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Abstract

In this report, we focus on Biofluids problems, specifically the Stokes

Equation. The method of regularized Stokeslets can be derived from bound-

ary integral equations derived from the Lorentz reciprocal identity. When

body forces are known, this is a direct numerical approximation of an in-

tegral, resulting in a summation to determine the fluid velocity. In certain

cases, which this report is focused on, we know the velocity and want to

determine the forces on a structure immersed in a fluid. This results in a lin-

ear system Af = u, where A is a square dense matrix. We study different

methods to solve this system of equations to determine the force f on the

structure. For solving a linear system with a dense coefficient matrix, the

backslash command in MATLAB can be used. This will use an efficient and

robust direct method for solving a smaller matrix, but this is not an efficient

method for a large, dense coefficient matrix. For a large, dense coefficient ma-

trix, we will explore other direct methods as well as several iterative methods

to determine computation time and error on a test case with an exact solu-

tion. For direct methods, we will study backslash, LU factorization and QR

factorization methods. For iterative methods, we stuied Jacobi, Gauss-Seidel,

SOR, GMRES, CG, CGS, BICGSTAB and Schulz CG methods for these bioflu-

ids applications. All of these methods have different requirements. For our

coefficient matrix A, we identified specific properties and then used proper

methods, both direct and iterative. Result showed that iterative methods are

more efficient then direct method for large size A. Schulz CG was slower but

had a smaller error for the test case where there was an exact solution.
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1 Introduction

Partial differential equations have become a useful tool in the fields of indus-

try and biology. The boundary element method is also a popular tool for the

solution of equations in electromagnetism and fluids applications. By discretiz-

ing only the surface of a radiating or moving object to obtain a linear system,

we could get a smaller size system than the finite element and finite difference

methods. Usually there are large number of unknowns in biofluids applications,

leading to dense coefficient matrices A when solving the linear system Ax = b.

We need to find good (fast, computationally efficient, low error, reliable and ro-

bust) numerical methods for these different applications.

In our report, we focus on Biofluids problems, specifically we are solving the

Stokes Equation. In this formulation, we often have a linear systemAx = bwhere

A is normally a square, dense matrix. For solving a linear system with a dense

coefficient matrix, the method we used in the past is the backslash command

in MATLAB. The backslash command is an efficient and robust direct method

for solving small, dense matrices. For a large dense coefficient matrix, it might

be more computationally efficient to iterative methods. Also combined with a

proper preconditioner, we could potentially reduce the operation time even more.

For direct methods, we will talk about backslash, LU factorization and QR fac-

torization methods. For iterative methods, we will discuss Jacobi, Gauss-Seidel,

SOR, GMRES, CG, CGS, BICGSTAB and Schulz CG methods. All of these meth-

ods have different algorithms and requirements. For our coefficient matrix A,

we identified the matrix properties and used proper methods, both direct and

iterative.
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1.1 Biofluids - Stokes Equations

The biofluids applications used here are for solving two or three dimensional

Stokes equations. Stokes equation are well know in fluids problems, especially in

biology and industry. When the Stokes equation are steady, for fluid viscosity µ,

pressure p, velocity u and the force F, then the equations are

µ∆u = ∇p− F, (1)

∇ · u = 0. (2)

Eq. (1) is conservation of momentum and Eq. (2) is incompressibility or mass

conservation.

Then in accordance with Cortez’s paper [6], we first consider the generic situ-

ation in which the forces are spread over a small ball with center point x0. If φδ is

a radially symmetric smooth function with integral equal to one, then the force is

given by

F(x) = f0φδ(x− x0),

where x can be any point in the fluid domain and δ is the regularization pa-

rameter controlling radius of the ball the force fo is spread around the point xo.

Point forces are regularized in order for known fundamental solutions such as a

Stokeslet to be used when determining velocity u [6, 8]. Then we denote Gδ(x)

as the solution of ∆Gδ(x) = φδ(x) in infinite space and let Bδ be the solution of

∆Bδ(x) = Gδ(x) in infinite space.

Then, taking divergence of Eq. (1) and combining with Eq. (2) we get that

∆p = ∇ · F, with the particular solution p = f0 · ∇Gδ. Now with this expression

we rewrite Eq. (1) as µ∆u = (f0 · ∇)∇Gδ − f0φδ, which has particular solution
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µu(x) = (f0 · ∇)∇Bδ(x− x0)− f0Gδ(x− x0).

The equation above is referred to as a regularized Stokeslet velocity [6, 8]. If

there are N forces fk at points xk, then the pressure and velocity are given by

p(x) =
N∑

k=1

fk · ∇Gδ(x− xk),

u(x) = U0 + 1
µ

N∑
k=1

{(fk · ∇)∇Bδ(x− xk)− fkGδ(x− xk)}.

Finally by choosing a specific blob in two dimension φδ(x) =
3δ3

2π(|x|2 + δ2)
5/2

, we

get the equation that,

p(x) =
N∑
k=1

[fk · (x− xk)]

2πr2k
,

u(x) =
N∑
k=1

−fk
4πµ

ln(rk) + [fk · (x− xk)]
(x− xk)

4πµr2k
. (3)

Where rk = ‖x− xk‖2 and ‖·‖ denotes the Euclidean norm.

1.1.1 Biofluids inverse problem

Now we need to use Eq. (3) to find the forces from velocities. We can rewrite

the equation as:

u(xi) =
N∑
j=1

Mij(x1, ...,xN)fj, (4)

or as a matrix equation, U = MF . Here, N is the number of points that we know

the velocity at and we want to determine the force at each of these points. In

two dimensions, M is a 2N × 2N matrix, U and F are 2N × 1 vectors. In three

dimensions, M is a 3N × 3N matrix, U and F are 3N × 1 vectors.

Now, the problem becomes how to optimally solve the matrix equation b =

AX , where A is M , U is b and x is the unknown F . We set up column vector x

(F ) by locating the first component of the N points in the top N rows, then the
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second component of these points in the next N rows. (If in 3D, then the third

component is in the bottom N rows.) The column vector b (U ) is similar.

1.2 Linear Algebra Review

First, we will review some definitions and propositions from linear algebra

that we will need to describe the matrix M in our biofluids application [1]. A real

matrix A is a rectangular array (ai,j), with 1 ≤ i ≤ n, 1 ≤ j ≤ p, where ai,j ∈ R is

the entry in row i and column j, i.e.,

A =


a1,1 · · · a1,p

...
...

an,1 · · · an,p


Here, R is the field of real numbers. The set of all matrices of n rows and p

columns ( or we can say size n× p ) is denoted by Mn,p(R).

In many applications, it is necessary to determine the inverse of a matrix. A

matrix A ∈ Mn,n (R) is said to be invertible (or nonsingular), if there exists a

matrix B ∈ Mn,n (R) such that AB = BA = In, where In is the identity matrix

with dimension n. This matrix B is denoted by A−1 and is called the inverse

matrix of A. A noninvertible matrix is said to be singular.

