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Abstract

Naive Bayes classifier is the simplest among Bayesian
Network classifiers. It has shown to be very efficient
on a variety of data classification problems. However,
the strong assumption that all features are condition-
ally independent given the class is often violated on
many real world applications. Therefore, improve-
ment of the Naive Bayes classifier by alleviating the
feature independence assumption has attracted much
attention. In this paper, we develop a new version
of the Naive Bayes classifier without assuming inde-
pendence of features. The proposed algorithm ap-
proximates the interactions between features by using
conditional probabilities. We present results of nu-
merical experiments on several real world data sets,
where continuous features are discretized by apply-
ing two different methods. These results demonstrate
that the proposed algorithm significantly improve the
performance of the Naive Bayes classifier, yet at the
same time maintains its robustness.

Keywords: Bayesian Networks, Naive Bayes, Semi
Naive Bayes, Correlation

1 Introduction

Classification is the task to identify the class labels
for instances based on a set of features, that is, a
function that assigns a class label to instances de-
scribed by a set of features. Learning accurate clas-
sifiers from pre classified data is an important re-
search topic in machine learning and data mining.
One of the most effective classifiers is Bayesian Net-
works (Shafer 1990, Heckerman 1995, Jensen 1996,
Pearl 1996, Castillo 1997). A Bayesian Network (BN)
is composed of a network structure and its conditional
probabilities. The structure is a directed acyclic
graph where the nodes correspond to domain vari-
ables and the arcs between nodes represent direct de-
pendencies between the variables. Considering an in-
stance X = (X1, X2, ..., Xn) and a class C, the clas-
sifier represented by BN is defined as

argmax
c∈C

P (c|x1, x2, ..., xn) ∝ argmax
c∈C

P (c)P (x1, x2, ..., xn|c),

(1)

where xi, c are the values of Xi, C respectively.
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However, accurate estimation of P (x1, x2, ..., xn|c)
is non trivial. It has been proved that learning an op-
timal BN is NP-hard problem (Chickering 1996, Heck-
erman 2004). In order to avoid the intractable com-
plexity for learning BN, the Naive Bayes classifier has
been used. In the Naive Bayes (NB) (Langley 1992,
Domingos 1997), features are conditionally indepen-
dent given the class. The simplicity of the NB has
led to its wide use, and to many attempts to extend
it (Domingos 1997). Since NB assumes the strong
assumption of independency between features, learn-
ing semi Naive Bayes has attracted much attention
from researchers (Langley 1994, Kohavi 1996, Paz-
zani 1996, Friedman 1997, Kittler 1986, Zheng 2000,
Webb 2005). The semi Naive Bayes classifiers are
based on the structure of NB, requiring that the class
variable be a parent of every feature. However, they
allow additional edges between features that capture
correlation among them. The main aim in this area
of research has involved maximizing the accuracy of
classifier predictions.

In this paper, we propose a new version of the
Naive Bayes classifier (semi Naive Bayes) without as-
suming independence of features. The proposed algo-
rithm finds dependencies between features using con-
ditional probabilities. This algorithm is a new al-
gorithm and different from the existing semi Naive
Bayes methods (Langley 1994, Kohavi 1996, Pazzani
1996, Friedman 1997, Kittler 1986, Zheng 2000, Webb
2005).

Most of data sets in real world applications often
involve continuous features. Therefore, continuous
features are usually discretized (Lu 2006, Wang 2009,
Ying 2009, Yatsko 2010). The main reason is that
the classification with discretization tend to achieve
lower error than the original one (Dougherty 1995).
We apply two different methods to discretize continu-
ous features. The first one, which is also the simplest
one, transforms the values of features to {0, 1} using
their mean values. We also apply the discretization
algorithm using sub-optimal agglomerative clustering
algorithm from (Yatsko 2010) which allows us to get
more than two values for discretized features. This
leads to the design of a classifier with higher testing
accuracy in most data sets used in this paper.

