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Abstract 

 

Planar Mechanism Kinematic Simulator (PMKS) is a web-based tool to generate the kinematics 

of linkages. The tool can also be used to generate joint forces and input torque in linkages with revolute 

joints. The team explored and formulated various additions to the tool. The additions involved 

implementing methods to detect singularities in four and six-bar linkages with revolute joints. The team 

also worked on generating interface concepts for displaying free body diagrams and simulator results to 

enhance student experience with the tool. Finally, aspects to the migration of the tool from the current 

Microsoft Silverlight platform to the Microsoft Windows Desktop were also investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

Acknowledgments 

 

We would like to express our thanks to our advisors, Prof. Pradeep Radhakrishnan and Prof. 

David Brown for their feedback and guidance throughout the whole process. We would also like to give 

our gratitude to the past MQP teams that have put countless hours into PMKS to be like what it is.  

  



iii 

 

Table of Contents 

 

Abstract: i 

Acknowledgments: ii 

Table of Contents iii 

Authorship vi 

Chapter 1 Introduction 1 

1.1: Background on PMKS 1 

1.2: Problem Statement 1 

1.2.1: Mechanical Engineering Team 1 

1.2.2: Computer Science Team 1 

1.3: Structure of Paper 2 

Chapter 2: Literature Review 3 

2.1: Singularity 3 

2.2: Silverlight 4 

2.3: Windows Presentation Foundation 4 

2.4: Universal Windows Platform 5 

2.5: PMKS Code Organization 5 

2.6: PMKS Design of Animation Engine 5 

2.7 Comparison of Displaying Data Between PMKS and Other Software 5 

2.8: Link Creation in PMKS Compared to SolidWorks and Creo 6 

2.9: Force Creation in PMKS Compared to SolidWorks and Creo 6 

2.10: Methods for analysis in PMKS compared to SolidWorks and Creo 6 

Chapter 3: Methodology 8 

3.1: Having PMKS Determine Singularity in a four-bar and six-bar 8 

3.1.1: Triangular-Check Method 8 

bookmark://_Toc7172075/#_Toc7172075
bookmark://_Toc7172076/#_Toc7172076
bookmark://_Toc7172077/#_Toc7172077
bookmark://_Toc7172078/#_Toc7172078
bookmark://_Toc7172079/#_Toc7172079
bookmark://_Toc7172080/#_Toc7172080
bookmark://_Toc7172081/#_Toc7172081
bookmark://_Toc7172082/#_Toc7172082
bookmark://_Toc7172083/#_Toc7172083
bookmark://_Toc7172084/#_Toc7172084
bookmark://_Toc7172085/#_Toc7172085
bookmark://_Toc7172086/#_Toc7172086
bookmark://_Toc7172087/#_Toc7172087
bookmark://_Toc7172088/#_Toc7172088
bookmark://_Toc7172089/#_Toc7172089
bookmark://_Toc7172090/#_Toc7172090
bookmark://_Toc7172091/#_Toc7172091
bookmark://_Toc7172092/#_Toc7172092
bookmark://_Toc7172093/#_Toc7172093
bookmark://_Toc7172094/#_Toc7172094
bookmark://_Toc7172095/#_Toc7172095
bookmark://_Toc7172096/#_Toc7172096
bookmark://_Toc7172097/#_Toc7172097
bookmark://_Toc7172098/#_Toc7172098


iv 

 

3.1.2: Why not simply check if coupler and follower have the same slope during analysis? 9 

3.2: Work on the PMKS Software 9 

3.2.1: Background on PMKS as an Application 10 

3.2.2: Comparing the WPF Application with the Silverlight Application 10 

3.2.3: Debugging and Error Correction 10 

3.2.4: Design Analysis of WPF Application 11 

3.3: Maximizing the UI Experience 11 

3.3.1: Force Entry, Cyclical Loading 11 

3.3.2: Link Creation 12 

3.3.3: Free Body Diagrams 12 

3.3.4: Charting Links and Joints 13 

3.3.5: Section Conclusion 13 

Chapter 4: Implementation 14 

4.1: Code foundation behind Singularity Check 14 

4.1.1: Singularity Check for Four-Bar 14 

4.1.2: Singularity Check for Six-Bar 16 

4.1.3: Testing Singularity Check 21 

4.2: Work on the PMKS Software 24 

4.2.1: Debugging the Desktop Application 24 

4.2.2: Documentation and Design Proposal 30 

4.3: Maximizing the UI experience 31 

4.3.1: Force Entry on Cyclical Loading 32 

4.3.2: Link Creation 34 

4.3.3: Free Body Diagrams 34 

4.3.4: Charting Links and Joints 36 

bookmark://_Toc7172099/#_Toc7172099
bookmark://_Toc7172100/#_Toc7172100
bookmark://_Toc7172101/#_Toc7172101
bookmark://_Toc7172102/#_Toc7172102
bookmark://_Toc7172103/#_Toc7172103
bookmark://_Toc7172104/#_Toc7172104
bookmark://_Toc7172105/#_Toc7172105
bookmark://_Toc7172106/#_Toc7172106
bookmark://_Toc7172107/#_Toc7172107
bookmark://_Toc7172108/#_Toc7172108
bookmark://_Toc7172109/#_Toc7172109
bookmark://_Toc7172110/#_Toc7172110
bookmark://_Toc7172111/#_Toc7172111
bookmark://_Toc7172112/#_Toc7172112
bookmark://_Toc7172113/#_Toc7172113
bookmark://_Toc7172114/#_Toc7172114
bookmark://_Toc7172115/#_Toc7172115
bookmark://_Toc7172116/#_Toc7172116
bookmark://_Toc7172117/#_Toc7172117
bookmark://_Toc7172118/#_Toc7172118
bookmark://_Toc7172119/#_Toc7172119
bookmark://_Toc7172120/#_Toc7172120
bookmark://_Toc7172121/#_Toc7172121
bookmark://_Toc7172122/#_Toc7172122
bookmark://_Toc7172123/#_Toc7172123


v 

 

4.3.5 Section Conclusion 37 

Chapter 5: Discussion 38 

5.1 Accomplishments 38 

5.1.1:  Determining Linkage Singularity Detection 38 

5.1.2: Debugging the WPF Desktop Application Version of PMKS 39 

5.1.3: Researching and Designing new User Interface Features 39 

5.2 Problems Faced 39 

5.3 What Still Needs Work 39 

5.4: Singularity Check 40 

5.4.1: Limitations of Singularity Check for Six-Bar Linkage 40 

5.4.2: Identifying singular positions during analysis and taking corresponding actions 41 

5.5: State of the Software Now and Future Insight 42 

5.6: User Experience 42 

Chapter 6: Conclusion 44 

6.1: Accomplishments 44 

6.2: Major Roadblocks Faced 44 

6.3: What was Learned 44 

References 46 

Appendices 47 

Appendix A: Silverlight version of PMKS vs WPF version of PMKS 47 

 

 

