View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DigitalCommons@WPI

Worcester Polytechnic Institute

Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2009-05-05

Course Summary of Computational Methods of
Financial Mathematics

Jessica L. Copp
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

Repository Citation

Copp, Jessica L., "Course Summary of Computational Methods of Financial Mathematics" (2009). Masters Theses (All Theses, All Years).
74S.
https://digitalcommons.wpi.edu/etd-theses/745

This thesis is brought to you for free and open access by Digital WPL It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an

authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

https://core.ac.uk/display/213002938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/745?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Course Summary of Computational Methods
of Financial Mathematics

by
Jessica Lee Copp
A Thesis
Submitted to the Faculty

of
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Master of Science
in
Financial Mathematics

May 2009
ADVISOR: Marcel Blais

Table of Contents

1. Introduction

2. Background

2.1 Options

2.2 Stochastic Processes and Brownian Motion
2.3 Ito’s Formula

2.4 Black-Scholes-Merton Partial Differential Equation
2.5 Option Pricing Approaches

3. Finite Difference Methods

3.1 Estimation Using Taylor’s Theorem

3.2 Spatial Discretization

3.3 Time Discretization

3.4 Method Evaluations

3.5 Specific Finite Difference Methods

3.6 Implementation of the Time Advancement
3.7 Types of Iterative Solvers

3.8 Boundary Conditions

3.9 Bellman Priciple

3.10 Bellman Eqauation

3.11 Pricing Equation

3.12 Partial Differential Complementary Problem
3.13 Finite Difference Approach to American Options
4. Monte Carlo Methods

4.1 Introduction

4.2 European Call Option

4.3 Random Number Generator

4.4 Linear Congruential Generator

4.5 Inverse Transform Method

4.6 Acceptance-Rejection Method

4.7 Normal Random Variables

4.8 Box-Muller Method

4.9 Generating Multivariate Normals

4.10 Generating Sample Paths

4.11 Path Dependent Payoffs

4.12 Variance Reduction Techniques

00 00 1 OO O =N DN

5. Appendix 51

5.1 Homework 1 51
5.2 Homework 2 54
5.3 Homework 3 57
5.4 Homework 4 60
5.5 Homework 5 66
5.6 Homework 6 68
5.7 Homework 7 73
5.8 Homework 8 78
5.9 Homework 9 84
5.10 Homework 10 90
5.11 Homework 11 99
5.12 Finite Difference Project 101

6. References 106

i

Introduction

Most realistic financial derivatives models are too complex to allow ex-
plicit analytic solutions. The computational techniques used to implement
those models fall into two broad categories: finite difference methods for the
solution of partial differential equations (PDEs) and Monte Carlo simulation.
Accordingly, the course consists of two sections.

The first half of the course focuses on finite difference methods. The fol-
lowing topics are discussed; Parabolic PDEs, Black-Scholes PDE for Euro-
pean and American options; binomial and trinomial trees; explicit, implicit
and Crank- Nicholson finite difference methods; far boundary conditions,
convergence, stability, variance bias; early exercise and free boundary con-
ditions; parabolic PDEs arising from fixed income derivatives; implied trees
for exotic derivatives, adapted trees for interest rate derivatives.

The second half of the course focuses on Monte Carlo. The following
topics are discussed; Random number generation and testing; evaluation of
expected payoff by Monte Carlo simulation; variance reduction techniquesan-
tithetic variables, importance sampling, martingale control variables; strati-
fication, low-discrepancy sequences and quasi-Monte Carlo methods; efficient
evaluation of sensitivity measures; methods suitable for multifactor and term-
structure dependent models.

Computational Methods of Financial Mathematics is taught by Marcel
Blais, a professor at Worcester Polytechnic Institute.

Background
Options

European Option:
A Euroean Option is a financial contract between two parties, the holder and
the writer. At a fixed expiry time T, the holder receives a payoff, and no
payoff occurs before time T. Further, the contract is uniquely described by
its payoft fuction.

European Call Option:
A Euroean Call Option is a financial contract with the following conditions:

1. at a prescribed time in the future, the expiry date, the holder of the
option may purchase a prescribed asset, known as the underlying asset,
for a prescribed amount, called the strike price

2. the holder has a right not an obligation
3. seller potentially has an obligation
4. has value

European Put Option:

A Euroean Put Option is a financial contract with the same conditions as a
European call, except the holder has the right to sell the underlying to the
writer a expiry for the strike price.

Payoff

Put Payoff = max(k-5; 0}
Call Payoff = max(5.-K.0)

Figure 1: European Options

American Option:

An American Option is a financial contract between two parties, the holder
and the writer, with expirty time 7. At any time ¢, 0 < ¢ < T', the holder
may exercise the option and receive payoff g(t,5;), where S; is the time-t
value of the underlying.

Path Dependent Options:

The option payoff can depend on the history of the underlying price path.
An example of a path dependent option in and Asian call option. It’s defined
by its payoff as follows:

Payof f = max(A; — K, 0) (1)
1 T
At = (wg(St -0 S t S T) = f\/ Stdt (2)
0

Stochastic Processes and Brownian Motion

Stochastic Process:
A stochasitic process X is a colletion of random variables such that:

(Xe,t € [0,7]) = (Xy(w), t € 0,7],w € Q) (3)
where is our sample space and (2, F, P) is our probability space.

Brownian Motion:

A stochastic process
W = (W,,t € [0, oc]) (4)

is called a standard Brownian Motion if the following are satisfied:
1. Wo - O
2. for 0 < s <t,W; — Wy~ N(0,t —s)

3. independence of increments for 0 < s <t < u < v,
(W, — W) L(W,, — W)

4. W has continuous sample paths

A Brownian Motion is nowhere differentiable with probability one.

Examples of Brownian Motion:
e Brownian motion with drift: (E[WW;] = 0)
Xy = pt + oW, (5)
E[Xi] = Elut + oWy = pt + o E[W,] = pt (6)
e Geometric Brownian Motion:

X = exp(ut + cWy) (7)

Stochastic Differential Equations:

Consider a small time interval, dt, during which an asset price changes from
S to S+dS.

We decompose it into two parts:

1. One part comes from a fixed rate of return over dt, written udt, where
w is called the drift.

2. The random component is given by a random sample drawn from a
normal distribution with mean 0 and variance dt.

This gives us the following equation:

g = pdt + odW, (8)

Ito’s Formula

Ito Process:
X, is an Ito Process if it is a stochastic process that can be written

dX, = u(t)dt + v(t)dW, 9)

Ito’s Formula:
Suppose X; is an Ito process and g(t,x) € C?([0,00) x R).
Then Y; = g(¢, Xt) is an Ito process and

1

where dX;dX, is computed using the following:
o dt-dt=0
o dt-dW; =0
o AW, -dW, =dt

Black-Scholes-Merton Partial Differential Equation

Deriving the Black-Scholes-Merton Partial Differential Equation:
Form a portfolio with one option and —A units of the underlying. The time
t value of our portfolio is m; = V; — AS;
It’s value changes according to dm; = dV; — AdS;
Ito’s formula can be applied to obtain the Black-Scholes-Merton PDE:
oV 1, ,0%V ov

4 - -9 — = 11
ot 20 St 952 +TaSSt rV 0 ()

This works backward in time becasuse an end condition is known instead of
an initial condition when looking at the boundary value problem. Using the
transfomation t = T — t will allow moving forward in time.
We can rewrite the Black-Scholes-Merton PDE as:

ov ov 1 0*V

- = — 2 2__
5 T@SSt+ 20 S; 552 rV (12)

Option Pricing Approaches

There are four option pricing approaches:
1. Fundamental Theorem of Asset Pricing

e use of probability

e price options by taking the discounted expected payoff under the
risk-neutral measure

e can get analytic solutions in some cases
2. Option Replication

e create a synthetic option
e use positions in different financial instruments that collectively
replicate the option value

3. Solving Partial Differential Equations

e often an option’s value can be determined by solving a boundary
value problem, which is a partial differential equation and a set of
boundary conditions

e sometimes can find analytic solutions

e usually approximate the solution numerically using finite differ-
ence methods

e deal with discretizing the continuous models
4. Carlo Methods

e approximate an option’s value by simulation

e repetition (look at how things are converging)

This paper is going to focus on solving partial differential equations using
the finite difference method and Monte Carlo methods.

