

SimEvents entity can leave a MATLAB DES and enter another MATLAB DES.

Event

Multiple types of events can be scheduled and executed to an entity. These events model

activities such as entity creation, destroy, forward (send/receive), delay and search. As of

MATLAB/Simulink R2018a, MATLAB DES supports five types of events:
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Figure 2.6: Mapping a MATLAB DES Elements to Communication Networks Elements

• Generate: obj.eventGenerate( ) can generate an entity in the target storage.

• Destroy: obj.eventDestroy( ) can destroy an entity in the target storage.

• Timer: obj.eventTimer( ) delays an entity to a period of time.

• Iterate: obj.eventIterate( ) iterates entities in the target storage with conditions.

• Forward:obj.eventForward( ) forwards entities to a storage or an output port.

Action

When an event is due for execution, actions are invoked. These actions are conducted

by user-defined methods, which may contain the algorithms. This is exactly why the users

can create variety of DES models.

A MATLAB DES is suitable to simulate network behaviors, as shown in Figure 2.6. In

a network, the data flowing through different network layers can be treated as SimEvents

entities. For instance, the data unit in the PHY layer is a waveform entity while the data

unit in the MAC layer is a frame entity. An entity can be generated, destroyed or forwarded
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by different events. Users can further define more dynamic behaviors, such as media access

on MAC layer, channel model on PHY layer, via actions.

2.2.2 MATLAB DES Modeling

MATLAB DES block are located in the SimEvents block library, as shown in Figure

2.7. Users can open SimEvents block library by typing simevents in the MATLAB com-

mand window. The block in the red circle is the MATLAB Discrete-Event System system

block. By MATLAB R2018a, MATLAB DES only supports simulation in a combination

of the Simulink/MATLAB environment. Executing the DES component in pure MATLAB

environment may be addresses in future release.

Figure 2.7: SimEvents Library in MATLAB/Simulink R2017b. SimEvents toolbox is a
library containing several blocks. Users can open SimEvents Library by typing ‘simevents’
in MATLAB command window.

Create a new Simulink model and name it as aSimpleModel, as shown in Figure 2.8.

Drag a MATLAB Discrete-Event System block from the SimEvents library to the blank

aSimpleDES model. Double click the MATLAB DES block, create a new skeleton MAT-
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Figure 2.8: The MATLAB.DiscreteEventSystem Class in MATLAB and DES block in
Simulink. An empty DES system object is created. This DES object is stored in a Simulink
system block to work with other Simulink blocks.

LAB DES system object named aSimDES that inherits MATLAB.DiscreteEventSystem.

Select aSimDES in the popup list of Discrete-event System object name. Then, drag Entity

Generator block and Entity Terminator from the SimEvents library to the model and link

them together, as shown in Figure 2.9.

The data flow of this simple DES model is that the Entity Generator block generates

SimEvents entities periodically, e.g., 10 entities/second. These SimEvents entities pass

through aSimDES MATLAB DES block. After being processed by the aSimDES system

object, SimEvents entities leave the aSimDES block and enter the Entity Terminator block,

which destroys all received SimEvents entities.

Notice the major block in the model is aSimDES block as the other two blocks are doing

simple jobs such as creating or destroying entities. The details of the aSimDES block are

shown in Figure 2.10. In the figure, aSimDES system object contains two storages, i.e.,

storage 1 and storage 2. When entering the aSimDES block, the entities are all stored
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Figure 2.9: A simple Discrete Event System (DES) model in Simulink. The DES model
includes an entity generator, a MATLAB DES system block and an entity terminator.

Figure 2.10: The storage details inside the MATLAB DES system block. This DES contains
two storages, one storage is connected with input port and another storage is connected
with output port.

in storage 1 as a First-In-First-Out (FIFO) queue. Then, storage 1 forwards the entities

to storage 2, which forwards the entities out of the aSimDES block via the output port.

Storage plays an important role of holding entities. A DES can contain multiple entity

storages, with each storage containing multiple SimEvents entities.

Entity Types

In a DES, entity type defines a class of entities that share a common set of data specifi-

cations (dimensions, data type, complexity) and a common set of methods. One DES can

specify multiple entity types, with each type having a unique name. For example, MAC

layer receives a payload from APP layer, converts it into a frame and finally passes it to

PHY layer in the format of waveform. Accordingly, in the MAC layer DES, three types of

entities are defined: payload entity, frame entity and waveform entity. An entity type can
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be defined as a static method on class MATLAB.DiscreteEventSystem using:

function entity1 = obj.entityType(name, dataType);

where, the data type of entity1 is defined by the name parameter, where name is

consistent with dataType. dataType can be a MATLAB built-in data type, e.g., a numerical

data or user-built structured data, e.g., bus. Entity types of a DES are specified by the

getEntityTypesImpl method. The following codes specify that the MAC layer has three types

of entities: payload, frame, and waveform. The capitalized Payload, Frame and Waveform

are predefined bus type data. An example of Frame bus type data is shown in Figure 2.11.

function entityTypes=getEntityTypesImpl(obj)

entityTypes=[obj.entityType('payload','Payload')...

obj.entityType('frame','Frame')...

obj.entityType('waveform','Waveform')];

end

Figure 2.11: An example of Frame bus type data. A bus type data contains several elements,
each element has some attributes with it.
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An entity storage, entity input (I) and entity output (O) must specify the entity type

it works with. An entity can be forwarded (i) from an input port to a storage, (ii) from

a storage to another storage, or (iii) from a storage to an output port. When an entity

forward event happens, the source and destination must have the same data type. We

start to introduce the definition of an entity I/O port and then talk about details on entity

storage after that.

Entity Ports

As a specific system object, MATLAB DES supports a variable number of input and

output ports in the same way as with a general MATLAB system object (via getNumIn-

putsImpl and getNumOutputsImpl). Users can specify which entity type applies to which

entity port. These properties of ports are specified by the getEntityPortsImpl method.

For example, the following codes show that a MAC layer DES has two input ports and

two output ports. The length of return cell vectors, i.e., |inputTypes| and |outputTypes|

must be same as number of input/out ports, i.e., 2 in this example. The input port 1 is

a payload bus type and input port 2 is a waveform bus type because the MAC layer may

receive a payload from the APP layer and the waveform from the PHY layer. Similarly,

the output port 1 is a payload bus type and output port 2 is a waveform bus type as the

MAC layer converts the received payload to a waveform and sends to the PHY layer. When

receiving a waveform from the PHY layer, the MAC layer extracts the payload and sends

to the APP layer.
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function num=getNumInputsImpl(~)

num=2;

end

function num=getNumOutputsImpl(~)

num=2;

end

function [inputTypes,outputTypes]=getEntityPortsImpl(~)

inputTypes={'payload','waveform'};

outputTypes={'payload','waveform'};

end

Entity Storage

A MATLAB DES may contain multiple entity storage. MATLAB DES allows to access

an entity at an arbitrary location of the storage, which is similar to the iterator access in a

C++ std::list. As of MATLAB R2018a, MATLAB DES storage supports a First-In-First-

Out (FIFO) queue, Last-In-First-Out (LIFO) queue, priority queue, and system priority

queue. An entity storage is a random-access container with the following properties:

• Storage type: (required) Criteria to sort entities of a storage, such as FIFO queue,

LIFO queue or Priority queue.

• Entity type: (required) The type of entity this storage is handling. Note that the type

here is the entity type defined by obj.entityType(), instead of the MATLAB built data

types.

• Capacity: (required) Maximum number of entities that the storage can contain. For

infinite capacity, use inf.

• Key name: (for priority queue, optional) Any name of the attribute used as key for

sorting.
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• Sorting direction: (for priority queue, optional) Order of sorting: ascending or de-

scending.

The following code shows how to specify the entity storages:

storage1 = obj.queueFIFO(entityType, capacity)

storage2 = obj.queueLIFO(entityType, capacity)

storage3 = obj.queuePriority(entityType, capacity, key, order)

storage4 = obj.queueSysPriority(entityType, capacity, order)

Users can use the above code to define entity storage via the getEntityStorageImpl(obj)

method. For example, the following code creates 10 storages as FIFO queues with infinite

capacity. The storage units are created with an invisible storage ID sequentially, which can

be observed from the numbers 1-10 in the code comments below:

function [storageSpec,I,O]=getEntityStorageImpl(obj)

payloadStorage=obj.queueFIFO('payload',inf); % 1-Payload buffer.

frameStorage=obj.queueFIFO('frame',inf); % 2-frame buffer

AC0=obj.queueFIFO('frame',inf); % 3-AC0

AC1=obj.queueFIFO('frame',inf); % 4-AC1

AC2=obj.queueFIFO('frame',inf); % 5-AC2

AC3=obj.queueFIFO('frame',inf); % 6-AC3

HCF=obj.queueFIFO('frame',inf); % 7-HCF

Txwaveform=obj.queueFIFO('waveform',inf); % 8-Txwaveform

Rxwaveform=obj.queueFIFO('waveform',inf); % 9-Rxwaveform

TxFrame=obj.queueFIFO('payload',inf); % 10-to upper layer

storageSpec=[payloadStorage,frameStorage,AC0,AC1,AC2,AC3,HCF,

↪→ Txwaveform,Rxwaveform,TxFrame];

I=[1 9];

O=[10 8];

end

Storage 1 is connected with input port 1 to receive payload entities from APP layer.
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Figure 2.12: The Events and Actions of Discrete Event System (DES) inside one storage.
The events include generate, forward, iterate, timer and destroy.

Storage 10 is connected with output port 1 to send payload entities to the APP layer. Both

Storage 1 and 2 are of the payload type. Storage 2-7 are of the frame type for the purpose

of processing or buffering frame type entities in the MAC layer. Storage 8 connects to the

output port 2, which sends the waveform entities to the PHY layer. Storage 9 connecting to

the input port 2 is responsible for receiving waveform type of entities from the PHY layer.

One may notice this method also specifies connections between input(I)/output(O) ports

and storages. Both I and O are vectors with their length equals to the number of inputs

ports or output ports. The nth element in the vector indicates the storage ID that the nth

input or output port is connecting to. For example, I = [1 9] indicates the 1st input port

is connecting to storage 1 and the 2nd input port is connecting to storage 9.

Events and Actions

As shown in Figure 2.12, a MATLAB DES has five types of events: generate, iterate,

timer, forward, and destroy. The descriptions of these events are shown in Table 2.3.

When an event is due for execution, event actions are invoked as the responses to these

events. These event actions are implemented as user-defined methods. Table 2.4 summaries
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Table 2.3: MATLAB DES Events and Descriptions.

EVENTS TARGETS DESCRIPTIONS

generate storage Create a new entity in the target storage

iterate storage Iterate and process each entities in the target storage

timer entity Delay the target entity for a certain period of time

forward entity Move the target entity from its current storage to another

storage or an output port

destroy entity Destroy the target entity immediately

each action and their triggering conditions. Details on the complete specifications of events

and actions are described next.

Table 2.4: MATLAB DES Actions and Descriptions.

ACTIONS TRIGGERING

EVENTS

DESCRIPTIONS

generateImpl generate called after an entity is created

iterateImpl iterate called upon execution of an iterate event.

timerImpl timer called after the delay period caused by the timer event

entryImpl forward called after an entity enters a storage

exitImpl forward called after an entity leave a storage

destroyImpl destroy called before the target entity is destroyed

Trigger the First Step of a DES

A MATLAB DES is a series of events and actions that are mutually triggered. On the

one hand, actions are invoked after the corresponding events happened. On the other hand,

more events can be scheduled inside the method of an action. Now the question is, which

starts first action or event? As both actions and events are associated with entities, who

generates the first entity becomes the key point. In order to get the first entity, a DES has
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two options:

1. An external entity enters the DES: an entity generator is connected to the input port

of the DES, as shown in the Figure 2.9. The entity generator creates entities at a

constant or variable rate according to the configuration (see Figure 2.13). In the figure,

the inter-generation time is a variable dt. If dt is given a constant value, say dt = 0.1,

the entities are generated at a constant speed of 10 Hz, i.e., 10 entities/second. dt can

be further configured with probability model to generate entities in some probability

distribution, e.g., Poisson distribution.

2. Generate an entity inside the DES: a DES can generate the first entity inside using

setupEventsImpl(obj), which setups some one-time events for creating initial entities.

These entities can be used to further trigger event actions in other methods. The code

below shows how to create the first entity using eventGenerate(). Events are often

scheduled as the returning outputs arguments of action methods.

function [events]=setupEventsImpl(obj) % obj is the currenty DES;

events=obj.eventGenerate(storageID, tag, delay, priority);

end % eventGenerate() creates the first entity

Generate

The ’generate’ event creates a new entity inside the target storage, and consists of the

following parameters:

events=obj.eventGenerate(storageID, tag, delay, priority);

• storageID : ID of the target storage where the new entity will be created.

• tag : when creating the same type of entities in the same storage, the activity of event

generation can be distinguished by different tags.

• delay : the new entity can be generated after a delay period.
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Figure 2.13: The configuration on event generation interval inside an entity generator block.
dt indicates the entity intergeneration period. dt can be a constant or some variable calcu-
lated by MATLAB functions.

• priority : positive integer value indicating the system priority of the new entity. A

smaller value means a higher priority.

The ’generate’ action is executed upon an entity is created inside a storage, and consists

of the following parameters:

function [entity,events] = xxxGenerateImpl(obj,storage,entity,tag)

...

end

• input parameters:

1. obj, current discrete-event system.
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2. storage, the storage where the new entity is created.

3. entity, the newly created entity.

4. tag, tag of the currently executing ’generate’ event.

• output parameters:

1. entity, entity with possibly changed values after processing by ’generate’ action.

2. events, events to be scheduled after ’generate’ action.

The ‘xxx’ ahead of GenerateImpl indicates the name of an action method is adaptively

changed based on the entity types. As for a DES with multiple types of entities, each

type of entity shares a common set of event action methods. For example, a DES has two

types of entities called ’payload’ and ’frame’, and both ’payload’ and ’frame’ entities require

eventGenerate actions. A simple rule is applied to distinguish the same actions to different

entities.

Method name = <entity type name> <Action name> Impl;

Based on this rule, the generate action for ’payload’ is payloadGenerateImpl() and for

’frame’ is frameGenerateImpl().

Iterate

The ‘iterate’ event iterates and processes each entities of a storage, and consists of the

following parameters:

events=obj.eventIterate(storageID, tag, [priority])

• storageID : ID of the target storage where entities inside this storage will be iterated.

• tag : when iterating the same type of entities in the same storage, the activity of

iteration can be distinguished by different tags.

• priority : optional, priority of the entity iterate event.
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Upon execution of an Iterate event, the ’iterate’ action is invoked for each entity from

front to back of the storage, with the option of early termination.

function [entity,events,next] = xxxIterateImpl(obj,storage,entity,

↪→ tag,cur)

...

end

• input parameters:

1. obj, current discrete-event system.

2. storage, the storage being iterated.

3. entity, currently iterated entity.

4. tag, tag of the currently executing ’iterate’ event.

5. cur, a MATLAB struct indicating the current iteration state. ’cur.size’ indicates

total number of entities in the storage; ’cur.position’ indicates the position of the

current iterating entity.

• output parameters:

1. entity, entity with possibly changed values after processing by ’iterate’ action.

2. events, events to be scheduled after ’iterate’ action.

3. next, boolean value indicating whether the iteration shall continue (true → con-

tinue, false → break).

Timer

The ‘timer’ event delay an entity for a certain period of time, and consists of the following

parameters:

events=obj.eventTimer(tag,delay);

• tag : tag of this timer event.
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• delay : time delay between current simulation time and the time that this timer event

will be executed.

The ’timer’ action is invoked upon a previously scheduled timer event has expired, and

consists of the following parameters:

function [entity, events]=xxxTimerImpl(obj,storage,entity, tag)

...

end

• input parameters:

1. obj, current discrete-event system.

2. storage, the storage where the ’timer event’ related entities are stored.

3. entity, then entity regarding the timer event.

4. tag, tag of the currently executing ’timer’ event.

• output parameters:

1. entity, entity with possibly changed values after processing by ’timer’ action.

2. events, events to be scheduled after ’timer’ action.

Forward

The ‘forward’ event moves an entity from its current storage to another storage or output

port, and consists of the following parameters:

events=obj.eventForward(locationType, locationIndex, delay);

• locationType: the type of the target location, can be either storage if the destination

is another storage, or output if the destination is an output port.

• locationIndex : the index of the target location. For example, (storage,1) means the

first storage, (output,2) means the second output port.
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• delay : delay period before the entity is forwarded to the destination.

The actions corresponding to forward event is a little special because the activity of

’forward’ involves leaving an old storage and/or entering a new storage. Sometimes, entering

a storage does not even require forward event. We start from entry action and describe exit

action after that.

As long as an entity enters a storage, ’entry’ action can be invoked no matter where

this entity came from. An entity can enter a storage from another storage or form an

input port. Recall the section of Triggering the First Step of a DES , an external entity

generation can generate entities and these entities enter the connected DES via an input

port and finally enter the storage which connects to the input port. This process is not

triggered by ’forward’ event.

function [events, entity] = xxxEntryImpl(obj,storage,entity,source)

...

end

• input parameters:

1. obj, current discrete-event system.

2. storage, the storage that the entity enters to.

3. entity, then entity entering the storage.

4. source, location where the entity comes from, e.g., an input port or another

storage.

• output parameters:

1. entity, entity with possibly changed values after processing by ’entry’ action.

2. events, events to be scheduled after ’entry’ action.

The ’exit’ action is invoked before an entity exits from a storage. Attention that when

an entity exits a storage to an output port, this entity will leave the current MATLAB
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DES, which is quite similar to the situation when an entity is destroyed. Upon an entity left

the DES, all its attached unfinished lasting events are immediately invalid and will never

happen. The entities leaving to another storage are not affected by the above rule.

function [events] = xxxExitImpl(obj,storage,entity,destination)

% output does not return an entity becuase the enetity is

↪→ leaving the current DES.

...

end

• input parameters:

1. obj, current discrete-event system.

2. storage, the storage where the entity exits from.

3. entity, the entity existing the storage.

4. destination, the destination that an entity is going to, e.g., an output port or

another storage.

• output parameters:

1. events, events to be scheduled after ’exit’ action.

Destroy

‘destroy’ event destroys an existing entity of a storage. Attention that when eventDestroy

is called, the corresponding entity is destroyed immediately. All the unfinished events

attached to this entity will also be eliminated at once. Events with ’delay’ as the input

parameter, such as eventTimer, eventGenerate and eventForward, are called lasting events.

It is possible that when an entity is destroyed, its lasting events are in the middle of delay

period and not start yet. These events become invalid immediately when the entity is

destroyed and will never happen even if the delay period is ended.

events=obj.eventDestroy(); % no input parameters.
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The ‘destroy’ action is invoked before an entity is destroyed, and consists of the following

parameters:

function [events]=xxxDestroyImpl(obj,storage,entity)

% output does not return an entity becuase it is to be destroyed

↪→ .

...

end

• input parameters:

1. obj, current discrete-event system.

2. storage, the storage containing the to-be-destroyed entity.

3. entity, the to-be-destroyed entity.

• output parameters:

1. events, events to be scheduled after ’destroy’ action.

DES Flow Chart

In a DES, events and actions are mutually triggered in chains as action-¿action body-

¿event-¿action. In this dissertation, we proposed a special DES flow chart to describe the

events and actions chains, as shown in Figure 2.14. In the figure, the square block indicates

an action, while a round block indicates an event. The code between the action and event

block is the action body, which expand the action to different activities or algorithms or

trigger another event(s).

Figure 2.14 shows partial code when converting a payload entity to a frame entity.

Action payloadEntry is triggered when a payload entity enters the DES module. Then,

the DES module starts to run the codes inside the action payloadEntry body. The code

here mainly store information from a WAVE short message (WSM) of type 222 to the local

variables. Then, an event eventGenerate is called to generate a frame entity with a tag of

rcvWSA. A tag is associated with a specific action because multiple events of same type,
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such as eventGenerate, but different purposes may be called at the same time. The events

are distinguished by their tags. In our case, event eventGenerate(’rcvWSA’) triggers action

mgmFrameGenerate(tag). It is possible that another event, such as eventGenerate(’BSM’),

also triggers action mgmFrameGenerate(tag) simultaneously. Thus, inside the action body

code, both activities are distinguished by tags, one is ’rcvWSA’ and another one is ’BSM’.

The ’rcvWSA’ action creates a new frame entity and defines its type as 1 and assigns

multichannel information (MCinfo) to the frame entity’s data field. Once the action code

of rcvWSA is conducted, a new event eventForward(’output’,2,0) is called, which forwards

the newly generated frame entity to the 2nd output port of the DES module.

Figure 2.14: The driver process of a discrete-event system (DES). A DES is activated based
on the mutually triggered events and actions. When an event is done, an action is triggered.
The action body can trigger another event(s).
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2.3 Protocols of Vehicular Network

In this section, the WAVE standards are compared with the TCP/IP model. The details

of the vehicular network stack are also provided.

2.3.1 Overview of WAVE/DSRC Standards

Intelligent Vehicle Highway Systems (IVHS) have proposed the vehicular network con-

cept in 1991 in order to increase driving safety, decrease traffic congestion, as well as con-

serve fossil fuel. In reference [23], the US Department of Transportation (DoT) summarized

37 pre-crash scenarios and determined that most of them could potentially be addressed

by vehicle communication technology. The document showed the total cost of crashes is

$ 274,929,000,000 USD. The US DOT advised the Intelligent Transportation Society of

America (ITSA) to created the intelligent transportation system (ITS) in 1996.

In 2004, IEEE approved the IEEE 802.11p standard, which is an amendment to the

IEEE 802.11a standard, in order to provide a wireless access in vehicular environments

(WAVE) [20,66]. The WAVE defines enhancements to the IEEE 802.11 (the standards used

for Wi-Fi) required to support ITS applications based on the ITSA proposals. The IEEE

802.11p defines the Physical (PHY) layer in the licensed ITS band of 5.85-5.925 GHz for the

data exchange between vehicles and between vehicles and infrastructures. The 802.11p is

the basis for dedicated short-range communications (DSRC), a US DOT project for vehicle-

based communication networks. The IEEE 1609 standard suite defines the functions of the

higher layer of WAVE, such as the multichannel EDCA operation in the MAC layer and

the WAVE short message protocol (WSMP) in the APP layer.

WAVE finally becomes the solution of the vehicular network by using both the IEEE

802.11p and the IEEE 1609 protocol sets. WAVE is designed to support long ranges of

operations (up to 1000 meters) among high speeds of vehicles under extreme multipath

environments. In WAVE, two types of communication forms are defined, the vehicle to

vehicle (V2V) communication [67] and the vehicle to infrastructure (V2I) communication.

The V2V communication connects between two or more OnBoard Units (OBUs), while the

V2I communication connects between OnBoard Units (OBUs) and RoadSide Units (RSUs)
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installed in the roadside infrastructure.

The WAVE vehicles may form a WAVE Basic Service Sets (WBSS) to further share

information within a small area network using specific service channels (SCHs), which is

similar to the 802.11 basic service set (BSS) [68]. One of the unique characteristics of a

WBSS is the establishment process does not require the authentication and association

coordinations. Additionally, the WBSS does not rely on a base station for all BSS man-

agement. These features are called Outside-of-the-Context of a BSS (OCB) mode, which is

very different relative to other 802.11 systems.

Figure 2.15: WAVE Protocol Stack including the IEEE 802.11p and the IEEE 1609 stan-
dards. The colorful fields are the functions that have been implemented in the proposed
simulator. This dissertation mainly focuses on the colorful fields.

Figure 2.15 shows the WAVE protocol stack and its correspondence to the TCP/IP

network model. The IEEE 802.11p defines the MAC and PHY layers. All the other layers

above the MAC layer are defined by the 1609 standards [69]. For example, 1609.4 defines an

extra sublayer between the MAC and LLC layers. This sublayer supports the multichannel

behavior with EDCA scheme. The link layer and the PHY layer correspond to the same
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layers in the TCP/IP model. The WAVE APP layer is different with the TCP/IP APP

layer. WAVE supports TCP/IPv6 socket same as the TCP/IP model. However, the WSMP

protocol in the APP layer defines a new type of messages, WAVE short messages (WSMs),

which is uniquely supported by WAVE. The WSMs contain the basic traffic information

and can be broadcast directly without the need of the hand-shake coordination as the TCP

does.

2.3.2 Details of Vehicular Network Stack

This section provide a brief overview of the WAVE/DSRC standards including the PHY

layer, the MAC layer, and the APP layer.

PHY Layer

The PHY layer of WAVE is derived from the IEEE 802.11a standard and a 10MHz

wireless channel is recommended. Table 2.5 compares the parameters between the IEEE

802.11p PHY layer [70] with the IEEE 802.11a PHY layer [71]. Similar to the IEEE 802.11a,

DSRC/WAVE uses Orthogonal Frequency Division Multiplexing (OFDM) including 52 sub-

carriers, i.e.,, 48 data subcarriers and 4 pilots subcarriers. For the purpose of decreasing

intersymbol interference (ISI) caused by multipath propagation between the high speed ve-

hicles, the IEEE 802.11p bandwidth is downsized to 10 MHz, half bandwidth of the IEEE

802.11a standard. Meanwhile, other parameters including symbol duration, guard time,

FFT period and preamble duration are doubled in order to cope with ISI.

MAC Layer

The Media Access Control (MAC) layer is defined in the IEEE 802.11p standard, which

is currently integrated with the IEEE 802.11-2012 standard [72]. For the purpose of distin-

guishing the IEEE 802.11p from other IEEE 802.11 standards, we still use 802.11p as the

indicator of the vehicular network content in the IEEE 802.11-2012 standard for the rest

of the dissertation. The default MAC layer in the Wi-Fi devices is using the Distributed

Coordination Function (DCF) scheme. The DCF is one type of the MAC layer protocols in
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Table 2.5: Parameters of IEEE 802.11a and IEEE 802.11p.

Parameters IEEE 802.11a IEEE 802.11p

Modulation BPSK, QPSK, 16QAM, 64QAM

same as IEEE 802.11aCode rate 1/2, 2/3, 3/4

Number of subcarriers 52

Symbol duration 4 µs 8 µs

Guard time 0.8 µs 1.6 µs

FFT period 3.2 µs 6.4 µs

Preamble duration 16 µs 32 µs

Subcarrier space 0.3125 MHz 0.15625 MHz

Bit rate (Mbps) 6, 9, 12, 18, 24, 36, 48, 54
3, 4.5, 6, 9, 12, 18,24, 27

(half clocked mode)

the IEEE 802.11 standard, which defines Carrier Sensing Multiple Access (CSMA) / Carrier

Avoidance (CA) over the contention based channel access.

In order to guarantee the communication quality of a vehicular network, the IEEE

802.11p standard proposed to replace the DCF scheme with the Hybrid Coordination Func-

tion (HCF) scheme. The HCF scheme defines the contention-based access scheme and the

contention-free access scheme. The latter is using the HCF Controlled Channel Access

(HCCA) scheme in order to create a Contention Free Period (CFP), which is similar to the

RTS/CTS mechanism in the CSMA/CA protocol. The contention-based access grants data

with different level of channel access priorities using the Enhanced Distributed Channel

Access (EDCA) scheme. Within the scope of this dissertation, we only focus on the EDCA

mechanism in the MAC layer.

In the EDCA mechanism, the data with different importance levels are classified into 8

user priorities (UP) and these 8 UPs are grouped into 4 Access Categories (ACs). Different

ACs possess different backoff periods decided by the Arbitration InterFrame Space (AIFS)

value and the contention window (CW) value [73]. Table 2.6 shows one set of the AIFS-

N/CW parameters and AC0 indicates the lowest priority while AC3 indicates the highest

priority. Before sending to the channel, a data is mandatory to wait for a period of time.
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Table 2.6: Default EDCA Parameters Set in CCH.

AC CWmin CWmax AIFSN

AC BK (AC0) aCWmin aCWmax 9

AC BE (AC1) aCWmin aCWmax 6

AC VI (AC2) (aCWmin+1)/2-1 aCWmin 3

AC VO (AC3) (aCWmin+1)/4-1 (aCWmin+1)/2-1 2

Figure 2.16: The Backoff Delay Comparison between Idle Channel and Busy Channel.

The waiting period is referred to the channel access deference period, as shown in Figure

2.16. The figure shows that a channel access deference period consists two sections, AIFS

and backoff. When the channel return to the idle state from the busy status, the node will

first sense an AIFS period. If the channel keeps idle during the AIFS period, a backoff

process begins. If the channel remains idle until the backoff period is finished, a waveform

will be sent into the channel immediately. If the channel becomes busy in the middle of

a deference period, the node interrupts the current behavior and restarts from sensing an

AIFS period. The calculations of the AIFS value and the number of backoff timeslots are

explained below.

