
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2019

CPR Assistive Device
Eric Chiem
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Chiem, E. (2019). CPR Assistive Device. Retrieved from https://digitalcommons.wpi.edu/mqp-all/6812

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/6812?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6812&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu


Project Number: MQP JMS 1901 

US Application Number: 62/807,637    

IRB Number: IRB-19-0397 

 

 

CPR Assistive Device 
 

 A Major Qualifying Project 
Submitted to the Faculty of 

Worcester Polytechnic Institute 
in partial fulfillment of the requirements for the degree  

of a Bachelor of Science 

 

By 

 

 

 

 

Benjamin Abram Eric Chiem Zoey Foley John Ringuette 

 ME & BME ME & ECE BME BME 

 

Approved by 
Professor John Sullivan, DE, Advisor 

Mechanical Engineering Department 

Affiliate Professor BME Department 

Affiliate Professor ECE Department 

 



1 

 

Abstract 

 The American Heart Association states that more than 350,000 cardiac arrests occur 
outside of hospitals each year, and about 90% of those are fatal. In order to increase a cardiac arrest 
patient’s chance for survival, adequate compressions must be performed at the center of the chest 
down to 2-2.4 inches at a rate of 100-120 beats per minute, however it is estimated that only 1 in 
6 Americans actually know how to perform CPR. Currently, existing CPR devices that give real-
time feedback to bystander rescuers, do not satisfy all criteria in being ergonomic, intuitive, cost-
effective, portable and lightweight, and giving both audio and visual feedback. Our final CPR 
device satisfies all of those qualities. It gives both audio and visual feedback with a 110-bpm 
metronome from a buzzer and a series of LEDs that correspond to compressions that are “Too 
Shallow”, “Good”, and “Too Deep” from acceleration data collected from a 9DOF accelerometer 
inputted into a microcontroller. It is also compact, uses an interchangeable 9V battery, lightweight, 
and can withstand a safety factor of 3 times the maximum 120 pound-force needed to compress 
the chest. A spring box apparatus was designed to test compressions with the device between 0-3 
inches and verified with one hundred 2-minute compression tests, the CPR device proved to work 
73% of the time. IRB approval was obtained to test the device with 27 college-aged subjects and 
7 CPR-certified subjects, which showed that the device improved CPR techniques in 81.4% of 
subjects, and had a 96% increased user confidence level in performing CPR.  
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Chapter 1. Background 

1.1. Cardiac Arrest Background 

The Center for Disease Control and Prevention (CDC) stated that in 2016, the number one 

most common cause of death in the U.S. was from Heart Disease, which claimed approximately 

600,000 lives or about 23.4% of deaths [7]. Heart Disease is an umbrella term for many different 

pathological issues with the heart, such as Hypertension, Congenital Heart Diseases, and even 

stress [7]. Though the etiology, or cause of the issue, is varying and sometimes unknown, most 

cases exhibit the same outcome, death.  

All life depends on the cardiovascular system to deliver oxygen and nutrients to tissues 

throughout the entire body, in order for normal cell metabolism and functions to occur. The 

cardiovascular system, at its core, works as a closed tubular system that contains a pump (the 

heart), pipes (vasculature), and fluid (blood); all of which are necessary for perfusion to tissues 

and return to the heart.  

Death occurs when one or more parts of the cardiovascular triad critically fail; this situation 

is known as shock. There are four major types of shock: Hypovolemic shock, Distributive shock, 

Cardiogenic shock, and Obstructive shock. Hypovolemic shock occurs when there is a failure in 

the fluid aspect of the cardiovascular triad. Typically, due to trauma, if there is a loss of at least 

20%, or 0.3 gallons, of the blood from the system, this is considered a life-threatening state [27]. 

Distributive shock occurs when the piping vasculature dilate too wide and severely decrease the 

blood pressure of the system [1]. This situation can be caused by a neurological problem, like with 

spinal cord injuries, or by a chemical release of neurotransmitter, Histamine, in an allergic 

anaphylactic shock [45]. Cardiogenic shock occurs when the heart fails to pump blood 

autonomously [1]. This condition is typically due to myocardial infarctions or electrical issues in 

the heart where it either hyperacts in ventricular spasms called fibrillation, or doesn’t act at all, in 

asystole [35]. Obstructive shock occurs when the heart fails to pump blood due to an outside force 

inhibiting it [1]. This event can be caused by a blood clot inhibiting blood flow to the tissues of 

the heart causing the tissue to die or from a buildup of blood around the heart due to trauma that 

inhibits the heart to physically contract and expand [1]. 
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However, it happens, the cardiovascular system eventually fails and results in Cardiac 

Arrest. When the heart is not doing its normal function of pumping oxygen and nutrient-rich blood 

to the body, cells start to die, particularly in the brain.  

 
Figure 1. Hypoxia Timeline 

After only five minutes without oxygen, brain cells begin to die, and within the next five 

minutes, the patient will suffer from permanent brain injury and eventually be in a lethal state, as 

shown in Figure 1.  

The current solution to Cardiac Arrest includes Cardiopulmonary Resuscitation (CPR), in 

tandem with the use of Automated External Defibrillator (AED) to spark the electrical circuit of 

the heart and induce a normalized heartbeat.  

1.2. CPR Guidelines & Common Errors 

Cardiopulmonary Resuscitation (CPR) is performed by a rescuer on a patient undergoing 

Cardiac Arrest and ultimately attempts to manually pump blood throughout the body in order to 

preserve as much nervous and body tissue as possible. This is done by a bystander or trained 

medical personnel by placing the palm of the rescuer’s dominant hand in the center of the patient’s 

chest, interlocking the other hand on top of the dominant hand, locking arms, and pressing down 

into the patient’s chest and then releasing [2]. Figure 2 illustrates proper hand placement for a left-

handed First Responder during CPR.  

 



13 

 

 
Figure 2.Correct CPR Positioning (EMS Safety, 2015) 

The American Heart Association mandates that the compression rate is between 100 and 

120 beats per minute (BPM) and must be at least 2.0 to 2.4 inches deep into the chest, with upwards 

recoil, in order for the CPR to be successful. Though rescue breaths have been recommended in 

the past, the American Heart Association is focusing their efforts on the effectiveness of bystander 

compression-only, i.e. hands-only CPR [2], due to the fact that only 4% of oxygen is used per 

breathing cycle and that the patient’s blood supply already carries ample oxygen if circulated 

properly. In fact, the AHA in a 2013 study found that patients could still survive past 38 minutes 

of proper CPR with good brain function [34]. Since the national average EMS response time is 

about 15 minutes [5], it is critical that present bystanders know how to perform compressive CPR 

properly in order to increase their chances of survival by three times [16]. However, every year 

350,000 cardiac arrests occur outside of a hospital, and 90% of these occurrences are fatal [2]. This 

high statistic could be due to the severe lack of public knowledge in adequate CPR practices, in 

that only about 16% of Americans know how to perform CPR [37], and even if one knew the 

proper technique, they may not be able to tell how effectively they are performing in-field.   

However, even with proper CPR, there is still a risk for death or permanent brain damage 

of the patient as well as other common consequences. The most common side-effect to the patient 

during hands-only CPR or CPR with ventilation is vomiting due to pushed air into the stomach, 

which can further cause threatening aspiration [12]. Other side-effects include broken ribs that 

may lacerate the lung [12]. CPR also poses as a risk to the rescuer and standard personal protective 
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equipment is always recommended, such as gloves, goggles, or a one-way valve respiratory mask 

if rescue breaths are given [2].   

 

1.3. Technological Need 

Based on the statistics provided by the American Heart Association (AHA) on the 

inadequate execution of CPR, several devices have been created in an attempt to mitigate the 

situation. Our background research has illuminated five devices that currently exist. Four of these 

devices are currently on the market, while the fifth was a student designed device that has yet to 

be marketed. We researched the available products or prototypes to determine their strengths and 

weaknesses.  Our design would be targeted at addressing the weaknesses and augmenting the 

strengths of the existing units. The five existing devices researched are the Zoll Pocket CPR, the 

CPR Ezy, the CPR-Plus, the Laerdal CPR Meter, and the CPRGlove.  

1.3.1. Zoll Pocket CPR 

 
Figure 3. PocketCPR 

The Zoll Pocket CPR device is a pocket-sized CPR coaching device that uses both audio 

and visual feedback, seen in Figure 3. It coaches the user through the correct steps to perform CPR, 

while also measuring the compression depth of the chest that it is placed on. Based on the 

compression depth, this device can respond to the user by saying either “Push Harder” or “Good 

compressions”. It does not however respond with any feedback if the chest compressions are too 

deep into the chest. This device uses an accelerometer, which is a small electromechanical device 
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that will measure acceleration forces acted upon it. The accelerometer within this device measures 

the depth of each compression made onto the chest. This device uses a metronome system in order 

to coach the user to compress the chest at the rate of 100 beats per minute (bpm), which is the 

recommended rate provided by the AHA. It also uses flashing lights to assist the user in proper 

usage of the device. This device is powered by a replaceable battery. The Zoll Pocket CPR device 

costs approximately $220 [48]. 

There have been two studies to date that have examined the Zoll Pocket CPR device. In 

one of these studies it was found that there were no significant changes in CPR quality parameters. 

In the other study, it was found that there was improved compression depth and compression rate. 

Throughout both studies, it was found that the fatigue of the users did not increase subjectively or 

objectively [24]. 

The major limitation of the Zoll Pocket CPR device is that its frequent prompts may 

confuse users. If the device is not turned off properly after each use, the battery may die and leave 

the device possibly unreliable for use in case of an emergency. The constant prompts of “Push 

Harder” and “Good compressions” could possibly confuse users based on when the prompts are 

recognized. The inability to inform the user that they are compressing too deep into the chest is 

also a problem with this device.  

The major advantages of the Zoll Pocket CPR device are that it is portable, lightweight, 

easy to use, reusable, and it measures compression depth [24]. 

1.3.2. CPR Ezy 

 
Figure 4. CPR Ezy 
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Figure 4 above is the CPR Ezy is a CPR assistance device that uses both audio and visual 

feedback.  It coaches the user through the correct steps to perform CPR, while also measuring the 

compression depth of the chest that it is placed on. In order to determine that the CPR being 

performed while using this device is proper under the AHA’s guidelines, this device uses an LED 

pressure sensor. LED pressure sensors measure the force acting upon them, rather than measuring 

the relative depth of the device as an accelerometer would. It returns audio feedback through the 

use of a metronome system that beats at a rate of 100 bpm in order to direct the user to compress 

at the suitable rate provided by the AHA. It returns visual feedback through a row of LED lights 

that inform the user of the applied force and whether that force is suitable for specific body types 

designated by size and weight. This device is powered by a battery. The CPR Ezy device costs 

approximately $130 [22]. 

The major limitations of the CPR Ezy are that it uses a pressure sensor and was found to 

cause wrist discomfort due to its slippery plastic exterior [24]. If the device is not turned off 

properly after each use, the battery may die and leave the device possibly unreliable for use in case 

of an emergency. Although pressure sensors do properly measure the amount of force applied onto 

them, they do not measure depth in any way. Based on AHA guidelines, the amount of force 

required to compress a person’s chest during CPR varies for each individual. However, the depth 

that a proper compression much reach does not vary. A compression must reach a depth of 

anywhere between 2 and 2.4 inches for an average adult as described by the American Heart 

Association. This device’s incapability of measuring compression depth, makes it possibly 

dangerous to use, because it only measures force applied. In some instances, 120 pounds of force 

may not be enough to compress a person’s chest, whereas in others, it may be too much force and 

could cause further harm to the person. The CPR Ezy also has a plastic outer case that gets slippery 

and leads to wrist discomfort for the user, making it uncomfortable [24].  

The major advantages of the CPR Ezy device are that it is portable, lightweight, easy to 

use, and reusable [24]. 
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1.3.3. CPR-Plus 

 
Figure 5. CPR-Plus 

The CPR-plus is a handheld pressure-sensing CPR assistance device that uses both audio 

and visual feedback. It uses a force plate and an analog display in order to show the compression 

force acting on the person’s chest rather than compression depth of the chest. It uses a metronome 

system consisting of a speaker and an LED light to direct the user to compress at the suitable rate 

provided by the AHA. This device has been taken off the market [19].   

The major limitations of the CPR-plus are that it measures compression force rather than 

compression depth, and it is not ergonomic. This device’s inability to measure compression depth 

makes it possibly dangerous to use. This is because based on AHA guidelines, the amount of force 

required to compress a person’s chest during CPR varies for each individual. However, the depth 

that a proper compression much reach does not vary. A compression must reach a depth of 

anywhere between 2 and 2.4 inches for any individual. The device’s plastic case is also 

uncomfortable leading to wrist discomfort during use. 

The major advantages of the CPR-plus device are that it is easy to use and it does not rely 

on a battery for power [19]. 
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1.3.4. Laerdal CPR Meter 

 
Figure 6. Laerdal CPR Meter 

The Laerdal CPR Meter is a portable CPR assistance device that provides visual feedback. 

It uses an accelerometer as well as an extra pressure sensor in order to most accurately measure 

the chest compression depth during use. This device returns specific symbols on its screen that 

contains feedback for compression depth, compression rate, and chest decompression. It also 

records CPR data while being used that can be reviewed later. This device is powered by one 

replaceable battery. The Laerdal CPR Meter costs approximately $900 [11]. 