Finite Difference Methods

Estimation Using Taylor’s Theorem

To estimate 2% and % Taylor’s Theorem can be applied to u(x + h) and

ox
u(x — h).

e First look at u(x + h) —u(x — h)
Expand to get:

fu(w) + ' ()h + LG - LI

~[u(@) — w/(2)h + IS — O]

u(x+h)—u(lx—h) = (13)

Rearrange and solve in terms of x and t to get:

ou _u(r + Az, t) —u(r — Ax,t)
3_x(x’t) B 2Azx

+ O(Az?) (14)

e Now look at u(z + h) + u(x — h)
Expand to get:

”(:E)hg
2 4!

w(x + h) +u(z — h) =2u(x) + e

Rearrange and solve in terms of x and t to get:

0?u u(z+ Az, t) — 2u(x) + u(x — Az, t))
S = v Lo (16)

Note: O is the order of the approximation for the error term.

Spatial Discretization
Let w; = u(x;), then the above equations are of the form:

ou Wiy — wi — 1

%(%t) = +12T — O(Az?) (17)
0%*u Uiy — 2U; + Ui
Soa(wnt) = == Aoy - - O(Ar?) (18)

These equations hold for the interior points. To solve for the boundary con-
ditions, linearly extrapolate the values for uy and u; using the two adjacent
points. This gives the following two equations.

Uy = 2U1 — U9 (19)
ur = 2U1_1 — Ur—2 (20)
Applying these spatial discretizations we get the following:

ou Uit1 — Uj—1 I o w1 — 2u; + u—q
T = (M 2
ot 2Ax 2 (Ax)

) —ru; + € (21)

Simplify to:
ou
e Bui-1 — yu; + it (22)

Where:

—T 0'2
* ﬁzm‘l'mmp
° 7:&—}—7’

o2

* a =55+ A
This can be vectorized to give the following (after dropping the error term):

du

Y g 23
(1 -2 1. 00 00 0 00]
B =y a 00 00 0 00
0 v a0 ...00 0 00
Where: A= 67.. .
0 0 000 ...08 — ao
0 0 000 ...00 1 —21|

e A is non-singular

A has rank A

A has eigenvectors z,, , m = 1,2,....m
e A has eigenvalues A, A9, ...\,
o AZ, = AT,
Define the following:
o X = [T1|Za|...|ZTm]
e)\ is a diagonal matrix of the eigenvalues of A
o AX = [AZ1|AZs|...|AZy) = [MT1| AaTal. . | AmTm] = AX
o \=X"1AX
e v=X""'u

This transforms the spatial finite difference scheme into:

dv
D 4
o AU (24)

Time Discretization

Shift Operator:
Let v™ = v(nAt). The shift operator E is defined by:

E™ = o™ = o([n + i At) (25)

Time discretized finite differences can be expressed as polynomials in the
shift operator. The polynomial shift operator is denoted by P(E).

Define the homogeneous difference equation by:
P(EY" =0 (26)

10

Consider %

expression:
M
dv; dv; 1 4
—L(t,) = =L (nAt) = — % it
a) = g ("B At;w]

for some constants ¢;

This gives the solution:

where the Aj, are the solutions of P(A) =0
The set A, are called the amplification errors.

Method Evaluations

= M\ Looking at the j* component, obtain the finite difference

(27)

1. Consistency: A numerical scheme is consistent if the finite difference

scheme converges to the partial differential equation as the space and
time steps converge to zero.

. Stability: A numerical scheme is stable if the difference between the nu-
merical solution and the exact solution remains bounded as the number
of steps goes to infinity. If any one |Aj;| > 1, the scheme is unstable.

. Converenge: A numerical scheme converges if the difference between
the numerical solution and the exact solution at a fixed point in the
domain tends to zero uniformly as the space and time steps tend to
zZero.

. Lax Equivalence Theorem: Given a properly posed linear initial value
problem and a consistent finite difference scheme, then stability is the
only requirement for convergence.

11

Specific Finite Difference Methods

1. The Explicit Euler Scheme:

dv

begin with the spatial discretization %7 = Av

n+1_vn

d_v|n ~ v
dt At

use the explicit approximation
combine to get vt = AAtv" + v"

rewrite as P(E)v™ =0

V" — " — XNAt" =0

Ev™ — " At =0

(E—1-=XAt)v" =0

P(E)v" =0

solve P(E) = 0 to find the amplification error
A—1-)XAt=0

A=1+4+)NAt

compare A to the expansion of e*! to find that this method is
first order accurate

to find stability conditions, look at |A|, which shows if A > 0 then
it’s unstable and if A < 0 then At < ’TQ which shows restricted
stability

2. The Implicit Euler Scheme:

. dv
begin with the spatial discretization &7 = Av

d_v|n+1 ~ vl _ym
dt -

use the explicit approximation N

combine to get v = (1 + AA#)v" !

rewrite as P(E)v™ =0

(1+ AAH) ™ — o™ =0

(14+ ANAHEV" — 0" =0

[(1+AADE — 1o = 0

P(Ey" =0

solve P(E) = 0 to find the amplification error
(I1+AMAH)A—-1=0

_ 1
A= 1-AAt

12

compare A (expressed as a geometric series) to the expansion of
e*t to find that this method is first order accurate

to find stability conditions, look at |A|, which shows if A < 0 then
it’s stable

3. Crank - Nicolson Scheme:

dv

begin with the spatial discretization 77 = Av

incoroporates both implicit and explicit features by taking the
average of the implicit and explicit Euler schemes

; ; 1lrdv|n dv|nt+1] _ vHl—on
use the approximation 5[|" + "] = *—F;

combine to get JAH(A" 4+ M) = ot —yn
vt =" + IAAE (0" — o)

rewrite as P(E)v™ =0

"1 — SAAL) — o™ (1 4 SAAY)
Evn(1 — 2AAL) — o™(1 + 2AA)
(1= 3AADE — (14 3AA)0" =0

0
0

P(E)Y" =0
solve P(E) = 0 to find the amplification error
A= 1+)AL
T 1-4)AE
compare A to the expansion of e*** to find that this method is

second order accurate

to find stability conditions, look at |A|, which shows if A < 0 then
it’s stable

13

Implementation of the Time Advancement
Inserting the spatial discretization into the Crank-Nicolson scheme gives:

At
un—i—l — un + 7[14un + fn 4 Aun-‘rl + fn—‘rl] (29>
where f™ and f**! are vectors that specify spatial boundary conditions

This can be rewritten as the following:

At At At
(I - 7A)u”“ = I+ 5 A"+ (" + 7 (30)
This can be simplified to: A
Au"tt = b (31)

There are two approaches to solving this equation; direct solver and iterative
solvers. Direct solvers give a solution in a finite number of steps, but the ac-
curacy can’t be controlled. This uses Gaussian Elimination to get a system
of linear equations which solves the above equation. Iterative solvers satisfy
accuracy criteria. There are two main types; stationary and non-stationary
methods.

Types of Iterative Solvers

1. Jacobi Method: sets a stopping criteria and initial values for u
N
up = (%[fz - 22:1 aijuj'v]
where 7 # j, i1 represents the rows, and the superscripts represent the
iteration of the method

2. The Gauss-Seidel Method: this is a modification of the Jacobi Method
where the updates to the unkowns are incorporated into the scheme as
they occur and uses the following equation

UiV—H = aL“[fZ — Zj<i aijuj-vﬂ — Zj>i aijU?]]

3. Successive Overrelaxation Method: this averages the Gauss-Seidel it-
erate with the previous iterate which give the following equations
ul = wa 4+ (1 - w)ud

where ﬂfV“ = aL[fl — ZKZ. az-juj.v“ — Zj>i aijué\’]

and w is the overrelaxation parameter

14

Boundary Conditions Boundary conditions may have infinite domains but
in finance the boundaries can be set far enough from the region of interest
so in practicality it won’t effect to solution.