In the EDCA scheme, each data awaiting to be transmitted is stored into one of the AC

queues. The minimum period specifies the idle duration time, AIFS, is no long a constant

value as the DCF Inter-Frame Spacing (DIFS) value in the DCF mechanism. AIFS is

calculated by Eq. (2.10), in which the slotime and the Short Interframe Space (SIFS) are

the predefined fixed values by the IEEE 802.11 standard. Thus the length of the AIFS

period varies depending on the AIFSN values:

AIFS = AIFSN ∗ slottime+ SIFS. (2.10)
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In Eq. (2.10), the AIFSN is a positive integer varies among different AC queues (see

Table 2.6). The slot time is the maximum time period allowing a data to be transmitted be-

tween two nodes. In WAVE, the slot time is defined as 13µs. The Short Inter-Frame Spacing

(SIFS) is the period between a data and an ACK frame. The IEEE 802.11p defines the SIFS

as 32µs. Similarly, the backoff period is calculated by different [CWmin,CWmax] pairs,

as described in Table 2.6, and decreased in parallel for each AC queue. CWmin is decided

by the aCWmin value, and the CWmax value is calculated from both aCWmax/aCWmin

values. EDCA defines the default value of aCWmin as 15 and aCWmax as 1023. At the

beginning of the backoff process, the backoff timeslot number is selected uniformly within

[0, CWmin]. Whenever a retransmission is needed, the CWmin value will be doubled and

a new backoff period is calculated within [0, CWmin]. The CWmin value is always smaller

or equal to the CWmax value.

Figure 2.17: The Channel Access Delay for Different AC Queues in EDCA.

Figure 2.17 shows the backoff process with the EDCA scheme. When data enters the

MAC layer, it is converted into a frame and forwarded to one of the four AC queues according

to its priority. The frames at the head of each AC queue are backing off simultaneously.
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Figure 2.18: Structure of Wave Short Message.

With different [AIFS, CW] values, frames in the lower priority AC queue may experience

longer delay than frames in the higher priority AC queue. There is a probability that

multiple frames from different AC queues finish their backoff process at the same time, these

frames contend for channel access. This contention happens inside the vehicular network

node and is called as internal contention. When an internal contention appears, only the

frame from the higher priority AC queue is allowed to transmit and the other frames with

a lower priority increase its retry counter, double the contention window (CW) size, and

restart the defer access process. In contrast, the CSMA/CA scheme buffers all frames in the

same queue with no different priority levels. A CSMA/CA node only contends for channel

access with other CSMA/CA nodes and this situation is called as external contention. An

EDCA node may experience both internal contention and external contention. The design

purpose of the EDCA scheme is to let the data with higher priority gain more channel

access probabilities.

APP Layer

The Application (APP) Layer of a vehicular network supports three types of messages:

WAVE Short Messages (WSMs), control messages and IP-based messages. The WSMs are

designed to consume minimal channel capacity while transmitting safety-related messages.

The control messages, are for management operations such as WAVE Service Advertise-

ment (WSA) frame, which is used to establish a WBSS with other vehicles. The IP-based

messages are mainly for infotainment purpose and is suitable to be exchanged under high

throughput scenario. This dissertation adopts WSMs to transmit both safety-related mes-
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Figure 2.19: BSM Structure in WSM.

sages and non-safety messages. The IP-based messages are not considered in this disserta-

tion.

The WSM protocol (WSMP) is designed for air interface efficiency and low latency in

support of vehicular applications. The format of WSMP is shown in Figure 2.18. The

channel, transmit power, and data rate are set by higher layers on a per-message basis.

WSM is delivered by WSMP to any higher layer entities with interest in the associated

PSID field.

One of the frequently used safety-related messages is named as the Basic Safety Message

(BSM). SAE J2735 [74] defines the format of the BSM to share the position information

of the vehicles in the coverage area. BSM is contained in a WSM as shown in Figure

2.19. The BSM contains vehicle driving information including position, speed, acceleration

and direction. ITS recommends that the communication delay should be less than 100

ms [75–77] as the BSMs are broadcast beacons at a suggested constant rate of 10 Hz. In

order to guarantee the performance of BSMs, the EDCA scheme is suggested to give a

higher priority to the BSM as described in [78]. The standard SAE J2945 [79] specifies

the minimum communication performance requirements of the SAE J2735 DSRC message

sets and associated data frames and data elements. The SAE J2945 standard further

defines the BSM transmission rate, transmit power, and adaptive message rate to ensure

the interoperability between vehicles.

2.3.3 Concepts of Multichannel Operations

The PHY layer of a vehicular network adopts the Dedicated Shorted Range Commu-

nication (DSRC) channel, which is a short to medium range communication service that
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supports both public safety and private operations in the V2V and V2I communication.

The 75 MHz DSRC spectrum at 5.850 - 5.925 GHz is divided into seven channels of 10

MHz bandwidth, and the 802.11p standard supports 20 MHz bandwidth if needed as shown

in the Figure 2.20. Channel 174 and 176 can be combined together to form a 20 MHz

channel Channel 175. Similarly, Channel 180 and Channel 182 can form Channel 181 with

20 MHz bandwidth. The DSRC channels include 1 Control Channel (CCH) and 6 Service

Channels (SCHs). The CCH is used to transmit control messages as well as safety-related

messages, while the SCHs are for the exchange of messages with lower priority.

Figure 2.20: FCC Channel Allocation for Vehicular Networks with 1 CCH and 6 SCHs.

When multichannel option is enabled, the channel access time is sliced into synchro-

nization (Sync) intervals. Each Sync interval consists of one 50-ms CCH Interval (CCHI)

and one 50-ms SCH Interval (SCHI). The first 4 ms of the CCHI and SCHI is named as

Guard Intervals (GI) and reserved for the radio to switch between frequencies. The CCH

is activated during the CCHIs and at least one SCH might be activated during the SCHIs.

The IEEE 1609.4 standard [80] defines two multichannel options: single-radio multichan-

nel operation and multi-radio multichannel operation. This dissertation only focus on the

single-radio multichannel operation. In this scenario, a single-radio device using alternating

channel access synchronized to a standard time base. The channel timing is defined such

that a Sync interval begins at the start of a second in Coordinated Universal Time (UTC).

The UTC is usually provided by GPS. If GPS is not available, the vehicles can synchronize

their clock by WAVE Time Advertisement (WTA) frames from other vehicles. If neither of

above options are available, the vehicles have to stay in the CCH until their clocks can be

synchronized.
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In addition to the alternating channel access, the IEEE 1609.4 [80] standard also de-

fines other multichannel access options such as immediate access and extended access. The

immediate access scheme allows a user device to switch to the SCH immediately on recog-

nizing a desirable application-service in a WSA. The extender access allows a user device,

normally in alternating mode, to access the SCH for an extended period. This dissertation

only focus on single radio with alternating channel access scheme.

Figure 2.21: Two EDCA modules for multichannel MAC layer.

The multichannel MAC layer is working closely with the multichannel PHY layer, where

one CCH and six SCHs are defined. In the single channel scenario, the MAC layer owns

one EDCA module with four AC queues. In the multichannel MAC layer, an extra EDCA

module is added as shown in the Figure 2.21. In the figure, one EDCA module is for CCH

messages and the other EDCA module is for the SCH messages. Both EDCA modules

are alternating corresponding to the channel intervals. In the CCHI, the CCH EDCA

module is active, the data buffered in the CCH AC queues are contending for channel

access. Meanwhile, the activities of the SCH AC queues are suspended. During the SCHI,

the activities of the CCH EDCA module are paused and the activities of the SCH EDCA

module are resumed. During the GI, both the CCH EDCA and the SCH EDCA modules
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are paused.

Table 2.7: The EDCA parameters for CCH and SCH.

Access

Category

CCH SCH

[CWmin, CWmax] AIFSN [CWmin, CWmax] AIFSN

AC0 [15, 1023] 9 [15, 1023] 7

AC1 [7, 15] 6 [15, 1023] 3

AC2 [3, 7] 3 [7, 15] 2

AC3 [3, 7] 2 [3, 7] 2

The CCH EDCA module and the SCH EDCA module may have different [AIFSN, CW]

values. Table 2.7 shows an example of different EDCA parameter sets for CCH EDCA

and SCH EDCA modules. The difference in the EDCA parameters is mainly because

the multichannel applications are different. The major applications in the CCH are the

safety-related services aiming at providing a short latency and a high packet delivery rate

transmission environment for safety-related messages, while the SCH applications are non-

safety services aiming at high throughput. The adjustment of the SCH EDCA parameters

may potentially decrease the gap between the priority levels in case higher priority services

may consume most of channel sources. In the dissertation, we adopts the default suggested

EDCA parameters from the IEEE 1609.4 standard as shown in the Table 2.7.

2.4 Chapter Summary

In this chapter, we discussed the classifications of systems. A discrete event system

(DES) is defined as a discrete-state event-driven system. A DES can be simulated by

timed automata or event scheduling scheme. Then, the basic elements including entity,

event and action of a MATLAB DES are introduced. VANET Toolbox is a series of more

sophisticated MATLAB DES. Building a simple MATLAB DES provides the foundation

of building a more complex MATLAB DES. The last section provided a brief overview of

the WAVE/DSRC standards. In the next chapter, we will explain the design of VANET

Toolbox in details based on MATLAB DES and vehicular network theory in this chapter.
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Chapter 3

Design Vehicular Network

Simulator based on Hybrid DES

This chapter presents the design structure of vehicular network based on a hybrid of

time-driven and event-driven systems. Then the implementation of vehicular network simu-

lator as well as peripheral functions including designing connectionless Simulink blocks and

databases (local and global) using MATLAB DES is also discussed with details. Further,

a tutorial on how to create and run a model using VANET Toolbox is provided in the last

section.

3.1 Design of Vehicular Network Simulator

This section describes the design flow of the vehicular network stack including the PHY

layer on the bit level, the MAC layer with EDCA module and the APP layer combined

with vehicle mobility models. The design pattern in this section can be extended to any

discrete-event programming languages.

Generally, a vehicular network simulation is a combination of a time-driven system and

an event-driven system. Figure 3.1 illustrates the design structure of two vehicular nodes

communicating over a wireless channel. The framework consists of three DES modules:

APP Layer DES Module (APP DES), MAC Layer DES Module (MAC DES) and PHY
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Figure 3.1: Design Structure of VANET Toolbox. The APP layer integrating network model
and vehicle mobility model is a hybrid of event-driven and time driven. The MAC layer
focuses on EDCA and is purely event-driven. The wireless channel link in PHY layer is a
time-driven DES module.

Layer DES Module (PHY Link DES), among which APP DES integrates vehicle mobility

models with APP message generation operations, MAC DES includes MAC layer activities

and PHY transmitter (Tx) / receiver (Rx) on bit-level processing and PHY Link DES only

simulates wireless propagation channels.

The mobility models are integrated in the APP DES, which makes our proposed simula-

tor an integrated type simulator. This design facilitates the information exchange between

the vehicle mobility activities and the network communication operations. The movements

of vehicles are controlled by varieties of mobility models such as car-following model (CFM)

and lane-changing model (LCM). The mobility models are implemented by different safety-

related or non-safety applications. According to the vehicular traffic scenario, the ap-

plications may generate messages and share with other vehicle nodes. This situation is

event-driven pattern. Additionally, the applications may create beacon messages such as

Basic safety messages (BSMs) at 10 Hz, which is time-driven pattern. Thus the APP DES

is a hybrid of event driven and time driven. These generated messages are disseminated via

wireless network communication and reciprocally the performance of network communica-
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tion could affect the vehicle operations. The section only focuses on the design of network

communication simulation environment, the discuss of the mobility models is presented in

Section 3.2.3.

The MAC layer of a vehicular network is different compared to other WLAN devices

since it grants priorities to various messages such that the messages with higher priority

have shorter deference in channel contentions. This mechanism is referred to as Enhanced

Distributed Channel Access (EDCA) and it is defined in the IEEE 802.11 standard [81].

Furthermore, the MAC layer is responsible for generating frames, waiting for ACKs, and

initiated retransmissions when timeouts occur. All of these MAC layer behaviors are event-

driven. In addition, the transmitter (Tx) and receiver (Rx) of PHY layer are integrated

with the MAC Layer DES Module. The PHY (Tx) is responsible for converting the binary

message information into wireless waveform symbols, while the PHY (Rx) is for the reverse

process. Both operations from the PHY Tx and Rx are based on bit-level processing, i.e.,

users can manipulated every single bit of data when necessary. The integration design of

MAC DES has two purposes. First, the PHY operations on bit-level processing is continuous

instead of event-driven, thus the PHY Tx/Rx cannot be implemented by DES. In our

proposed simulator, a series of functions are created to perform the bit-level processing

operations. The second reason is to constrain the total number of DESs in the simulation

model in consideration of simulation efficiency. The creation of a DES involves overhead

computational costs including assigning input/output ports and allocating queue memories.

These overheads may potentially lower the simulation speed. Thus in our design process,

one of the most basic requirements is to use as few DES as possible.

The PHY link DES module only simulates the wireless channel links since both PHY Tx

and Rx are integrated with the MAC DES module. The PHY link is a relatively easy DES,

as it is only responsible for accepting the incoming waveforms from the PHY transmitters

and forwarding them to the PHY receivers after an air propagation delay. This process is

an event-driven pattern. During the air propagation delay, channel models such as AWGN

and two-ray ground reflection model can be applied to the waveforms and this progress is

implemented by functions instead of DES.



Chapter 3 58

3.1.1 PHY Layer Design

In vehicular network simulations, a precise representation of the PHY layer is necessary

in order to obtain reliable results for comparison with real hardware performance. Popu-

lar vehicular network simulation tools including VEINS [82] and iTETRIS [83, 84], which

usually have a simplified PHY layer. The network simulators they adopted, NS-3 and/or

OMNet++, employ abstracted PHY layer [85], where the smallest indivisible data unit

used is the packet, i.e., the packet is either received entirely or not at all. Several details

of wireless communication, such as channel estimation, frequency offset estimation and

correction, waveform modulation and demodulation, are omitted due to this abstraction.

However, individual bits inside a waveform are necessary to perform accurate simulations

of the PHY layer and channel models. In this section, we will introduce the proposed PHY

layer with bit-level processing techniques. The performance of the PHY layer in terms of

packet success rate (PSR) is evaluated in Chapter 4.

Figure 3.2: VANET PHY Link Modeling. The PHY Tx and Rx are for the data encoding
and decoding on bit-level processing. Wireless channel link is a DES module with two-ray
ground reflection model and AWGN as default.

Figure 3.2 illustrates a basic wireless PHY link model that converts the received frame

from the MAC layer into a wireless waveform and lets the waveform pass through the

wireless channel. The interaction between the PHY layer and the MAC layer is handled

by the Physical Layer Convergence Protocol (PLCP). A PLCP Service Data Unit (PSDU)

is generated by serializing the MAC layer frame into a binary bit stream. The PSDU bits

along with the PLCP preamble and header according to the IEEE 802.11 [81] are grouped
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into symbols and finally becomes a waveform. The wireless channel consists of a two-ray

Ground Reflection Channel model and an Additive White Gaussian Noise (AWGN) model

by default. This design is based on the research of line-of-sight (LOS) conditions specified

in [86]. Additional channel models including Rural LOS and Urban NLOS can be selected

during the simulation. The received waveform is decoded and verified using the bit-level

receiver design in [48]. Only the PHY channel link is designed in DES, both PHY Tx and

Rx are implemented by functions from WLAN Toolbox and are integrated with the MAC

DES module.

Based on [86], the Line of Sight (LOS) channel for vehicular network environment is

Two-Ray Ground Reflection model. The Two-Ray model can be found in Phased Array

Toolbox or programed using the code from [87] attached in Appendix C. The code takes

the distance of Tx and Rx antennas, antenna height and transmission power as inputs and

outputs the receiving power in dBm. The thermal noise of 10 MHz band is −80dBm.

According to IEEE 802.11-2012, an implementation loss of 5dB is considered, with the

noise figure of 10dB, the total noise is around −89dBm. The Signal to Noise Ratio (SNR)

can be calculated by SNR = rcvPower − noise. Thus, the two ray model can calculate

SNR adaptively based on the distances between Tx and Rx antennas, roughly the Euclidean

distance of vehicles.

Figure 3.3 illustrates the process of generating a waveform at the transmitter (Tx) at

the bit level. The IEEE 802.11p PHY layer is derived from the IEEE 802.11a Non-HT

transmission specifications. In MATLAB, wlanNonHTConfig creates a Non-HT object in

order to configure the transmission parameters. It is configured for a 10MHz channel

bandwidth with a single transmit antenna according to the IEEE 802.11p standard [81].

A Non-HT Orthogonal Frequency-Division Multiplexing (OFDM) symbol consists of 64

sub-carriers, the 10MHz bandwidth decides the symbol period is 6.4µs. A 1.6µs guard

interval (GI) is inserted between each symbols in order to prevent inter-symbol interference

(ISI). A PLCP header including information of data rate and PSDU length is prepended

to the PSDU. From the perspective of a waveform, the PLCP header is the Legacy Signal

(L-SIG) field and the PSDU along with a tail and padding becomes the data field. Ahead

of the L-SIG field, a PLCP amble is attached, which includes a Legacy Short Training
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Figure 3.3: Tx: Frames to Waveforms Conversion using MATLAB WLAN Toolbox.

Field (L-STF) and a Legacy Long Training Field (L-LTF). L-STF is used for the packet

detection, initial frequency offset estimation, and coarse timing synchronization. The L-

LTF is used for the fine time synchronization, channel estimation, and fine frequency offset

estimation. Thus a complete waveform consists of a L-STF, a L-LTF, a L-SIG as well as

a data field. These fields are generated separately and concatenated to form a complete

Non-HT transmit waveform. The Non-HT configuration object specifies the parameters for

generating the data fields of a waveform. The cfgnonHT.PSDULength property indicates the

length of bytes to be sent in the Non-HT data field. A Non-HT waveform is then generated

by function wlanWaveformGenerator according to the configuration of wlanNonHTConfig.

Figure 3.4 shows the process of payload extraction when a waveform arrives at the

receiver (Rx). The first field needs to be processed is the L-STF. In the vehicular network,

L-STF has a length of 16µs with 10 repetitions. Due to its good correlation properties,

the first seven repetitions are used for the time synchronization purpose by performing

self-correlation calculations [88]. The rest of sequence are used for packet detection, coarse

frequency offset (CFO) detection and correction [89] and setting the automatic gain control

(AGC). The second field needs to be examined is the L-LTF, which is composed of a cyclic

prefix (CP) equaling to the period of two GIs, i.e., 3.2µs followed by two identical long
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Figure 3.4: Rx: Waveform to Frame Conversion using WLAN System Toolbox.

training symbols, i.e, 2 × 6.4µs. Channel estimation, fine frequency offset estimation, and

fine symbol offset estimation all rely on the L-LTF. With all estimation and correction stages

executed, the L-LTF demodulator and channel estimator operations are performed based

on the demodulated L-LTF. Note that the demodulated L-LTF is also used for noise power

estimation. Finally, the Non-HT data field is extracted and recovered into the PSDU.

The integrity of received PSDU, rxPSDU, is verified by the Cyclic Redundancy Check

(CRC). Consequently, the rxPSDU is sent to the MAC layer if it passes the CRC. The

above operations of both PHY Tx and Rx are based on the bit-level processing features.

This is exactly the same process when an actual waveform is transmitted among radio

hardwares [90]. Thus the PHY layer in our proposed simulator is more realistic and accurate.

3.1.2 MAC Layer Design

Vehicular network supports vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communication in general. The implementation of MAC layer should be able to cope with

all communication mode. For example, after receiving a frame from other nodes, the MAC

layer should find out if it comes from another peer vehicle or infrastructure. Besides, the

MAC layer should also check the type of the received frame, i.e., broadcast, multicast or
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unicast, and prepare for ACK to unicast type frames in reliable data transmission (RDT)

One fundamental difference of IEEE 802.11p when compared to other types of IEEE

802.11 networks is the usage of EDCA for the purpose of Quality-of-Service (QoS). Different

frames are granted with different priorities. Eight priorities are defined and can be placed

in four possible Access Categories (ACs): AC0, AC1, AC2 AC3. Each frame is assigned

one of the AC descriptions by the application that created the message depending on the

importance and urgency of the content. Specifically, AC0 denotes regular access, AC1 is for

non-prior background traffic, while AC2 and AC3 are for prioritized messages, e.g., critical

safety messages.

IEEE 802.11 channels are all contention-based, where all nodes need to compete with

each other for channel access. During the contention process, the data is required to wait

for a random period of time prior to transmitting, which is referred to as defer access.

The defer access process includes an Arbitration InterFrame Spacing (AIFS), which is a

replacement for Distributed coordination function(DCF) InterFrame Space (DIFS), and a

backoff period, which is calculated based on a contention window (CW) value. After sensing

a busy medium, a node will wait for an AIFS period before sensing the channel again. If

the channel is idle, the node will start to backoff, otherwise the node has to wait for another

AIFS period. During the backoff period, the node keeps monitoring the channel status. In

the event that a busy channel is detected, the node will immediately pause the backoff and

restart the AIFS channel sensing step. In short, both AIFS and backoff define the waiting

period for a node before accessing the channel.

In EDCA, the ACs decide different (AIFS, backoff) pairs. Therefore, the frames with

different priorities own different defer access periods. In general, the higher priority the

shorter the defer period and vice versa. The design purpose of EDCA is to enable the

frames the with higher priority to gain channel access more frequently.

In order to depict more clearly the implementation of the MAC layer, we define the data

flow from the PHY layer to the APP layer as the inbound flow, as shown in Figure 3.6, and

the flow from the APP to the PHY layer as the outbound flow, as shown in Figure 3.5.

For the outbound flow, a payload from the APP layer is converted into a frame by

adding the necessary MAC layer headings, then forwarded to the AC0-3 queues. Frames
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Figure 3.5: MAC Layer Outbound: Data Flow From APP to PHY Layer. A payload is
received from the APP layer, converted into a frame, experience channel access backoff and
finally converted into a waveform.

from the four AC queues will perform deferred access simultaneously. It might be possible

that more than one of the AC queues has frames the are ready to send after the deference

period, thus a contention is created. Since this situation happens inside the same node, this

type of contention is called an internal contention, which is unique for nodes using EDCA.

Whenever an internal contention occurs, the frame with the highest priority will be the first

one to be sent out, while the other frames have to redo the defer access.

If a frame is of unicast type and requires an ACK from the receiver, i.e., Reliable Data

Transmission (RDT), a replica is created inside the buffer and it waits for the ACK. If the

ACK is not received within a predefined time period, the replica will be sent again until an

ACK is received or the maximum retransmission limit is reached. If the ACK is still not

received by then, this frame will be dropped.

For inbound flow as shown in Figure 3.6, a waveform is received from the wireless channel

of PHY layer. The receiver (Rx) of PHY layer is integrated within MAC layer DES. Upon

receiving a waveform, Rx will perform a series of checks in order.

1. CRC: check if the received waveform is corrupted. If it is corrupted, the waveform is



Chapter 3 64

Figure 3.6: MAC Layer Inbound: Data Flow From PHY to APP Layer. Drop the corrupt
frame entity, or extract the payload from intact frame and send to the APP layer. Reply
an ACK frame if necessary.

detroyed by obj.eventDestroy. If the waveform is intact, start the next check.

2. Source and Destination Check: In V2X communication, a network node may be a

vehicle or an infrastructure. When a network node receives a waveform, it should

check if the waveform is sent to a vehicle node or infrastructure node. Then it will

check if the waveform is from an infrastructure or vehicle. This behavior is conducted

by checking the fromDS/toDS fields in a waveform header.

Wireless communication is a physical broadcast, i.e., a vehicle may receive a lot of

waveforms that are designated to infrastructures. Similarly, an infrastructure may re-

ceive many waveforms designated to a vehicle node. Furthermore, in a multi-hop V2X

communication environment, a waveform may pass though several nodes (vehicles or

infrastructures) before finally reaching to the target node. FromDS/toDS only takes

1 bit (2 bits for both) in a waveform hearder field. Checking FromDS/toDS is the first

barrier to filter large amount of irrelevant waveforms. All these irrelevant waveforms

are destroyed immediately without further looking into other information with minor

computing resources cost.
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3. Address Check: Rx should detect if the received waveform if to the right node by

checking the destination address (dstAddress). The dstAddress indicates if this wave-

form is a broadcast, multicast or unicast waveform. If it is a unicast waveform, the

source address (srcAddress) is used to prepare for an ACK. IEEE 802.11 defines 4 ad-

dress fields in the header, but three of them are actually used in vehicular networks.

The combination of ToDS/FromDS and address fields can guarantee the waveform

can be finally delivered to the correct target with minimum resource cost. The ToD-

S/FromDS and address fields are showing in Table 3.1, in which DA refers to desti-

nation address and SA refers to source address. BSSID refers to the basic service set

ID and can be used to identify different WBSSes. As vehicular network can work in

’outside the context of a BSS (OCB)’ mode, BSSID is not mandatory.

Table 3.1: The ToDS/FromDS and Address Fields.

ToDS FromDS Address1 Address2 Address3

V2V 0 0 DA SA BSSID

To Infra. 1 0 BSSID SA DA

From Infra. 0 1 DA BSSID SA

4. Data Type Check: The type of a waveform could be a data or an ACK. If it is an

ACK, the MAC layer needs to make sure if it is an valid ACK as multiple ACKs

to the same data may be received due to the congestion of channel. If it is a data

type waveform, the MAC layer extracts the payload and sends to the APP layer. If

it is a RDT waveform, i.e., an ACK is required, the MAC layer will generate the

corresponding ACK and send to PHY layer.

Partial code of the above Rx mentioned behaviors is listed below:
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[status,outframe,typeField,subtype]=waveform2psdu(waveform.Body);

if status==1 %Received correctly

if (ToDS==0 && FromDS==0 && ismember(obj.txAddr,rcvAddress))... %

↪→ V2V unicast packet

|| (ToDS==0 && FromDS==0 && Address1==0 && Address2~=obj.txAddr)...

↪→ % V2V broadcast packet

|| (ToDS==0 && FromDS==1 && Address1==0 && Address2==obj.

↪→ infraAddress && Address3~=obj.txAddr)... %V2I broadcast

↪→ packet

|| (ToDS==0 && FromDS==1 && Address1==obj.txAddr && Address2==obj.

↪→ infraAddress && Address3~=obj.txAddr) %V2I unicast packet

switch typeField

case 1 % Rcv ACK: type -> 1 subtype -> 13

...

case 2 % Rcv data: type -> 2

...

end

else % Invalid ToDS/FromDS/Address

events=obj.eventDestroy();

end

elseif status==0 % Corrupted

events=obj.eventDestroy();

end

3.1.3 APP Layer Design

One significant challenge of implementing this proposed simulation model is that the

behavior of the APP layer depends on the application itself and there is no comprehensive

standard defining all the application requirements since it is almost impossible to anticipate
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all possible future needs. Therefore, within the scope of this dissertation, the safety-related

messages consists of AC2 Basic Safety Messages (BSMs) at a constant 10 Hz and AC3

critical safety messages either from mobility models or at a Poisson distribution. In this

section, we introduce the basic message dissemination functions.

A Dedicated Short Range Communication (DSRC) device is required to transmit at least

300 meters [19, 91], and it is assumed that the surrounding vehicle positions are changing

frequently in the highly dynamic environment. Consequently, we can assume the safety

messages are physically broadcast using a single hop. Therefore, packet collisions and

packet loss are major challenges for communication system performance. One solution is to

decrease the channel load by grouping similar messages together, as shown in Figure 3.7.

Figure 3.7: APP Layer Design using MATLAB DES. The messages from mobility model
applications are converted into payloads and sent to the MAC layer. When receiving pay-
loads from the MAC layer, the messages are extracted and dispatched to different mobility
models.

A mobility model may involve several safety applications, such as lane changing, brak-

ing [92], and collision warning [93]. These applications share different types of messages

with other peers differentiated by application IDs (AppIDs). For example, a lane changing

application creates messages that include driving direction information, while braking ap-
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plications generate messages containing brake status. While both types of messages may

contain the same information such as currently location and speed. If these two messages

are sent separately, the overlapping information will cause a waste of transmission source.

The APP layer DES maintains a message list created by map containers. Whenever an

application is activated, it has to register its AppID as well as its message requirements to

the message list. The AppID serves as keys while the requirements are values.

Once an empty payload is generated, the APP layer assimilates the data requirements

from these applications and compiles them into one single message using a dictionary of

standardized message construction guidelines. In the last example, an assembled message

consisting of position, speed, driving direction, and brake status is created instead of two

separate messages. Society of Automotive Engineering (SAE) standards J2735 [74] and

SAE J2945 [79] define a dictionary with over 150 data elements. Each data element can be

indexed using the AppIDs.

When a payload is received, the APP layer is responsible for separating the data elements

according to its appID and dispatches them to the corresponding applications so as to finally

affect the mobility models.

Mobility Models and Scenarios

Figure 3.8: Notations for Highway Mobility Model based on V2V Communications.
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Research in [94] used the OpenStreetMap for extracting road network into a XML file.