The major limitations of the Laerdal CPR Meter are that it relies on a battery and that one 

must have specific training in order to understand how to properly use it. If the device is not turned 

off properly after each use, the battery may die and leave the device possibly unreliable for use in 

case of an emergency. This device’s only feedback to the user comes in specific symbols on a 

small display screen. These symbols are unrecognizable for someone who has not had training in 

the use of this device, and therefore makes it less effective to an untrained person [24]. 

The major advantages of the Laerdal CPR Meter device are that it is reusable, portable, 

lightweight, it saves and records data during its use that can be reviewed later on, and that it 

measures both compression force and depth in order to most properly provide feedback for the 

user [11]. 
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1.3.5. CPRGlove 

 
Figure 7. CPRGlove 

The CPRGlove is a CPR assistance device designed by two students from McMaster 

University that uses both audio and visual feedback. The glove uses an electrocardiograph to 

measure the person’s heart rate which can then be assessed to determine if he/she requires CPR. It 

uses an accelerometer to measure the chest compression depth. Piezoelectric sensors are used to 

provide visual feedback based on whether the compressions are deep enough into the chest. A 

metronome provides audio feedback in order to direct the user to keep compressions at a proper 

rate. The glove itself is made up of a nylon-spandex composite. The CPRGlove is currently a 

prototype [43]. 

 The major limitations of the CPRGlove are that it is not portable, it is has not been 

marketed, it is expensive, and the materials that were used to make the glove are not suitable for 

repeatable use. The glove itself is very large which makes it harder to carry around when compared 

to the other devices listed previously. It also is too large to fit inside a normal first aid kit. The 

device has yet to be marketed 11 years after its development, and even though the designers believe 

that it could be mass produced for as little as $60, there is no evidence to support that claim. The 

development cost of the existing glove was $2500. The materials chosen to make the glove portion 

of the device were also inexpensive and subject to failure after many uses [43]. 

The major advantages of the CPRGlove are that it is comfortable and ergonomic, it is 

reusable, it measures compression depth, and it is easy to use. Table 1 summarizes the CPR 

assistance devices. 
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Table 1. Comparative List of CPR Devices 

Device Measuring 
Mechanism(s) 

Audio 
Feedback 

Visual 
Feedback 

Cost Pros Cons 

Zoll 
Pocket 
CPR 

Accelerometer 
- measures 
compression 
depth 

Yes Yes $220 Portable, 
Lightweight, 
Easy to use, 
Reusable, 
Measures 
compression 
depth 

Relies on a 
battery, 
Frequent 
prompts 
may confuse 
users 

CPR-Ezy Pressure 
Sensor – 
measures 
compression 
force 

Yes Yes $130 Portable, 
Lightweight, 
Easy to use, 
Reusable 

Relies on a 
battery, does 
not measure 
compression 
depth, Not 
ergonomic 

CPR-Plus Force Plate – 
measures 
compression 
force 

Yes Yes Not on 
Market 

Easy to use, 
No battery 
needed 

Does not 
measure 
compression 
depth, Not 
ergonomic 

Laerdal 
CPR 
Meter 

Accelerometer 
and Pressure 
Sensor – 
measures both 
compression 
force and 
depth 

No Yes $900 Reusable, 
Portable, 
Lightweight, 
Saves and 
Records 
data, 
Measures 
compression 
force and 
depth 

Relies on a 
battery, 
requires 
specific 
training in 
order to 
properly 
understand 
its output 
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CPRGlove Accelerometer 
- measures 
compression 
depth 

Yes Yes $2500 Ergonomic, 
Reusable, 
Easy to Use, 
Measures 
compression 
depth 

Not 
portable, 
Expensive, 
Not suited 
for 
repeatable 
use 

  

Chapter 2. Device Specifications 

2.1. Design Criteria 

The first step is customer requirements, this step comes from our clients need, and it 

specifies what they expect from the device, and it is general guidelines to follow. From there we 

develop our own product requirements, which are more specific requirements than the customers 

so that we can process through what parts we might need to create this device. The final step to 

determining what we need to make this device is turning our product requirements into 

specifications, where we determine the general parts needed to bring the device from concept to 

prototyping.  

2.2. Specifications based on Existing Devices 

Based on the strengths and weaknesses of the existing devices shown in Table 1, we have 

created a list of specifications that our device must follow in order to be most effective. This list 

includes being: 

·         Cost efficient 

·         Portable 

·         Lightweight 

·         Easy to use/understand 

·         Must measure compression depth 

·         Provide both audio and visual feedback 

·         Ergonomic 
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Our device must be cost efficient in order to market it as a part of any normal first aid kit. 

Compared to the prices of existing devices, we intend to design our device to cost no more than 

$100 dollars, but keep the price as low as possible. It must be portable in order to fit within an 

average first aid kit and be easily accessible case of emergency. The average size of a first aid kit 

can range anywhere between 10” x 5” to 12” x 7”. The device must also be lightweight in order to 

make it easy to use in any instance by any person. It must also be ergonomic and comfortable for 

the user so that during the application of CPR using the device, there are no complications with 

wrist discomfort or possible injury. The device must be easy to use and understand so that in case 

of emergency, anyone can quickly turn it on and begin CPR. The faster the device is applied the 

better for the person in danger, since it takes only minutes for someone that has gone into cardiac 

arrest to experience severe damage. As previously mentioned, the use of pressure sensors and force 

plates are a great way to measure the applied force to someone’s chest during CPR. However, 

according to the AHA, the amount of force required to compress someone’s chest during CPR 

varies per person, whereas depth does not. Therefore, our CPR device focuses on compression 

depth measurements rather than force. In order to measure compression depth, the device will use 

a tri-axial accelerometer rather than a pressure sensor or force plate. Our device must also provide 

both audio and visual feedback to the user in order to be most effective in aiding the CPR being 

performed. Based on the existing devices, audio feedback should return a metronome beat of 100 

bpm so that the user can keep the correct pace during compressions, and visual feedback should 

be focused on whether the compressions being applied are not deep enough, too deep, or sufficient 

[21]. 

 

2.3. Specifications based on Biological Reasoning 

The actual size and design of the device is also influenced by a multitude of 

specifications that include: 

● The placement of visual feedback 

● The type of visual feedback 

● The placement of audio feedback 

● The type of audio feedback  

● The placement of the power switch 
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● The size of the average human hand         

● The size of the electrical component  

● The size of the average human sternum 

● The material used to make it 

● Contact with the Patient’s Chest 

The general size of the device is based on a combination of the size of the average human 

hand breadth, the size of the average human sternum, and the size of the electrical components that 

will sit within the device. The device should be split into two sections, a user interface and a 

physical interface due to the necessity of space for the electrical components as well as the 

necessity for a large enough area for the user to compress on. The user interface will contain most 

of the electrical components and will not experience any applied forces because the hands of the 

user will not be placed on it. The physical interface will be the section of the device where the user 

places his palm and compresses during CPR. The average width and palm length of the human 

hand in combination with the average size of the human sternum gives us the necessary 

information to determine what the size of the physical interface of our device should be. Based on 

anthropometric data of the human hand in Figure 8, the average female hand spans 3.13 inches 

wide spans while the average male hand spans 3.56 inches wide [3].  

 
 

Figure 8. Anthropometric Data: Hand Breadth 
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The average female hand spans 7.1 inches long while the average male hand spans 7.63 

inches long, shown in Figure 9 [26].  

 
Figure 9. Anthropometric Data: Hand Length 

The average sternum width for a female is 1.45 inches while the average sternum width for 

a male is 1.58 inches, shown in Figure 10 [38].  

 

 

 
Figure 10. Anthropometric Data: Sternum Width 

In order for any person to be able to correctly use our device, the physical interface section 

of it should be approximately 3.5 inches wide and 7.5 inches long. At this size it will accommodate 

most users, and rest steadily on the chest of the patient. The size of the user interface must be large 

enough to fit most of the electrical components. 
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The type and placement of visual feedback, type and placement of audio feedback, and 

type and placement of the power switch are all needed to properly design the user interface section 

of the device and also to maximize the device’s effectiveness. In order for the user to properly use 

the device during CPR, the audio and visual feedback must be easily recognizable. Based on 

existing devices, LEDs will provide good illumination on all lighting situations and not draw a 

significant amount of energy for the display information to the user regarding chest compression 

depth. This is because LEDs are bright, easy to incorporate, and will help the user easily understand 

when a compression is either too deep, not deep enough, or suitable. The placement of these LEDs 

within the device is very important. In order to be most effective in providing visual feedback, the 

LEDs should be placed on the top of the device facing the user. In this position, the user will be 

looking directly down at the LEDs which will ensure they can see them, but it will also protect the 

LEDs from being damaged during compressions as they do not contact the user or the receiver of 

the CPR. 

Based on existing devices, a speaker can effectively provide audio feedback to the user. 

This speaker has to be loud enough for the user to hear in any situation so that they can keep pace 

at 100 bpm. The speaker should be placed on the top of the device aimed directly towards the user 

to ensure that they will hear it. 

The placement of a power switch is an extremely important design component. In order to 

avoid the device being shut off accidentally during an emergency situation, the power button or 

switch should be relatively small, but also be located on the top of the device facing the user. If 

the user can properly see the button, they can avoid interfering with it. Also, with it being located 

on the top of the device, it will not come in contact with the patient’s chest, therefore eliminating 

the chance of the device being turned off through accidental contact. 

The material of the device must also be considered. The device has to be able to withstand 

120 lbs of force so the material itself must be strong. Compressive strength, young's modulus, and 

fatigue are also important in determining whether or not the material could support the applied 

forces, and also if the material is able to hold its shape for long periods of time. Another important 

factor in material selection are the material’s thermodynamic properties. Since there are electrical 

components within the device, there could be an elevated temperature inside, so the material must 

be able to withstand the varying temperatures. An important factor when determining the material 

is how it breaks. In this case, we want the material to break into larger, dull chunks, rather than 
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sharp and dangerous parts, as this could injure either the rescuer or the patient. Another important 

factor in material selection is degradability. We want the material to be capable of functioning 

even in contact with various biological fluids.  

The device has the potential to be mass produced using injection molding, consequently, 

the design requirements for injection molding as given by the “Injection Molding Design 

Guidelines” from Stratasys Direct, Inc [13] were followed. The wall thickness of the device will 

be held between 2-4mm. Ribs and gussets will be used to create support throughout the device to 

withstand required loads and to help partition many of the internal components. We will place all 

bosses away from each corner and wall in order to secure the device. The bottom of the device 

should have rounded edges and a chamfer to remove any sharp edges and also allow the device to 

fit naturally on the chest of the patient. For initial prototyping, the top of the device will remain 

flat and blank with rounded edges, until the exact locations of each electrical component are 

determined.  
  

Chapter 3. Electrical Components  

After identifying the product specifications, we worked to identify the exact components 

that would be used in the product. In order to do so, value analysis was performed on individual 

components using a list of weighted value criteria and metrics determined by the team. The 

following section outlines this process. 

 

3.1. General Design Approach 
  

From the product specifications we defined, we can divide the electrical component of the 

device into four basic subsystems: power, measurement, processing, and feedback. By doing so, 

we can identify individual priorities which we can use to develop value criteria for the components 

themselves. Because the device is meant to be relatively small and self-contained, this means that 

all subsystems must facilitate that. In addition, one of the other main priorities is to keep the cost 

low enough to allow for accessibility and therefore cost will be a factor in all components. 
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3.1.1. Power Subsystem 

The main priority of this subsystem is to ensure that the device will have power even if left 

untouched for long periods of times. When the device is in usage, it should have enough charge to 

last through variable length sessions of CPR whether it be for only a couple minutes or an entire 

hour. Because we want to keep the cost low and do not want the device to require any lengthy 

maintenance, we have excluded the option of a self-powered device or rechargeable battery. It is 

therefore best to simply use a readily available, inexpensive, and replaceable battery to both supply 

and buffer the power usage. In order to ensure that the device only uses up power when it is in use, 

the device should also include a switch to turn it on and off. 

3.1.2. Depth Measuring Subsystem 

In order for the device to be able to tell the responder when s/he is providing proper CPR, 

it must be able to determine if the chest compressions are at the correct depth. As listed in the 

customer requirements, the ideal depth for compression is in the 2 - 2.4-inch range. This could be 

accomplished using either an accelerometer or a force plate. The amount of force required to 

achieve this level of compression could vary by factors such as gender or build and as such, a force 

sensor would not be as consistent in providing this data. As such, we are planning to use an 

accelerometer to read this information.  

3.1.3. Information Processing Subsystem 

It is unlikely that we would be able to design the circuits to process information from the 

circuits and provide feedback within the scope of this project. As such, we will be using a 

microcontroller to interpret data from the sensor and control the response system to alert the user 

when they are performing CPR properly. One of the goals is to also provide feedback regarding 

compression rate or frequency; the use of a microcontroller eliminates the necessity for an external 

timer to accomplish this goal. 

3.1.4. Feedback Subsystem 

In order for the device to be useful, it must be able to not only capture information about 

the depth of compressions but also relay it back to the user in real time without distracting them 

from the task at hand. It was determined that in order to accommodate for users with disabilities, 

this feedback would be given both audibly and visually. In previous iterations, complex signals 
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such as vocal commands and Liquid Crystal Display (LCD) prompts were utilized. However, this 

resulted in an overload of information to the user which confused them at the time of operation. 

As such, we decided that it would be more beneficial to use simpler cues such as buzzers and 

LEDs. 

