
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

May 2019

Fair Ranking System
Paul-Henry Madiba Schoenhagen
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Schoenhagen, P. M. (2019). Fair Ranking System. Retrieved from https://digitalcommons.wpi.edu/mqp-all/6902

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/6902?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6902&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Creating A Fair

Ranking System

A Major Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute

 in partial fulfillment of the requirements for the

Degree in Bachelor of Science

in

Computer Science

By

Paul-Henry Schoenhagen (CS)

Submission Date:

5/30/2019

 Project Advisor:

Professor Elke Rundensteiner

This report represents work of WPI undergraduate students submitted to the faculty as evidence

of a degree requirement. WPI routinely publishes these reports on its web site without editorial

or peer review. For more information about the projects program at WPI, see

http://www.wpi.edu/Academics/Projects.

1

http://www.wpi.edu/Academics/Projects

Acknowledgements
Major thanks to Caitlin Kuhlman, Elke Rundensteiner, Lane Harrison.

2

Abstract

Ranking greatly assists us in decision making by allowing us to consider numerous

options, with a variety of attributes and turn it into an understandable model. Yet, accurate

rankings can be difficult for one to construct without extensive and proper knowledge on what

you’re ranking. Thus arose the need for fair ranking systems that effectively elicit data from

users and produce accurate rankings that satisfy and serve the users’ needs. In the pursuit of

creating a fair ranking system this team proposes Rankit_Experimenter, a user study that tests the

merits of three preference collection methods. Results indicate that categorical binning is the best

value model: providing a substantial amount of data for the underlying ranking algorithm, while

requiring minimal effort from the user.

Table of Contents
List of Figures 6

3

Executive Summary 7

Chapter 1: Introduction 8

Chapter 2: Background 10

2.1 Related Work 10
2.1.1 LineUp 10
2.1.2 Podium 11
2.1.3 MATTERS 12
2.1.4 Effects of Adding Search Functionality to Interactive Visualizations on the Web

12
2.2 RANKIT 13

2.2.1 RANKIT Overview 13
2.3.3 RANKIT Methodology 14

Chapter 3: Methodology 18
3.1 Overview 18

3.1.1 Early Work 18
3.1.2 Institutional Reform Board (IRB) Specifications 19

3.2 Redesigning Rankit for Experimentr 19
3.2.1 RANKIT Modifications 19
3.2.2 Early Designs 21

3.3 Design and Implementation 22
3.3.1 The Server 22
3.3.2 Machine Learning Algorithm 23
3.3.3 The Client 24
3.3.4 Data Logging 32

3.4 Project Development Structure 33

Chapter 4: User Study Design 34
4.1 Goals 34
4.2 Overview 35
4.3 Pilot User Study 36
4.4 Online User Study 37

4.4.1 Deployment Practices 38

Chapter 5: Evaluation 40
5.1 Data Evaluation Process 40
5.2 Onsite User Study Results 41
5.3 Online User Study Results 42

5.3.1 User Interactions 42
5.3.2 Time Spent Interacting 43
5.3.3 User Satisfaction 44

4

Chapter 6: Conclusion 46

6.1 Summary 46
6.2 Future Work 47

6.2.1 Machine Learning Script 47
6.2.2 Dataset Refinement 47
6.2.2 Comparison Method 48
6.2.3 Motivators 48

References 50
Appendix A 53
Appendix B 55
Appendix C 58

List of Figures

Figure 1. Lineup Interface 10

Figure 2. Podium Interface 11

5

Figure 3. MATTERS Interface 12

Figure 4. Search-in-vis Board of Directors Experiment Interface 13

Figure 5.1. RanKit Landing Page 13

Figure 5.2. Dataset Choices 13

Figure 6. Categorical and Pairwise Comparisons 15

Figure 7. Explore Page 17

Figure 8. Early Rankit_Experimentr Iteration Design 21

Figure 9. Consent Module 26

Figure 10. Instructions Module 27

Figure 11. Build Module with Categorical Comparison 28

Figure 12. Explore Module 29

Figure 13. Popup Confirmation Window 29

Figure 14. Strategy Module 30

Figure 15. Debrief Module 31

Figure 16. User Study Mechanical Turk Settings 38

Figure 17. Items Added 42

Figure 18. Items Removed 42

Figure 19. Time Spent Building (minutes) 43

Figure 20. Time Spent Exploring (minutes) 44

Figure 21. Responses to Qualitative Statement 45

Executive Summary

People depend on rankings created by companies and institutions for assistance in

everyday decisions; anywhere from getting show recommendations on a streaming service to

deciding which search engine link to click. Unfortunately these rankings are not designed with

6

an individual person in mind, companies optimize for their own objectives and business goals.

Therefore if an individual wishes to rank a set of options according to their preferences they must

use an interactive ranking system. The goal of this project is to create a refined build of the

RanKit system to test key features and gather quantitative user data. RanKit is an online ranking

application previously developed by a team of WPI students. With this goal in mind, we reduced

RanKit to its core feedback loop, and focused on a few key features we wanted to test. Although

most user studies are done to test the intuitiveness of an application, this was done to collect

quantitative user interaction data. Using a framework built for gathering user data and

conducting extensive user studies, the build was evaluated and shown to successfully accomplish

the aforementioned goal.

Rankit_Experimentr, the product of this project, marries RanKit with Experimentr: a

framework built by WPI professor Lane Harrison designed for collecting user data on large scale

user studies via Amazon's Mechanical Turk. Here RanKit was condensed into: a page for the

user’s consent to participate, an instructions page, a page for entering partial rankings, a page to

explore the complete ranking, a page to answer predetermined questions, and a page for

additional feedback. Two different types of user studies were carried out to gather sufficient user

data and test the stability of the build: in-person and online. The in-person study was carried out

on a smaller group, consisting of college students and librarians, whilst the online testing was

carried out by vetted volunteers.

Chapter 1: Introduction

Everyday decision making depends on the ability to process a large amount of data and

constructing a simple model for evaluation. These models are meant to provide us with more

information on each option, the attributes associated with it, and ultimately assist us with

decision making. Ranking, a commonly used model, processes the information and arranges the

7

options in an ordered list. This allows an individual to determine the relative weight of each

option, and make an informed decision.

Manually ranking a large dataset by oneself proves to be a troublesome task. Attributes

can be missed when turning real world events and objects into data, and outliers can greatly

affect the weights of different attributes. Even after the cleaning and synthesizing of data, the

data might be too large to analyze in a reasonable amount of time, too incomplete to make an

accurate ranking, or too biased to the the point where, within a vacuum, the ranking would be

misleading. Ranking a large dataset becomes increasingly more difficult for an individual

without extensive time, knowledge of what they are ranking, or the correct tools.

Thus people depend on rankings created by companies and institutions for assistance in

making decisions; such as getting show recommendations from a streaming service, determining

where to eat for the night, or deciding which search engine link to click. These rankings are

designed with the intention of appealing to a large demographic rather than appealing to an

individuals preferences. And without any knowledge of the ranking algorithms these systems

use, this leads to users feeling like they “fighting the model”, [4]. Where the users were

unsatisfied with rankings since it felt like their opinions are not sufficiently represented. A tool

that processes a large datasets, represents users preferences, and provides an accurate ranking

would prove to be more valuable than a generic ranking.

With that in mind a previous team of WPI students build RanKit, an online tool that gives

users access to learning-to-rank algorithms. Users are encouraged to create a partial ranking of

objects within a dataset; based off that input the system then constructs a global ranking.