Then the traffic mobility flow is read by SUMO to simulate vehicular motions. During the

process, several applications and simulators are involved via separate interface programs.

For instance, eWorld converts the format of the OpenStreet log file into the SUMO readable

format, TraNS passes the SUMO road network data to NS-2. Due to these interface pro-

grams, it is difficult to conduct simulations in real-time. An integrated vehicular network

simulator usually combines vehicular mobility model and vehicular network model together.

A proper vehicular mobility model is necessary to reflect the real vehicular traffic behaviors

as vehicular mobility impacts the vehicular network performance significantly. A vehicular

network application is designed to make use of shared traffic information among vehicles

in order to change traffic patterns, either for the purpose of road safety or for the road

efficiency improvement.

Therefore, a vehicular network simulator should show the interaction between the net-

work protocol and vehicular mobility. In VANET Toolbox, the vehicular mobility models are

integrated with the APP layer. Variety of vehicular mobility models have been proposed for

different purpose including random models, flow models, traffic models, behavioral models

and trace-based models. Traffic safety applications usually requires traffic flow modeling, in

which the interactions between vehicles are modeled with details as flows, shown in Figure

3.8.

Vehicular network applications can be classified into V2V applications and V2I appli-

cations depending on which V2x mode is used. According to [32], V2V applications are

generally safety applications and V2I usually dedicates to traffic efficiency improvement. In

this paper, we only focus on V2V communication and two V2V-based mobility models, car

following model and lane changing model, are discussed in the next chapter.

3.2 Implementation of Vehicular Network Simulator

In this section, we present the self-designed vehicular network simulator: VANET Tool-

box using MATLAB Discrete-Event System (DES). VANET Toolbox is a Simulink library

containing several blocks, as shown in Figure 3.9. The upper section (purple) consists of
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blocks for the main layers of vehicular network stack, i.e., Application (APP) layer, Media

Access Control (MAC) layer and Physical (PHY) layer.

VANET Toolbox is an integrated type simulator, i.e., the simulator includes both ve-

hicular mobility models and vehicular network simulator. In VANET Toolbox, the mobility

models are integrated with APP layer. As of VANET Toolbox V2.0, the mobility mod-

els supports basic Car-Following Model (CFM) and Lane-Changing Model (LCM) [95–97].

More vehicular mobility models may be included in the future release.

On the other hand, APP layer processes different types of messages based on different

mobility models. Within the scope of this paper, WAVE Short Messages (WSMs) is used.

WSMs may vary depending on the applications. For instance, one type of WSMs with

moderate priority named Basic Safety Messages (BSMs) broadcasts 10 times per second.

Figure 3.9: Vehicular Ad-hoc Network (VANET) Library.

MAC layer in vehicular network is defined in Wireless Access Vehicular in Environment

(WAVE) protocols, among which IEEE 1609.4 explicitly points out Enhanced Distribution

Channel Access should be used for the purpose of Quality of Service (QoS). EDCA classifies
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all messages in the same channel into 4 priorities, messages with different priority have

different channel access deference period. The design purpose of EDCA is to let the message

with the higher priority gain channel access more frequently.

A vehicular network includes Vehicle-to-Vehicle (V2V) communication and Vehicle-to-

Infrastructure (V2I) communication. In V2V communication, the On-Board Unit (OBU)

directly communicates with OBUs from other vehicles. In V2I communication, OBUs com-

municate with Road-Side Units (RSUs) installed in the static infrastructure along the road.

As shown in Figure 3.9, two MAC blocks are created to support OBU and RSU in separate.

PHY layer in vehicular networks is defined in Dedicated Short Range Communication

(DSRC) standard. The wireless channel is derived from IEEE 802.11a protocol working on

5GHz with 10MHz channel bandwidth. Roughly saying, the wireless channel of vehicular

networks are based on Wi-Fi and it is such a mature technology that a MATLAB toolbox

called WLAN System Toolbox fully supports all features of PHY layer.

Users can compose vehicular network nodes including vehicles and traffic infrastructures,

by dragging and connecting the required blocks from vehicular network stack together. The

lower section (yellow) in Figure3.9 contains several created vehicular networks nodes. For

example, the vehicle block is made by both APP layer block and MAC layer block. Users can

choose the finished blocks to start a quick simulation or create their own blocks according

to their requirements.

VANET Toolbox supports two way to run the simulation, Run from Simulink shown in

Figure3.10 (left) and Run from MATLAB UI , Figure3.10 (right):

1. Run from Simulink : Users can create an empty Simulink model and drag the blocks

from VANET Library directly to the empty model. After configuring the necessary

parameters, the model is good to run. The advantage of this option is that configuring

and tunning parameters are very easy. Users just need to double click the target block

and tweak the parameters. The disadvantage is that user may be hard to create a large

scale simulations. Imagine a simulation with 100 cars, it is impractical to drag 100

cars from the library and configure each one of them one by one. Thus this method

is suitable to build a simple and preliminary model for testing purpose.
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Figure 3.10: Vehicular Network Simulator Mode: Script Panel and Simulink UI.

2. Run from MATLAB UI : VANET Toolbox is equipped with a VANET Control Panel

UI, by which users can control the necessary parameters including simulation time,

number of vehicles and traffic model etc. It is suitable for large scale simulations.

However, a small control panel UI cannot fit all parameters in a vehicular network

model. If users need to tweak some parameter the control panel UI does not support,

this option is not suitable.

There is one way to compensate the drawbacks of the above two options, i.e., running

from MATLAB script. More details will be introduced in the later sections. In this chapter,

we will introduce the implementation of VANET Toolbox using MATAB Discrete-Event Sys-

tem (DES). The performance analysis of V2V models and the limitations will be introduced

in Chapter 4.

3.2.1 Modeling the PHY Link in MATLAB DES

Figure 3.11 shows the DES of wireless channel in PHY layer. The Tx and Rx of PHY

layer are integrated with MAC layer. As the PHY wireless channel contains only one data

type (waveform), thus only one set of storages, entities and actions are involved. In the

figure, a waveform enters the PHY wireless link block from the input port and is stored in

the storage. This behavior triggers the entry action waveformEntry( ), in which a timer

event is called. This time delay is to simulate the air propagation of a waveform.

After the delay period, the corresponding action waveformTimer( ) is triggered, which
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Figure 3.11: Modeling the PHY link using MATLAB DES. The waveform entity enters the
DES module, stays for a period and then left the module. Only one waveform type storage
is created. waveformEntry(), waveformTimer() and waveformExist() are actions.

stores the waveform in a persistent variable called waveformBuff in order to simulate packet

collision situation. If more than one waveforms are sent into the PHY channel, they will

all be stored in waveformBuff. These waveforms may overlap to each other and generate

errors.

Then a new waveform is extracted from the persistent variable, no matter if corrupted

or not, it is sent to the output port via event obj.eventForward( ). Once the waveform left

the wireless channel DES, action waveformExit( ) is called to reset the channel persistent

variables.

3.2.2 Modeling the MAC Layer using MATLAB DES

Figure 3.12 illustrates the design of a MAC DES module, in which one payload type

storage, six frame type storages, and one waveform type storage are defined to contain

payload, frame, and waveform entities, respectively. The payload type entity enters into

the MAC layer from the APP layer and stays in the payload storage. In the corresponding

payloadEntry() action, a new event frameGenerate() is called, which converts the payload
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entity to a frame entity by adding the necessary header and trailer.

Figure 3.12: Modeling the MAC layer using MATLAB DES. The MAC DES module involves
threes types of entities: payload entity, frame entity and waveform entity. It is responsible
for the data streams sending to the PHY layer and receiving from the PHY layer.

Based on the priority, the frames are forwarded into 4 AC queues via frameForward(

) event. In AC queues, frames with different priorities experience different channel access

deference (AIFS+backoff). Once the backoff period is done, the frame is forwarded to Frame

Storage (HCF). It is possible that more than one frames are ready to send, this will cause

internal contention. When this situation happens, only the frame with the highest priority

will be forwarded to the HCF frame storage, others remain in the original AC storage and

redo the backoff.

The winner frame checks the external contention status and if the channel is idle, the

frame is converted to a waveform via action waveformGenerate( ). If the channel is busy,

the frame stays in the HCF storage until the channel becomes idle. A waveform is converted

from a frame using PHY Tx mechanism mentioned in the above section. Then the waveform

is forwarded to output 1 by waveform forward event.

In a reliable data transmission(RDT), a unicast waveform is required to have an ACK
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returned. After the RDT waveform entity left the MAC DES, a timer event is attached

to the original frame entity in HCF storage. If the ACK is not received within the timer

period, this frame entity will be converted to the waveform entity and forwarded out again.

If the ACK is still not received after the maximum retransmission limit is reached, this

frame is destroyed to prevent further retransmission. If the needed ACK arrives in time,

an iteration event is called. In the corresponding action frameIterate ( ), the frame in HCF

storage is destroyed, and new frames start to contend for channel access.

It is worth mentioning that the reason why the timer is attached to the frame entity

in HCF storage instead of the waveform entity is because after the waveform entity left

the MAC DES, it no longer exists in the object. All unfinished events attached become

invalid immediately and will never happen. The waveform entity is generated based on the

corresponding frame entity, after the waveform entity left, the frame entity stays in the

storage in order to keep the attached events valid.

When an waveform entity enters the MAC DES via input port 2, it stays in the connected

waveform storage. This process triggers the action waveformEntry( ), in which the type

of waveform will be checked. If it is an ACK for RDT, an iteration event will be called.

In the corresponding action frameIterate( ), the target frame will be destroyed and its

unfinished events are all becoming invalid. If the waveform entity is a data type waveform,

the data information is extracted by waveform entry action and a new payload is generated

containing the extracted data. The payload is finally forwarded to the upper layer via

output port 2.

3.2.3 Modeling the APP Layer using MATLAB DES

APP layer is the top layer and responsible for generating the first entity to trigger the

whole discrete event system. Instead of receiving entities from external entity generator

blocks, a better option is generating entities inside APP block. This can be implemented

by events=setupEvents(obj) methods from class MATLAB.DiscreteEventSystem, which sets

up the first set of entity generation events at the start of simulation. The code is listed

below:
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function events=setupEvents(obj)

events=[obj.eventGenerate(3,'driving',0.1,300), ...

obj.eventGenerate(1,'BSMgen',0.1,100);];

end

The above code generates two entities. The first entity is generated in storage 3 with tag

of ‘driving’. The entity stays in storage 3 and serves as the seed to trigger a series of driving

behaviors. After the ‘driving’ entity is generated, a 0.1 second timer event is attached to

the entity. Once the delay period is ended, another 0.1 second timer event is triggered.

Figure 3.13: APP Layer Design using MATLAB DES.

The vehicular mobility models are integrated with the APP layer. This means that the

APP DES module has two responsibilities. First, the APP DES module should generate

payload entities containing traffic information and sent to the MAC layer. As shown in

Figure 3.13, two payload storages resource (storage 1 and storage 3) are involved, while

the setupEvents() generates Basic Safety Messages (BSMs). The 0.1 in payloadGener-

ate(‘BSM’,0.1) event indicates the payload generation intervals since BSMs are generated

at a rate of 10 Hz. Once generated, the payload entities are forwarded to Storage 3 and
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finally sent to the MAC DES Module.

The timer event and timer action are mutually triggered in a loop with 0.1 second

gaps. During the 0.1 second period, each vehicle updates its location based on the mobility

model. Meanwhile, each vehicle inquires the ‘global database’ to see if it is involved in an

car accident. Thus every 1 second, each vehicle updates its position 10 times and conducts

car accidents inquiries 10 times. More information about the ‘global database’ will be

introduced in the next section.

The second entity is generated in storage 1 containing vehicle’s driving information

including speed, position etc. The information is included in a Basic Safety Message (BSM).

Each vehicle is required to broadcast BSM 10 times per second. Therefore, every 0.1 second,

an entity generate event is triggered to create a BSM. The BSM is forwarded to storage 3

and finally left the APP block via output port.

When receiving payloads from the MAC DES module, the APP DES module extracts

the message from the payload entities and forwards to the mobility models. The traffic

information will be updated according to the received message. A Emergency (EMG) type

message can be generated upon request by the vehicles.

The APP DES module is also responsible for making the vehicles to move on the road

according to mobility models, thus a new type of entity with a driving tag is created and

stored in Storage 3. This driving entity stays inside Storage 3 forever and will never be sent

out. A timer event is recursively triggered on the driving entity at an interval of 0.1 seconds.

This is the refresh rate of the vehicles moving across the map. The corresponding timer

action payloadTimer(driving) is called every 0.1 seconds to update the driving information

including vehicle position, speed, and direction. This refresh rate can be increased at the

cost of execution speed.

3.2.4 Peripheral Function Implementations

Build Isolated Vehicle Block and Connectionless Links

We have built the necessary layers, i.e., APP layer, MAC layer and PHY layer, for a

vehicular network node. A vehicle node now has the capability to communicate with other
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vehicles. Before performing a simulation, more factors need to be considered. ‘a simple

example’ in Chapter 2 shows that Simulink blocks are connected to each other via ‘lines’.

These lines may be feasible if the scale of a Simulink model is small or medium. For a large

scale simulation, drawing all lines one by one becomes a severe limitation.

The simulation for vehicular networks is often in a large scale. For example we want

to simulate V2V communications among 100 vehicles. Suppose all V2V nodes are directly

connected via independent links, the maximum number of lines needed is 100×(100−1)
2 = 4950.

Imagine how tedious to draw 4950 lines. Thus it is necessary to get rid of these lines.

The first option is using ‘From’ and ’Goto’ tags from Simulink library. Users can set

different tag to ‘From’ and ‘Goto’ pairs. Any pair with the same tag are actually connected

via invisible lines. In order to create ‘From’ and ‘Goto’ pairs in batches, we convert the

MAC DES block into a subsystem and seal it with mask. In the ‘Initialization commands’

tab of the ‘Mask Editor’, run the predefined mask codes to generate ‘From’ and ‘Goto’ tags

in batches.

Figure 3.14 show an example of ‘From’ and ‘Goto’ pairs on vehicle 12. The naming rule

of ‘From’ is defined as ‘receive(r) + fromVehicleID + toVehicleID’. For example, ‘r0112’

indicates that the link is from vehicle 1 to vehicle 12. Similarly, the ‘Goto’ tag is defined

as ‘to (t)+fromVehicleID + toVehicleID’. For instance, ‘t1201’ means the link starts from

vehicle 12 and invisibly connects to a ‘Goto’ block attached to vehicle 1 with a tag of ‘t1201’.

Suppose all vehicles are connected to each other via invisible links, and each vehicle is

indexed by numerical ID. Based on the total number of vehicles, the ID of vehicles on both

end of each link can be calculated using the following code:
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Figure 3.14: Examples of ‘From’ and ‘Goto’ pairs created in batches by MATLAB code.

function [LinkFrom,LinkTo]=fcn_GetLinks(numStations)

for i=1:numStations-1

for j=2:numStations

if j>i

LinkFrom=[LinkFrom i];

LinkTo=[LinkTo j];

end

end

end

end

Then we calculate the number of ‘From’ and ‘Goto’ pairs according to the links. The
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code below automatically create all the ‘From’ and ‘Goto’ pairs we need.

num = length(Conns);

set_param([block '/Combiner'], 'NumberInputPorts', num2str(num));

set_param([block '/Replicator'], 'NumberReplicas', num2str(num));

for i = 1:num

bpath = [block '/From' num2str(i)];

add_block('built-in/From', bpath);

set_param(bpath, 'GotoTag', ['r' src dst]);

add_line(block, ['From' num2str(i) '/1'], ['Combiner/' i]);

bpath = [block '/Goto' num2str(i)];

add_block('built-in/Goto', bpath);

set_param(bpath, 'GotoTag', ['t' dst src]);

add_line(block, ['Replicator/' num2str(i)], ['Goto' i '/1']);

end

Even though the vehicle blocks are not constrained by the lines, users still have to create

the same amount of ‘From’ and ‘Goto’ pairs. Actually the lines between ‘From’ and ‘Goto’

remain the same but invisible, see Figure 3.15 . In the figure, three nodes of a network

are communicating via 3×(3−1)
2 = 3 links. Each link contains a pair of wireless channel

link (one for sending and one for receiving) as well as two pairs of ‘From/Goto’ blocks.

Suppose we have n vehicle nodes in a network, the total number of wireless channel links is

2×n×(n−1)
2 = n(n−1) and the total number of ‘From/Goto’ blocks is 4×n×(n−1)

2 = 2n(n−1).

This feature not only increases the configuration difficulty, also slow down the simulation

speed tremendously. The only advantage of this design is the model can simulate Hidden

Terminal Problem by manipulating each links.

Since MATLAB 2017a, VANET Toolbox involved into the 2nd version by replacing the

‘From/Goto’ pair with ‘Multicast’ blocks. ‘Entity Multicast’ and ‘Multicast Receive Queue’

are blocks from SimEvents Toolbox. Unlike the ‘From/Goto’ pair, which only supports

one-to-one entity transmission, multicast blocks support multiple-to-one or one-to-multiple

transmissions. Besides, the tag pair in ‘From’ and ‘Goto’ has to be unique in a model,
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Figure 3.15: Illustration of three nodes with unicast tag pairs.

i.e., only one pair of ‘From/Goto’ with same tags is permitted in the same model, while

multicast blocks allow more than one tags with the same names.

Figure 3.16 shows an example of a wireless link with multicast blocks. In the figure,

each vehicle is attached with an ‘Entity Multicast’ block with the same tag name of ‘toPhy’.

All the waveform entities sent from different vehicles are received by the ‘Multicast Receive

Queue’ attached to the wireless link with the same tag of ‘toPhy’. After processing by the

wireless link DES, the waveform entities are sent out via another ‘Entity Multicast’ block

with tag of ‘fromPhy’. Each vehicle will receive a copy of waveform entities from its own

‘Multicast Receive Queue’ with tag of ‘fromPhy’. Based on the Rx checking mechanisms

we described in the above sections, MAC layer DES of each vehicle will keep the waveform

entity right to it and destroy all the other irrelevant waveform entities.
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Figure 3.16: Illustration of three nodes with multicast tag pairs.

In this mechanism, the wireless link blocks decreases to 2 in a model (bidirectional

communication), and no matter how many vehicle nodes in total, the PHY links are alway

2. For n vehicle nodes, the number of multicast pairs is 2n. Compared with unicast

‘From/Goto’ pair option, multicast pair greatly decreases the design complexity and increase

the simulation speed.

Figure 3.17: Configurations of multicast blocks.

Figure 3.17 shows the muliticast block pair and their configuration parameters. In the
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figure, all data are received by ‘Multicast Receive Queue’ with tag of ‘toPhy’. The ‘Multicast

Receive Queue’ is set to be a FIFO queue with infinite capacity. After processing by the

wireless channel links, des PHY links, the data are broadcast via ‘Entity Multicast’ block

with tag of ‘fromPhy’. In this way, all ‘Multicast Receive Queue’ blocks attached to each

vehicle node with tag of ‘fromPhy’ will receive a copy of data.

Local Database and Global Database

In a vehicular network, vehicles keep sharing driving and traffic information to each

other. These information guide vehicles on making decisions to their driving behaviors. In

VANET Toolbox simulator, each vehicle is a set of objects, i.e., a combination of APP,

MAC and PHY object. Here in order to describe more conveniently, we treat each vehicle

as a single object that stores the traffic information.

The data structure MATLAB supports includes array, struct and containers.Map. Array

in MATLAB can only store numerical values, i.e.,numbers. The data structure we are

looking for should act more like a database. To this point, array is not a good option

to perform database type operations such as adding, removing and information inquiry.

Struct supports ‘key-value’ pairs but its inflexible on data type makes it not unfeasible to

be a database. Containers.Map is the best option because it can save any type of data

in ‘cells’. It supports ‘key-value’ pair index and data inquiry. What’s more, the data in a

container.Map are save as hash-map, which increases the read/write speed. Thus we select

containers.Map as the database to store all the traffic information.

The next challenge is how to maintain the traffic information during the simulation

process. MATLAB provides two ways to make this happen, properties in an object and

persistent variables.

1. Ojbect properties: attaching the database (containers.Map) to a private property

inside an object is a good option. The value of properties remains valid during a

simulation. And it is convenient to query the needed information based on class

name and property names. However, as of MATLAB 2018a, SimEvents toolbox does

not support containers.Map inside objects when using Code Generation mode. Code
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Figure 3.18: Design of Local Database.

generation is a feature that the MATLAB code can be converted to C/C++ code in

order to increase the simulation speed. According to this limitation of code generation,

it is regretful to gave up this option.

2. Persistent variables: persistent variables in MATLAB are like static variables in

C/C++, which maintains values during the simulation. The database (contain-

ers.Map) is attached to a persistent variable. The operations on this persistent vari-

able are coded in a MATLAB function file. Note that persistent variables are not

supported by code generation either. Therefore, when using functions containing per-

sistent variables inside a DES object, we need to coder.extrinsic(functions) in order

to bypass the code generation. This is a compromise between code generation and

persistent variables, and this compromise will surely slow down the simulation speed.

But using persistent variables in a function and coder.extrinsic the function inside the

object to bypass code generation is the only option.

In a vehicular network, each vehicle has its own traffic information, thus each vehicle

should have its own local database. The local database is called ‘carlocalDB’ in VANET

Toolbox. However, as mentioned above, the persistent variables do not support code gener-

ation and will slow down the simulation speed. Therefore, the design of databases should

contain as few persistent variables as possible. The challenge here is how to use a single

persistent variable to contain all carLocalDBs separately for each vehicles. Figure 3.18
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shows the concept of design to local databases. carLocalDB is designed as two-level cascad-

ing containers.Map. The top level containers.Map is carLocalDB attached to the persistent

variable localDatabase. The second level containers.Map is for each vehicle indexed by ve-

hicleID. Each second level containers.Map contains carStatus object to save and maintain

the traffic information. For instance, upon receiving a BSM, a vehicle registers its traffic

information to carLocalDB, partial of codes are shown below:

if ~isKey(localDatabase,vehicleID)

localDatabase(vehicleID)=containers.Map('KeyType','double', '

↪→ ValueType','any');

end

localDB=localDatabase(vehicleID);

if ~isKey(localDB,vehicleID)

localDB(vehicleID)=carStatus;

end

carObj=localDB(vehicleID);

carObj.carID=vehicleID;

While driving, a vehicle keeps checking its carLocalDB to calculate its distance to the

other surrounding vehicles. If the distance to the other vehicles is shorter than a pre-defiend

safety distance, an action may be conducted such as braking, lane changing etc. Partial

code on inquire carLocalDB is listed below:

if isKey(localDatabase,vehicleID)

localDB=localDatabase(vehicleID);

longitude=localDB(vehicleID).longitude;

latitude=localDB(vehicleID).latitude;

...

index=localDB.keys;

end

In order to test the performance of vehicular networks, all vehicles are fully autonomous
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and communicating with each other with only V2V communication. In other word, all

vehicles are blind without wireless communication. This may result a weird situation, that

is if the network load is heavy, BSMs may be delayed or corrupted due to packet collisions.

Thus vehicles may not be able to receive all BSMs correctly on time and vehicle collisions

may happen.

Under normal circumstance, when a car accident happens, both cars should stop for a

while to process the accident. In a vehicular simulation created by VANET Toolbox, the

situation may be different. Suppose vehicle 2 hits vehicle 1 due to the lost of BSMs, under

current design, vehicle 2 has no idea that it have caused a car accident and will keep driving.

On the simulation GUI, users may observe that vehicle 2 drives ‘through’ vehicle 1 without

stopping. This obviously disobey the nature rules. To prevent such situation, we need

to create a global database named carGlobalDB shown in Figure 3.19, which records all

vehicles’ actual position information and the recording of these information is not affected

by the network communication quality.

carGlobalDB should start to track the driving information of each vehicle, including

carID (vehicleID), position, speed, at the beginning of a simulation. carGlobalDB should

not interfere the driving pattern unless car accidents happened. Compare with carLocalDB,

carGlobalDB is relatively simple, because all vehicles are inquiring the same copy of data

and the data are not classified by different vehicleID.

Figure 3.19: Design of Global Database.
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In Figure 3.19, we create a containers.Map and attach it to a persistent variable. The

‘keys’ are carID and the ‘values’ are carStatus object. All vehicles register their traffic

information every 0.1 second, the code is shown below:

globalDatabase(vehicleID)=carStatus;

% Create carStatus object to containers.Map

carObj=globalDatabase(vehicleID); % Select the carStatus object

carObj.carID=vehicleID; % Save values

carObj.latitude=curPositionX;

carObj.longitude=curPositionY;

carObj.lane=lane;

While saving traffic information to carGlobalDB, each vehicle inquires the database at

the same time and check if it is involved into a car accident. Partial codes are listed below:

index=globalDatabase.keys;

tempArray=zeros(1,globalDatabase.Count);

inputCarStatus = globalDatabase(vehicleID);

for i=1:globalDatabase.Count

currentCarStatus = globalDatabase(index{i});

end

The differences between carLocalDB and carGlobalDB are listed as follows:

1. carLocalDB stores data from each vehicle point of view. As the received messages

may be affected by channel imperfection, the information inside carLocalDB may be

outdated, inaccurate or incomplete. While carGlobalDB only saves the latest accurate

information for all vehicles in the simulation.

2. each vehicle has its own carLocalDB and each carLocalDB can be only accessed by

its owner vehicle. While there is only one unique carGlobalDB, and all vehicles have

the right to access to it.

3. The information from carLocalDB may affect the driving path of a vehicle while the
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information from carGlobalDB will not change a vehicle’s driving trail unless car

accidents are detected.

3.3 Run Simulations using VANET Toolbox

There are three ways to run simulations using VANET Toolbox, run from Simulink, run

from MATLAB and run from VANET UI, each of which has its benefits and limitations.

We will introduce all of them one by one in the following sections.

3.3.1 Run from Simulink

Figure 3.20: V2V Model with 4 Vehicles.

As of R2018a, SimEvents toolbox cannot run without Simulink. VANET Toolbox is

developed by MATLAB Discrete-Event System from SimEvents, thus a model created by

VANET Toolbox requires Simulink as the simulation environment. Create a Simulink model

is the most intuitive way. Figure 3.20 shows a V2V simulation model with four vehicles.

Three types of blocks are involved, Vehicle, Wireless Channel and Control panel. Vehicle

block is an abstract of a real vehicle. It contains an OBU, which supports APP, MAC
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and PHY layer of vehicular networks. The Tx and Rx of PHY layer are integrated in MAC

DES, therefore Wireless Channel block only serves as a wireless DSRC channel with two-ray

ground reflection model. Control Panel block is responsible for tunning simulation related

parameters including road type, road length, lane changing options and text/UI output

switch. The details of each block are showing next.

Vehicle Block has the following parameters:

• VehicleID: A traffic model often involves more than one vehicles, each vehicle is iden-

tified by a unique id, i.e., VehicleID. VehicleID is initialized at the start of simulation.

All traffic information during the simulation including speed, acceleration, position

are all classified by vehicleID.

• Initial Speed (Km/h): Users can set a initial speed when a simulation starts. The

initial speed should be a positive scaler within the range from 0 to the speed limit.

• Seconds from 0-100 Km/h: Acceleration is evaluated by the time when a vehicle

speeds up from 0 to 100 Km/h. A typical acceleration value should range from 5 to

10 Km/h2.

• Initial lane number (1-4): In the current version, VANET Toolbox supports traffic up

to 4 lanes. Users can choose the initial lane from this parameter.

• Initial PositionX: initiate the start point in latitude for a vehicle on the road.

• Initial PositionY: one lane contains two sub-lanes, slow lane and fast lane. PositionY

decides which sub-lane a vehicle starts to drive.

The Wireless Chanel block contains only one parameter, Number of Vehicles. Users

need to set the total number of vehicles before a simulation starts. The number of vehicles

is not necessary to compose a simulation model but it is necessary for other simulation

control functions to initialize variable or states.

Control Panel block has the following parameters:

• Road Type: VANET Toolbox supports highway road model and intersection with

traffic light model. The default road type is highway.
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• Road length (meters): The total length of road is defined here.

• (EMG) Lane changing option: Lane change may happen under normal condition

or emergency condition. Users can choose from conservative lane changing scheme

(conLC) , performance lane changing scheme (perLC) or braking only scheme (nonLC).

The performance of these three schemes will be evaluated in Chapter 4.

• Outputs and UI: A model created by VANET Toolbox can output the simulation

process in text format. The text is controlled by APP, MAC layer in separate. The

text output may slow down the simulation speed, thus it is often turned on only for

debugging purpose. VANET Toolbox also supports graphic user interface (GUI) as

shown in Figure 3.21. GUI can intuitively show the results, but it will also slow down

the simulation speed. For large scale of simulations, GUI is suggested to be turned

off.

Figure 3.21: GUI VANET Toolbox: Highway and Intersection with Traffic Light.