Example: A European Call option

e Boundary Condition: C'(0,¢) =0
Implementation: set a minimum value for S, S,,;, =0

gives C(Spmin,t) = 0= C(0,1)

e Boundary Condition: C(S,t) ~ S as S — o0
Implementation: set a maximum value for S, 5,4, large enough so S
is highly unlikely to get there

e Boundary Condition: C(Spaz,t) = Spmae — Ke 7T
Implementation: as S — 00, S — Ke 7Tt ~ §
ast — T, Ke "™ is increasing
thus Simee — Ke "= is decreasing to the payoff Spe, — K

American Derivatives
e The holder faces an optimal exercise problem.

e In region A it’s optimal to hold the option. The option can be treated
as a European Option.

e In region B it’s optimal to exercise the option. The option has exercise
value f(s,t).

e The option is priced via dynamic optimization.

15

Sma

0

’ free boundary

Figure 2: American Derivative

Bellman Principle At a given time, the optimal exercise strategy is the
maximum of either the exercise value or the value associated with selecting
an optimal strategy later.

Bellman Equation

V(S,) = max(F(S,), PV,[V (S, + dS,, t + dt]) (32)

Sy is the underlying

F(S) is the exercise value which depends only on S

PV, is the present value at time t

this a recursive structure

starts with the final condition at expiry and works backwards in time

solves for the option value and the optimal strategy

16

Pricing Equation

V(r,S,t) = sup B, [e "IV £(S,)] (33)

T

7 are all stopping times conditional on information available at time t.

E is the expectation under the martingame measure.

The pricing equation will hold if the partial differential complementary prob-
lem is satisfied.

Partial Differential Complementary Problem

1.

V>f

the option value can never be below its immediate exercise value

2
) adv +ngdV+%o.2326dV ST’V

adi dS - 9ds? =
if the option value is growing more slowly than the money market

account, you should exercise

2
(%d—d‘t/ + TS% + %U2SQ‘SZS‘§ -V (V—-f)=0
complemetary condition; early exercise or the Black-Scholes partial dif-

ferential equation is satisfied

VAT, S) = f(5)
this is the payoff function

Finite Difference Approach to American Options

Consider a general linear complementary problem, find z that satisfies:
Az > b

I >C -

(z—¢)(Az—0b) =0

Want the partial differential complementary problem to fit this form.

Consider an option with time-t value (S, t)

Define differential operator L = TS% + 50252 a‘?;f; -7

Lu = % is the Black-Scholes partial differential equation after the

time change t =T — ¢

17

Set up the partial differential complementary problem with exercise
value F(S,1)

L. u(S,t) > F(S,t)

2. 94— Ty >0

3. (8% — Lu)(u—F) =0
4. u(S,0) = F(S,0)

Use Crank-Nicolson to approzimate Lu to get the following:
1 1 At

where f™ and f**! are boundary conditions

Let M =1 — %AtA to give Mu"*!' = b
Let F be a discrete approximation to the exercise value F

Apply the above to the partial differential complementary problem to
get:

1.yt > F
2. Myt >}
3. (Murtt —p)T(ut — F) =0
4. w0 = F
The above system needs to be solved at each time step
Simplify with two substitutions:
l.z=u—-F
2. g=MF —b

Now the linear complementary problem is:

I
vV
i ol

1.
2. g+ Mz >0

L]

18

3. Z8(g+ Mz) =0

This has a unique solution if and only if M is a P-matrix.
i.e. if all its eigenvalues are positive

Z is a solution to the linear complementary problem if and only if it
satisfies the component wise minimum min(z,q+ Mz) =0

Suppose M=B+C where B is non-singular

At the kth iteration, if 2¥ is known, consider finding z**! such that:
min(Bz,q+ Cz* + Bz*1) =0

min(0, g + Cz*) = Bz

min(0, g + Cz% + Bz* — BzF) = BzF+!

min(0, g + MzF — Bz*) = BzF!

" = B~ min(0, g + MzF — BzF)

There are other choices for B:

1. The Projected Jacobi Method: set B as the diagonal of M

2. Projected Successive Overrelaxation Method: set B = L + %D
L is the strictly lower triangular part of M
D is the diagonal of M
w is the overrelaxation parameter

19

Monte Carlo Methods

Introduction

Monte Carlo Methods rely on probability and statistics
Have a sample space) and an event
Find a set of outcomes in € that lead to this event occuring (call this set A)

AeF
P(A) is the probability of the event occuring

Monte Carlo:
e A different approach to the above calculation
e Randomly sample w € €2 many times
e For each sampled w, determine whether or not the event occurs

e P(A) is approximated by the fraction of outcomes that caused the event
to occur

e The law of large numbers ensures that this estimate converges to P(A)
as the number of draws goes to oo

e The central limit theorem gives information about the error of our ap-
proximation

Weak Law of Large Numbers:)
For any € > 0, lim P[|X,, — pu| < €] =1 asn — oo (X,, converges in proba-
bility). Also written as X,, — p in probability

Strong Law of Large Numbers:

PllimX,, = ul=1asn — oo

this law implies the weak law

the events for which X,, does not converge to i have probability zero
also written as X,, — ju almost surely

20

Central Limit Theorem:
If Var[X;] = 02 < oo, then Ya < b, lim Pla < E=)M) < j] — &(b) — &(a)

o2

® is the cumulative distribution function of the standard normal dis-
tribution

(Xn—;;)(\/ﬁ) ~ N(O, 1)

Monte Carlo Example:

calculate o =} f(z)dz

can think of « as an expectation, E[f(u)], where U is uniformly dis-
tributed on [0,1]

sample Uy, Uy, ... are indepently and uniformly distributed from [0,1]

form a,, = %Z?:l f(w;)

if f is integrable on [0,1], then the strong law of large numbers implies
o, — « almost surely

if f is square integrable on [0,1],

o3 = Var(f(u)] = B[(f(u) — E[f(w))? = [;[f () — o?dz
consider the error of our approximation, «,, — «

the central limit theorem implies the distribution of v, is approximately
0.2
N(a, 5f)

0.2
our error is thus approximately N (0, -£)
afc is unknown, but the sample standard deviation can be used to esti-
mate it

S = /1 S (w) — nf?

; 9t~ Sf
have error estimate N

21

from f(uy), f(uz),... an estimate of a can be found and an error esti-

Sy
mate \/_ﬁ

error is O(\/Lﬁ)

compare this to the trapazoid rule:

R 0)+f(1 1 4/

o, = f()an() +%Z?:1 f(ﬁ)

error bound |d, — a| < £, where k is bound on | f”(z)| on [0,1] if it
exists

error is O(=5), which is clearly better than Monte Carlo

Multiple Integrals:

Joua f(@)dz, 7 € R

based on n draws from [0, 1]¢, we get error estimates:
trapaziod rule: O(—7)
monte carlo: (’)(\/Lﬁ)

once d > 4, monte carlo has a better rate of convergence

monte carlo is useful for computing multiple integrals

Corollary to Fundamental Theorem of Asset Pricing:

Let V; be the time-t price of a European-style option. Assume the market
has a risk-neutral probability measure P. Then the no arbitrage price V; of
the option is Vy = E(D7Vy), where E denotes expectation under the risk-

neutral measure P and D; is the discount factor.

for fixed interest rate, D; = e

—r(T—t)

. . _ (T
for variable interest rate, ry, D, = e~ Je 7sds

22

European Call Option
e strike K, underlying S;, maturity T, interest rate r (r is drift for stock)

e the underlying asset price evolves accordingly to the stochastic differ-

ential equation

dS—S;t =rdt + odW;

e this has solution St = Soe(r—%‘ﬁ)TJrUWT

where Wp ~ N(0,T)

e this can be represented by Sr = Spe(r=30")T+oVTZ

e take logs of both sides to get a normally distributed random variables
In(St) ~ N((r — %OZ)T, o?T)

o recall, Vo = Sp®(d;) — e "TK®(ds)
®(y) is a standard normal cummalative distribution function

di — ln%—i—(r—i—%J?)T
1= oVT

d — ln%—i—(r—%cﬁ)T
2= oVT

Monte Carlo Pricing:
Vo = Ele™"(Sr — K)7]

Generate a sequence of standard normal random variables Z;, Zs, ... and use
these to estimate Vj