 

bookmark://_Toc7172124/#_Toc7172124
bookmark://_Toc7172125/#_Toc7172125
bookmark://_Toc7172126/#_Toc7172126
bookmark://_Toc7172127/#_Toc7172127
bookmark://_Toc7172128/#_Toc7172128
bookmark://_Toc7172129/#_Toc7172129
bookmark://_Toc7172130/#_Toc7172130
bookmark://_Toc7172131/#_Toc7172131
bookmark://_Toc7172132/#_Toc7172132
bookmark://_Toc7172133/#_Toc7172133
bookmark://_Toc7172134/#_Toc7172134
bookmark://_Toc7172135/#_Toc7172135
bookmark://_Toc7172136/#_Toc7172136
bookmark://_Toc7172137/#_Toc7172137
bookmark://_Toc7172138/#_Toc7172138
bookmark://_Toc7172139/#_Toc7172139
bookmark://_Toc7172140/#_Toc7172140
bookmark://_Toc7172141/#_Toc7172141
bookmark://_Toc7172142/#_Toc7172142
bookmark://_Toc7172143/#_Toc7172143


vi 

 

Authorship 

 

Chapter 1 Introduction 

1.1: Background on PMKS Mitchell Farren 

1.2: Problem Statement Mitchell Farren 

1.3: Structure of Paper  Mitchell Farren 

Chapter 2: Literature Review 

2.5: Singularity Zhihao Xie 

2.6: Silverlight Mitchell Farren 

2.7: Windows Presentation Foundation Mitchell Farren 

2.8: Universal Windows Platform Mitchell Farren 

2.9: PMKS Code Organization Mitchell Farren 

2.10: PMKS Design of Animation Engine Mitchell Farren 

2.11 Comparison of Displaying Data Between 

PMKS and Other Software 

David Richardson 

2.12: Link Creation in PMKS Compared to 

SolidWorks and Creo 

David Richardson 

2.13: Force Creation in PMKS Compared to 

SolidWorks and Creo 

David Richardson 

2.14: Methods for analysis in PMKS compared to 

SolidWorks and Creo 

David Richardson 

Chapter 3: Methodology 

3.6: Having PMKS Determine Singularity in a 

four-bar and six-bar 

Zhihao Xie 

3.7: Work on the PMKS Software Mitchell Farren 

3.8: Maximizing the UI Experience David Richardson 

Chapter 4: Implementation 

4.4: Code foundation behind Singularity Check Zhihao Xie 

4.5: Work on the PMKS Software Mitchell Farren 

4.6: Maximizing the UI experience David Richardson 



vii 

 

Chapter 5: Discussion 

5.1 Accomplishments Mitchell Farren, David Richardson 

5.2 Problems Faced David Richardson 

5.3 What Still Needs Work Mitchell Farren, David Richardson 

5.4: Singularity Check Zhihao Xie 

5.5: State of the Software Now and Future Insight Mitchell Farren 

5.6: User Experience David Richardson 

Chapter 6: Conclusion 

6.1: Accomplishments Mitchell Farren, David Richardson 

6.2: Major Roadblocks Faced Mitchell Farren, David Richardson 

6.3: What was Learned David Richardson 



1 

 

Chapter 1 Introduction 

 

1.1: Background on PMKS 

The Planar Mechanism Kinematics Simulator (PMKS), developed by Prof. Matthew I Campbell, 

Professor, Mechanical Engineering, Oregon State University is an algorithmic tool that is intended to 

generate a variety of static and dynamic data. It models mechanical data from planar linkages such as 

joint forces, input torque, velocities, accelerations, mass moments of inertias, instantaneous centers, and 

stress at joints and links. 

PMKS is currently being used by students in advanced mechanical engineering classes, as a tool 

to help learn different analyses on linkages and as a way to check their calculations. As an academic 

tool, it brings a lot of fundamental mechanical information to the user in one click.  PMKS has evolved 

throughout years by adding features from successive Major Qualify Projects (MQP) at Worcester 

Polytechnic Institute (WPI). More information on PMKS, including access to the Silverlight version, can 

be found at https://designengrlab.github.io/PMKS/. 

 

1.2: Problem Statement 

When we first got this project, our advisor Professor Pradeep originally wanted PMKS to 

implement link synthesis. As we got into our project, we quickly realized the scope needed to be more 

focused. As we started work on the project, our team was spread thin amongst a number of different 

tasks. As we continued, the complexity of the software became apparent, and our goals shifted towards 

adding features and correcting errors on PMKS instead of renovating the software to achieve link 

synthesis. To tackle this project, our team divided up into two teams: the ME and CS team. 

 

1.2.1: Mechanical Engineering Team 

The ME team focused on one task: 

● integrating linkage singularity detection 

 

1.2.2: Computer Science Team 

The CS team focused on three tasks: 

● attempted to get the new desktop application running properly  
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● looked into creating a better design improvement of the UI 

● create diagrams and documentation were developed to expedite the process of learning 

how PMKS works for future project teams 

 

1.3: Structure of Paper 

 This paper is organized as follows. Chapter 2 presents some background information that is 

needed to more comprehensively understand our project. Chapter 3 presents the methodology, which is a 

collection of plans that was followed throughout this project. That is followed by Chapter 4 which 

contains our implementation section. This section consists of the work we did during the project and 

how we did it. Chapter 5 consists of a discussion section, where we discuss the project, how it went, 

what we accomplished, and where the project is now. The final chapter, Chapter 6, is our conclusion, 

where we reiterate our goal and talk about our achievements and their importance. 
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Chapter 2: Literature Review 

 

2.1: Singularity 

 Singular positions are certain states of a linkage mechanism at which prediction of future motion 

is impossible. For example, in Figure 2.1, it is possible for the follower link to rotate in either clockwise 

or counterclockwise direction, which makes its successive state of movement unpredictable.  Singularity 

restricts the mobility of a linkage and is therefore generally unfavorable (in operation of robot arms, for 

instance, approaching a singular position can cause extra load to the arm). Nevertheless, there exist some 

cases in which singularity is utilized for specific purposes (e.g. toggle position of a truck tailgate). 

PMKS and most other linkage simulators currently do not offer the functionality of singularity detection. 

Some software (e.g. SolidWorks) notify the presence of movement constraints, but it is not an accurate 

indication of singularity.  

 

Figure 2.1: Internal uncertainty of singular position 

As one of its main functionalities, PMKS uses matrix equation to carry out static and dynamic analysis 

of linkages, but matrix equation is not solvable for linkages at singular positions, at which the coefficient 

matrix is singular. This causes the program to crash when it tries to conduct analysis for any linkage 

with a singular position, since PMKS analyses all possible positions of a linkage within its range of 

movement.   

 

Figure 2.2: Examples of singular position in four-bar mechanism 
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Figure 2.3: Example of singular position in six-bar mechanism 

 A four-bar linkage is at its singular position when its coupler aligns with follower (Figure 2.2). 