Creating a vehicular network model in Simulink is intuitive and relatively simple. Users

can easily tune the parameters described above in each block. However, when the simulator

becomes large scale, it is impractical to tune all blocks. VANET UI Panel provides a

platform to run simulation in batches.
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3.3.2 Run from VANET UI Panel

VANET Toolbox provides a control UI to create and run simulation models, as shown

in Figure 3.22. The major parameters are included in the panel such as number of vehicles,

simulation time etc. One thing needs to mention is the ‘Min-Gap-Max’ set, which allows

users to repeat simulations with different number of vehicles from ‘Min’ to ‘Max’ with step

increment of ‘Gap’. Suppose Min : 4, Gap : 2,Max : 10, the simulation starts with 4

vehicles, when it’s done, a new simulation with 6 vehicles is started, then 8 vehicles and 10

vehicles.

Figure 3.22: VANET Control Panel to Create and Run Simulations.

The control UI is suitable for repeating simulations with necessary parameters only. The

interface is designed by a MATLAB tool named GUI Design (GUIDE). Users can open the

design panel by typing ‘guide’ in the command windows. Figure 3.23 (left) shows all type of

GUI templates it supports. We choose a default template as an example, shown in Figure

3.23 (right). On the design area, we create a series of buttons, text field or tables. In the
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Figure 3.23: GUI Design Panel and An GUI Example.

figure, we created a push button. It is just an empty button, which currently does nothing

until we create the callback function of it.

In next section, we will show you how to create a model and run a simulation via

MATLAB functions. The MATLAB function has some input parameters such as simulation

time etc. Users input the parameters to the UI panel, then all these parameters are collected

beneath the UI panel interface and finally sent to the MATLAB function as inputs. In this

way, the UI panel is successfully connected with the MATLAB function.

The value for each button or text object on the UI panel can be obtained by each

handlers. For example we can get the value of simulation time (simTime) using the following

code simTime=str2num(get(handles.simTime,’String’)), in which ‘simTime’ is the name

of the text field, the values users input is contained in ‘handles.simTime’ and the data

type is ‘string’. We obtain this string type value using ‘get’. In MATLAB functions, to

run simulations, simTime is in double type, thus the string type simTime is converted by

‘str2num’ command. The MATLAB function is associated with the runButton method

because the simulation is started by clicking the ‘Run’ button on UI Control Panel. Partial

code of this button is listed below:
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simTime=str2num(get(handles.simTime,'String'));

roadTypeOpt=get(handles.roadType,'String');

roadTypeIdx=get(handles.roadType,'Value');

roadType=char(roadTypeOpt(roadTypeIdx,:));

multiNumVehicles=get(handles.multiVehilcleNum,'Value');

mapUI=get(handles.mapUI,'Value');

simRound=str2double(get(handles.simRound,'String'));

...

runModel(simTime,roadtype,minVehicleNum,maxVehicleNum,gap,simRound,

↪→ errBar,macTXT,appTXT,mapUI);

In the code, we collect parameters including simulation time (simTime), road type

(roadType), number of vehicles (multiNumVehicles), number of repeating simulations (sim-

Round) and if showning a MAP UI (mapUI) from each handlers. These parameters are

passed to runModel as inputs. When then ‘Run’ button on Control UI Panel is clicked,

function runModel starts to create a model based on the input parameters and run the

simulation(s).

Actually, more parameters can be tunable in addition to the above mentioned selec-

tions. It is infeasible to contain all tunable parameters in the currently Control UI Panel.

Therefore, this option is constrained by limited parameters.

3.3.3 Run from MATLAB Code

In order to run simulations in large scales and, at the same time, tune all parameters

as needed, the only option is running simulations via MALTAB code. Essentially, the

MATLAB function does nothing but creating an invisible Simulink model using MATLAB

code. The process of copying blocks from library, setting up the simulation paramters is

concealed beneath the MATLAB code. But the advantage is tunning up parameters in

batches becomes easy. For example, copying 100 vehicle blocks from VANET Library to

an empty Simulink model can be implemented by one line of code. Besides, changing the
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parameters of these 100 vehicles can be implemented by a for loop in MATLAB code,

unlike in Simulink, users have to double click each vehicle block to change the parameters

and repeat 100 timems.

To run simulations using MATLAB code, we first need to create an empty Simulink

model using the following code:

h=new_system; % create an empty model

mdl=get_param(h,'Name'); % get the model name

Next, we obtain blocks from VANET Library and add to the new model mdl using

MATLAB command add block. The format of add block is ‘add block(source block, desti-

nation block, parameters)’. Take a V2V communication model for example, the required

blocks include ‘Vehicle’, ‘vanet PHY layer’ and ‘Control Panel’. The code to add ‘Vehicle’

is shown below:

add_block('VANETlib/Vehicle', [mdl '/Car' num2str(id)], ...

'carID', num2str(id), ...

'startSpd',num2str(car.Speed),...

'startAcc',num2str(car.Acceleration),...

'initLane',num2str(car.lane),...

'startPosX',num2str(car.PositionX),...

'startPosY',num2str(car.PositionY));

The code above first obtain Vehicle block from the library VANETlib, then copy it to mdl

with name of ‘Car’. A vehicular network model usually contains more than one cars, each

car is classified by different IDs. The Vehicle block has parameters such as carID, startSpd

etc. These parameters can be tuned in the code or kept with the default values. Similarly,

the ‘vanet PHY layer’ and ‘Control Panel’ blocks are added to mdl in the following code:
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add_block('VANETlib/Control Panel', [mdl '/controlPanel'], ...

'txtEnable',n.txtEnable,...

'appTXTEnable',n.appTXTEnable,...

'isUIon',isUIon,...

'road','highway',...

'roadLength','1680',...

'laneChangingOption',laneChangingOption);

...

add_block('VANETlib/vanet PHY layer', [mdl '/VANET'], ...

'numStations', num2str(numVehicles));

After adding all necessary blocks to the model with configurations, the last step is setting

simulation related parameters. This can be done via set param command. Then the model

is ready to run. The code is listed below:

set_param(h,'StopTime',num2str(simTime)); % Set simulation period.

set_param(mdl,'StopFcn',stopfcn); % Set functions running after the

↪→ simulation is done.

sim(mdl); % Start to run simulation

close_system(mdl,0); % close the model after simulation

3.4 Chapter Summary

In this chapter, we have presented an integrated vehicular network simulator, VANET

Toolbox, developed by MATLAB Discrete Event System (DES). This is the first vehicular

network simulator in MATLAB/Simulink environment that supports full stack of network

protocols. Design structure of the main components, APP layer, MAC layer, PHY layer

and the basic mobility models, were proposed and we have shown that VANET Toolbox is

capable to simulate the inter-communication between vehicles under different scenarios but

is not without limitations. VANET Toolbox requires only MATLAB/Simulink background
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to use it. The knowledge of the developing tools including SimEvents, Communication and

WLAN System Toolbox are necessary if users want to modify VANET Toolbox. We will

open-source VANET Toolbox along with several examples implementations created by it.

The design purpose of VANET Toolbox is to provide a framework and opportunity to attract

more researchers to improve it and finally benefit the vehicular network development.
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Chapter 4

Performance Analysis of Vehicular

Network Simulations on V2V

In this section, the performance of the proposed simulation environment is evaluated. We

first discuss the computational costs of a full-stack vehicular network simulator in terms of

the number of events scheduled during the simulation. Then, we compare the packet success

rate (PSR) of BPSK in a AWGN channel between MATLAB PHY layer implementation

and NS-3 error rate model. Due to the bit level processing of the PHY layer, the channel

tracking (CT) techniques can be enabled on the L-LTF field in order to cope with the

high Doppler spread. The performance of CT is evaluated for BPSK signal with different

channel environment. Furthermore, based on the case study of V2V communication in the

above section, we perform two sets of simulations focusing on the MAC layer behaviors and

compare the performance of EDCA with distributed coordination function (DCF). Finally,

two lane changing schemes using BSMs and higher priority safety messages are proposed

and evaluated using the proposed simulation environment.

4.1 Evaluation of VANET Toolbox

In this section, the performance of VANET Toolbox is analyzed and evaluated in terms

of events numbers and the execution time with increasing number of vehicles. The code
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optimization using C code generation and profile features is also discussed.

4.1.1 Computational Costs in terms of Events

A detailed simulation of the whole vehicular network stack is time-consuming especially

with a large amount of vehicles to simulate large-scale vehicular communication effect. In

this section, we show the computational costs in term of number of events E in a discrete

event-based simulation model.

Suppose we have n vehicles in a vehicular communication scenario, with each vehicle

transmitting data at rate r in Hertz, and the simulation time is t in seconds. When a vehicle

is willing to send a message, events are scheduled in order to generate the message in the

APP layer and forwarded to the MAC layer, where the message is converted to a frame,

experiences channel sensing, backoff, and finally sent to the PHY layer, all of which are

conducted by different events. In the PHY layer, the frame is transformed into a waveform

and sent into the wireless channel by events. After receiving a waveform, events are called

in order to extract the information from the waveforms and send it way up to the APP layer

and process it in the mobility models. We assume the number of events E per transmission

is e. The number of events E per simulation can be calculated by Eq. (4.1).

E(n, r, t) = (nr) · e · (n− 1) · t. (4.1)

It is obvious to observe that the number of events E is linearly with the simulation

time t and the data rate r, but nonlinear to the number of vehicles n. Figure 4.1 shows

the number of simulated events for each layer of the vehicular network and for the overall

communication set. We choose the car following model (CFM) as the scenario because for

CFM, each vehicle broadcasts only BSMs at rate of 10 Hz and no other transmissions are

involved. For a 600 second simulation, when 4 vehicles are involved, the total number of

events is around 2 · 106. When vehicle number increases to 36, the total number of events

is around 1.5 · 108, an increase by a factor of 75. The reason we present computational cost

in terms of events is because we do not wish to be dependent on the choice of computing

processing resources.
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Figure 4.1: Computational cost in terms of events for each layers.

Among all the layers, the APP layer costs the least number of events since it is the top

layer of the network stack and it mainly deals with message generation and reception. In

our case, BSM is the only application data generated in the APP DES. If more applications

are involved or the data generation rate is increased, the number of events will be increased

accordingly. The PHY link DES involves slightly more events relative to the APP layer

because whenever the APP DES generates one message and when this message enters the

PHY link DES module in the format of a waveform entity, it triggers a series of events to deal

with activities such as delay, buffer and waveform check. Thereby the number of events in

the PHY link DES correlates to the number of messages generated in the APP DES module.

The number of events increases dramatically in the MAC DES module. This is because the

number of events in the MAC DES module is not only correlated to the number of APP

layer messages but also affected by the channel status. Suppose if the wireless channel is

congested, the channel sensing operation would be performed more frequently in order to

monitor the channel status and seek a transmission opportunity. Thereby, the timer event

related to the channel sensing operation is called frequently, which might cause a burst

amount of events in the MAC DES module. In addition, the PHY Tx and Rx functions are
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integrated with the MAC/PHY DES Module, the events caused by PHY Tx/Rx are shown

in the MAC/PHY DES module surf instead of PHY Link DES module surf.

4.1.2 SimEvents Code Generation

MATLAB is a high-level interpreted type language and provides an interactive environ-

ment for numerical computation. The built-in math functions are able to reach a numerical

solution more convenient than with spreadsheets or traditional programming languages,

such as C/C++ or Java [98]. The tradeoff, however, is the sacrifice on the execution time

compared with lower level compiled type languages such as C/C++. It may be not so obvi-

ous to notice how slow MATLAB language is when running simple functions or scripts. A

vehicular network is usually in a large scale. The computational cost on number of events

has been discussed above. It would be extremely slow when running vehicular network

simulations with pure MATLAB/Simulink code.

Since 2017b, SimEvents Toolbox has been able to generate C/C++ code for a large por-

tion of their classes including MATLAB DES. It is worth pointing out that VANET Toolbox

is developed by SimEvents Toolbox and WLAN System Toolbox, and both toolboxes sup-

port code generation. Due to the limitations of code generation mechanism, WLAN System

Toolbox is not code generated, only major components of VANET Toolbox developed by

MATLAB DES of SimEvents are code generated. Saying ‘major’ means several peripheral

functions, such as the local database and global database with persistent variables men-

tioned in Chapter 3, are not supported by code generation. All the functions are not code

generated greatly slow down the execution speed. We will discuss more details in Simulation

Profile subsection.

In order to test the performance of SimEvents code generation, two sets of experiments

are conducted. The experiment scenario is a highway traffic with simulation time of 10

seconds. The number of vehicles increases from 5 to 35. One set is with SimEvents code

generation and another is without SimEvents code generation. The results are shown in

Figure 4.2. The computational testbed possesses the following characteristics: i7-6700k at

4.0GHz (CPU), 32G DDR4 2133MHz (memory),Microsoft Windows 10 (OS).

In the figure, the execution time increases as the number of vehicles increases. The
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Figure 4.2: Comparison of execution time when running simulations with and without code
generation. The simulation time is 10 seconds, the number of vehicles increases from 5 to
35.

red line indicates the simulations running in interpreted execution mode, i.e., without code

generation. The blue line is the execution time with code generation. It is obvious that

after vehicle density is above 15, SimEvents code generation starts to show its advantage.

For the simulation with 35 vehicles, interpreted execution costs 5751 seconds, while code

generation execution costs 3545 seconds. The execution speed of 35 vehicles simulation

increases 62.21% due to SimEvents code generation.

Simulation Profile

Profiler in MATLAB is able to track execution time for each functions. Knowing the

execution time of the MATLAB functions help users locate the target code needed to be

debug or optimized. We perform profile on a 30-second simulation with 30 vehicles. Partial

results are shown in Figure 4.3.
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Figure 4.3: Profile a 30-second simulation. The simulation includes 30 vehicles on the
highway scenario with car-following mobility model. The highlighted four base functions
cost most of the execution time.

The overall execution time costs 8535 seconds. Figure 4.3 shows major functions sorted

from the longest total time to the lowest. It is worth point out that some functions are the

child functions of other parent functions. For example, num2str and int2str are all child

functions from phy psdu2waveform or app wsmp2msg. The top four parent level functions

that consume most of time are listed below:

1. phy waveform2psdu: This function is used to decode a received waveform (Data or

ACK) to a message. It is implemented by WLAN System Toolbox on bit level. As it

does not support code generation, the interpreted bit-level processing costs most of

the execution time.

2. fcn calLocalDB : This function is the local database for each vehicles. It contains large

amount of calculations on the persistent variables. As described above, persistent

variables do not support code generation. And other methods to maintain states,

such as object properties, will prevent the overall code generation of MATLAB DES.
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Therefore, there is nothing we can do on this file to accelerate the execution speed on

current version.

3. app wsmp2msg : This function convert an encoded WSMP to a regular message the

applications can understand. The major component slows down the simulation is the

num2str, which converts a numerical type data to a string type data. To convert a

numerical WSMP to a string message, num2str is necessary but it does not support

code generation. Therefore, there is nothing we can do on this file to accelerate the

execution speed on current version.

4. phy psdu2waveform: This is the reverse function of phy waveform2psdu, which con-

verts a MAC layer frame to waveform symbols. It is also implemented by WLAN

System Toolbox on bit level. This function does not support code generation, thus

the bit-level processing takes up a lot of time resources.

The profile above shows an opportunity to speed up the simulations. Both phy waveform2psdu

and phy psdu2waveform consumes 57% execution time and they both supports code gen-

eration. However, due to the code generation limitations mentioned above, both functions

need to make a lot of modifications to fulfill the requirements of code generation.

4.2 Evaluation of Vehicular Network

The vehicular inter-communication concept is motivated by improving road safety and

efficiency. Safety related applications benefit directly from vehicle-to-vehicle (V2V) com-

munication such as accident prevention applications, lane changing applications. Therefore,

the vehicular network applications can be classified into safety-related applications and effi-

ciency (Non-safety) applications. In this section, we only focus on V2V communication. All

vehicles are autonomous, i.e., their behaviors are fully based on V2V communication. The

performance of V2V communication is evaluated by a series of experiments starting from

the PHY layer and stacking to the full stack network with mobility models. That is the

above layer activity always includes the below layers. For instance, the evaluation of the

MAC layer activity includes both the MAC layer and the PHY layer, only the evaluation
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focus is on the MAC layer logical activity. Similarly, the evaluation of the APP layer in-

cludes the APP layer, the MAC layer, and the PHY layer but the experiments are focusing

on the APP layer activities.

4.2.1 Performance of the PHY Layer Activity

In this section, the performance of the MATLAB PHY layer is evaluated and com-

pared with the NIST error rate model of NS-3, which is broadly adopted by iTETRIS and

VSimRTI projects.

Precise PHY Layer Modeling

NS-3 is a packet-based, discrete-event network simulator equipped with several wireless

models. When a waveform is received, NS-3 calculates the signal to noise ratio (SNR) and

invokes its error rate model to decide the packet successful reception rate. Two error rate

models are integrated with NS-3: the YANS [99] model and the NIST [49] model. The

YANS model, which is based on an analytical bound was replaced with NIST error model

in 2010. In this paper, we only focus on the currently used NIST error rate model.

In order to estimate the Packet Success Rate (PSR) for orthogonal frequency division

multiplexing (OFDM) symbols, NIST calculates Eb
No

(SNR per bit Eb to the one-side noise

spectral density No) based on SNR in dB using :

Eb
No

= SNR− 10log10(k), (4.2)

where k = log2(M), M is the modulation level, and k is the number of bits per symbol.

However, the NIST error model has two limitations.

First, the NIST error model does not consider the oversampling situation and equates

SNR to Es
No

, i.e., ratio of symbol energy to noise power spectral density. The relationship

between Es
No

and SNR in dB for complex signals is defined by [100]:

Es
No

= SNR+ 10log10
Tsym
Tsamp

, (4.3)
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where Tsym is the symbol period of the signal and Tsamp is the sampling period of the signal.

For a complex baseband signal, if it is oversampled by a factor of n, then Es
N0

does not equals

to SNR but exceeds by 10log10(n).

Second, the NIST error model does not account for the energy in nulls. Take IEEE

802.11p for instance, an OFDM signal consists of 64 subcarriers, among which 48 subcarriers

are for data, 4 subcarriers for pilot information and 12 subcarriers are NULL [70]. Thus,

the SNR for occupied subcarriers in dB, SNRo is calculated using :

SNRo = SNR− 10 ∗ log10
NFFT

Ndata +NPilot
, (4.4)

where NFFT is the number of FFT sampling points, i.e., the total number of subcarriers

for a OFDM signal. Ndata is the quantity of subcarriers used for data and Npilot is for pilot.

Figure 4.4: The packet success rate (PSR) comparison between MATLAB and NS-3 (NIST
model). The simulation is conducted with BPSK modulation in AWGN channel.

Figure 4.4 shows the comparison of PSR on AWGN channels between NIST error model

and proposed MATLAB error model. The PSR of the NIST error model is over optimistic

while the proposed MATLAB error model is more realistic. As a packet-based network

simulator, NIST model is the most NS-3 can implement. The oversampling situation as

well as the energy in null subcarriers requires processing on bit level, thus NS-3 is difficult

to implement these features. The AWGN channel shown in Figure 4.4 is a simple scenario
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Figure 4.5: The performance of channel tracking (CT) for BPSK modulation in multi-
path fading channel. The channel models involves highway line-of-sight (LOS) and urban
non-line-of-sight (NLOS).

that can be compensated by incorporating an offset to NS-3 simulator. However, in a more

complicated environment, such as Non-line-of-sight (NLOS) in Urban scenario, a constant

offset is insufficient to cope with different channel models.

PHY Layer on Bit-level Processing

Another limitation of NS-3 is the oversimplified PHY layer. The packets are forwarded

among objects of Packet class via methods. Based on the packet-error rate (PER) obtained

from NIST Error Model, NS-3 randomly corrupts received packets in order to emulate the

packet corruption process. However a realistic PHY layer of a communication system con-

sists of more functions including frequency offset correction, channel estimation, modulation,

and demodulation. The proposed simulator implements all the PHY layer features at the

bit level.

In a vehicular network environment, the V2x channels have different characteristics com-

pared with other stationary indoor channels [101]. First, V2x channels are affected by longer
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multipath fading, which increases the possibility of intersymbol interference (ISI). Second,

the transmission environment is highly dynamic, which causes significant Doppler effects

resulting in more channel fading. When passing through the V2x channels, the waveforms

are impacted more than just passing through an AWGN channel. The performance in terms

of PSR will be degraded, thus channel tracking techniques are needed in order to enhance

the performance.

In the proposed simulator, we integrate a time and frequency selective multipath Rayleigh

fading channel as specified by [102] with an AWGN channel. The conventional WLAN chan-

nel estimation from L-LTF is used for the entire packet duration. In order to compensate

the high Doppler spread of the V2x channel, channel tracking is enabled. With channel

tracking, the channel estimation obtained from L-LTF is updated per symbol using de-

cision directed channel tracking as presented in [101, 103]. We compare the performance

in terms of PSR on BPSK across different scenarios including Highway LOS and Urban

NLOS with channel tracking (CT) on and off. The results are presented in Figure 4.5. In

this figure, the receiver with channel tracking (CT) enabled possesses a better PSR in V2x

channels. Due to the restrictions of NS-3 on packet-level processing, implementing channel

tracking to OFDM symbols is relatively difficult. It is worth mentioning that the focus

of the paper is presenting the ability and accuracy of bit-level processing and using sim-

ple channel model to evaluate for straightforward comparison. More complicated channel

models may be implemented in the future research.

4.2.2 Performance of the EDCA MAC Layer Activity

One significant feature of a vehicular network is adopting EDCA in the MAC layer.

In this section, we first evaluate the EDCA scheme to assess the performance when data

with different priorities coexist in the same channel. Then we compare the performance

between EDCA and distributed coordination function (DCF), i.e., carrier sensing media

access (CSMA), where the latter is generally used in other IEEE 802.11 products. Research

in [104] evaluates the performance of CSMA on highway scenario. In this section, we conduct

simulations of both CSMA and EDCA on highway scenario. By analyzing the simulation

results, we can evaluate the effectiveness of the proposed simulator.
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We implemented three V2V models with 10 vehicles, 20 vehicles and 30 vehicles re-

spectfully. For each vehicle, two traffic profiles are used. The first profile consists of BSM

messages with AC2 priority and transmitted at a constant rate of 10Hz. The second pro-

file consists of safety-critical messages generated using a Poisson process with λec3 = 2.

Safety-critical message has the top priority, i.e., AC3 priority [105].

All messages are in a fixed length of 100 bytes in both AC2 and AC3 priorities. The

range of transmission is 300 meters. The density of vehicles, β, is defined as number of

vehicles per meter:

β =
{number of vehicles}
{transmission distance}

Therefore, for vehicle numbers are 10, 20, 30, the corresponding β is 0.03, 0.07, and 0.1.

Due to space limitation, only statistics on 10 and 30 vehicles are presented. The primary

parameters used in the simulations are shown in Table 4.1.

Table 4.1: Simulation Parameters for all simulations.

Parameter Value

Transmission Range 300m

Packet Size 100 bytes

Density(β) 0.03 to 0.1 car/m

Data rate 3Mbps

Simulation time 100s

In this paper, we mainly focus on the distribution of the delay in the V2V network. The

metric delay is defined as the period from the moment when the message is created to the

moment that the receivers receive it correctly. The statistical results are shown in Figure

4.6 and Figure 4.7 and we compare the performance of our model with [78]. The figures

show that the exponential distribution of the delay is as expected. The PDF of delay in

Figure 4.6(a) and the CDF in Figure 4.7 show the delay distribution of AC3 when density

is 0.1. We observe that the messages in AC3 with density of 0.1 manage to keep within 90%

of the 0.6 ms of delay. This result shows us that the emergency messages could potentially
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(a) Emergency msg- AC3 (density = 0.1)

(b) Routine msg- AC2 (density = 0.1)

(c) Routine msg - AC2 (density = 0.03)

Figure 4.6: PDF of the delay of messages from AC2 and AC3 with different traffic densities.
The delay of AC3 is relatively concentrating around 0.47 ms. The delay of AC2 is more
scattered compared with AC3 plot. As the traffic density increases, the delay increases
accordingly.
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Figure 4.7: CDF of the delay of messages from AC2 and AC3 with different traffic densities.
With the same traffic density (0.1), AC3 enjoys a more stable delay than AC2. With the
increase of the traffic density from 0.03 (blue curve) to 0.1 (red curve), the spread of the
delay becomes wider.

coexist in the same channel of BSMs if the QoS is respected by all the stations.

Conversely, messages in AC2 experience a longer delay as shown in Figure 4.6(b) and

4.6(c). Figure 4.7 shows that our simulation is within 80% of the delay when the density is

0.03, is around 2.5 ms and 4 ms when the density increased to 0.1. As the BSMs in AC2

are transmitted at a constant rate of 10Hz, they are more easily affected when the density

increases.

Figure 4.8 shows another metric of network performance, packet delivery rate (PDR), the

ratio number of packets delivered with no CRC error and the total number of transmitted

packets. In the figure, packets from AC3 maintains a relatively stable level on PDR. As

the density increases to 0.1, the PDR of AC3 only decreases by approximately 2%. This

proves that with EDCA, the performance of the packets with the AC3 priority may be able

to operate at a satisfactory level.

However, the PDR of AC2 drops dramatically as the vehicle density increases spectac-

ularly. It drops from 80% with β = 0.01 to 10% with β = 0.1. The drop of PDR comes

from the flood broadcast of BSMs. As the BSMs are broadcasted in 10Hz for each vehicle,

when the number of vehicle in the coverage area increases, the broadcast may overwhelm

the carrier sensing ability of the vehicle, thus the probability of collision will also increase

accordingly, which causes the drop of the performance.
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Figure 4.8: PDR of AC2 and AC3 with different traffic densities. With the increase of the
traffic density, the PDR of AC3 maintains at the relatively high level, while the PDR of
AC2 drops tremendously.

Table 4.2: Parameters of CSMA and EDCA in the simulations.

Parameters CSMA (802.11a) EDCA (802.11p)

IFS 2 3 (AC2) & 2(AC3)

SIFS (µs) 16 32

slot time (µs) 9 13

[CWmin,CWmax] [15,1023] [7,15] (AC2), [3,7] (AC3)

Performance Comparison between EDCA and DCF (CSMA)

One significant feature of a vehicular network is adopting EDCA in the MAC layer. In

this section, we will compare the performance between EDCA and distributed coordination

function (DCF), i.e., carrier sensing media access (CSMA), where the latter is generally

used in other IEEE 802.11 products. By analyzing the simulation results, we can evaluate

the effectiveness of the proposed simulator.

The simulation scenario is a unidirectional highway consisting of two lanes. The car

following model (CFM) is chosen to be the mobility model. The vehicles are broadcasting

BSMs (AC2) at 10 Hz and AC3 messages using a Poisson distribution modeled by λ = 2.

We performed two sets of simulations for EDCA and CSMA with the key MAC parameters
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(a) Packet Delay of EDCA (AC2), EDCA (AC3) and DCF (CSMA).

(b) Packet Delivery Rate (PDR) of EDCA (AC2), EDCA (AC3) and DCF (CSMA).

Figure 4.9: Performance Evaluation of DCF (CSMA) and EDCA (AC2-3)
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listed in Table 4.2. As the PHY layer of IEEE 802.11p is derived from IEEE 802.11a, we

choose the IEEE 802.11a version of CSMA to minimize the difference with other layers.

Figure 4.9 shows the simulation results of the Packet Deliver Latency (PDL) and Packet

Deliver Rate (PDR). As all the messages in the simulation are broadcast, there are no

retransmissions involved, with the latency mainly coming from the channel access deference

process, i.e., IFS + backoff. In Table 4.2, the Inter-Frame-Space (IFS) of CSMA, i.e.,

DIFS, equals to the highest priority IFS (AC3), i.e., AIFSN(AC3), and slightly smaller

than AIFSN (AC2). The Shortest-IFS (SIFS) and slot time of IEEE 802.11p is greater than

IEEE 802.11a in order to cope with the mobility characteristics of the vehicular network.

Only a minimum Contention Window (CW) is used for broadcasting purpose.

In Figure 4.9(a), the latency of CSMA is smaller than EDCA (AC2) but greater than

EDCA (AC3). This is due to the fact that data possessing different priorities are queued

into different ACs, while in CSMA all data are buffered in the same queue. Whenever an

internal collision happens, AC2 always gives way to AC3. This is why AC3 shows a steady

and better performance in the figure. According to SAE J2735 [74], the maximum latency

for safety messages is 10 ms. When the latency of AC2 is below the threshold, EDCA is

shown to be the better option than CSMA.

