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Abstract

Over the years analysts have used the EM algorithm to obtain maximum likelihood estimates from
incomplete data for various models. The general algorithm admits several appealing properties such as strong
global convergence; however, the rate of convergence is linear which in some cases may be unacceptably slow.
This work is primarily concerned with applying Anderson acceleration to the EM algorithm for Gaussian
mixture models (GMM) in hopes of alleviating slow convergence.

As preamble we provide a review of maximum likelihood estimation and derive the EM algorithm in
detail. The iterates that correspond to the GMM are then formulated and examples are provided. These
examples show how faster convergence is experienced when the data are well separated, whereas much slower
convergence is seen whenever the sample is poorly separated. The Anderson acceleration method is then
presented, and its connection to the EM algorithm is discussed. The work is then concluded by applying
Anderson acceleration to the EM algorithm which results in reducing the number of iterations required to
obtain convergence.
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Introduction

Of interest is the estimation of parameters in a mixture model where all underlying components are
multivariate Gaussian distributions of dimension at least two. To be precise, throughout this exposition the
model used will be a Gaussian mixture model (GMM) that represents a population composed of m ∈ Z+

subpopulations. To accompany our model we also assume that we have an unlabeled random sample X =
(x1,x2, ...,xN ) which was obtained in an independent and identically distributed (iid) fashion. An unlabeled
sample in this sense means that for any xk ∈ X , k = 1, ..., N , the true subpopulation to which xk belongs
is not known. The goal is to make accurate statistical inferences on properties of the subpopulations using
only the unlabeled sample X . As will be seen in the sequel, maximum likelihood estimation via the EM
algorithm is a powerful tool in obtaining accurate parameter estimates for the GMM as well as various other
models.

Mathematically we define the GMM as

p(x|Φ) =

m∑
i=1

αipi(x|φi), (1)

where x = (x1, ..., xd)
T ∈Rd, φi = (µi,Σi), Φ = (α1, ..., αm, φ1, ..., φm) ∈ Ω and each pi is a d-dimensional

multivariate Gaussian distribution given by,

pi(x|φi) =
1

(2π)d/2(det Σi)1/2
e−1/2(x−µi)

T Σ−1
i (x−µi). (2)

Similar to the univariate Gaussian distribution, µi ∈ Rd represents the mean vector for the ith subpop-
ulation; whereas, Σi is the d × d symmetric positive definite covariance matrix that corresponds to the ith

subpopulation. The collection of αi’s are known as the model’s mixture proportions, i.e. each αi represents
the probability that a randomly selected xk ∈ X was generated from the ith subpopulation. Since each αi
is a probability, it follows that αi ∈ [0, 1] for all i and the αi’s are constrained to sum to one. Due to this
constraint, it follows that p(x|Φ) is a probability density function (pdf) since

1 =

m∑
i=1

αi

=

m∑
i=1

αi

∫
Rd

pi(x|φi)dx

=

∫
Rd

m∑
i=1

αipi(x|φi)dx

=

∫
Rd

p(x|Φ)dx.

1



where pdf stands for probability density function. Now that we have defined the model we seek numerical
methods that will allow one to compute accurate estimates for Φ. Since ultimately our goal is to introduce,
derive and accelerate the EM algorithm for (1), which is used for maximum likelihood estimation, we provide
the reader with a review of the method.

Maximum Likelihood Estimation

The notations that will be developed reflects those that are used in Casella and Berger [2]. First we
suppose that we have an n-tuple of random vectors X = (X1, X2, ..., Xn) that was generated in an iid
fashion. We also assume that the distribution of X depends on a fixed unknown parameter θ = (θ1, ..., θk)
that takes its value in the parameter space Θ. Thus for any Xi ∈ X the individual probability density (mass)

function (pdf (pmf)) for Xi will be denoted by Xi
iid∼ f(xi|θ) for i = 1, ..., n. We may now take advantage of

our sample being iid by defining our joint pdf (pmf) for X as

f(x|θ) =

n∏
i=1

f(xi|θ1, ..., θk). (3)

Here x = (x1, ..., xn) denotes the observed values of X1., , , .Xn. To understand how to compute a maximum
likelihood estimate (MLE) for a given distribution, one must be familiar with the concept of likelihood
functions, which we define below.

Definition 1. Let f(x|θ) denote the joint pdf (pmf) of our random sample X = (X1, ..., Xn) and be defined
as in (3). Then given the observed values X = x, the likelihood function is defined as

L(θ|x) = L(θ1, ...θk|x1, ..., xn) = f(x|θ) =

n∏
i=1

f(xi|θ1, ..., θk). (4)

The reader should be aware of the subtle distinction between L(θ|x) and f(x|θ). When one talks about
f(x|θ), it is assumed that θ is some unknown fixed quantity, whereas x is allowed to vary over all possible
values in our sample space. When the likelihood function L(θ|x) is in consideration we treat x as known,
whereas now θ is allowed to vary over the parameter space Θ. The only distinction between the two functions
is which variable is considered fixed and which is allowed to vary. The idea of the likelihood function is that
given θ′, θ′′ ∈ Θ we may use the likelihood function to determine which parameter values are more likely for
the observed sample x. Without loss of generality we shall assume that L(θ′|x) > L(θ′′|x). It then follows
that for the observed sample x, θ′ is a more likely parameter value for θ than θ′′ since it resulted in a larger
value of the likelihood function. Therefore, we should restrict our attention to the parameter values that
yield the largest possible values of our likelihood function. Using these ideas we can now give a rigorous
definition for an MLE.

Definition 2. For an observed sample x let

θ̂(x) ∈ arg max
θ∈Θ

L(θ|x).

Then θ̂(x) is a maximum likelihood estimate for θ based on x.

Here arg max L(θ|x) denotes the set of all values θ ∈ Θ which maximize L(θ|x) over our parameter space
Θ. In some cases we may appeal to differential calculus to obtain the MLE’s for distributions; however, in
general we cannot maximize L(θ|x) analytically and must rely on numerical techniques to obtain reasonable

approximations for θ̂(x). We conclude the introduction to MLE’s by providing a simple example that allows

one to obtain θ̂ analytically.

2



Calculating an MLE Analytically

Let X1, ..., Xn be a random sample with Xi
iid∼ gamma(α, β) ∀ i = 1, ..., n. We are interested in calcu-

lating the MLE for β under the assumption that α > 0 is known.

Solution: Each Xi has the following pdf

f(xi|β) =
1

Γ(α)βα
xα−1
i e−xi/β .

Since we have iid random variables, the joint pdf is

f(x|β) =

n∏
i=1

1

Γ(α)βα
xα−1
i e−xi/β

=
1

(Γ(α)βα)n

n∏
i=1

xα−1
i e−xi/β

= L(β|x).

We now implement a frequently used technique. We shall consider log (L(β|x)) and note that because the
natural logarithm is a monotonic strictly increasing function, the maximization of log(L(β|x)) is equivalent
to the maximization of L(β|x). We see that

log(L(β|x)) = log

[
1

(Γ(α)βα)n

n∏
i=1

xα−1
i e−xi/β

]

= −n log (Γ(α))− n log (βα) +

n∑
i=1

log (xα−1
i e−xi/β)

= −n log (Γ(α))− nα log (β) +

n∑
i=1

log (xα−1
i )−

n∑
i=1

xi/β.

To maximize log (L(β|x)) we use methods from differential calculus to obtain,

∂(log (L(β|x)))

∂β
= −nα

β
+

∑
xi

β2
= 0.

Thus the only possible candidate for the MLE is β̂ = x̄/α where x̄ =
∑
xi/n. We verify that β̂ is a

maximizer by showing the second partial derivative evaluated at β̂ is indeed always negative:

∂2(log (L(β|x)))

∂β2

∣∣∣
β=β̂

=

(
nα

β2
− 2

∑
xi

β3

) ∣∣∣
β=β̂

=
(nα)3

(
∑
xi)2

− 2(nα)3

(
∑
xi)2

= − (nα)3

(
∑
xi)2

< 0.

3



Thus we have shown that β̂ is a local maximum of log (L(β|x)) and since this is the only value where the

derivative is equal to zero it follows that β̂ = x̄/α is the global maximizer and the required MLE.

As seen in the previous example, the calculation of MLE’s can be rather involved even in simple cases.
In general, obtaining MLE’s analytically is either impossible or impractical due to exhaustive algebra or the
presence of highly non-linear systems. Therefore, there is a great need for a numerical technique to provide
one with accurate approximations for maximum likelihood estimates.

In the next section of the project, we introduce the EM algorithm as a technique to approximate MLE’s
from incomplete data and relate the algorithm to general mixture models. We then turn our attention to
the normal mixture model defined by (1) and (2) and derive the algorithm. We then discuss convergence
properties and how convergence depends on the separation of the generated data, and we provide several
examples.

4



The EM Algorithm

The Expectation Maximization algorithm, or EM algorithm for short, was given its name in a 1977 paper
by Arthur Dempster, Nan Laird, and Donald Rubin [3]. The algorithm is an iterative method for finding
MLE’s of a statistical model where there is a dependency upon unobserved latent variables. Throughout
the remainder of this section we seek to apply the EM algorithm to obtain accurate approximations to the
MLE’s of a particular model which has incomplete data associated with it. Here the data are considered
incomplete in the sense that the observations do not contain complete information.

The general form of the algorithm is twofold. The first step is an E-Step, which creates a function Q
that represents the expectation of the log-likelihood and evaluates Q at the current parameter estimates.
The second step is the M-Step, the purpose of which is to maximize the expectation previously found in the
E-Step. In the next section we present the algorithm in its most general form.

General EM

We now formulate the EM algorithm in general for an incomplete data problem. The notations to be
developed are a mixture of those presented in [1] and [4]. We assume that we have a random incomplete
data set X that follows some probability distribution and that there exist unobserved observations Y such
that the data set defined by Z = (X ,Y) may be deemed complete. What it means to have a complete data
set depends on the context of the problem. For example, one could have missing data due to errors in data
collection or due to some time constraint.

To establish some notation, we let f(z|Φ) = f(x,y|Φ) represent the joint pdf of our random variables X
and Y and denote the marginal pdf of X by g(x|Φ). We also let k(y|x,Φ) denote the conditional probability
distribution of Y given X = x. The goal of the EM algorithm is to maximize the incomplete data log-
likelihood, defined as log[L(Φ|X )] = log[g(x|Φ)] over Φ ∈ Ω, by using the relationship between f(x,y|Φ) and
g(x|Φ). From an introductory course on probability, we know that f(z|Φ) may be represented as

f(z|Φ) = f(x,y|Φ) = k(y|x,Φ)g(x|Φ) x ∈ X , y ∈ Y, (5)

where (5) will be used to show certain useful properties of the EM iterates. In the case of missing data, the
E-Step refers to finding the expected value of the complete data log-likelihood, defined as log[L(Φ|X ,Y)] =
log[f(x,y|Φ)], where the observed sample X and some current parameter estimate Φc ∈ Ω are given. Thus
we define

Q(Φ|Φc) = E[log f(x,y|Φ)|x,Φc] x ∈ X , y ∈ Y, Φc ∈ Ω (6)

where E[·] denotes the expectation operator. The M-Step then seeks to maximize (6), i.e, we choose a
Φ+ ∈ Ω such that

Φ+ ∈ arg max
Φ∈Ω

Q(Φ|Φc). (7)

5



Thus in its most abstract form the EM algorithm given by Dempster, Laird and Rubin in [3] is given by
the following algorithm.