Algorithm:
for i=1:n
generate Z;
set S;(T) = Sper—20)T+oVTZi
set ¢; = e "1(S(T) — K)*
end
set ¢, = %z?zl C;

23

Confidence Intervals:

e To control the error of the approximation, use the sample standard
deviation of ¢q, s, ..., C,

o 5. — \/ﬁ S (6 —)2

e Let Zs denote the (1 — §) quantile of the standard normal
O(Zy)=1-06=PlZ < 2]

Cn—Co

e By the central limit theorem, g2 converges to N(0,1)

o (¢, —zs /25—%, Cn + 25 /25—%) is an asymptotically valid (1 — J) confidence

interval for cg

Random Number Generation
e want to simulate randomness - pseudorandom
e generate a sequence of random variables Uy, Us, ... with two properites:

1. U; is uniformly distributed on [0,1]
2. the U; are independent

e [0,1] in the first above property is arbitrary

e mimic randomness: produce finite sequences uy, ..., u; € [0, 1], where k
is large

e the u; constitutes possible outcomes for the independent uniforms Uy, ..., Uy

e small (relative to k) segments of this sequence should be difficult to
distinguish from the realization of independent uniforms
i.e. statistical tests for independence should not easily reject segments
of uy, ..., ug

24

Linear Congruential Generator:
fora, m, c € Z

e 2,11 = (aX;+¢) modm

Li+1

® Uir1 = —,

o if ¢ # 0, it’s called mixed
e if c =0, it’s called pure

e little generatlity is achieved for ¢ # 0 and scheme is slower, so usually
the pure case is used

e a is called the multiplier
e m is the modulus

e an initial seed x(is required, where 1 < zop < m — 1

Modulus:
for y,m € Z, ymodm returns the remainder of y after dividing by m
y modm=1y— [ljm

m
Notes:
e in general, 0 < amodm < m — 1

e whenc=0,0<z;,; <m-—1
therefore 0 < u;q = 24 < m=L <
m m
thus w1 € [0, 1]

Example:

a=6, m=11, xg =1, c=0

T = 6,1’2 = 3,1‘3 = 7,ZE4 = 97.175 = 10,%6 = 5,ZE7 = 8,1’8 = 4,.%‘9 = 2,[)’210 =1
after this the values start repeating

here, all integers in the interval [1,m-1] appeared

25

Example:

a=3, m=11, g =1, c=0

r1=3,20=923=05,24=4,25=1

here, only five distinct values appears, which shows that a needs to be chosen
carefully

Full Period:

A linear congruential generator that produces all m-1 distinct values is said
to have a full period. In general, choose m large and a needs to be chosen
carefully

Issues for Random Number Generators:

1. Period Length: the longer the better
the gaps between the u; have size %
the larger the m, the better the approximation to the uniform

2. Reproducibility: the sequences can be reproduced
3. Speed: generators are used many times

4. Portability: an alogrithm should produce the same sequence on any
platform

5. Randomness: theoretical properties for construction
statistical tests to scrutinize results

26

Theorem:
Suppose ¢ # 0. For any seed xg, the linear congruential generator generates
m-1 distinct values if:

1. ¢ and m are relatively prime (their only common divisor is 1)
2. every prime number that divides m also divides (a-1)

3. (a-1) is divisible by 4 if m is divisible by 4

Consequence:
The generator has full period if m = 2V, ¢ is odd, and a=4n+1 for some n

Theorem:
Suppose ¢ = 0. If m is prime, for any seed zy # 0, the linear congruential
generator generates m-1 distinct values if:

1. a™ ! —1is a multiple of m

2. @/ — 1 is not a multiple of m for j=1,2,...,m-2
A number satisfying these two properties is called a primative root of m.
Property:
If a is a primitive room of m, then all the x; are non-zero if xy # 0.
General Sampling Methods:

Assume an available sequence of independent uniformly distributed random
variables on [0,1]; Uy, Us, ...

0,u<0
PlU;<u]= u,0<u<1 (35)
1L,L1<u

want to transform these randrom variables into paths of stochastic processes

27

Inverse Transform Method:
e Random variable X with cummalative distribution function F
e If X has density function f, F(z) = [*_ f(y)dy

e If U is uniform [0, 1], it can be interpreted as a probability

Since F is a cummalative density function, it is monotone increasing

If F is strictly increasing, it has an inverse

If F~! denotes the inverse of F, we set X = F~1(U)
if £(0) <wuy <1thenz; >0

Verification:
Make sure X = F~1(U) actually generates samples from F (or X).
PIX <a|=P[F'(U) < 2] = P[U < F(x)] = length([0, F(z)]) = F(z)

Example: Exponential Distribution(6)
o F(z)=1—e/"

o fla)= et

Invert F(x)

U=1-—e%?and solve for x

therefore x = —01In(1 — U)

if uniforms are given to the above formula it will produce exponentials

if U ~ UJ0, 1], then so is 1-U, so simplify above to x = —61In(U)

28

Acceptance-Rejection Method:

e First generate samples from a convenient distribution. Then reject a
random subset. The accepted sampes are distibuted according to the
target distribution.

e Suppose we have a density function f defined on some subset X C R?

e Let g be a density on X from which we can generate samples such that
f(z) < cg(z), sor some constant ¢ > 1,V.X

Method:

e Generate a sample X from g

e Accept the sample with probability Cfg ((9;) <1

~

e Specifically, the uniform distribution can be used

— sample U uniformly on [0, 1]
— accept X if U < %
— if X is rejected, sample X from g again and sample U again

— repeat

Verification:

e Suppose Y is returned by our algorithm

e Then Y has the distribution of X conditional on U < gg((g;))

e Let AC X. Look at P[Y € A].
P[Y € A] = Pz € A|U < L&)

cg(x)

o If give X, P[U < L8] = Jlo)

e For X, P[U <

f;&’ﬂ = [, ¢f(@)dz = ¢

e Plug in to get: P[Y € A]= P[X € A, U < L&8¢ = [f(x)dz
Therefore Y has density f(x)

29

Notes:

1.

2.

The probability of accepting a draw is O(2)

If ¢ is large, it’s less likely to be accepted (good to have ¢ close to 1)

Example: Normal from Double Exponential

e A half-normal random variable as the distribution of the absolute value

of a normal random variable.

e The double exponential on (—oo,c0) has distribution g(z) = fe~1*

e Normal density function is f(z) = \/%e—a:?m ~ N(0,1)

e Ratio: % = \/ge_$2/2+|x‘ <y /%~ 13155 =c

e To sample a double exponential, draw a standard exponential, x =
—0in(U) where U ~ UJ0, 1], Then randomize the sign

e Rejection Test: U > C];((Z)) = = %/2Hlel=1/2 — —(l2|=1)?/2

Algorithm:

1. Generate Uy, Us, Uz ~ U|0, 1]

2. X «— —0In(th)

3. If Uy > e (#1=D°/2 then go to step 1

4. If Uz < %, then X «— —X

5. Return X

30

Normal Random Variables:
o If Z ~ N(0,1), then u+0Z ~ N(u,oc?)

e Thus to generate normal random variables, we need only to generate
standard normals

e A d-dimensional normal distribution is characterized by p € R? and
Y e Rd:cd

Properties of >:
1. ¥ is symmetric, ¥ = X7
2. X is positive semi-definite

Positive Definite:
A matrix ¥ € R% is positive definite if 27Xz > 0Va € R? with o # 0. ¥ is
invertible.

Positive Semi-Definite:
A matrix ¥ € R% is positive semi-definite if 27 ¥z > 0Vo € R? with x # 0.