3.2. Specific Module Design 

 

Having determined the priorities of each subsystems and the components that would form 

them, we created more specific criteria for each component. This starts by first identifying the 

requirements of each component and the different value criteria that would affect its operation in 

the device. These criteria were discussed by the team and each individual member compared every 

criterion in relation to every other criterion, declaring which was more important to them. This 

data was then compiled to form our final weight assignments. Potential options for components 

were identified and, using the weight assignments, value analysis was performed to determine the 

part that would be used in the prototype. Once again, cost and size are persisting factors in each 

component for the same reasons listed previously and are therefore not discussed in this section. 

 

3.2.1. Battery 

The battery provides the power for the entire system. 

 Value Criteria: 
● Cost 
● Size 
● Ease of Integration and Usage 
● Safety and Durability 
● Life Expectancy 

 

One of the main concerns with regard to the battery is whether or not it will be easy to 

replace. If we want this device to be easily accessible, it cannot use a niche battery that you can 

only buy online or at specific stores. The batteries should be easily available and take very little 

effort to replace. Users should not require a technician to do it for them. 
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Because the battery will be within the device, it will also be experiencing a significant 

amount of movement over a relatively long period of time. It is important that the battery does not 

malfunction or leak during operation. 

 

We do not expect the device to be operated or even handled often. For the convenience of 

the user, we must ensure that the battery has a relatively long life-expectancy so they do not need 

to replace it relatively often. Any more than once a year is excessive. Table 2 shows the 

assignments of weight.  

 
Table 2. Battery Weight Assignments 

 
 The team put large emphasis on the safety and durability of the battery to ensure that in 

using the device, it would not cause additional harm to the user and patient. In addition, it was 

determined that for both prototyping purposes and usage by the customer, the battery is easy to 

both wire and replace. Because batteries don’t differ greatly by price, cost was not very important 

to us. 

 



30 

 

 

Here are the options we evaluated: 

1) 9V 

 
Figure 11. 9V Battery 

The 9V battery stood out because of how easy it is to use. Being 9V, we require only one 

to power the microcontroller. Because both positive and negative leads are on the side side, it is 

easy to wire such that it can be replaced easily, giving it the highest score in terms of ease of 

integration [20]. 

2) AA 

 
Figure 12. AA Battery 

Although a single AA battery is relatively small in size, each battery has a voltage of 1.5V. 

As such, we would need four AA batteries in series to power a 5V microcontroller. This makes 

AA batteries very large and difficult to both wire and replace [19]. 
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3) 3V Disk 

 
Figure 13. 3V Disk 

The 3V disk batteries are by far the smallest available batteries for our application. In order 

to achieve the required 5V, two batteries would have to be stacked but because of the nature of the 

battery, this is fairly simple. The only concern is that when building the chassis, we would have to 

ensure that there are leads on both the top and bottom off the case to attach to the positive and 

negative terminals of the battery. This causes an increase in complexity in the chassis and 

potentially difficulties in preliminary testing. At the end of the day, it is a trade between size and 

ease of integration [9]. 

 

Here are the results of the value analysis: 

 
Table 3. Battery Value Analysis 

 
   

As can be seen, it was decided that the 9V battery would be best for usage in a prototype. 

A deciding factor in this decision was its ability to be wired and replaced easily. One 9V battery 

is enough to drive the controller, is commonly used in similar applications, and can be wired with 

access to only the top of the battery. Although it is slightly bulkier than the alternative of using 3V 

batteries, its simple to use battery clips make it the best choice. 
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3.2.2. On/Off Switch 

The on/off switch ensures that the device does not consume power when not in use. 

 

 Value Criteria: 
● Cost 
● Size 
● Visibility 

 

The main concern when choosing an on and off switch is whether or not it is quickly 

accessible when the device is needed. Most of this is handled in the design of the device chassis, 

but it would also be beneficial to have a switch that stands out. 
Table 4. On/Off Switch Weight Assignments 
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Here are the options we evaluated.  

1) Slide Switch 

 
Figure 14. Slide Switch 

 The slide switch costs $2.00 and comes with 2 switches. These switches are relatively small 

and harder to access on devices than other switches. Because of theisize, they are also harder to 

see or find on a device as well [39].  

2) Cutler-Hammer 

 
Figure 15. Cutler-Hammer 

 The Cutler-Hammer is a non-illuminated pushbutton that costs $6.53 per unit. These 

buttons are much larger than the on-off switches above as they are 1.17 inches wide and 22.5mm 

in diameter. Its bright red color allows it to be much more visible on a device, and its larger size 

allows easier access for the user [17].   
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3) Red Rocker 

 
Figure 16. Red Rocker 

 The Red Rocker is a rocker switch that is .6875 inches in width, making it larger than the 

slide switch and a bit smaller than the cutler-hammer pushbutton. This unit costs $2.00 making it 

less expensive than the Cutler-Hammer pushbutton. Its bright red color coupled with its distinct 

on and off settings provide the user with good access and visibility [15]. 

 
Table 5. On/Off Value Analysis 

 
 

After performing value analysis on the three different on/off switch options above, the team 

decided to use the cutler-hammer pushbutton in order to provide the best method of turning the 

device on and off. Despite cost, this pushbutton provides the user of the device the best possible 

accessibility and visibility when compared to the slide and rocker switches. The main reason why 

the group chose to use the pushbutton however is for safety. With switches such as the slide switch 

and rocker switch, it is possible that during use, the user could easily hit the switch and turn the 

device off. If the device is turned off in an emergency situation while being used, it could be 

detrimental to the patient’s outcome. With the pushbutton, it would be extremely difficult to turn 

the device off while using it, as the user would have to push it with enough force perpendicular to 

the direction of the force being applied to the patient to deactivate it, rather than just hitting it by 

accident.  
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3.2.3. Accelerometer 

The accelerometer is used to measure data that can then be used to determine compression depth 

 
 Value Criteria: 

● Cost 
● Size 
● Range 
● Frequency 
● Requires Filtering/Amplification 

 

CPR is fast paced and is delivered through high impulse chest compressions. It is important 

that accelerometer has a large enough range to capture this information without clipping the largest 

impulses. 

 

In order to ensure that the device functions properly, we must be able to derive data about 

the position of the data from the device. The device must operate consistently in reporting 

information at the peak of the impulses. Under the assumption that the accelerometer will record 

accurate data at that magnitude, it must also be ensured that data samples are taken frequently 

enough to capture these near instantaneous peaks. 

Depending on how the sensor outputs this information, it may need filtering or 

amplification. Both of these operations would require additional electronic circuitry which would 

contribute to the size of the device. 
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Here are the results of the weight assignments: 

 
Table 6. Accelerometer Weight Assignments 

 
 

 The team put large emphasis on the range, frequency, and need of filtering or amplification 

for the accelerometers. This was used to ensure that the data acquired would not be subject to 

clipping and to minimize inaccuracy. This is primarily due to the nature of the product as a 

biomedical instrument. However, the size and cost of the accelerometer was still important in 

ensuring that the device as a whole would be a competitive alternative. 
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Here are the options we evaluated.  

1) ADXL345 

 
Figure 17. ADXL345 Accelerometer 

The ADXL345 is an accelerometer with 13-bit resolution which can measure up to +/- 16g. 

Its available range far exceeds anything we would expect to see in our application which makes it 

a good choice in ensuring that the data will not be cut off due to excessive force. However, it is 

expensive at $17.52 [41]. 

2) MPU6050 

 
Figure 18. MPU6050 Accelerometer 

The MPU6050 rivals the ADXL345 in range and sensitivity with a 16-bit resolution that 

also measures up to +/- 16g. Having the same SCL clock frequency and approximate size, the 

MPU6050 is simply superior to the ADXL345 for our purposes because of the decreased cost at 

$5.88 (GY-521). 
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3) MMA8452 

 
Figure 19. MMA8452 

The MMA8452 accelerometer is an accelerometer that is similar to the MPU6050. It is 

slightly more expensive, but also has a smaller range and resolution, making it an inferior 

alternative [47].  

 

Here are the results of our value analysis: 
 

Table 7. Accelerometer Value Analysis 

 
The accelerometers were very similar in operation, with the first two having the capability 

of measuring up to 16g in acceleration with a standard 400kHz response rate using the I2C serial 

protocol. Being all relatively similar in size, the deciding factor between the ADXL345 and 

MPU6050 ended up being the price. Costing only $5.88, the MPU6050 will be used in the 

prototype. 

3.2.4. Microcontroller 

The microcontroller processes the information from the accelerometer to find compression depth; 

it then uses this information to control the buzzer and LEDs. 

 

 Value Criteria: 
● Cost 
● Size 
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● Analog to Digital Converter (ADC) 
● Digital to Analog Converter (DAC) 
● Pulse Width Modulation (PWM) 

 

It is still undetermined the method by which the accelerometer will output data. As such, 

it is important to have a microcontroller that is versatile enough to convert between digital and 

analog data. It should also be able to receive and send pulse width modulated (PWM) signals. 

 

Here are the results of the weight assignments: 
 

Table 8. Microcontroller Weight Analysis 

 

As can be seen from the weight assignments, a large emphasis was put on the ability of the 

microcontroller to send and receive PWM signals and convert analog data to digital data. This is 

primarily due to the fact that most buzzers and accelerometers operate using PWM signals. 

However, if the operation of an analog accelerometer far exceeded that of a digital one, it would 

be preferable to have the option to use it as well. However, analog output devices would not be 
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likely to vary in function as drastically and therefore the value of a DAC was negligible. It was 

also important that the microcontroller was small enough so it could be contained easily within the 

chassis. 

 

Here are the options we evaluated.  

1) Arduino Uno 

 
Figure 20. Arduino Uno 

The Arduino Uno is a highly versatile general usage microcontroller for testing purposes. 

It has enough functionality and pins to support most small-scale projects as well as a well-

documented and user-friendly IDE. The Arduino Uno is a strong starting point to prototype most 

devices. In this project, the main concern with using an Arduino Uno is simply its size. At 68.6mm 

x 53.4mm, it is very large and would easily take up a majority of the available space inside of the 

device [4]. 

2) Sparkfun Pro Micro 

 
Figure 21. Sparkfun Pro Micro 

The Sparkfun Pro Micro is one of the smallest microcontrollers on the market. With ADC 

and PWM support, it would easily support much of the functionality required for this project. It 
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measures at about 33mm x 18mm, making it a much smaller and more suitable choice for this 

project than the Arduino Uno. One concern is its reasonably high price of $19.95 [40]. 

3) Arduino Mini Nano 

 
Figure 22. Arduino Mini Nano 

The Arduino Mini Nano is the smallest microcontroller created by Arduino. It has similar 

functionality to the Sparkfun Micro but is slightly smaller at 45mm x 18mm. However, it is also 

half the price and has integrated support in the IDE. The reduced cost of $6.99 makes this a superior 

alternative to the Sparkfun Micro [28]. 

Here are the results of the value analysis: 

 
Table 9. Microcontroller Value Analysis 

 
 All of the controllers had standard features including PWM and ADC pins, but none had 

included a DAC. As such, the final decision came down to the cost and size of the microcontroller. 

The Sparkfun Micro and Arduino Mini Nano are comparable in size but being that the Arduino 

Mini Nano is over half the price, it is the microcontroller that we will be using in this project. 

3.2.5. Buzzer 

The buzzer provides audio feedback regarding the performance of the user. 

 Value Criteria: 
● Cost 
● Size 
● Loudness 
● Range of Feedback 
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If the buzzer is too soft, the user may not be able to hear it as they are performing CPR. If it is too 

loud, it may become disorienting or distracting for the user. 

 

If the buzzer can output a range of frequencies, the pitch may be altered to send more complex 

information regarding their performance. 

 

Table 10. Buzzer Weight Analysis 
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Here are the options we evaluated.  

1) Single Tone Buzzer 

 
Figure 23. Single Tone Buzzer 

 This single tone buzzer produces sound at 3kHz and produces a sound approximately 

between approximately 78-100 decibels. It operates at a voltage supply between 3V-18V. It has a 

diameter of 25.1mm and a height of 22.2mm height. It costs $2.95 [30].  

2) Mini Speaker 

 
Figure 24. Mini Speaker 

 This mini speaker is much smaller than the single tone buzzer with a diameter and height 

of 12mm. It is also less expensive than the single tone buzzer at a cost of $1.95. It operates with a 

supply voltage of 3.3V and produces a sound approximately between 85-95 decibels. This mini 

speaker also responds best with a square wave, which can be produced by a microcontroller [46]. 
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3) 16 Tone Buzzer 

 
Figure 25. 16 Tone Buzzer 

This large piezoelectric 16 tone alarm is four times the price of the mini speaker above, 

however, it can operate with a range of 16 different tones that could be useful in providing the 

necessary information to the user of the device. This buzzer operates with a supply voltage between 

5-16V. Compared to the the mini speaker which is very small at 12 mm diameter, this device is 

much larger with a diameter of 35.8 mm and a height of 35.7 mm. At a 5V supply, this device can 

produce a sound registered at approximately 90 decibels. At a 16V supply, this device can produce 

a sound registered at approximately 103 decibels [29]. 
 

Table 11. Buzzer Value Analysis 

 
 

After performing value analysis on the three different buzzers above, the team decided to 

use the mini speaker to produce the audio feedback necessary during CPR. At the lowest cost, it 

will allow the team to produce the device and also market it at a lower cost. This speaker also 

produces a loud enough sound for a person performing CPR to hear and follow along to while 

administering compressions. This speaker also requires an input voltage of 5V which will be 

provided by the use of a 9V battery within the device. This speaker is also toned to respond best 

with a square wave which can be produced by a microprocessor, which the team will be using 

within the device.     
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3.2.6. LEDs 

The LEDs provide visual feedback regarding the performance of the user. 