8

Building a ranking off users’ preferences does two things: it makes the process of ranking a large

dataset much easier, and it builds trust between the user and the system.

The objective of this project was to further develop RanKit as a fair ranking system. This

was done by redesigning RanKit into a build specifically test key features, running multiple user

studies, and studying user behaviour data. The redesign of RanKit was done using Experimentr;

a framework developed by WPI professor Lane Harrison. The online user studies were carried

out on the Amazon Web Service Mechanical Turk. This redesign is not permanent, and only

exists to be a user study meant to capture data on user behaviour.

Chapter 2: Background

2.1 Related Work

2.1.1 LineUp
LineUp is a visualization system that uses bar charts to display data. It supports “the

ranking of items based on multiple heterogeneous attributes with different scales and semantics.”

[7]. LineUp allows for the direct manipulation of attributes, in multi-attribute items, as well as

enabling users to change the weights associated with each attribute. The bar charts are used to

represent the weights of each attribute, this allows users to easily notice the impact of their

9

choices in real-time. The integration of slope graphs can be used to compare alternate rankings of

the same dataset.

The ability to adjust the weights and attributes inspired RanKit to have user preferences

be the driving factor when constructing rankings. The difference between RanKit and LineUp is

that RanKit must derive the weights of the attributes based off the user’s partial rankings.

Fig 1. Lineup interface

2.1.2 Podium

Podium is another ranking system that factors users’ preferences into the final ranking. Podium

allows users to users to drag rows in the table “to rank order data points based on their perception of

the relative value of the data” [4]. The system then creates a weighting model that best fits the

users preferences. The inclusion of an interactive table allows the system to infer the best

weighting model and helps users to easily visualize the rankings they are creating.

Unfortunately the rankings Podium provided were not the most accurate due to users not

spending short amounts of time with the tool, thus giving the system very little to infer what a

users’ preferences are. RanKit differentiates itself from Podium by having three modes of

10

comparison, opposed to Podiums single mode, as well as including minor feature, called

Motivators, that encourage the user to input a sufficient amount of data.

Fig 2. Podium interface

2.1.3 MATTERS

MATTERS, developed in part by WPI, stands for Massachusetts Technology, Talent, and

Economic Reporting System. It is a tool used to compare different states with published data aggregated

from a variety of different sources [16]. The tool provides data visualizations so users can easily rank

states based on attributes related to talent, taxes, business, and quality of life. The four different types of

visualizations MATTERS offers are the: table view, heat maps, line charts, and bar charts.

11

Fig 3. MATTERS interface

MATTERS providing visualizations to better explore the final ranking was a design choice that

was later adopted by RanKit.

2.1.4 Effects of Adding Search Functionality to Interactive Visualizations on the Web

Led by Lane Harrison, this team of WPI and Bucknell students created a user study that employs

the Experimentr.js framework. The purpose of this experiment was to study user behaviour when a web

visualization implements text-based search. The project’s focus on user behaviour and integration with

Experimentr.js made this an invaluable resource to familiarize oneself with [6].

fig 4. Search-in-vis

Board of Directors Experiment Interface

12

2.2 RANKIT

2.2.1 RanKit Overview

fig 5.1 (left) RanKit Landing Page, fig 5.2 (right) Dataset Choices

RanKit is a web application, with its key feature being the Build Tool: a page that offers multiple

modes of comparison. The general flow is that you start on the landing page, select which dataset you’re

interested in ranking, and finally select which mode of comparison you’ll be using to make your ranking.

The three possible modes are List, Categorical, and Pairwise comparison. You then create your partial

ranking, and the system will take you to the Explore page so you can interact with the final ranking.

2.2.2 RanKit Methodology

RanKit is “ an online ranking application that provides solutions for analyzing and exploring

rankings. The system uses machine learning to automatically construct rankings based on partial input

from users.” [3]. Rankit employs Javascript on the client-side, and Python on the server-side. This setup

allowed the developers to use efficient web frameworks, provides external libraries for the

communication between frontend and backend servers, and make heavy computations on the server-side

without it greatly affecting the application performance. The use of the web framework Flask was used to

13

transfer JSON-formatted data between the Javascript client and the Python server. The client was built to

be innovative and intuitive, following modern design practices for web applications. Twitter Bootstrap

Cascading Style Sheets were used so that the tool was responsive and that it’s styling was consistent.

Python is a high-level object-oriented programming language, having libraries specifically for machine

learning, and tools for data analysis. Python has low latency and trouble communicating with the

frontend server, an issue that becomes apparent when dealing with large datasets.

Three different JSON description files are used for communication between the client and the

server. The first loads the dataset into the Build tool, the second sends the users preferences to the Build

machine learning script, and the last sends the global ranking to the Explore tool. In order for data to

persist between page loads, the URL was manipulated to hold data about the users ranking.

Despite many different ways to do machine learning scripts for ranking, RanKit continued to

build of MyRanker [12]. RanKit uses the RankRLS library that uses an altered version of the

regularized-least squares algorithm [14].

The key feature of RanKit is the build page. The build page consists of the items of the dataset on

the left side of the screen, and the rankable boxes on the right. The user has the ability to search for

specific items, sort the dataset alphabetically, and shuffle the dataset into a random order. The Build page

offers three comparison models for users to input partial rankings: List, Categorical, and Pairwise. Partial

ranking from List and Categorical Comparison are converted to Pairwise rankings because the ranking

script only works when the data is formatted this way.

14

fig 6. Categorical and Pairwise Comparisons

In the case of a List comparison, where items are ranked in descending preference, a list of A, B,

and C is understood as:

● A is preferred over B

● A is preferred over C

● B is preferred over C

Therefore for [O1 , O2 , … , On] where Oi is the ith item in the list and n > 0, there are (n2 -n)/2

number of pairs generated: reducing the amount user data needed for a Pairwise Comparison method by

an order of 2.

In the case of a Categorical Comparison users place items into either High, Medium, or Low

brackets, these brackets correspond to the users preferences. Unlike List comparison, the order of items

within the brackets does not matter. If a user were to place A and B into the high preference bracket; C

and D into the medium preference bracket; and F into the low preference bracket. It is understood as:

● A is preferred over C

● A is preferred over D

● A is preferred over F

● B is preferred over C

● B is preferred over D

15

● B is preferred over F

● C is preferred over F

● D is preferred over F

With Categorical comparison users input partial ranking over a set of items {O1 , O2 , … , On}

but not for every (Oi , Oi+1) pair. Meaning Categorical comparison is not as concise and easy as List

comparison, but is more flexible like Pairwise comparison [3]. Users are also offered the ability to

explicitly create these pairs with Pairwise comparison. This method gives full control to the users at the

expense of the ease and conciseness of the other comparison models.

The Explore page displays the final ranking in a table format. Users were initially having

problems understanding the table so the ability to view the weights of each attribute was added in a later

build.

fig 7. Explore Page

16

Chapter 3: Methodology

3.1 Overview
Before work could be started on RankIt_Experimentr, I needed to build a familiarity with the

pre-existing project and secure the ability to conduct a user study. This meant reading previous work on

the subject, interacting with the site, refactoring code, and fixing bugs. This was a necessary step in the

development process since I gained a real understanding of how the project worked, which proved to be

helpful when integrating RanKit with Experimentr.js, which I will refer to as Experimentr.