We organize the rest of the paper as follows. We
give a brief review to the Naive Bayes and some semi
Naive Bayes classifiers in Section 2. In Section 3, we
present the proposed algorithm. Section 4 presents
an overview of the discretization algorithm using sub-
optimal agglomerative clustering. The numerical ex-
periments are given in Section 5. Section 6 concludes
the paper.



2 Naive Bayes and Semi Naive Bayes Classi-
fiers

The Naive Bayes (NB) assumes that the features are
independent given the class, it means that all features
have only the class as a parent (Kononenko 1990, Lan-
gley 1992, Domingos 1997, Mitchell 1997). A sample
of the NB with n features is depicted in Figure 1. The
NB, classifies an instance X = (X1, X2, ..., Xn) using
Bayes rule, by selecting

argmax
c∈C

P (c)

n∏
i=1

P (xi|c). (2)

C

1X 2X
3X nX

Figure 1: Naive Bayes

NB has been used as an effective classifier for many
years. Unlike many other classifiers, it is easy to con-
struct, as the structure is given a priori. Although
the independence assumption is obviously problem-
atic, NB has surprisingly outperformed many sophis-
ticated classifiers, especially where the features are
not strongly correlated (Domingos 1997). In spite of
NB’s simplicity, the strong independency assumption
harms the classification performance of NB when it
is violated. On the other hand, learning BN requires
searching the space of all possible combinations of
edges which is NP-hard problem (Chickering 1996,
Heckerman 2004).

In order to relax the independence assumption of
NB, a lot of effort has focussed on improving NB.
The improved NB classifiers use exhaustive search to
join features based on statistical methods. There are
some improved algorithms of the NB. Langley and
Sage (Langley 1994) considered Backwards Sequen-
tial Elimination (BSE) and Forward Sequential Se-
lection (FSS) in which their methods select a subset
of features using leave-one-out cross validation error
as a selection criterion and establish a NB with these
features. Starting from the full set of features, BSE
successively eliminates the features whose elimination
most improves accuracy, until there is no further ac-
curacy improvement. FSS uses the reverse search di-
rection, that is iteratively adding the features whose
addition most improves accuracy, starting with the
empty set of features. The work of Pazzani (Paz-
zani 1996) introduces Backward Sequential Elimina-
tion and Joining (BSEJ). It uses predictive accuracy
as a merging criterion to create new Cartesian prod-
uct features. The value set of a new compound fea-
tures is the Cartesian product of the value sets of
the two original features. As well as joining features,
BSEJ also considers deleting features. BSEJ repeat-
edly joins the pair of features or deletes the features

that most improves predictive accuracy using leave-
one-out cross validation. This process terminates if
there is no accuracy improvement. Kohavi (Kohavi
1996) proposed the NB Tree, a strategy that is a hy-
brid approach combining NB and decision tree learn-
ing. It partitions the training data using a tree struc-
ture and establishes a local NB in each leaf. It uses
5-fold cross validation accuracy estimate as the split-
ting criterion. A split is defined to be significant if the
relative error reduction is greater than 5 percent and
the splitting node has at least 30 instances. When
there is no significant improvement, NB Tree stops
the growth of the tree. As the number of splitting
features is greater than or equals one, NB Tree is
an x-dependence classifier. The classical decision tree
predicts the same class for all the instances that reach
a leaf. In NB Tree, these instances are classified us-
ing a local NB in the leaf, which only considers those
non tested features. Friedman et al. (Friedman 1997)
introduced Tree Augment Naive Bayes (TAN) based
on tree structure. It approximates the interactions
between features by using a tree structure imposed
on the NB structure. In TAN, each feature has the
class and at most one other feature as parents. Super
Parent algorithm is proposed by Keogh and Pazzani
(Keogh 1999). This algorithm uses the same represen-
tation as the Tree Augment Naive Bayes, but utilizes
leave-one-out cross validation error as a criterion to
add a link. The Super Parent is the feature that is
the parent of all the other orphans, the features with-
out a non-class parent. There are two steps to add
a link: first selecting the best Super Parent that im-
proves accuracy the most, and then selecting the best
child of the Super Parent from orphans. This method
stops adding links when there is no accuracy improve-
ment. Zheng and Webb (Zheng 2000) developed Lazy
Bayesian Rules (LBR), which adopts a lazy approach,
and generates a new Bayesian rule for each test exam-
ple. The antecedent of a Bayesian rule is a conjunc-
tion of feature-value pairs, and the consequent of the
rule is a local NB, which uses those features that do
not appear in the antecedent to classify. LBR stops
adding feature value pairs into the antecedent if the
outcome of a one tailed pairwise sign test of error dif-
ference is not better than 0.05. As the number of the
feature value pairs in the antecedent is greater than or
equals one, LBR is anx-dependence classifier. Webb
et al. (Webb 2005) proposed Averaged One Depen-
dence Estimators (AODE), which averages the pre-
dictions of all qualified 1-dependence classifiers. In
each 1-dependence classifier, all features depend on
the class and a single feature.