Fig. 4.9(b) compares the Packet Delivery Rate (PDR) of CSMA with AC2 and AC3

transmissions of EDCA. When the number of vehicles increases, the PDR of AC3 maintains

at nearly 100 percent. This proves the AC2 and AC3 can coexist in the same channel, and

AC2 traffic affects little on AC3 traffic. On the other hand, the PDR of AC2 starts to

decrease when number of vehicles approaches to 15 due to the packet collisions. When

less than 15 vehicles, EDCA (AC2) still performs better than CSMA. However, when more

than 15 vehicles are present, CSMA acts better than EDCA (AC2). This is due to the

coexistence of AC2 and AC3, which increases the packet collision rate. However, for 30

vehicles, the PDR of EDCA (AC2) is till above 85 percent, which performs well enough on

broadcasting BSMs.
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4.2.3 Performance of the APP Layer Activity

The basic function for the APP layer is to generate messages for different applications.

As our proposed simulator is an integrated type simulator, i.e., the vehicular mobility traffic

flow models are integrated directly with the APP layer module in order to support the real-

time simulation, the behavior of the APP layer is closely related to the mobility traffic flow

models. The traffic flow models have been mentioned in Figure 3.8 in Chapter 3. We repost

the flow models here, as in Figure 4.10. Vehicle i is the target vehicle who will perform

car following or lane changing behaviors. At time t, the x position and velocity of vehicle

i are represented as xi(t) and vi(t) respectfully. Vehicle i − 1 and i + 1 are the vehicles

immediately behind and in front of vehicle i with x positions xi−1(t) and xi+1(t), and with

speed vi−1(t) and vi+1(t). ∆di(t) indicates the distance from vehicle i to vehicle i + 1 at

time t. On the adjacent lane, the immediately back and front vehicles are denoted as vehicle

j − 1 and j + 1. Similarly, their positions and speeds at time t are shown as xj−1(t) and

xj+1(t), and vj−1(t) and vj+1(t). The major notations are summarized in Table 4.3.

Table 4.3: Notations used in the Highway mobility model.

notation Description

∆t time step in [seconds]

∆d distance to the immediately front vehicle in [meters]

acc acceleration in [m/s2]

dec deceleration in [ m/s2 ]

L length of vehicle in [meters]

vx x velocity in [m/s]

vy y velocity in [m/s]

tr vehicle reaction period in [seconds]

Car Following Models (CFMs)

The CFMs control the individual vehicle’s driving dynamics to maintain a safe distance

to the vehicle immediately ahead. The objective of CFMs is to model vehicular traffic flows
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Figure 4.10: Notations for Highway Mobility Model based on V2V Communications.

without car collisions under the help of vehicular communication. The safe distance of

vehicle i is generally calculated by Eq. (4.5):

di,safe = Li + treact ∗ vxi(t) + dbrake. (4.5)

dbrake =
vxi(t+ ∆t)2 − vxi(t)2

2 · µs · dec

∣∣∣∣
µs=1,vxi(t+∆t)=0

. (4.6)

dbrake =
−vxi(t)2

2 · dec
. (4.7)

deck = −µk ∗ g = −0.8 ∗ 9.8 = −7.84m/s2. (4.8)

where Li is the length of vehicle i. treact is the reaction time either of the driver or from

the autonomous vehicular dynamics. dbrake is the braking distance and is calculated in Eq.

(4.6). vxi(t) is the instantaneous speed when brake is performed, and vxi(t + ∆t) is the

velocity when braking action is finished, for a complete stop, vxi(t + ∆t) = 0. Therefore,

we have the full stop brake distance as shown in Eq. (4.7).

The deceleration, dec, is determined by the current vehicle speed, road surface friction

coefficient µ, as well as the friction type, i.e., static friction and kinetic friction. If a vehicle

is driving on a dry concrete road surface, according to [106], the static friction coefficient

is µs = 1 and the kinetic friction coefficient is µk = 0.8. When the vehicle brakes free and
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slides, the kinetic friction deceleration deck only depends on µk and the acceleration due to

gravity g = 9.80m/s2, shown in Eq. (4.8).

For static friction, NHTSA in [107] shows a mapping between speed and braking dis-

tance, based on which we set the maximum static friction deceleration to decs = −6.50m/s2.

For dec ∈ [decs, 0], we define this type of braking as regular brake. For dec < decs, the brake

action is called as emergency (EMG) brake and dec = deck.

In CFMs, the vehicle keeps monitoring the distance to the vehicle immediately ahead

of it based on the received BSMs and adjusts speed adaptively in order to maintain a safe

distance. When the front vehicle is braking, the vehicle behind it will be aware of it through

the BSM information and start to brake. More sophisticated CFMs have been proposed

including Intelligent Driver Model (IDM) [108] and Wiedemann Model [109]. These models

can be implemented and used in VANET Toolbox if necessary.

Lane Changing Models (LCMs)

LCMs are based on multi-lane traffic and needs to be studied. A general LCM should

include three parts: the trigger for a lane changing, the feasibility of a lane changing and

the scheme used during lane changing process.

Consider the situations and notations shown in Figure 3.8, a basic lane changing scenario

involve four vehicles. The trigger for vehicle i to change lane is the distance to vehicle i+ 1

is shorter than the safe distance, i.e., when ∆di(t) < di,safe.

The lane changing feasibility of vehicle i is determined by the distance to vehicle j − 1,

i.e., ∆dj−1(t + ∆t), and the distance to vehicle j + 1, i.e., ∆dj+1(t + ∆t) during the lane

changing process. Both distances should not violate the safe distance in order to avoid

potential car collisions on the adjacent lane when changing lane. The speed boundary for

vehicle i is calculated as follows:

|0
2 − vx,i(t)2

2 · decs
|< |0

2 − vx,j+1(t)2

2 · decs
|+di,j+1(t). (4.9)

|0
2 − vx,i(t)2

2 · decs
|+di,j−1(t) > |0

2 − vx,j−1(t)2

2 · decs
|. (4.10)
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max(vx,i(t)) =
√
vx,j+1(t)2 + 2 · |decs|·di,j+1(t). (4.11)

min(vx,i(t)) =
√
vx,j−1(t)2 − 2 · |decs|·di,j−1(t). (4.12)

The lane changing prediction algorithm assumes the vehicle shift to the adjacent lane at

a y-speed of vy,i(t) while adjusting the x-speed xi(t) during the process. Eq. (4.9) calculates

the upper speed boundary of vehicle i. During the lane changing process, vehicle j + 1 is

possible to perform braking and the shortest braking distance is determined by decs. di,j+1

is the distance on x axis before lane changing. The lane changing algorithm should predict if

di,j+1 is a safe distance for a lane change, i.e., di,j+1(t) should be greater than the difference

of the brake trails from both vehicles. Similarly, the lower speed boundary is calculated

by Eq. (4.10). The maximum and minimum speeds for vehicle i during lane changing are

shown in Eq. (4.11) and Eq. (4.12) respectively.

If the lane changing feasibility is not fulfilled, vehicle i has to reduce its speed vx,i(t),

i.e., brake, to respect the safety constraint. If the feasibility is allowed, vehicle i will start

to change lane. The trajectory model includes lane changing period, target lane chosen

etc. More advanced lane changing models such as Nagel-Schreckenberg model [110], Krauss

(1998) Model [111] can be implemented and selected by VANET Toolbox if necessary.

In a vehicular network, the vehicles share their traffic information via safety related

messages. The formats of these messages are defined in SAE J2735 [74], which specifies 15

types of safety messages including the Basic Safety Message (BSM), as well as the Signal

Phase Time (SPT) and MAP message [112]. According to SAE standards, BSMs are sent

out periodically at the rate of 10Hz and it is mandatory in DSRC that all connected vehicles

need to broadcast to the surrounding vehicles. BSMs contain vehicle state information as

shown in Table 4.4

In order to coordinate lane changing among the involved vehicles, we created a new type

of message, namely the Lane Changing Message (LCM). LCMs include Lane Changing Re-

quest and Lane Changing Reply. LCMs are assigned AC3 priority while BSMs are assigned

AC2 priority. In [113], we evaluated the performance of the proposed VANET Toolbox and
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Table 4.4: The Information of Basic Safety Messages (BSMs).

Items Explanation

Latitude 1/10 micro degree precision range ± 90◦

Longitude 1/10 micro degree precision range ± 180◦

BrakeSystemStatus Structure of brake system status per wheel and ABS

Acceleration Acceleration in 3 orthogonal directions

SteeringWheel Angle of steering wheel in 1.5◦ step

showed that AC2 and AC3 data can coexist on the same channel in heavy traffic conditions.

The proposed lane changing schemes are based on V2V communications. In order to

simplify the problem, we assume that a single lane change involves four vehicles, as shown

in Figure 4.10. Car 1 plans to change lanes and is aware of the existence of car 3 and

car 4 from the BSMs, then coordination is needed among cars 1, 3, 4. Coordination is

implemented via the LCMs exchanged ahead of the lane changing actions. LCMs have AC3

priority and require the use of reliable data transmission (RDT), i.e., Data-ACK mode.

RDT is implemented across the MAC layer.

In an RDT, an ACK is expected after sending data. If the ACK is not received within a

predefined period, the data will be retransmitted until the ACK is received or the maximum

retransmission limit is reached. If the ACK is not received until after the maximum number

of retransmissions, the data is discarded. Due to this reason, a timer for the lane changing

requests on the APP layer is necessary. Since a vehicle cannot always wait for a lane

changing reply if there is a transmission failure on lane changing request, a timer on the

APP layer can let the vehicle cancel the lane changing plan and brake in time. According

to WAVE 1609.4 [17], the timeout for one pair of Data-Ack RDT is 2.605ms considering

retransmissions and channel access delays. In our proposed work, we set the timeout to 5ms

because both lane changing schemes include two sets of RDTs. Suppose a vehicle is driving

at a speed of 120km/h, it only moves 16.67cm within 5ms, which does not have significant

impact on braking distance. In other words, even if a vehicle failed to receive lane changing

reply within the period, it still has enough time to brake.
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The Packet Drop Rate (PDR) can potentially increase as the vehicle density increases.

The lost of packets, such as BSMs, may prevent vehicles from obtaining the latest traffic

information from other vehicles. The lane changing schemes we proposed have considered

this situation and provided reliability to the lane changing behaviors. The reliability is

guaranteed using feedback from other relevant vehicles. We name the proposed lane chang-

ing schemes into performance lane-changing and conservative lane-changing, as shown in

Figure 4.11 based on different message exchange patterns.

Figure 4.11: Lane changing messages exchange process of PerLC and ConLC. PerLC dedi-
cates to shorten the message exchange period and ConLC is to guarantee the safety of lane
changing.

Performance Lane Changing Scheme (PerLC)

For PerLC (refer to Figure 4.11, left), car 1 predicts the traffic condition based on

the information from the BSMs and evaluate the feasibility of the lane changeing. Once

the condition permits, car 1 sends its RDT lane changing requests to car 3 and car 4,

respectively. Only when car 1 receives ACKs from both car 3 and car 4 can car 1 start

to change lanes. The received ACKs indicate that car 3 and car 4 are aware of the lane

changing behavior of car 1. After receiving the lane changing requests from car 1, then car
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3 and car 4 will try their best to avoid potential car accidents by performing the necessary

actions including deceleration. The PerLC scheme is designated to shorten the message

exchange period among the vehicles involved during the lane changing process and provide

a relative high reliability for lane changing actions. However, we notice the lane changing

decision is only made by car 1 based on the BSMs information received at the beginning of

the stage. Car 3 and car 4 have no chance to deny the lane changing request from car 1.

In other words, car 1 does not possess the real permissions from car 3 and car 4 in order to

change lanes regardless if their conditions are allowed for a safe lane change (the ACKs are

sent back automatically).

Conservative Lane Changing Scheme (ConLC)

In order to compensate the weak feedback of PerLC, ConLC is proposed, as shown in

Figure 4.11-right. Car 1 predicts the traffic condition before lane change, which is similar to

PerLC scheme. Once the prediction indicates a safe lane changing opportunity, car 1 starts

to multicast a lane changing request with multicast address including car 3 and car 4. Once

receiving the multicast request, the surrounding vehicles check if its carID is included in

the multicast address. If included, it means that this vehicle is required to coordinate with

car 1 on lane changing. Otherwise, the multicast request is disregarded. In the scenario

shown in Figure 4.10, the multicast request enables car 3 and car 4 to evaluate whether

the lane changing behavior is feasible or not, as well as sending back the answer in the lane

changing reply message. Only when car 1 receives both positive replies from car 3 and car

4, can it start to change lane. Otherwise, car 1 should continue waiting for permissions

until timeout, then starts to brake. The advantage of ConLC is the vehicles doubles the

insurance to guarantee the safety during the lane changing process and car 3 and 4 can

then piggyback extra information on the lane changing replies. This information can help

car 1 make a more reliable lane change. The tradeoff of this process is that the message

exchange period is also longer than PerLC.

The reason why PerLC has no multicast is because it is not suitable for RDT,and that the

ACKs from the receivers possess a high probability with respect to collision. As mentioned

in the previous section, the feedback from other vehicles is necessary to guarantee the
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reliability of lane changing schemes. Therefore, unicast with ACK is chosen for PerLC. In

the next section, the performance results of these two lane changing schemes are evaluated.

Scenario Model

In this section, we evaluate the performance of both lane changing schemes and compare

the results with a vehicle-following trajectory. The experiment consists of a set of computer

simulations. Each simulation is 30 seconds long and is performed across a 1600-meter section

of unidirectional highway. All messages, including BSMs and LCMs in the simulation, are

at a fixed size of 100 bytes. The number of vehicles is increased from 4 to 15 and each case

runs with 10 repetitions. Each repetition has the same initial position but random initial

speed in a normal distribution with mean of 70 km/h and standard deviation of 5 km/h.

The parameters used in the simulations are shown in Table 4.5.

Table 4.5: Simulation Parameters for all simulations.

Parameters Values

Packet Size 100 bytes

Vehicle Density 4 - 15

Data rate 3 Mbps

Simulation time 30s

The purpose of the proposed lane changing schemes is to obtain a better flow of vehicles

across the road. One of the metrics to describe the traffic flow is the average speed across

all the vehicles. If the average overall speed is higher, the traffic flow is more efficient.

Non-Lane Changing (NonLC) scenario is selected as a baseline in the experiments, i.e.,,

all vehicles are only allowed to brake if necessary. Figure 4.12 shows the average overall

speeds for PerLC, ConLC and NonLC with error bars at 96% confidence interval (CI). In

Figure 4.12 , the average speed decreases as the vehicle density increases from 4 to 15,

which is reasonable. When vehicle density is smaller than 10, the performance of PerLC

and ConLC is overlapped. This is due to the communications being sufficient and possesses

minimal impact on both PerLC and ConLC schemes. When the density is larger than 11,
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Figure 4.12: Average speed of all the cars on the road over increase of density of car. PerLC
has a better performance on average traffic speed than ConLC at medium traffic density.
Both lane changing schemes are better than NonLC.

PerLC starts to demonstrate its advantage as the wireless channel starts to become crowded,

ConLC experiences more latency during lane changing exchange period. But both PerLC

and ConLC exhibit much better performances related to NonLC, which provides that lane

changing schemes do improve the overall traffic efficiency.

In order to show how the vehicle density affects the performance of V2V communication,

we gather the message exchange delay for both PerLC and ConLC schemes over different

vehicle densities. Figure 4.13 shows message exchange latency with the error bars at 96%

CI. As the vehicle density increases, the V2V communication channel becomes congested.

A busy channel may causes longer channel access deference and/or more retransmissions.

This is why the message exchange latency for both lane changing schemes increases.

When vehicle density is larger than 9, the error bar also increases, which shows a sig-

nificant variation in the message exchange latency. Different sets of initial speeds lead to

varieties of traffic patterns, and they have significant impact on lane changing frequencies.

For example, multiple vehicles might be changing lanes within a short period simultaneously

such that it causes a very busy channel during this period, which might result in time the

lane changing message exchange may experience severe delay. However, PerLC maintains a
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Figure 4.13: Average message exchange latency between PerLC and ConLC over Vehicle
Densities. Both latencies increase as the channel becomes busier, PerLC is more time
efficient than ConLC.

much lower latency than ConLC on all vehicle densities.

4.2.4 Comparisons between Proposed Simulator and NS-3

NS-3 is a well developed discrete-event network simulator that supports full stack stan-

dards on varieties of networks. The NS-3 modules are robust and can perform a faster speed

due to its C++ source code. However, NS-3 might have some limitations. First, its PHY

layer is packet-based, the minimum data element is on packet level instead of bit level. Thus

the bit related operations such as channel tracking, channel estimation and frequency offset

correction cannot be applied. Besides, NS-3 is lack of supports on real radio hardware as it

is unable to convert information into bits or symbols. Second, NS-3 was originally designed

as a pure network simulation environment. In order to simulate vehicular traffic, NS-3 ei-

ther uses predefined route information or interacts with mobility simulators asynchronously

with the help of interfaces. The randomness of vehicular traffic scenario might not be able

to simulate in real-time.

Our proposed simulation environment makes up the limitations of NS-3. First, it pro-

vides a more accurate PHY layer on bit level. The simulator is able to simulate the channel
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impairments such as noise, path loss or shadow fading to the bits. Besides, the bits are

converted into symbols, which are exactly the same format in the real wireless communica-

tions. Thus it is reasonable to infer that the simulated wireless channel can be replaced by

the real software defined radios (SDR) such as USRP. The real radio transmission may be

evaluated in the future research. Furthermore, as the mobility models are integrated with

the APP layer, the reciprocal interactions between the traffic application and the network

communication are well supported. This feature makes the proposed simulator to simulate

vehicular driving operations and network communications synchronously in real time.

Table 4.6: Comparisons of features and limitations between proposed simulator and NS-3

VANET Toolbox

Features

1. More accurate bit-level PHY layer simulation.

2. Expandable to SDR hardwares and other toolboxes.

3. Support traffic simulation in real time.

4. Support multi-OS: Windows, Linux, OSX.

Limitations

1. Parameters are fixed during the simulation.

2. Relative slow simulation speed.

3. MATLAB/Simulink and toolboxes are not free.

4. Still under development, bugs may exist.

NS-3

Features

1. Full stack simulation on varieties of network types.

2. Well developed comprehensive simulation modules.

3. Relative fast simulation speed.

4. Free software, open source

Limitations

1. Packet-based PHY layer, less accurate,

2. limited hardware radio expandability.

3. Limited support on real-time traffic simulation.

4. Primary running in Linux, less supports in other OS.

On the other hand, the proposed simulator has some limitations. First, MATLAB is an

interpreted-type programming language and aiming for precisely modeling. Compared with
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other compiled-type programming languages such as C++, used in NS-3, fast execution

speed or less computational cost is not MATLAB’s advantage. Especially, the PHY layer

of VANET Toolbox is designed on bit level processing, the execution speed is even slower

than NS-3. Furthermore, VANET Toolbox does not support parallel computing, i.e., the

model created by VANET Toolbox or its parent SimEvents cannot be run over multiple

cores. Even though SimEvents supports C/C++ code generation since R2017b, it still has

several limitations. For instance, C/C++ code generation does not support hash map,

persistent variables, or changing the values of properties of an object inside another object.

Those functions have to be declared as extrinsic functions and cannot enjoy the benefit of

C/C++ code generation. Thus the relatively slow execution speed is the major limitation

of the proposed simulator. Table 4.6 summarized the major features and limitations for

both simulators.

4.3 Chapter Summary

In this chapter, we first tested the eligibility of the proposed vehicular network sim-

ulator. The computational costs in terms of events is evaluated. The reason we present

computational cost in terms of events is because we do not wish to be dependent on the

choice of computing processing resources. Partial code of the simulator can be converted

into C code in order to increase the execution speed. The code generation is able to save

up to 62.21% of execution time than pure MATLAB code. MATLAB is an interpreted

type programming languages, the execution speed is not MATLAB’s advantage compared

with other compiled type programming languages such as C++, which is used to develop

NS-3. However, the goal of developing models with MATLAB is to create an accurate PHY

layer on bit level. Thus the bit-level PHY layer of the proposed simulator is compared with

packet-level simulator, NS-3. The simulation results prove that the bit-level PHY is able

to generate a more precise channel model by controlling each symbol of the waveform. In

addition, channel tracking towards the L-LTF of a OFDM symbol can only be implemented

by bit-level MATLAB code. Then the performance of EDCA scheme in the MAC layer is

compared with the traditional CSMA scheme based on single channel V2V communication.
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The simulation results show that the EDCA scheme can make data with different priorities

coexist in the same channel. And the QoS of data with higher priority with respect to

lower latency and higher packet delivery ratio can be guaranteed. This feature is useful

for safety-related services compared with CSMA scheme, where all messages are granted

with the same priority. Finally, the lane changing model in the APP layer is designed with

two coordinated message exchange patterns, i.e., conservative lane changing (ConLC) and

performance lane changing (PerLC). With the vehicular network communication, the sim-

ulation results indicate that coordinated lane changing operation can improve the overall

traffic efficiency.
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Chapter 5

Vehicular Network Simulation with

Multichannel Operations

In this chapter, we describe how we extend the single channel simulation environment to

support multichannel operations. Then the performance of safety-related services in both

single channel and multichannel channel scenarios is evaluated in terms of packet delivery

latency and packet delivery radio. Then we assessed the latency and throughput of non-

safety services with different number of vehicles as well as data streams. Furthermore, we

proposed a new SCH reservation mechanism, which allocate SCHs according to the mixed

SCHs/ACs information conveyed in the enhanced WSAs within at most 2-hop distance.

5.1 Background of Multichannel Vehicular Network

Vehicular network based on standards [19, 80, 114] provides wireless access for vehicles

to share messages. The messages are brought by varieties of services, which can be divided

into safety-related services, e.g., emergency brake, basic safety messages (BSMs) [115], and

non-safety services including traffic efficiency services and infotainment services [116]. The

safety-related services requires reliability with low latency, while the non-safety services pre-

fer high throughput. IEEE 1609.4 [80] defines a prioritized Enhanced Distributed Channel

Access (EDCA) that provide different level Quality of Service (QoS) to different services.
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The EDCA module grants four Access Categories (ACs) within a node with different pri-

orities according to the critical level. Our previous research efforts [113, 117] prove that

EDCA is effective for multiple safety-related services with different priorities coexist in the

same channel.

However, with more and more non-safety applications involved, single channel EDCA

is insufficient to guarantee the reliability of safety-related services in terms of low latency

and high PDR. Thus IEEE 1609 [80, 114] standards specify the multichannel option to

enhance the QoS. In multichannel mode, the channel time is sliced into continuous 100 ms

Synchronization Intervals (SIs). Each SI consists of a Control Channel interval (CCHI) and

a Service Channel interval (SCHI) with equal length of 50 ms. The safety-related messages

are transmitted via CCH during the CCHI while non-safety messages are transmitted via at

least one SCH during the SCHI. In this way, the safety-related services are separated with

non-safety services to maintain the reliability, while the non-safety services are shared by n

SCHs for high throughput purpose. A vehicle with single radio is mandatory to alternate

between the CCH and one of the SCHs. Unlike single channel scenario, where services have

immediate channel access after backoff process, multichannel services have to wait for their

corresponding channel intervals. This may potentially result in low channel utilization due

to channel switching operation activity. Suppose the transmission of a safety service is not

finished at the end of CCHI, it is paused for the adjacent SCHI (50 ms) no matter if there

are transmissions from non-safety services, then the transmission is resumed in the next

CCHI. Thus the channel utilization is less than 50% for the SI. Researchers from [118–121]

evaluated the performance of multichannel. However, they either did not apply EDCA

to the multichannel transmission, or only applies partial of EDCA, i.e., not all ACs are

activated during the transmission. Thus the results might be less convincing to evaluate

the performance.

Another challenge is the IEEE 1609.4 standard [80] does not specify a criteria for SCH

selection. Thereby multiple service providers may accidentally choose the same SCH fre-

quency at the same time due to the hidden terminal problem [122]. Several research ef-

forts have been underway to the SCH reservations. Similarly, they either do not consider

EDCA [123, 124] or only use two out of four ACs [125, 126] with one for safety-related ser-
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vices and the other for non-safety services. In this section, the experimental simulations are

conducted with data streams of four AC priorities such that the impact to the safety-related

services from the non-safety messages is observed and whether multichannel operation has

the ability to enhance the performance of safety-related services is evaluated.

5.1.1 Multichannel PHY Layer

The US Federal Communications Commission (FCC) assigned 75 MHz of spectrum

at 5.9 GHz to be used for vehicular communication networks [127]. In order to increase

the tolerance for multi-path propagation effects in vehicular environments, the spectrum is

divided into seven 10 MHz channels, i.e., CH172 - 184, as shown in Figure 5.1. Vehicular

communications are based on Orthogonal Frequency Division Multiplexing (OFDM), which

divides the 10 MHz channel into 52 orthogonal sub-carriers. Compared with the at least 20

MHz Wi-Fi channel bandwidth, the 10 MHz channel reduces the effect of Doppler spread.

Amongst the seven channels, CH178 is restricted to safety-relayed communications such as

Basic Safety Messages (BSMs) and control message disseminations, such as Wave Service

Advertisement (WSAs). The remaining frequencies are available for both safety and non-

safety services. For instance, CH172 and CH184 are reserved for future usage of critical

safety of life services and high power public safety communications.

In multichannel mode, the clock signal for all vehicles are synchronized by GPS. If a

vehicle is not equipped with a GPS, the clock signal can be synchronized by the WAVE

timing advertisement (WTA) message received from the other vehicles during CCHI. A

WTA message provides the time difference from last transmitted UTS in microseconds. If

no GPS signal or WTA message has been received, the vehicle will continue to stay in the

CCH until its time can be synchronized by either GPS or received WTA message. The

synchronized channel time is sliced into Synchronization Intervals (SIs), with each SI being

100 ms in duration in order to cope with the 10 Hz BSMs [120]. A SI is a repeating time

interval comprised of a 50 ms Control Channel interval (CCHI) followed by a 50 ms Service

Channel interval (SCHI). The first 4 ms of the CCHI or SCHI is a guard interval (GI), which

is reserved for nodes switching among the channels. IEEE 1609.4 standard [17] supports the

options of either having single radio multichannel operation or multiple radios multichannel
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Figure 5.1: Spectrum allocation of vehicular network PHY layer. The 75 MHz is divided
into 7 channels with 10 MHz bandwidth. The channel period is sliced into 100 ms synchro-
nization intervals consisting 50 ms CCHI and 50 ms SCHI.

operation. In this paper, we only focus on the single radio multichannel scenario. Periodic

switching between the CCH and SCH is required for the single radio multichannel scenario

and operates on only one radio channel at a time [119]. All vehicular nodes are required

to tune into the CCH (CH178) during the CCHI for the transmissions of safety-related

messages or control messages. During the SCHI, the vehicles have the option to tune into

one of the SCHs if they want to initiate or join a non-safety service.

5.1.2 Multichannel MAC Layer

The MAC layer of a vehicular network enables the Enhanced Distributed Channel Access

(EDCA) mechanism [128], which is derived from the carrier sense multiple access (CSMA)

with collision avoidance (CA) scheme. EDCA provides distributed channel access by grant-

ing data with one of four access categories (ACs). The ACs each possesses different sets

of access parameters, including arbitration inter-frame space (AIFS[AC]) and contention

window (CW[AC]) size values. When the data is at the head of an AC queue, it must wait

for a period equal to AIFS[AC], which is calculated by Eq. (5.1), where the Short Inter-

Frame Space (SIFS) is a fixed amount of time required to process a received frame and to

send a response frame. After the AIFS period has elapsed, if the channel is sensed as idle,
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the data will backoff by any amount equal to BFn time slots, which is calculated by Eq.

(5.2), where randi indicates a random integer between 0 and CWmin[AC]. If the channel

is sensed busy, then the value of CWmin[AC] is doubled but no larger than CWmax[AC]

as shown in Eq. (5.3). Then, a new BFn is recalculated using Eq. (5.2) with the updated

CWmin[AC] value.

AIFS[AC] = SIFS +AIFSN [AC]× slottime. (5.1)

BFn = randi(0, CWmin[AC]). (5.2)

CWmin[AC] = min(2× CWmin[AC], CWmax[AC]). (5.3)

It is possible the data from the different AC queues within the same node contend for

the channel access simultaneously, which produces the situation called internal contention.

In this case, the data with the higher priority will be sent to the PHY layer, while the

data with the lower priority will need to repeat the backoff according to the updated values

calculated from Eq. (5.1) - (5.3).

Table 5.1: The EDCA parameters for CCH and SCH MAC Modules.

ACI CWmin CWmax AIFSN

EDCA

(CCH)

AC0 aCWmin aCWmax 9

AC1 (aCWmin+1)/2-1 aCWmin 6

AC2 (aCWmin+1)/4-1 (aCWmin+1)/2-1 3

AC3 (aCWmin+1)/4-1 (aCWmin+1)/2-1 2

EDCA

(SCH)

AC0 aCWmin aCWmax 7

AC1 aCWmin aCWmax 3

AC2 (aCWmin+1)/2-1 aCWmin 2

AC3 (aCWmin+1)/4-1 (aCWmin+1)/2-1 2
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In the multichannel MAC layer, the EDCA is adopted to work in the multichannel

environment by applying the multiple EDCA functions to one MAC module, with one

function used for CCH and at least one function used for SCHs. Data to be sent to different

PHY channels enter into the AC queues via different EDCA functions. Table 5.1 shows

the default EDCA parameters for CCH and SCH [17,119], where AC3 denotes the highest

priority and AC0 denotes the lowest priority.