Six-bar mechanism, on the other hand, can be seen as two four-bars connected side by side ---- if either 

of the two four-bar sub-mechanisms is at singular position, the whole six-bar linkage will also be under 

a singular configuration (Figure 2.3). In order to avoid program failure during analysis of linkages with 

singularity, some means of identifying singular positions needs to be implemented.   

 

2.2: Silverlight 

Silverlight is a development tool created by Microsoft used for creating interactive user 

experiences for Web and mobile applications. It is powered by the .NET framework and compatible 

with multiple browsers, devices and operating systems. 

Silverlight is no longer supported by Microsoft, as the only browsers that support it are those the Internet 

Explorer browser family. This lack of support by modern browsers has led to the discontinued use of 

Silverlight to make new applications. Silverlight applications are based on a client-server architecture, 

with a back-end system that talks to a light weight front-end.  

 

2.3: Windows Presentation Foundation 

Windows Presentation Foundation (WPF) is a solution that allows a user to develop applications 

on computers running Windows operating systems. It provides classes and a general structure to desktop 

application design, allowing for code to be maintainable and uniform. 

WPF supports many more features and has more functionality than Silverlight. WPF is a more mature 

tool, providing enhanced animation functionality as well as a larger user base. It is primarily focused on 

the user interface portions of applications designed on the .NET framework. It has evolved from 

WinForms, which is more primitive front-end solution for building applications. Windows applications 

use WPF to keep application development consistent and to make them consistent with other 

applications in terms of their structure, dependencies, and format. 



5 

 

WPF is used to make web, desktop, and other kinds of applications across the Microsoft application 

development ecosystem. 

 

2.4: Universal Windows Platform 

 The Universal Windows Platform (UWP) is a common application platform that developers can 

use to build applications that run on Windows 10 systems. Microsoft is favoring development using 

UWP over other, less universal development solutions. It allows for polished, professional applications 

to be built and run efficiently on Windows 10 devices. 

 By moving towards a universal platform, it will build the developer community and unite what 

would have been a collection of mostly unrelated software built on different systems. 

 

2.5: PMKS Code Organization 

 PMKS is currently a Visual Studio Solution that contains a couple different coding project files. 

There is one project file that handles the linkage analyses, and two project files that handle front-end 

user interface code. The first one is a Silverlight web application front-end, while the second is a WPF 

desktop application front-end. Both project files that have front-end code reference the back-end code 

that handles linkage analyses. 

 In the WPF desktop application project file, the class MainPage is where most of the logic is in 

the code. This contains all code that handles animation, data input, data output, and user notifications. 

 

2.6: PMKS Design of Animation Engine 

 PMKS handles animations in a couple different steps. The user first inputs their linkage data into 

the input matrix on the top left of the PMKS application window. This data is stored in the code 

handling the front end of the system. The data is then banded to variables in the back-end of the system, 

which uses the user-created linkage data to perform analyses on the linkage. These analyses are then 

available to the front-end so resultant forces and other information can be displayed to the user. 

 

2.7 Comparison of Displaying Data Between PMKS and Other Software 

PMKS displays very little data in its animation almost all data needs to be requested and saved 

than sorted through. Compared to systems like SolidWorks and Creo, which typically open windows 

with data in them for the user to save or immediately use. This makes data acquisition take longer for 
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PMKS than in programs like SolidWorks and Creo. This issue needs and can be resolved through 

various methods like free body diagrams and charting functionalities. PMKS creates all the data that the 

user could need to analyze a linkage. To create these functions is really just a question of how to ask for 

this data and which methods are best to display this data. 

 

2.8: Link Creation in PMKS Compared to SolidWorks and Creo 

PMKS is made for creating linkages so by limiting the creation options it is easier to make 

linkages in PMKS than in SolidWorks and Creo. SolidWorks and Creo are capable of making almost 

any physical object or system so they require more dimensions and inputs than PMKS does. PMKS only 

asks for the distance between joints to create a link, as well it only requires the type of joint and possibly 

its angle to create a joint. This vastly shortens the time needed to create a system when PMKS is 

compared to more complex software like SolidWorks and Creo. 

 

2.9: Force Creation in PMKS Compared to SolidWorks and Creo 

Applying a force in PMKS is a difficult process, however it is still is less demanding than more 

powerful software like SolidWorks and Creo. These programs require the user to set up simulations 

before allowing them to apply forces. Than to create forces the user needs to identify the area the forces 

will be applied the direction of the forces in three dimensions and the magnitude of the forces. This can 

only work properly if the assembly has been correctly constrained or the simulation will have conflicts 

and create no data or incorrect data for the user. Unlike PMKS which makes assumption for the user and 

simplifies forces creation and animation. 

 

2.10: Methods for analysis in PMKS compared to SolidWorks and Creo 

Like previously stated in section (2.8) the main difference between PMKS and software like 

SolidWorks and Creo is that the wide scope of SolidWorks and Creo. This makes the user need to 

specify more dimensions and characteristics to make a part or test that part. What makes PMKS so 

useful is its ability to infer from the user’s inputs and create parts with only a few dimensions. In terms 

of analysis methods PMKS can do just about all the analysis, for a linkage, that SolidWorks or Creo can 

do the difference in PMKS is that it makes assumptions and is capable of creating usable data faster than 

SolidWorks and Creo. Where SolidWorks and Creo make very few assumptions and require the user’s 
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input instead. Because PMKS is so focused on its linkage capabilities’ it can work faster, however 

SolidWorks and Creo are more specialized in custom or complex systems.  
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Chapter 3: Methodology 

 

 This MQP focused on improving PMKS based on calculating analysis. Throughout the year, 

there were three objectives that were worked on:  

1. Having PMKS determine singularity in a 4-bar and 6-bar. 

2. Debugging the desktop application and developing diagrams and documentation. 

3. Maximizing the UI experience. 

While focusing on these objectives, we would certain on certain applications to validate the analysis. 

MATLAB code and Working Model replicas would be created in which certain analysis would be 

determined.  

 

3.1: Having PMKS Determine Singularity in a four-bar and six-bar 

 In order to avoid program failure during analysis of linkages that have singular positions, PMKS 

needs to be able to tell whether a linkage created by user will have any singular position or not, so that if 

singularity is present (which is not a favorable design trait in many cases), the user can modify the 

linkage or inform the program on how should it treat singular positions. This can be achieved based on 

the relationship between length of links within the mechanism.  

 

3.1.1: Triangular-Check Method  

As shown in Figure 3.1, when a four-bar is at its singular position, the links (or rather, the lines 

between joints on the same link) enclose a triangular shape. Specifically, segment AB (length of crank), 

segment AD (length of ground link) and segment BD (the sum of lengths of coupler and follower, or the 

difference between them) form a triangle. Alternatively, they can also completely overlap into a single 

segment, as is the case of a parallel four-bar linkage (Figure 3.2). Inversely, in a given four-bar linkage, 

if its segments AB, AD and BD satisfy this relationship, it will reach at least one singular position 

during its cycle of movement. 
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Figure 3.1: Triangle Shape Enclosed by Links in Four-Bars at their Singular Positions 

 

Figure 3.2: Singular position of parallel 4-bar linkage, in which all links overlap into one single 

line 

For three segments to be able to form a triangle or completely overlap, they must satisfy the 

following condition:  

𝐿𝑜𝑛𝑔𝑒𝑠𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 <=  𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑡𝑤𝑜                                                                            

(Equation 8) 

 

3.1.2: Why not simply check if coupler and follower have the same slope during analysis?  