3.1.1 Early Work

Code was refactored so the JavaScript no longer ran directly from the webpage. Next Datatables,

which is a plugin for the jQuery library, was integrated to fix the problems we were having with the table

being displayed on the Rank Exploration page. By using Datatables I was able to fix the header and first

three columns in place, making valuable information still visible while the user was scrolling either

horizontally or vertically on the table.

17

Popover data was then added to items in the final ranking, displaying the system’s confidence in

the ranking as well as the overall score of each ranked item. These popovers would display when the item

was clicked, and would disappear when the user would click elsewhere on the page. The final fix was

associated with what were called “motivators” i.e the confidence bar underneath the users partial ranking

and the barcharts displayed in the top right corner of the page. Due to the process in which it was

originally rendered, reloading the page while ranking items would cause the motivators to first vanish,

and then display inconsistent percentages before and after the page reloaded.

3.1.2 Institutional Reform Board (IRB) Specifications

The Institutional Reform Board is an independent ethics committee that abides by FDA

regulations, their purpose is to review any biomedical or behavioural study that involves human subjects.

They are able to either accept, deny, or request changes to any presented study, on the basis of whether or

not the study is ethical [9].

Since the many aspects of our user study was different than the original Rankit user study; an

updated IRB form was necessary to address the changes in the nature of the experiment, the people

working on the study, and other details about the study. A digital copy of the IRB form was included

within the final experiment for each participant to read and consent to.

3.2 Redesigning RanKit For Experimentr

This project is a mixture of Experimentr and RanKit. Developed by WPI professor Lane

Harrison, Experimentr is a front-end framework built with Node.js, Redis, and D3.js, amongst a few other

frameworks. The framework is primarily used for web-based visualization studies, where each stage of

the study is broken up into Modules; which consist of HTML and Javascript. We chose Experimentr as

the framework to build the user study out of because of the data collection capabilities it offered, the tools

18

and focus it had towards conducting user studies, and the ability to communicate with the head developer

Professor Lane Harrison [13].

3.2.1 RanKit Modifications

RanKit, as an online tool, had previously been tested by regular users and UI experts on its

usability with metrics such as usability, intuitiveness and qualitative features. Whereas this was

meaningful data, our focus was to get quantitative data on the way users interacted with the core feedback

loop. The loop being: creating a partial ranking of a dataset, exploring the global ranking, and being able

to go back adjust their partial ranking. This meant some features and sections of the Rankit website either

had to be stripped or condensed.

● Motivators - The miniature barchart in the top right corner representing the weights the ranking

algorithm gives to each attribute, as well as the live confidence bar that provided instant feedback

were removed from the final product, due to early issues we had with calculating the confidence

and weight values of ranked items that came from integrating RankIt with Experimentr.

● Dataset Options - Unlike Rankit, which offers a myriad of datasets to rank from, we sought a

single dataset for this study. Since we didn't know what the demographic of our user study would

be, the database had to be a topic that an average user would have knowledge about. After

narrowing it down between the college and movie dataset, we also had to consider which dataset

would be best for the algorithm. Meaning: which dataset had attributes that the algorithm could

use to efficiently create an accurate ranking. After some deliberation we decided that the college

19

dataset would be the best to go with due to its commonality and quantitative attributes that the

algorithm would have an easier time ranking.

● Choice of Comparison Method - Previous work found that users overwhelmingly preferred

Categorical comparison over both List and Pairwise comparison. Therefore in an effort to test all

methods evenly and to keep all interactions within the experiment focused on ranking; we

removed the ability for participants to choose which comparison method to use, opting instead to

assign each participant a random method of comparison.

● Additional Pages - The dataset page was stripped since participants no longer were able to

choose which dataset to rank. The “About” page was stripped due to much of the information on

what the tool is and how to operate it being distributed amongst other modules. Other additional

pages on the myRanker website were stripped due it no longer serving a purpose to our user

study.

3.2.2 Early Designs

This condensed version of Rankit was then fashioned to operate as an online user study that works within

the bounds of Experimentr. Mentioned before, Experimentr is a front-end framework that was created to

carry out user studies, with each step of the user study being separated into its own module. Figure 8 is

the initial design as to how the online user study would be iterated through: with the larger boxes

representing each separate module, and the smaller boxes representing the action needed to take you to it.

20

fig 8. Early Rankit_Experimentr Iteration Design

In the end another module, Strategy, was added between the Explore and Debrief module. This

module offered a more focused questionnaire centered around the users interactions with the tool itself,

with the option to leave more general feedback remaining in the Debrief module.

3.3 Design And Implementation

3.3.1 The Server
The structure of our backend was integral to project success, due to the amount of unseen tasks

the project had to complete. Our backend consists of Python, Node.js and Redis.

Python can be a great language for backends. It is a mature, interactive programming language

that has extensive library support, built-in tools for data analysis, and many advanced web APIs. Amongst

the libraries available are those for machine learning, which is necessary since our tool uses machine

learning to create the final rankings. Additionally, Python can complete extensive server-side calculations

without majorly hindering the applications performance. However some developers have begun to shy

away from it due to its low latency and slow performance [10].

Node.js is commonly used and is widely popular amongst the web developer community. Node.js

offers Node Package Manager (NPM) which makes installing third party packages, dependency

21

management, and version management much easier. It helps avoid version conflict by allowing you to

isolate packages from other projects. In addition, It is a JavaScript runtime built using Google’s V8

engine for use in Google Chrome. V8 is a fast and efficient engine because it compiles JavaScript into

native machine code. Since Node.js is written in JavaScript, it would result in most of project being

written in one language [1].

Redis is an open source, in-memory data structure store that was downloaded with the use of

NPM. Primarily used as a database, it can also function as a cache and message broker. Redis supports

many different data structures, including but not limited to: strings, lists, bitmaps, hashes and sets. Redis

is able to make reads much faster because it loads data onto RAM, it also provides the ability to

periodically write data onto disk, allowing data to be persistent. Overall Redis is a lightweight data store

that allows for fast storage and retrieval of data. Experimentr requires Redis in order to operate, but

considering the benefits it provides it’s apparent why it was chosen for their web-server needs [8].

In totality the server uses a hybrid of JavaScript for client-side interactions, Python as the

server-side language needed for machine-learning and ranking, and Redis for server-side data collection.

This structure allows for web frameworks and external libraries that set up communication between the

JavaScript client and both the Python and Redis server, while also keeping data sent to each respective

server isolated.

One such framework used was Flask, which eased the process of passing JSON objects between

the servers and client. Jinja2 was specifically used for interactions between the client and Python server

[3]. Python is necessary for RankIt, due to it being able to do heavy calculations and providing built-in

machine learning libraries, yet there was still a considerable amount of time spent mitigating Pythons

slow communication with the server when handling a larger amount of data.

22

3.3.2 Machine Learning Algorithm

RanKit’s ranking algorithm that we started with, and the one that was later switched to both followed the

pairwise approach of ranking objects; which turns the ranking problem into a pairwise classification or a

pairwise regression. This allows a ranking to be learned by applying a binary classifier to order pairs of

objects.

RanKit’s machine learning script utilizes the RankRLS library, which uses a variation of the

regularized-least squares algorithm called RankRLS [14]. The algorithm reads a list of pairs and a label

informing the algorithm which object in a pair is preferred over the other. The pairs contain the partial

ranking data provided by users. The pairs are training data that the algorithm needs to formulate a model,

which is then used to predict a final ranking over the entire dataset.