In the next section, we introduce a new version
of the Naive Bayes classifier (semi Naive Bayes) with-
out assuming independence of features. The proposed
algorithm approximates the interactions between fea-
tures by using conditional probabilities.

3 The Proposed Algorithm

In this section, we present a new algorithm that main-
tains the basic structure of the NB, and thus ensure
that the class C is the parent of all features. The
proposed algorithm, however, removes the strong as-
sumption of independence in the NB by finding corre-
lation between features, while also capturing much of
the computational efficiency of the NB. In this algo-
rithm, the class has no parents and each feature has
the class and at most one other feature as parents.
Therefore, each feature can have one augmenting edge
pointing to it. The procedure for learning these edges
is based on the Pearson’s correlation and conditional



probabilities. First, we construct a basic structure of
the NB with n features X1, X2, ..., Xn from the set
X and the class C. After that, we find the Pearson’s
correlations between each feature Xi and the class
C using the formula (3), Corr(Xi, C). Then we re-
order the set X as a set X∗ in a descending order of
|Corr(Xi, C)|. In the ordered set X∗, an arc from the
first feature is added to the second one. Finally, for
all remain features, we find the conditional probabil-
ities of each feature with the previous features given
the class values in the ordered set X∗, formula (4).
The highest value of these conditional probabilities
between features is used to recognize the parent of
each feature. The conditional probabilities described
in (4), first introduced by Quinn et al. (Quinn 2009)
and called influence weights, have been used directly
for data classification. However, here, we used them
for finding the dependencies between features.

The correlation coefficient (Graham 2008) between
two random variables Xi and Xj is defined as :

Corr(Xi, Xj) =

N
N∑

i,j=1

XiXj −
N∑

i=1

Xi

N∑
j=1

Xj√
(N

N∑
i=1

X2
i
− (

N∑
i=1

Xi)2)(N
N∑

j=1

X2
j
− (

N∑
j=1

Xj)2)

,

(3)

where N is the number of data points. This measure
has the property of |Corr(Xi, Xj)| ≤ 1. When this
value is close to 1, it denotes the perfect linear cor-
relation between Xi and Xj , and Corr(Xi, Xj) = 0
stands for no linear correlation.

The proposed algorithm consists of six main steps:

Algorithm. Proposed Algorithm

Step 1. Construct a basic structure of the
Naive Bayes with n features,
X = {X1, X2, ..., Xn}, and the class C.

Step 2. Compute the correlation between
each feature Xi, i = 1, ..., n and the class C
using the formula (3), Corr(Xi, C).

Step 3. Reorder X as a set
X∗ = {X∗1 , X∗2 , ..., X∗n} in a descending order
of |Corr(Xi, C)|, i = 1, ..., n.

Step 4. Add an arc from X∗1 to X∗2 .