Notes:

e [f ¥ is positive semi-definite, then it may not be positive definite. There
might be an = # 0 such that 27Xz = 0. If that’s the case, ¥ is not
invertible.

e If ¥ is positive definite, N(u, ¥) has density:

1

S @=p) TS @—p)
e 36
(2m)@/2 || 2 %

O(r) =

e The standard d-dimensional normal N (0, I;) has density:

O(z) = W«e?x ‘ (37)

o If v ~ N(p,) then its i componant X; has distribution z; ~ (y;, 02)

31

o Further Cov(X;, X;) = E[(X; —) (X; — p5)]

04i0]]

e The correlation between X; and X is given by p;; =

Box-Muller Method:

e generates a sample from bivariate standard normal, where each com-
ponent is a standard normal

e consider Z ~ N(0, I), two properties:

1. R= Z} + Z3 is exponentially distributed with 6 = 2

2. given R, the point (71, Zy) is uniformly distributed on the circle
of radius \/}_%, centered at the origin

e to generate (71, Z3):
1. generate R: R = —2In(U;),U; ~ U|0, 1]

2. choose a point uniformly from the circle of radius V'R
get a new R every time (to insure independence)
generate a random angle uniformly between 0 and 27
V= 27TU2
point on circle: (vVRcosV,v/RsinV)

Algorithm:
1. Generate Uy, Us ~ U|0, 1] independently
2. R —2In(l)
3. V271U,
4. 71 «— VvV RcosV
5. Zy «— /RsinV
6. Return 71, Zs

32

Multivariate Normals:

o Z~N(u,%)

e Using the correlations p;; = 72—, we get 0;; = p;;04i05;

1805
e If X is positive semi-different, but not positive definite:

— Jx # 0 such that 273z = 0 therefore ¥ is singular
— There is no normal density with covariance matrix X

— We can define N(p, Y) as the distribution of + =y + AZ as long
as Z ~ N(0,1;) for any A € R%4 such that AAT = ¥. If A has
rank kjd, then one can find k components of x with multivariate
density in R*

Theorem: Linear Transformation Property
Any linear transformation of a normal vector is normal. If X ~ N(u,),
then AX ~ N(Au, ALAT) for any p € R4, ¥ € R and A € R¥4 VY k.

Generating Multivariate Normals

e Generate independent 71, Zs, ..., Zq ~ N(0, 1) and put them in a vector
Z ~ N(0,1)

e Then AZ ~ N(0, AAT)
e Sampling X from N (u, ¥) reduces to finding a matrix A with AAT =%

e There are two cases: positive definite and non-positive definite X

Theorem: Cholesky Factorization

e Suppose X € R%? is positive definite. Then 3 a lower triangular matrix
A € R%? guch that ¥ = AAT. A is unique up to changes in sign.

e Consider the computation of X = p+ AZ. The matrix vector product
AZ has fewer multiplications than if A was dense (by almost half)

33

Example (2x2 case):

Assume ¥ is positive definite

5 = { or 17] (38)

2
g102p 0y

e Want: o4 o4
E:AATI 11 12:||: 11 21:| 39
{ A A | [A Az (39)
e Therefore:
Yu Y2 | _ | Ao O A Agn | AR Ag1 Apy
Yo1 Yo Ay Ag 0 A Ay Ay A3+ A3
(40)
e Can solve for A to get:
. (o5} 0
A_[pw o3 1—%} -
General Case: Y € R4*4
e ¥ = AA” by the Cholesky Factorization Theorem, which gives:
[Ap 0 0 ... 0 0]
Ao Ao 0 - 0 0
o= : : : ; : : (42)
Ag-n A@-12 A@-13 - Ag-ne-y 0
An Ag Az o Aga-y Aaa |
e Over row 1 of X
Yy = Af
Yig = A Ao
Yia=Anda

34

e Over row 2 of X
Yo1 = AgApy
Yigg = Agl + Agz

Yoa = Ao Aar + AsAao

e Over row d of &
Yo =AnAan
Ya2 = AorAa + AsxAgo

e While working through the rows and columns of X, in each equation,
exactly one new entry from A appears. Can solve for A;;

General Solution (when X is positive definite):
o Xy =300 AyAy, for j <
e Gives: Aij = AL(E’LJ — Zi;ll AikAjk)a fOI'j <1
As = (S — S AGY)2

e If X is positive semi-definite and not positive definite, one of these terms
will be zero

Algorithm (Cholesky Factorization):
Given X is symmetric and positive-definite
A« 0 € Réxd
for j=1:d
for i=j:d
V; = Eij
for k=1:j-1
Vi <= Uy — AjkAik
end
Aij — i \JU;
end
end
return A

35

Semi-Definite 3 (but not positive-definite):

e) is singular.

If AAT =%, then A is singular.

Suppose A is lower triangular. Since it’s rank deficient, some diagonal
element A;; = 0.

Therefore the Cholesky algorithm fails because of a division by 0.

o If Aj; =0, we set column j of A to 0.

Algorithm:
Given Y is symmetric and positive semi-definite but now positive-definite
Same as positive definite case with one update
A« 0 € Réxd
for j=1:d
for i=j:d
V; = Zij
for k=1:j-1
Vi < UV — AgkAzk
end
if ’Uj >0
Ayj i/ \J0;
end
end
end
return A

Problem:
In practice, if v; > 0 is checking that v; # 0, however, if v; should be 0, it
may be positive and very small on a machine.

36

Problem Reduction:
e X ~ N(0,%)
e Suppose rank(X) =k < d

e The components of z € R% can be expressed as a linear combination of
k components i.e. 3 a subvector T of x and a matrix D € R¥>* such
that DZ ~ N(0,X) and the covariance matrix of Z, 3 has full rank k

e We can find the Cholesky factorization of &, & = AAT
o We recover x using . = DAZ, Z ~ N(0, 1)

e Situation arises if d variables are generated using k < d sources of un-
certainty

Generating Sample Paths

Stochastic Process:
A standard one-dimensional Brownian Motion is a stochastic process, W, : 0 < ¢ < T
such that:

1. Wy =0
2. W; is continuous on [0, 7] almost surely

3. W has independent increments

4. Wy —=Ws) ~ N(0,t —s) forany 0 < s <t <T
Notes:
e In many applications we need the entire path of an asset price
e For constants u,o > 0, we call a process X; a Brownian Motion with
drift o and diffusion coefficient o>

— X ~ BM(p,0?) if = is a standard Brownian Motion

37

— given a standard Brownian Motion W;, a Brownian Motion X ~
BM (1, 0?) can be constructed by setting X; = ut + oW,

Further, X; solves the stochastic differential equation dX; = udt+odW;

A Brownian Motion can be defined with deterministic drift p(t) and
diffusion coefficient o(t) through dX, = u(t)dt + o(t)dW;

Stochastic integration is needed to find the solution:
t t
X, =Xy +/ u(s)ds—l—/ o(s)dW; (43)
0 0

In this case (X; — X,) ~ N([! p(u)du, [} o?(u)du)

Random Walk Construction:

focus: simulate Brownian Motion at a fixed set of times 0 < ¢] < t3 <
<ty

use the properties that increments are normal and independent
suppose Z1, Za, ..., Zn ~ N(0,1) independently
set tog =0 and Wy =0
generate a standard Brownian Motion using:
Wi =Wy + Vtiyn — tiZipq, fori =0,1,...,n — 1 (44)
to generate X ~ BM (u,0?) given X,, then:
Xipo = Xp, + p(tigr —) + o/ (tiv1 — i) Zipa (45)

for Brownian Motion with time dependent u(t) and o(t)

ti t;
Xo = X+ / u(s)ds + / o2(u)duZisn (46)

tit1 tit1

38

These methods are exact, meaning that the joint distribution of the
simulated values match that of the true Brownian Motion.

— for values between t; and t;,; there is error

— usually linearly interpolate between the times

Alternative Construction:

Consider the vector [W;,, W, ..., W, |*

This is a linear transformation of the increments [W;, — W, ..., W, —
th—l]

These increments are independent and normally distributed
Therefore [W;,, Wi, ..., Wy,] is multivariate normal

Cov(Ws, Wy) = Cov(Ws, Wy) + Cov(Ws, Wy — Wy) = Var[Wy] = s

Let C be the covariance matrix for [Wy,, Wy, ..., W, |7
Then, C;; = min(t;,t;)

This random vector has mean 0

Since [Wy,, Wiy, ..., Wi,]T ~ N(0,C), simulate using AZ, where Z is a
vector of standard normals and A is the Cholesky factorization of C

The Cholesky factorization of C gives:

N 0o ... 0 0
t1 Via—1 0 0 0
A= : : : : :
Vi Vo=t Vs —ts ... VI — s 0

\/E \/t2 - tl \/td - t2 s \/tn—l - tn—2 \/tn - Zfn—l

39

Standard Brownian Motion:
A process W, = [Wy(t), ..., Wy(t)]T, is a standard Brownian Motion on R if:

1. Wo=0

2. W has continuous sample paths almost surely
3. W has independent increments

4. (Wy — Wy) ~ N(0,(t — s)I)

Each W;(t), i=1,...,d is a standard Brownian Motion
Brownian Motion: Suppose ¢ € R? and ¥ € R%*? which is positive semi-
definite. Say X is a Brownian Motion with drift ; and covariance ¥ if X
has continuous sample paths and independent increments with (X, X;) ~
N((t = s, (t — 5)X)

If B € R¥* is such that BBT = ¥ and W is a standard Brownian Motion
on R* then X; = ut+ BW, is a BM(u, X)), where X solves dX; = udt + BdW,

Simulation:

o Let Zy,Z5,... ~ N(0,1) independent. To simulate W;, apply the one-
dimensional random walk construction to each componenet of W;.