For later builds of Rankit_Experimentr The RankSVM algorithm was used. RankSVM [19] uses

a Support Vector Machine (SVM) algorithm to distinguish between correctly ordered and incorrect pairs

of objects. Therefore, instead of learning the ranking from each individual object in the training dataset,

the difference between pairs of objects is measured and that difference becomes a vector. The calculated

vectors will then be used to create a combined feature vector which the function will be learned from.

Each training pair has a label which indicates where a pair is correctly ordered, or inverted. The weight

vector is a hyperplane decision boundary which distinguishes between these two classes while

maximizing the space between them. Once the boundary has been learned from the training data, a global

ranking including the rest of the dataset can be created. An object’s final rank position is determined by a

score given to it by the algorithm.

One disadvantage we faced compared to a usual supervised learning problem formulation, is that

with a supervised learning problem the true ranking the dataset is known. For interactive ranking, the

problem is semi-supervised [15], in that labels are given only to a portion smaller than the entire dataset.

23

It’s important to note the amount of training pairs needed to effectively create a model that provides a

satisfactory ranking. It has been observed that if pairs are selected at random and labeled, then the

RankSVM algorithm needs O(n) pairs to perform optimally and produce results that are better than

randomly expected [5].

3.3.3 The Client

Providing a straightforward and simple user interface was the focus of the design throughout the

project. Partially to keep the participant focused on the functionality and intuitiveness of the tool as

opposed to its appearance, mostly because we were planning an online user study and wanted it to be

easily accessible to the widest demographic possible. Although initial module designs stemmed from the

templates Experimentr offered, changes were made throughout the development cycle in response to

feedback.

When using Experimentr, each step of the study is separated into modules. Modules contain

HTML and javascript and are directly loaded into a solitary webpage. Since no new webpages are created

the participant cannot iterate through modules using their web browsers’ forward and back buttons. This

ensures participants interact with the experiment in its intended manner. As previously mentioned, to

compensate for the inability to choose which comparison method to use, Rankit_Experimentr randomly

assigns a method to each participant.

All figures shown in the following section were captured from a test run, as to not compromise

any personal data gathered from our participants.

Consent Module

The first module users interact with is the consent module, with that in mind it was designed to

provide the participant with more information on the study. The first thing seen is the title. We decided to

24

use “Personalized College Ranker” for the title instead of “Rankit” or “Rankit_Experimentr” because it is

a more focused title that immediately informs the participant what they'll be doing within the study. The

next section describes the purpose and task they’ll be doing. Due to Experimentr’s designed integration

with Mechanical Turk, the next section asks for their Amazon Worker ID and gives a reminder that

Google Chrome is needed.

fig 9. Consent Module

The last thing is a digital version of the Informed Consent Agreement for Participation in a

Research Study, which can be viewed in Appendix A, this includes in-depth information about the study

and the rights afforded to them as a participant. In order to progress past this page participants must click

“I Agree”. By doing this they agree that they have been properly informed about the study, and consent to

taking it.

25

Instructions Module

After consenting to to take the study participants are brought to the Instructions module which has

a more descriptive set of instructions pertaining to which comparison method they were randomly

assigned. Each set of instructions followed the same formatting: an introductory paragraph restating what

to expect of the experiment, descriptions on how to rank and interact with the data, and a notice that there

will be questions to answer at the end. The script for the full set of instructions was written to inform the

participant of the tasks that they’d be doing as well as in what order, the training script can be read in

Appendix C. In order to progress participants must click “Start Exploring >>”, a warning that they would

not be able to reread the instructions was added so participants knew this was the final step before starting

the study.

fig 10. Instructions

Module

Originally the Instructions Module only included text, but short animated GIFs demonstrating

important features were later added. This improved the Instruction Modules’ visual aesthetic by breaking

up large chunks of text, and its intuitiveness because a participant would still know how to interact with

the tool if they chose not to read the instructions.

26

Rank Building Module

Participants create partial rankings with either one of three comparison methods: List,

Categorical, and Pairwise. For a more in depth description of the comparison methods, refer to Chapter

2.2.2. The design of this module was similar to original design of RanKit’s Build Tool. The module’s

display is divided in half, with the data selection pool on the left and the comparison method on the right.

Dividing the display like this proved to make the task of ranking much easier for participants.

fig 11. Build Module with Categorical Comparison

Furthermore, initial feedback showed that participants were biased to pick the first items that they

viewed on the within the data pool, which would give an unfair bias to the colleges that start with “A” [3].

To mitigate this bias, items are randomly shuffled when the data pool is generated. Participants also have

the option to sort the data alphabetically, search for specific schools, and reshuffle the data. Participants

27

could get more information on a college by hovering over it, doing so would trigger a popover displaying

the attributes the ranking algorithm uses to determine a participant’s preferences.

Rank Exploration Module

Participants can view and interact with their final ranking in this module. The data is presented as

a table, where participants are able to reorder the final ranking by this and any of given metric.

Participants must progress through the entirety of the study to get here, but unlike any other module, it

offers the ability to return to to previous module. The ability to return to past modules is not in the

original version of Experimentr, and was created specifically for this study. The addition to Experimentr

was necessary because we wanted participants to be able to create a partial ranking, and have the ability to

edit it after viewing the global ranking. In order to rerank participants must click “Edit Preferences”,

causing the Rank Building module to reload with all previously chosen items in their correct positions.

The button follows the same color scheme as the “Rank” button so participants understand its part of the

user study and not the client.

fig 12. Explore Module

28

When the participant wants to progress to the final sections of the study, they must click the

button “Finish Ranking”. Clicking it causes a small popup window to appear, asking the participant to

either confirm their choice to finish ranking or if they would like to edit their partial rankings. Choosing

to edit their partial rankings will take the participant directly to the Build module.

fig 13. Popup Confirmation Window

Strategy Module

Although we were interested in general feedback, we wanted quantitative data that reflected the

participants experience with the tool. To address this, we tried a variety of different survey scales, but

eventually settled on framing questions with the Likert Scale. A survey scale is part of a closed-ended line

of questioning that covers a range of opinions on the topic at hand. Likert Scales have a set of either five

to seven answers, each of them ranging from one extreme emotion to another, i.e “extremely dissatisfied”

to “extremely satisfied”. Questions asked in a Likert-type manner, unlike binary “yes” or “no” questions,

allows participants to better express their opinions. Which in turn allows us to better understand the

provided feedback, and determine areas of our study to improve.

29

fig 14. Strategy Module

Additionally, there was a final open-ended question that asked participants to describe their

process of ranking colleges. Although this could be inferred from the data collected on their interactions,

having a participant’s response gives us better, more explicit insight into their thought process.

Participants must answer all questions in order to progress to the final module.

Debrief Module

This is the final, and sparsest, module of the study. A code is provided for participants to copy

and paste into Amazon Mechanical Turk to receive payment for completing the study. A section is also

left for participants to leave general feedback, i.e bugs they encountered. Although encouraged, sharing

additional feedback is optional and the study can be completed without providing anything.

30

fig 15. Debrief Module

3.3.4 Data Logging

One of the biggest factors in choosing Experimentr as the framework for our user study is the

ability to log user interactions made within the client. Modifications were made to the way Experimentr

originally logged data so that any one of the participant’s desired interactions could be logged, and

subsequently stored as an entry to a JSON file. Each entry contained a unique ID so data could be easily

counted and sorted, this meant we could collect quantitative data on each participants behaviour. We also

logged how long each participant spent in each stage of the user study, which comparison model they

were assigned, and the answers to their questions. Some of the interactions logged are:

• Additions - How many items participants dragged from the data pool into their partial rankings.