Figure 5.2: Multichannel EDCA MAC layer modules. Seven EDCA modules are created
corresponding to one CCH and six SCHs. The design of multiple SCH modules allows a
node to join multiple non-safety services over multiple SCHIs simultaneously.

Figure 5.2 shows the multichannel EDCA structure of the MAC layer. The payload

from the APP layer enters the MAC layer and is forwarded to the corresponding EDCA

AC queue set by the Channel Routing module based on the channel information from the

payload. The EDCA AC sets are alternatively switching between the ‘paused’ and ‘active’

status values. Only one EDCA AC set is active at any time during a channel interval. When

an EDCA AC set is active, the data performs backoff based on the parameters in Table 5.1.

Meanwhile, the backoff processes for the other EDCA AC sets are paused. Once the backoff

is completed, the Channel Selector module selects the corresponding radio frequency and

transmits the data.
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The reason why one CCH EDCA is chosen along with six SCH EDCA modules instead

of having one CCH EDCA with one SCH EDCA module as stated in other research [119] is

that we need to consider the situation where a vehicular node might become involved with

more than one non-safety service possessing the same AC priority across different SCHs over

multiple SCH intervals simultaneously. Suppose a vehicle is supporting service1 with AC2

in SCH1 and service2 with AC2 in SCH2. During the first SCHI, service1 is transmitted

but some of the data cannot be transmitted at the end of that SCHI. The data is buffered

in the SCH1 EDCA AC queues. Then, service2 occupies the next SCHI and the backoff

activities are operated in the SCH2 AC2 queue. In the third SCHI, the data of service1

resumes backoff and continues transmission. Consequently, using multiple EDCA sets is

necessary in order to separate data with the same AC priority but with different SCHs.

Furthermore, this design greatly decreases the implementation complexity.

Figure 5.3: Impact to backoff process due to channel switching operation. If channel switch-
ing operation happens in the middle of process, the unfinished backoff processes are paused
and resumed in the next synchronization interval.

When channel switching occurs in the middle of a transmission, i.e., the GI commences

prior to the completion of a transmission, this transmission has to be canceled. IEEE 1609.4

[17] suggests the vehicular network developer must create algorithms that can effectively

schedule transmissions in order to avoid the aforementioned problem. The vehicular network

system may either send the unfinished data back to its original AC queue until the next cycle

or purge the expired data if they reach the time to live (TTL) period, such as BSMs [129].

If the GI occurs during the process of receiving, the reception is canceled by the receiver
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Figure 5.4: The establishment process of WBSSs with WSA coordination. Multichannel
information is stored in the WME module and used for generating WSAs. The coordination
process must be finished during CCHI before WBSSs are established in SCHI.

immediately [130].

If the channel switching occurs during the backoff process, as shown in Figure 5.3, the

backoff is paused at the start of the GI. The time duration of the GI along with the following

channel interval and the next GI, which totals 54 ms are treated as a busy channel. When

the next corresponding channel interval becomes available, if the backoff process finishes

exactly at the same time as the start time of GI but the transmission has not started yet,

thus the data will be transmitted immediately at the beginning of available channel interval

without any channel sensing. On the other hand, isf the backoff process is incomplete

and paused due to channel switching, then it will resume with a channel sensing period

of AIFS[AC] at the beginning of the next corresponding channel interval followed by the

remaining backoff timeslots. This random backoff mechanism prevents nodes from sending

simultaneously.
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5.1.3 Multichannel Coordination via WSA

Non-safety services are shared within a WAVE Basic Service Set (WBSS) and it is es-

tablished in an ad-hoc manner amongst vehicles without any authentication and association

processes. The vehicles initiating the services are called service providers (SPs). The vehi-

cles who are interested in these services are called service users (SUs). A SP usually creates

a WBSS by announcing the service information such as service name, type, and serviceID

via WAVE Service Advertisements (WSAs). After receiving a WSA, the SU tunes its radio

frequency to the advised SCH frequency in the next SCHI in order to join the WBSS and

access the service. Figure 5.4 shows the message exchange process involving a SP and SU

when forming a WBSS. Since IEEE 1609.4 [17] does not specify how to assign service chan-

nel access for multiple requests from higher layers, we designed our own SCH reservation

mechanism to select SCHs as well as update the SCH information in the WME. Additional

details regarding our proposed SCH reservation scheme are provided in Section 5.3.4.

The service starts from the APP layer of a SP, which first creates a management message

(mgmGen) and sends it to the WAVE management entity (APP WME ) module in order

to query multichannel information (MCinfo). Each APP WME module maintains a SCH

vector, which stores the MCinfo including the SCH number and the AC priority. The

SCH vector is updated either by the SPs when generating the WSAs in order to initiate

the WBSSs or by the SUs once it is receiving the WSAs. In the case of Figure 5.4, the

APP WME module selects a SCH from the SCH vector and replies to the APP layer in

a subsequent management message. Meanwhile, the MCinfo is sent to the multichannel

MAC module informing it to activate the corresponding SCH in the next SCHI. The APP

layer creates a WSA message with the MCinfo obtained from the APP WME. The WSA is

passed to the CCH MAC submodule and is finally broadcasted to the wireless channel. If

the SP is currently in a CCHI, the WSA is transmitted after the backoff process. If the SP

is currently in a SCHI, the WSA will be sent in the next CCHI.

When receiving a WSA, the vehicular node extracts the payload of the WSA and sends it

upward to the APP layer. If a vehicular node is interested in the service and wants to join the

WBSS, it becomes a SU. The SU creates a management message to its APP WME module in
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order to update the SCH vector. With our proposed SCH reservation mechanism, the SCH

vector can be updated with the SCH/AC information for a maximum distance of 2 hops.

Similar to the APP WME module of a SP, a management message with the SCH information

is sent to the multichannel MAC module. Based on the SCH information, the MAC layer

will activate the corresponding SCH MAC module in the next SCHI. Consequently, a WBSS

is established without any authentication and association process.

5.2 Implementation of Multichannel Operation

Figure 5.5 shows the full stack of a multichannel vehicular network designed using DES

modules. The APP layer module is integrated with several mobility models such as the

car-following model and the lane-changing model, which control the vehicle movements on

the road. Additionally, the APP layer module is responsible for generating multiple types

of messages, including safety-related messages, non-safety messages, and control messages.

In this work, the APP layer messages are called payload entities.

Figure 5.5: The stack of vehicular network in multichannel mode. WME module acts as
the bridge between APP layer and MAC layer. APP layer obtains SCH information from
WME to create WSA. MAC/PHY layer are tuned by WME module.
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In the figure, the payload entities of Car 1 are forwarded to the MAC layer, where

they are converted into frame entities. The frame entity who wins the internal contention

is converted into a waveform entity and forwarded to the wireless channel. When the

PHY layer module of another car receives the waveform entity from the wireless channel,

it performs waveform integrity check. The corrupted waveforms will not pass the cyclic

redundancy check (CRC) and are discarded. The payload information is extracted from the

error-free waveforms and is sent to the APP layer of Car 2. The traffic information in the

received message is applied to the mobility model and may affect the traffic actions of the

vehicles.

In multichannel mode, all three layers are involved to support multichannel operations.

An extra WME DES module is added to configure the multichannel switching and coordi-

nation. The details about the DES framework for a single channel vehicular network are

provided in [113, 117]. For this paper, we only focus on the design of multichannel related

features in DES. The library of VANET Toolbox is now updated to version 3.0 with newly

designed multichannel blocks as shown in Figure 5.6. The functions of the newly added

modules in VANET Library v3.0 are briefly described as follows:

1. APP MC DES Module: Coordinates with WME module to obtain MC information

and generates payload with MC information.

2. MAC MC DES Module: Consists of multiple EDCA modules corresponds multiple

channels and coordinates with WME module to activate/deactivated EDCA modules.

3. PHY MC DES Module: Support multiple separate physical channels with different

frequencies.

4. WME MC DES Module: Maintains MC status and provides MC information to

APP MC and MAC MC modules.

5. Vehicle MC DES Module: Establishes WBSSs or joins WBSSs.

Fig. 5.7 shows the framework of a multichannel node designed in DES. In this figure,

a vehicular node DES module consists of a multichannel APP DES module, multichannel
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Figure 5.6: VANET Library V3.0 with multichannel blocks. The multichannel (MC) version
of the APP DES, MAC DES and PHY DES modules are added to the library. The WME
DES module is newly designed to process multichannel information.
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Figure 5.7: Full stack of multichannel vehicular network node and design details of multi-
channel MAC DES module. The PHY Tx and Rx functions are integrated with MAC DES
modules, i.e., not shown in the figure.
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MAC DES module, and WAVE management entity (WME) module. The PHY Tx and Rx

are integrated together with a multichannel MAC DES module. The details of multichannel

MAC DES module are shown in the bottom portion of Fig. 5.7 (bottom), which has seven

MAC submodules that correspond to one CCH MAC and six SCH MACs. The reason to

have six SCH MACs is that a vehicular node may be involved in multiple non-safety services

within a overlapping period. For example, a vehicular node can send messages for Service

1 during SCHI/1, messages for Service 2 during SCHI/2. At the end of SCHI/1, some of

the Service 1 data is still in the backoff process. As a result, the activities are paused due

to the end of SCHI/1 but the status of this data is retained inside SCH MAC(1) until the

next SCHI for Service 1, e.g., SCHI/3, while the unsent data of Service 2 is saved inside

SCH MAC(2). The data from the APP layer enters the MAC module from the input port

In1 and is distributed to the corresponding MAC submodules based on the multichannel

information saved in the channel field. In the MAC submodule, the data is converted

into waveforms and finally broadcasted to the wireless channel. On the other hand, after

receiving a waveform from the wireless channel, the MAC module extracts the payload and

sends it to the APP layer via the output port Out1.

If a vehicular node is not starting nor joining any non-safety services, all the SCH MAC

modules are deactivated with only the CCH MAC module being active during CCHI. For

a vehicle node initiating a service, the vehicle becomes a service provider (SP). The APP

DES module of the SP will first query the WME DES module about the appropriate SCH.

Then, a WAVE service advertisement (WSA) message is created with the SCH information

provided by the WME . This WSA will be sent into the wireless channel immediately if the

SP is currently in CCHI or waiting to be sent in the next CCHI. Meanwhile, the WME sends

control messages to the multichannel MAC DES module that have the chosen SCH MAC

submodule in order to get ready for the next SCHI. When receiving a WSA, the vehicular

nodes that are interested in the service become service users (SUs). The SUs extract the

multichannel information from WSA and send to WME DES module, which logs the SCH

information and inform the multichannel MAC module to activate the corresponding MAC

sub-channel DES module for the next SCHI.
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5.2.1 Interaction between APP layer and WME in DES

The intersection between the APP layer and the WME is the most complicated structure

in multichannel operations since an internal management message transmission system is

required for the multichannel information inquiry, reply, update, and coordination actions,

as shown in Figure 5.8. Unlike the single channel APP layer, who just generates messages

and sends them to the MAC layer, the multichannel APP layer needs to consider the type

of messages and adds multichannel information to the message.

For safety-related messages, such as BSMs, or control messages, such as WSA, the

channel number is fixed to CH178, i.e., CCH. Non-safety services are referred to as ‘activity’

in the code body of sendMCmsg(’activity’). Two generation events with different tags,

activity and requestMCinfo, are triggered. The former is the event to generate the non-

safety service data. However, the SCH information is currently stored in the WME module

and is unknown to the APP layer module, thus the non-safety message is unable to attach

the SCH information with the entity. Consequently, a short delay, MCinforDelay, is set to

delay the generation process in order to let another event eventGenerate(‘requestMCinfo’)

obtain the SCH information from the WME module.

The event eventGenerate(‘requestMCinfo’) generates an internal management frame of

type 2, i.e., mgmFrame(2)., where mgmFrame(2) is forwarded out of the APP layer module

via output port 2 and received by the WME module via input port. The enter activity

triggers the action mgmFrameEntry, which selects an available SCH based on the SCH/AC

information in the SCH vector by a self-defined method, selectSCH(). Then, another man-

agement frame, mgmFrame(4), is created containing the SCH information and sent back

to the APP layer. The moment mgmFrame(4) enters the APP DES module, the action

mgmFrameEntry() is triggered, in which the SCH information is saved by a class property

(member variable), obj.spSCHInfo.

A WSA is immediately generated with the SCH information by the event eventGen-

erate(‘WSAgen’). Moreover, SCH information is also used by the action payloadGener-

ate(‘activity’) after a delay of MCinfoDelay in order to create non-safety service messages.

Both service message and WSA messages are sent to the multichannel MAC layer. Note
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Figure 5.8: Model WBSS establishment with DES. Management frames are created between
APP DES module and WME DES module to coordinate multichannel operations. WME
module also uses timerevents( ) to alternate CCH/SCH intervals.
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that the WSA is a CCH message while the ‘activity’ is a SCH message. The WSA will

be transmitted immediately after the backoff if it is currently in the CCHI or in the next

available CCHI if it is currently in the SCHI. The ‘activity’ message is always transmitted

in the following SCHI after the WSA has been sent.

At the SU end, when a WSA arrives at the APP layer, the action ‘payloadEntry’ is

triggered followed by a self-defined method ‘rcvWSA’, which creates mgmFrame(1) using

the eventGenerate(tag) event and sends it to the WME of the SU. The WME updates the

SCH information in the SCH vector and prepares for joining the WBSS in the next CCHI.

The WME module is also responsible for sending updated multichannel information to

the MAC layer periodically, as shown in the central DES flow in the WME module of Figure

5.8. In the self-defined method, MCswitch = mcCheck(mcStatus) and the WME module

maintains a series of timer events corresponding to the 4 ms GI, 46 ms CCHI, and 46 ms

SCHI. These timer events are triggered reciprocally in a cycle whenever a channel interval is

changed by the timer events. The up-to-date SCH information is sent to the multichannel

MAC layer via mgmFrame(5) such that the multichannel MAC layer module is able to

switch on the corresponding SCH MAC submodule at the beginning of next SCHI. When

the service is finished, the WME module will inform the multichannel MAC layer to switch

back to the CCH at the start of the next CCHI.

5.2.2 Multichannel MAC/PHY Layer DES Module

Figure 5.9(a) shows the framework of a multichannel MAC/PHY layer DES module.

The central multichannel EDCA MAC DES module consists of seven subchannel MAC

DES objects, each of which inherits the same base class des MAC mulChan OBU. The sub-

channel MAC modules are differentiated by the class property obj.ChanNum. The detailed

design of the EDCA MAC layer is presented by the authors in [113, 117]; this paper will

only focus on the MAC behavior related to multichannel operations.

The payload entity from the APP layer enters the channelRouting DES module, which

dispatches it to one of the subchannel MAC modules according to the multichannel in-

formation of the payload. In the MAC layer, payload entities are converted into frame

entities and the multichannel information is copied to the frame entity in the header field.
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(a) Structure of multichannel MAC DES modules. Multichannel management frame (mg-

mMessages) activates the CCH DES during CCHI or at most 6 SCH modules during SCHI.

(b) The DES code for multichannel MAC module switching operation. Two prerequisitions

for an active channel: First, flag from WME module is 1, and Second, channel is idle.

Otherwise, the MAC module is set to deactive status.

Figure 5.9: Design multichannel MAC layer with EDCA using DES. Partial code is provided
to show how WME module alternates multichannel status to MAC layer.
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The frame entity that is selected during the internal contention process is forwarded to the

channelSelect DES module, which selects the corresponding PHY channel frequency based

on the multichannel information in the header. On the other hand, when a waveform entity

is received from the PHY link, the macSelect DES module records which PHY subchannel

the waveform entity comes from. The PHY subchannel information corresponds to the

designated subchannel MAC module, thus the waveform is forwarded to the specific sub-

channel MAC module, i.e., CCH or SCH1-6, where the CRC is performed on the waveform

and the payload is extracted in order to be sent to the APP layer via Entity Switch block.

Similar to the APP layer DES module, the MAC layer module also accepts the manage-

ment frame (mgmFrame) from the WME DES module. Referring to Figure 5.8, we know

that the management frame sent to the multichannel MAC layer is mgmFrame(5). After

mgmFrame(5) enters the MAC DES module, it triggers the mgmFrameEntry action, as

shown in the Figure 5.9(b). The field1 field contains the multichannel information obtained

from the multichannel coordination process performed by the APP layer and the WME

module. The multichannel information is compared with the obj.ChanNum property of

each individual subchannel MAC layer module. When obj.ChanNum equals to the received

channel index, the multichannel switch property, obj.MCSwitch is set to 1, which means the

corresponding subchannel MAC module is activated until further multichannel information

is received from the WME module.

In single channel mode, the backoff process in the MAC layer only needs to consider

the channel status. If the channel is busy, the backoff process is paused until the channel

becomes idle. On the other hand, the multichannel scenario needs to take both channel

status and channel switching into consideration. During the CCHI, all SCH MAC modules

are set to the busy channel status while in the SCHI the CCH MAC module is set to busy.

During the GI, both the SCH and CCH MAC modules are set to busy status. The function

channelCheck is created for this purpose, as shown in Figure 5.9(b). Whenever the backoff

operation needs to query the channel status, it calls the channelCheck function, which checks

both channel sensing result (channelBusy) and multichannel status (MCSwitch) together.

Only when the channel is not busy (channelBusy = 0 ) and the multichannel switch is on

(MCSwitch == 1) shall the backoff continue or else the backoff is paused.
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In a vehicular network, a complete point-to-point physical (PHY) layer consists of a

transmitter (Tx), a receiver (Rx), and a PHY link. When the MAC layer passes the frames

to the PHY layer, the Physical Layer Convergence Protocol (PLCP) sublayer of the PHY

Tx prepares the MAC protocol data units (MPDUs) for transmission as the PLCP Service

Data Unit (PSDU). A PLCP header containing the information such as code rate (MCS),

length of the data field is prepended to the PSDU. Then, a preamble is added to the PSDU

for the purpose of synchronization and carrier frequency offset (CFO) correction between

the Tx and the Rx. With the PLCP preamble and header, a PSDU is converted to a PLCP

Protocol Data Unit (PPDU), i.e., a waveform at the bit level. The whole Tx activity

is implemented via the psdu2waveform function and it is integrated with the MAC DES

module.

The waveform (PPDU) is sent to the wireless PHY link, which is a DES module to

simulate air propagation delay. During the delay period, the waveform is passed through

an Additive White Gaussian Noise (AWGN) channel, with the random noise being added

to the waveform bits. More complex channel models can be selected by the PHY link

DES such as the two-ray ground reflection model. In the PHY DES object, a series of

persistent variables and map containers are used to buffer the transient channel status.

For example, the status variable is used to record whether the channel is busy or not.

A 1 × waveformLength vector, waveformBuff, is to buffer the waveform bits during the

air propagation delay period. txMAP is a vector used to store the Tx addresses when a

waveform enters the PHY link DES module. This is designed to deal with the retransmission

situations for reliable data transmissions (RDTs), i.e., Data-ACK transmission format.

At the PHY Rx side, when the waveform arrives at the Rx the preamble field is extracted

for a series of wireless receiver operations including synchronization, coarse CFO correction,

and fine CFO correction. With the MCS and length information from the header, the data

field is demodulated and converted into the PSDU. A cyclic redundancy check (CRC) is

performed on the PSDU. If the PSDU passes the CRC, the content of the payload is sent

to the APP layer. For PSDUs that fail to pass the CRC, they are discarded by the event

eventDestroy(). The activity of the Rx is implemented by the waveform2psdu function and

is integrated with the MAC DES module as the Tx function.
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The activities from both PHY Tx and Rx are not event-driven and are implemented

using regular functions. No additional DES frameworks are needed for the PHY Tx and Rx.

Consequently, the function of the PHY Tx, psdu2waveform, and the function of the PHY

Rx, waveform2psdu, are integrated with the MAC DES module. The PHY link activities,

such as waveform entry and waveform exit, are event driven and implemented by an inde-

pendent DES. The operations mentioned above are for single channel conditions. For the

multichannel scenario, the PHY Tx and Rx functions only need to perform minor changes

in order to contain the multichannel numbers. The modification to the PHY link DES is

relatively complex as we are trying to constrain the total number of DES frameworks in the

simulation in order to avoid a significant increase in the execution time. As shown in Figure

5.10, the multichannel MAC DES module consists of multiple MAC DES submodules, each

of which corresponds to a single MAC subchannel. This design considers the implemen-

tation complexity since a single MAC DES module is complicated enough to deal with a

large amount of operations such as four EDCA queues, payload to frame conversion, frame

backoff, retransmission, and frame to waveform conversion. Note that it is very difficult to

design one DES for n multichannel MAC layer behaviors.

For the design of multichannel PHY links, we can employ n replicas of the single chan-

nel DES module. However, an increase in the number of DES module may decrease the

execution speed because the overall computational cost in terms of events also increases.

Thus, our approach on developing the simulator is trying to use as few DES modules as

possible. For the multichannel MAC layer, we have no options but to use multiple DES

modules. However, the PHY link DES module is mainly responsible for buffering the wave-

form entities for a period of delay before sending to the receivers. This activity does not

require multiple DES modules for different PHY sub-links, an extended single PHY link

DES module is sufficient for dealing with such conditions. In the multichannel scenario,

suppose we have n channels, all of which use persistent variables mentioned above and are

expanded. status variable is expanded to n × 1 array, waveformBuff is expanded to n ×

waveformLength, and the txMAP is also expanded to a containers.MAP with n key-value

pairs, as shown in Figure 5.10.

Usually one PHY channel link corresponds to more than one pair of Tx and Rx, thus
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Figure 5.10: Implementation of multichannel PHY layer. The feature is using one DES
module to mimic multichannel PHY link in consideration of execution speed.

a Multicast pair in DES is selected to deal with this many-to-one or one-to-many scenario

(see the black arrows in Figure 5.10). A Multicast pair consists of one Entity Multicast

module and one Multicast Receive Queue module. The Multicast pair allows more than

one Entity Multicast modules to send entities to the same Multicast Receive Queue, or one

Entity Multicast module sends entities to multiple Multicast Receive Queue modules as long

as they share the same tag. In our design, waveform entities from different MAC modules,

including multiple subchannel MAC modules within one vehicle or multiple MAC modules

from several vehicles, are aggregated and transmitted through the single Entity Multicast

module (tag: ToPHY), and then received by the Multicast Receive Queue (tag: ToPHY) of

the PHY link DES, which dispatches the data flows to different persistent variable elements

indicating PHY link buffers. After the air propagation delay, the PHY link DES aggregates
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the waveform entity flows and send them to the Entity Multcast module (tag: FromPHY)

and finally received by Multicast Receive Queue (tag: FromPHY), which connected to the

Rx function in the MAC layer DES. Using a Multicast pair is effective when dealing with

the condition of unequal number of Tx and Rx.

5.2.3 Test Case: Multichannel Lane Changing Activity

In order to validate the multichannel operation implementation we have introduced

in the above sections, the lane changing behavior from section 4.2.3 is mitigated to the

multichannel scenario. The coordination process of the lane changing activity in both

single channel and multichannel scenarios is summarized below:

Lane changing behavior via single channel communication

• step 1: Lane changing service needed for car2.

• step 2: Car2 sends multicast lane changing requests to car3 and car4.

• step 3: Car3 and car4 send lane changing replies to car1.

• step 4: Car2 starts to change lane.

Lane changing behavior via multichannel communication

• step 1: Lane changing service needed for car2.

• step 2: Car2 creates and sends WSA frames via CCH during the CCHI.

• step 3: Car2,3,4 tune to the same SCH in the next SCHI.

• step 4: Car2 sends multicast lane changing requests to car3 and car4 during the SCHI.

• step 5: Car3 and car4 send lane changing replies to car1 during the SCHI.

• step 6: Car2 starts to change lane.

The above processes, the lane changing coordination messages are set as the non-safety

messages in order to be exchanged during the SCHI. Thus the multichannel lane changing
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behavior involves one more stage, i.e, the multichannel coordination to establish a WBSS.

In addition, the multichannel lane changing process covers at least two channel intervals:

one CCHI and one SCHI. The simulation result is shown in the Figure 5.11.

Figure 5.11: Coordinated lane changing behavior based on multichannel V2V communica-
tion. The coordination consists of two stages: WBSS establishment coordination and lane
changing coordination.

In the figure, the lane changing (LC) request is generated during the CCHI and is

configured to be sent during the next SCHI. Meanwhile, a WSA frame including the SCH

channel information is created by car2 and sent over the CCHI. A LC WBSS is established

with the WSA frame. Then the LC coordination starts in the adjacent SCHI. The overall

service latency is around 81 ms, while the latency of lane changing operation over single

channel communication is around 2 ms.

In single channel scenario, the latency mainly comes from the backoff delay of each LC

message. In the multichannel scenario, the channel switching operation is the major source

of the latency. The situation shown in Figure 5.11 is not the worst scenario, i.e., the LC

trigger time instant happens to be during the CCHI, thus the WSA as the control frame

can be transmitted immediately. The worst scenario is the LC may be triggered during a
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SCHI, then the WSA frame has to wait until the next CCHI to be transmitted. The whole

LC process in the worst scenario may cover three channel intervals. Therefore, the latency

might be much longer than the results shown in the figure.

The above analysis infers that setting the LC messages as non-safety type to transmit

during the SCHI will introduce extra latency cause by the channel switching operation.

In order to decrease the latency between the multichannel coordination and lane changing

coordination process, the LC messages should be configured to safety-related property and

transmitted during the CCHI.

5.3 Evaluation of Multichannel Vehicular Network

The primary motivation of vehicular networks is to improve traffic safety. Meanwhile,

non-safety applications are also allowed to transmit via vehicular networks. In the single

channel situation, the safety-related and non-safety applications are mixed together and

share the only channel, with the performance of safety-related services potentially being

affected. Even though EDCA is applied in order to classify the critical levels of different

services, when the network traffic load increases, it may exceed the ability of EDCA to

guarantee quality of safety-related services.

On the other hand, the multichannel separate the safety-related applications with the

non-safety applications. The CCH is only used for safety-related messages in order to

guarantee low latency communications while the six SCHs are assigned for non-safety ap-

plications requiring high throughput. However, a decrease in channel interval duration

(46 ms) increases the contention probability, which may cause additional latency and a

higher packet drop rate. Additionally, the control frames (WSA and WTA) for channel

coordination create overhead data flows in CCH, and these data flows may interfere with

safety-related applications. Furthermore, for every 100 ms each service is only allowed to

use 46% of the channel interval. If a service is unable to finish in its channel interval, it has

to wait for at least 54 ms to continue transmitting. Thus, it is difficult for a multichannel

approach to improve upon single channel communications. In this section, we designed

a series of simulations to evaluate the performance of the safety-related applications when
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they coexist with non-safety applications in both single channel and multichannel scenarios.

5.3.1 Performance of Multichannel Operations with Mixed Services

The computer simulations involve up to 30 vehicles operating in a highway scenario.

The wireless channel of the PHY layer consists of a two-ray Ground Reflection Channel

model and an Additive White Gaussian Noise (AWGN) model, which are based on line-of-

sight (LOS) conditions specified in [86]. The EDCA in the MAC layer use parameters from

Table 5.2. The APP layer creates services consisting of n data flows per AC. Meanwhile,

all vehicles are broadcasting BSMs (AC2) at 10 times per second.

The simulations are classified into single channel (SiCH) scenarios and multichannel

(MuCH) scenarios. In the SiCH scenario, the non-safety messages are mixed with the

safety-related messages but with different priorities. In the MuCH scenario, the non-safety

service data are shared among n SCHs, and only the safety-related messages (AC2-AC3)

along with the control messages (AC1) such as WSAs are transmitted in the CCH. Since

the standard [80] does not specify the criteria on how to choose the SCHs for the different

WBSS, we developed our own SCH reservation scheme, which reduces the probability of

the hidden terminal problem by exploiting the SCH information from the two-hop vehicular

nodes (details of our proposed SCH reservation scheme will be provided in Section 5.3.4).

Other simulation parameters are shown in Table 5.2.

Table 5.2: Simulation Parameters for all simulations.

Parameter Value

Modulation BPSK

Data size 100 bytes

Data rate 3Mbps

Number of vehicles 30

Length of highway 1600 meters

In this work, we evaluated the performance of the safety messages and non-safety mes-

sages in both SiCH and MuCH scenarios. As the safety-related services require a high packet
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delivery rate (PDR) and low latency, we compare the PDR and latency for safety-related

messages between the SiCH and MuCH scenarios. The non-safety services require high

throughput, thus we compare the throughput and latency for non-safety messages between

SiCH and MuCH scenarios.

Packet Delivery Latency

The data latency is measured for each successfully delivered waveform. The latency is

defined from the time instant when the data is created in the APP layer until the time when

this data is delivered to the receivers. In this paper, all data transmissions are broadcasts,

i.e., no retransmissions. Consequently, the latency can be expressed as Eq. (5.4).