This alternative approach is easier to implement but has not been used for two main reasons: 

1) The checking process takes place during linkage analysis, which means the user cannot know if 

the linkage has singular position or not before analysis and take corresponding actions to 

improve the design.  

2) PMKS analyses the positions of linkage at a user-specified angle increment, which is 1 degree by 

default. Since singular position only exists when coupler exactly aligns with follower, it is 

possible for PMKS to miss the exact singular position and fail to detect it, which makes the user 

unable to know if the linkage actually has any singular position.  

 

3.2: Work on the PMKS Software 

 Our initial goal for the programming side of the project was to debug the desktop version of 

PMKS. This section goes over the methodology for this. 
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3.2.1: Background on PMKS as an Application 

PMKS is programmed in Silverlight, and it is currently deployed as a web application. PMKS 

users access the application through the use of a web browser. Silverlight is a Microsoft product, so 

Internet Explorer is needed to properly use the application. At the start of PMKS, Microsoft was still 

supporting Silverlight. Now, they have dropped support, and have instead opted to support desktop 

application building frameworks. As a consequence, our goal was to repurpose the old Silverlight code 

to create a desktop version of PMKS with the same functionality as the Silverlight web application 

version. 

The Windows Presentation Foundation (WPF) is one of the frameworks Microsoft currently 

supports, and it has similar organization and function to Silverlight. Because of these similarities, much 

of the code in the Silverlight version of PMKS can be copied over to a new project that is using WPF, 

and many things continue to work even though Silverlight is not in the new project. Prior to this project, 

this conversion from Silverlight to WPF was begun. Our project began with this preliminary conversion 

of PMKS that did not run and crashed when the user clicked anywhere in the application after it started 

up. 

 

3.2.2: Comparing the WPF Application with the Silverlight Application 

We started with a broken desktop version of the application as well as a working web application 

version. To start, the team took the broken desktop version and compared it with the working web 

application that was being run locally in Visual Studio. The PMKS software is a large piece of software, 

so the first phase of the project was onboarding. In this phase, the team tried to understand the code and 

what is doing what. This includes investigating the working code to see how it works and then try and 

understand the design of the new WPF project. 

 

3.2.3: Debugging and Error Correction 

The second phase of the project was to get PMKS fixed and back to how it used to work in the 

web application, but now in the desktop application. This will be done by comparing WPF with 

Silverlight to understand the differences in the way they provide functionality to the developer, and the 

fixing logical errors in the software architecture. 
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3.2.4: Design Analysis of WPF Application 

The third phase was an analysis of the new PMKS WPF software. The deliverable of this was to 

develop onboarding documentation to expedite the process of getting a new team up to date on PMKS, 

as that was the most difficult part of this project. This onboarding documentation includes information 

contained in this paper as well as diagrams, which are contained in Chapter 4. In addition, relevant 

information regarding WPF and Silverlight and the differences between the two will be synthesized and 

included (see Appendix A). 

 

3.3: Maximizing the UI Experience 

The user experience was not a priority to the creators of PMKS. The creators simply needed a 

workhorse to do complex calculations fast and accurately. As a result of the creators’ focus on creating a 

workhorse they subsequently neglected the user interface which led to complex actions for the users. 

However, now the user experience should be improved because there is the time and manpower to do so. 

In order to make the appropriate updates to the user experience the program issues had to be identified. 

Once we had a strong understanding of the problems, they could be focused on and solved. Moreover, 

there was a focus on simplifying action even for those who already knew the program.   

 

3.3.1: Force Entry, Cyclical Loading 

Entering forces is a very convoluted process within PMKS. The user is required to know which 

force they wanted and where to apply it. Then in order to apply the force they had to know the global 

coordinates for the position within the link at the starting position of the animation. This is particularly 

difficult and time consuming because the width of the link is not factored in, the force is on the infinitely 

small line the link is projected around or it does not exist to the calculations. The first step in fixing this 

problem was to determine what data PMKS relied on to calculate the forces and other ways to input that 

data. The data required was the origin of the force within a link, the magnitude of the force, and the 

direction of the force.  Through an iterative process with the project’s advisors’ new methods were 

developed that allowed the user to apply forces on links without relying on the global coordinates while 

still having the capability to use the global coordinates. Once this method was determined an addition of 

“Cyclical Loading” was discussed. Cyclical Loading would allow the user to determine when, in both 

the animation and calculations, the force would be applied. This was created to mimic the linkage 

moving an object in a repetitive process for instance from conveyor belt to conveyor belt. This was 
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brought up because of the prevalence of linkages in repetitive processes that require moving an object to 

a new place or change the object’s orientation. 

 

3.3.2: Link Creation 

Creating links is often the first task a user will do, and it is an overly complex process in PMKS. 

The complexity comes as a result of the table, called Edit Joints used to input links and joint data. The 

first column is populated with two link names separated by a comma then the rest of the information in 

that row is related to the connection between those two links.  The rest of the information in that row is 

the start of the second link that is listed in the first column. The overlap in information, or rather its 

meaning, is a large source of confusion for the user. The chart confuses many users especially those with 

little to no experiences with the program. To combat these issues the plan was to add a column that 

would contain single link names and then the next column would be the joints attached to the link. This 

way the links and joints would have names and there would be a visual representation of the hierarchy of 

the order of connection, from link to joint to the next link. 

 

3.3.3: Free Body Diagrams 

After the difficulties with inputting new links, joints and forces were addressed, additions to 

PMKS were discussed. The intent of these changes was to give the users more information without 

requiring them to download and sort through all of force and position data that PMKS exports. The first 

addition worked on was a “Free Body Diagram” or (FBD) capability. This functionality would allow the 

user to get a strong understanding of the direction and magnitudes of the forces without sorting through 

the data points. It would allow the user to make FBD’s for any link or joint they choose. All of the 

forces and directions are recorded in PMKS the challenge here was getting the users to know how to ask 

for this data. Free body diagrams are well known enough that FBD could work as a button label then. 

The next step was figuring out how to indicate to the user what link or joint they were selecting to avoid 

further confusion. The best way we saw was pausing the animation and having the links and joints react 

to being scrolled over. The last portion of this function was displaying the data, and this led to giving the 

user control over how the data should be displayed.  All the forces are displayed as vectors; however the 

user can select x and y components or the user could ask for the resultant force and its direction. 
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3.3.4: Charting Links and Joints 

Another addition that was intended to shorten the user’s path from linkage creation to data 

acquisition is the charting functionality. It would allow the user to select a part within the animation and 

request graphs to visually depict the forces and torques over time or over angle. The first question to 

answer was how the user will select a part to request data for. We decided on the right click. This would 

simultaneously select a part and allow the user to start creating graphs. Then the next question was how 

to show all of the options for the graphs. It was far too many to fit in a right click box, so we elected to 

open a window to list the various options and controls for graph creation. 