• Removals - How many items participants removed from their partial rankings, dragging it back

into the data pool.

• Pool Manipulations - How many times the participant clicks “Sort” or “Shuffle”

31

• Partial Rankings - The participants final partial rankings; every pair and in what order for

Pairwise comparison, the list for List comparison, and the each grouping for Categorical

comparison .

• Ranks - How many times the participant clicked the “Rank!” button, progressing from Rank

Building to Rank Exploring.

• Edits - How many times the participant the “Edit Preferences” button, returning from Rank

Exploring to Rank building.

3.4 Project Development Structure

The team for this project included one undergraduate student: Paul-Henry Schoenhagen, working

closely with two mentors: Professor Elke Rundensteiner and graduate student Caitlin Kuhlman. Professor

Lane Harrison came on to help advise the team later into the development cycle. Throughout the project

Caitlin primarily focused on the backend and the machine learning script, and Paul-Henry was focused on

the study interface, the frontend, and integration with Experimentr. The full research team met once a

week for an hour. During these meetings, the team presented work completed, received criticism and

suggestions, and identified tasks to be completed in the following week.

The graduate student and I would meet weekly to discuss the work we accomplished in the past

week and whether we completed the assigned tasks. These meetings often turned into longer work

sessions where we would co-develop for multiple hours. This allowed us to perform project merges and

effectively work on sections that required help from one another.

In order to better coordinate coding efforts between us, the graduate student shared a pre-existing

GitHub repository for the base project of RanKit. A second repository was later created to house the build

created for the user study: Rankit_Experimentr. GitHub allowed us to work on different aspects of the

32

same project without impeding each other's progress, this made making and tracking changes more

effective. This structure allowed us to collaborate, organize and assign tasks, and stay up to date on the

other parts of the project.

Chapter 4: User Study Design

4.1 Goals
Since RANKIT had previously been tested web application, evaluated on its usability and functionality as

an application, the purpose of our user study differed. Instead, the focus of our research became how

participants behaviour was impacted or influenced by the choice of comparison method. With that in

mind we set out to answer the following questions:

● Do participants interact differently with each unique comparison method?

● Are participants satisfied with their global ranking affected by the comparison method?

● Which comparison method motivates users to enter the most amount of data?

Despite each ranking method essentially working the same as Pairwise comparison, having

different interfaces to create partial rankings can be more intuitive for the average participant. As in, a

participant may have a better understanding of how to rank items in List comparison as opposed to

Pairwise comparison, which in turn would affect how they would interact with the tool. We also believe if

33

a user feels more comfortable with the tool, they’ll be willing to input more data. In order to substantiate

this claim, it’s necessary to review and compare the data collected on each participant.

User satisfaction is important to the success of any tool, and to evaluate this goal we will be

relying on participant’s self-reflection on the experience of the user study. While the tool might be

intuitive and easy to use, if participants are unhappy with the final product given, they may not reuse or

recommend our tool.

Users tend to want to do as little work as possible. Which can be problematic in this case, since

the ranking algorithm requires a user’s partial ranking to create the final global ranking. Thus we must

find out if one comparison method better motivated participants to enter data than the others, and whether

or not it affected their satisfaction. This is imperative in understanding whether or not interactive ranking

is effective and accurate with minimal user input.

4.2 Overview

The target audience were people who have a general knowledge of American colleges. Previous

experience with ranking and ranking tools is unnecessary. The user study was geared to be easily

accessible to an audience that had little to no idea about the task beforehand. The user study focused on

individuals in the age range of 20 to 50. People in different professional fields and age categories were

targeted:

● Undergraduate students of different majors

● Faculty Members

● Vetted User Study Participants

34

Subjects either participated in an in-person session conducted by myself, or the online user study

hosted by Amazon’s Mechanical Turk. In both cases, participants iterated through Rankit_Experimentr as

intended.

4.3 Pilot User Study

There were three participants in this pilot user study: one undergraduate student and two faculty members.

The goal of this user study was to test the stability of Rankit_Experimentr before deploying the final build

online, refine both our studies instructions and post-test questions, and gauge the user’s understanding of

the tool before moving on.

The sessions were conducted with one interviewer and one participant. Each participant was

given a machine with the current build of Rankit_Experimentr running and a brief description of the task

at hand. After reading and agreeing to the consent form, participants were interact with the tool with

minimal input or feedback from the interviewer.

Participants were each assigned a different comparison method, and the sole task was to used the

assigned comparison method create a ranking using a limited amount of data points. Throughout the

process the interviewer took notes about the participant’s experience interacting with the tool, and the

participant was encouraged to talk aloud about what they were doing.

When the participant was finished iterating through Rankit_Experiment, the interviewer then

asked the post-test questions and recorded answers. The study was deemed finished when the participant

answered the final question. Responses from this group were expected to be qualitative and focused on

the features and functionality of Rankit_Experimentr.

35

4.4 Online User Study

This project was inherently built to be an online user study completed remotely by participants online.

Much of the projects pacing, flow, and functionality was built around the idea that participants would

interact and complete the user study on their own accord without the need for an interviewer.

Amazon Mechanical Turk (MTurk) is an online crowdsourcing platform where both individuals

and companies can have an online workforce perform desired tasks virtually. Although it may not have

been its original intention, MTurk is a valuable platform for user studies specifying in human-computer

interaction. Mturk is split into two types of users: Requesters and Workers. For the purpose of our

experiment we created a Requester account, which allowed us to place our user study on MTurks public

marketplace for Workers to complete. Although our study was available via MTurk, it was hosted on

WPI’s servers.

Mturk provides a reliable way to gather a substantial amount of participants to complete the user

study. We were able to guarantee each Worker was experienced since each Worker has qualifications

associated with their account, such as HIT approval rate, and we were able to make our study inaccessible

to inexperienced Workers. Steps were also taken to ensure Workers could not participate in the user study

multiple times.

36

Fig 16. User Study Mechanical Turk Settings

Worker compensation is required for MTurk, and after initial tests showing the average time of

completion being between 5 - 8 minutes, we structured payment as a base payment of $1.00 and a $0.25

incentive for creating a satisfactory ranking. Unknown to the Workers was that they each received the

$0.25 incentive upon completion.

In order to make substantiated claims about our ranking system we wanted recurring results over

a large group of people. Amazon Mechanical Turk serves the purpose of getting many vetted individuals

to complete our user study in a reasonable timeframe. Due to its reputation, ease, and integration with

Experimentr, MTurk was decided to be the best service to use for carrying out our online user studies.

4.4.1 Deployment Practices

Occasionally during deployment a participant would encounter a bug which forced them to exit

the user study before finishing. This was an issue since Workers needed the code on the final module for

payment. This was especially troublesome since the measures we had to prevent duplicate workers, also

37

meant they could not retake the study in the case of a session-ending bug. In these cases Workers would

reach out via email or MTurk, a hotfix was applied, and a study specifically for that Worker was put on

MTurk.

38

Chapter 5: Evaluation

5.1 Data Evaluation Process
One drawback of logging every user interaction is the sheer amount of data collected on each participant.