 Value Criteria: 
● Cost 
● Size 
● Color 
● Brightness 

 

Having a variety of colors available would provide the opportunity to use colored signals 

to provide feedback to the user. 

 

Depending on the location that the device is used, the LED may not be visible if it is not bright 

enough. However, if it is too bright, it may also disorient or blind the user. 

Here are the weight assignments for the LEDs.  
Table 12. LED Weight Analysis 
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As one can see above, the group felt that the cost of the LEDs used for the CPR assistive 

device did not significant, compared to the brightness of the LEDs. The color of the LEDs was 

also important because the group wanted LEDs that had the option of different colors, rather than 

just one. The size of the LEDs was not that important compared to other criteria because most 

LEDs are relatively small compared to other components used in this device, however, the smaller 

the better.  

 

Here are the options we evaluated.  

1) 10mm Red  

 
Figure 26. 10mm Red LED 

 The 10mm Red LED is very inexpensive at $0.55 per LED, but is very large at 10 mm 

diameter. It is made with an opaque epoxy package that does not produce the brightest of lights, 

but rather a soft glow. It operates with a supply voltage between 1.8-2.2V [14].  

2) RGB Clear  

 
Figure 27. RGB Clear LED 

 The RBG Clear LED can produce clear and bright light in three colors: red, blue and green. 

These LED’s cost $2.05 per LED, but are half the size of the 10mm Red LEDs above, at 5 mm. 

These LEDs also have the feature to pulse width modulation all three colors of red, blue, and green 

to produce a variety of mixed colors (LED - RGB Clear).  
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3) RGB Addressable  

 
Figure 28. RGB Addressable LED 

 The RGB Addressable LED is relatively intermediate in size, standing at 8 mm in diameter, 

when compared to the RBG Clear LEDs and the 10mm Red LEDs. These LEDs require a bit more 

supply voltage than the previous two however, as they require 4.5-6V. These LEDs outer shell is 

also an opaque cover, which therefore dims the light that they produce. They do however produce 

a wide variety of colors just like the RBG Clear LEDs [32].  

4) 25 pack 5mm red  

 
Figure 29. 25 pack 5mm red LED 

 This 25 pack of 5 mm red LEDs are the least expensive of all 4 options at approximately 

$0.14 per LED. They are also the smallest LEDs tied with the RGB Clear LEDs at 5 mm in 

diameter. These LEDs however produce dim light due to an opaque cover and can only produce 

red light rather than a variety of colors [31].  

 
Table 13. LED Value Analysis 
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After performing value analysis on the four different LED options above, the team decided 

to use the RGB Clear LEDs in order to produce the best possible visual feedback to the user of the 

device while performing CPR. Although being the most expensive LED, the RGB Clear LED 

produces the brightest light, the widest variety of light, and is the smallest LED of the 4 (tied with 

the 5mm red ones).  

 

 

Chapter 4. Prototyping 

4.1. Factor of Safety 
 When designing a case to support any load, one must first determine standards such as the factor 

of safety. It is defined as the ratio of the yield strength of a chosen material and the max yield strength of 

the design. Mathematically it is 𝛿= 𝑌𝑆/𝜎𝑚𝑎𝑥, however you must first determine a minimum safety factor 

value. This minimum value is determined by various factors such as calculation accuracy, use of the device, 

and chosen materials. Typically, the ranges are from 1.3-1.4 being a design that has very accurate 

calculations, is made from a uniform material, and has a precise design. The ranges from 1.4 to 1.7 typically 

indicate your typical working conditions. The ranges from 1.7 - 3.0 will typically indicate unfavorable and 

nonstandard conditions [36]. When looking at our device, the condition which the device will always see 

is a load of approximately 100-125 lbs of force [16]. The device itself could be used in any location where 

someone needs CPR, which could be anywhere. The device will also be printed in PLA, so structurally, the 

device is not made of a uniform material. These factors shaped our decision to use a safety factor of 3 to 

properly consider numerous external factors coming into play when using this device. Once we have a 

minimum safety factor, we can use SolidWorks Simulation on the designs to test for maximum stress values 

on the device. From there we can use the appropriate governing equations, Eqs (number, as listed in report) 

to solve for the actual factor of safety, and compare it to our set minimum. If our calculated value is less 

than the minimum safety factor we determined, then the case does not meet our standards and changes must 

be made. If our calculated value is greater than the value of our determined safety factor than the case is 

acceptable from a load bearing standpoint.  
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4.2. Stress Tests 
In order to determine if the device design can withstand the forces associated with normal use, we 

will use SolidWorks Simulation to add loads parts of the design and using the fixation option we are able 

to make the device seem as if it is sitting on top of a flat platform to recreate the situations as seen in Figures 

30-32. In order to properly test the device. The load area is determined by using anthropometric data such 

as data on the average human hand and the specific location of the load will be where the hand should be 

placed when using the device as seen in Figure A. The maximum amount of force applied will be the normal 

average forces applied during CPR, which is 120-125 lbs. of compressive force [16].  In the US, the average 

palm length of men ranges from 10.35cm to 11.54cm and the average palm length of women is 9.5cm to 

9.88cm. For our case, we will use the median of the two average values, 10.95cm and 9.69cm respectively, 

and test both male and female palm size. Once the loads have been applied in the correct locations and the 

device has been fixed, we can run the simulation. The simulation then gives back a series of stress values 

in different locations all over the device. We then pick the highest stress value to plug into our safety factor 

formula to determine if the device is structurally sound.  

 
Figure 30.  Image of stress test showing force placement 

 
Figure 31. Image of stress test showing location of fixation 
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Figure 32. Image of device on a flat surface 

 

4.3. Material Selection 

 The material that the case is made of is also a large factor in designing it to be structurally sound.  

There are important factors such as how well it molds and its yield strength that are used to help narrow 

down the search for a material. The first material we considered was Acrylonitrile Butadiene Styrene 

(ABS). The material is a commonly used in injection molding, however its yield strength was only between 

42-46 MPa, making it a fairly weak material. We then looked at a different material called Styrene 

acrylonitrile (SAN). The material is stronger with a yield strength of 68.4-82.1 MPa making it a much better 

candidate than the ABS. SAN is similar to ABS, but replacing ABS with SAN allows us to get a larger 

yield and compressive strength. From there we now look at different versions of ABS and SAN for injection 

molding. The next material to look at was 30% glass filled ABS and 30% glass filled SAN, both of which 

are used in injection molding processes. The cost per kg of the two different materials are 3.04 - 3.19 USD 

2.97-3.22 USD and respectively. Since their costs are relatively similar, we can eliminate cost as a factor 

in the decision-making process.  Due to the constant loads being applied to this device, we have determined 

to go with 30% glass filled SAN due to its highest yield strength of the 4 being 110-120 MPa [8]. 
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4.3.1. Design 1 
  

The goal of the first device was to determine the relative size of the device and start with component 

placement as seen in Figure 33. The basic size of the device was adapted from the earlier anthropometric 

justification. The size of this device is 160mm X 80mm. The starting thickness of the case is 6mm and the 

screw holes are M2 through holes. We wanted the device to be handheld, so that along with the 

anthropometric data we designed the case to resemble the dimensions of a cell phone.  The bottom of the 

device is chamfered in order to better fit in the groove of the human chest as seen in Figure 34. In order to 

determine if the device meets our structural standards, we ran two stress tests on it, one for the average male 

hand, and one for the average female hand as seen in Figures 35 and 36 respectively. From there we can 

determine our safety factor for this device. Since our material of choice is 30% glass filled SAN, we have 

a yield strength of 16679.3 psi, so the safety factor of the device for a woman is 𝛿= 16679.3/737.1= 22.6. 

Since 22.6 > 3 and 3 was our set safety factor, structurally this device is strong enough to support its planned 

use.  For a man the safety factor is 𝛿= 16679.3/711.7= 23.43 and 23.43 > 3 so the device is strong enough 

to support its planned use. Since the device passes our safety factor standards for both men and women, its 

structure is acceptable.  

 

 

 
Figure 33. Isometric view of Design 1 
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Figure 34. Side view of bottom half of device showing chamfer 

 

 
Figure 35. Stress test on Design 1 for average female palm size 

 

 
Figure 36. Stress test on design 1 for average male palm size 
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4.3.2. Design 2 

A second design was developed concurrently to test the placement of the various 

components and determine the size requirements of the device. This was done with the intention 

of maintaining a 2:1 length-to-width ratio, similar to that of a phone, while minimizing the height. 

The battery, with dimensions of 48mm x 25mm x 15mm, was much larger than the other 

components, making it the limiting factor in the design. Using these parameters and the 

measurements of the components from their respective datasheets, a layout to minimize the space 

required was designed, seen in Figure 37.  

 
Figure 37. Configuration of Components with 2:1 Length-to-Width Ratio and Minimum Height 

 

The parts fit in a 70.72mm x 48mm x 15mm area. This and a minimum wall thickness of 10mm 

was used to design a prototype which would adequately house the selected components, seen in 

Figure 38.  
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Figure 38. Initial Prototype to House Components with Wall Thickness of 10mm 

 

The size of the button was determined to be too large and a new button was selected. The 

button was replaced and the wall thickness was adjusted to accommodate for the potential of 

injection molding. This design was then printed using PLA for additional revision. The design and 

the printed prototype can be seen in Figure 39 - 41, respectively. 

 
Figure 39. Adjusted Prototype with Smaller Button and Wall Thickness of 4mm 
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Figure 40. Initial Printed Prototype for Configuration of Electrical Components (Top) 

 
Figure 41. Initial Printed Prototype for Configuration of Electrical Components (Bottom) 
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4.3.3. Design 3 
 

 Design 3 is the first draft of the device when we determined that we will be using injection molding 

to mass produce the case. Using injection molding design guidelines, we were able to further the device. 

The guidelines recommend using bosses instead of holes in the walls in order to put the two halves together. 

Doing this helps reduce warpage during the cooling phase of injection molding. Another part of injection 

molding is cost. In injection molding, one wants to keep everything as thin as possible to keep cooling time 

and therefore costs down and recommends a thickness between 2-4mm. As seen in Figure 42, the walls of 

the device were thinned from 3mm to 6mm and the holes for M2 screws inside the walls has been moved 

to the bosses as seen also in Figure 42. Since we thinned out also in this design, we need to support the 

weight a different way. The recommended way for helping to support loads is ribbing as seen in Figure 39. 

Another way to help with support is remove sharp edges, so areas such as when the ribbing meets the walls 

or when the bosses meet the bottom, we have filleted accordingly as seen in Figure 43. As seen in Figure 

44, there are now 3 holes in place at the top of the device for LED. They were placed there instead of on 

the side of the device because the lights will be more visible facing up and if they were facing sideways 

there is a potential for more obese individuals to cover the LEDs during compressions. The LEDs are not 

on the bottom of the device because they would be covered during use and be unable to alert the rescuer.  

As seen in Figure 44 as well, the speaker has also been placed directly below the LEDs and is facing 

upwards so that the sound will travel directly from the device, upwards to the rescuer. Also, in Figure 44, 

the hole for the button has been placed directly below the speaker in order to turn on the device. We have 

also added a bar across the device in order to divide where you should place your hands while performing 

CPR from the electronic components and button that can also be seen in Figure 44. In doing this it will help 

to reduce the chances off accidentally powering off the device while performing CPR. Since there were so 

many design changes, it is important that we run another stress test for both the male and female palm size 

to confirm that the case itself is structurally sound. For the female palm,  𝛿= 16679.3/5417 = 3.079	and 

for the male palm 𝛿= 16679.3/4941= 3.38. Since both 3.079 and 3.38 are greater than 3, from a structural 

standpoint this design can be used as planned. See Figures 45 and 46. 
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Figure 42. Image of design 3 where bosses, thinning of walls, and ribbing can be seen 

 
Figure 43. Image of design 3 filleting at bottom of boss 
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Figure 44. Image of Design 3 displaying LED speaker, button holes, and hand blocking bar 

 

 
Figure 45. Stress test on design 3 for average female palm size 

 

 
Figure 46. Stress test on design 3 for average male palm size 
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4.3.4. Design 4 
 

 At this point in the design iterations, we are only focusing on the structural support design. While 

our previous design was able to pass our safety factor, we would like to have a value significantly higher 

than 3 just to be positive that this device is not going to break. The ribbing was redesigned in two different 

ways which can be seen in Figures 47 and 48 in an effort to increase the strength of the case. In Figure 48 

the ribbing was designed to encase each individual electronic component while also providing support. 

Next, we need to do stress tests with both male and female palm sizes to confirm that the device can support 

the necessary weight. For Figure 48 is female palm size safety factor we got 𝛿= 16679.3/2624	 = 	6.35 

and for the male palm size we got 𝛿= 16679.3/2471	 =	6.75. Since both 3.079 and 3.38 are greater than 

3, from a structural standpoint this design can be used as planned. See Figure 49.  In Figure 45, the ribbing 

was designed purely for support and the electronic component placement would be done in a later revision. 

After doing the stress analysis for the female palm size we got 𝛿= 16679.3/2562= 6.51 and for male palm 

size we got 𝛿= 16679.3/2618	 = 	6.37. Since both 6.51 and 6.37 are greater than 3, from a structural 

standpoint this device can be used as planned. See Figures 50 and 51. After discussing the designs with the 

team however, we determined that the ribbing looked too complex and we wanted a more similar solution 

to design 2, which led us to Design 5. 