 

3.3.5: Section Conclusion 

Over all these steps were taken to simplify the user’s actions in PMKS and allow them to do 

more with their time.  The calculations PMKS does are so in depth that it was more of a question of how 

all of this data can be best utilized for the end user. The creators did a lot for the calculation side 

however they left a lot to be desired on the user interface side. 
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Chapter 4: Implementation 

 

 In this section, the focus is on the implementation of the analysis of the code foundation behind 

singularity check, work on converting PMKS to a desktop application, and the process of maximizing 

the UI application.  

 

4.1: Code foundation behind Singularity Check 

 A simple check for whether a user-created mechanism will have any singular position has been 

implemented into the PMKS code for four-bar and six-bar linkages by adding code to the Analysis() 

function in file FindFullMovement.cs.  

 

4.1.1: Singularity Check for Four-Bar  

 As described in section 4.1, a four-bar linkage has at least one singular position if its linkage 

lengths satisfy a specific relationship. Nevertheless, the check cannot be carried out if the program does 

not know the lengths of crank, coupler, follower and ground. PMKS already stores the information of 

input link (crank) and ground link, so helper functions ---- isCoupler() and isFollower() ---- are 

constructed to identify which link is coupler and which one is follower.   
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Figure 4.1: Code Structure of the Function IsCoupler() 

 

Figure 4.2: Code Structure of the Function IsFollower() 

● A link is a coupler if it does not have any grounded joint.  

● A link is a follower if it is connected to ground but is not the input link.  

 

 Using the logic above, these two functions find out the first two sides for the triangular-check 

method. After that, the function FourBarSingularity() calculates the length of the third side of the 

triangle and calls the function TriangleCheck(), which applies the triangular-check method and returns a 

boolean value to indicate the presence or absence of singular position.  

 

 

Figure 4.3: Code Structure of the Function FourBarSingularity() 
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Figure 4.4: Code Structure of the Function TriangleCheck() 

 

The following three lengths are calculated:  

● Length of crank.  

● Length of ground.  

● Length of the third side of triangle, which can be either the sum of lengths of coupler and 

follower, or the difference between them.  

 

The three lengths are then checked if they satisfy the relationship:  

𝐿𝑜𝑛𝑔𝑒𝑠𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 <=  𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑡𝑤𝑜  

 If this condition is met, the four-bar will have singular position. Currently these functions are called 

before PMKS runs analysis on a four-bar linkage.  

 

4.1.2: Singularity Check for Six-Bar  

 The current version of singularity check for six-bar linkage follows the same approach as for 

four-bar. Since a six-bar can be viewed as two four-bars connected in parallel, if either of them has 
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singular position, PMKS will report that the six-bar contains singularity (however, this logic has several 

limitations, which will be explained in the discussion section).  

 In order to carry out singularity check for each of the two four-bar sub-mechanisms, the lengths 

of crank, coupler, follower and ground needs to be determined for each of the two four-bar subsystems. 

Additional helper functions are constructed for this purpose.   

● Function isConnected() checks if two links are connected (i.e. share a common joint).  

 

 

Figure 4.5: Code structure of the function isConneccted() 

 

● Function getCommonJoint() returns the shared joint between two connected links.  

 

 

Figure 4.6: Code structure of the function FindCommonJoint() 

 

● Function getGroundJoint() returns the grounded joint of a link connected to ground.  
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Figure 4.7: Code Structure of the function FindGroundJoint() 

 

 In order to identify the links in each four-bar sub-mechanism, a specific algorithm is set up to 

find out the identity of each link, which is displayed in Figure 4.8:   

 

Figure 4.8: Four-bar subsystems of a six-bar linkage   
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● Links to identify:  

Crank 1 = input link;  

Coupler 1 = the link that is coupler and is connected to input link;  

Follower 1 = the link that is ground link and is connected to coupler 1 (the ternary link);  

Coupler 2 = the link that is coupler and is not connected to input link;  

Follower 2 = the link that is ground link and is connected to coupler 2 (the ternary link);  

● Joints to identify:  

Joint c1 = common joint between coupler 1 and follower 1;  

Joint c2 = common joint between coupler 2 and follower 1;  

Joint c3 = common joint between coupler 2 and follower 2;  

Joint g1 = grounded joint of follower 1;  

Joint g2 = grounded joint of follower 2;  

● Lengths to calculate:  

Length of follower 1 = distance between c1 and g1;  

Length of ground 1 = distance between input joint and g1;  

Length of crank 2 = distance between g1 and c2;  

Length of follower 2 = distance between c3 and g2;  

Length of ground 2 = distance between g1 and g2;  

 

 The code below shows how the algorithm described above is actually implemented in the 

function Analysis(). It is called whenever analysis is run for a six-bar linkage. Subsystem 1 was 

identified first through two for loops, after which subsystem 2 was found out using the same process.  
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Figure 4.9(a): Code section in the function Analysis () for singularity check of six-bar linkages 

 

 

Figure 4.9(b): Code section in the function Analysis () for singularity check of six-bar linkages 

(resumed) 
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 After the links for each four-bar are identified, singularity check is conducted for each of the two 

sub-mechanisms. If either of them is found to have singular position, it will be possible for the six-bar 

linkage to have singular position as well.  

 

4.1.3: Testing Singularity Check 

 In order to check if the singularity identification functionality was operating as designed, a 

number of tests were conducted to check different portions of the algorithm. Shown below are a few 

examples of the test cases used.  

● Four-bar with singularity  

 

 

 

Figure 4.10: Test case for singularity check of four-bar linkage when singularity is present, and 

the results 
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This four-bar linkage had singular positions as its coupler can either line up with the follower or overlap 

with it. The code not only succeeded in retrieving the lengths of all links but also generated a boolean 

value (hasSingularity4) of “True”, which predicted the presence of singular position.  

 

● Four-bar without singularity   

 

 

 

Figure 4.11 Test case for singularity check of four-bar linkage when singularity is absent, and the 

results 

 

This four-bar linkage is an example of four-bar with no singular position, as its coupler and follower can 

never perfectly line up. The code returned a boolean value of “False”, indicating the absence of singular 

position  

● Identifying four-bar subsystems in a six-bar 

The algorithm for detecting the presence of singular position in a six-bar linkage, as described in section 

4.7, is based on the singularity check for four-bar, and the main difference is the way for PMKS to 
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identify the links for each four-bar subsystem individually. Shown below is one of the test cases for 

checking if the code was functioning properly.  