First the data collected is pulled from the Redis server and stored in a JSON file, the file contains all fields

collected on the frontend, fields such as Worker ID, time elapsed, user interactions etc. Experimentr does

not enforce a data schema, so entries within the JSON file may have missing values. Afterwards we

implemented a python script that cleaned the data, sorting it by Worker ID and placing desired data into

corresponding columns, and converted it from a JSON to a CSV file. CSV files are similar to

spreadsheets, and while they may not be the best for long-term data storage, their structure is organized in

a simple manner making it efficient to run evaluation on. The cleaning script also separates out and

formats the open ended questions so they’re more readable. There were then three separate scripts to

evaluate:

● Time - time elapsed, hourly rates

● Interactions - Additions, Removals, Pool Manipulations, Partial Rankings, Ranks, and

Edits

● Questions - Participants responses to the Likert Scale.

39

5.2 Onsite User Study Results

This section outlines the results from the pilot onsite user study, although small in size this user study

provided important initial insight into how participants behave and react to the study. Rankit_Experimentr

was actively logging user interactions during the onsite interviews, but due to issues during the pilot run,

the data was deemed unreliable.

Topics that arose from the pilot study, either from participant feedback or tool malfunctions, and how

they were addressed before deploying the final study online are:

● Weight Tracking Removed - amongst the data originally collected on the user were the weights

the ranking algorithm calculated for each attribute. Although helpful in theory, it unnecessarily

bloated log records and significantly slowed application performance.

● Datapool Scrollbar - two of three participants requested a scroll bar within the datapool so they

could keep track of their position within the pool. Although initially included, this functionality

was lost while merging Rankit and Experimentr, but was ultimately re added.

● Instructions Refined - After hearing the participants read the instructions aloud and fielding

subsequent questions, refinements were made to sections participants had trouble understanding

and animated GIFs were updated.

● Post-Test Questions Refined - Questions were changed to be posed in the first person, adherent

to the Likert scale, and were refocused to gain better insight into the participants thought process.

This was especially important for close-ended questions where users wouldn't be able to fully

express themselves.

40

5.3 Online User Study Results

Over time we amassed 144 participants. The study randomly assigned 49 participants to rank

using the List Comparison method, 45 to use the Categorical Comparison method, and 50 to use the

Pairwise Comparison method. Images in this section also appear in a paper written by PhD Caitlin

Kuhlman [11], with whom I have collaborated throughout this MQP project. I am grateful for her

allowing me to utilize the below images.

5.3.1 User Interactions

fig 17. Items Added

Here it’s demonstrated that when assigned categorical comparison, participants interacted with

more items from the dataset. The average amount of items added during categorical comparison was 69.9,

an average of 18.6 items were added during list comparison, and an average of 12.7 items were added in

pairwise comparison. As shown in figure 17, we can interpret that the average participant entered at least

5 and at most 95 additional items in categorical comparison than the other two methods.

fig 18. Items Removed

41

In addition to keeping track on the amount if items added, we kept track of the amount of items

removed from a users partial ranking, as shown in figure 18. The average amount of items removed

during categorical comparison is 13.4 items, an average of 5.3 during list comparison, and an average of

3.6 during pairwise comparison. Although there were less removals on average, the trends previously

observed with additions are still apparent.

 Although it’s easy to assume from this data that participants using categorical comparison

entered in significantly more amount data than the other two methods, one must consider inherent

interactivity of each method. With list comparison the participant creates a descending-order sublist, in

pairwise they create pairs of objects, with categorical there are three separate bins to for them to place an

item in. And with the current datalogging, moving an item from the one bin to another bin would register

a removal from the first bin and and addition to the second bin.

5.3.1 Time Spent Interacting

Fig 19. Time Spent Building (minutes)

Even though categorical comparison led by a wide margin in items added and removed, we do not

see this same margin repeated in time spent building. Participants assigned categorical comparison spent

an average time of 3.9 minutes building, those assigned list comparison spent 3.6 minutes, and those

assigned pairwise spent 3.2 minutes. Thus meaning the comparison model does not have a significant

effect on the time spent building.

42

Even though the building module’s main task is to create partial rankings from the dataset, there

is an inherent second task: searching for and selecting colleges to rank. As it stands there is no way to

determine what percentage of time spent on the build module was spent searching for items to rank versus

ranking those same items. Although it may seem insignificant, knowing how long a participant interacted

with our ranking interface would provide better insight.

Fig 20. Time Spent Exploring (minutes)

Participants actually spent the least amount of time exploring the final ranking when assigned

categorical comparison, but overall time spent exploring was not significantly affected by which

comparison method was assigned. Those assigned list comparison spent an average time of 1 minute

build, those assigned pairwise spent 0 .9 minutes, and those assigned categorical spent 0.7 minutes. It’s

possible people spent more time exploring with the list comparison method due to it being most similar in

structure to how the global ranking is presented.

5.3.1 User Satisfaction

The results to the Likert-style statements are provided in figure 21. The three statements are as

follows:

43

A. The final ranking generated by the system reflected my personal preferences about

colleges

B. I would use this system to make decisions about colleges

C. While I was entering colleges into the build tool I could easily express my preferences

Overall sentiments ranged from neutral to mostly positive, and again we see the comparison

method does not have a significant impact on participants reported satisfaction. Which is a little odd

considering the difference in amount of interactions.

Fig 21. Responses to Qualitative Statements

Participant responses were read and evaluated in an effort gain more understanding, a sample of

responses can be viewed in Appendix B. As is with quantitative data, when evaluating qualitative data it is

important to determine what is and isn't useful. This isn’t to suggest responses that were unfavorable were

disregarded; genuine grievances and constructive criticism is needed to improve our tool. Unfortunately

due to the relative anonymity of the internet, some responses were clearly made in jest and provided no

44

real value. After filtering and evaluating the responses we were able to confirm a positive response from

users, despite comparison method, as well what information users find important to ranking. Further

discussion on this topic can be viewed in section 6.2.2. A common strategy for users was choosing

colleges they were fond of, as opposed to picking schools that were nationally renown, making it easier

for them to determine if their final ranking reflected their submitted preferences.

45

Chapter 6: Conclusion

6.1 Summary

In the age of the Internet, there is an exceptional amount of data being constantly uploaded, shared and

viewed. An overwhelming amount of data makes it a difficult task for a single person to find threads of

similarity in all of it. Making the ability to find and rank data, based on its relevance to you, exceedingly

cumbersome. Furthermore rankings released by institutions and media outlets are not always useful to an

individual, partly because they are designed for the masses instead of the individual, and partly due to the

complexity of ranking a large dataset. While there were plenty of challenges uncovered during project

development, we chose to tackle them due to the far-reaching implications on the future of

mixed-initiative ranking systems.

Over the course of this project, our team successfully completed the key tasks we initially set out to

complete. We have:

● Successfully integrated a pre-existing project; RANKIT, with web framework Experimentr.js.

Thus creating Rankit_Experimentr: a modern web application with a Python and Redis backend.

It’s focal point being the Rank and Explore modules, which users are able to create and edit their

personal rankings. With one the main features of the tool being the data collection which allows

for efficient recording and studying of user behaviour.

● Conducted multiple user studies with the intent to study how users interacts with our tool.

46

Although there is much room for our tool to improve, we have created a worthwhile testing environment

for future iterations of RANKIT, and evaluated the merits of each comparison model. Ways to further the

advancement of our tool are outlined in the following section.

6.2 Future Work

6.2.1 Machine Learning Script

Improvements to the machine learning script were made throughout the progress of the project,

but latency still proved to be an issue an impeded progress on a few occasions. Further research into

improving the amount of partial data it can process, and overall performance of the script.