 

 
Figure 47. Design 4 ribbing to hold each electrical component in place 
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Figure 48. Design 4 ribbing purely for structural support 
 

 

 

Figure 49. Stress Tests on Design 4 for average female and male palm size respectively 
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Figure 50. Stress test on design 4 for average female palm size 

 

 
Figure 51. Stress test on design 4 for average male palm size 
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4.3.5. Design 5 
 

In order to keep the design simple like as in design 2, our first thought as a team was to just increase 

the thickness of the walls and ribbing, therefore we increased the thickness of the walls and ribbing to be 

4mm (See Figure 52). Originally, our ribbing on the top and bottom halves did not touch, so in this design, 

our differing factor was whether or not there was a gap between the halves of ribbing. Design 5 has a 1mm 

gap between the ribbing on the two halves and design 4b has no gap between the ribbings as seen in Figures 

52 and 53. The next step is to analyze the stresses with the applied force on the designs. For design 5a, we 

determined that the safety factor for a female palm size is 𝛿= 16679.3/3314 = 5.03and for the male palm 

size 𝛿= 16679.3/3184= 5.24. Since both 5.03 and 5.24 are greater than 3, from a structural standpoint this 

device is acceptable (see Figures 54 and 55). For design 5b, we determined that the safety factor for a female 

palm size is 𝛿= 16679.3/381.4 = 43.73and for the male palm size 𝛿= 16679.3/365.4 = 45.65.Since 

both 43.73 and 45.65 are greater than 3, from a structural standpoint this device is also acceptable (See 

Figures 56 and 57).  When looking at the two options, technically speaking both will work. Since design 

5b has such a larger safety factor than even the first design, we will be using that design for our device.  

 
Figure 52. Assembly View of Design 5 
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Figure 53. Section View inside design 5a to see 1mm gap in ribbing 

 

 
Figure 54. Section view inside design 5b to see no gap in ribbing 

 

 
Figure 55. Stress test on design 5a for average female palm size 
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Figure 56. Stress test on design 5a for average male palm size 

 

 
Figure 57. Stress test on design 5b for average female palm size 
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Figure 58. Stress test on design 5b for average male palm size 

 

Electronic Component Placement Test Plate 

 

Now that we have a determined structure for load support for the case, we can focus on electronic 

component placement. The first step of which, is making sure that each component properly fits in its 

location. Since one print of the device takes upwards of 11 hours, our team has designed a test plate as seen 

in Figure 59. The purpose of this test plate is to place each individual electronic component into its fit and 

then determine if the fit is good or it needs minor adjustments. In making this plate we can adjust every 2 

hours rather than one adjustment a day. Also, on this test plate we brought in a new smaller button and in 

order to secure the two pieces together, one side of the case will have a hexagonal counterbore to fit an M3 

nut. This will allow us to easily secure and take apart our case during the testing phase of the device. Once 

we were confident that each electric component fits in its spot. We placed the pins and holes in their proper 

locations on the device to create design 5.  
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Figure 59. Electronic Component Test Plate 

 

4.3.6. Design 6 
 

The 6th design is a combination of design 5’s structure with the component placement from the test 

plate. In Figure 60 you can see the placement of the accelerometer, microprocessor, and 9V battery. In 

Figure 60 you can see the placement of the speaker, button, and LEDs. We have also cut a hole in the side 

of the device by the microprocessor so the device can be plugged into a computer during the testing phase 

as seen in Figure 61. In order to properly close the device, we decided to put in hexagon counterbores on 

the bottom of the device where we will press fit M3 nuts. This will add a threading bottom of the device 

and allow us to take apart the device during testing by simply removing the screws instead of needing a 

second tool to hold the nut while removing the screw. In order to hide the wires that must go from 

component to component, we designed 5 upside-down “T” s into the middle rib and they are used to conceal 

the wires as seen in Figure 62. Since there have been large changes in the structure, we need to run another 

set of stress test to prove that the device is still within our safety factor. Throughout our testing, the variance 

between male and female hands is minimal. Therefore, for this stress test will just be an average between 

the male and female hands, which is 10.32cm. We determined that 𝛿= 16679.3/495.4 = 33.67. Since 

33.67 is a greater value than 3, from a structural standpoint this device is acceptable. Since the device is 

structurally sound, and the electronic components fit properly. It is now time for the testing of the device. 



67 

 

 
Figure 60. Bottom and top half of design 5 showing electronic component placement 

 

 
Figure 61. Port cut into side of device for testing 
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Figure 62. Image of upside down “T” s in middle ribbing of design 6 

4.3.7. Design 7 
 

The 7th design is a fine-tuning of the previous design. The “T” wire holding slots were made 

thinner in Figure 63, the middle ribbing was removed in Figures 64 and 65, and a battery slot was added 

in Figures 66 and 67.  

 

 
Figure 63. Redesigned "T" for holding wires 
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Figure 64. Image of Device Bottom without pins and a porthole for easier wiring 

 

 
Figure 65. Top half of device with moved speaker and button location to make room for new components 
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Figure 66. The battery slot on the back of the device 

 

 
Figure 67. Battery Cover 

4.3.8. Final Design  
 The final case design can be seen in Figure 68. The size of the case is still within our size 

constraints listed earlier in this section such as anthropometric data of palm width, palm length, 

and sternum width along with the size of a general first aid kit. As seen in Figure 69 the middle 

support bar has been removed along with the upside down “T”s in order to make room for the 

PCB. A new support bar has been placed near the battery port as seen in figure 70 to add support 

along with preventing the battery from moving horizontally within the device. In order to prevent 

the battery from moving vertically while in use we placed foam on both sides used to hold it in 

place. In Figures 69 and 70 you can also see the final electronic component placement inside the 

case. Also in this final design, we have removed the testing and wiring portholes and close one 
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side of the screw holes on the bottom of the device. This was done because in our final design, we 

do not want users to have access to any electronic components besides changing the battery.  

 
Figure 68. Isometric view of the device  

 

Figure 69. Inside bottom of device where middle bar has been removed and PCB is located 
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Figure 70. Inside top of device where new bar separating battery from rest of components 

 

Since the middle bar was thinned and moved, more simulated stress tests had to occur in 

order to make sure that our device was still within our earlier designated safety factor of 3. When 

testing for the average female palm as seen in Figure 71,	𝛿= 16679.3/1752= 9.52. This value is 

above the minimum safety factor of 3, therefore it passes our stress test. For the average male palm 

size, 	𝛿= 16679.3/1632= 10.22 as seen in Figure 72 This value is greater than the minimum safety 

factor of 3, therefore it passes our stress test. Since testing for both male and female palm size has 

concluded that both values are above a safety factor of 3, we can conclude that the case will be 

able to safely withstand the forces during normal CPR compressions.  
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Figure 71. Stress test on final design for average female palm size 

Figure 72. Stress test on final design for average male palm size 
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4.4. Component Modification 1 
 

Through the iterative design of the project, multiple components were replaced to better 

accommodate the design requirements. This section details the changes, the necessity for the 

changes, justification for the new selection, and the overall effect on the design of each change. 

 

4.4.1. Switch 

 Originally, it had been decided that a red 22mm pushbutton actuator would be used to turn 

the device on and off, the Eaton M22-D-R. The pushbutton could be programmed to turn on the 

device with a single push, but would only turn off when the button was held. Unlike toggle 

switches, this would prevent the accidental shutdown of the device during operation. The appeal 

of the red 22mm button was its large size and visibility, making it impossible to overlook for first 

time users. However, when the first prototype was built, it was clear that the button was too large, 

relative to the size of the device itself. The user’s hand would often be directly over the button, 

causing discomfort. A smaller pushbutton, the Ulincos U16A1, see Figure 73, was then selected 

for further prototyping [44]. Although the area of the button was significantly smaller, its height 

became a limiting factor. After reevaluating, it was determined that size was a primary concern 

and as such, it was decided that rather than a pushbutton, a tactile switch, the CO-RODE, see 

Figure 74 [10]. would be used. The usage of the CO-RODE tactile switch greatly reduces the 

surface area of the I/O components of the device, allowing better positioning of the user’s hands 

on the device. 
 

 
Figure 73. Ulincos U16A Pushbutton 
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Figure 74. CO-RODE Tactile Switch 

 

4.4.2. Microcontroller 

 The microcontroller that had been initially selected for usage in the device was the Arduino 

Nano. With essentially identical features to the Sparkfun Pro Micro, the deciding factor was the 

price, with the cost of an Arduino Nano clone at $6.99 compared to the Sparkfun Pro Micro at 

$20.95. When attempting to set up the board, a bug in the board’s hardware was discovered which 

required the bridging of two pins on the processor. The bridge was attempted but failed and it was 

decided that if a new Arduino Nano were to be purchased, it would not be a clone. However, the 

price for the Arduino Nano from Arduino themselves was $22.00, higher than that of the Sparkfun 

Pro Micro. At this point in the project, nothing was dependent on the specific usage of the Arduino 

Nano and therefore, the Sparkfun Pro Micro was selected for future usage in the project. 
 

4.4.3. Sensor 

 The MPU6050 was first used in the project with the intention of double integrating the 

discrete acceleration data provided by the accelerometer to determine its relative position since 

calibration. Once the microcontroller was programmed to perform this integration, it was 

discovered that the effects of gravity caused significant and unavoidable drift in the relative 

position over the course of mere seconds of operation. Measures to counter this drift were taken, 

using calibration to remove the offset created by gravity, acceleration thresholds to decrease noise, 

and the calculation of relative orientation to determine the contribution of gravity in each axis of 

acceleration. However, it was ultimately determined that in order to properly adjust for the 

acceleration of gravity, far greater accuracy of the device’s orientation would be necessary than 

could be provided by the accelerometer. This was caused by the need of highly accurate rotational 

acceleration readings, highly accurate linear acceleration readings, and constant calibration 
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conditions, none of which are possible using a 6 degree of freedom (DOF) accelerometer. As such, 

a 9DOF accelerometer, the BNO055, seen in Figure 75, was used instead [6]. Its fusion mode, 

which uses an accelerometer, gyroscope, and magnetometer to determine its absolute orientation, 

can provide linear acceleration vectors which do not include the acceleration of gravity, 

eliminating the difficulties found in the usage of the MPU6050. 

 
Figure 75. The BNO055 9DOF Accelerometer 

4.4.4. Circuitry 
 In order to use the various components for their intended purpose, they must be connected 

appropriately to the microcontroller. The pin layout of the Sparkfun Pro Micro, seen in Figure 76, 

details the functions of each pin on the microcontroller and is used as a guide to determine where 

each of the components is to be connected. The battery must be connected to the RAW pin which 

connects to the internal voltage regulator, providing the power in the system. The accelerometer 

communicates data to the microprocessor using the I2C serial protocol. This component must be 

supplied a source voltage (VCC,) a ground reference (GND,) the I2C data line (SDA,) and the I2C 

clock line (SCL.) Other simple components such as the buzzer and LEDs require a ground 

reference and a GPIO pin to control its operation. This circuit design can be seen in Figure 77. 
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Figure 76. Pin Layout of the Sparkfun Pro Micro 

 



78 

 

4.4.5. Algorithms 

MPU6050 
In order to provide depth feedback to the user, acceleration data was read from the 

MPU5060 in the Z direction, normal to the chest of the person receiving CPR, and integrated twice 

to calculate the relative displacement since the configuration of the device. In the implementation, 

all 6 accelerations, X, Y, and Z, both linear and angular, are integrated in expectation that the data 

may prove to be useful.  

When the device is turned on, the microcontroller wakes up the MPU and uses the first 

1000 acceleration samples to calculate the offset, which is assumed to be constant, when the device 

is at rest. The microcontroller then enters the main loop and proceeds to perform the integration. 

The raw acceleration data is modified and filtered to produce a more accurate final output. The 

previously calculated offset is first subtracted from the raw acceleration. If this result is lower than 

a certain threshold, set at 50 for testing purposes, it is considered to be the result of noise and the 

acceleration is set to zero. The five most recent acceleration readings are stored in a buffer and if 

they are all equal to zero, the device is determined to be at rest, resetting the velocity to zero as 

well. Using the filtered acceleration and the difference in time between measurements, the velocity 

and displacement are calculated. These values are simply printed to the Arduino serial monitor for 

testing purposes. 

In testing the device, significant and consistent drift in the positive Z direction was 

observed. When the device is turned, the acceleration offset caused by gravity changes. When 

integrated, even the small amounts of shaking cause large amounts of drift. The exact offset of 

gravity could be calculated if the orientation of the device was available. However, the MPU6050 

does not provide accurate enough readings to derive this information without making a large 

amount of assumptions regarding its orientation when it is first turned on. As such, further 

development with this sensor was concluded. 

 

BNO055 
The code originally written for the MPU6050 was modified to use the acceleration data 

read from the BNO055. Using simple vector operations, the acceleration in the direction of gravity 

can be derived. This was then used in the same manner previously described as the acceleration 

data from the MPU6050. Although the usage of the BNO055 succeeded in reducing the drift 

caused by gravity, the integration of other noise in the system resulted in drifting displacements 
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on the scale of a couple centimeters [6]. Without control over the accuracy of the sensor, it was 

determined that the depth feedback would no longer be determined using the relative displacement, 

but rather the acceleration itself. The 256 most recent samples acceleration samples are stored 

within a buffer. This buffer is then searched for the peaks and valleys of the waveform, which are 

then stored into buffers of their own. For testing purposes, the acceleration samples are printed to 

the Arduino serial plotter to view both qualitative and quantitative values of the resulting 

waveform.  

4.5. Component Modification 2 
After initial testing with the device, a second iteration of component modifications were 

suggested. Due to time constraints, these modifications were not implemented, but as with the 

previous section, this one details the changes, the necessity for the changes, justification for the 

new selection, and the overall effect on the design of each change. 