 

 

 

Figure 4.12: Test case for singularity check of six-bar linkage when singularity is present, and the 

results 

 

The code successfully identified the corresponding crank, coupler, follower and ground links for each 

four-bar sub-mechanism and obtained their lengths. It also returned a boolean value of “True” 

(hasSingularity6), indicating the presence of singular position in this six-bar.  
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4.2: Work on the PMKS Software 

 In this section, we go over work done debugging the WPF desktop application version of PMKS 

as well as flaws found in the software design.  

  

4.2.1: Debugging the Desktop Application 

 The PMKS application was programmed in C# using Microsoft Visual Studio 2015. The 2015 

version was used because it has no compatibility issues with running applications built on Silverlight. In 

the Visual Studio Solution titled “PMKS”, there are a number of projects, as seen in Figure 4.5.1. The 

“PlanarMechanismKinematicSimulator” project contains the code that does the mathematical analyses 

on the linkages. This is then used by the “PMKS_Web_MQP” project, which is the code for the 

Silverlight web application, to compute the various analyses on the linkage in the application. The 

“MQP_Convert” project contains the code for the WPF desktop application. The “MQP_Convert” 

project uses the “PlanarMechanismKinematicSimulator” project for the mathematical analyses on the 

linkages, just like the “PMKS_Web_MQP” project does. 

 

 

Figure 4.13: Visual Studio solution hierarchy 

 

Upon starting the desktop application code, two windows open up. One of them being the main 

PMKS window, seen on the left in Figure 4.13. To the right of the main PMKS window is the link 

properties window. When the link properties were saved with the lower right hand “Save” button, the 

whole software would crash, and it gave errors related to all the functions from Silverlight not being 

completely supported by WPF. Additionally, if the user tried to click anywhere in the main PMKS 

window, the whole software would crash. Without understanding how the code was designed, and 

without knowing where the errors were, we had to spend time in the debugger figuring out how 

functions and classes work together. 
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 We first temporarily removed the link properties window, so upon startup, only the main PMKS 

window would open. The one thing that wasn’t visibly working was the link animation. On startup, there 

should be a default link that is animated to give the user a starting point, as seen in Figure 4.14. 

 

 

Figure 4.14: PMKS desktop application on startup 

 

 

Figure 4.15: PMKS web application on startup 
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The default linkage has two links; a ground link and a link named “input”, as seen in the table at the top 

left of the main PMKS window. All the other buttons and UI subsections were being shown in the new, 

WPF version, albeit they were not working as expected. 

 After reading Microsoft’s documentation and debugging the software, it turned out the 

application is made up of elements WPF refers to as “Panels”. PMKS was designed with one main panel 

that contains a lot of different sub-panels. One thing that was difficult to understand and fix was the 

multiple namespaces in the software. There were two namespaces that seemed to follow no pattern as to 

which classes used what. The reason this happened was two people were working on the project in 

different areas, and as to not mess up the other person’s code, they both used different, similarly named 

namespaces. This is a bad design decision and could not be easily remedied due to a number of variables 

having the same names just in different namespaces. Because these variables are used in a number of 

different files, it is very difficult to accurately change the variable names in an effort to have one master 

namespace for the project. After trying to fix the aforementioned issue, the easiest way to get rid of 

some of the errors related to the animation was to bring the sub-panel that contained the animation into 

the main PMKS window. 

The animation was on a special kind of panel known as a “Canvas” element. This element is 

used for animations, and one of its features is that the animation uses pixel values as coordinates. 

Through debugging the software, we came to find the linkage joints were using very high values for 

coordinates, as seen in Figure 4.16. 

 

 

Figure 4.16: Visual Studio console out containing variables and values 
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The “XAxisOffset” and “YAxisOffset” are used to locate the middle of the canvas element. As shown 

above, the software was trying to display the linkage animation thousands of pixels off screen. After 

managing to change these values, the static linkage joints were displayed, as seen in Figure 4.17. 

 

 

 

 

Figure 4.17: PMKS desktop application with joints displayed 

 

The two circles under the table are enlarged joint points. At this point, we knew that there was some 

functionality in the code that ran the linkage animation, however there was no moving linkage. In 

addition, the Y axis was mirrored, so the lower the value, the higher on screen the joint would go. 

 To see why only static shapes were being displayed, the team tried to draw simple lines in 

different parts of the code, to see what was functioning properly. In the function that displays static 

shapes, the team was able to display a line as seen in Figure 4.18. 
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Figure 4.18: PMKS desktop application with joints and a drawn line 

 

I was then able to make the line connect the joints and respond to moving the joints, as seen in Figure 

4.19 and Figure 4.20. 

 

 

Figure 4.19: PMKS desktop application with the line between the joints (before moving joint) 
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Figure 4.20: PMKS desktop application with the line redrawn between joints (after moving joint) 

 

In addition to this, we were able to get the static ground link shape to display, albeit upside down due to 

the Y axis being flipped, as seen in Figure 4.21. 

 

 

Figure 4.21: PMKS desktop application with ground link shown upside down 
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Further debugging revealed that the problem with the dynamic shapes not being displayed was related to 

how animation in WPF was done differently than in Silverlight. 

 In the Silverlight version of PMKS, a built-in class called Path was being used. Animation in 

WPF is done without this. When PMKS was being briefly converted last year, instead of rebuilding the 

animation the WPF way, the previous group created their own Path class in an attempt to reuse as much 

of the Silverlight code as possible. This is the real root of the problem as to why the animation isn’t 

displaying some things like link shapes and joint paths and why it doesn’t move. 

 The changes needed to get the code working extends the time allocated for this project. In order 

to best help the next team work on it, onboarding documentation and diagrams needed to be made to 

bring a new group up to speed on PMKS. The beginning of the project where we were ramping up, 

trying to understand what our project was and how to do it was the hardest part. With improved 

documentation, future teams will have an easier time understanding the project and what they need to do 

to fix it. 

 

4.2.2: Documentation and Design Proposal 

As seen in Figure 4.22, PMKS currently handles animations in the MainPage class. There are 

two different functions in this class, one handles the animation of static shapes, while the other handles 

the animation of dynamic shapes. Right now, the function that handles static shapes is working, but the 

function for dynamic shapes is not. 

 

 

Figure 4.22: Organization of how the animations are handled 
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 Most of the functionality for PMKS is handled in this aforementioned MainPage class. This class 

handles displaying UI elements, displaying and animating the linkage, binding user input data to 

variables in the code that handles linkage analyses, exporting linkage data to a spreadsheet, and more. 

This makes the MainPage class verbose and hard to maintain. After analyzing the software and its 

design, we recommend many of these software functions be abstracted and reorganized to make it easier 

to understand and modify in the future.  

 

Figure 4.23: Proposed structure of code that handles linkage animation 

 

 Seen in Figure 4.23, this proposed structure includes the addition of an animation class that 

handles all animations in PMKS and is located outside of the MainPage class. Instead of having two 

functions animating static and dynamic shapes, we have decided that it would be better to separate the 

animation into functional parts. This would allow for easier cross talk between linkage elements, and 

structure the software based on the actual parts as opposed to the behavior of those parts. 