6.2.2 Dataset Refinement

Participants’ responses to our open-ended question provided us with insight into how participants

ranked items, information they find important and ways to improve the dataset. Though users did care

about quantitative attributes, such as class size and tuition rates. Many of them reported ranking based off

qualitative features such as: sports, weather, type of school (liberal arts vs engineering) , perceived

political alignment etc. Adding some qualitative attributes would provide a user with more information,

better way to express their preferences, and more points of similarity to determine if the final ranking is

satisfactory.

47

6.2.3 Comparison Method

We currently have data showing how our comparison methods stack up to one another, but how

does it compare to pre-existing systems? Future work should also include the creation and inclusion of a

comparison method similar to pre-existing systems, such as LineUp and Podium. This would allow for a

closer comparison between ours and competing ranking systems, and insight into which provides better

data elicitation and user satisfaction.

6.2.4 Motivators

Users tend to want to put in the least amount of effort possible, which proves to be an issue with

semi-supervised ranking problems which depend on user input. Ideally our system would elicit data from

users without it feeling like a chore. Technical constraints prevented us from implementing real-time

motivators in Rankit_Experimentr that were included in RANKIT. Future work could be re-implementing

the motivators, and conducting another user study.

Evaluating the results would reveal if the inclusion of motivators creates a meaningful impact on

both user satisfaction and input, thereby proving if it is an effective form of data elicitation, and a feature

that users find useful.

48

References

[1] About Node.js. (n.d.). Retrieved from https://nodejs.org/en/

[2] Datasets | Kaggle. (n.d.). Retrieved from https://www.kaggle.com/datasets

[3] Deva, G., Doherty, D., Nurbekova, M., …. Phyo, Z.(2018). RANKIT: Designing Interactive Tools for

Personalized Ranking Analysis.

[4] E. Wall, S. Das, R. Chawla, B. Kalidindi, E. T. Brown, and A. Endert. Podium: Ranking data using

mixed-initiative visual analytics. IEEE transactions on visualization and computer graphics,

24(1):288–297, 2018.

[5] Fabian Wauthier, Michael Jordan, and Nebojsa Jojic. 2013. Efficient ranking from pairwise

comparisons. In International Conference on Machine Learning. 109-117.

[6] Feng, M., Deng, C., Peck, E. M., & Harrison, L. (2018). The Effects of Adding Search Functionality

to Interactive Visualizations on the Web. Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems - CHI 18. doi:10.1145/3173574.3173711

[7] Gratzl, S., Lex, A., Gehlenborg, N., Pfister, H., Streit, M. (2013). LineUp: Visual Analysis of

Multi-Attribute Rankings. IEEE transactions on visualization and computer graphics, 19(12).

[8] Introduction to Redis. (n.d.). Retrieved from https://redis.io/topics/introduction

49

https://www.kaggle.com/datasets

[9] IRB-FAQs. Retrieved from

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/institutional-review-boards-f

requently-asked-questions#IRBOrg

[10] Krill, P. (2015). A Developer’s Guide to the Pros and Cons of Python. Retrieved from

https://www.infoworld.com/article/2887974/application-development/a-developer-s-guid

e-to-the-pro-s-and-con-s-of-python.html

[11] Kuhlman, C., Doherty, D., Nurbekova, M., Deva, G., Phyo, Z., Schoenhagen, P., . . . Harrison, L.

(2019). Evaluating Preference Collection Methods for Interactive Ranking Analytics. Proceedings of the

2019 CHI Conference on Human Factors in Computing Systems - CHI 19. doi:10.1145/3290605.3300742

[12] Kuhlman, C., Rundensteiner, E., Neamtu, R., Ahsan, R., Stokes, J., Hoxha, A., ... & Rangan, R.

(2017). Towards an Interactive Learn-to-Rank System for Economic Competitiveness Understanding.

[13] Lane Harrison (2018). experimentr: a hosting/data-collection backend and module-based frontend for

web-based visualization studies. V1.0.0, https://github.com/codementum/experimentr. doi:

10.5281/zenodo.2564082

[14] Learning to rank - RLScore 0.7 documentation. (2016). Retrieved from

staff.cs.utu.fi/~aatapa/software/RLScore/tutorial_ranking.html#learning-to-rank

50

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/institutional-review-boards-frequently-asked-questions#IRBOrg
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/institutional-review-boards-frequently-asked-questions#IRBOrg
https://github.com/codementum/experimentr

[15] Martin Szummer and Emine Yilmaz. 2011. Semi-supervised learning to rank with preference

regularization. In Proceedings of the 20th ACM International Conference on Information and Knowledge

Management. ACM, 269-278.

[16] MATTERS. (n.d.). Retrieved from http://matters.mhtc.org/

[17] Movies Dataset. (n.d.). Retrieved from https://www.kaggle.com/rounakbanik/the-movies-dataset

[18] National University Rankings. (n.d.). Retrieved from

http://www.usnews.com/best-colleges/rankings/national-universities

[19] Thorsten Joachims. 2002. Optimizing search engines using clickthrough data. In Proceedings of the

eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,

133-142.

51

http://matters.mhtc.org/
https://www.kaggle.com/rounakbanik/the-movies-dataset
http://www.usnews.com/best-colleges/rankings/national-universities

Appendix A: Consent Form

Informed Consent Agreement for Participation in a Research Study

Investigators: Paul-Henry Schoenhagen
Contact Information: Email at pmschoenhagen@wpi.edu
Title of Research Study: RanKit: Designing Interactive Tools for Ranking Analysis

Introduction: You are invited to participate in a research study to evaluate the usability and
functionality of a ranking application. Before you agree, however, you must be fully informed
about the purpose of the study, the procedures to be followed, and any benefits, risks or
discomfort that you may experience as a result of your participation. This form presents
information about the study so that you may make a fully informed decision regarding your
participation.

Purpose of the study: Many existing rankings target general audiences, yet cannot take into
account individual preferences. We have developed a web application to help users customize
and interpret rankings to meet their own end goals. The purpose of this study is to evaluate the
usability and functionality of our application and to get feedback for improvement.

Procedures to be followed: Your participation will consist of a single Mechanical Turk HIT
where you will be asked to create a ranking using our ranking application. Afterwards, you will
be asked to rate the overall quality of the interaction using our questionnaire. There are no right
or wrong answers. The questionnaire should take approximately 5 - 10 minutes to complete.

Risks to study participants: This study involves the following risks: minimal fatigue and
eyestrain from looking at a screen. There may be other risks that we cannot predict. In case of
discomfort, you may choose to discontinue your participation at any time without penalty.

Benefits to research participants and others: You will be paid for each HIT completed, but
other than that: there are no direct benefits for you to participate in this study.

Record keeping and confidentiality: Records of your participation in this study will be held
confidential so far as permitted by law. However, the study investigators, the sponsor or it’s
designee and, under certain circumstances, the Worcester Polytechnic Institute Institutional
Review Board (WPI IRB) will be able to inspect and have access to your Amazon account
information during data collection. This information will be stripped from the final dataset. Your

52

individual answers will not be published; end results will be aggregated before publication. Any
publication or presentation of the data will not identify you.
Compensation or treatment in the event of injury: No compensation will be made for injuries
resulting from participation in this study. You do not give up any of your legal rights by signing
this statement.

For more information about this research or about the rights of research participants, or in
case of research-related injury, contact: You can contact the team in writing an email at
pmschoenhagen@wpi.edu or the Principal Investigator, Elke Rundensteiner, at
rundenst@wpi.edu. In addition, you may also contact the chair of the WPI Institutional Review
Board (Prof. Kent Rissmiller, Tel. 508-831-5019, Email: kjr@wpi.edu) or WPI’s Human
Protection Administrator (Gabriel Johnson, Tel. 508-831-4989, Email: gjohnson@wpi.edu).