4.5.1. Power Regulation 

The device was originally programmed to go into lower power mode if the power button 

was held for one second. With a 5.0V Sparkfun Pro Micro, the low power mode should consume 

only 6.2uA. The standard 9.0V battery has a capacity of 500mAh. Therefore, it is expected that in 

low power mode, the device should last 9.2 years. However, it was found that this is not true in 

practice. The battery of the device, even in low power mode, lasted only a couple days. In order to 

reduce the consumption of power over time, a small circuit was designed regulate power through 

a P-Channel MOSFET. The gate is controlled by a LM555 timer operating in bistable mode as a 

flip flop. This flip flop is set using a monostable circuit when the power button is pressed. The flip 

flop is reset after the power button is held for one second by the microcontroller. This circuitry can 

be seen in Figure 77. 
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Figure 77. Power Regulation Circuitry 

4.4.2. Audio Feedback 
Initial testing of the device showed the piezoelectric buzzer to be audible in a controlled 

environment. However, in practical usage, it is likely that the device could be drowned out by the 

sounds of crowds, passing cars, and other loud sounds. As such, it was determined that the 

piezoelectric buzzer should be exchanged for a louder feedback system. An 8-ohm speaker and 

audio amplifier system was selected as a replacement. Basic tests were performed which showed 

that the piezoelectric buzzer had an output of 60dB whereas the speaker and audio amplifier had 

an output of 80dB. The speaker and audio amplifier can be seen in Figure 78 and Figure 79. 
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Figure 78. 8 Ohm Speaker 

 

 
Figure 79. Audio Amplifier 

4.4.3. Printed Circuit Board 
Having tested and finalized the changes to the circuitry, a printed circuit board (PCB) was 

designed to further reduce the cost of the device. The PCB combined the microcontroller, 

accelerometer, power regulator, and audio amplifier into one board. The combined cost of these 

major components is $64.29. By switching to a PCB, the price of a single PCB can be reduced to 

$34.24, with an expected bulk manufacturing price of $16.08. The schematic can be seen in 

Appendix 4. Two iterations of the PCB were created, the second of which improved on the first 
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by further decreasing the size of the board from a square area of 2.47 square inches to 1.9 square 

inches. The first PCB can be seen in Figure 80, the second PCB can be seen in Figure 81. 

 
Figure 80. First Design of the Printed Circuit Board 

 
Figure 81. Second Design of the Printed Circuit Board 
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Chapter 5. Testing Apparatus Design 

 Performing significant tests that prove a CPR device’s effectiveness is very difficult 

because one cannot test the device on a living person. This is due to the damaging side effects CPR 

can have on a person such as the possibility of breaking rib bones during chest compressions. For 

most of the existing devices, the only relevant studies that can be performed are simulation studies. 

In order to perform the necessary tests that will prove our device’s effectiveness, our own test 

apparatus had to be created. The first step to creating this device was to list the tests we were going 

to perform. All testing procedures can be found in Appendix 1. Once the tests were defined, criteria 

needed to be created that most accurately related compressions on the test apparatus to proper CPR 

performed on a human. This criterion included: 

·         Applying a force of approximately between 60-120 pounds 

·         Compressing the device within 2 and 2.4 inches 

·         Compressing the device under the range of 2-2.4 inches 

·         Compressing the device over the range of 2-2.4 inches 

The combination of a range of depths and approximate force relative to the force needed 

to compress the average individual’s chest will allow the device to be properly tested under 

conditions that most accurately represent actual CPR performed on a human. Once the necessary 

criteria for the test apparatus were defined, we had to determine how we were going to design the 

apparatus. In order for the device to be compressible, springs were determined to be used. In order 

to replicate the approximate force to compress a chest, 4 springs requiring 120 pounds of force to 

compress were to be compressed in unison. These springs also had to allow for a range of 

compression between 0 in and over 2.4 inches in order to simulate the compression of a chest 

properly. Once the springs were chosen, the first design was created through a CAD software.    

5.1. First Design Iteration 

A preliminary testing apparatus was designed with the primary focus of reducing the 

degrees of freedom of the testing surface, the surface on which the device is to be placed, to a 

single axis. This was done by drilling holes on the four corners of the testing surface, through 

which dowels are extended. These dowels serve two purposes: to secure the movement of the 

testing surface, but also hold the springs in place such that the force can be applied to the testing 
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surface without deviation. Because the testing structure is simply guided by the dowels and not 

fixed to them, a chassis to house the dowels and testing surface was designed. This chassis was 

designed to allow the tester to apply a downward force to the testing surface, contain the dowels 

such that they do not protrude, and fix all dowels in a vertical position even during operation. This 

design, for ease of prototyping, uses only ¾’’ MDF and ½’’ wooden dowels. The Solidworks 

model can be seen in Figure 82 and prototype in Figure 83. 

 
Figure 82. Solidworks Model of the Preliminary Testing Apparatus 
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Figure 83. Prototype of First Design 

 

5.2. Second Design Iteration 

 
Figure 84. Second Design of Test Apparatus 
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This design was to be made out of: 

·         2 plywood bases sized at 9 inches long, 7 inches wide, and .25 inches thick 

·         4 acrylic panels that are all .25 inches thick 

o   2 of which are 9 inches long and 7 inches tall 

o   2 of which are 7 inches long and 7 inches tall 

·         the 4 springs (designated in the picture by the cylinders) which are 5.5 inches 

tall and .75 inches in diameter 

·         4 metal rods that are 6.5 inches tall and .25 inches in diameter. 

The plywood bases would be on the bottom and top of the device and are designated by 

the solid grey rectangles in the picture. The bottom and top bases would have 4 holes in them that 

would be used to secure the 4 metal rods in place. The metal rods would press fit into the holes in 

the bases and sit directly in the middle of the springs, which would hold the springs in place. The 

4 acrylic panels would then be secured on each of the 4 sides of the apparatus in order to contain 

it but to also allow vision of the springs during compression and relaxation. The actual device 

would sit on top of the top plywood base and the user would push down on the device in order to 

simulate compression of a chest. 

Although this device would have worked for testing, the group found that there were some 

major theoretical problems with it. As the springs compress and the top base moves down, the 

metal rods holding the springs in place would stick out of the device and possibly interfere with 

the compressions. Not only would the metal rods interfere, but based on the size of the test 

apparatus, the acrylic panels would have also interfered with the user and compressions. In order 

to address these problems, a second iteration of the test apparatus was designed using the same 

CAD software. 
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5.3. Third Design Iteration 

 
Figure 85. Third Design of Testing Apparatus 

In order to address the issues of interference during compressions, this device was 

designed. This design was to be created using: 

·         A medium-density fiberboard (mdf) base with a thickness of .75 inches, 

length of 9 inches, and width of 7 inches 

·         4 PVC pipes with an inner diameter of 1 inch, an outer diameter of 1.25 

inches, and length of 6 inches 

·         The 4 springs that were used in the first design iteration 

·         4 mdf buffer discs of thickness .5 inches and diameter of 1 inch 

·         4 metal rods of diameter .25 inches and length of 3.25 inches 

·         1 acrylic top .5 inches thick and the same length and width as the mdf base 
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The mdf base was to have 4 circular cuts made halfway down into it in order to support the 

PVC pipes. The PVC pipes would contain the springs. The mdf buffer discs would sit freely on 

top of the springs, but would also have a single hole in the center of it that would contain the metal 

rods. The metal rods would then also sit halfway into the acrylic top in order to secure it. The 

actual device would then be placed on top of the acrylic top and the user would compress the 

device to simulate chest compressions. 

This device would also work for testing the device, however again the group found a 

theoretical problem with this design. Because the buffer discs are not anchored down and sit freely 

on top of the springs, the rebound from the compression could possibly cause the acrylic top, metal 

rod, and buffer disc sub-assembly to fall off the test apparatus. In order to address this problem, a 

third design was created, found sufficient for testing, and built. 

 

5.4. Fourth Design Iteration 

 

   The fourth iteration of the test apparatus was made of: 

·         An mdf base with a thickness of .75 inches, length of 9 inches, and width of 

7 inches 

o   2 holes were cut .25 inches deep into the base 

·         4 PVC pipes with an inner diameter of 1 inch, an outer diameter of 1.25 

inches, and length of 6 inches 

·         4 threaded PVC fittings with an inner diameter of .75 inches. 

·         The 4 springs that were used in the previous design iterations 

·         4 acrylic buffer discs of thickness .5 inches, diameter of .75 inches, and a 

hole in the center with diameter and depth of .25 inches 

·         4 metal rods of diameter .25 inches and length of 3.25 inches 

·         2 metal rods of diameter .25 inches and length of 10.25 inches 

·         An mdf support backboard of thickness .75 inches, width of 9 inches and 

height of 10.25 inches. 

·         2 mdf constraints 



89 

 

·         1 acrylic top .5 inches thick and the same length and width as the mdf base 

with 6 holes in it 

o   2 of the holes are straight through the acrylic and .25 inches in 

diameter 

o   4 of the holes are only .25 inches in depth and .25 inches in diameter 

The construction of this device began by first anchoring the 4 threaded PVC fittings to the 

mdf base using screws and epoxy. Once the fittings were in place, the springs were placed within 

the 4 PVC fittings in order to secure them, and the 4 PVC pipes were placed over both the springs 

and fittings thereby covering them. The 4 metal rods of 3.25 inches in length were then secured to 

both the acrylic buffer discs and the acrylic top using epoxy. The 2 metal rods of 10.25 inches in 

length were secured to the mdf base using epoxy, but are left to freely move through the acrylic 

top. The acrylic top, metal rod, and buffer disc sub-assembly was then placed on top of the springs. 

The mdf backboard was secured to the mdf base using screws and epoxy, and the mdf constraints 

on top were secured to the backboard using screws. The device is then intended to be placed on 

top of the acrylic top and the user is to push down on the device in order to simulate chest 

compressions. This version of the test apparatus properly simulates chest compressions on an 

average person during CPR, will not interfere with the simulated compressions, and does not allow 

the acrylic top to fall off the apparatus during the rebound from a compression.   
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5.5 Final Design  

 
Figure 86. Final Design 

 The final design of the testing apparatus was created to address the following criteria. The 

springs that were previously used provided a resistance of 120 pounds of force to compress the 

device 2 inches. It was found however, that the range of force required to compress a person’s 

chest 2-2.4 inches is between 60-120 pounds of force, varying per person. For this reason, the 4 

springs were changed to a set that provided a resistance of 60 pounds of force to compress the 

device 2 inches. This design iteration also had to adjust for the horizontal shear force being created 

during compressions due to the metal guide rods. In order to fix this issue, 2 roller bearings were 

inserted into the compression plate and fitted over the metal guide rods. The following materials 

were used to create the final design:  

● An acrylic base with a thickness of .75 inches, length of 9 inches, and width of 7 inches 
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● 4 PVC pipes with an inner diameter of 1 inch, an outer diameter of 1.25 inches, and 

length of 5.75 inches 

● 4 threaded PVC fittings with an inner diameter of .75 inches 

● 4 springs 5.5 inches tall and .75 inches in diameter that provide a combined force of 60 

pounds to compress 2 inches 

● 4 acrylic buffer discs of thickness .5 inches, diameter of .75 inches, and a hole in the 

center with diameter and depth of .25 inches 

● 4 metal rods of diameter .25 inches and length of 3.25 inches 

● 2 metal rods of diameter .25 inches and length of 10.25 inches 

● 2 roller bearings 

● An acrylic support backboard of thickness .75 inches, width of 9 inches and height of 

10.25 inches 

● An acrylic top support strip 9 inches in length 

● 1 acrylic top .5 inches thick and the same length and width as the mdf base with 6 holes 

in it 

● Screws 

● Epoxy to hold the springs in place 

The actual CPR device is then intended to be placed on top of the acrylic top and the user 

is to push down on the device in order to simulate chest compressions. This final iteration of the 

test apparatus properly simulates chest compressions on an average person during CPR, will not 

interfere with the simulated compressions, will not allow for horizontal shear force due to the roller 

bearings, and will take a force of 60 pounds to compress 2 inches rather than 120 pounds from 

previous iterations.  

Chapter 6. Results 

6.1. Calibration Results 

After the testing apparatus was constructed, initial tests were performed to determine the 

accuracy of the device. For the device to be considered accurate, it had to provide the appropriate 

LED for the appropriate depth compressed, where the red LED appears for shallow compressions 

or less than 2 inches, the green LED appears for adequate compression depth or between 2 and 
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2.4 inches, and the blue LED appears for deep compressions or further than 2.4 inches. 100 two-

minute samples of compressions simulating bystander CPR were taken. For each sample, the 

user attempted to perform proper CPR for two minutes on the testing apparatus and each sample 

was video recorded. The different success and failure rates of the device were then determined 

by analyzing each sample video and recording whether the appropriate LED appeared for the 

appropriate depth for every compression that was made.  

After analyzing all 100 samples, it was determined that the device operated as expected 

73% of the time, displaying the proper LED for the proper compression depth. 8.9% of the time, 

the device provided false positives where the depth of the compression was either too shallow or 

too deep but the green LED indicating adequate depth was displayed. 18.1% of the time, the 

device provided false negatives where the depth of the compression was of adequate depth but 

either the red or blue LED indicating too shallow or too deep of a compression respectively was 

displayed. After determining the device’s accuracy, subject testing occurred.  