General EM Iteration

(1) E-Step: Calculate Q(Φ|Φc).
(2) M-Step: Choose Φ+ ∈ arg max

Φ∈Ω
Q(Φ|Φc).

(3) Let Φc = Φ+.
(4) Repeat (1)-(3) as necessary.

From this general description, the reader may question the usefulness of the algorithm since the topic of
convergence has not yet been addressed. Therefore, we provide some theory on convergence.

Convergence Properties

As stated previously, the purpose of the EM algorithm is to maximize the incomplete data log-likelihood
which we now denote by L(Φ) = log[g(x|Φ)]1. Using (5) we see that

f(x,y|Φ) = k(y|x,Φ)g(x|Φ)

=⇒ log[f(x,y|Φ)] = log[k(y|x,Φ)] + log[g(x|Φ)]

=⇒ log[g(x|Φ)] = log[f(x,y|Φ)]− log[k(y|x,Φ)],

where by the linearity of the expectation operator we arrive at

E[log(g(x|Φ))] = E[log(f(x,y|Φ))]− E[log(k(y|x,Φ))]. (8)

We seek to express (8) in terms of L(Φ) and the function Q(Φ|Φ′) for some arbitrary parameter Φ′ ∈ Ω.
Therefore, in (8) we shall treat x and Φ′ as given, which leads to

E[log(g(x|Φ))|x,Φ′] = E[log(f(x,y|Φ))|x,Φ′]− E[log(k(y|x,Φ))|x,Φ′]. (9)

Since we are treating x and Φ = Φ′ as known, the left hand side of (9) is just some constant. We also know
that E[c] = c for any constant c ∈ R. Therefore (9) reduces to

log(g(x|Φ)) = E[log(f(x,y|Φ))|x,Φ′]− E[log(k(y|x,Φ))|x,Φ′]
=⇒ L(Φ) = Q(Φ|Φ′)−H(Φ|Φ′),

where H(Φ|Φ′) = E[log(k(y|x))|x,Φ′] and Q(Φ|Φ′) is defined as in (6). Hence, we have now successfully
expressed L(Φ) (which we ultimately want to maximize) in terms of Q(Φ|Φ′), which appears in our EM
iterates.

1The change in notation is so that we may be consistent with notations in [1]

6



Upon inspection of the above, we see that if the following conditions hold then the EM algorithm would
possess convergence properties:

(i) L(Φ+) ≥ L(Φc)

(ii) Q(Φ+|Φc) ≥ Q(Φc|Φc)
(iii) H(Φ+|Φc) ≤ H(Φc|Φc)

where Φc ∈ Ω is the current parameter estimate for our MLE and Φ+ is defined in (7). Simply by the
definition of Φ+, we see that (ii) must always be satisfied. To verify (iii), we paraphrase a lemma which is
given in [3, pp. 6].

Lemma 1. For any pair (Φ+,Φc) ∈ Ω× Ω, we have that

H(Φ+|Φc) ≤ H(Φc|Φc). (10)

The proof of Lemma 1 uses the concavity of the natural logarithm to appeal to Jensen’s Inequality, from
which (10) follows. Part (i) follows trivially from (ii) and (iii). Thus (i)-(iii) all hold, and (i) implies that L
is monotone increasing on any iteration sequence produced by the EM algorithm. Therefore each iteration
of the algorithm will increase the log-likelihood and it is likely that the iterates will converge to some local
maximum of the likelihood function. It is well known that the rate at which the EM algorithm converges is
linear. For one such proof we refer the reader to [1, Thm 5.2]. As will be seen in the sequel, for us the rate
at which the algorithm converges will depend on how well our data are “separated”. For more properties on
convergence of the EM algorithm we refer the reader to [1],[3] and [5].

Thus we have thoroughly explained the EM algorithm in its most general form. In the next section we
shall discuss how to approximate MLE’s for mixture models as well as derive the necessary EM iterates for
the d-dimensional multivariate Gaussian distribution.

EM Algorithm for Mixture Models

To begin discussing the EM algorithm for mixture models, we shall assume as in the introduction that we
have a parametric family of mixture densities of the form (1) with the understanding that at this moment
each pi need not be Gaussian. The model in consideration is of the form

p(x|Φ) =

m∑
i=1

αipi(x|φi) i = 1, ...,m, x ∈ X .

As before, X = (x1, ...,xN ) represents an unlabeled random sample, Φ = (α1, ..., αm, φ1, ..., φm), our
mixing proportions αi are constrained to be non-negative and sum to one, and each pi represents some
density function parameterized by φi. Hence, our mixture model is composed of m component densities
mixed together with our mixture proportions αi, where m ∈ Z+ denotes the number of subpopulations
present.

We now treat the unlabeled sample X as an incomplete data set by regarding each unlabeled observation
xk ∈ X as “missing” a label which lets us know which subpopulation xk originated in. Thus we let Y =
(y1, ..., yN ) where yk ∈ {1, ...,m} denote the unobserved data which indicates what component density
generated xk. Thus Z = (X ,Y) constitutes our complete data set. A valid question the reader should be
asking at this time is whether or not this reformulation of our problem is worth it. The answer in short is yes
because treating X as incomplete and introducing the existence of Y simplifies the maximization process.
For example, if Y is known it is shown in [4] that the log-likelihood for the complete data is given as

log(L(Φ|X ,Y)) =

N∑
k=1

log(αykpyk(xk|φyk))
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which is a much easier expression to maximize than the unlabeled data log-likelihood. However, it is wishful
thinking to think that Y is known and we must proceed by treating Y as a random vector.

Our goal now is to derive expressions for the distribution of the unobserved data and the function Q(Φ|Φ′).
As preamble we let x = (x1, ...,xN ) and y = (y1, ..., yN ) be the sample variables whose associated probability
density functions are given as follows:

g(x|Φ) =

N∏
k=1

p(xk|Φ)

f(x,y|Φ) =

N∏
k=1

αykpyk(xk|φyk).

Then for any Φ′ = (α′1, ..., α
′
m, φ

′
1, ..., φ

′
m) ∈ Ω we may appeal to the identity given by (5) to obtain a

closed expression for the conditional density k(y|x,Φ′). This density may be expressed as

k(y|x,Φ′) =

N∏
k=1

α′ykpyk(xk|φ′yk)

p(xk|Φ′)
.

We now will derive the relevant expression for Q(Φ|Φ′) for our mixture model, which is rather involved.
Throughout the derivation, we shall appeal to a few clever tricks that were presented by the author of [4].
First, we shall compute the expectation that appears in (6). To do so, the first thing to realize is that Y can
only take on the discrete values {1, ...,m}. Therefore, it follows that Y is a discrete random variable, and
the definition of conditional expectation tells us that

E[h(Y)|x] =
∑
y∈Y

h(y)l(y|x)

where h(Y) is any function of Y, l(y|x) is the joint pdf and Y is the set of all allowable y values. Since we
are given X = x in the definition (6), we know that log(f(x, y|Φ)) is purely a function of y, and by the
definition previously stated we see that

Q(Φ|Φ′) = E[log f(x, y|Φ)|x,Φ′]

=
∑
y∈Y

log(f(x, y|Φ))k(y|x,Φ′)

=
∑
y∈Y

log

[
N∏
k=1

αykpyk(xk|φyk)

]
k(y|x,Φ′)

=
∑
y∈Y

N∑
k=1

log(αykpyk(xk|φyk))

 N∏
j=1

α′yjpyj (xj |φ′yj )

p(xj |Φ′)


=

m∑
y1=1

m∑
y2=1

· · ·
m∑

yN=1

N∑
k=1

log(αykpyk(xk|φyk))

 N∏
j=1

α′yjpyj (xj |φ′yj )

p(xj |Φ′)

 (11)

=

m∑
y1=1

m∑
y2=1

· · ·
m∑

yN=1

N∑
k=1

m∑
i=1

δi,yk log(αipi(xk|φi))

 N∏
j=1

α′yjpyj (xj |φ′yj )

p(xj |Φ′)

 (12)

=

m∑
i=1

N∑
k=1

log(αipi(xk|φi))
m∑

y1=1

m∑
y2=1

· · ·
m∑

yN=1

δi,yk

 N∏
j=1

α′yjpyj (xj |φ′yj )

p(xj |Φ′)

 . (13)
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Before we continue we believe the steps labeled by (11) and (12) warrant some explanation. The equality
labeled by (11) simply uses the fact that Y = (y1, ..., yN ) and each yk ∈ {1, ...,m} for all k; therefore, the
summation over y ∈ Y is identically equal to the N summations which appear on the RHS of the equality
since these summations represent all possible y values. In (12) we introduce δi,yk which represents the
Kronecker delta. Equality holds on this line simply because the only value of the summation indexed by i
that is non-zero is when i = yk, which preserves the equality. At this juncture one may think that we are
making our already convoluted expression worse; however, as will be seen below this trick greatly simplifies
the expression labeled by (13). Focusing on the second half of (13) we see that

m∑
y1=1

m∑
y2=1

· · ·
m∑

yN=1

δi,yk

 N∏
j=1

α′yjpyj (xj |φ′yj )

p(xj |Φ′)

 =

 m∑
y1=1

· · ·
m∑

yk−1=1

m∑
yk+1=1

· · ·
m∑

yN=1

∏
j=1
j 6=k

(
α′yjpyj (xj |φ′yj )

p(xj |Φ′)

) α′ipi(xk|φ′i)
p(xk|Φ′)

=

∏
j=1
j 6=k

 m∑
yj=1

α′yjpyj (xj |φ′yj )

p(xj |Φ′)


 α′ipi(xk|φ′i)

p(xk|Φ′)

=
α′ipi(xk|φ′i)
p(xk|Φ′)

.

The last equality was obtained by realizing that

m∑
yj=1

α′yjpyj (xj |φ′yj )

p(xj |Φ′)
=
α′1p1(xj |φ′1) + ...α′mpm(xj |φ′m)

p(xj |Φ′)

=
p(xj |Φ′)
p(xj |Φ′)

= 1.

Therefore substituting this equality back into (13) allows us to obtain a closed expression for Q. Upon
making this substitution we see that

Q(Φ|Φ′) =

m∑
i=1

N∑
k=1

log(αipi(xk|φi))
α′ipi(xk|φ′i)
p(xk|Φ′)

=

m∑
i=1

N∑
k=1

(
α′ipi(xk|φ′i)
p(xk|Φ′)

log(αi) +
α′ipi(xk|φ′i)
p(xk|Φ′)

log(pi(xk|φi))
)

=

m∑
i=1

N∑
k=1

α′ipi(xk|φ′i)
p(xk|Φ′)

log(αi) +

m∑
i=1

N∑
k=1

α′ipi(xk|φ′i)
p(xk|Φ′)

log(pi(xk|φi)).

This is the closed form expression for Q that appears in the E-Step of the EM algorithm and may
be maximized if given a particular probability distribution pi. In the next section we shall consider the
case where each pi is a d-dimensional multivariate Gaussian distribution and present the necessary updated
parameter estimates for αi and φi.

EM on Normal Mixtures

We now turn our attention to the case when each pi may be represented as,
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pi(x|φi) =
1

(2π)d/2(det Σi)1/2
e−1/2(x−µi)

T Σ−1
i (x−µi) x ∈ X , φi = (µi,Σi),

where as stated in the introduction x ∈ Rd, µi ∈ Rd and Σi is a d × d symmetric positive definite matrix.
Throughout this section we assume that we have a current approximate maximizer of our function Q which
we denote by Φc = (αc1..., α

c
m, φ

c
i , ..., φ

c
m). Our goal is to now implement the maximization that occurs during

the M-Step of the EM algorithm to obtain updated maximizers denoted by Φ+ = (α+
1 , ..., α

+
m, φ

+
1 , ..., φ

+
m).