Other important properties of a matrix include the kernel and image. The

kernel, or null space, of a matrix A ∈ Mn,p (R) is the set of vectors x ∈ Rp such

thatAx = 0; it is denoted byKer(A). The image, or range, ofA is the set of vectors

x ∈ Rn such that y = Ax, with x ∈ Rp; it is denoted by Im(A). The dimension of

the linear space Im(A) is called the rank of A; it is denoted by rk(A).

There are several properties that guarantee the existence of the inverse matrix.

8



For any A ∈Mn,n (R) the following statements are equivalent:

1. A is invertible;

2. Ker(A) = 0;

3. Im(A) = Rn;

4. there exists B ∈Mn,n (R) such that AB = In;

5. there exists B ∈Mn,n (R) such that BA = In.

In the last two cases, the matrix B is precisely equal to the inverse of A, A−1.

The determinant is also an important property while checking the singularity

of a matrix. The following are properties of the determinant. Let A and B be two

square matrices in Mn,n (R). Then,

1. det (AB) = ( detA)( detB) = det (BA);

2. det (AT ) = det (A);

3. A is invertible if and only if det(A)6= 0.

The condition number of a matrix A is a criterion of change on the output of

the linear system Ax = b, when changing the matrix A. If the condition number

is large, when we apply a small perturbation to b, the output x will change a

lot. In this case, we call the matrix ill-conditioned. If the condition number is

small, when we apply a small perturbation to b, the output x will change a little

as well. In this case, we call the matrix well-conditioned. The condition number

of the matrix A is calculated as cond(A) = ‖A‖ ‖A−1‖. Here we need the norm

of a matrix to get the condition number. There are several types of matrix norms

including 1-norm, 2-norm and∞-norm. The 1-norm is the maximum of the sums

of each column. The 2-norm is the square root of the maximum eigen-value of the
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matrix A∗A, where A∗ is the conjugate transpose of the matrix A. The∞-norm is

the maximum of the sums of the absolute value for all the entries in each row. In

the MATLAB code we use cond(A, 1), cond(A, 2), cond(A, inf) [13, 11].

A complex matrix U is a unitary matrix if it satisfies U∗U = UU∗ = In, where

U∗ is the conjugate transpose of U . For an orthogonal and real matrix Q, the

transpose of Q is the inverse of Q, QT = Q−1.

1.2.1 Properties of matrix for biofluids application

We explore a classic test case of flow past a cylinder. Specifically, we have a

2D fluid with a cylinder of radius a moving at a constant speed of (1, 0). That is,

it is moving to the right and not moving up/down. As detailed in Example 3.1 in

[6], this test case has an exact solution. In terms of Ax = b, we will have b as the

velocity such that:

b =

[
1 1 · · · 1 0 0 · · · 0

]T

where there are N 1’s corresponding to the x- component of the velocity at each

of the N points and N 0’s corresponding to the y-component of the velocity at

each of the N points. We show the properties in Table 1. Note that T denotes

transpose and b is a 2N × 1 vector. We want to solve for the forces at each of the

points on the cylinder, corresponding to x. The corresponding coefficient matrix

will be A and determined via Eq. (4).

In Table 1, we look at several properties of the coefficient matrix for the regu-

larization parameter δ = 0.5 · 2πa/N where a = 0.25 and N = 128. This test case

results in a 95% dense coefficient matrix. More particular, it is a nonsymmetric,

positive definite dense matrix.
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Table 1: Properties of coefficient matrix A.

Property A
Density 95% , 360 zeros
Symmetric NO
Positive Definite Yes
Sum of each row and column around 19
Maximum entry 0.484912861970437
Minimum entry -0.038421931215028
Eigenvalues not same, all positive
Condition number 1.2937 ∗ 103

Positive entries 74.73%
Negative entries 24.73%

(a) positive entries (b) negative entries (c) zero entries

Figure 1: For original matrix A, the position of positive, negative and zero entries
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For Figure 1 (a) the positive entries are placed throughout the matrix. There

are two large bands where negative entries occur, shown in Figure 1 (b). In Figure

1 (c), we can see some zero entries, mainly on the diagonal.
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2 Modeling Frameworks

2.1 Dense Matrix

In Biofluids applications, one must solve a system of equations with a dense

coefficient matrix. Previously, people have used backslash in MATLAB. The back-

slash command is a direct method. When we solve a matrix system Ax = b with

the unknown x, we could use the backslash method, x = A\b in MATLAB.

In MATLAB, the “\” command first checks the properties of A [12]. Accord-

ing to the explanation of algorithm for full inputs of the “\” command on Math-

Works’ website [12] and outlined in [9], we have the following Table 2. In Table

2, we will show that the method MATLAB uses different solvers based on the

properties of the matrix A. For example, if symmetric and real positive diagonal

elements, Cholesky will be used to solve Ax = b.

Table 2: Backslash Command in MATLAB

Property Solver employed
sparse and banded banded solver
upper or lower triangular backward substitution
symmetric and real positive diagonal elements Cholesky
none of criteria above is fulfilled Gaussian elimination, partial pivoting
sparse UMFPACK library
not square QR factorization for undetermined systems

2.2 Direct Methods

2.2.1 LU factorization

Let A be a matrix of order n where all diagonal submatrices of order k are

nonsingular. There exists a unique pair of matrices (L,U), with U upper triangu-

lar and L lower triangular with a unit diagonal (i.e. diagonal entries equal one),
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such that A = LU [1]. The condition stipulated by the theorem is often satisfied

in practice. For example, it holds true if A is positive definite. Note that the con-

verse is not true: namely, a matrix A, such that all its diagonal submatrices are

nonsingular is not necessarily positive definite.

In linear algebra, a symmetric n×n real matrixM is said to be positive definite

if zTMz is positive for every non-zero column vector z of n real numbers. Here zT

denotes the transpose of z. Let M be an n× n matrix. Then all its eigenvalues are

positive and its leading principal minors are all positive if M is positive definite.

2.2.2 QR factorization

QR factorization is a method for solving a least squares problem Ax = b

by factorizing A = QR. Here R is a triangular matrix and Q is an orthogonal

(unitary) matrix [16]. There are three operations while doing QR factorization:

Gram-Schmidt, Householder reflections and Givens rotations. While expensive

for dense problems, QR is quite competitive for large, sparse problems.

2.3 Iterative Methods

Direct methods are not always efficient for solving a large system of equations

with a dense coefficient matrix. This is due to the increasing operation count and

memory requirements. For such problems, iterative methods, such as GMRES

and BiCG can be better choices. An overview of solving these systems of equa-

tions using iterative methods is described in [1].

2.3.1 Jacobi, Gauss-Seidel, SOR

Jacobi method, Gauss-Seidel method and Successive Overrelaxation (SOR)

method can all be used for solving Ax = b [10]. All three of these methods are
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iterative methods. For a a nonsingular matrixA, we can splitA into two matrices,

A = M − N . Here we need M to be easily invertible. Plugging in for A, we get

Mx = Nx+ b. An iterative method is obtained by having an initial guess x0 in R

and using the following update for xk+1: Mxk+1 = Nxk + b. Then for a given x0

in R, we have that
xk+1 = M−1Nxk +M−1b.