Wi(tiv1) = Wj(ts) + /tiy1 — tiZia (48)
i=0,1,...,n-1, for each j
e To simulate X; ~ BM(u, %)

1. find B € R%** guch that BBT = %
2. set Xg=0

3. Xti+1 = Xti + ,U/(ti—i-l - tz) + \/ti—i-l - IfZBZZ

Geometric Brownian Motion:

A stochastic process S; is a geometric Brownian Motion if In(.S;) is a Brown-
ian Motion with initial value In(Sp). To simulate geometric Brownian Motion
use exponentiation.

40

Fundamental Property for Financial Modeling:

If S; is geometric Brownian Motion, then S; does not have independent in-

Sty—Si, Siz—S Stn—St,_
crements. Instead, tQSt 2 t3st = o
1 2

are independent.

n—1
Stochastic Differential Equation for Geometric Brownian Motion:

e Suppose W is a standard Brownian Motion and X satisfies d X; = udt+
O'th

e Then X ~ BM(u,0?)
o Let S; = Spe®™ = f(zy), where Sy is the initial stock price
o dS = fy(x)dt + fo(w)dX, + L frp(ay)dX?

e Thus dS; = 0+ Spe™ (udt + odW;) + %USUef”dt
dSt = St(,U/ + %O'Q)dt + StO'DWt
dS—‘S;* = (u+ 30°)dt + o DW,

e This is a differnt stochastic differential equation than what is usually
used for geometric Brownian Motion.

e The usual model is: ds—% = pudt + odW,, where p is the drift for the

geometric Brownian Motion
o If S, ~ GBM(u,0?), then the solution is S; = Syelh=30°)t+oWe
e Foru<t, S, =S, 20" t-u)to(Wi-W.)
e To simulate, use S;,, , = Stz.e(“—%az)(tiﬂ—ti)JrU\/mZm

e The exponential is the randsom walk construction of the brownian mo-
tion with drift u — %0‘2

e The method is exact. i.e. the resulting vector [Sy,,..., S] has the
joint deistribution of S; ~ GBM (u,c?) at times 4, ..., t,

41

Notation:

e Money Market Account: 1 dollar invested at time t=0 has time t value

8(t) ="

e [s S pays no dividends, % = pdt + odW,

e No arbitrage condition: under the risk neutral measure, y = r, where
r is the interest rate

e In the risk neutral world, all assets have the same average rate of return

e Further, under hte risk neutral measure, the discounted stock price,

% is a martingale

Path Dependent Payoffs:
path = geoBrownianMotion(u, o, N)

Asian Option (with discrete monitoring):

Call: Payoff = (S — K)*

Put: Payoff = (K — S)*

where K is the strike price and S = £ 3" | S(t;) is the average price of the
underlying over monitoring dates ¢1, to, ..., t,

Asian Option (with continuous monitoring):
o t

S=L [S(r)dr

Continuous average of S over [u,t]

More difficult to simulate

Can find analytic solutions in some cases

42

Barrier Options:
Down-and-out call option has barrier b, strik K, and expiry T
Payoff = 1{T(b)>T}<ST - K)+
where 7(b) — inf{t; : S;, < b} is the first time in ¢y, ..., ¢, that the under-
lying price drops below b

Example:

Below used discrete monitoing simulate by sampling S(to), S(t1), ..., S(tn)
and keep generating price paths and taking the average

Here the Payoff=0 because it breaks the barrier (Up-and-out), however if the
barrier was set at 4, Payoff=(Sy — K)*

In the continuous monitoring case 7(b) = inft > 0:S; < b, and often get
analytic solutions

1 | 1 1 1 1 1 | 1
1] 100 200 300 400 500 wOO 700 8OO 500 1000

Figure 3: Barrier Option

43

Lookback Options:

Discrete versions:
Put: Payoff = max(S;,) — S, for i=1,2,...n
Call: Payoff = S;, — max(S;,) for i=1,2,...,n

Call:

profit from buying the underlying at the lowest price over ¢4, ..., t, and

selling at the final price

Continuous versions:
Put: Payoff = max(S;) — Sy for t € [0, {]
Call: Payoff = Sy — max(S;) for t € [0,]

Incorporate a Term Structure of Interest Rates:

If we have a constant interest rate r, the time-t price of a zero-coupon
bond paying 1 dollar at time T >t is B(¢,T) = e "7~

In reality, r is not constant

We determine the term structure of interest rates using a collection of
bond prices

Define time-varying interest rate r(u) by r(u) = _%[B(()7)| 7=u
Solve for B(0,T) to get B(0,T) = e—Jo r(wdu

Under the risk-neutral measure, the dynarr%ics of an asset price are
. . 1
ds—? = pu(t)dt + odW, with solution S; = Syelo r(wdu—z0*t+oW,

Can simulate over 0 =ty < t; < ... < t,, usin
t
it+1 1204t 7
StiJrl — Stiefti 'r(u)du 20’ (tz+1 tl)—l-cr tl+1 t’LZ’L+1’

where 71, ..., Z, are independent N(0,1)

Suppose bond prices B(0,t) are observed

b (w)du t
B(O) tz) _ e_.IO ()d _ eftiz+1 r(u)du

B(O, ti—i—l) e~ fOtiJrl r(u)du

(49)

The simulation simplifies to S;,,, = S,
0,1,...n—1

B(O,ti+1)

44

B(O,ti) 6—%0'2(ti+1—ti)+01/ti+1—tz‘zi+1 7/:
)

Assets with Dividends:

Holding a single share of an asset is no longer self-financing, strategy
must deal with the dividends.

If dividends are automatically reinvested into the asset, then the stat-
egy is self-financing. Required neither withdrawls or deposits and the
number of shares changes over time.

Model:

Sy is the underlying asset price
S, is the asset price with dividends reinvested
B = pdt + odW,

dS: __ dSi+dD

S’t St
dDy is the divident payment over dt

S, will have continuous paths. If D; jumps, then S, jumps in the
opposite direction to offset

In this case ﬁ(t) is a martingale under the risk-neutral measure instead

of Sf which shows that it’s a very natual thing to reinvest dividends

Suppose an asset pays a continuous dividend yield at a rate ¢ , then
th - 5Stdt

Therefore d;} = —dstg‘istdt = 45 4 5t

no jumps because it’s contmuous dividends

Therefore (udt + odW;) + 0dt = (pu + 6)dt + odW,
for no arbitrage, u+6 =r

B = pdt + odW, = (r = 6)dt + odW,

Risk neutral dynamics of an asset price with continuous dividend yield

J

45

1
° St _ Soe(r—5—50'2)t+0'Wt

dividend yield reduced the growth rate of the underlying

Applications:

1. Equity Indecies
Often model an index as a geometric brownian motion
The index itself does not pay dividends, but the stocks that make up
the index might
There are a wide range of dividends on different dates
Can approximate with continuous dividend yield

2. Exchange Rates
S is an exchange rate
A unit of foriegn currency earns interest at rate r, which can be viewed
as a dividend stream
To model S as geometric brownian motion, p=1r —ry

3. Commoditites
Physical commodities like gold and oil
Cost of storage acts as a negative dividend yield
Also have the benefit of being able to sell or consume when there’s a
shortage, quantified with a convenience charge
Net dividend yield is different between the two