Step 5. For j = 3, ..., n:
5.1 Find X∗i that has the highest value of

N∑
k=1

|P (X
∗
ki, X

∗
kj |C)− P (X

∗
ki, X

∗
kj |C)|, i < j, (4)

where X∗i = (X∗1i, X
∗
2i, ..., X

∗
Ni)

T , N is

the number of instances and C = −C.
5.2 Add an arc from X∗i to X∗j .

Step 6. Compute the conditional
probability tables inferred by the new
structure.

Figure 2 shows the structure of Svmguide1 data
set, taken from LIBSVM, with four features (see Ta-
ble 1) using the proposed algorithm. The solid lines
are those edges required by the Naive Bayes classi-
fier. The dashed lines are correlation edges between
features found by our algorithm.

C

1X

2X

3X

4X

Figure 2: Proposed algorithm, Svmguide1

4 Discretization Algorithm Using Sub-
Optimal Agglomerative Clustering
(SOAC)

Discretization is a process which transform continu-
ous numeric values into discrete ones. In this paper,
we apply two different methods to discretize continu-
ous features. The first one, which is also the simplest
one, transforms the values of features to 0,1 using
their mean values. We also apply the discretization
algorithm using sub-optimal agglomerative clustering
algorithm which allows us to get more than two values
for discretized features. In this section, we introduce
discretization algorithm SOAC which is an efficient
discretization method for the NB learning. Details of
this algorithm can be found in (Yatsko 2010).

Consider a finite set of points A in the n di-
mensional space Rn, that is A = {a1, ..., am},
where ai ∈ Rn, i = 1, ...,m. Assume that the sets
Aj , j = 1, ..., k be clusters, and each cluster Aj can
be identified by its centroid xj ∈ Rn, j = 1, ..., k.
The discretization algorithm SOAC proceeds as
follows.

Algorithm. Discretization Algorithm SOAC

Step 1. Set k = m, and a small value of
parameter θ, 0 < θ < 1. Sort values of the
current feature in the ascending order. Each
feature requiring discretization is treated in
turn.
Step 2. Calculate the center of each cluster:

x
j
=

∑
a∈Aj

a

|Aj |
, j = 1, ..., k

and the error Ek of the cluster system
approximating set A:

Ek =

k∑
j=1

∑
a∈Aj

‖xj − a‖2.

Step 3. Merge in turn each cluster with the
next tentatively. Calculate the error increase
after each merge Ek−1 − Ek and choose the
pair of clusters giving the least increase.
Merge these two clusters permanently. Set
k = k − 1.



Step 4. Once the error of the current cluster sys-
tem is over the set fraction of the maximum error
corresponding to the single cluster Ek ≥ θE1 stop,
otherwise go to Step 2.

5 Numerical Experiments

To verify the efficiency of the proposed algorithm, nu-
merical experiments with a number of real world data
sets have been carried out. We use 10 real world data
sets. The detailed description of the data sets used
in this experiments can be found in the UCI machine
learning repository, with the exception of “Fourclass”,
“Svmguide1” and “Svmguide3”. These three data
sets are downloadable on tools page of LIBSVM. A
brief description of data sets is given in Table 1. We
discritize the values of features in data sets using two
different methods. In the first one, we apply a mean
value of each feature variable to discritize the values
to {0, 1}. The second one is the discrization algorithm
SOAC (Yatsko 2010) which is presented in Section 4.

We conduct empirical comparison for the NB and
the proposed algorithm in terms of test set accuracy
using two different discritization methods. The re-
sults of the NB and the new algorithm on each data
set were obtained via 1 run of 10-fold cross valida-
tion. Runs were carried out on the same training sets
and evaluated on the same test sets. In particular,
the cross validation folds were the same for all exper-
iments on each data set.