For an iterative method, we want xk to converge. We need the spectral radius

(i.e. the maximum of eigenvalues) of M−1N to be less than one. That is because

we define error ek as ek = xk − x where x is the true solution. Then:

ek = xk − x

= (M−1Nxk−1 +M−1b)− (M−1Nx+M−1b)

= M−1N(xk−1 − x)

= M−1Nek−1.

Thus, we need the spectral radius of M−1N less than one to get the error to con-

verge.

There are different criterion to determine whether an iterative method is con-

verging. One is checking the norm of xk+1 − xk, the norm of the iteration value.

The other one is a relative criterion, meaning that

‖b− Axk‖
‖b− Ax0‖

≤ ε.

We prefer the relative criterion, though sometimes the iteration value may con-

verge slowly. This does not necessarlly mean that xn is close enough to our exact

value. However, for the same problem Ax = b, checking the relative criterion

may cost more time than checking iteration values. That is because each time we
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calculate the relative criterion, even though we can compute ‖b− Ax0‖ once and

save for later calculations, the ‖b− Axk‖must be computed for each iteration.

Specifically, the Jacobi method splitsA = M−N , whereM = D, D is diagonal

matrix andN = D−A. The Gauss-Seidel Method (the code is shown in Appendix

5.2 and 5.3) splits A as A = D − E − F , where D is a diagonal matrix, −E is the

lower triangular part (without diagonal) of A and −F is the upper triangular

part (without diagonal) of A. Then M = D−E, N = F , so M−1N = (D − E)−1F .

Here (D − E) is easy to invert since it is a triangular matrix. SOR method (the

code is shown in Appendix 5.4 and 5.5) splits A = M − N , where M = D
ω
− E,

N = 1−ω
ω
D + F . The relaxation method can converge only if 0 < ω < 2. When

ω=1, SOR is the same as Gauss-Seidel.

2.3.2 GMRES

GMRES [14] is short for Generalized minimal residual method, which is de-

signed for solving nonsymmetric linear systems. While solving a linear sys-

tem Ax = b with An×n an invertible matrix, the order m Krylov space is Km =

span{b, Ab,A2b, ..., Am−1b}. Then the GMRES method approximates the exact so-

lution by minimizing the residual Axm − b, where xm ∈ Km.

However, vectors b, Ab, ..., Am−1b are almost linearly dependent. Then we can

use the Arnoldi method to get the standard orthogonal basis qm for Km. Now we

could rewrite xm as xm = x0 +Qnym, where ym ∈ Rm and Qm stands for the m×n

matrix formed by qm. The Arnoldi process will produce an (m + 1) by m upper

Hessenberg matrix (square matrix with zero entries below the first subdiagonal),

denoted by H̃m. Then we have AQm = Qm+1H̃m. Since Qm is orthogonal, we

can obtain that ‖Axm − b‖ = ‖Hmym − βe1‖ with e1 = (1, 0, ..., 0) ∈ Rm and β =

‖b− Ax0‖. Usually we take x0 zero as our first trial initial vector. Next we find
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ym by minimizing ‖Hmym − βe1‖ with the QR factorization method. Then xm =

x0 +Qnym.

2.3.3 Conjugate Gradient

Here we introduce the Gradient method [1] first. When solving a linear sys-

tem Ax = b, if the coefficient matrix A is positive definite, we could use the

gradient method. The main idea of a gradient method is to consider the function

f(x) =
1

2
〈Ax, x〉 − 〈b, x〉

(〈·, ·〉 is the dot product) so that min ‖b− Ax‖2 = min f(x), considering the prob-

lem of minimizing quadratic functions. For a point xk , the iteration is xk+1 =

xk + λkdk. The gradient method determines the searching direction, which is the

steepest descent direction dk (dk = −∇f(xk)). The step length λk satisfies:

f(xk + λkdk) = min f(xk + λdk), λ ≥ 0.

If the coefficient matrix A is symmetric and positive definite (SPD), other search

directions can be used. For an SPD A, the Conjugate Gradient method (CG) con-

structs two conjugate directions with respect to A, making it faster than the Gra-

dient method.

Here we introduce the iteration of CG. Let xk be a sequence of approximate

solutions of the Conjugate Gradient method. The associated residual sequence is

rk = b − Axk. Then there exists an A-conjugate sequence pk such that p0 = r0 =

b− Ax0. Now we get three iterations:

xk+1 = xk + αkpk

rk+1 = rk − αkApk

pk+1 = rk+1 + βkpk

17



where αk = ‖rk‖2
〈Apk,pk〉

and βk = ‖rk+1‖2

‖rk‖2
. CG is an effective method, however, the

coefficient matrix A must be SPD. We now introduce several methods which are

a modification of CG.

The first modification is the Conjugate Gradient to Normal Equations (CGN)

[14]. There are also two CGN methods, CGNE and CGNR. Still solving Ax = b.

CGNE: AATy = b, x = ATy

CGNR: AATx = b̃, b̃ = AT b

where the coefficient matrix A is nonsymmetric, possibly indefinite (but nonsin-

gular).

The second one is the Bicongugate Gradient method (BiCG) [15]. Instead

of searching mutually conjugate directions, the BiCG method constructs two A-

conjugate directions. One is r and r̃, the other is p and p̃, so that 〈r̃k, rj〉 = 0, for

j 6= k; 〈p̃k, Apj〉 = 0, for j 6= k. This means that we do not need the coefficient

matrix A to be symmetric. The method is:

p0 = r0 = b− Ax0, p̃0 = r̃0

For k = 0, 1, 2, 3 . . . until convergence do

xk+1 = xk + αkpk

rk+1 = rk − αkApk, r̃k+1 = r̃k + αkA
T p̃k

pk+1 = rk+1 + βkpk, p̃k+1 = r̃k+1 + βkp̃k

End do

where αk = 〈r̃k,rk〉
〈p̃k,Apk〉

, βk = 〈r̃k+1,rk+1〉
〈r̃k,rk〉

. And the orthogonal projection are 〈r̃k, rj〉 = 0,

for j 6= k; 〈p̃k, Apj〉 = 0, for j 6= k.

The third method is the Conjugate Gradient Squared method (CGS) [17]. This

method comes from the BiCG method. According to the BiCG method’s scheme,

ri+1 has a term Api and pi has a term ri. So ri+1 has a term Ari. Similarly for r̃i.
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Then it is straightforward to show that ri = Pi(A)r0 and r̃i = Pi(A
T )r̃0, where Pi

is the ith polynomial of A, whose largest order is i and the corresponding term is

(A)i. Since we could construct 〈r̃k, rj〉 = 0, for i 6= k; 〈p̃k, Apj〉 = 0, for j 6= k, now

we could represent 〈rj, r̃k〉 as:

〈rj, r̃k〉 =
〈
Pj(A)r0, Pk(A

T )r̃0
〉

= 〈Pk(A)Pj(A)r0, r̃0〉 = 0, i < j.