Multiple Dimensions:

e Specify a multidimensional geometric brownian motion through the
system

dsi(t)

Si(t)

e X;(t) is a standard one-dimensional brownian motion
e X; and X have correlation p;

e Letting 3;; = 0,0;p;; defines X € R4

46

X(t) ~BM(0,%) and S ~ GBM (11, %)

Y is the covariance matrix for X(t), not S, same for

A BM(0,3) can be represented as AW(t), where W(t) is a d-dimensional
standard BM(0,T) amd A is any matrix such that AAT =%

Apply to above to get d;; i(%) = pdt + a;dW (t)

ds;
ol = pdt + T4 Ay d W (¢)

e Explicitly
Simulation:

e Solution is 5;(t) = §;(0)el#~ 37 L5 4 W5 ()

e Can use this form to simulate GBM (p, %)

e Simulate at 0 <ty < t; < ... < t,:
Si(ther) = Si(tk)e(ui—%af)(tkﬂ—tk)+\/tk+1—tk Y1 AijZrt,
Choose A as the Cholesky factor of > and the number of computations
are reduced

o [f asset S; has dividend yield ¢ i, set p; =r — 4
Application:

1. Spread Option
A call option on the spread between two assets, S, 52 with strike K
and expiry T
Payoff = ([$)(T) — S5(T)] — K)*
Example: crack spread: option on the spread between heating oil and
crude oil futures

2. Basket Option
An option on a portfolio of underlying assets
Example: Payoff = ([¢151(T) + ¢252(T) + ... + caSa(T)] — K)T
Could be related assets such as currencies or stocks in the same eco-
nomic sector

3. Outperformance Option
Options on the maximum or minimum of mulitple assets
Example: Payoff = (max[c;S1(T) + c252(T) + ... + caSa(T)] — K)*

47

4.

Barrier Option

Can be knock-in or knock-out and there are many variations
Example: Down-and-in put option on S; that knowck in when S, drops
below the barrier

Payoff = 1{min s,(t)<0} (K — S1(T))"

Sy could be a stock and S, an index

Quantos

Options that depend on both an underlying asset and an exchange rate
Example: An option to buy a stock denominated in a foreign currency,
with the strike price fixed in the foreign currency, but the payoff is to
be made in the domestic currency.

Payoff = So(T)(S1(T) — K)*

where S is the stock price and S5 is the exchange rate

Variance Reduction Techniques:

Goal is to increase the efficiency of Monte Carlo Methods by reducing the
variance of simulation estimates, which is often done by exploiting features
or specific problems.

Control Variates:

Exploit information about the error in estimates of known quantities
to reduce the error in an estimate of an unknown quantity

Let Y3, ..., Y, be outputs of n runs of a simulation
Y; could be the discounted payoff of an option on the i** simulated path
Assume the Y; are independent and identically distributed

Want to estimate F(Y;)

Estimator: ¥ = 25" Y,
This estimator is unbiased and converge to E(Y;) almost surely

Suppose on each replication, another output Xj is calculated in addition
to Y;

Assume the pairs (X;,Y;), i=1,....,n are independent and identically
distributed and E(X;) is known

48

For any fixed b, calculate Y;(b) = Y;—b[X;— E(X)] for the i*" replication

Calculate the sample mean: Y (b) =Y — b[X — E(X)] = 15" [V, —
b[X; — E(X)]]

Called the control variance estimator

The observed error, X — E(X) is a control in estimating E(Y)

E(Y (b)) = E[Y —b(X — E(X))] = E[Y] = b(E[X] — E[X]) = E[Y]
Therefore Y'(b) is an unbiased estimator of E[Y]

Asn —o0:

limY (b) = lim: 3" | [V; — b(X; — E[X])] = E[Y] — bE[X] + bE[X] =
E]Y]

Therefore Y (b) is a consistency estimator of E[Y]

Var(Yi(b)] = Var[Y; — b(X; — E[X])] = E(Y}?) = 2bE[Y;(X; — E[X])] +
v E[(X; — BIX])"] — (E[Y])* = o*(b)

The control variate estimator Y (b) has variance:
VarlY (b)) = Var[, S, Yi(0)] = Var[yi(0)] = =

3 |»<Qw

The sample mean, Y, has variance Var[Y] = & = @ (can choose

b=0)
Want a reduction in variance, Var[Y (b)] < Var[Y]

This holds if 2 < 7
if and only if 6203(< 2boxoypxy

To minimize o2(b), d[adb(b)] = 0= —20x0ypxY + 2bc%

Therefore b = X C’UYg(PXY - CSI;&)[(Xi]’) — b

o?(b") = py — 22 P% g oy pxy + (P2 0% = op (1 — piy)

Compute the ratio of the optimally controlled estimator to that of the

uncontrolled estimator:
o2 (b*) oy (1—p%y) _

a2(0) — o2 =1-piy

49

Notes:

The strength of the correlation between X and Y determines the effec-
tiveness of the control variate

The variance reduction factor = —5—

— 32
I—=pxy

By using the control variate, this is the variance reduction

Examples:

If pxy = .95, then there’s a ten-fold reduction

If pxy = .9, then there’s a five-fold reduction

If pxy = .7, then there’s a two-fold reduction

Strong correlation is required to get A benefit

Often oy and pxy are unknown, so estimate B*. If the parameters are
replaced with their sample counterparts, gives:

b — i (Xi—X)(Y —i-Y)
" iy (Xi=X)?

Multiply top and bottom by %, strong law of large numbers implies
b, — b* almost surely

Can use Y (b,) as an estimator, Yi(b,) = Y; — b,(X; — E[X]), which
adds a little bias

I;n is the slope of the least squares regression line, through the points

(Xi,Y))

The control variate estimate Y (b,,) is the value fitten by the line at E[X]

50

Example: Underlying Assets

The absence of arbitrage is equivalent to the requirement that dis-
counted asset prices are martingales under the risk-neutral measure.

If r is the constant interest rate, e~ S; is a martingale.

Given Sy, by above, if S; is adapted to the filtration Fy;5¢, then Ele™""S,] =
E[e_”St|fo] = So

Suppose want to price an option on S with discounted payoff Y
Assume Y is a function of the price path

Form independent price path replications Sy, ..., S, over [0, T] of S and
form the control variate estimator £ " | [¥; — b(S;(T) — €™5(0))]

If pricing a call, Y = e (S — K)*

The correlation between T and Sy depends on K
If K=0,p=1
If K is large and option is deep out of the money, p is small

51

Appendix
HW 1 - Math 573, Marcel Blais, Spring 2009
Due before class on Tuesday January 27, 2009

You must compose your assignments independently; however, you may
discuss your work with one another at the rough level.

1. (10 Points) Suppose you hold two European call options on the same
underlying asset with the same expiry 7. The underlying asset has
time-t price S;. The strike prices of the opitions are K; and Ky where
K, < K,. Carefully sketch the payoft diagram of your portfolio. Make
sure to label your diagram and indicate the slopes of the different linear
parts of the graph.

2. (10 Points)Consider two European put options on the same underlying
asset with the same expiry 7. The underlying asset has time-¢ price
S;. The strike prices of the opitions are K; and Ky where K; < K.
Suppose you buy one put option with strike Ky and you write one put
option with strike K;. Carefully sketch the payoff diagram of your
portfolio. This position is called a Bear Spread. Why is it given this
title?

3. (30 Points) Assuming W; is a standard Brownian motion, use Ito’s
formula to derive stochastic differential equations for the following pro-
cesses:

(a) X, = ez’ sin(W,)
(b) Y, = ez cos(W,)

(¢) Zy = (1 + 3W,)3. In this case your solution should be simplified
to be in terms of Z;.

52

HW 1 Solutions - Math 573, Marcel Blais, Spring 2009

y:O ,ST<K1<K2
1. Payoff: y:ST—Kl ,K1<ST<K2
y:2ST_K1_K2 ,K1<K2<ST

y:KQ_Kl ,ST<K1<K2
2. Payoff: y:KQ—ST ,K1<ST<K2
Yy = 0 ,Kl < Ky < ST
This option is used to hedge risk in a bear market (when the market is
going down), hence the name.