The updated maximizers for our mixture proportions are derived first. Since these proportions are
constrained to sum to one we must maximize Q with respect to αi by introducing the Lagrange multiplier
λ and solving the following system of equations:

∂Q

αi
= λ

∂

αi

(
m∑
i=1

αi

)
m∑
i=1

αi = 1.

Or equivalently we may maximize the Lagrangian given by

Λ(αi, λ) = Q+ λ

(
m∑
i=1

αi − 1

)
. (14)

For simplicity, when we perform the maximization we let j ∈ {1, ...,m} be a dummy index and βik =
αcipi(xk|φci )/p(xk|Φc). Upon maximization we see that

∂Λ

∂αj
=

∂

∂αj

(
N∑

k=1

m∑
i=1

βik log(αi) +

N∑
k=1

m∑
i=1

βik log(pi(xk|φi))

)
+ λ

∂

∂αj

(
m∑
i=1

αi − 1

)

=
∂

∂αj

(
N∑

k=1

β1k log(α1) + · · ·
N∑

k=1

βjk log(αj) + · · ·
N∑

k=1

βmk log(αm) +

N∑
k=1

m∑
i=1

βik log(pi(xk|φi))

)
+ λ

∂

∂αj

(
m∑
i=1

αi − 1

)

=

N∑
k=1

1

αj
βjk + λ

∂

∂αj
(α1 + · · ·αj + · · ·αm − 1)

=

N∑
k=1

1

αj
βjk + λ

= 0.

Replacing the dummy index j with i and solving for λ yields

N∑
k=1

1

αi
βik + λ = 0 =⇒ −λαi =

N∑
k=1

βik =⇒ −λ
m∑
i=1

αi =

N∑
k=1

m∑
i=1

αcipi(xk|φci )
p(xk|Φc)

=⇒ λ = −N ,

from which it follows that

α+
i =

1

N

N∑
k=1

αcipi(xk|φci )
p(xk|Φc)

.
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The derivations of µ+
i and Σ+

i are similar; however, they require techniques which are beyond the scope
of this project. Hence, we omit their derivations and refer the reader to [4] for a detailed derivation. The
updated parameter estimates for the multivariate Gaussian distribution are then given by the following.

Updated Parameter Estimates

α+
i =

1

N

N∑
k=1

αc
ipi(xk|φc

i )

p(xk|Φc)

µ+
i =

N∑
k=1

xk
αc
ipi(xk|φc

i )

p(xk|Φc)

N∑
k=1

αc
ipi(xk|φc

i )

p(xk|Φc)

Σ+
i =

N∑
k=1

(xk − µ+
i )(xk − µ+

i )T
αc
ipi(xk|φc

i )

p(xk|Φc)

N∑
k=1

αc
ipi(xk|φc

i )

p(xk|Φc)
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Examples

We now turn our attention to implementing the EM algorithm for normal mixtures on computer generated
data. The programming language that has been used explicitly for all analysis has been MATLAB versions
2011a and 2011b with minor use of its statistical toolbox. All MATLAB scripts used may be found in
Appendix A.

It has been stated previously that the convergence of the algorithm will depend heavily on how our data
are separated; therefore, to be complete we present two examples which range from having well separated
to poorly separated samples.

The following examples all possess the following structure. We assume in each case that we are given
a d-dimensional random sample of size N = 50, 000 and that the number of subpopulations m is known.
We then run the EM algorithm twice. The first time we naively make initial guesses for each αi, µi and
Σi by assigning randomly generated values for each µi, letting αi = 1/m for all i and by assuming that
each subpopulation has covariance matrix Σi = Id×d, where Id×d represents the d× d identity matrix. The
second time we appeal to the K-means algorithm to cluster our data into m clusters. The centroids of each
cluster are then calculated and used as our initial guesses for the means. K-means also allows us to calculate
the proportion of points that were assigned to each cluster and the covariance matrix associated with each
proposed cluster. These approximations will serve as our initial guesses for αi and Σi respectively.

Well-Separated Case (WSC)

We consider m = 2 where the true parameter values to be estimated are given in Table 1.

Sub-Population 1 Sub-Population 2

α1 = 0.3 α2 = 0.7

µ1 =

(
1

2.25

)
µ2 =

(
12.9
10.3

)
Σ1 =

(
1.75 1

1 1.75

)
Σ2 =

(
3.2 1.25
1.25 3.2

)
Table 1: True Parameter Values (WSC)

Figure 1: Scatter Plot of our Random Sample (WSC)

As seen in Figure 1 the data suggest the existence of two distinct subpopulations which are very well
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separated from one another. Hence, one can conjecture that the EM algorithm should converge rather
quickly for this case. For the naive choice of initial guesses we obtain the following plots.
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Figure 2: After 3 Iterations (WSC)
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Figure 3: After 5 Iterations (WSC)

Convergence was achieved after the fifteenth iteration, and the error plots are given by Figures 5-7.
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Figure 4: After 15 Iterations (WSC)

Figure 5: Mean Errors - log ||µi+1 − µi||∞ (WSC)

Figure 6: Proportion Errors - log ||αi+1 − αi||∞ (WSC)
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Figure 7: Covariance Errors - log ||Σi+1 −Σi||∞ (WSC)

Sub-Population 1 Sub-Population 2

α1 = 0.3014799 α2 = 0.6985201

µ1 =

(
1.0016354
2.2455534

)
µ2 =

(
12.8742387
10.3009386

)
Σ1 =

(
1.7809924 1.0112942
1.0112942 1.7388996

)
Σ2 =

(
3.2138611 1.2759833
1.2759833 3.2333514

)
Table 2: Final Approximated Parameter Values (WSC)

As seen in Table 2, in the case of well-separated data the EM algorithm yields reasonable approximations
for Φ in a low number of iterations. For a sample size of N = 50, 000, the values found in Table 2 probably
approximate the true parameters about as well as the MLE. We now shall apply the algorithm for the same
problem; however, we shall appeal to K-means to obtain a reasonably good initial guess for Φ. Implementing
K-means on our sample provides the following clusters and initial parameter estimates.

Figure 8: Applying K-Means to our Sample (WSC)
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Sub-Population 1 Sub-Population 2

α0
1 = 0.30176 α0

2 = 0.69824

µ0
1 =

(
1.0070872
2.2487461

)
µ0

2 =

(
12.8766451
10.3027901

)
Σ0

1 =

(
1.8117701 1.0288619
1.0288618 1.7490788

)
Σ0

2 =

(
3.200662 1.2655483
1.2655483 3.2258868

)
Table 3: Initial Parameter Guesses Using K-Means (WSC)

Using the initial guesses presented in Table 3, the EM algorithm converges in only nine iterations to the
graph presented in Figure 4 and the same values shown in Table 2. In this case the difference in iterations
seems insignificant. However, as will be seen in the presence of poorly separated data a good choice for our
initial guesses can drastically reduce the number of iterations required to obtain convergence. The newly
acquired error plots are presented below followed by a brief comparison of the errors obtained in both cases.

Figure 9: Mean and Proportion Errors using K-Means (WSC)

Figure 10: Covariance Errors using K-Means (WSC)

It was stated previously in [3] that the EM algorithm has a linear rate of convergence which is evident
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in both of our cases. Upon inspection of Figures 5-7 we see slight oscillation in our errors before showing a
linear trend, which can be attributed to the naive choices that were made for our initial parameter estimates.
Conversely, Figures 9-10 show a strong linear rate of convergence throughout all of the iterations and exhibits
no such oscillations. This is to be expected since we began our iteration process with much better initial
estimates.

In conclusion, we see that when we are given a well separated sample the EM iterates converges quickly
in both cases to accurate parameter approximations. It is also clear that the difference in successive iterates
approaches zero linearly which in this case was not problematically slow.

Poorly-Separated Case (PSC)

Throughout this example we shall consider the more difficult task of accurately approximating parameters
from a poorly separated random sample. We now consider the existence of three subpopulations for which
the true parameters to be estimated are given in Table 4.

Sub-Population 1 Sub-Population 2 Sub-Population 3

α1 = 0.3 α2 = 0.5 α3 = 0.2

µ1 =

(
4.5
6.25

)
µ2 =

(
7

8.95

)
µ3 =

(
5.12
9.5

)
Σ1 =

(
0.75 −0.25
−0.25 0.75

)
Σ2 =

(
1.1 0.5
0.5 1.1

)
Σ3 =

(
0.45 0.3
0.3 0.45

)
Table 4: True Parameter Values (PSC)

Figure 11: Scatter Plot of our Random Sample (PSC)

Even though we are treating m as known, one surely cannot differentiate between subpopulations by
looking at the scatter plot presented in Figure 11. Therefore unlike the well separated case, the EM algorithm
will take more iterations to converge since the subpopulations are severely intertwined with one another. Also,
in the first example the use of the K-means algorithm to obtain a good initial guess seemed unnecessary;
however, when the data are this poorly separated the ability to choose a good initial guess will prove
invaluable. As before, we present the case where we use naive initial estimates for our parameters first,
followed by analysis.
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Figure 12: After 50 Iterations (PSC)
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Figure 13: After 100 Iterations (PSC)
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Figure 14: After 250 Iterations (PSC)

Figures 12-14 reinforce our intuition that the EM iterates would take longer to converge. As shown in
the figures, it takes roughly 250 iterations for the pdf generated by the algorithm to resemble that of the
true pdf. Nonetheless, even in the presence of poorly separated data the EM iterates do converge, and the
final estimated values for Φ are presented in Table 5.

Sub-Population 1 Sub-Population 2 Sub-Population 3

α1 = 0.3022322 α2 = 0.4991065 α3 = 0.1986613

µ1 =

(
4.5045099
6.2429225

)
µ2 =

(
6.9886764
8.9585970

)
µ3 =

(
5.1154634
9.4856487

)
Σ1 =

(
0.7638369 −0.2518461
−0.2518461 0.7360869

)
Σ2 =

(
1.0851758 0.4933538
0.4933538 1.1070892

)
Σ3 =

(
0.4567573 0.3054033
0.3054033 0.4596297

)
Table 5: Approximated Parameter Values (PSC)

Before we run the EM algorithm using K-means, we display the error plots generated on the next page.
Note that as in the previous example we see oscillations at the beginning of the iterations for our estimated
parameters; however, as the iteration number reaches around 100 a linear trend develops.

The reader should note that in the code that appears in Appendix A, we stop iterating when the error
is less than a specified tolerance or when we have reached a maximum allowable iteration number. In this
example, we reached our maximum iteration number before our errors were less than our specified tolerance.
Therefore, if we chose to allow more than 250 iterations we would obtain slightly more accurate parameter
estimates than those presented in Table 5; however, for demonstration purposes we believe 250 iterations is
sufficient.
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Figure 15: Mean Errors - log ||µi+1 − µi||∞ (PSC)

Figure 16: Proportion Errors - log ||αi+1 − αi||∞ (PSC)

Figure 17: Covariance Errors - log ||Σi+1 −Σi||∞ (PSC)
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We now implement the K-means algorithm. The suggested clustering scheme proposed is presented in
Figure 18, whereas the initial parameter estimates are presented in Table 6.