Lall = Lq + Lbf + Ltx + Lairprop. (5.4)

Note that Lall indicates the overall period of latency the data may experience, Lq is the

delay when a data is waiting in an EDCA queue before starting the backoff process, Lbf

is the delay caused by the backoff process, Lbf may be large due to heavy traffic load or

small contention window, Ltx is decided by data length and sending rate, while Lairprop is

the air propagation delay decided by the distance between the sender and receiver. Lq and

Lbf are the main sources of overall latency.

Packet Delivery Ratio (PDR)

During the transmission, the packets may experience packet collision or interference due

to other factors. These factors may cause bit errors in the waveforms, and if the error is

too severe to correct the information contained might not be interpreted correctly. When

a packet is received by a Rx, it has to pass the CRC otherwise it is regarded as corrupted

and it will be discarded. In our experiment, the PDR is calculated separately for each AC

and it is used to evaluate the channel congestion. Suppose the number of vehicles in the

experiment is equal to Nvehicle, with the number of sent messages per vehicle per AC being

equal to NTx and the number of successfully received packets for all vehicles being equal to

NRxall, then the PDR can be calculated by Eq. (5.5).
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PDR =
NRxall

NTx ×Nvehicle × (Nvehicle − 1)
. (5.5)

The value Nvehicle−1 is due to the fact that each vehicle broadcasts to all the other vehicles

except itself, thus the PDR should eliminate the amount of packets each sender received

from itself.

Network Throughput (TP)

The network throughput is designed to measure how many data units a network can pro-

cess within a specific time period. It is calculated by the amount of data moved successfully

from the Tx to the Rx in a given period, as shown in Eq. (5.6).

TP =
NRxall

T
. (5.6)

Note that NRxall indicates the total number of successfully received packets and T is the

simulation period. In order to perform tests in extreme scenarios, we fix the total number of

transmitted packets and enable burst transmissions for all vehicles. Each vehicle is required

to transmit a fixed amount of packets per AC. Once the current packet is successfully sent

to the receiver, the next packet is entering backoff process. The packets are sent one by one

in this pattern until all packets are sent, after which point the simulation is ended.

Fig. 5.12 shows the trend of average data delivery latency for all ACs of SiCH and MuCH

scenarios. In the simulation, each vehicle is required to broadcast 5 to 30 service messages.

As the amount of broadcast messages increases, the overall latency increases for all ACs.

This figure confirms that EDCA works as expected because the higher priority data enjoys

much less latency relative to lower priority data for both single channel and multichannel

scenarios. Note there is a crossing between single channel AC3 (S3) and multichannel

AC3 (M3) at around 17 data flows. The threshold indicates that when the communication

traffic load is low, the latency caused by the multichannel coordination occupies a larger

proportion. When the network traffic load is high, more data can be transmitted during

a CCHI/SCHI, thus the average latency increases but slowly. However, the single channel

latency increases significantly due to Lq. The latency curve of MuCH/AC0 (M0) is almost
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Figure 5.12: Average latency trend for single channel AC0 - AC3 (S0 - S3) and multichannel
AC0 - AC3 (M0 - M3). The data flows per service increase from 5/service to 30/service.
The number of vehicles is 30.

overlapping with SiCH/AC2 (S2), which indicates the lowest priority (AC0) in multichannel

scenario performs similar with the second highest priority (AC2) in single channel scenario.

Fig. 5.13 shows a boxplot of latency for single channel communication (SiCH), Single

channel communication with BSM Purge (SiCHwBP) and Multichannel communication

(MuCH) of 30 vehicles with 30 data flows per service. For SiCH scenario, data with the

lower priorities (AC0-2) experience longer latency than AC3 data. With heavy data traffic,

the single channel is saturated, the unsent data are accumulated in the AC queues causing

Lq to grow significantly. In particular, lower priority data has to give way to higher priority

data due to EDCA, with Lq for lower priority data being more serious. J2735 standards [74]

specify that the maximum latency of safety-related messages should be lower than 100 ms.

We observe in Fig. 5.13 that the single channel AC0-2 cannot fulfill this requirements since

the latency is larger than 100 ms. When all 4 ACs are enabled in the single channel scenario,

only AC3 has latency lower than 100 ms and can be used for safety-related services. The

performance of the single channel transmission with BSM purge feature is also observed
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Figure 5.13: Boxplots of packet delivery latency for data from AC0 to AC3 under single
channel condition, multichannel condition as well as multichannel with BSM purge.

from Fig. 5.13 (SiCHwBP). Research from [129] shows that a vehicle is forced to drop over

80% of messages due to no channel access before the next beacon message is generated with

CSMA/CA scheme. In our simulation, we enable four EDCA AC queues and only AC2 is

transmitting beacon messages (BSMs). When a BSM enters the AC2 queue, it purges all

unsent message ahead of it. In this scenario, the BSM maintains a relative low latency as

it clears all the other unsent data in the AC2 queue so that the Lq is significantly reduced

with the cost of severe packet drop rate on AC2. Since a large amount of AC2 messages

are purged by BSMs, the overall amount of transmitted messages is decreased accordingly,

thus SiCHwBP experiences a lower latency than SiCH scenario. However, the discarded

data due to the purge action can not be ignored. In SiCH, higher priorities AC2/3 should

be used by safety messages exclusively in order to guarantee their lower latency.

For multichannel transmission, even though the reduction of the contention window as

well as the multichannel coordination may induce extra latency, when the number of data

flows is large, e.g., 30 data flows× 30 vehicles, the MuCH has a lower latency than SiCHwBP

on all ACs except AC2. SiCHwBP/AC2 achieves the lowest latency by flushing all unsent
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Figure 5.14: Impact to safety-related messages (AC2-3) in single channel mode. Non-safety
messages (AC0-1) cause increment of average latency to safety-related messages and many
long latency outliers.

data while MuCH/AC2 does not clear any unsent data. In MuCH scenario, we may assign

AC3 to emergency safety messages, AC2 to BSMs and AC0-1 to control messages during

the same CCHI. Besides, all four ACs can be used by non-safety services during the same

SCHI for higher throughput purpose.

5.3.2 Performance of Safety-related Services

The first set of experiments explored the impact to safety-related messages in terms

of latency when both safety-related and non-safety services coexist in the single channel

environment. We defined four services corresponding to four ACs: two non-safety services

(AC0 and AC1), one BSM service (AC2) and one critical emergency (EMG) service (AC3).

The EMG service messages are generated using a Poisson distribution with λ = 2. BSMs are

beacon messages with a generation interval of 100 ms. The vehicles are grouped into WBSS

to share non-safety messages. The WBSS is formed on a Poisson distribution with λ = 2.

Once a WBSS is established, the members start to communicate non-safety messages in

consecutive bursts. We define n as the number of data flows each vehicle should broadcast

before the service is finished. In the simulation, the number of vehicles is fixed at 30 and n
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is increased from 5 to 30. The packet delivery latency of the successfully delivered packets

are collected and the average latency of the safety-related messages, i.e., BSMs (AC2) and

EMG (AC3), are shown in Figure 5.14.

In this figure, the AC2 and AC3 data are shown as a group of boxplots. The first group

is the reference group with no non-safety messages transmitted, i.e., only AC2 and AC3

messages are sent. This is the best scenario for safety-related services since no interference

comes from the non-safety services. Furthermore, we observe that AC3, the top priority,

enjoys the benefits of EDCA and maintains at a relative steady and concentrated average

latency. The mean and median values of both AC2 and AC3 data are consistent. However,

with the addition of non-safety messages, an increasing amount of outliers start to appear

for both AC2 and AC3 service messages. The average latency of the BSMs (AC2) increases

from around 10 ms to 50 ms while the median latency only increases from 10 ms to 20 ms,

which shows the latency distribution spreads to the higher value significantly.

At 30 non-safety message flows, the outliers begin to show that the AC2 latency reaches

350 ms. Reference [91] defines the latency of the BSM should not exceed 100 ms in order to

ensure the effectiveness of the safety traffic information. Note that the EDCA is designed to

enable the data with the higher priority enjoy less latency by sacrificing the performance of

the data with lower priorities. This means the impact to the safety messages (AC2-3) coming

from the non-safety messages (AC0-1) have already been alleviated by the EDCA. This

result shows that single channel communication is unable to provide an efficient transmission

environment for a mixed safety and non-safety services.

The latency of safety-related messages in a multichannel scenario is evaluated. Similar

to the single channel experiments mentioned above, BSMs are broadcast at 10 Hz with

AC2 priority and EMG messages are sent at a Poisson distribution with λ = 2. WBSS

are established in order to share non-safety messages during the SCH intervals. Figure

5.15 shows the latency of safety-related messages in a multichannel scenario. Note that the

non-safety messages in a multichannel scenario are migrated to the SCHs and are separated

with the safety-related messages, with the traffic patterns of non-safety messages causing no

direct affects to the safety-related messages, i.e., no matter how many non-safety messages

are transmitted within in each WBSS the safety-related messages behave almost the same.
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Figure 5.15: Latency of safety messages in multichannel mode. Avg. latency (AC2) is
slightly increased due to the intense contention window. Random safety-critical messages
are affected by channel switching operation.

Thus, we only extract one group of latency values for safety-related messages and compare

them with the same reference group in Figure 5.14. The reference group is the best case

scenario in a single channel environment, i.e., the safety-related messages use the whole

channel without contention with non-safety messages.

In the figure, the distribution of AC2 latency in a multichannel environment is close to

the latency in a single channel scenario. The overall latency increases by less than 10 ms

due to two factors. First, the transmission opportunity of the safety-related messages are

shortened to 46 ms CCHI out of 100 ms SI. Second, the overhead transmissions of the control

messages, such as the WSAs in the CCH, are increased. In a multichannel environment,

the communications of non-safety services require the establishment of a WBSS. At lease

one WSA per WBSS is required, thus with additional WBSS formed, more WSAs are

transmitted along with the safety-related messages in the CCH. This can also be considered

as a disadvantage with respect to transmission opportunity since safety-related messages

need to contend with control messages for channel access. The constraint channel access

period increases channel contention, thereby causes longer backoff periods and results in

relatively larger average latency.
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When the non-safety message flows are more than 15, the BSMs (AC2) starts to ex-

perience relatively larger latency with a significant amount of outliers as shown in Figure

5.14. However, in a multichannel environment, the increase in non-safety message flows per

WBSS do not show any impact on the latency of AC2 BSMs. The latency distribution of

AC2 is maintained within a steady range. Reference [91] defines the latency of BSMs should

not exceed 100 ms and multichannel BSMs fulfills the requirements. Thus, we can conclude

that even though the overall latency of AC2 BSMs increases but still within the required

range. With the heavy traffic scenario of non-safety services, the multichannel environment

is effective in order to ensure the efficiency of AC2 BSMs.

On the other hand, the EMG messages (AC3) are a significantly affected relative to

the single channel scenario. The median latency is below 10 ms and most of the AC3 data

experiences a latency below 30 ms. It is worthing noting that some of AC3 data experiences

much larger latency of more than 50 ms. This is due to the channel switching characteristic

of the multichannel environment, i.e., a safety message may be generated at the end of a

CCHI or during a SCHI, this safety message has to wait inside the AC queue until the next

CCHI. Thus, a latency of at most 54 ms (50 ms SCHI + 4 ms GI) is added to the overall

latency of this safety message. The reason why BSMs do not have this problem is because

the timer from each car are synchronized with either a GPS or a WTA, thus the creation

of the BSMs can be carefully controlled to make sure each BSM can be transmitted during

a CCHI. However, the safety-critical messages are triggered by an emergency event, i.e,

may be created at any time instance. Since the 50 ms delay is inevitable in multichannel

communications, an EMG AC3 is likely to experience an additional 54 ms of latency. On the

other hand, the average latency of AC3 is still below 30 ms and the higher latency situation

of AC3 can be compensated for by other assisting technologies such as cameras with vision

detection, radar, or lidar. Despite the good performance of AC3 in the single channel

environment with respect to a smaller latency, the other three ACs are facing significantly

larger latency, which makes them insufficient to provide a lower latency environment for the

time-sensitive safety-related messages nor a high throughput environment for the non-safety

messages.

The packet delivery rate (PDR) of the safety related messages were also evaluated and
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the results are shown in Figure 5.16. Three sets of experiments were performed. First,

we test the PDR when only safety-related messages (SFMs) are transmitted in the single

channel (SiCH) scenario labeled as SFM(only). Since there are no non-safety messages,

this is the best scenario for SFMs in a single channel environment and it is used as a

reference. Second, we added non-safety messages to the single channel environment with

lower priorities (AC0-AC1), with the amount of non-safety message flows fixed at 30 per

AC, i.e., each vehicle is required to broadcast 30 non-safety messages with a single AC to

finish a service. Third, we repeat the simulation in the multichannel (MuCH) environment

with the same configuration as with the second scenario. Choosing SFM (only) on SiCH

as the reference group, it is not possible to tune the number of non-safety messages as was

done for the previous two experiments. Thus, we fixed the number of non-safety messages

to 30 for SFMs(mix) on SiCH and SFMs on MuCH scenarios, and increased the number of

vehicles from 5 to 30. The simulations were repeated 10 times, and we calculated the PDR

with a 95% confident interval (CI) with the results shown in Figure 5.16.

In the figure, when the SFMs are mixed with non-safety messages in a single channel,

the PDR drops sharply from 90% (15 vehicles) to less than 50% (30 vehicles). Even though

non-safety messages are at a lower priority, when the overall amount increases, e.g., 30 msgs

×2 ACs ×30 vehicles ×(30− 1) broadcast receivers = 52200 burst msgs, the impact to the

SFMs is significant. In this situation, EDCA is insufficient to guarantee the QoS of SFMs.

The multichannel SFMs perform similarly to the SFMs (only) scenario in SiCH. This

means the multichannel SFMs are not affected by the increase in the number of vehicles and

their non-safety messages. The major sources for dopped packets in the MuCH environment

can be classified in two types. The first type is packet collision, which is the same with

SiCH. The second cause is due to the channel switching, which is a special case for the

MuCH communication. When the channel begins to switch to SCH frequency, it is possible

that a Tx is in the middle of a transmission or a Rx is in the middle of receiving. In such

cases, the transmissions are immediately canceled. On the receiver side, the incomplete

packets are dropped. However, the SFMs are usually time sensitive, with retransmitting

after 54 ms not being possible. Thus, these SFMs are often discarded by the Tx. The

similar PDR values for the SFMs on the MuCH and SFMs (only) on the SiCH prove that
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Figure 5.16: Packet delivery rate (PDR) comparison between single channel and multi-
channel operations. Safety services in multichannel has a much higher PDR than in single
channel when mixed with non-safety services and equivalent PDR with pure safety services
in single channel mode.
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the major factor causing significant packet drop is the non-safety transmissions. Since the

non-safety transmissions are moved to the SCHs, factors such as channel switching and

overhead transmissions of control messages (AC1) only cause minor impacts, which can be

ignored. It is worth pointing out the reason we assigned the AC1 priority to the WSAs. It

turns out that the WSAs serve non-safety services and should not have a higher priority

relative to SFMs. Based on the analysis above, we can see that the multichannel operations

do have several side effects with respect to the safety-related services including increased

contention probability and overhead transmissions caused by control messages. However,

when involving a high density of non-safety transmissions, multichannel operations are

necessary to maintain the PDR of safety-related services.

5.3.3 Performance of Non-Safety Services

In this section, we focus our analysis on non-safety services. The first set of experi-

ments are conducted to evaluate the latency of non-safety services in single channel (SiCH)

and multichannel (MuCH) scenarios. In SiCH, AC0-AC1 are assigned to the non-safety

services while AC2-AC3 are assigned to the safety-related messages. Consequently, only

AC0-AC1 data is extracted and the latency is shown in the plot. For the MuCH scenario,

the experiments are divided into two groups. First, only AC0-AC1 are used for the SCHs

and AC2-AC3 are idle. This is to show the direct comparison on latency when non-safety

services have the same traffic patterns in both SiCH and MuCH environments. Second,

since the safety-related services are separated to the CCH, the AC2-AC3 can be assigned

to the non-safety services in the SCHs, i.e., the non-safety services can use all four ACs in

the SCHs instead of only two in SiCH. The latency of non-safety services with four ACs

enabled is also evaluated and compared with the SiCH condition. In the experiments, the

total number of vehicles is fixed at 30 and the number of non-safety (NS) messages (MSGs)

increases from 5 to 30.

The top portion of Figure 5.17 shows the average latency of non-safety services with AC0

and AC1 in SiCH and MuCH scenarios. The increment rate of MuCH is slower relative to

SiCH. When the number of NS MSGs is 10 per vehicle, the average latency of SiCH AC0

(23.6ms) is lower than MuCH (29.1ms). After this point, MuCH AC0 maintains a lower



Chapter 5 164

5 10 15 20 25 30
0

200

400

600

800

L
at

en
cy

 (
m

s)
 MuCH(AC0-1) VS SiCH(AC0-1)

AC0MuCH
AC1MuCH
AC0SiCH
AC1SiCH

5 10 15 20 25 30
Num. of NS MSGs (5-30) per AC per vehicle

0

200

400

600

800

L
at

en
cy

 (
m

s)

MuCH(AC0-3) VS SiCH(AC0-1)

AC0MuCH
AC1MuCH
AC2MuCH
AC3MuCH
AC0SiCH
AC1SiCH

Figure 5.17: Latency comparison on non-safety services. With high density transmissions,
single channel latency increases dramatically, while multichannel maintains a steady low
latency. All 4 ACs are enabled in multichannel mode in contrast with 2 ACs in single
channel.
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latency than SiCH AC0. With 30 NF MSGs, SiCH AC0 experiences an average latency of

774.6ms while MuCH AC0 only has 109.7 ms. Similarly, the crossing point of AC1 appears

at around 18 NS MSGs. The latency of SiCH AC1 ranges from 0.47 to 269 ms while MuCH

AC1 ranges from 16.9818 ms to 25.47 ms. Thus, we can assert that when the transmission

traffic is small, SiCH is more efficient because the time cost of the channel switching in

MuCH is non-negligible. When the transmission traffic is heavy, the queue delay of the

SiCH outweighs the channel switching delay, resulting in MuCH being more efficient under

heavy traffic condition.

The bottom portion of Figure 5.17 compares the latency between SiCH (AC0-AC1)

with MuCH(AC0-AC3). We can observe that the participation of AC2-AC3 increases the

latency of AC0-AC1 in MuCH. As more NS MSGs are broadcast, SiCH latency increases

exponentially while MuCH latency increases almost linearly. At the point of 30 NS MSGs,

the average latency from AC0 to AC3 is around 402.87, 230.4, 77.6, and 23.3 ms, respec-

tively. Compared with SiCH, having 774.6 ms on AC0 and 269 ms on AC1 shows that

MuCH is able to ensure a lower latency than SiCH, especially in heavy traffic scenarios.

On the other hand, only AC0 and AC1 can be assigned to non-safety services in SiCH in

order to guarantee the QoS of safety-related services, while MuCH can enable four ACs and

maintain a relative low latency. Therefore, we have reason to speculate that MuCH should

be able to bring high throughput communications to non-safety services.

The network throughput (TP) is defined as the amount of data successfully delivered

during a time period. The TP in SCHs is relatively complex as it is highly dependent on

the total number of established WBSSs and the SCH reservation mechanisms. For example,

if the vehicle density is low and all the vehicles are located within one WBSS, then only

one SCH is utilized during one SCHI while leaving the remaining five SCHs vacant, i.e.,

the channel is not fully used. Another scenario is related to the SCH reservation scheme,

where multiple WBSSs reserve the same SCH. The channel contention within one SCH

causes longer delay and lower packet delivery rate (PDR), thereby result in a lower TP. On

the other hand, the idle SCHs result in wasted channel sources, with the major feature of

multiple SCHs on TP not being fully used. In our case, we use the proposed cooperative

SCH reservation mechanism, which fully considers SCH/AC information conveyed by the
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WSAs to achieve a higher utilization on SCHs.

In our experiments, we increase the number of vehicles from 5 to 30 while also increasing

the number of non-safety messages (NSMs) per vehicle in a WBSS from 5 to 30, i.e., each

vehicle is required to broadcast 30 messages to finish a non-safety service after establishing

or joining a WBSS during a SCHI. If the vehicles cannot send all required NSMs before

the end of the SCHI, the next SCHI will be reserved to continue the transmission. We

calculated the TP for each situation and the results are shown in Figure 5.18.

Figure 5.18: Throughput comparison between single channel and multichannel operations.
Multichannel is effective for heavy traffic scenarios with much higher throughput.

When the total number of vehicles is fixed, an increase in the number of NSMs will

result in a single channel (SiCH) scenario that maintains a constant TP of around 6 Mbps

for 30 vehicles while the multichannel (MuCH) environment increases its TP between 8

Mbps to 16 Mbps for 30 vehicles. This proves that for the 30 vehicles situation that the

SiCH is saturated at 6 Mbp while the MuCH is still able to increase the TP. For 30 NSMs

in the 30 vehicles scenario, the MuCH TP is almost three times higher than SiCH TP. If
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the number of NSMs is fixed, when the number of vehicle nodes increases, both SiCH and

MuCH scenarios increase their TP almost linearly. For less than 10 - 15 vehicles, SiCH

has slightly higher TP than MuCH scenario. This is because the number of WBSS is low,

the multichannel SCHs are not fully utilized and the overhead on multichannel switching

decreases the TP. After this crossover, additional vacant SCHs are utilized, MuCH starts

to show its high TP feature. Conceptually, we may expect a n times increase in TP when

using n SCHs relative to one single channel. However, the TP of the MuCH scenario is

constrained by the 46% channel access period, MuCH communication can only achieve 3

times higher TP than SiCH communication for 30 NSMs by 30 vehicles scenario.

5.3.4 Proposed SCH Reservation Scheme

IEEE 1609.3 [114] and WAVE/DSRC [18] documents do not specify an algorithm for

SCH assignment for different WBSS service providers (SP). Without an appropriate algo-

rithm, multichannel operations may face inefficient channel utilization problems and hidden

terminal is one of the them. Suppose two SPs are out of the transmission range of each

other, thus the WSA sent from one SP cannot be received by another SP. Both SPs may

reserve the same SCH in the same SCHI so that frequency-overlapping WBSSs are estab-

lished. The vehicles from these two WBSSs in the overlapping zone may experience severe

interference.

Cognitive radio technology is usually adopted to enable multichannel access for ve-

hicular communications as shown in [131–133], while cognitive radio may require more

complex designed PHY layer. Besides, research in [134] introduces a TDMA based SCH

reservation while the authors did not provide discussions on the overhead traffic during

the TDMA coordination process. Research in [135] proposed to determine the SCH with

the lowest encountered packet collisions in the past. Research in [136] adaptively selects

EDCA parameters depending on the density of the vehicles for improving throughput of

each AC. However, none of these research works are able to reduce the hidden terminal

problem. Research in [126, 137] propose the CraSCH solution in order to avoid the set

up of frequency-overlapping WBSSs. With CraSCH, an enhanced WSA is sent by the SP

containing additional information about SCH reservations. A WSA not only contains the



Chapter 5 168

Figure 5.19: Proposed SCH/AC mix reservation scheme. Convey up to 2-hop SCH infor-
mation can decrease the frequency overlapping problem. Consideration to both SCH and
AC information increases the utilization of multichannel EDCA operations.

SCH number reserved by the SP, but also conveys the SCH reservation status of other

WBSSs based on the WSAs received from the other SPs. Suppose SP1 selects SCH1 for its

WBSS and broadcast WSA containing SCH1 information. When SP2 receives this WSA,

it is aware that SCH1 is reserved and then selects SCH2. A WSA is created informing

both SCH1 are SCH2 are occupied. SP3 is out of the range of SP1 but within the range

of SP2. From the WSA of SP2, SP3 knows SCH1 and SCH2 are not available so that it

will choose from the rest of four SCHs. In this way, even though SP3 cannot hear SP1,

it can avoid picking the same SCH with SP1. CraSCH can avoid as much as possible the

frequency-overlapping WBSSs by conveying SCH occupancy information among the two-

hop neighboring SPs. However, CraSCH is only effective when there are free SCHs. If all

SCHs have been reserved, CraSCH just randomly chooses one of the reserved SCHs. There-

fore, CraSCH loses its effect when the number of WBSSs is more than the total number of

SCHs.

Based on the analysis in the above section, all four ACs can be enabled simultaneously
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for different non-safety services in multiple SCHs. Thus, we proposed a SCH reservation

mechanism, named as SCHAC, which improves the multichannel utilization by fully consid-

ering the AC status in each SCH. Our proposed approach is suitable for the situation when

all SCHs have been reserved. For example, suppose a SP needs to start a non-safety service

with AC1 priority and it is aware that all SCHs have been reserved. If it uses CraSCH, the

SP will just randomly select one SCH to use. If the AC1 priority in this SCH just happens

to be occupied, both services will contend for channel access and the utilization of channel

is decreased. With our approach, the SP will further look into the status of ACs in each

SCH and it will find which SCH has idle AC1 or has less utilized ACs if AC1 priorities from

all SCHs have been used.

Figure 5.19 shows the progress of sharing SCHs/ACs information using our proposed

approach. In the figure, three SPs need to initiate WBSSs in the next SCHI, SP2 is 1-

hop distance with SP1 and SP3, while SP3 is two-hop away from SP1. This makes SP3

unable to receive WSA from SP1, thus it is possible that both SP1 and SP3 reserve the

same SCH. In our approach, each vehicle owns a 1× 6 SCH vector to maintain SCH status

from received WSAs. Each element indicates the status of one SCH, i.e., SCH1 to SCH 6

from left to right. The decimal vector element can be converted into 4-digit binary number

corresponding to 4 EDCA ACs, i.e., AC3 - AC0 from left to right. For example, if AC0 and

AC2 have been reserved for SCH1, the element is 0101 in binary format and 5 in decimal.

In Figure 5.19, the blue 6 in SP1’s SCH vector indicates AC1 and AC2 of SCH3 have been

reserved. SP1 obtains this information from the WSAs received before. Then SP1 decides

to establish a WBSS in SCH1 with AC1 priority. To share this information, a 3 byte (24

bit) SCHbits field is created. The SCHbits field is the binary format of SCH vector, every 4

digits corresponding to the 4 EDCA ACs in one SCH. SP1 set SCH1/2 to the SCHbits field

along with SCH3/6, and broadcast the SCH information with WSA messages. Note that

the chosen SCH, as well as the priority of service, is also conveyed by WSA main field; this is

the original function WSA, i.e., both WSA and WSA ext SCH bits fields contain SCH/AC

information selected by SP1. In this way, the WSA receivers are able to distinguish which

SCH/AC information is from 1-hop distance and which is from multi-hop distance.

The initial SCH vector of SP2 is all zero, after receiving the WSA from SP1, SP2 is
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aware that SCH1/2 is the service information from SP1 and SCH3/6 is from other SPs.

To SP2, SCH1/2 is the 1-hop information and SCH3/6 is the 2-hop information. Since

both SCH1 and SCH3 are occupied, SP2 picks SCH2 for its service with priority of AC3,

i.e., SCH2/8. Then, SP2 broadcasts WSA with SP2 SCH information SCH2/8 and 1-hop

SCH information SCH1/2. Note that SCH3/6 is 3-hop information to other SPs, thus it

is not included in SP2’s WSA. Broadcasting more than 2-hop SCH information may cause

wasted bandwidth and inefficient channel reuse [126]. When SP3 receives this WSA, it

knows SCH1/2 is from 2-hop nodes and SCH2/8 is from SP2, then it selects SCH6/4 to

set up its WBSS on SCH6 with priority AC2. In this way, SP3 is able to obtain the SCH

reservation information of SP1 even though SP1 is 2-hop away.

Figure 5.20: Latency improvement by the proposed SCH/AC reservation scheme. When the
number of WBSSs outweighs the number of SCHs, proposed SCH/AC reservation scheme
can cause a much lower latency than random pick scheme.

Figure 5.20 illustrates the process of selecting a SCH while considering the AC status of

each SCHs. Suppose a SP needs to establish a WBSS with the AC3 priority and it is aware

that all SCHs have been reserved by other SPs within 2-hop distance after querying the

local SCH matrix. The SP will continue to check the AC status stored in the SCH matrix.



Chapter 5 171

During this process, this SP may face with three choices. First, only one SCH out of six

SCHs has a vacant AC3 position, the SP will select this SCH. Second, more than one SCHs

have vacant AC3, the SP will choose the one with the smallest AC values amongst the SCHs

who have available AC3. Suppose the SCH/AC information of the SP is the same with the

SCH Matrix Example shown in Figure 5.20, the SP will select SCH1 since SCH1 only has

AC1 being reserved while SCH3, SCH5 do not have available AC3 and SCH2, SCH4 and

SCH6 have more than one ACs being reserved. Third, if the AC3 from all SCHs have been

reserved, the SP will pick the SCH with the least AC total values since a smaller overall

AC value indicates a lower or fewer ACs being reserved. Furthermore, the SCH vector is

reset to zero at the beginning of every CCH interval.
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Figure 5.21: Latency improvement by the proposed SCH/AC reservation scheme. When the
number of WBSSs outweighs the number of SCHs, proposed SCH/AC reservation scheme
can cause a much lower latency than random pick scheme.