 

4.3: Maximizing the UI experience 

As a team we did not reach the point where we could implement these types of changes instead 

there is documentation of these features and how they should be implemented in the future for the next 

MQP team. The focus is on streamlining and simplifying existing tasks as well as adding features that 

give the user greater capabilities from the same data. 
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4.3.1: Force Entry on Cyclical Loading 

As mentioned previously above, the methods for applying forces was very complex and virtually 

unusable to a new user. The goal was to make a simple system that would hold the users hand and help 

them to understand what they can do with this program. The main plan is to help the user with the first 

step of applying a force, which is positioning the force. When the user goes to position the force, the 

display will change. The change will let them know that they are selecting a position for the force. 

Additionally, it will help them with applying that force correctly. Once the user selects the position 

fields in the edit forces tab the display will darken. The links and joints will then enlarge as a reaction to 

being scrolled over. When the user selects a link the force’s origin will snap to the middle of the link and 

the global coordinates will be displayed in the edit forces position fields. This simplifies the users input 

method as they need to only select the link in question rather than find its global coordinates. The origin 

of the force will be a small star like symbol, distinctly different from a joint. It can be moved with the 

global coordinates as well as with a click and drag. When using the click and drag function the cursor 

position indication box will change to show three decimal places instead of the one decimal places it 

usually displays; allowing for finer controls of the force placement.  
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Figure 4.24:  Flow chart showing all the steps required of the user to apply a force on a link. 
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4.3.2: Link Creation 

Link creation is not difficult however, the biggest issue is understanding the edit joints tab. To 

fix this issue it was decided that a small reorganization is all that is needed. Which requires adding a 

column that shows the name of the link, with the next column over showing all the joints connected to 

that link. This update will fix a few things; (1) it will increase user’s understanding of what they are 

editing. (2) It allows the user to label all of the links and joints so when the animation is paused the 

display can label all of the links and joints and help the user get a better understanding of what is going 

on.  

 

  

Figure 4.25: The original spreadsheet for entering data 

 

Input Link Joint Type 

of joint 

X Pos. Y Pos. Angle P V A 

 ground 1 R 0.0 0.0     

 input 1 R 0.0 0.0     

  2 R 25.0 25.0     

 

Figure 4.26: A representation of the new edit joints table. 

 

4.3.3: Free Body Diagrams 

Free Body Diagrams (FBD) are going to show the users the magnitudes of forces throughout the 

linkage at whatever point they are requested. One functionality that has not been mentioned yet is the 

updated play/pause buttons. Currently if the play/pause button is selected it resets the animation to first 

position, then with the second click it pauses the animation. However, this is not very useful for the user. 

Breaking these two functionalities apart and making a button for each will be considerably more 

effective, (i.e., having one reset button and another play/pause for the animation). With two separate 
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buttons the user could pause the animation wherever they want if they are in the wrong place they can 

use the time slider to be more precise. With a paused animation the user can select FBD button from the 

main menu where the tabs are for the edit joints and edit forces. The display will change causing the 

colors to fade to black and white and the links and joints to react to being scrolled over by enlarging. 

This allows the user to know exactly what they are selecting and once they have selected the forces 

acting on those links or joints they will be displayed as vectors at the points where the forces are acting 

with the vector’s magnitudes displayed in numbers. The user can only select one link or joint at a time 

so if they select one link and then another the firsts FBD will disappear; this is to keep the display clear. 

To unselect the user only needs to select anywhere else on the page. The user can choose between the 

resultant forces acting or to have the x and y forces displayed.  

 

Figure 4.27: Mock up for a Free Body Diagram Functionality 
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Figure 4.28: Flowchart of the Free Body Diagram for that linkage 

 

4.3.4: Charting Links and Joints 

The charting functionality is dependent on the new edit joints table because it allows the user to 

name all the parts on the screen. With labels for everything, the user can have PMKS created graphs and 

charts of whatever they may need. This functionality is all to minimize the user’s need to export the 



37 

 

large volumes of data PMKS creates. To activate this the user will pause the animation and select the 

link or the joint in question. Using the right click on either the animation or within the table they will 

select charting that will open a new window that controls the various options of chart or graph type and 

the data they want for the x and y axis. Creating these graphs will visually represent the forces acting 

over the full rotation of the animation.  

 

4.3.5 Section Conclusion  

By updating the users experience, PMKS can be better utilized in the education sector as well as 

in industry. Having a good user interaction will change how people think and feel about this program, 

which can have a profound effect on usage.  
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Chapter 5: Discussion 

 

5.1 Accomplishments 

 There were three tasks that were accomplished: (1) determining linkage singularity detection, (2) 

debugging the desktop application, and (3), researching and designing new user interface features. 

 

5.1.1:  Determining Linkage Singularity Detection 

Another accomplishment was creating a program that will determine if there is a singularity in 

the linkage. 

This is so important because at a singularity point the matrix equation commonly used will no 

longer be usable. With this need program PMKS will be capable of accounting for the singularity point.   
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5.1.2: Debugging the WPF Desktop Application Version of PMKS 

Another accomplishment was the progress made on converting the Silverlight web application 

version of PMKS to the WPF desktop application version. At the beginning of this project, the user 

could not click anywhere or do anything without crashing the application and throwing a ton of errors. 

Now, the user can see and move joints and interact with much of the software. Through debugging, we 

were able to figure out what needed to be changed to recreate all the functionality that the Silverlight 

web application version of PMKS provides. 

 

5.1.3: Researching and Designing new User Interface Features 

The final major accomplishment for this project was the research and design of new user 

interface features. These features include new force creation link creation, Free Body Diagram 

functionality and charting capability.  

 

5.2 Problems Faced 

PMKS possessed many problems for the computer science teams. There was a lack of 

documentation that made working on the code very difficult. The past project team had been using the 

same names for different parts of the code by having more than one namespace. On the user interface 

side, the problems came from trying to satisfy the data requirements PMKS needed while simplifying 

the users experience. Similarly trying to display more data without making the user need to search 

through every bit PMKS created. 

 

5.3 What Still Needs Work  

○ Further debugging the desktop application 

○ Implementation of user interface changes 

 There is still much to be done before the new WPF desktop application works as the old 

Silverlight web application does. In addition to that, the new UI features still need to be implemented 

after the desktop application is working properly. 
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5.4: Singularity Check  

 The modified version of PMKS runs respective versions of singularity check for user-created 

four-bar and six-bar linkages when the analysis button is pressed. The algorithm was proved by testing 

to be functioning as expected, but several issues still need to be addressed or require successive work.  

 

5.4.1: Limitations of Singularity Check for Six-Bar Linkage  

As far as we are aware, the implemented method for checking the presence of singularity in six-

bar linkage has two limitations:  

1) This approach checks the presence of singular position for each four-bar subsystem individually 

but does not take into account the interference between them. Since the two subsystems will 

affect each other’s motion, which adds additional limit to their range of movement, the singular 

positions predicted for one subsystem may not be actually reached by the six-bar moving as a 

whole.  