The test set accuracy obtained by the NB and the
proposed algorithm on 10 data sets using mean values
for discretization summarized in Table 2. The results
presented in this table demonstrate that the test set
accuracy of the new algorithm is much better than
that of the NB. The proposed algorithm works well
in that it yields good classifier compared to the NB.
Its performance was further improved by introducing
some additional edges in the NB, using conditional
probabilities. Improvement is noticed mainly in large
data sets. In 8 cases out of 10, the new algorithm has
higher accuracy than the NB. The accuracy of this
algorithm is same with the NB in data sets Fourclass
and Svmguide1.

Table 3 presents the test set accuracy obtained
by the NB and the proposed algorithm on 10 data
sets using discretization algorithm SOAC. The results
from this table show that the accuracy obtained by
the new algorithm in all data sets are higher than
those obtained by the NB.

Figures 3 to 4 show the scatter plot comparing the
proposed algorithm with the NB, using two different
discritization methods. In these plots, each point rep-
resents a data set, where the x coordinate of a point
is the percentage of miss classifications according to
the NB and the y coordinate is the percentage of
miss classification according the proposed algorithm.
Therefore, points above the diagonal line correspond
to data sets where the NB performs better, and points
below the diagonal line correspond to data sets where
the proposed algorithm performs better.

According to the results explained above, the pro-
posed algorithm outperforms the NB, yet at the same
time maintains its robustness. However, the proposed
algorithm requires more computational effort than
the NB since we need to compute conditional prob-
abilities between features to recognize the parent of
each feature in our algorithm.

Table 1: A brief description of data sets
Data sets # Features # Instances

Congres Voting Records 16 435
Credit Approval 14 690
Diabetes 8 768
Fourclass 2 862
Haberman Survival 3 306
Heart Disease 13 270
Phoneme CR 5 5404
Spambase 57 4601
Svmguide1 4 7089
Svmguide3 21 1284

Table 2: Test set accuracy of NB and the proposed
algorithm using mean value for discretization
Data Sets Naive Bayes Proposed Algorithm

Congres Voting Records 90.11 91.47
Credit Approval 84.85 86.85
Diabetes 75.78 77.68
Fourclass 76.82 76.82
Haberman Survival 74.51 75.66
Heart Disease 84.14 85.18
Phoneme CR 75.96 78.30
Spambase 90.13 93.45
Svmguide1 92.17 92.17
Svmguide3 80.61 87.18

Table 3: Test set accuracy of NB and the proposed
algorithm using discretization algorithm SOAC
Data Sets Naive Bayes Proposed Algorithm

Congres Voting Records 90.11 91.47
Credit Approval 84.85 86.85
Diabetes 75.78 77.68
Fourclass 78.58 79.70
Haberman Survival 74.66 75.33
Heart Disease 78.62 79.31
Phoneme CR 77.01 79.36
Spambase 89.30 92.30
Svmguide1 95.61 97.54
Svmguide3 77.25 80.85

6 Conclusion

In this paper, we have developed the new version of
the Naive Bayes classifier without assuming indepen-
dence of features. An important step in this algorithm
is adding edges between features that capture correla-
tion among them. The proposed algorithm finds de-
pendencies between features using conditional prob-
abilities. We have presented the results of numeri-
cal experiments on 10 data sets from UCI machine
learning repository and LIBSVM. The values of fea-
tures in data sets are discritized by using mean value
of each feature and applying discretization algorithm
SOAC. We have presented results of numerical exper-
iments. These results clearly demonstrate that the
proposed algorithm significantly improve the perfor-
mance of the Naive Bayes classifier, yet at the same
time maintains its robustness. Furthermore, this im-
provement becomes even more substantial as the size
of the data sets increases.
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Figure 3: Scatter plot comparing miss classifications
of the proposed algorithm (y coordinate) with Naive
Bayes (x coordinate); using mean value for discritiza-
tion
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Figure 4: Scatter plot comparing miss classifications
of the proposed algorithm (y coordinate) with Naive
Bayes (x coordinate); using Algorithm SOAC for dis-
critization
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