Simulations are performed to test the proposed scheme. As the SCH reservation depends

on the establishment of WBSSs, which is affected by the total number of vehicles, we increase

the number of vehicles from 5 to 30. Random vehicles are chosen to be SPs, the other

vehicles have the option to choose which WBSS to join if more than one WBSSs coexist.
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Once a WBSS is established, each member needs to broadcast 30 messages with one of AC

priorities to finish the service. Two sets of experiments are conducted, one group is using

the legacy SCH random pick scheme, another group is using the proposed SCH/AC mix

scheme. In order to show the difference more intuitively, the average latency is calculated

by all data from AC0 to AC3. The results are shown in Figure 5.21.

When the number of vehicles is low, the difference between two SCH reservation schemes

are not obvious. This is because the number of WBSS is low due to the lack of vehicles.

Even with random selection, the WBSSs have a high probability to choose different SCHs.

As the number of vehicles increases, our proposed scheme shows its advantage. With 30

cars, all six SCHs are reserved with partial ACs occupied, the proposed scheme can save

nearly half time of random pick schemes.

5.4 Chapter Summary

In this chapter, we implemented multichannel (MC) feature by extending the existing

single channel models. The APP (MC) layer is able to initiate or join a non-safety service

via a WBSS. The messages generated by APP (MC) DES module contain multichannel

information. The MAC (MC) DES module is expanded by making use of multiple single

channel MAC DES modules. A new DES module, WME, is designed to maintain multi-

channel status and information. WME DES module is also responsible to coordinate with

APP (MC) DES module for generating WSA frames. Further, the WME DES module

controls the MAC (MC) module to switch on or off the sub-MAC modules depending on

the channel information.

Several experiments have been conducted in order to evaluate the performance between

single channel and multichannel communication. All four ACs from EDCA scheme have

been enabled in the simulations, i.e., the data flows within 4 ACs × 7 channels = 28

ACs, the results show that data of AC0-2 are experiencing severe long delay and are not

qualified for transmitting safety messages in single channel V2V communication. Then

only AC0-1 are set for non-safety applications, while AC2-AC3 are granted to safety-related

applications. The results show that AC2 is still facing long delays that cannot be used on
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transmitting safety messages in single channel communication. Meanwhile, due to the even

lower latency, AC0-AC1 are experiencing even longer queue delay that cannot provide a high

throughput for non-safety services. On the contrary, the multichannel communication is able

to keep safety-messages at a relatively low latency while providing high throughput for non-

safety messages. The simulations also show that for time-sensitive services, the transmitting

time should be carefully scheduled in order to avoid latency caused by channel switching

operation. Furthermore, the message cause by random event may have long latency caused

by channel switching operation, and should be compensated by other technologies. Finally,

We proposed a cooperative SCH reservation criteria, which could adaptively decide the SCH

frequency as well as AC priority according to the SCH/AC information received from nodes

with at most two-hop distance. The simulation result shows that the proposed scheme is

able to increase the utilization of multichannel with multiple priorities, thereby reduce the

contention probability to achieve an improvement on packet delivery latency.
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Chapter 6

Research Achievement and Future

Work

In this dissertation, we have presented the design of multichannel vehicular network

simulator using discrete-event programming. We developed an accurate PHY layer at the

bit level, a MAC layer DES module that supports EDCA scheme, and an APP layer DES

module that integrates vehicle mobility models with the application message generation

actions. Then the simulator is expanded to supported multichannel operations including

channel switching and coordination operations. The DES framework introduced in this

this dissertation are practical and compatible with any other discrete-event programming

languages.

6.1 Research Achievements

In this dissertation, several achievements have been made in the area of both single

channel and multichannel scenarios within a vehicular network. And the skills on analyzing

standards and system-level design on the individual functions are also improved. The

achievements are summarized as follows:

• Bit-level processing: The PHY layer that supports bit-level processing has been

evaluated and the performance has been compared with the well-known packet-level
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network simulator, NS-3. The simulation results show the bit-level processing is able

to model a more realistic and accurate wireless channel by maneuvering each single

symbol inside a waveform than packet-level simulators.

• Performance of V2V based on DSRC: The performance of EDCA is evaluated by

simulations created by VANET Toolbox. The simulations show that data transmission

from multiple AC queues can coexist in the same channel (CCH or SCH), additionally,

the AC3 communication maintains a nearly 100% packet delivery rate (PDR) and

much lower latency. When the number of vehicles are less than 15, AC2 performs

better than CSMA. When the number of vehicles are more than 15, CSMA acts

better than AC2 transmission. However, AC2 still has a 85% PDR with an acceptable

latency. The simulations prove that AC2 is capable to transmit BSMs with acceptable

packet collisions quantities and AC3 is good enough to ensure the quality of service

(QoS) of emergency (EMG) messages.

• Lane Changing Schemes: By making use of BSMs and EMG messages, two lane

changing schemes are proposed. Vehicles obtain other vehicular traffic information via

BSMs. The lane changing (LC) information are exchanged LC requests and replies.

All LC messages are at the AC3 priority. In addition, reliable data transmission

(RDT) has evolved to guarantee the LC safety. Simulations are created using the

VANET Toolbox, and the results prove that the proposed LC schemes can increase

the overall traffic efficiency while maintaining safety.

• Multichannel operations: The EDCA scheme is fully enabled with four ACs in

multichannel scenario. The simulations show that multichannel communication is

necessary to ensure a low latency and high packet delivery ratio to safety-related

services and a high throughput for non-safety services simultaneously. Safety-related

services with strict latency requirements should be carefully scheduled during CCHI.

Messages caused by random emergency event may experience severe delay due to

channel switching operation.

• SCH/AC Reservation Scheme: A coordinated SCH/AC reservation scheme is
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proposed in order to increase the SCH utilization. The SCH/AC information within

2-hop distance is shared via WSA frames. The simulation results show that the

proposed SCH/AC scheme is able to reduce the contention probability so that to gain

a higher channel utilization.

• VANET Toolbox: VANET Toolbox is the first vehicular network simulator in MAT-

LAB/Simulink environment. Before MATLAB DES was published, MATLAB/Simulink

is a time-driven environment and does not support multi-threading programming.

This limitation makes it incompetent to create a synchronous network simulator. Im-

plemented by MATALB DES, VANET Toolbox supports a hybrid of time-driven and

event driven simulation environment. Then, VANET Toolbox is an integrate type

simulator because the mobility models are integrated with APP layer of the vehicu-

lar network simulator. Furthermore, VANET Toolbox can be extended to work with

other MATLAB/Simulink softwares such as ‘WLAN System Toolbox’ or communica-

tion hardwares such as USRP.

6.2 Future Works

The future work of this PhD research can be categorized into two categories. In the

first category, we will be extending the proposed simulator to more complicated scenarios

including vehicle-to-infrastructure (V2I) and vehicle-to-everything (V2x) communication.

Moreover, wireless channel models such as urban non-line-of-sight(NLOS) will be devel-

oped. Based on these developments, the city crossroads with traffic lights can be simulated

and more services such as left-turn assistant (LTA) can be developed and evaluated. The

second category of the future works is to implement the proposed connected vehicular com-

munication in the radio hardware, such as the USRP software defined radio or Atheros 9k

Wi-Fi modules. Currently, implementing the full stack of vehicular networks into hardware

is still an open research topic since the current implementations focus on the wireless com-

munication, i.e., the PHY layer. The event-based activities from the higher layer such as

multichannel switching operation and coordination have yet been implemented. The pro-

posed bit-level PHY layer with the DES-based upper layer is convenient to be converted to
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hardware implementations.
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Appendix A

Classifications of Systems

The Concept of System

A system is a set of interacting components which behave together to perform a function

and this function cannot be performed by any of the individual parts [138]. A system can

be abstracted into a model, indicated as g(·) and shown in Eq. (A.1) [53].

Figure A.1: A system with I/O and state space model process. The upper plot shows a
system with inputs and outputs. The plot below is the abstraction of the above system. The
output vectors are decided by system function, input vector, time and state space model.

Input : ~u(t) = [u1(t), u2(t), ..., up(t)]
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Output : ~y(t) = [y1(t), y2(t), ..., ym(t)]

~y = ~g(~u) = [g1(u1(t), u2(t), ..., up(t)), ..., gm(u1(t), u2(t), ..., up(t))]. (A.1)

A basic input-output model is shown in Figure A.1. In the figure, ~u(t) is a vector of

inputs, ~y(t) is a vector of outputs and ~x(t) is a vector of states. The state space ẋ is a

function decided by state vector, input vector and time. The output ~y is calculated by

~y = ~g(~x, ~u, t). The classifications of systems are shown in Figure A.2

Figure A.2: Systems overview and Discrete Event Systems. Discrete Event System is
classified as a discrete-state event-trigger system. A hybrid system including both time-
driven and event-driven DES is suitable for network PHY layer simulation.

Static and Dynamic System

A static system is defined when the output ~y(t) is independent of past values of the input

~u(τ), τ < t for all t. When the output of a system depends on the past values of the input,

i.e., the output requires buffer of the input history, this system is dynamic. Differential
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equations, for continuous-time system, or difference equations, for discrete-time systems,

are usually chosen to model the behavior of dynamic systems.

Time-Varying and Time-Invariant System

When the system ~g(·) is not independent of time t, Eq. (A.1) is represented into Eq.

(A.2).

~y = ~g(~u, t). (A.2)

In a time-invariant system, if ~y(t) = ~g(~u(t)), then ~y(t − τ) = ~g(~u(t − τ)), i.e., if the

input is τ time later than t, the resulting output should be the same result as obtained at

t, otherwise the system is time-varying system. The behaviors of a time-invariant system

do not change with time, whenever a specific input is applied to the same time-invariant

system, the response is always in the same way.

Linear and Nonlinear System

For a system represented by ~y = ~g(~u), the function g is linear when satisfying g(a1u1 +

a2u2) = a1g(u1) + a2g(u2). Similarly, Eq. (A.3) shows the vector case of linear system.

~g(a1 ~u1 + a2 ~u2) = a1~g( ~u1) + a2~g( ~u2). (A.3)

A linear time-invariant (LTI) dynamic system is described by the state space model of Eq.

(A.8) and Eq. (A.9).

State

At a specific time, a system’s behavior can be described in a measurable way, i.e., state.

The state of a system at time t0 is defined as the output y(t) of a system for all t >= t0 is

uniquely determined by the system status at t0 and system input ~u(t), t >= t0. The state

variables are defined as ~x(t) = [x1(t), ..., xn(t)].

Given the initial condition ~x(t0) = x0 and the input ~u(t) for all t >= t0, the state ~x(t)

is presented by state equations shown in Eq. (A.4). Then the output ~y(t) is determined by
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state equations, input and time shown in Eq. (A.5). The input-output model with state

space is shown in Figure A.1.

~̇x(t) = f(~x(t), ~u(t), t). (A.4)

~y(t) = ~g(~x(t), ~u(t), t). (A.5)

For a static system, the state remains fixed at all time, i.e., ẋ(t) = 0 for all t, then

the system model is specified only by Eq. (A.5). For a time-invariant system, neither

function ~f(·) nor ~g(·) explicitly depends on time t, the state equations can be written to

~̇x(t) = f(~x(t), ~u(t)) and the output ~y(t) = ~g(~x(t), ~u(t)). Considering linearity, Eq. (A.4)

and Eq. (A.5) are presented as Eq. (A.6) and Eq. (A.7) respectively,

~̇x(t) = ~A(t)~x(t) + ~B(t)~u(t). (A.6)

~y(t) = ~C(t)~x(t) + ~D(t)~u(t). (A.7)

in which the dimension of ~A(t) is n× n, ~B(t) is n× p, ~C(t) is m× n and ~D(t) is m× p. In

a time-invariant system, time element is constant, therefore Eq. (A.6) and Eq. (A.7) are

simplified to Eq. (A.8) and Eq. (A.9).

~̇x = ~A~x+ ~B~u. (A.8)

~y = ~C~x+ ~D~u. (A.9)

Continuous-State and Discrete-State Systems

The state space of a system, denoted by X, is a set of all possible values a state may

take. Based on the type of states in a model, a system can be classified into continuous-state

system and discrete-state system. In a continuous system, the state space X are continuous

and can take on any, real or complex, value. In a discrete-state system, the states are all

non-negative integers of a discrete set and only allowed to change from one discrete state

value to another.
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The analysis of a continuous-state model can be ultimately reduced to the analysis of

differential (continuous-time system) or difference (discrete-time system) equations. But the

mathematical analysis to express and solve a discrete-state system is relatively complicated.

Time-Driven and Event-Driven Systems

In a continuous-state system, the states change as the time changes. The time variable,

t in continuous time or k in discrete time, enable the system to transit from one state

to another state continuously. The system with such property is referred as time-driven

system. A continuous-state system is by nature time-driven.

While in a discrete-state system, the state transitions are either synchronized by a

clock or occurred asynchronously at some special time point due to instantaneous state

transitions. These state transitions are associated with events. An event, denoted by e,

occurs instantaneously and cause transitions from one sate value to another. A discrete

event set E is defined as a discrete set with all these events as elements.

If state transitions in a discrete-state system are synchronized by clock ticks, it is a

discrete-state, time-driven system. Otherwise, if state transitions occur asynchronously at

various random time instants due to the combination of event processes, this system is

referred as a discrete-state, event-driven system.

Deterministic and Stochastic Systems

A deterministic system is defined when no output is random. In a deterministic system,

given an input ~u(t) for all t >= t0, the state x(t) can be evaluated. Whenever one or more

system outputs is a random variable, the system is a stochastic system. In a stochastic

system, the overall state is a random process, i.e., the state at time t is aa random vector.

The probability distribution function (PDF) of the state is required to model the system

behavior.

Continuous-Time and Discrete-Time Systems

In a continuous-time system, time is a continuous variable. A continuous-time model

can be analyzed by differential equations such as Eq. (A.4) and Eq. (A.5). In contrast
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to the continuous-time systems, the time line in a discrete-time model is a sequence of

intervals. A discrete-time system does not imply the discretization of the state space X,

i.e., the states may be continuous in a discrete-time system.

In a discrete-time system, the time element t is replaced by k. Similarly, the input ~u(t)

and output ~y(t) are replaced by ~u(k) and ~y(k). The state variables ~x(t) is replaced by ~x(k).

Furthermore, the differential equations (A.4) - (A.5) used in the continuous-time system

become the following difference equations.

~x(k + 1) = f(~x(k), ~u(k), k). (A.10)

~y(k) = ~g(~x(k), ~u(k), k). (A.11)

For linear discrete-time systems, Eq. (A.7) and Eq. (A.6) are replaced by Eq. (A.12)

and Eq. (A.13).

~x(k + 1) = ~A(k)~x(k) + ~B(k)~u(k). (A.12)

~y(k) = ~C(k)~x(k) + ~D(k)~u(k). (A.13)

which are simpled in the time-invariant discrete-time system to Eq. (A.14) and Eq. (A.15).

~x(k + 1) = ~A~x(k) + ~B~u(k). (A.14)

~y(k) = ~C~x(k) + ~D~u(k). (A.15)

Discrete Event Systems

When a system can be described as a set of discrete states, and the state transitions

are caused by events which occur instantaneously, this system is a Discrete Event System

(DES), i.e., a DES is a discrete-state, event-driven system, and its state transition is entirely

caused by the asynchronous discrete events over time as shown in Figure A.2. In a DES,

‘time’ is no longer the key factor to drive the system. The set of events replace the role of

time and serves the purpose of driving a DES, each ‘event’ can cause a state transition. A

DES may be modeled in either continuous time or in discrete time.
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Hybrid Discrete Event System

Even though a DES is defined as a discrete-state, event-driven dynamic system, it is

worth noting that a hybrid DES is more general when both time-driven and event-driven are

present, as shown in Figure A.2. For example, the operating system (OS) in a computer is

designed to not only respond to asynchronous events occurred at any time but also process

functions synchronized by the computer clock. A hybrid DES may be deterministic or

stochastic and it can be modeled in either discrete or continuous time.
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Appendix B

An Example of MATLAB DES

Model

In this section, we create a simplified MAC layer to show how to create a MATLAB

discrete-event system (DES) with the necessary methods mentioned in the above sections.

The sample MAC layer is highly simplified and only have partial functions. The purpose of

this example is to show the skeleton of a basic MATLAB DES. This basic MATLAB DES

is necessary for readers to understand the design of VANET Toolbox which will show in

Chapter 3.

Description of a Simple DES Model

The DES model contains an entity generation, an entity terminator and a MATLAB

DES. The entity generator acts as an APP layer and generates payload entities every 4

seconds. The payloads are sent to the MATLAB DES, in which they are converted into

frames. The frames are sent to the entity terminator, which destroys all received frames.

The MATLAB DES works as the MAC layer. It receives payloads from the input port,

and generates frames based on the information from the message part of payload. The

conversion between payload and frame costs a time delay period. After the delay, the frame

is generated and forwarded to the output port. The abstraction of the simplified MAC layer

is shown in Figure B.1.
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Figure B.1: The flowchart of entities inside the DES storages. The upper section shows the
data flow happened inside of the below MATLAB DES.

In the figure, the structure of flowchart corresponds to the whole DES model in Simulink.

As the name suggested, entity generator is for generating entities and entity terminator is to

destroy entities. The MATLAB DES block is a user-defined DES system object contained

in a Simulink system block so as to work with other Simulink blocks.

The MAC DES has two storages, one is for payload type of entities and another is for

frame entities. Payloads enters from input port 1 and stays in storage 1. If the sequence

number in the payload header equals to the Target payload property, starts from 1, this

payload is the designated payload. Thus a timer is attached to this payload entity. Once the

delay period of the timer is ended, a frame containing the designated payload is generated
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in storage 2. Then this frame is forwarded to the output port 1, meanwhile an iteration

is triggered in storage 1 upon the frame exits storage 2. The iteration first finds the old

designated payload and destroy it. Then the new designated payload counter increases by

1 and find the next designated payload in storage 1. When the new designated payload is

found, the iteration process stops and the MAC DES repeats the framing process to the

new payload, so on and so forth.

Create Bus Data Type

In this example, the MAC DES model is using bus data type. Two types of buses,

Payload and Frame, are defined in the MATLAB code. Payload bus has two elements,

message and payloadHeader. Payload.payloadHeader contains sequence number in a 1 × 1

real data field. And Payload.message saves a [1× 100] numerical message. Similarly, Frame

bus owns two fields, Frame.frameHeader saves the frame sequence number and Frame.body

contains the message extracted from payloads.

The script, named as init aSimDES, needs to be initialized before the DES simulation

starts. Users can run init aSimDES manually everytime before running the Simulink model.

A more efficient way is putting init aSimDES in the InitFcn of Simulink callbacks, thus

init aSimDES will be running automatically during the initialization phase of a Simulink

model. The code is shown below:
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Payload=Simulink.Bus;

payload1=Simulink.BusElement;

payload1.Name='message';

payload1.Dimensions=[1,100];

payload2=Simulink.BusElement;

payload2.Name='payloadHeader';

payload2.Dimensions=[1,1];

Payload.Elements=[payload1,payload2];

Frame=Simulink.Bus;

frame1=Simulink.BusElement;

frame1.Name='frameHeader';

frame2=Simulink.BusElement;

frame2.Name='body';

frame2.Dimensions=[1 100];

Frame.Elements=[frame1,frame2];

Entity Generator Block

Entity Generator generates entities at a constant or variable rate despond on the con-

figuration. As shown in Figure B.2 (left), the entity generator generates entities every 4

seconds. The second tab of entity generator controls the entity type, in this example, ’Bus

object’ is selected, shown in Figure B.2 (right). Thanks to init aSimDES, two bus object,

’Payload’ and ’Frame’, have been created. In the field of Entity type name, ’Payload’ is

chosen, so that the entity generator is able to generate ’Payload’ type entities.

In the entity generator block, users can setup some initial values to the entity in the

Event actions field. In this example, we give an index to the sequence number in Pay-

load.payloadHeader field. The value, started from 1, increases by 1 as more entities are

generated. The code is shown below:
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Figure B.2: Entity Generator Block from SimEvents Library in Simulink and Configuration.
The entity intergeneration rate is set to a constant rate and the entity type it creates are
all ‘bus’ type.

persistent i

if isempty(i)

i=1;

end

entity.payloadHeader=i;

i=i+1;

MATLAB DES block

MATLAB Discrete-Event System block is the main block for the whole model, shown

in Figure B.3. As described in the above tutorial sections, we need to first define the data

type of input/output port as well as the storages using the code below:



190

Figure B.3: The Discrete Event System (DES) Block in Simulink.

function entityTypes=getEntityTypesImpl(obj)

entityTypes=[obj.entityType('payload','Payload'),...

obj.entityType('frame','Frame')];

end

function [inputTypes,outputTypes]=getEntityPortsImpl(~)

inputTypes={'payload'};

outputTypes={'frame'};

end

function [storageSpecs,I,O]=getEntityStorageImpl(obj)

storageSpecs=[obj.queueFIFO('payload',inf)...

obj.queueFIFO('frame',inf)];

I=1;

O=2;

end

In the code, two entity types, ’payload’ and ’frame’, are extended from the corresponding

bus type ’Payload’ and ’Frame’. The DES has one input port in ’payload’ type and one

output port in ’frame’ type. Two storages are defined and both of them are a FIFO queue

with infinite capacity. Storage 1 is ’payload’ type to contain payloads and storage 2 is
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’frame’ type to store payload entities. Storage 1 is connected with input port, thus the

payload entities enter the DES via input port and are saved in storage 1 directly. Storage 2

is connected with output port, for all entities left storage 2, they leave the DES block too.

When a payload entity enters storage 1, it triggers action payloadEntryImpl( ). Due to

the requirement of code generation, payloadEntryImpl() is renamed to payloadEntry(). All

the other action methods follow the same rule too. One thing needs to mention is that the

example of this DES is highly simplified, thus not all input parameters are used. we try to

use disp to illustrate the functions of most parameters. The code is shown below:

function [entity,events] = payloadEntry(obj,storage,entity,source)

disp(['T=' num2str(obj.getCurrentTime()) 's: payload ' num2str(

↪→ entity.data.payloadHeader) ' enters storage ' num2str(storage

↪→ ) ' from ' source.type ' ' num2str(source.index)]);

if entity.data.payloadHeader == obj.TargetPayload

events=obj.eventTimer('framing',5);

end

end

In the above code, once an entity enters the storage, the DES compares its sequence

number (payloadHeader) with the predefined property. If the entity is the designated entity,

it triggers the timer event eventTimer with tag of ’framing’. Otherwise, it keeps waiting

in storage 1 until further called. The timer event delays 5 seconds to the designated entity.

Once the delay period is ended, the corresponding action payloadTimer is triggered. The

code of payloadTimer action is shown below:
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function [entity,events]=payloadTimer(obj,storage,entity,tag)

if strcmp(tag,'framing')

disp(['T=' num2str(obj.getCurrentTime()) 's: frame ' num2str(entity.

↪→ data.payloadHeader) ' is generated.']);

obj.payloadHeaderBuffer=entity.data.payloadHeader;

obj.frameBodyBuffer=entity.data.message;

events=obj.eventGenerate(2,'generateFrame',0,10);

end

end

Please note that strcmp is not necessary to the functionality DES, the reason it is used

in the code is that we want to show the feature of ’tag’. In a more complicated DES, the

tag can be compared by strcmp or switch ... case...end. In the payload timer action, the

payload Header and message are buffered to the properties of DES for further. Then a

frame generate event is called targeting storage 2 with tag of ’generateFrame’. This event

create a frame entity inside storage 2 with 0 delay. A frame generate action is triggered

upon the creation of the frame. The code is showing below:

function [entity,events]=frameGenerate(obj,storage,entity,tag)

if strcmp(tag,'generateFrame')

entity.data.body=obj.frameBodyBuffer;

entity.data.frameHeader=obj.payloadHeaderBuffer;

events=obj.eventForward('output',1,0);

end

end

In the frameGenerate action, the pre-saved sequence number and message extracted

from payload are given to the frameHeader field and body field correspondingly. Then the

frame is sent to the output port via eventForward() event. Before the entity left the DES,

frameExit( ) action is called, the code is shown below:
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function [events]=frameExit(obj,storage,entity,dst)

disp(['T=' num2str(obj.getCurrentTime()) 's: frame ' num2str(entity.

↪→ data.frameHeader) ' is forwarded from storage ' num2str(

↪→ storage) ' to ' dst.type ' ' num2str(dst.index) '.'] );

if storage==2 && dst.index==1

events=obj.eventIterate(1,'findNextPayload',1);

end

end

Similar to frameGenerate code, the comparisons (storage ==2 && dst.index==1) are

unnecessary to the functionality of the DES except to show the use of ’storage’ and ’dst’.

While this entity is forwarding to the output port, an iteration is triggered by eventIterate()

event with tag of ’findNextPayload’. The iteration is in storage 1, thus it is payload type.

The corresponding payload iterate action is shown below:
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function [entity,events,next]=payloadIterate(obj,storage,entity,tag,

↪→ cur)

disp(['T=' num2str(obj.getCurrentTime()) 's: iterating on payload '

↪→ num2str(entity.data.payloadHeader) ' in storage ' num2str(

↪→ storage) ' with size of ' num2str(cur.size) ' on position '

↪→ num2str(cur.position)]);

if entity.data.payloadHeader==obj.TargetPayload

events=obj.eventDestroy();

next=true;

else

events=obj.eventTimer('framing',1);

obj.TargetPayload=obj.TargetPayload+1;

next=false;

end

end

The iteration process first find the used designated payload and destroy it. Then itera-

tion continues (next=true) until the second available payload is find in the storage as the

new designated payload. This payload triggers payload timer event and start the next series

of events and actions as its predecessor. Before the old designated payload is destroyed, the

corresponding payloadDestroy() action is invoked. The destroy action does nothing except

showing a message via disp().

function events=payloadDestroy(obj,storage,entity)

disp(['T=' num2str(obj.getCurrentTime()) 's: payload ' num2str(

↪→ entity.data.payloadHeader) ' has been destroyed. ']);

end



195

Entity Terminator block

The Entity Terminator destroys all the entities it received. An Entity Terminator is not

essential but usually adopted to terminate the useless output of the DES block. In this

example, the entity terminator can be removed with affecting the results except a warning

may be given. Connecting a display block, an entity terminator can show the statistics on

the number of entities it has destroyed, see Figure B.4.

Simulation Results

The text results are all generated by disp() function, as shown in Figure B.4. At the 4th

second, the first payload enters storage 1 and is delayed 5 seconds by payloadTimer event.

4 seconds later, the second payload enters storage 1. As the first payload is still under

processing (in the 5-second delay period), payload 2 has to wait in storage 2. At time of 9s,

the delay period is over, frame 1 is created in storage 2 based on payload 1. Immediately,

frame 2 is sent out via output port 1 and iteration in storage 1 is undergoing. Payload 1 is

destroyed, payload 2 takes its position and starts a new set of events and actions. Due to

the limit of simulation time (10s), only frame 1 is created and sent out, payload 2 is still

in the delay period. The display connected to the entity terminator also proves that only

one frame reached the entity terminator. Even though the example is quite basic, it covers

all events and most of common actions. The vehicular network simulator VANET toolbox

is also created by these basic events and actions.

Figure B.4: The output results from the simple discrete event system. The display attached
to the entity terminator shows 4 entities have been destroyed.
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Appendix C

Two-Ray Gound Reflection Model

dRefl = sqrt(dist.^2 + (txHeight+rxHeight).^2);

sinTheta = (txHeight+rxHeight)./dRefl;

cosTheta = dist./dRefl;

reflCoeff = (-er.*sinTheta+sqrt(er-cosTheta.^2))./(er.*sinTheta+sqrt(er

↪→ -cosTheta.^2));

Pt = 10.^(Pt./10)./1000;

d0 = 1;

Gt = 10^(Gt/10);

Gr = 10^(Gr/10);

Pd0 = Pt*Gt/(4*pi*d0^2);

E0 = sqrt(Pd0*120*pi);

d1 = sqrt((txHeight-rxHeight).^2+dist.^2);

d2 = sqrt((txHeight+rxHeight).^2+dist.^2);

c = 299792458;

freq=c/lambda;

freqAng = 2*pi*freq;

Etot = E0*d0./d1.*cos(freqAng.*(d1./c-d1./c)) + reflCoeff.*E0*d0./d2.*

↪→ cos(freqAng.*(d1./c-d2./c));
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Prec = Etot.^2.*Gr*lambda^2/(480*pi^2);

PrEfield = 10*log10(Prec)+30;
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