Nevertheless, the incentive for identifying singularity is to prevent program from crashing, which will 

happen when it tries to analyze a singular position, so over-predicting does not hurt this purpose.  

2) Currently, this algorithm only works for six-bars with a ternary follower (i.e. for the singularity 

check to be correct, the six-bars must have its ternary link to be one of the followers); it does not 

work for six-bar with a ternary crank (Figure 5.1) or a ternary coupler (Figure 5.2). 

 

 

Figure 5.1: Six-bar linkage with a ternary crank 
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Figure 5.2: Six-bar linkage with a ternary coupler 

In the case of ternary crank, the six-bar still consists of two four-bar subsystems, so the algorithm for 

identifying the corresponding links for each subsystems and conducting singularity check will be similar 

to the current version, Maybe there exists a more general algorithm for identifying the links, which will 

greatly improve the extensibility of the code.  

On the other hand, when the six-bar has a ternary coupler, one of the subsystems will be an 

single-input five-bar, which has two degrees of freedom. Identifying the presence of singular position 

for five-bar linkages turned out to be a tricky task, and by the time of this report, we had yet figured out 

any solution for it.  

 

5.4.2: Identifying singular positions during analysis and taking corresponding actions 

 The next step for solving the singularity problem, which has not been implemented yet, is to 

check if the linkage position being analyzed is singular. This can be achieved in two ways:  

1) PMKS can check if the coupler and follower have the same slope before each linkage position is 

analyzed. As described in section 4.7.2, this approach is straightforward but limits the range of 

action a user can take in advance.  

2) PMKS can calculate the crank angles at singular positions after a linkage with singularity is 

created and check if the actual crank angle is equal to that value during analysis. Crank angles 

can be calculated by using the cosine rule. Although PMKS stores the current angles for links, 

this functionality was flawed at the time of this report. Nevertheless, link angles can be easily 

calculated by using coordinates of joints.  

 

 In the future, additional functionalities can be added to allow the user to take a range of actions 

after PMKS detects the existence of singular position in the linkage and warns about it. Besides 

modifying the linkage, user may, for instance, choose to specify a range of angles around the singular 

positions for PMKS to skip during linkage analysis, since static and kinematic data gets less 

representative as linkage approaches its singular positions. If the user has given no instruction, PMKS 

should take certain action against singular positions by default (e.g. by skipping them during analysis).  
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5.5: State of the Software Now and Future Insight 

 As it stands, the WPF desktop version of PMKS has no dynamic animations working. Static 

shapes, like joints and the ground link are being displayed in the application. The code that does the 

mathematical analyses on the user created linkages was corrected and expanded upon. The Silverlight 

web application continues to work when ran with Visual Studio 2015 and the web browser used is 

Internet Explorer. The WPF desktop application no longer crashes on first interaction, and joints are 

now displayed and movable. Static shapes have been fixed, which leaves dynamic shapes to need future 

work. The animation in PMKS needs to be rebuilt from the original Silverlight version to the new, more 

feature rich WPF version. There are a lot of changes between how Silverlight handles animations and 

how WPF handles animations. The way Silverlight handles it is much less complex, while WPF has 

many more features and is purpose built to be able to support complex animations. To make the 

codebase more maintainable and easier to understand, a redesign of the way PMKS animates dynamic 

shapes is necessary. 

 

5.6: User Experience 

          Throughout this project we have had numerous tasks and several roadblocks. Our first focus was 

taking an existing web application and making a desktop version of the application. The next focus was 

to redesign that program so that it could create mechanical systems on its own. Those designs would be 

sent to a 3D printer and be rapidly prototyped. These tasks were broken into smaller segments:  creating 

the desktop application, correcting calculation errors and fixing code errors. Within creating the desktop 

application there was a smaller focus of addressing the user interface problems. 

 For a new user this program had a very steep learning curve as most programs like this do. This 

program was modified with several roles in mind: it was intended as both a teaching software and an 

industry application to design systems. Having this dual role made it more difficult to design for the end 

user. It was determined that simplicity would be the most important aspect of the user interface redesign. 

There are two major problem areas within the user experience: data input and data retrieval. On the data 

input side, there were problems with lack of data specificity to assist in the link creation.  Additionally, 

there was great difficulty locating the correct point to identify the force creation. In addition, on the data 

retrieval side the major issue was the massive quantity of data that PMKS would create an that needed to 

shorten the time and action from having data to finding the key data in question. Therefore, redesigns 

were created for all of these issues however, without successfully creating the desktop application those 
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redesigns were never implemented. Instead, they have been vetted, detailed and recorded for the next 

team to work on and this way the next team does not need to reinvent the wheel.  
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Chapter 6: Conclusion 

 

6.1: Accomplishments 

While the team ran it to its share of road blocks, there were a lot of accomplishments. Work was 

done on creating a program that can determine if there is a singularity and that give PMKS the capacity 

to prepare for the matrix equations to fail. The CS team worked on the user experience and 

troubleshooting the desktop application. The CS team also made significant progress on converting the 

Silverlight web application version of PMKS to a WPF desktop application. In this field four user 

interface changes were documented for the next team to implement. Moreover, the desktop application 

troubleshooting helped in cleaning up the code and creating documentation for the next team. 

 

6.2: Major Roadblocks Faced 

The CS team ran in a multitude of roadblocks as a result of the lack of documentation and 

communication from the last team. Working on the desktop version PMKS turned into a one step 

forward five steps back as more and more was understood about the software that was handed to the 

team. The CS team also ran into issues with the way animations were handled in Silverlight compared to 

WPF. One of the hardest things we had to overcome was having only one CS major on the team for a 

project that is entirely code. 

 

6.3: What was Learned 

The CS team learned about the importance of best practices when writing code. The uses of best 

practices, documentation and diagrams allows code to improve in iterations. Without these tools every 

new sent of eye needs to start from scratch to creates a well running program.  Moreover, the importance 

of creating simple and easy to understand user interface. The designer needs to take into account the 

users and what they can be expected to know then create an interface that works with their 

understanding to hold their hand as they learn how the program works.   

Working on PMKS has been an enriching experience that helped all of the three team members 

in different ways. The computer science major needed to widen his depth and breadth in statics, 

dynamics, and kinematics. All of the team members learned how to better function in a team and how to 

better communicate their ideas to one another. Moreover, it was a teaching experiences in perseverance 

in handling the many tasks and the problems they presented. The team ended this project more humbly 
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than they had started, and with a greater appreciation for the programs and tools used daily on the 

world’s stage.  
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Appendices 

Appendix A: Silverlight version of PMKS vs WPF version of PMKS 

 

 

• The Silverlight version of PMKS runs on a client-server architecture 

o Allows mass distribution and use 

o Limits software complexity 

• The WPF version of PMKS runs as a local desktop application 

o More overhead 

▪ Need to download program 

▪ Local computer needs to be fast enough to run it 

o Increased software complexity 

▪ Allows for cross application communication 

▪ Can be more graphically intense with animations 
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