Then we could think about the right hand side 〈Pk(A)Pj(A)r0, r̃0〉 = 0, i < j to be a

squared form. By doing so, we can avoid forming the vector r̃ and multiplication

with AT .

The last method is the BiCGSTAB [17]. This is similar to the former CGS

method. However, we consider 〈Pk(A)Pj(A)r0, r̃0〉 = 〈Qk(A)Pj(A)r0, r̃0〉. Here

Q is also a polynomial of A, but could be written as Qi(x) = (1 − ω1x)(1 −

ω2x)...(1 − ωix), where ωi are constants. To get the parameters αi and βi, since

αk = 〈r̃k,rk〉
〈p̃k,Apk〉

, βk = 〈r̃k+1,rk+1〉
〈r̃k,rk〉

, we need to calculate 〈ri, r̃i〉. By using this kind of Q,

we could reduce the time of solving

〈ri, r̃i〉 =
〈
Pi(A)r0, Qi(A

T )r̃0
〉

= 〈Qi(A)Pi(A)r0, r̃0〉 .

Qi has i + 1 terms and so does Pi. For calculating QiPi, we have (i+ 1) × (i+ 1)

terms. However we can only consider the highest order term of Qi(A), since the

projection of lower order terms equals zero because of the A-conjugate gradient

(〈r̃k, rj〉 = 0, for j 6= k; 〈p̃k, Apj〉 = 0, for j 6= k). Then we reduce the number of

terms to i+ 1 only.

2.3.4 Pseudoinverse Method

We know that the inverse matrix is only available for nonsingular square ma-

trices. While for some full rank matrices, though not square, we can obtain the
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pseudoinverse for them. If the pseudoinverse of a matrix A is available, it is

denoted as A†. Then the minimum norm solution of min
x∈Rn
‖Ax− b‖2 is given by

x = A†b. We use Schulz method to approximate the pseudoinverse [5]. The code

is shown in Appendix 5.1.

Here are two methods combined with the Schulz method. The first one is

the Richardson’s PR2 and the second one is the Conjugate Gradient method. For

Richardson’s PR2, we obtain the following scheme. Starting from a given x0 and

r0 = b− Ax0,

xk+1 = xk + λkCkrk

rk+1 = rk − λkACkrk

λk =
(ACkrk)

T rk

‖ACkrk‖22

Here λk is the step length and Ck is a coefficient here. The closer Ck is to A−1, the

faster this method will converge. Then, we use the Schulz method to find the Mk

(pseudoinverse approximation of A), and let Ck = Mk.

Moreover, the pseudoinverse method allows one to use the CG method for

nonsymmetric coefficient matrix systems. While using conjugate gradient method

to solve the linear system Ax = b, the matrix A must be SPD. But we could

combine Schulz method with the conjugate gradient method, called Schulz CG.

Schulz method is a way of finding the pseudoinverse of a full rank matrix. First

we set M0 = AT

‖A‖22
. Then for each iteration, update Mk+1 = 2Mk −MkAMk. Then

we combine Mk with our original problem Ax = b, such that MkAx = Mkb. Here

we have MkA is SPD for any nonnegative k. Then we can use the conjugate gra-

dient method for our new problem MkAx = Mkb.
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2.4 Preconditioners

When solving large size 3-D PDE problems, iterative methods can be better

than direct methods. Direct methods generally need more storage and operations

than iterative methods. But iterative methods may not have the reliability of

direct methods since in some cases, iterative methods do not converge. In this

kind of situation, preconditioners can be used. Even though not always sufficient,

it could allow the method to converge in a reasonable amount of time.

Preconditioning means that the linear system is transferred to a new one with

properties that may be helpful to increase the speed of convergence. In other

words, preconditioning would improve the coefficient matrix’s spectral proper-

ties. For an SPD system, the CG method converges faster when the distribution of

the eigenvalues of the coefficient matrix A is better. Here, we want the precondi-

tioned matrix to have a small spectral condition number and (or) the eigenvalues

clustered around 1. For a nonsymmetric problem, the situation is different. Sim-

ilar to the method GMRES, the eigenvalues may not describe the convergence of

nonsymmetric matrix iterations. However, we want a clustered spectrum (away

form zero) to get rapid convergence [4].

Suppose a matrix M is the preconditioner in our problem. Then the trans-

ferred problem to solve is MAx = Mb (left preconditioning) or AMy = b, x = My

(right preconditioning). It is obvious that the closer M is to A−1, the better it will

be. To construct the matrix M , our preconditioning matrix, we need to determine

the nonzero pattern of it. The large entries in A come out to be the same positions

in A−1. So when the nonzero pattern of A is the same for M , we try two methods

here to get our nonzero pattern. These are mentioned in [2] as heuristic (1) and

(4). The code is shown in Appendix 5.6 and 5.7.

For the first one mentioned as heuristic (1), we fix a positive integer k with k
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far less than A’s dimension n. We then find the k largest entries in each of A’s

columns. Then the position of those k ∗ n entries are our nonzero pattern. For

the second one mentioned as heuristic (4), we find entries whose absolute value

is greater than or equal to the parameter ε, with ε ∈ (0, 1). Then we keep the

position (i, j) of entries in A with |aij| > ε · max
1≤k,l≤n

|akl| as our nonzero pattern.

Once the nonzero pattern is chosen, we find each mj (column vectors of M )

by minimizing the Frobenius norm, min ‖I − AM‖2F ⇒ min
∥∥∥êj − Âm̂j

∥∥∥
2
. That is

min
∥∥∥êj − Âm̂j

∥∥∥
2
,

where Â is the new A matrix with nonzero columns left with respect to the

nonzero rows in mj and êj is the the unitary vector. Since it is a least squares

problem, we could use an orthogonal factorization method to solve the system.
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3 Model Testing and Results

3.1 Case 1: Cylinder with N = 128 and a = 0.25

Table 3 summarizes different solvers and whether they can be used for this test

case based on the properties of the coefficient matrix A. This is a test case with

an exact solution for a cylinder with a given radius a moving to the right with

velocity (0, 1) as described in Section 1.2.1. Note since this is a 2D problem and

N = 128, the coefficient matrixAwill be 2N×2N . In accordance to the properties

of the coefficient matrix A, direct methods LU and QR and iterative methods

Gauss Seidel, SOR, CGS, BiCHSTAB, Schulz PR2, Schulz CG and GMRES can be

used. In Table 3, ρ denotes the spectral radius.

Table 3: Case 1–Solvers and criteria.

Method / Algorithm Criteria Yes / No based on A matrix
Cholesky SPD NO - NOT symmetric
LU invertible, principal minor 6= 0 YES - invertible, PD
QR real nonsingular matrix YES - real nonsingular matrix
Jacobi ρ(M−1N) < 1 NO - M−1N> 1
Gauss Seidel ρ(M−1N) < 1 YES - M−1N< 1
SOR ρ(M−1N) < 1 YES - M−1N< 1
CG SPD NO - NOT SPD
CGS invertible YES - invertible
BiCGSTAB invertible YES - invertible
Schulz PR2 full rank, ρ(I − AM0) < 1 YES - full rank I − AM0<1
Schulz CG full rank, ρ(I − AM0) < 1 YES - full rank I − AM0<1
GMRES any real matrix YES - real matrix

Table 4 shows the number of iterations for these three direct methods. Cholesky

requires the least number of operations of these three, but requires A to be sym-

metric. LU and QR can also be used, with LU requiring less operations than QR.