6.2. Subject Results 

IRB approval, seen in Appendix 4, was obtained to test with subjects on a quantitative 

and qualitative level to view effectiveness change with the use of the CPR Device. As for 

subjects, 27 college-aged subjects and 7 CPR-certified subjects were tested, and all First, each 

subject took a pre-testing quiz in order to get information on their baseline knowledge of CPR 

and confidence in performing CPR. Only 16 subjects knew that proper CPR depth is between 2-

2.4 inches. When asked if the subject felt “not confident”, “somewhat confident”, or “very 

confident” in performing CPR, about half of the subjects, regardless of CPR certification, stated 

that they only feel “somewhat confident” in their CPR skills, 25.9% stated they feel “very 

confident” and 25.9% stated they feel “not confident”.  

After the pre-testing quiz was completed, each subject was asked to compress on the 

testing apparatus at the normal hands-only CPR compression rate and depth for 1 minute on their 

own. This data was recorded and analyzed and 48.1% of subjects completed compressions at the 

right rate, but did not have consistent compressions (constantly varied depths between too 

shallow and good depth), 33.3% of subjects did not have correct depth or rate, with a 130 bpm, 

shallow compression being the most common mistake. 14.8% of subjects had predominantly 

adequate compression rate and depth.   
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After the first testing phase, the subject was given the CPR Device and asked to complete 

1 minute of CPR with the device on the testing apparatus. Though there was no change seen in 

14.8% of subjects who already performed adequate CPR, in all 81.4% of those who did not 

provide adequate CPR techniques initially, all performed adequate CPR with the device. In one 

case, the user actually covered the speaker hole, could not hear the metronome, and actually saw 

a negative effect in their compression rate. In an exit survey, however, all 81.4% improved 

effectiveness and 14.8% unchanged effectiveness groups stated that they felt more confident 

using the device, for a 96% confidence level.  

Chapter 7. Ethics 

The Biomedical Engineering Society has created a code of ethics that all biomedical 

engineers must follow that can be found in Appendix 6 of this paper. The most important section 

of this code for the design and use of a CPR device is research obligations, which include 

● Complying fully with legal, ethical, institutional, governmental, and other applicable 

research guidelines, respecting the rights of and exercising the responsibilities to 

colleagues, human and animal subjects, and the scientific and general public.  

● Publishing and/or presenting properly credited results of research accurately and clearly. 

 

In order for a medical device to be commercially used, it must pass 10 FDA stages of 

clinical tests. A CPR Device would be classified as a Class III Device, due to the very high risk 

associated with cardiac arrest, which requires clinical trials, 510 (k) premarket applications, and 

final FDA approval. The biggest setback is the clinical testing, in order to ensure that the user and 

patient’s safety are mitigated. Clinical testing requires doctor and patient consent and approval, 

and in the case of CPR Devices, potentially another untrained bystander user’s approval as well. 

To obtain consent from an unconscious patient under cardiac arrest without a Do Not Resuscitate 

order, and obtain consent from a randomized bystander rescuer and doctor during a critical life-

or-death emergency, would be very limiting. A controlled simulation on cadavers or other 

prosthetic system could be used instead of clinical trials, however these simulations would not take 

the randomized bystander-user’s stressed state during an actual cardiac arrest. If setbacks can be 

solved, then most of the medical approval ethics will be addressed.  



94 

 

 

The largest legal issue with a CPR device is that in a tragic case where the user misused 

the device, the device had a failure to work, or even when everything is done correctly but the 

patient did not survive, there is a chance that the consumer may find the CPR Device liable for the 

occurrence.  

Although there are no political ramifications associated with the design and use of a CPR 

device, there are some related legal ramifications. If a patient receives CPR through the use of a 

CPR device and suffers an injury, they could sue either the person who performed the CPR and/or 

the company that manufactures the CPR device. If a user of the device injures the patient receiving 

CPR or fails in resuscitation of the patient, they could also sue the company that manufactures the 

device. Hence, the ethical issues surrounding bystander CPR assistive devices are still unresolved.  

Chapter 8. Conclusion 

Our device satisfied all of our design and functional requirements. It is able to withstand 

125 lbs of force with a safety factor of 3. The device is economical as its bulk manufacturing cost 

is below 25 dollars per unit. It is both portable and lightweight as the device is under one pound 

and is approximately the size of a cell phone. The device is also easy to understand thanks to our 

label which clearly states the function of the various components of the device. Overall our device 

provides bystanders with a 96% confidence level when applying appropriate CPR. 

Chapter 9. Future Plans 

In the device’s current state, it is not as accurate as the group would have hoped. For future 

iterations, the device’s depth recognizing algorithm would be adjusted to favor false negatives over 

false positives. By doing so, this would promote a depth of compressions that are further within 

the range of adequacy which is favorable to the converse. If the range for adequate depth of 

compressions was adjusted to favor false negatives, the lower bound of the range would increase 

and the upper bound of the range would decrease. This would therefore encourage the user to apply 

an adequate depth of compression more often, rather than returning false positives and encouraging 

the user to apply improper compressions.   
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One hundred 2-minute samples simulating bystander CPR with our device were performed. 

For the future, much more testing should take place in order to better represent both the accuracy 

and effectiveness of the device. Significantly more samples should be taken and analyzed in order 

to determine if the aforementioned change in the device’s algorithm increased its accuracy or not. 

This process of collecting  samples and editing the algorithm respectively should be repeated until 

the device attains a high accuracy level.  

For the future, more subject testing should also occur. If much more subject testing occurs, 

the device’s effectiveness of providing a 96% confidence level for a bystander performing 

appropriate CPR techniques can only become more accurate. The more subject testing that also 

occurs, the more feedback the group receives about the device’s physical features such as its 

portability, its weight, whether it is ergonomic or not, and whether the audio and visual feedback 

are working effectively. Overall, increased subject testing will provide the group with the 

necessary information to make changes where necessary based on consumer specifications and 

will verify its effectiveness.  

For future case iterations, the team would like to find a new battery solution in order to 

make the case less bulky. We would also thin the walls of the case to more closely match the safety 

factor of 3 as it is currently around 10. With a thinner case, it would reduce injection molding 

cooling time and material usage, reducing the overall cost of case manufacturing 
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Appendix 

Appendix 1. Testing Procedure 
 The following procedures are guidelines for the various tests performed on the CPR Device to 
ensure its viability in giving feedback on compression depth and rate to rescuers during CPR. Table 1 
names terms or items used throughout testing and specifically defines the terms.  
 
Table 1. Testing Terms  
 

Term/ Item Definition 

Device The constructed MQP CPR Device. 

Testing Apparatus The constructed spring-box calibrated at X lb-force to be used to test 
device compression, shown in Figure 1.  

Rescuer The person performing CPR. 

Proper CPR Technique The rescuer places hands one on top of the other, locks elbows 
straight, and compresses down 2.0-2.4 inches at 100-120 beats per 
minute, while allowing for full chest recoil in-between compressions.  

Flat Surface Any table with a level-measured flat surface.  

Timer A timing device with ranges from 01 seconds to 99 minutes.  

Stopwatch A hand-held timing device with ranges from 0.01 seconds to 99 
minutes.  

Tally Counter A hand-held counting device with ranges from 0 to 9999.  

Recording Device An excel document of all data observed during testing.  

 
 The Testing Apparatus works by compressing the top plate downwards to the desired depth. Four 
springs inside of the device are calibrated to exert a 60 lb-force resistance, similar to the forces seen 
during chest compression during CPR. In this testing sequence, the device will be placed in the center of 
the top plate of the Testing Apparatus, and then the user will compress directly on the device to desired 
depth.  

 
Test 1: No Compression Test 
Materials:  

● Flat Surface 
● The Device 
● Timer 

 
Protocol: 
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1. Place the Device on a flat surface and turn on.  
2. Observe and record device feedback for 2 minutes.  
3. Turn off device.  

 
Projected Outcome: 
 The Device should turn on and begin a metronome buzzing. The LEDs on the device should light 
up throughout the entire test to indicate that the compression depth is not adequate; compressions are too 
shallow. 
 
Test 2: Held Compression Test 
Materials:  

● Testing Apparatus  
● The Device 
● Timer 

 
Protocol: 

1. Place the Device in a neutral position on the Testing Apparatus and turn on.  
2. Compress device at 2 inches and hold for 2 minutes.  
3. Observe and record device feedback.  
4. Turn off device. 

 
Projected Outcome: 
 The Device should turn on and begin a metronome buzzing. The LEDs on the device should light 
up throughout the entire test to indicate that the compression depth is not adequate; compressions do not 
allow for recoil. 
 
Test 3: Compression Test 
Materials:  

● Testing Apparatus  
● The Device 
● Timer 

 
Protocol: 

1. Place the Device in a neutral position on the Testing Apparatus and turn on.  
2. Compress device with proper CPR technique for 2 minutes.  
3. Observe and record device feedback.  
4. Turn off device.  

 
Projected Outcome: 

The Device should turn on and begin a metronome buzzing. The LEDs on the device should light 
up throughout the entire test to indicate that the compression depth is adequate and allows for proper 
recoil.  
 
Test 4: Shallow Compression Test 
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Materials:  
● Testing Apparatus  
● The Device 
● Timer 

 
Protocol: 

1. Place the Device in a neutral position on the Testing Apparatus and turn on.  
2. Compress device with proper CPR technique for 2 minutes.  
3. Observe and record device feedback.  
4. Turn off device.  

 
Projected Outcome: 

The Device should turn on and begin a metronome buzzing. The LEDs on the device should light 
up throughout the entire test to indicate that the compression depth is not adequate; compressions are too 
shallow. 

 
Test 5: Deep Compression Test 

Materials:  
● Testing Apparatus  
● The Device 
● Timer 

 
Protocol: 

1. Place the Device in a neutral position on the Testing Apparatus and turn on.  
2. Compress device with proper CPR technique for 2 minutes.  
3. Observe and record device feedback.  
4. Turn off device.  

 
Projected Outcome: 

The Device should turn on and begin a metronome buzzing. The LEDs on the device should light 
up throughout the entire test to indicate that the compression depth is not adequate; compressions are too 
deep. 
 
Test 6: Period Test 
Materials:  

● Flat Surface 
● The Device 
● Stopwatch 

 
Protocol: 

1. Place the device on a flat surface and turn on.  
2. With a stopwatch, record the time between one metronome buzz and the next.  
3. Record the time and repeat 10 times.  
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4. Turn off device. 
 
Projected Outcome: 
 The Device should turn on and begin a metronome buzzing. Since correct compression rate 
ranges from 100 - 120 beats per minute, the average time between beats should be between 1.67 - 2 
seconds. The recorded times should fall within that range.  

 
 
Test 7: Frequency Test 
Materials:  

● Flat Surface 
● The Device 
● Timer 
● Tally Counter 

 
Protocol: 

1. Set up a timer for 60 seconds.  
2. Place the device on a flat surface and turn on.  
3. Start the timer, and begin counting the metronome buzzes with a counter.  
4. Record the number of buzzes when the timer stops.  
5. Turn off device. 

 
Projected Outcome: 
 The Device should turn on and begin a metronome buzzing. Since correct compression rate 
ranges from 100 - 120 beats per minute, the number of buzzes in a minute should be between that. 
 
Test 8: 1-Rescuer Longevity Test 
Materials:  

● Testing Apparatus  
● The Device 
● Timer 
● Tally Counter 

 
Protocol: 

1. Set up a timer for 17 minutes.  
2. Place the Device in a neutral position on the Testing Apparatus and turn on.  
3. Allow Rescuer to compress device with proper CPR technique for 17 minutes.  
4. At times 0, 5, 10, and 15 perform Tests 3 and 7.  
5. Record all data and turn device off.  

 
Projected Outcome: 
 The Device should turn on and begin a metronome buzzing. At every time interval, the LEDs on 
the device should light up to indicate that the compression depth is adequate and allows for proper recoil, 
and the metronome should buzz between 100- 120 beats per minute.  
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Test 9: 2-Rescuer Longevity Test 
Materials:  

● Testing Apparatus  
● The Device 
● Timer 
● Tally Counter 
● 2 Rescuers 

 
Protocol: 

1. Set up a timer for 16 minutes.  
2. Place the Device in a neutral position on the Testing Apparatus and turn on.  
3. Allow Rescuer 1 to compress device with proper CPR technique for 2 minutes and then switch 

positions with Rescuer 2 (repeat switching every 2 minutes).  
4. At times 0, 2, 4, 6, 8, 10, 12, and 14 perform Tests 3 and 7.  
5. Record all data and turn device off.  

 
Projected Outcome: 

The Device should turn on and begin a metronome buzzing. At every time interval, the LEDs on 
the device should light up to indicate that the compression depth is adequate and allows for proper recoil, 
and the metronome should buzz between 100- 120 beats per minute.  
 
Test 10: Limits Test 
Materials:  

● Testing Apparatus  
● The Device 
● Timer 
● Tally Counter 

 
Protocol: 

1. Set up a timer for 42 minutes.  
2. Place the Device in a neutral position on the Testing Apparatus and turn on.  
3. Allow Rescuer to compress device with proper CPR technique for 42 minutes.  
4. At times 0, 5, 10, 15, 20, 25, 30, 35, 40 perform Tests 3 and 7.  
5. Record all data and turn device off.  

 
Projected Outcome: 
 The Device should turn on and begin a metronome buzzing. At every time interval, the LEDs on 
the device should light up to indicate that the compression depth is adequate and allows for proper recoil, 
and the metronome should buzz between 100- 120 beats per minute.  
 
Test 11: Accelerometer Test 
Materials:  

● Testing Apparatus  
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● The Device 
● Timer 

 
Protocol: 

1. Set up a timer for 1 minutes 
2. Place the Device in a neutral position on the Testing Apparatus and turn on. Leave device for 1 

minute. 
3. Take the Device off of the neutral position for 30 seconds.  
4. Then place the Device back on the original position.  