Figure 18: Applying K-Means to our Sample (PSC)

Sub-Population 1 Sub-Population 2 Sub-Population 3

α0
1 = 0.32962 α0

2 = 0.34444 α0
3 = 0.32594

µ0
1 =

(
4.6090467
6.2835143

)
µ0

2 =

(
7.5210443
9.2780852

)
µ0

3 =

(
5.3873837
9.1293548

)
Σ0

1 =

(
0.8547355 −0.1634364
−0.1634364 0.6802715

)
Σ0

2 =

(
0.5272842 0.1720240
0.1720240 0.9360783

)
Σ0

3 =

(
0.4976098 0.0014338
0.0014338 0.6148206

)
Table 6: Initial Parameter Guesses using K-Means (PSC)

As expected, our initial guesses for the poorly separated case are not as accurate as those found in the first
example; however, as seen in Figures 19-20 we do experience faster convergence while using K-means. Figure
19 shows that the EM algorithm generates a reasonable approximation to the true pdf in just 25 iterations.
The reader should note that after around 70 iterations there was no substantial difference between the true
and approximated pdfs. We chose 150 iterations as a stopping criterion arbitrarily and allowed the algorithm
to reach this maximum iteration number for convenience.

The error plots for this case mimic those of Figures 9 and 10 in the sense that there do not exist any
oscillations in the beginning iterations and a strong linear pattern is present throughout the entire process.
Also, as in the case of well separated data, we converge to the same values presented in Table 5; therefore,
the error plots and approximated values for this case are omitted.
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Figure 19: After 25 Iterations using K-Means
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Figure 20: After 150 Iterations using K-Means
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Observations

To conclude the section we believe it is necessary to discuss some of the motivations behind the error
analysis as well as some drawbacks of the EM algorithm which are not readily apparent in the examples.

We first explain why throughout our error analysis we chose to use the infinity matrix norm. In our code
presented as a supplement to this project, we see that the way we initialized all of our parameters was in a
matrix format; i.e, we constructed a mean matrix which was m × d. Therefore, the jth row of this matrix
corresponded to the means associated with the jth subpopulation. We initialized our mixing probabilities
and covariance matrices similarly, and we refer the reader to Appendix A to see the commented code. Thus
in all of our error plots, the subscript i represents the iteration number, and it should be understood that
||·||∞ is a matrix norm. Since each row corresponds to a different subpopulation, it is evident that the
maximum row difference would be of interest, which is why the infinity norm is used in the analysis.

One problem that may arise during the EM iterations is something referred to as “label switching” in [1].
The idea of label switching is best explained through a simple example. For the the moment we consider
just the means where m = 3 and d = 2. Constructing the matrix of true means results in

µ =

µ11 µ12

µ21 µ22

µ31 µ32


,

where if label switching occurs, we would obtain a matrix of approximate parameter values that may look
something like

µ̃ =

µ̃31 µ̃32

µ̃11 µ̃12

µ̃21 µ̃22


.

Hence, in our example, we began by labeling our subpopulations (1, 2, 3), which was permuted by the EM
algorithm to (3, 1, 2). Or in other words, subpopulation 1 is relabeled to subpopulation 2 and so forth.
Whether or not label switching is of major concern depends on whether the estimation of a particular
component of a density is of interest. If the estimation of all the parameters is the main concern without
emphasis on individual components, then label switching is not a problem. Throughout the course of this
exposition label switching will not be a concern for us. For a more detailed discussion on this topic we refer
to reader to [1] and [6].

It has been stated that the EM algorithm converges linearly and, depending on the case, may be dis-
appointingly slow. It is clear in the case of well separated data that linear convergence is not problematic;
however, as the data become increasingly more poorly separated the EM iterates may converge in an unac-
ceptably large number of iterations. This in turn would require much more computing time. In our PSC, to
iterate 250 times without using K-means for initialization took MATLAB a few minutes to finish computing,
which may be costly.

Therefore, there is a need for an acceleration method to speed up the convergence of the EM iterates
and reduce the computation time in the case of poorly separated data. Throughout the course of the next
section, we introduce such a method and provide constructive examples that highlight the acceleration of
the algorithm.
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Anderson Acceleration

An acceleration method for fixed-point iterations that was developed in [7] by Donald Anderson for
nonlinear integral equations is now introduced and eventually applied to the EM algorithm to expedite
convergence. The framework for this section is as follows. The general algorithm for a fixed-point iteration
is presented and its connection to the EM algorithm is discussed. The Anderson acceleration method is
then formulated and the basic ideas of the algorithm are revealed. The section is then concluded with an
example involving a dimension and sample size that are much larger than the examples mentioned in previous
sections. As will be seen, the choice to use such a vast example highlights how faster convergence can be
achieved by implementing Anderson acceleration within our EM iterates.

Fixed-Point Iteration

The notations to be developed in this section reflect those used in [8]. Before we introduce the acceleration
method we review briefly the idea of fixed-point iteration.

Definition 3. Let g : Rd → Rd be given. Then a point x ∈ Rd is called a fixed-point for the function g
if and only if g(x) = x.

The goal of fixed-point iteration is to solve g(x) = x in an iterative manner. For any fixed-point problem
we have the following general algorithm.

General Fixed-Point Iteration

(1) Choose an initial guess x0 ∈ Rd.
(2) Specify an error tolerance ε > 0 and a maximum iteration number I.
(3) Iterate.

For k = 1, 2, ..., I
Set xk = g(xk−1).

If ||xk − xk−1|| ≤ ε
Return xk.
Break.

End If
End For

Note that a fixed-point problem may also be posed as a nonlinear-equation problem of the form f(x) = 0
through the relationship f(x) = g(x)−x = 0. In many cases a fixed-point problem is formulated in this way
to take advantage of existing algorithms with fast rates of convergence. Nevertheless, it is often advantageous
to use fixed-point iteration in particular applications.

Before continuing, we discuss the connection between fixed-point problems and the EM algorithm. It
is shown in [3, pp.8] that a maximum-likelihood estimate is a fixed-point of the EM iteration map and the
often-slow convergence of the EM iterates justifies considering an acceleration method.
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Acceleration Algorithm

We now present the acceleration method of interest. In its most general form, the Anderson acceleration
algorithm as given in [9] and [8] is as follows.

Anderson Acceleration Algorithm (constrained)

(1) Given x0, m ≥ 1 and a maximum iteration number I.
(2) Set x1 = g(x0).
(3) Iterate.

For k = 1, 2, ..., I
Set mk = min{m, k}.
Set Fk = (fk−mk

, ..., fk) where fj = g(xj)− xj .

Find α(k) = (α
(k)
0 , ..., α

(k)
mk)T that solves

min ||Fkα||2
α=(α0,...,αmk

)T
subject to

mk∑
j=0

αj = 1. (?)

Set xk+1 =

mk∑
j=0

α
(k)
j g(xk−mk+j).

End For

The basic idea behind the Anderson acceleration algorithm is to make use of information gained from
previous iterations. Let xk−m, ..., xk ∈ Rd denote the most current m + 1 iterates and, fk−m, ..., fk ∈ Rd
the corresponding function evaluations. It should be noted that one should not necessarily store as many
iterates as possible but try to preserve a “balance” in some sense. For example, one should keep a sufficient
number of stored iterates to be able to accurately predict the next; however, we should not necessarily keep
all the iterates since earlier iterations may possess less accurate information about future iterations.

We see in the general algorithm that (?) represents a constrained linear least squares problem, which
may be solved in numerous ways. We now briefly explain how this problem is solved in our code, which
may be found in Appendix A. As suggested in [8] and [9] we reformulate the constrained optimization
problem as an equivalent unconstrained problem. To establish notation, we let ∆fj = fj+1 − fj and
Fk = (∆fk−mk

, ...,∆fk−1). It is then shown in [10] that our constrained problem is equivalent to

min ||fk −Fkγ||2
γ=(γ0,...,γmk−1)T

, (15)

where the constrained and unconstrained parameters α and γ are connected through the relationships

α0 = γ0,

αj = γj − γj−1,

αmk
= 1− γmk−1.

for j = 1, ...,mk. We now assume that we have a solution to (15), which will be denoted by γ(k) =

(γ
(k)
0 , ..., γ

(k)
mk−1). Using the relationships between our parameters, we now derive a closed form expression

for the next iteration of the algorithm for our unconstrained problem. Upon direct substitution, we see that

25



xk+1 =

mk∑
j=0

α
(k)
j g(xk−mk+j)

= α
(k)
0 g(xk−mk ) + α

(k)
1 g(xk−mk+1) + α

(k)
2 g(xk−mk+2) + . . .+ α(k)

mk
g(xk)

= γ
(k)
0 g(xk−mk ) + (γ

(k)
1 − γ(k)

0 )g(xk−mk+1) + (γ
(k)
2 − γ(k)

1 )g(xk−mk+2) + . . .+ (1− γ(k)
mk−1)g(xk)

= g(xk)− γ(k)
0 (g(xk−mk+1)− g(xk−mk ))− γ(k)

1 (g(xk−mk+2)− g(xk−mk+1))− . . .− γ(k)
mk−1(g(xk)− g(xk−1))

= g(xk)−
mk−1∑
j=0

γ
(k)
j [g(xk−mk+j+1)− g(xk−mk+j)]

= g(xk)− Gkγ(k),

where ∆gj = g(xj+1)− g(xj) and Gk = (∆gk−mk
, ...,∆gk−1). Thus in its unconstrained form, the Anderson

acceleration algorithm may be expressed in the following way.

Anderson Acceleration Algorithm (unconstrained)

(1) Given x0, m ≥ 1 and a maximum iteration number I.
(2) Set x1 = g(x0).
(3) Iterate.

For k = 1, 2, ..., I
Set mk = min{m, k}.
Find γ(k) = (γ

(k)
0 , ...γ

(k)
mk−1)T that solves

min ||fk −Fkγ||2
γ=(γ0,...,γmk−1)T

.

Set xk+1 = g(xk)− Gkγ(k).
End For

As we implement our algorithm, the unconstrained linear least squares problem is solved efficiently by
appealing to QR decomposition. For each k we decompose Fk = QkRk where each Qk is an orthogonal
matrix and each Rk is upper triangular. The code presented in Appendix A is a bit more involved than the
algorithm presented above; i.e, we update the QR factors according to certain criterion as well as monitor
the condition number of Rk so that Fk does not become ill-conditioned. For a thorough discussion as to how
the rest of the code is designed, we refer the reader to [9].

Throughout the next section, we seek to show the advantages of using Anderson acceleration within the
EM iterations by considering a much larger sample size and dimension than used in previous examples. As
will be seen in the sequel, when the populations are sufficiently poorly separated it may be unacceptable to
use the EM algorithm without acceleration due to the very slow rate of convergence.
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Example

This section is the culmination of our work. We now present an example that shows how favorable it
is to implement Anderson acceleration within the EM iterates. This example differs from those previously
presented in several ways. We first note that in this example, we consider a much larger sample size and
dimension by lettingN = 1, 000, 000, d = 10 whereasm is kept small atm = 2. An initial set of well separated
true parameter values will be defined; however, estimation of these parameters is not the main concern of the
section. The purpose of choosing a well separated starting point is so that we may “contract” the means of
the distinct subpopulations so that they approach one another and become very poorly separated. In doing
this, we will be able to see how the performance of Anderson acceleration varies with the separation. The
initial parameter values are given below.

Initial Parameter Values

µ =

(
1 2 3 4 5 6 7 8 9 10
21 22 23 24 25 26 27 28 29 30

)
α = (0.5, 0.5)

Σi = Id×d i = 1, 2

We introduce a contraction parameter t ∈ [0, 1] and contract according to the relationship,

µ+
ij(t) = µ̄+ t(µij − µ̄) (16)

where in (16) µ̄ represents the overall average of the components of µ; i.e.,

µ̄ =
1

md

d∑
j=1

m∑
i=1

µij .