Table 5 shows the results for trying different solvers with different stopping
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Table 4: Solvers and number of operations for the coefficient matrix An×n.

Method / Algorithm Operations
Cholesky n3

6
+ n

LU n3

3
+ n2

2

QR n3 + 3n2

2

criteria. When we decrease stopping criteria, as show in Table 5 for Gauss Sei-

del and Schulz CG, operation time increases and error decreases. By observation,

direct methods are an order of magnitude faster (on average), than iterative meth-

ods with a similar error.

Table 5: Case 1–Results for different solvers with N = 128, a = 0.25 and δ =
0.5 ∗ a ∗ 2 ∗ π/N .

Method / Algorithm stopping criteria operation time error
backslash none 0.003917s 2.883578065903e-003
LU none 0.003803s 2.883578065903e-003
QR none 0.013098s 2.883578065903e-003
Gause Seidel ite 10−2 0.012448s 4.001010911070e-003
Gause Seidel rel 10−2 0.016991s 8.479259557713e-003
Gause Seidel ite 10−4 0.066209s 2.871422306836e-003
Gause Seidel rel 10−4 0.024783s 2.861511514985e-003
SOR ite ω = 0.4 10−2 0.011180s 3.263184449366e-003
SOR rel 10−2 0.023780s 7.355444394070e-003
SOR ite 10−4 0.019994s 2.884251964290e-003
SOR rel 10−4 0.025819s 2.892100565886e-003
CGS 4.2 ∗ 10−15 0.055983s 2.883578065906e-003
BiCGSTAB 4.9 ∗ 10−16 0.041117s 2.883578065903e-003
Schulz CG 10−6 0.043843s 2.768892208353e-003
Schulz CG 10−9 0.088875s 2.451242421238e-003
Schulz CG 10−12 0.083423s 2.455553760412e-003
GMRES 10−6 0.081820s 2.883578065903e-003

Table 6 shows the number of iterations of Schulz CG with different stopping

criteria. We note that decreasing the tolerance does not require that many more

iterations. However, each iteration has a high computational cost.
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Table 6: Case 1–Results for Schulz CG.

Method / Algorithm stopping criteria number of iterations
Schulz CG 10−6 2
Schulz CG 10−9 3
Schulz CG 10−12 4

Figure 2: Schulz CG is shown in Green, Gauss seidel in blue, SOR (ω = 0.4) in
red. Here, N = 128, a = 0.25, δ = 0.5∗a∗2∗π/N . We set max number of iterations
to 80. For the residuals plotted, Schulz CG’s residual is ‖MKb−MKAx‖ and the
other two are ‖b− Ax‖.
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From Figure 2, we can observe that there is almost no difference between the

Gauss seidel method and SOR (ω = 0.4) method for this problem. However,

Schulz CG converges faster than Gauss seidel method and SOR (ω = 0.4) method.

It actually meets the error criteria or tolerance in a smaller number of iterations

for each of the methods. We show for more iterations to see the difference of

convergence speed, for each of the methods.

Figure 3: Velocity Error for test case 1. Schulz CG is shown in Green and back-
slash red. Result shown are for several different regularization parameters δ. The
stopping criteria for Schulz CG is 10−15.

From Figure 3, we can observe that the velocity error of the Schulz CG method

is smaller than the backslash method. Here, the Schulz CG method is computa-

tionally slower for this small problem. However, for larger problems, an iterative

solver may win out above backslash because it is a direct method. Note also that

there is an optimal regularization parameter δ that gives the smallest velocity

error for both Schulz CG and backslash in Figure 3.

Next, we summarize some results for our problem using preconditioners. We

use ‘spy(A)’ to get the nonzero entries of our original matrixA. Using ‘plot(eig(A))’

to get the graph of the eigen-value distribution. We also use ‘svds(A,256)’ to get

all the singular values of our matrix and ‘hist(svds(A,256),256)’ to get our his-
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togram of singular values (Note N = 128 and 2N = 256). As mentioned before,

for nonsymmetric problems, we want the eigenvalues to have a clustered spec-

trum (away form zero) to get rapid convergence [4].

(a) position of nonzero entries (b) eigen-value distribution (c) Singular value histogram

Figure 4: Properties of original matrix A.

(a) position of nonzero entries (b) eigen-value distribution (c) Singular value histogram

Figure 5: Properties of preconditioner NO.1, M11 with k = 8.

Figure 4 is a graph of nonzero entries (a), eigen-values distribution (b), and

singular value histogram (c) for our original matrix A. Note that the eigen-values

are mainly clustered between 0 and 2 with a few larger values going out to 20.

Figure 5 and 6 are preconditioner NO.1 with parameter k=8 and 16 which made

the matrix density 3.13% and 6.25%, respectively. Here, M11 is preconditioner

NO.1 with k = 8. For the Figure captions M1i is preconditioner NO.1 with pa-

rameter ki, where k=[8, 16, 24, 40]. Note that eigen-values are now between 0 and

1.5, 0 and 1.3 for k=8 and k=16, respectively in Figure 5, 6. Comparing Figure 5,

6, 7, 8 and 9 , we can see that when k = 32 in Figure 8, the eigen-values are the
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(a) position of nonzero entries (b) eigen-value distribution (c) Singular value histogram

Figure 6: Properties of preconditioner NO.1, M12 with k = 16.

(a) position of nonzero entries (b) eigen-value distribution (c) Singular value histogram

Figure 7: Properties of preconditioner NO.1, M13 with k = 24.

(a) position of nonzero entries (b) eigen-value distribution (c) Singular value histogram

Figure 8: Properties of preconditioner NO.1, M14 with k = 32.

(a) position of nonzero entries (b) eigen-value distribution (c) Singular value histogram

Figure 9: Properties of preconditioner NO.1, M15 with k = 40.
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(a) position of nonzero entries (b) eigen-value distribution (c) Singular value histogram

Figure 10: Properties of preconditioner NO.4, M41 with tol = 0.6.

(a) position of nonzero entries (b) eigen-value distribution (c) Singular value histogram

Figure 11: Properties of preconditioner NO.4, M42 with tol=0.48.

most clustered out of all the different k values used here. Also as k increases in

Figure 5-9 (a), the zero entries are always around the diagonal and the width of

the band of nonzero entries increases. Figure 10 and 11 are preconditioner NO.4

with parameter tol value 0.6 and 0.48, which made the matrix density 2.49% and

6.01%. We choose tol value 0.6 and 0.48 to make sure that the density percentages

are similar to k = 8, 16 for preconditioner NO.1 for comparison. Figures 9-10 for

preconditioner NO.4 shows similar properties to Figure 3-7 with preconditioner

NO.1. In Figure Captions 9-10, M4i corresponding to preconditioner NO.4 with

parameter toli, where tol=[0.6, 0.48]. Overall, the more nonzero entries in our

matrix, the more clustered our eigen-values are, and they are closer to 1.