Your participation in this research is voluntary. Your refusal to participate will result only in
loss of payment from Mechanical Turk. You may decide to stop participating in the research at
any time.

By clicking “I Agree”, you acknowledge that you have been informed about and consent to be a
participant in the study described above. You are entitled to retain a copy of this consent
agreement.

53

Appendix B: Sample Participant Responses

● I put in all the colleges I knew and how I thought they compared.

● I was looking for top schools, plain and simple

● I went by name, state, city. I know all the top schools so I placed them in the high category. The

state universities also went into the high category. The city universities went into medium and the

small local ones went into low.

● I ranked colleges I didn't know the location of into medium. I ranked colleges in liberal areas low.

I ranked conservative area colleges high.

● I ranked based on prestige colleges

● I ranked the colleges I knew I would like to physically attend based on the look of the campus and

where in the US it was located. I selected the universities I knew a lot about and knew I would be

interested in attending.

● I looked at ones I was familiar with, plus some places I would like to live. Then I looked at

ranking plus tuition.

● I already had a good idea of what I want in a college before I started it. I went to a small, private

college and stayed away from bigger, massive universities. Most, if not all, of these colleges are

very big. So I couldn't easily rank them by that (my college you could walk across campus in 10

minutes, slow walking!). That said, I tended to rank the best ones in cooler weather climates (I

hate warm/hot weather). So you won't see anything in Florida on my list. I'm also very liberal, so

I try to avoid conservative places (though I did rank some higher that are in conservative states

due to their liberal town setting). I also went more for some of the colleges that are lesser known,

but still really good (i.e.- Clark University). I would fit in better places like that. So that was my

general strategy! Fun HIT!

54

● In the colleges are need to compare them self to the other college. all of the colleges wanted to the

rank. The ranking system is generated by the reflection of the personal preference about colleges.

● I used the US rankings

● I saw the US rank and I know some of the top rated colleges. These are my strategies for selecting

the colleges

● I was looking for a particular major.

● I picked the two I knew something about

● Personal experience or based on what information I knew about them.

● What I know about the colleges.

● i chose colleges in states i love as my highest priority. second were colleges i have either heard of

or colleges that are well known and ranked previously. in the low category i put colleges that are

in states i would never want to go to.

● I went by the colleges i actually knew something about. i live in LA so i know tulane and LSU are

good. i grew up in upstate NY so i know albany and binghamton are decent. and i put a few i had

never heard of in the last category.

● I wanted to compare colleges that I thought were similar, and that have interactions with each

other. I also wanted to make one of the sides clearly larger to not skew results. I wanted to really

get a sense of the full spectrum. I felt in this way it would broaden the rankings for me.

● academics, prestige, and sports

● I ranked colleges that I was personally familiar with. I think there needs to be more data for each

college like graduation rate and tuition rates.

● I tried to focus on colleges near my area (Chicago) and more famous universities like Harvard.

These are the institutions I know the most about.

55

● Close to home, or ones in areas I would like to go. Most of the colleges I actually wanted to go to

weren't listed.

● I ranked the colleges I knew I would like to physically attend based on the look of the campus and

where in the US it was located. I selected the universities I knew a lot about and knew I would be

interested in attending.

● I went by name, state, city.

● this colleges accurate rank conversation

● I went with schools that were not overly expensive while also being highly regarded within the

state. State schools would generally be on the lower end as they were generally expensive and not

the best for students

● I ranked based on what I have heard about different schools, seen on the news and athletics wise.

Also from my most to least favorite.

● I ranked them High, Medium, and Low based on the ranking they were given by the third party

ranking.

● 1-50 was high. 51-100 was medium. 100+ was all low.

56

Appendix C: Rankit_Experimentr Manuscript

Intro Blurb

College rankings are a valuable tool used by many students when they are considering whether to apply to

a certain school. However, published rankings do not take into account the preferences of individual

students.

Task:

Your task is to create a personalized college ranking. On the following pages, you will be presented with

a dataset of colleges, and asked to input your preferences about some of them. From this partial

information that you provide, the system will learn a global ranking over all the items in the dataset. Then

you will be asked to give feedback on your experience and understanding of the ranking process.

Training Script

Please read the following instructions carefully. You will not be able to return to this page once you

begin the experiment!

Task (Categorical Comparison):

On the next page, you will use an interactive tool to create a personalized college ranking. First, you will

use the Build Tool to enter your preferences about colleges in the dataset. Choose as many colleges as you

wish and place each one in a category. After you make your selections, the system will provide you with a

ranking of the entire dataset of colleges based on your initial choices. You may return to the Build page to

57

refine your preferences as many times as you like, in order to create a high quality ranking which reflects

your preferences.

Create and Revise Your Ranking (Categorical Comparison):

Drag colleges from the dataset to the left to place them in a category on the right. Place your top choices

in the “High” category, your least preferred colleges in the “Low” category, and colleges in the middle in

the “Medium” category. For each pair, place the preferred college on the left under “High” and the less

preferred college on the right under “Low”. Each college can be used in multiple pairs. Click "Rank" to

see your generated ranking. Click "Edit Preferences" to go back to the Build tool and refine your ranking

further.

Task (List Comparison):

On the next page, you will use an interactive tool to create a personalized college ranking. First, you will

use the Build Tool to enter your preferences about colleges in the dataset. Choose as many colleges as you

wish and place each one into a ranked list. After you make your selections, the system will provide you

with a ranking of the entire dataset of colleges based on your initial choices.

You may return to the Build page to refine your preferences as many times as you like, in order to create a

high quality ranking which reflects your preferences.

Create and Revise Your Ranking (List Comparison):

Drag colleges from the dataset on the left to the list on the right. Place the most preferred colleges at the

top of the list, and the rest in descending order of your preference. Click "Rank" to see your generated

ranking. Click "Edit Preferences" to go back to the Build tool and refine your ranking further.

58

Task (Pairwise Comparison):

On the next page, you will use an interactive tool to create a personalized college ranking. First, you will

use the Build Tool to enter your preferences about colleges in the dataset. Choose as many colleges as you

wish and arrange them as pairs. After you make your selections, the system will provide you with a

ranking of the entire dataset of colleges based on your initial choices.

You may return to the Build page to refine your preferences as many times as you like, in order to create a

high quality ranking which reflects your preferences.

Create and Revise Your Ranking (Pairwise Comparison):

Drag colleges from the dataset on the left to form pairs on the right. For each pair, place the preferred

college on the left under “High” and the less preferred college on the right under “Low”. Each college can

be used in multiple pairs. Click "Rank" to see your generated ranking. Click "Edit Preferences" to go back

to the Build tool and refine your ranking further.

Interact with the data:

● Mouse over an individual college to see its data attributes.

● Click the “sort” button to order the colleges alphabetically.

● Click the “shuffle” button to randomize which colleges you see.

● Use the search bar to search for specific colleges.

Share your ranking strategy:

When you are finished with the ranking tool, you will be asked to describe your findings, and answer a

few questions on your experience with this interactive rank building system

59

	Worcester Polytechnic Institute
	Digital WPI
	May 2019

	Fair Ranking System
	Paul-Henry Madiba Schoenhagen
	Repository Citation

	tmp.1559585884.pdf._tbjX