Upon inspection of (16) we see that for t ≈ 1, the populations remain fairly well separated; however, as t→ 0
the populations converge to one another. Hence, as seen by previous examples we expect the EM iterates
(without acceleration) to converge slowly for small t. Before presenting the example, it is worth mentioning
that we are not contracting the mixing proportions or covariance matrices. It has been observed that the
rate of convergence depends heavily on the degree of separation in our data, so it is intuitive to contract
only the location parameters.

The framework for our example is as follows. We let t = 0.03, 0.04, ..., 1, and comment that for t < 0.03 the
population means are so close together that one could question the existence of two distinct subpopulations.
Hence, smaller values of t are uninformative and disregarded. The EM algorithm is then run with and
without acceleration with a maximum iteration number of 250. Error plots are presented and tables are
displayed that keep track of the t values, the number of iterations and computation times required to reach
convergence. To measure the timings, we have used MATLAB’s built in tic and toc commands. Depending
on the computer, these timings are likely to vary; therefore, the reader should use these timings as rough
estimates of how long the algorithm runs and not precise measurements.

Before presenting the results it is necessary to make a few more annotations. In this example, our
initial parameter estimates have been generated using K-means clustering only. As seen previously, when
using K-means the algorithm converges fast when the populations are well separated (t ≈ 1); therefore,
we present plots and tables only for interesting values of t that require more iterations. The parameter
estimates generated by the EM algorithm for these values of t are not presented in this section to avoid
clutter; however, they may be found in Appendix B. The results are displayed on the following pages.
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Figure 21: Plots of Performance With and Without Acceleration
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t Iteration Number Timing (seconds)

0.08 15 240.5
0.07 31 468.5
0.06 59 869.1
0.05 161 2418.3
0.04 250 3592.2
0.03 250 3865.2

Table 7: Without Acceleration

t Iteration Number Timing (seconds)

0.08 7 114.3
0.07 8 139.9
0.06 10 157.9
0.05 13 218.8
0.04 19 326.9
0.03 40 585.6

Table 8: With Acceleration

The plots and tables generated provide us with significant results. It is evident that when the subpopu-
lations are sufficiently poorly separated using EM without acceleration would be unwise. From Table 7 we
see that when t = 0.03 the algorithm ran for over a hour while yielding errors on the order of 10−4, whereas,
while using acceleration, errors on the order of 10−10 were achieved in under ten minutes. In conclusion,
we have shown that the slow convergence of the EM algorithm can be mitigated by appealing to Anderson
acceleration. This may be of practical significance since the acceleration method is easily implementable and
costs very little to apply.
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Conclusions

The aim of this work was to acquaint one with the EM algorithm and show that applying Anderson
acceleration to the EM algorithm improves rates of convergence. As preamble, the method of maximum
likelihood estimation was reviewed and an example was presented. The EM algorithm was then formulated
in detail, and convergence properties were discussed. The linear convergence of the EM algorithm was
demonstrated through an example, and it was shown in this exposition to be unacceptably slow when the
populations are poorly separated.

The Anderson acceleration method was then presented in its most general form. This method was
then applied to the EM algorithm, yielding beneficial results. From Tables 7 and 8, we see that iteration
numbers and run times do not increase dramatically when using acceleration, compared to the results without
acceleration.

In closing, we reiterate that the EM algorithm is very useful for obtaining MLE’s for various models across
a broad area of applications. However, EM iterates converge slowly with poorly separated data. Through
this exposition, we have introduced a way of alleviating such slow convergence in EM iterations for mixture
models by introducing Anderson acceleration. This algorithm can be efficiently added to existing EM code
to expedite convergence.

Future Work

There are several directions in which to continue this project. We first explain some possible problems
that may arise when using acceleration. The EM iterates preserve symmetric-positive-definiteness of each Σi

and maintain that each αi is non-negative and constrained to sum to one. However, the Anderson acceleration
algorithm need not preserve these special attributes. Throughout this project, no problems occurred with
the mixture proportions; however, when poor initial parameter estimates were chosen, symmetric-positive-
definiteness was lost in some experiments. This is the reason why in our concluding example we chose to use
K-means. Having a better initial guess seems to ensure that each Σi remains symmetric-positive definite.
In further research a remedy will be sought that will allow one to choose almost any initial starting guess
for our parameters while maintaining this attribute.

Throughout this project, all random samples were computer generated. In further works, we will look
for an opportunity to use acceleration with data that were collected in some real world application.

Parallel computing could be investigated in hopes of allowing significantly larger values of N , m and
d. It would be interesting and useful to investigate how acceleration behaves on much larger sets of much
higher-dimensional data.
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Appendix A

1

% The EM algor i thm f o r Gaussian Mixture Models
3 % Worcester Po lytechn ic I n s t i t u t e
% Joshua Pla s s e

5 % jhplasse@wpi . edu
% Below i s the MATLAB s c r i p t that was used

7 % fo r the examples found throughout the p r o j e c t %%%%%%
%

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

11 %% Well Separated Case (WSC)
c l c

13 format longG
N = 50000;

15 mu = [1 2 . 2 5 ; 12 .9 1 0 . 3 ] ;
alpha = [ . 3 . 7 ] ;

17 sigma ( : , : , 1 ) = [ 1 . 7 5 1 ; 1 1 . 7 5 ] ;
sigma ( : , : , 2 ) = [ 3 . 2 1 . 2 5 ; 1 . 2 5 3 . 2 ] ;

19 [ muFinal , s igmaFinal , a lphaFinal , meanError , sigmaError , a lphaError ] = em dr ive r Mul t iVar ia te (N,
alpha ,mu, sigma , 250 ) ;

21 % Plot Mean Errors
f i g u r e

23 s c a t t e r ( 1 : l ength (meanError ) , l og (meanError ) ,100)
x l ab e l ( ’ I t e r a t i o n Number ’ , ’ FontSize ’ ,15 , ’ FontWeight ’ , ’ bold ’ )

25 % Plot Alpha Errors
f i g u r e

27 s c a t t e r ( 1 : l ength (meanError ) , l og ( a lphaError ) ,100)
x l ab e l ( ’ I t e r a t i o n Number ’ , ’ FontSize ’ ,15 , ’ FontWeight ’ , ’ bold ’ )

29 % Plot Covariance Errors
f i g u r e

31 f o r ( i = 1 : l ength ( s igmaError ( 1 , : ) ) )
s c a t t e r ( 1 : l ength ( s igmaError ( : , 1 ) ) , l og ( s igmaError ( : , i ) ) ,100)

33 hold on
end

35 x l ab e l ( ’ I t e r a t i o n Number ’ , ’ FontSize ’ ,15 , ’ FontWeight ’ , ’ bold ’ )

37 %% Poorly Separated Case (PSC)
c l c

39 format longG
N = 50000;

41 mu = [ 4 . 5 6 . 2 5 ; 7 8 . 9 5 ; 5 .12 9 . 5 ] ;
alpha = [ . 3 . 5 . 2 ] ;

43 sigma ( : , : , 1 ) = [ . 7 5 −0.25;−0.25 . 7 5 ] ;
sigma ( : , : , 2 ) = [ 1 . 1 . 5 ; . 5 1 . 1 ] ;

45 sigma ( : , : , 3 ) = [ . 4 5 . 3 ; . 3 . 4 5 ] ;
[ muFinal , s igmaFinal , a lphaFinal , meanError , sigmaError , a lphaError ] = em dr ive r Mul t iVar ia te (N,

alpha ,mu, sigma , 250 ) ;
47

% Plot Mean Errors
49 f i g u r e

s c a t t e r ( 1 : l ength (meanError ) , l og (meanError ) ,50)
51 x l ab e l ( ’ I t e r a t i o n Number ’ , ’ FontSize ’ ,15 , ’ FontWeight ’ , ’ bold ’

% Plot Alpha Errors
53 f i g u r e
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s c a t t e r ( 1 : l ength (meanError ) , l og ( a lphaError ) ,100)
55 x l ab e l ( ’ I t e r a t i o n Number ’ , ’ FontSize ’ ,15 , ’ FontWeight ’ , ’ bold ’ )

% Plot Covariance Errors
57 f i g u r e

f o r ( i = 1 : l ength ( s igmaError ( 1 , : ) ) )
59 s c a t t e r ( 1 : l ength ( s igmaError ( : , 1 ) ) , l og ( s igmaError ( : , i ) ) ,100)

hold on
61 end

x l ab e l ( ’ I t e r a t i o n Number ’ , ’ FontSize ’ ,15 , ’ FontWeight ’ , ’ bold ’ )
63

%% Anderson Acce l e r a t i on Example
65 c l c

format longG
67 N = 1000000;

mu = [ 1 : 1 0 ; 2 1 : 3 0 ] ;
69 alpha = [ . 5 . 5 ] ;

sigma ( : , : , 1 ) = eye (10) ;
71 sigma ( : , : , 2 ) = eye (10) ;

[ muEstimates , s igmaEstimates , a lphaEstimates , t imeI te r , t imeIter noAcc , muContract ] =
EM Acce lerat ion Driver (N, alpha ,mu, sigma , 250 ) ;

f unc t i on y = mvgmmrnd(mu, sigma , p , n)
2 % This s c r i p t gene ra t e s the random samples used throughout the p r o j e c t
% MVGMMRND − Mul t i va r i a t e Gaussian Mixture Model Random Sample

4 % MVGMMRND Random vec to r s from a mixture o f mu l t i v a r i a t e normals .
% MU i s an M−by−D matrix o f means f o r the M component normals

6 % SIGMA i s a D−by−D−by−M array o f covar iance matr i ce s f o r the
% M component normals .

8 % P i s an M−by−1 vec to r o f component mixing p r o b a b i l i t i e s .
% N i s the de s i r ed number o f random vec to r s .

10

[M, d ] = s i z e (mu) ;
12 % randomly pick from the components

[dum, compon ] = h i s t c ( rand (n , 1 ) , [ 0 ; cumsum(p ( : ) ) . / sum(p) ] ) ;
14 % generate random vec to r s from the s e l e c t e d components with a

% ” stacked ” matrix mult ip ly
16 f o r i = 1 :M

Rt( i , : , : ) = cho l ( sigma ( : , : , i ) ) ; % holds the transposed cho le sky f a c t o r s
18 end

Z = repmat ( randn (n , d) , [ 1 , 1 , d ] ) ;
20 y = squeeze (sum(Z .∗Rt(compon , : , : ) , 2 ) ) + mu(compon , : ) ;

22 % Reference :
%%%%% This code was found on the MathWorks s i t e

24 %%%%% http ://www. mathworks . com/mat labcentra l / newsreader / v iew thread /36174
%%%%% From the thread author Peter Perk ins
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1 f unc t i on [ phip lus , covplus , a lphaplus , meanError , covErrorMatrix , a lphaError ] =
em dr ive r Mul t iVar ia te (N, alpha ,mu, sigma , itmax )

%
3 % This i s the d r i v e r to demonstrate the EM
% algor i thm f o r approximating MLEs o f the parameters in a mixture

5 % of normal ( mu l t i v a r i a t e ) d i s t r i b u t i o n s
%

7 %
% Inputs :

9 % N = number o f ob s e rva t i on s
% alpha = 1xm−vec to r o f p ropor t i on s

11 % mu = mxd matrix where m i s the number o f subpopulat ions and d i s
% the dimension we are working in . The i t h row o f mu should

13 % correspond to the t rue means f o r the i t h subpopulat ion
% sigma = i s a m page mult id imens iona l array where the i t h page

15 % s t o r e s the covar iance matrix f o r the i t h subpopulat ion
% itmax = maximum a l l owab l e number o f i t e r a t i o n s .