Table 7 shows that for this test case, the preconditioned GMRES could reduce

the density of coefficient matrixA and save operation time for GMRES only. Case
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NO.1 and NO.4 are described in Section 2.4 (Preconditioners) and are less dense

than A. For example, NO.1 with k=8 has 3.13% density while the original A has

99.45% density.

Table 7: Preconditioner density and operation time.

Preconditioners density Operation times for GMRES only (Full solve)
Without, Ac 99.45% 0.081820s (0.081820s)
NO.1 k=8 3.13% 0.045495s (0.635933s)
NO.1 k=16 6.25% 0.005630s (0.700279s)
NO.4 tol=0.6 2.49% 0.003050s (0.588738s)
NO.4 tol=0.48 6.01% 0.003208s (0.849987s)

In accordance to Table 7, we now look at computational times for solving pre-

conditioned problems. In Table 7, we observe that the GMRES solver is faster

than GMRES without preconditioning. This means that the more clustered co-

efficient matrix A is more efficient to solve via GMRES. Also, when a different

density of our preconditioner matrix M is used, the elapsed times are different.

We could see that NO.1 k = 8 cost 10 times more than NO.1 k = 16. NO.4 is

also faster than NO.1 but tol = 0.6 and tol = 0.48 have almost the same efficiency.

However, we can not consider the elapsed time for GMRES method only, we need

to include the time for preconditioning the matrix M and find out our final result

by right preconditioning (here we only consider right preconditioning as left pre-

conditioning has a similar setup). We can see that the denser our matrix M is, the

more elapsed time cost. When considering the total elapsed time, preconditioned

GMRES methods are slower than GMRES method without preconditioner.

The poor result may be caused by minimizing the Frobenius norm to solve

for the matrix M . Notice that as mentioned in Alleon and Benzi’s paper [2], the

sparse A will make the Â a matrix with only a few nonzero rows and columns, so

that each least square problem has small size and can be solved efficiently. Since
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our matrix A is a 95% dense matrix, the time spent on solving the least squares

problem can be a lot. The preconditioned system has more clustered eigenvalues,

but the time spent on preconditioning makes for a poor result.
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3.2 Case 2: Cylinder test case with N = 1280 and a = 2.5

Similar to Section 3.1, we use a cylinder test case from [6] with a known exact

solution. We change N to 1280 and a to 2.5. Thus, our cylinder of larger radius is

moving with constant speed.

Table 8 shows the properties of the larger coefficient matrixA. Direct methods

LU and QR and iterative methods CGS, BiCGSTAB, Schulz PR2, Schulz CG and

GMRES can be used to solve this test case.

Table 8: Case2–Solvers and criteria.

Method / Algorithm Criteria Yes / No based on A matrix
Cholesky SPD NO -NOT symmetric
LU invertible, principal minor 6= 0 YES - invertible, positive definite
QR real nonsingular matrix YES - real nonsingular matrix
Jacobi ρ(M−1N) < 1 NO - ρ(M−1N) > 1
Gauss Seidel ρ(M−1N) < 11 NO - ρ(M−1N) > 1
SOR ρ(M−1N) < 1 NO - ρ(M−1N) > 1
CG SPD NO - NOT SPD
CGS invertible YES - invertible
BiCGSTAB invertible YES - invertible
Schulz PR2 full rank, ρ(I − AM0) < 1 YES - full rank, ρ(I − AM0) < 1
Schulz CG full rank, ρ(I − AM0) < 1 YES - full rank, ρ(I − AM0) < 1
GMRES any real matrix YES - real matrix

Table 9 shows the results for this cylinder test case with a larger coefficient ma-

trix A. Highlighted are results for using different solvers with different stopping

criteria. The operation time and the error from the exact solution are reported.

We can see that backslash is a little slower than LU and faster than QR with sim-

ilar error. Also, backslash cost 20 times more in operation time than iterative

methods CGS and BiCGSTAB. Backslash also cost 10 times more in operation

time than GMRES with similar error. Comparing Case 2 (shown in Table 9) to

Case 1 (shown in Table 5), we can see that the operation time increases as N gets
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larger. But operation time for direct methods increase much more than iterative

methods. In other words, computational time for iterative methods increases in a

reasonable range. Schulz CG method has a much larger computing time but it re-

duces the error. However, stopping criteria decreases here but the error increases.

This happens because the stopping criteria 10−6 only has two iterations and the

stopping criteria 10−9 and 10−12 has three iterations. Mk updates each iteration,

so for different iterations, Mk is different. Then, the residual norm will vary as

well.

Table 9: Case 2–Results for different solvers with N = 1280, a = 2.5 and δ =
0.5 ∗ a ∗ 2 ∗ π/N .

Method / Algorithm stopping criteria operation time error from the exact sln
backslash none 1.465171s 2.531431081399e-003
LU none 1.358789s 2.531431081391e-003
QR none 6.786379s 2.531431081399e-003
CGS 2 ∗ 10−15 0.084721s 2.531431081400e-003
BiCGSTAB 1.8 ∗ 10−15 0.070674s 2.531431081400e-003
Schulz CG 10−6 43.039379s 8.031222226275e-004
Schulz CG 10−9 50.761244s 1.693959743035e-003
Schulz CG 10−12 50.139065s 1.693959743035e-003
GMRES 10−15 0.182988s 2.531431081388e-003
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3.3 Case 3: Filament in Stokes fluid, N=501

Here we know the velocity of movement of a filament immersed in a Stokes

fluid and solve for the force on the filament. Table 10 highlights criteria for cer-

tain methods. For this coefficient matrix A, direct methods LU, QR and cholesky

and iterative methods CG, CGS, BiCHSTAB, Schulz PR2, Schulz CG and GMRES

could be used.

Table 10: Case 3–Solvers and criteria.

Method / Algorithm Criteria Yes / No based on A matrix
Cholesky SPD YES - SPD
LU invertible, principal minor 6= 0 YES - invertible, principal minor 6= 0
QR real nonsingular matrix YES - real nonsingular matrix
Jacobi ρ(M−1N) < 1 NO - ρ(M−1N) > 1
Gauss Seidel ρ(M−1N) < 1 YES - ρ(M−1N) < 1
SOR ρ(M−1N) < 1 YES - ρ(M−1N) < 1
CG SPD YES - SPD
CGS invertible YES - invertible
BiCGSTAB invertible YES - invertible
GMRES any real matrix YES - real matrix

Table 11 shows the results for the filament in Stokes with different solvers

with different stopping criteria. The operation time and the error from the exact

solution are reported. Cholesky is the fastest direct method, even faster than

backslash. GMRES method is the fastest method among the iterative methods.

We can see that most of the iterative methods are slower than the direct methods

except for GMRES. Computational time increases for iterative methods as the

stopping criteria decreases.
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Table 11: Case 3–Results for different solvers with N = 501 and δ = 1/(3 ∗N/4).