 
Projected Outcome: 

The Device should turn on and begin a metronome buzzing. The Device should recalibrate it’s 
position.  
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Appendix 2. Code for MPU6050 
 #include<Wire.h> 
 
const int MPU_addr=0x68;  // I2C address of the MPU-6050   
 
uint8_t i2cData[4] = { // Buffer for I2C data 
  7,    // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz 
  0x00, // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling 
  0x00, // Set Gyro Full Scale Range to ±250deg/s 
  0x10 // Set Accelerometer Full Scale Range ( ±2g = 0x00 ±4g=0x01 ±8g=0x10, ±16g = 0x11 ) 
}; 
 
 
const int offsetSamples = 1000, restSamples = 5; 
double Acc_threshold[] = {50, 50}; 
 
int16_t Tmp; 
int16_t input[6] = {0, 0, 0, 0, 0, 0}; 
int16_t offset[6] = {0, 0, 0, 0, 0, 0}; 
double Acc[6], Vel[6], Dis[6] ; 
 
long t, last_t = 0, last_f = 0; 
 
long Acc_FIFO[restSamples]; 
int Acc_index = 0; 
boolean atRest = false; 
void setup(){ 
  Wire.begin(); 
  Serial.begin(9600); 
  while(!Serial); 
 
  //Wait until the accelerometer responds 
  while(input[2] == 0){ 
    initMPU6050(); 
    readMPU6050(); 
  } 
 
  //Calculate at rest offset 
  for(int i = 0; i < offsetSamples; i++){ 
    readMPU6050(); 
    for(int j = 0; j < 6; j++){ 
      offset[j] += input[j]; 
    } 
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  } 
 
  for(int i = 0; i < 6; i++){ 
    offset[i] /= offsetSamples; 
  } 
  last_t = micros(); 
} 
void loop(){ 
  if(input[2] == 0) initMPU6050(); 
  readMPU6050(); 
 
  t = micros(); 
  int16_t d_t = t - last_t; 
 
 
  //Calculate acceleration and gyro 
  for(int i = 0; i < 6; i++){ 
      Acc[i] = input[i] - offset[i]; 
  } 
 
  //Determine if the device is moving 
  //if(Acc > Acc_threshold[0] && Acc < Acc_threshold[1] ) Acc = 0; 
  if(Acc_index >= restSamples) Acc_index = 0; 
  Acc_FIFO[Acc_index] = Acc[2]; 
  atRest = true; 
  for(int i = 0; i < restSamples; i++){ 
    if(Acc_FIFO[i] < Acc_threshold[0] || Acc_FIFO[i] > Acc_threshold[1]){ 
      atRest = false; 
    } 
  } 
 
  //Calculate velocity 
  for(int i = 0; i < 6; i++){ 
    Vel[i] += Acc[i] * d_t/1000000; 
    if(atRest) Vel[i] = 0; 
   
 
 
    //Calculate displacement 
    Dis[i] += Vel[i] * d_t/1000000; 
  } 
  //Print data 
  Serial.print("t = "); Serial.print(t); Serial.print(" Acc = "); Serial.print(Acc[2]); Serial.print(" Vel = "); 
Serial.print(Vel[2]); Serial.print(" Dis = "); Serial.println(Dis[2]); 
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  if(t > last_f + 1000){ 
    last_f = t; 
  } 
   
  last_t = t; 
   
} 
 
void initMPU6050(){ 
  Wire.beginTransmission(MPU_addr); 
 
//  Wire.write(0x19); //Write to register 
//  Wire.write(i2cData, 4); //Data to be written 
  Wire.write(0x6B);  // PWR_MGMT_1 register 
  Wire.write(0);     // set to zero (wakes up the MPU-6050) 
   
  Wire.endTransmission(true); 
} 
 
void readMPU6050(){ 
  Wire.beginTransmission(MPU_addr); 
  Wire.write(0x3B);  // starting with register 0x3B (ACCEL_XOUT_H) 
  Wire.endTransmission(false); 
  Wire.requestFrom(MPU_addr,14,true);  // request a total of 14 registers 
  input[0]=Wire.read()<<8|Wire.read();  // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)      
  input[1]=Wire.read()<<8|Wire.read();  // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L) 
  input[2]=Wire.read()<<8|Wire.read();  // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L) 
  Tmp=Wire.read()<<8|Wire.read();  // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L) 
  input[3]=Wire.read()<<8|Wire.read();  // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L) 
  input[4]=Wire.read()<<8|Wire.read();  // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L) 
  input[5]=Wire.read()<<8|Wire.read();  // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L) 
    Serial.print("GyX = "); Serial.print(input[2]); Serial.print(" GyY = "); Serial.println(input[0]); 
 
//  Serial.print(" | Tmp = "); Serial.print(Tmp/340.00+36.53);  //equation for temperature in degrees C 
from datasheet 
} 
 
//Z offset: 16959 
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Appendix 3. Code for BNO055 
 #include <Wire.h> 
  #include <Adafruit_Sensor.h> 
  #include <Adafruit_BNO055.h> 
  #include <utility/imumaths.h> 
 
Adafruit_BNO055 bno = Adafruit_BNO055(); 
 
double offset = 0, acc, vel, dis; 
long d_t, l_t, t;xx    
long l_f; 
 
const int OFFSET_SAMPLES = 50, BUFFER_SIZE = 256, REST_SAMPLES = 5, FRAME_SIZE = 
100, EXTREMES_BUFFER_SIZE = 10; 
double acc_threshold[] = {-0.1, 0.1}; 
 
double acc_buffer[BUFFER_SIZE], peak_buffer[EXTREMES_BUFFER_SIZE], 
valley_buffer[EXTREMES_BUFFER_SIZE]; 
int acc_index = 0; 
boolean at_rest = false; 
 
const int BUZZER_FREQUENCY = 100; //Frequency in Hz 
const int BUZZER_DURATION = 100000; //Time the buzzer is on in us 
 
boolean buzzer_on = false; 
   
const int BUZZER_PIN = 4, LED_1_PIN = 5, LED_2_PIN = 6, LED_3_PIN = 7; 
 
 
void setup(void){ 
  Serial.begin(9600); 
 
  initializeBNO(); 
  initializePins(); 
 
  calculateOffset(); 
   
  l_t = micros(); 
  l_f = l_t; 
} 
 
 
void loop(void){ 
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  //Get change in time since last sammple 
  t = micros(); 
  d_t = t - l_t; 
 
  acc = getAcceleration(); 
   
  //Populate buffer 
  acc_buffer[acc_index] = acc; 
  acc_index++; 
  if(acc_index == BUFFER_SIZE) acc_index = 0; 
 
  //Iterate through buffer to determine if the device is at rest 
  at_rest = atRest(); 
   
//  //Calculate velocity 
//  vel += acc * d_t/1000000; 
//  if(at_rest)vel = 0; 
// 
//  //Calculate displacement 
//  dis += vel * d_t/1000000; 
 
  runBuzzer(); 
   
  printResults(); 
   
  //Updates the last time for d_t calculation 
  l_t = t; 
   
} 
 
void initializeBNO(){ 
   
  /* Initialise the sensor */ 
  if(!bno.begin()){ 
    /* There was a problem detecting the BNO055 ... check your connections */ 
    Serial.print("Ooops, no BNO055 detected ... Check your wiring or I2C ADDR!"); 
    while(1); 
  } 
   
  bno.setExtCrystalUse(true); 
   
} 
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void initializePins(){ 
   
  pinMode(BUZZER_PIN, OUTPUT); 
  pinMode(LED_1_PIN, OUTPUT); 
  pinMode(LED_2_PIN, OUTPUT); 
  pinMode(LED_3_PIN, OUTPUT); 
   
} 
 
void calculateOffset(){ 
   
  double acceleration; 
  for(int i = 0; i < OFFSET_SAMPLES; i++){ 
    acceleration = getRawAcceleration(); 
    offset += acceleration; 
  } 
 
  offset /= OFFSET_SAMPLES; 
   
} 
 
double getRawAcceleration(){ 
   
  //Get data from sensor 
  imu::Vector<3> linear_acceleration = bno.getVector(Adafruit_BNO055::VECTOR_LINEARACCEL); 
  imu::Vector<3> gravity = bno.getVector(Adafruit_BNO055::VECTOR_GRAVITY); 
 
  //Record magnitude of acceleration, minus gravity 
  double magnitude = linear_acceleration.magnitude(); 
 
  //Normalize vectors to reduce to unit vectors 
  linear_acceleration.normalize(); 
  gravity.normalize(); 
   
  //Return acceleration in the direction of gravity 
  return magnitude * linear_acceleration.dot(gravity); 
   
} 
 
double getAcceleration(){ 
   
  //Get current acceleration 
  double acceleration = getAcceleration(); 
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  //Adjust acceleration for offset 
  acceleration -= offset; 
 
  //Filter low acceleration noise 
  if(acceleration > acc_threshold[0] && acceleration < acc_threshold[1])acceleration = 0; 
 
  return acceleration; 
} 
 
boolean atRest(){ 
  boolean rest = true; 
  for(int  i = acc_index; i < acc_index + REST_SAMPLES; i++){ 
    if(i >= BUFFER_SIZE){ 
      if(acc_buffer[i - BUFFER_SIZE] != 0)rest = false; 
    } 
    else{ 
      if(acc_buffer[i] != 0)rest = false; 
    } 
  } 
  return rest; 
} 
 
void runBuzzer(){ 
   
    //Determine when to turn on and off the buzzer 
  if(!buzzer_on && t > l_f + (60*1000000/BUZZER_FREQUENCY) - BUZZER_DURATION){ 
    digitalWrite(BUZZER_PIN, HIGH); 
    buzzer_on = true; 
    l_f = t; 
  }else if(buzzer_on && t > l_f + BUZZER_DURATION){ 
    digitalWrite(BUZZER_PIN, LOW); 
    buzzer_on = false; 
    l_f = t; 
  } 
} 
 
void printResults(){ 
   
  //Text output 
  //  Serial.print("t = "); Serial.print(t); Serial.print(" acc = "); Serial.print(acc); Serial.print(" vel = "); 
Serial.print(vel); Serial.print(" dis = "); Serial.println(dis); 
  Serial.println(acc); 
   
} 
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Appendix 4. IRB Approved Subject Testing Guidelines 
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CPR Testing Pre-Test 

  

  

  

Have you ever been certified in CPR?          YES            NO 

  

  

What is the proper depth to compress on the chest for CPR? 

  

  

At what beats per minute should compressions be performed at? 

  

  

How confident do you feel in your ability to perform correct CPR? 

  

____ I Feel Don’t Feel Confident in Performing CPR. 

____ I Feel Somewhat Confident in Performing CPR. 

____ I Feel Very Confident in Performing CPR. 
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CPR Device Testing Follow-Up 

  

These questions are to be asked to every Subject after conducting the CPR User Interface Test. 

Participation is not required, and there are no consequences to not answer the following 

questions. 

  

Please answer these questions to the best of your ability. No identifying data will be used in the 

recording of these answers. 

  

In your opinion, how did your confidence in performing proper CPR technique change 

with the use of the MQP CPR Device? 

  

____ I Feel Less Confident in Performing CPR with the CPR Device. 

____ I Feel Slightly Less Confident in Performing CPR with the CPR Device. 

____ There was No Change in my Confidence of Performing CPR with the CPR Device. 

____ I Feel Slightly More Confident in Performing CPR with the CPR Device. 

____ I Feel More Confident in Performing CPR with the CPR Device. 

  

  

During testing, did you find yourself confused by any functions? If so, which functions? 

  

  

 Do you have any further comments that you could share on device usage, engineering 

gaps, ease of use or simplicity? 
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Appendix 5. PCB Diagram 
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Appendix 6. Biomedical Engineering Society Code of Ethics 
 

Biomedical engineering is a learned profession that combines expertise and 

responsibilities in engineering, science, technology, and medicine. Since public health and 

welfare are paramount considerations in each of these areas, biomedical engineers must uphold 

those principles of ethical conduct embodied in this Code in professional practice, research, 

patient care, and training. This Code reflects voluntary standards of professional and personal 

practice recommended for biomedical engineers.  

 

Biomedical Engineering Professional Obligations 

Biomedical engineers in the fulfillment of their professional engineering duties shall:  

 

1. Use their knowledge, skills, and abilities to enhance the safety, health, and welfare of 

the public.  

2. Strive by action, example, and influence to increase the competence, prestige, and 

honor of the biomedical engineering profession.  

 

Biomedical Engineering Health Care Obligations  

Biomedical engineers involved in health care activities shall:  

 

1. Regard responsibility toward and rights of patients, including those of confidentiality 

and privacy, as their primary concern.  

2. Consider the larger consequences of their work in regard to cost, availability, and 

delivery of health care. 

 

Biomedical Engineering Research Obligations  

Biomedical engineers involved in research shall:  

1. Comply fully with legal, ethical, institutional, governmental, and other applicable 

research guidelines, respecting the rights of and exercising the responsibilities to colleagues, 

human and animal subjects, and the scientific and general public.  

2. Publish and/or present properly credited results of research accurately and clearly.  
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Biomedical Engineering Training Obligations  

Biomedical engineers entrusted with the responsibilities of training others shall:  

 

1. Honor the responsibility not only to train biomedical engineering students in proper 

professional conduct in performing research and publishing results, but also to model such 

conduct before them.  

2. Keep training methods and content free from inappropriate influence from special 

interests. 
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