17 %
% Outputs :

19 % phip lus = next i t e r a t e f o r the means
% covplus = next i t e r a t e f o r the cova r i ance s

21 % alphap lus = next i t e r a t e f o r the mixing propor t i on s
% meanError = vec to r conta in ing e r r o r s with in the i t e r a t e s

23 % covErrorMatrix = matrix conta in ing e r r o r s with in the i t e r a t e s
% alphaError = vec to r conta in ing e r r o r s with in the i t e r a t e s

25

% Declare g l oba l v a r i a b l e s :
27 g l oba l alpha trueGL ;

g l oba l mu trueGL ;
29 g l oba l sigma trueGL ;

g l oba l mGL;
31 g l oba l XGL;

g l oba l dGL;
33

% These a l low the user to ente r in as l i t t l e as 4 arguments in to
35 % em driver and d e f i n e s the other arguments below

i f nargin <4, e r r o r ( ’ em mean driver r e qu i r e s at l e a s t f our arguments . ’ ) ; end
37 i f nargin <5, itmax = 100 ; end

39 m = length (mu( : , 1 ) ) ; % Number o f sub−popu la t i ons
d = length (mu( 1 , : ) ) ; %Dimension we are working in

41

% Set the seed o f random
43 rng (31415 , ’ v4 ’ ) ;

% Generate the random sample us ing the func t i on mvgmmrnd
45 X = mvgmmrnd(mu, sigma , alpha ,N) ;

% Present Sca t t e r Plot o f the Sample
47 f i g u r e

s c a t t e r (X( : , 1 ) ,X( : , 2 ) ) ;
49 t i t l e ( ’ S ca t t e r Plot without C lu s t e r i ng ’ )

51 % Set more g l oba l v a r i a b l e s to pass to g em Mult iVar iate
alpha trueGL = alpha ;

53 mu trueGL = mu;
sigma trueGL = sigma ;

55 mGL = m;
XGL = X;

57 dGL = d ;

59 % Cal cu l a t e s the c en t r o i d s o f the c l u s t e r s us ing kmeans a lgor i thm
[ idx , phi0 ] = kmeans (X,m) ;

61

% Uncomment the f o l l ow i ng to randomly guess at our means
63 % s = rng ;

% phi0 = rand ( s i z e ( phi0 ) ) ;
65

% I n i t i a l i z e i n i t i a l cov matr i ce s / sample propor t ion vec to r
67 intCov = ze ro s ( s i z e ( sigma ) ) ;
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intAlpha = s i z e ( alpha ) ;
69

% Calcu luate the i n i t i a l covar iance and sample propor t i on s
71 f o r ( i = 1 :m)

temp = f ind ( idx==i ) ;
73 intCov ( : , : , i ) = cov (X( temp , : ) ) ;

intAlpha ( i ) = length ( temp) / l ength (X( : , 1 ) ) ;
75 end

77 % Uncomment to randomly guess at alpha ’ s and sigma ’ s
% intAlpha = ones (1 , l ength ( intAlpha ) ) /m;

79 % fo r ( i =1:m)
% intCov ( : , : , i ) = ze ro s (d , d)+eye (d) ;

81 % end

83 % Spec i f y an e r r o r t o l e r an c e
% Es s e n t i a l l y we i t e r a t e un t i l the e r r o r between i t e r a t e s drops below

85 % machine ep s i l o n
e t o l = 10ˆ(−30) ;

87

% I f d>2 we cannot produce p l o t s
89 i f (d == 2)

f i g u r e
91 f o r ( i = 1 : l ength ( alpha ) )

s c a t t e r (X( idx==i , 1 ) ,X( idx==i , 2 ) )
93 hold on

end
95 p lo t ( phi0 ( : , 1 ) , phi0 ( : , 2 ) , ’ kx ’ , . . .

’ MarkerSize ’ ,12 , ’ LineWidth ’ , 2 )
97 p lo t ( phi0 ( : , 1 ) , phi0 ( : , 2 ) , ’ ko ’ , . . .

’ MarkerSize ’ ,12 , ’ LineWidth ’ , 2 )
99 t i t l e ( ’ Ca l cu l a t ing Centro ids f o r our I n i t i a l Guesses ’ )

hold o f f
101

% Plots the t rue pdf
103 f i g u r e

subplot ( 2 , 1 , 1 )
105 xMin = min (XGL( : , 1 ) ) ; xMax = max(XGL( : , 1 ) ) ;

yMin = min (XGL( : , 2 ) ) ; yMax = max(XGL( : , 2 ) ) ;
107 obj = gmdi s t r ibut i on (mu, sigma , alpha ) ;

e z s u r f (@(x , y ) pdf ( obj , [ x y ] ) , [ xMin−1,xMax+1] , [ yMin−1 yMax+1])
109 t i t l e ( ’ True PDF ’ , ’ FontSize ’ , 1 2 . 5 , ’ FontWeight ’ , ’ bold ’ ) ;

111 % Run EM i t e r a t e s
f o r ( i = 1 : itmax )

113

% I t e r a t e on the cho le sky f a c t o r s o f our covar iance matr i ce s
115 f o r ( j = 1 :m)

cholCov ( : , : , j ) = cho l ( intCov ( : , : , j ) , ’ lower ’ ) ;
117 end

[ phip lus , cholCovPlus , a lphap lus ] = g em Mult iVar iate ( phi0 , cholCov , intAlpha ) ;
119 meanError ( i ) = norm( phi0 − phiplus , i n f ) ;

a lphaError ( i ) = norm( intAlpha − alphaplus , i n f ) ;
121

% Reconstruct the covar iance matr i ce s
123 f o r ( j = 1 :m)

covplus ( : , : , j ) = cholCovPlus ( : , : , j ) ∗ cholCovPlus ( : , : , j ) ’ ;
125 end

127 % Compute Covariance Errors
f o r ( j = 1 :m)

129 covError ( j ) = norm( intCov ( : , : , j )−covplus ( : , : , j ) , i n f ) ;
end

131 covErrorMatrix ( i , : ) = covError ;

133 i f ( meanError ( i )<=e t o l && alphaError ( i )<=e t o l )
phi0 = ph ip lus ;

135 intCov = covplus ;
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intAlpha = alphap lus ;
137 break

end
139 phi0 = ph ip lus ;

intCov = covplus ;
141 intAlpha = alphap lus ;

end
143

e l s e
145 % For d>2 we simply i t e r a t e the EM algor i thm without p l o t t i n g

% Run EM i t e r a t e s
147

f o r ( i = 1 : itmax )
149 % I t e r a t e on the cho le sky f a c t o r s o f our covar iance matr i ce s

f o r ( j = 1 :m)
151 cholCov ( : , : , j ) = cho l ( intCov ( : , : , j ) , ’ lower ’ ) ;

end
153 [ phip lus , cholCovPlus , a lphap lus ] = g em Mult iVar iate ( phi0 , cholCov , intAlpha ) ;

meanError ( i ) = norm( phi0 − phiplus , i n f ) ;
155 alphaError ( i ) = norm( intAlpha − alphaplus , i n f ) ;

157 % Reconstruct the covar iance matr i ce s
f o r ( j = 1 :m)

159 covplus ( : , : , j ) = cholCovPlus ( : , : , j ) ∗ cholCovPlus ( : , : , j ) ’ ;
end

161 % Compute Covariance Errors
f o r ( j = 1 :m)

163 covError ( j ) = norm( intCov ( : , : , j )−covplus ( : , : , j ) , i n f ) ;
end

165 covErrorMatrix ( i , : ) = covError ;

167 i f ( meanError ( i )<=e t o l && alphaError ( i )<=e t o l )
phi0 = ph ip lus ;

169 intCov = covplus ;
intAlpha = alphap lus ;

171 break
end

173 phi0 = ph ip lus ;
intCov = covplus ;

175 intAlpha = alphap lus ;
end

177 end
end
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f unc t i on [ phip lus , cholCovplus , a lphap lus ] = g em Mult iVar iate ( phi , cholCov , intAlpha )
2

%%%%%%%%%% Performs the EM I t e r a t e s f o r mu l t i v a r i a t e Guassians %%%%%%%%%%
4 % Inputs : phi = mean es t imate at the i t h i t e r a t i o n
% cholCov = Cholesky f a c t o r o f the covar iance matr i ce s at i t h

6 % i t e r a t i o n
% intAlpha = mixing propor t ion e s t imate s at the i t h i t e r a t i o n

8 % Outputs : Updated parameter e s t imate s
format longG

10

% Declare v a r i a b l e s
12 g l oba l alpha trueGL ;

g l oba l mu trueGL ;
14 g l oba l sigma trueGL ;

g l oba l mGL;
16 g l oba l XGL;

g l oba l dGL;
18 p e r s i s t e n t N;

X = XGL;
20 d = dGL;

N = length (X( : , 1 ) ) ; % Set N = sample s i z e
22

% Top o f the EM i t e r a t i o n .
24 C = (2∗ pi ) ˆ(d/2) ;

m = length ( intAlpha ) ;
26 em pos t e r i o r s = ze ro s (m,N) ;

28 % Compute the EM po s t e r i o r p r o b a b i l i t i e s
f o r ( i = 1 :m)

30 duplicateMu = repmat ( phi ( i , : ) , l ength (X( : , 1 ) ) , 1 ) ;
L = cholCov ( : , : , i ) ;

32 f r a c = intAlpha ( i ) /(C∗prod ( diag (L) ) ) ;
Y = L\(X−duplicateMu ) ’ ; % So lve s LY = (X−duplicateMu ) ’ columwise , so Y = inv (L) ∗ ( (X−

duplicateMu ) ’ ) .
34 em pos t e r i o r s ( i , : ) = f r a c ∗exp(−2\sum(Y. ˆ 2 ) ) ; %Forms a 1xN vecto r with components a l pha i ∗

p i ( x k ) .
end

36

% Construct a l pha i ∗ p i ( x k | ph i i ) /p( x k |PHI)
38 em pos t e r i o r s = ( ones (m, 1 ) ∗sum( em pos t e r i o r s ) ) .\ em pos t e r i o r s ;

40 denom = sum( em poste r i o r s ’ ) ;
num = em pos t e r i o r s ∗X;

42 % Update the means .
ph ip lus = diag (denom) \num;

44 % Update the a lphas
a lphap lus = (1/N) .∗denom ;

46

% Update the covar iance matr i ce s
48 f o r ( i =1:m)

temp = ze ro s (d , d) ;
50 f o r ( k = 1 : l ength (X( : , 1 ) ) )

temp = temp + ( (X(k , : )−ph ip lus ( i , : ) ) ’∗ (X(k , : )−ph ip lus ( i , : ) ) ) ∗ em pos t e r i o r s ( i , k ) ;
52 end

% Constructs the ’ f u l l ’ covar i ance matrix
54 covplus ( : , : , i ) = temp/denom( i ) ;

% Return the cho l e sky f a c t o r
56 cholCovplus ( : , : , i ) = cho l ( covplus ( : , : , i ) , ’ lower ’ ) ;

end
58 % Cannot p l o t i f d>2

i f (d ==2)
60 % Plot the cur rent mixture PDF.

subplot ( 2 , 1 , 2 )
62 xMin = min (XGL( : , 1 ) ) ; xMax = max(XGL( : , 1 ) ) ;

yMin = min (XGL( : , 2 ) ) ; yMax = max(XGL( : , 2 ) ) ;
64 obj = gmdi s t r ibut i on ( phip lus , covplus , a lphap lus ) ;

em plot = e z s u r f (@(x , y ) pdf ( obj , [ x y ] ) , [ xMin−1,xMax+1] , [ yMin−1 yMax+1]) ;
66 t i t l e ( ’EM algor i thm ’ , ’ FontSize ’ , 1 2 . 5 , ’ FontWeight ’ , ’ bold ’ )

pause ( . 0 001 ) ;
68 end

end
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1 f unc t i on [ muEstimates , s igmaEstimates , a lphaEstimates , t imeI te r , t imeIter noAcc , muContract ] =
EM Acce lerat ion Driver (N, alpha ,mu, sigma , itmax , t )

3 %%% The purpose o f t h i s d r i v e r i s to show how the Anderson Acce l e r a t i on %%%
%%%%%%% method speeds up the convergence ra t e o f the EM algor i thm %%%%%%%

5

% Inputs :
7 % N = number o f ob s e rva t i on s
% alpha = 1xm−vec to r o f p ropor t i on s

9 % mu = mxd matrix where m i s the number o f subpopulat ions and d i s
% the dimension we are working in . The i t h row o f mu should

11 % correspond to the t rue means f o r the i t h subpopulat ion
% sigma = i s a m page mult id imens iona l array where the i t h page

13 % s t o r e s the covar iance matrix f o r the i t h subpopulat ion
% itmax = maximum a l l owab l e number o f i t e r a t i o n s .