Method / Algorithm stopping criteria operation time
backslash none 0.094110s
LU none 0.110517s
QR none 0.492061s
cholesky none 0.086663s
Gause Seidel ite 10−2 0.168700s
Gause Seidel rel 10−2 0.230589s
Gause Seidel ite 10−4 0.194310s
Gause Seidel rel 10−4 0.299491s
SOR ite ω = 0.6 10−2 0.195088s
SOR rel 10−2 0.235641s
SOR ite 10−4 0.220053s
SOR rel 10−4 0.277532s
CG 1.6 ∗ 10−4 0.105268s
CGS 6.5 ∗ 10−6 0.120575s
BiCGSTAB 1.7 ∗ 10−5 0.130737s
GMRES 1.2 ∗ 10−3 0.077741s

3.4 Case 4: Filament in a Brinkman fluid with N=501

Similar to the previous case, we know the velocity of the filament and need to

solve for the force on the filament. In this case, we are solving Brinkman equation

(vs. Stokes) and Eq. (1) has an extra term. Brinkman flow is given by

µ∆u− µ

k
v = ∇p− F,

and can also be solved by regularized fundamental solutions [7].

Table 12 highlights properties of theAmatrix for this test case. Direct methods

LU, QR and cholesky, iterative methods CG, CGS, BiCHSTAB, Schulz PR2, Schulz

CG and GMRES could be used to solve for forces.

Table 13 shows results for the filament in a Brinkman fluid with coefficient

matrixA. By observation, only one iterative method, GMRES, is faster than direct
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Table 12: Case 4–Solvers and criteria.

Method / Algorithm Criteria Yes / No based on A matrix
Cholesky SPD YES - SPD
LU invertible, principal minor 6= 0 YES - invertible, principal minor 6= 0
QR real nonsingular matrix YES - real nonsingular matrix
Jacobi ρ(M−1N) < 1 NO - ρ(M−1N) > 1
Gauss Seidel ρ(M−1N) < 1 YES - ρ(M−1N) < 1
SOR ρ(M−1N) < 1 YES - ρ(M−1N) < 1
CG SPD YES - SPD
CGS invertible YES - invertible
BiCGSTAB invertible YES - invertible
GMRES any real matrix YES - real matrix

methods. In general, direct methods are faster than iterative methods. However,

all the methods used here have more elapsed computational time than Case 3, for

a filament in Stokes fluid, as shown is Table 11.
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Table 13: Case 4–Results for different solvers with N = 501 and δ = 1/(3 ∗N/4).

Method / Algorithm stopping criteria operation time
backslash none 0.098777s
LU none 0.108533s
QR none 0.443145s
cholesky none 0.087869s
Gause Seidel ite 10−2 0.147021s
Gause Seidel rel 10−2 0.203388s
Gause Seidel ite 10−4 0.180132s
Gause Seidel rel 10−4 0.267056s
SOR ite ω = 0.6 10−2 0.183691s
SOR rel 10−2 0.207920s
SOR ite 10−4 0.196745s
SOR rel 10−4 0.273506s
CG 2.4 ∗ 10−4 0.118171s
CGS 6.4 ∗ 10−6 0.118292s
BiCGSTAB 3.3 ∗ 10−5 0.127653s
GMRES 1.7 ∗ 10−3 0.080534s

4 Discussion

As we assumed, the iterative methods worked faster than direct methods if

the coefficient matrix A of the linear system was large as shown in test Case 2.

By observation, the backslash would check the property of the matrix A first,

then decide which method to use. For our matrix A, it uses the LU factorization

method.

For test Case 2, GMRES method was more efficient than the backslash com-

mand with similar error. For test Case 1 and 2, Schulz CG method could reduce

the error but was not as computationally efficient. For problems that we need

more accuracy, Schulz CG method is a good choice.

Then we tried some preconditioning with GMRES as well. The preconditioner

like FROB made the GMRES faster but the total cost of time is longer than the

GMRES method without preconditioner. Since the QR factorization in solving
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the preconditioner matrix M cost too much time. It is obvious that based on

computational time, the preconditioner did not work well for our problem. Pre-

conditioning methods are suited well for other methods and may not be good for

our linear system. We need to keep looking for efficient methods.

In Alleon’s paper [3], he showed that for Krylov subspace methods (e.g. GM-

RES) combined with a preconditioner could dramatically reduce the operation

time. In section 2 we described the FROB preconditioner which chose the nonzero

pattern with the same position as large entries in A−1. Results were presented

for this in section 3.1 and 3.2 for the cylinder test case in a 2-D fluid. This also

corresponds to the 3rd level nearest neighbours for a geometric smooth object

(3rd far-away object for nonsmooth or disconnected, or far-away edges). Alleon

instead used a fast multipole method (FMM, an algorithm for computing approx-

imate matrix-vecter products for electromagnetic scattering problems). The basic

idea of the algorithm is to first generate the mesh by dividing former rectangles

to get new leaf-boxes. Then, depending on the physical distance, compute itera-

tions amongst degrees of different level are used. The new idea of the algorithm

is making an outer and inner solver scheme. The outer solver uses a high ac-

curacy FMM preconditioned FGMRES method and the inner solver uses FROB

and a low accuracy FMM preconditioned GMRES method. At the end of the pa-

per he mentioned spectral low-rank updates. Since in many cases, removing the

smallest eigenvalues can greatly improve the convergence. Then, by combining

FROB preconditioner with a rank-k spectral update, he got faster convergence.

This type of method could be used in the biofluids application in future work.
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5 Appendix

5.1 Code for method Schulz CG

1 func t ion x=Schulz CG (A, b , t o l ,Nmax)

%i n i t i a l i z a t i o n

3 x=zeros ( length ( b ) , 1 ) ;

5 M=A’/norm (A, 2 ) ˆ 2 ;%pseudoinverse . I f A f u l l rank then M*A i s SPD

r=M*b−M*A* x ;%o r i g i n a l i s r=b−A* x ; but we need to solve MAx=Mb

7 p=r ;

gama=norm ( r , 2 ) ˆ 2 ;

9 n=1;

while gama>t o l&&n<Nmax

11 y=M*A*p ;

%s i z e ( y )

13 alpha=gama/dot ( y , p ) ;

x=x+alpha *p ;

15 r=r−alpha * y ;

beta=norm ( r , 2 ) ˆ2/ alpha ;

17 gama=norm ( r , 2 ) ˆ 2 ;

p=r+beta *p ;

19 M=2*M−M*A*M;

n=n+1;

21 t o l ;

end

23 n ;

end
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5.2 Code for method Gauss Seidel with iterative residual

func t ion x=g a u s s s e i d e l (A, b , p , t o l ) %gauss−se ide ( matrix A,RHS b ,

i n i t i a l , t o l e r a n c e )

2 M2= t r i l (A) ; %M=D−E

N2=diag ( diag (A) )−t r i u (A) ; %N=F

4

G=M2\N2 ; %G=Mˆ−1*N=(E−L ) ˆ−1*F

6 b new=M2\b ; %b new=Mˆ−1*b=(E−L ) ˆ−1*b

8 x=G*p+b new ; %x n+1=G* x n+b new

n=1;