15 % t = a range o f va lue s between 0 and 1 that are used to
% ” cont rac t ” the means o f our sample , where lower va lue s o f t

17 % w i l l correspond to the sample becomming more poor ly separated

19 % I n i t i a l i z e some g l oba l v a r i a b l e s
g l oba l alpha trueGL ;

21 g l oba l mu trueGL ;
g l oba l sigma trueGL ;

23 g l oba l mGL;
g l oba l XGL;

25 g l oba l dGL;
% Number o f argument e r r o r s

27 i f nargin <4, e r r o r ( ’ EM Acce lerat ion Driver r e qu i r e s at l e a s t f our arguments . ’ ) ; end
i f nargin <5, itmax = 100 ; end

29 i f nargin <6, t = [ 0 . 0 3 : 0 . 0 1 : 1 ] ; end

31 m = length (mu( : , 1 ) ) ; % Number o f sub−popu la t i ons
d = length (mu( 1 , : ) ) ; % Dimension we are working in

33 % I n i t i a l i z e time tab l e a r rays
timeCount = ze ro s (1 , l ength ( t ) ) ;

35 itNum = ze ro s (1 , l ength ( t ) ) ;

37 % Store a s t r i n g f o r our e r r o r p l o t s
s t r = ’ Error Plot : ’ ;

39 % Set the seed o f random
rng (312415 , ’ v4 ’ ) ;

41

% Take the average o f our mean matrix row wise
43 muBar = mean2(mu) ;

% Fl ip the t vec to r so we s t a r t o f f at the best case
45 t = f l i p l r ( t ) ;

47 % Performs the con t ra c t i on o f our means
f o r ( k = 1 : l ength ( t ) )

49

f o r ( i = 1 :m)
51 f o r ( j = 1 : d)

muPlus ( i , j ) = muBar + t (k ) ∗(mu( i , j )−muBar) ;
53 end

end
55

% Generate the random sample us ing the func t i on mvgmmrnd
57 X = mvgmmrnd(muPlus , sigma , alpha ,N) ;

% Store a l l o f the contracted means
59 muContract ( : , : , k ) = muPlus ;

61 alpha trueGL = alpha ;
mu trueGL = mu;

63 sigma trueGL = sigma ;
mGL = m;

65 XGL = X;
dGL = d ;

67 % Use K−means on the sample drawn
[ idx , phi0 ] = kmeans (X,m) ;

69 % I n i t i a l i z e cov matr i ce s / sample propor t ion vec to r
intCov = ze ro s ( s i z e ( sigma ) ) ;

71 intAlpha = s i z e ( alpha ) ;
% Calcu luate the i n i t i a l covar iance and sample propor t i on s
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73 f o r ( i = 1 :m)
temp = f ind ( idx==i ) ;

75 intCov ( : , : , i ) = cov (X( temp , : ) ) ;
intAlpha ( i ) = length ( temp) / l ength (X( : , 1 ) ) ;

77 end
% Make a copy o f the i n i t i a l parameters so we do not wr i t e over them

79 % when we use no a c c e l r a t i o n
intCov noAcc = intCov ;

81 intAlpha noAcc = intAlpha ;
phi0 noAcc = phi0 ;

83

%%% Implement Anderson Acce l e r a t i on %%%
85 % In hopes to p r e s e rve PD of the covar iance matrix we i t e r a t e on i t s

% Cholesky f a c t o r s
87 f o r ( i = 1 :m)

cholCov ( : , : , i ) = cho l ( intCov ( : , : , i ) , ’ lower ’ ) ;
89 end

91 t i c
[ phip lus , cholCovPlus , a lphaplus , i t e r , r e s h i s t ] = AndAcc( @g em mean MultiVariate , phi0 ,

cholCov , intAlpha , 10 , itmax ) ;
93 muEstimates ( : , : , k ) = ph ip lus ;

a lphaEst imates ( : , : , k ) = a lphap lus ;
95 timeCount (k ) = toc ;

itNum(k ) = i t e r ;
97 % Reconstruct our covar iance matr i ce s from the Cholesky f a c t o r s

f o r ( i = 1 :m)
99 covplus ( : , : , i ) = cholCovPlus ( : , : , i ) ∗ cholCovPlus ( : , : , i ) ’ ;

end
101 s igmaEstimates {k} = covplus ;

103 % I t e r a t e without a c c e l e r a t i o n
f o r ( i = 1 :m)

105 cholCov noAcc ( : , : , i ) = cho l ( intCov noAcc ( : , : , i ) , ’ lower ’ ) ;
end

107 t i c
[ phiplus noAcc , cholCovPlus noAcc , alphaplus noAcc , i te r noAcc , r e s h i s t noAcc ] = AndAcc(

@g em mean MultiVariate , phi0 noAcc , cholCov noAcc , intAlpha noAcc , 0 , itmax ) ;
109 timeCount noAcc (k ) = toc ;

itNum noAcc (k ) = i t e r noAcc ;
111

% Reconstruct our covar iance matr i ce s from the Cholesky f a c t o r s
113 f o r ( i = 1 :m)

covplus noAcc ( : , : , i ) = cholCovPlus noAcc ( : , : , i ) ∗ cholCovPlus noAcc ( : , : , i ) ’ ;
115 end

117 % Error P lot s
i f ( i t e r >=5 && ite r noAcc >= 10)

119 f i g u r e
p l o t ( r e s h i s t ( : , 1 ) , log10 ( r e s h i s t ( : , 2 ) ) , ’ b . ’ , ’ LineWidth ’ , 0 . 4 , ’ MarkerSize ’ , 8 . 0 ) ;

121 hold on
p lo t ( r e s h i s t noAcc ( : , 1 ) , log10 ( r e s h i s t noAcc ( : , 2 ) ) , ’ r . ’ , ’ LineWidth ’ , 0 . 4 , ’ MarkerSize

’ , 8 . 0 ) ;
123 g r id

y l ab e l ( ’ Log Res idua l Norm ’ , ’ FontSize ’ ,12 , ’ FontWeight ’ , ’ bold ’ )
125 x l ab e l ( ’ I t e r a t i o n Number ’ , ’ FontSize ’ ,12 , ’ FontWeight ’ , ’ bold ’ )

t i t l e ( [ s t r ’ ’ ’ t = ’ num2str ( t ( k ) ) ] , ’ FontSize ’ ,13 , ’ FontWeight ’ , ’ bold ’ )
127 l e g = legend ( ’With Acce l e r a t i on ’ , ’Without Acce l e r a t i on ’ ) ;

s e t ( leg , ’ FontSize ’ ,11)
129 end

end
131 % Construct the t / i t e r a t i o n / time t ab l e s

t ime I t e r = [ t ’ , itNum ’ , timeCount ’ ] ;
133 t imeIter noAcc = [ t ’ , itNum noAcc ’ , timeCount noAcc ’ ] ;

end
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f unc t i on [ phi0 , cholCov , intAlpha , i t e r , r e s h i s t ] = AndAcc(g , phi0 , cholCov , intAlpha ,mMax, itmax ,
ato l , r t o l , dropto l , beta , AAstart )

2 % This performs f ixed−point i t e r a t i o n with or without Anderson
% a c c e l e r a t i o n f o r a g iven f ixed−point map g and i n i t i a l

4 % approximate s o l u t i o n x .
%

6 % Required inputs :
% g = f ixed−point map ( func t i on handle ) ; form gval = g (x ) .

8 % x = i n i t i a l approximate s o l u t i o n ( column vecto r ) .
%

10 % Optional inputs :
% mMax = maximum number o f s to r ed r e s i d u a l s ( non−negat ive i n t e g e r ) .

12 % NOTE: mMax = 0 => no a c c e l e r a t i o n .
% itmax = maximum a l l owab l e number o f i t e r a t i o n s .

14 % ato l = abso lu t e e r r o r t o l e r an c e .
% r t o l = r e l a t i v e e r r o r t o l e r an c e .

16 % dropto l = to l e r an c e f o r dropping s to r ed r e s i d u a l v e c t o r s to improve
% cond i t i on ing : I f d ropto l > 0 , drop r e s i d u a l s i f the

18 % cond i t i on number exceeds dropto l ; i f d ropto l <= 0 ,
% do not drop r e s i d u a l s .

20 % beta = damping f a c t o r : I f beta > 0 ( and beta ˜= 1) , then the step i s
% damped by beta ; otherwise , the s tep i s not damped .

22 % NOTE: beta can be a func t i on handle ; form beta ( i t e r ) , where i t e r i s
% the i t e r a t i o n number and 0 < beta ( i t e r ) < 1 .

24 % AAstart = a c c e l e r a t i o n de lay f a c t o r : I f AAstart > 0 , s t a r t a c c e l e r a t i o n
% when i t e r = AAstart .

26 %
% Output :

28 % x = f i n a l approximate s o l u t i o n .
% i t e r = f i n a l i t e r a t i o n number .

30 % r e s h i s t = r e s i d u a l h i s t o r y matrix ( i t e r a t i o n numbers and r e s i d u a l norms ) .
%

32 % Homer Walker ( walker@wpi . edu ) , 10/14/2011.
% Updated to work f o r Mu l t i va r i a t e Gaussian D i s t r i bu t i on s ,

34 % Joshua Pla s s e ( jhplasse@wpi . edu ) , 4/1/2013
% For EM i t e r a t i o n s .

36 g l oba l iterGL ;
m = length ( phi0 ( : , 1 ) ) ;

38 d = length ( phi0 ( 1 , : ) ) ;

40 % Set the method parameters .
i f narg in < 4 , e r r o r ( ’AndAcc r e qu i r e s at l e a s t two arguments . ’ ) ; end

42 i f narg in < 5 , mMax = 10 ; end
i f narg in < 6 , itmax = 100 ; end

44 i f narg in < 7 , a t o l = 1 . e−10; end
i f narg in < 8 , r t o l = 1 . e−10; end

46 i f narg in < 9 , dropto l = 1 . e10 ; end
i f narg in < 10 , beta = 1 ; end

48 i f narg in < 11 , AAstart = 0 ; end

50 % I n i t i a l i z e the s to rage ar rays .
r e s h i s t = [ ] ; % Storage o f r e s i d u a l h i s t o r y .