10 while norm ( x−p , 2 )>=t o l %i f 2−norm of ( x n−x n−1)>=t o l e r a n c e

p=x ; %then c a c u l a t e one more time

using x n

12 x=G*p+b new ; %then we get x n+1

n=n+1; % # of i t e r a t i o n s

14 end

n

5.3 Code for method Gauss Seidel with relative residual

1 func t ion x=gaussse ide l2 (A, b , p , t o l ) %gauss−se ide ( matrix A,RHS b ,

i n i t i a l , t o l e r a n c e )

M2= t r i l (A) ; %M=D−E

3 N2=diag ( diag (A) )−t r i u (A) ; %N=F

5 G=M2\N2 ; %G=Mˆ−1*N=(E−L ) ˆ−1*F

b new=M2\b ; %b new=Mˆ−1*b=(E−L ) ˆ−1*b

7
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x=G*p+b new ; %x n+1=G* x n+b new

9 n=1;

p1=p ;

11 t o l 0 =norm ( b−A* p1 , 2 ) ;

while norm ( b−A* x , 2 ) / t o l 0 >=t o l %i f 2−norm of ( x n−x n−1)>=

t o l e r a n c e

13 p=x ; %then c a c u l a t e one more time

using x n

x=G*p+b new ;

15 %then we get x n+1

%x k+1=Mˆ−1*N* x k+Mˆ−1b

17 n=n+1; % # of i t e r a t i o n s

end

19 n

5.4 Code for method SOR with iterative residual

1 func t ion x=SOR2(A, b , p ,w, t o l )

D=diag ( diag (A) ) ;

3 E=diag ( diag (A) )− t r i l (A) ;

F=diag ( diag (A) )−t r i u (A) ;

5

M=D/w−E ;

7 N=(1−w) /w*D+F ;

9 G=M\N;

b new=M\b ; %b new=Mˆ−1*b=(E−L ) ˆ−1*b

11

x=G*p+b new ; %x n+1=G* x n+b new
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13 n=1;

p1=p ;

15 t o l 0 =norm ( b−A* p1 , 2 ) ;

while norm ( b−A* x , 2 ) / t o l 0 >=t o l %i f 2−norm of ( x n−x n−1)>=

t o l e r a n c e

17 p=x ; %then c a c u l a t e one more time

using x n

x=G*p+b new ; %then we get x n+1

19 n=n+1; % # of i t e r a t i o n s

end

21 n

5.5 Code for method SOR with relative residual

1 func t ion x=SOR2(A, b , p ,w, t o l )

D=diag ( diag (A) ) ;

3 E=diag ( diag (A) )− t r i l (A) ;

F=diag ( diag (A) )−t r i u (A) ;

5

M=D/w−E ;

7 N=(1−w) /w*D+F ;

9 G=M\N;

b new=M\b ; %b new=Mˆ−1*b=(E−L ) ˆ−1*b

11

x=G*p+b new ; %x n+1=G* x n+b new

13 n=1;

p1=p ;

15 t o l 0 =norm ( b−A* p1 , 2 ) ;
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while norm ( b−A* x , 2 ) / t o l 0 >=t o l %i f 2−norm of ( x n−x n−1)>=

t o l e r a n c e

17 p=x ; %then c a c u l a t e one more time

using x n

x=G*p+b new ; %then we get x n+1

19 n=n+1; % # of i t e r a t i o n s

end

21 n

5.6 Code for preconditioner NO.1

1 func t ion x=preconditionerNO1 (A, k )

n row= s i z e (A, 1 ) ;

3 n column= s i z e (A, 2 ) ;

M=zeros ( s i z e (A) ) ;

5 M1=zeros ( k , s i z e (A, 2 ) ) ;

E=eye ( s i z e (A) ) ;

7 E new=zeros ( k , s i z e (A, 2 ) ) ;

f o r j =1 : n column

9 A new=zeros ( s i z e (A, 1 ) , k ) ;

Q new=zeros ( s i z e (A, 1 ) , k ) ;

11 [ b ,m]= s o r t (A( : , j ) ) ;

p o s i t i o n =m( n row−k +1: n row ) ;

13 [ b1 ,m1]= s o r t ( p o s i t i o n ( : ) ) ;

A new ( : , 1 : k ) =A( : , b1 ( : ) ) ;%get f u l l rank matrix f i r s t

15 E new ( 1 : k , : ) =E ( b1 ( : ) , : ) ;

[Q, R]= qr ( A new ) ;

17 Qtemp=Q’ ;

Q new ( : , 1 : k ) =Qtemp ( : , b1 ( : ) ) ;
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19 M1( : , j ) =R\ (Q new* E new ( : , j ) ) ;

M( b1 ( : ) , j ) =M1( : , j ) ;

21 end

x=M;

23 end

5.7 Code for preconditioner NO.4

1 func t ion x=preconditionerNO4 (A, eps )

n row= s i z e (A, 1 ) ;

3 n column= s i z e (A, 2 ) ;

maximum=max(max( abs (A) ) ) ;

5 t o l =eps *maximum ;

M=zeros ( s i z e (A) ) ;

7 E=eye ( s i z e (A) ) ;

num tot =0;

9 num=zeros ( 1 , s i z e (A, 2 ) ) ;

f o r n=1: n column

11 num( 1 , n ) =0;

b1=zeros ( 1 , s i z e (A, 2 ) ) ;

13 f o r m=1: n row

i f abs (A(m, n ) )>=t o l

15 num( 1 , n ) =num( 1 , n ) +1;

b1 ( 1 ,num( 1 , n ) ) =m;

17 A new ( : , num( 1 , n ) ) =A( : ,m) ;

num tot=num tot +1;

19 end

end

21 i f num( 1 , n )>0
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M1=zeros (num( 1 , n ) , s i z e (A, 2 ) ) ;

23 E new=zeros (num( 1 , n ) , s i z e (A, 2 ) ) ;

b1 ( 1 , : ) ;

25 b1 ( b1 ( 1 , : ) ==0) = [ ] ;

E new ( 1 : s i z e ( b1 , 2 ) , : ) =E ( b1 ( 1 , : ) , : ) ;

27 i f n>=2&&num( 1 , n )<num( 1 , n−1)

A new ( : , num( 1 , n ) +1:num( 1 , n−1) ) = [ ] ;

29 end

[Q, R]= qr ( A new ) ;

31 Qtemp=Q’ ;

Q new=zeros ( s i z e (A, 1 ) , s i z e ( b1 , 2 ) ) ;

33 Q new ( : , 1 : s i z e ( b1 , 2 ) ) =Qtemp ( : , b1 ( 1 , : ) ) ;

M1( : , n ) =R\ (Q new* E new ( : , n ) ) ;

35 M( b1 ( 1 , : ) , n ) =M1( : , n ) ;

e l s e M( : , n ) =0;

37 end

end

39 x=M;

min mj=min (num)

41 max mj=max(num)

num tot ;

43 nonzeros=num tot /( n row * n column )

end
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