52 DG = [ ] ; % Storage o f g−value d i f f e r e n c e s .
% I n i t i a l i z e p r i n t i n g .

54 i f mMax == 0
f p r i n t f ( ’ \n No a c c e l e r a t i o n . ’ ) ;

56 e l s e i f mMax > 0
f p r i n t f ( ’ \n Anderson a c c e l e r a t i on , mMax = %d \n ’ ,mMax) ;

58 e l s e
e r r o r ( ’AndAcc .m: mMax must be non−negat ive . ’ ) ;

60 end
f p r i n t f ( ’ \n i t e r res norm \n ’ ) ;

62 % I n i t i a l i z e the number o f s to r ed r e s i d u a l s .
mAA = 0 ;

64 % Top o f the i t e r a t i o n loop .
f o r i t e r = 0 : itmax

66 % Apply g and compute the cur rent r e s i d u a l norm .
iterGL = i t e r ;

68

[ muAccPlus , cholCovAccPlus , alphaAccPlus ] = g ( phi0 , cholCov , intAlpha ) ;
70

% This code i s s p e c i f i e d f o r a column vecto r x ; th e r e f o r e , we must reshape
72 % our mu matrix , alpha vector , and sigma 3d array to be r epre s en ted as a
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% vecto r
74

% Reshape the i n i t i a l means
76 a = ( reshape ( phi0 ’ , 1 ,m∗d) ) ’ ;

% Reshape the i n i t i a l p ropor t i on s
78 b = intAlpha ’ ;

% Reshape the i n i t i a l c ova r i ance s
80 f o r ( i =1:m)

temp{ i } = ( reshape ( cholCov ( : , : , i ) ’ , 1 , d∗d) ) ’ ;
82 end

c = ( ce l l 2mat ( temp . ’ ) ) ;
84 x = [ a ; b ; c ] ;

86 % Reshape the updated means
aa = ( reshape (muAccPlus ’ , 1 ,m∗d) ) ’ ;

88 % Reshape the updated propor t i on s
bb = alphaAccPlus ’ ;

90 % Reshape the updated cova r i ance s
f o r ( i =1:m)

92 f oo { i } = ( reshape ( cholCovAccPlus ( : , : , i ) ’ , 1 , d∗d) ) ’ ;
end

94 cc = ( ce l l 2mat ( foo . ’ ) ) ;
gva l = [ aa ; bb ; cc ] ;

96 f v a l = gval − x ;
res norm = norm( f v a l ) ;

98 f p r i n t f ( ’ %d %e \n ’ , i t e r , res norm ) ;
r e s h i s t = [ r e s h i s t ; [ i t e r , res norm ] ] ;

100 % Set the r e s i d u a l t o l e r an c e on the i n i t i a l i t e r a t i o n .
i f i t e r == 0 , t o l = max( ato l , r t o l ∗ res norm ) ; end

102

% Test f o r stopping .
104 i f res norm <= to l ,

f p r i n t f ( ’ Terminate with r e s i d u a l norm = %e \n\n ’ , res norm ) ;
106 break ;

end
108

i f mMax == 0 | | i t e r < AAstart ,
110 % Without a c c e l e r a t i on , update x <− g (x ) to obta in the next

% approximate s o l u t i o n .
112 x = gval ;

e l s e
114 % Apply Anderson a c c e l e r a t i o n .

116 % Update the df vec to r and the DG array .
i f i t e r > AAstart ,

118 df = fva l−f o l d ;
i f mAA < mMax,

120 DG = [DG gval−g o ld ] ;
e l s e

122 DG = [DG( : , 2 :mAA) gval−g o ld ] ;
end

124 mAA = mAA + 1 ;
end

126 f o l d = f v a l ;
g o ld = gval ;

128

i f mAA == 0
130 % I f mAA == 0 , update x <− g (x ) to obta in the next approximate s o l u t i o n .

x = gval ;
132 e l s e

% I f mAA > 0 , s o l v e the l e a s t−squares problem and update the
134 % so l u t i o n .

i f mAA == 1
136 % I f mAA == 1 , form the i n i t i a l QR decompos it ion .

R(1 , 1 ) = norm( df ) ;
138 Q = R(1 ,1 ) \df ;

e l s e
140
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% I f mAA > 1 , update the QR decompos it ion .
142 i f mAA > mMax

% I f the column dimension o f Q i s mMax, d e l e t e the f i r s t column and
144 % update the decompos it ion .

[Q,R] = q rd e l e t e (Q,R, 1 ) ;
146 mAA = mAA − 1 ;

% The f o l l ow i ng t r e a t s the q rd e l e t e qu i rk de s c r ibed below .
148 i f s i z e (R, 1 ) ˜= s i z e (R, 2 ) ,

Q = Q( : , 1 :mAA−1) ; R = R( 1 :mAA−1 , : ) ;
150 end

% Explanation : I f Q i s not square , then q rd e l e t e (Q,R, 1 ) reduces the
152 % column dimension o f Q by 1 and the column and row

% dimensions o f R by 1 . But i f Q ∗ i s ∗ square , then the
154 % column dimension o f Q i s not reduced and only the column

% dimension o f R i s reduced by one . This i s to a l low f o r
156 % MATLAB’ s d e f au l t ” th i ck ” QR decomposit ion , which always

% produces a square Q.
158 end

% Now update the QR decomposit ion to in co rpo ra t e the new
160 % column .

f o r j = 1 :mAA − 1
162 R( j ,mAA) = Q( : , j ) ’∗ df ;

df = df − R( j ,mAA) ∗Q( : , j ) ;
164 end

R(mAA,mAA) = norm( df ) ;
166 Q = [Q,R(mAA,mAA) \df ] ;

end
168 i f d ropto l > 0

% Drop r e s i d u a l s to improve cond i t i on ing i f nece s sa ry .
170 condDF = cond (R) ;

whi l e condDF > dropto l && mAA > 1
172 f p r i n t f ( ’ cond (D) = %e , reduc ing mAA to %d \n ’ , condDF , mAA−1) ;

[Q,R] = q rd e l e t e (Q,R, 1 ) ;
174 DG = DG( : , 2 :mAA) ;

mAA = mAA − 1 ;
176 % The f o l l ow i ng t r e a t s the q rd e l e t e qu i rk de s c r ibed above .

i f s i z e (R, 1 ) ˜= s i z e (R, 2 ) ,
178 Q = Q( : , 1 :mAA) ; R = R( 1 :mAA, : ) ;

end
180 condDF = cond (R) ;

end
182 end

% Solve the l e a s t−squares problem .
184 gamma = R\(Q’∗ f v a l ) ;

% Update the approximate s o l u t i o n .
186 x = gval − DG∗gamma;

% Apply damping i f beta i s a func t i on handle or i f beta > 0
188 % (and beta ˜= 1) .

i f i s a ( beta , ’ f unc t i on hand l e ’ ) ,
190 x = x − (1−beta ( i t e r ) ) ∗( f v a l − Q∗R∗gamma) ;

e l s e
192 i f beta > 0 && beta ˜= 1 ,

x = x − (1−beta ) ∗( f v a l − Q∗R∗gamma) ;
194 end

end
196 end

end
198 % Update the parameters

% ’ Inverse ’ reshape
200 a = x ( 1 :m∗d) ;

phi0 = reshape (a ’ , d ,m) ’ ;
202 intAlpha = x(m∗d+1:m∗d+m) ’ ;

% Delete the i n d i c e s that don ’ t correspond to sigma e n t r i e s
204 ind = 1 : l ength ( a )+length ( intAlpha ) ;

x ( ind ) = [ ] ;
206

f o r ( i = 1 :m)
208 temp1 = x ( ( i −1)∗dˆ2+1: i ∗dˆ2) ;
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cholCov ( : , : , i ) = reshape ( temp1 ’ , d , d ) ’ ;
210 end

end
212

% Bottom of the i t e r a t i o n loop .
214 i f res norm > t o l && i t e r == itmax ,

f p r i n t f ( ’ \n Terminate a f t e r itmax = %d i t e r a t i o n s . \n ’ , itmax ) ;
216 f p r i n t f ( ’ Res idua l norm = %e \n\n ’ , res norm ) ;

end
218 end
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Appendix B

For t = 0.08:

Contracted Means

µ =

(
14.34 14.42 14.5 14.58 14.66 14.74 14.82 14.9 14.98 15.06
15.94 16.02 16.1 16.18 16.26 16.34 16.42 16.5 16.58 16.66

)
EM Estimates

µ =

(
14.339 14.420 14.499 14.581 14.659 14.740 14.819 14.898 14.980 15.060
15.942 16.023 16.098 16.181 16.259 16.338 16.421 16.503 16.579 16.661

)
α = (0.50077, 0.49923)

For t = 0.07:

Contracted Means

µ =

(
14.485 14.555 14.625 14.695 14.765 14.835 14.905 14.975 15.045 15.115
15.885 15.955 16.025 16.095 16.165 16.235 16.305 16.375 16.445 16.515

)
EM Estimates

µ =

(
15.884 15.950 16.027 16.094 16.165 16.233 16.304 16.373 16.441 16.515
14.486 14.554 14.622 14.693 14.767 14.833 14.903 14.975 15.045 15.116

)
α = (0.50037, 0.49963)

For t = 0.06:

Contracted Means

µ =

(
14.63 14.69 14.75 14.81 14.87 14.93 14.99 15.05 15.11 15.17
15.83 15.89 15.95 16.01 16.07 16.13 16.19 16.25 16.31 16.37

)
EM Estimates

µ =

(
14.628 14.689 14.749 14.810 14.869 14.931 14.989 15.049 15.111 15.171
15.831 15.892 15.952 16.009 16.071 16.128 16.191 16.251 16.309 16.367

)
α = (0.50039, 0.49960)
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For t = 0.05:

Contracted Means

µ =

(
14.775 14.825 14.875 14.925 14.975 15.025 15.075 15.125 15.175 15.225
15.775 15.825 15.875 15.925 15.975 16.025 16.075 16.125 16.175 16.225

)
EM Estimates

µ =

(
15.777 15.824 15.875 15.925 15.975 16.023 16.078 16.124 16.176 16.227
14.774 14.822 14.875 14.923 14.973 15.024 15.077 15.124 15.174 15.225

)
α = (0.50086, 0.49914)

For t = 0.04:

Contracted Means

µ =

(
14.92 14.96 15 15.04 15.08 15.12 15.16 15.2 15.24 15.28
15.72 15.76 15.8 15.84 15.88 15.92 15.96 16 16.04 16.08

)
EM Estimates

µ =

(
15.720 15.758 15.799 15.839 15.878 15.917 15.960 16.004 16.039 16.078
14.919 14.959 14.998 15.037 15.081 15.117 15.158 15.199 15.237 15.282

)
α = (0.50191, 0.49809)

For t = 0.03:

Contracted Means

µ =

(
15.065 15.095 15.125 15.155 15.185 15.215 15.245 15.275 15.305 15.335
15.665 15.695 15.725 15.755 15.785 15.815 15.845 15.875 15.905 15.935

)
EM Estimates

µ =

(
15.059 15.094 15.122 15.147 15.184 15.208 15.240 15.271 15.299 15.331
15.658 15.691 15.721 15.751 15.779 15.813 15.839 15.870 15.899 15.930

)
α = (0.49301, 0.50699)
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