3. (a) X; = esin(W;)

We set g(t,z) = e'/? sin(z). Thus g; = 39, g, = €
Using Ito’s formula, we get
dX, = 1gdt + e'/* cos(W,)dW; + L(—g)dt
and dX, = e/ cos(W,)dW,

(b) Y; = /% cos(W,)
We set g(t,z) = e'/* cos(z). Thus g, = g, g, = —e'/*sin(x),
and ¢, = —g.
Using Ito’s formula, we get
dX, = tgdt — e/ sin(W,)dW,; + 3(—g)dt
and dX; = —e'/? sin(W,)dW,

(¢) Zy = (1+ 3W;)3. In this case your solution should be simplified
to be in terms of Z,.
We set g(t,z) = (1+ 3x)% Thus g, = 0, g, = (1 + 32)* = ¢*/*,
Jzx (1 + :L‘) = 1?3

1/2t cos(x), and

Using Ito’s formula gives
dZ, = 0dt + g*3dW, + 1g*/3dt
and dz, = +2%dt + 7}/ aw,

53

HW 2 - Math 573, Marcel Blais, Spring 2009
Due before class on Tuesday February 3, 2009

You must compose your assignments independently; however, you may
discuss your work with one another at the rough level.

1. (10 Points) Suppose a stock price is governed by % = pudt + odW;.
Consider a European digital call option written on this stock with strike
price K and maturity time 7". At time 7', this option pays $1 if Sp > K
and $0 if S7 < K. What is the boundary value problem that determines
the time-t value of this option?

h—0 2h (51)
is a valid definition of g—g.
(b) (10 Points) Show that if we use
Ou _du(r + Ax,t) — u(r + 2Ax,t) — 3u(z,t) (52)
or 2Ax
that the error of our approximation is O([Az]?).
Hint: Use Taylor series to show that
4 Ax,t) — 2Ax,t) — t
Ou — u(@+ Az, t) —u(z + 2Az,t) — 3u(s,)+62A$2+03Ax3+C4A3? e
Ox 2Ax
(53)
3. (10 points) Consider the approximation
Pu _u(x 4 2Ax,t) — 2u(x + Az, t) + u(z,t) (54)

oz (Az)?

Determine the order of error of this approximation. Is this approxima-
. 2
tion to % more or less accurate than the approximation we derived in

class? Why?

o4

HW 2 Solutions - Math 573, Marcel Blais, Spring 2009

1. We denote the option value by V(S,t). The boundary value problem
consists of

e V must satisfy the Black-Scholes-Merton PDE,

Vo OV 1, L,V

e The final condition is given by the payoft,

1 ifSr>K

Vst = ifSr < K

(56)
e If the stock price is zero, it never escapes from zero, and thus the
option will have a payoff of zero at maturity. We thus set

V(0,¢) =0 (57)

e As S — oo, it becomes more and more likely that the option will
be exercised. Thus we set

V-1 as S — o0 (58)
9 (a) hthO 4u(x+h7t)—u(;:2—2h,t)—3u(1’,t)
= limp_oldug (z + h,t) — ug(x + 2h,t) — 3uy(2,t) - 0] - 5
= 2ug (limp—olx + h],t) — uz(limp_olx + 2h], 1)
= 2uy(x,t) — ug(z,t) = uy(x,t)

(b) We use the Taylor series expansions

u(x +h) = u(z) + o' (x)h + su"(2)h? + Fu" (x)h3 + ...
w(z + 2h) = u(z) + ' (x)2h + u”(x)(2h)* 4+ Fu" (z)(2h)* + ...
(59)
Setting h = Az in above and supressing the notation for depen-
dency on t gives
du(x + Az, t) — + 2Ax,t) — 3u(x,t 2
u(*r x) U(;Ax x) u(x) — u’(:L’)—gu’”(a:)(Ax)QjLO([Ax]g)
(60)

Thus our approximation to §* has an O([Az]?) error.

95

3. Setting h = Az in (59) and supressing the notation for dependency on
t gives

(x + 2Ax,t) — 2u(x + Az, t) + u(z,t) — @)+ () (D) + O([AL]?)

(Az)?

(61)

Thus the error of our approximation is O(Axz). This error is larger
than the error of the approximation that we used in lecture.

56

HW 3 - Math 573, Marcel Blais, Spring 2009
Due before class on Tuesday February 10, 2009

You must compose your assignments independently; however, you may
discuss your work with one another at the rough level.

1. (20 Points) The Black-Scholes-Merton partial differential equation can
be written 5 5 Lo
u Ou , 0%
E = T&LE + 50’ @l’ — Tru. (62)

Using the spatial finite differences

ou Ui T Ui

e 2
- L+ 0(A?) (63)

and)
0% Uipy — 2u; + Uiy

or? (Az)?
discretize (62) in « to form a system of ordinary differential equations.
Express this system of equations in martix-vector form.

+ O(Ax?) (64)

2. (10 Points) Find the eigenvalues and corresponding eigenvectors of the

matrix
2 0 0
M = 1 -1 =2
—1 0 1

3. (10 Points) Prove that if A € R™*", then AAT and AT A have the same
eigenvalues.

o7

HW 3 Solutions - Math 573, Marcel Blais, Spring 2009

1. The resulting linear system is

du

b Au+e (65)
where u = [ug, uy, . .., u,)7,
1 -2 1 0 0 0]
fi -1 o 0 0 0
0 B —mn o 0 0
A=1] 0 0 fs —v a3 0 (66)
0 0 st 0 ﬁn—l —Tn—1 Qn-1
0 0 0 1 -2 1]
and o; = 3= + &x?],
T 0'2
Bi = 5l—2i + Wx?]7
vi =71+ &xf
2. The characteristic polynomial for M is
A=2)A =1 (A +1). (67)

The eigenvalue-eigenvector pairs are

0 0 1
-1, 1 11,1 —1 ,and | 2, 1
0 1 -1

58

3. Suppose) is an eigenvalue of AA”. Then for some vector x € R™ with

x # 0,
(AAT — AD)x = 0. (68)

We can multiply both sides of (68) by AT and use the fact that
ATT = TAT to get
(ATAAT — X\IAT)x = 0. (69)

We factor AT out of the expression on the right hand side to get
(ATA - \I)(ATx) = 0. (70)
Note that ATx € R". We have two cases:
e If A # 0, by (68) we have
AATx = Mx #£0. (71)

If A”x =0, then (71) would not hold. Thus A”x # 0, and
ATx € R" is an eigenvector for AT A corresponding to the eigen-
value A by (70).

o If A = 0, then AAT is singular. This means that A and AT are
both singular, and thus A7 A is also singular. A singular matirx
has A = 0 as an ecigenvalue, thus A = 0 is an cigenvalue of AT A.

In both cases we see that A is an eigenvalue for AT A.

We repeat this argument for an eigenvalue X of A” A and conclude that
A is also an eigenvalue for AAT. This shows that AT A and AAT have
the same eigenvalues.

59

HW 4 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday February 17, 2009

You must compose your assignments independently; however, you may
discuss your work with one another at the rough level.

1. (25 Points) Show that the Crank-Nicolson finite difference scheme for
dv
— = 72
i (72)
is the only possible second-order accurate scheme that can result from

a weighted average of the implicit Euler method and the explicit Euler
method.

Can you find a weighted average that gives you a first-order accu-
rate finite difference scheme that is different from the Crank-Nicolson
scheme?

Hint: Consider the average

dv dv
0—|" + (1 —0)— |t 73

for 6 € [0, 1].

60

2. (10 Points) Using Matlab find! a factorization of the 6 x 6 matrix A

[—25 -2 14 0 0 0
-2 =22 5 -8 0 0
14 5 =54 16 7 0
0 -8 16 —-26 10 -15
0 0 7 10 =20 -1
0 0 0 =15 -1 =35

such that A = XLX . L and X should have the form

A 0 0 O 0 O
0 X 0O O O O
Lo 02X 0 0 0
L= 0 0 0 X 0 0} (75)
0 0 0 0 X O
L0 0 0 0 0 A |
X = |: Vi1 | Vo | V3 ’ V4 | Vs ‘ Ve |] (76)

where A1, Aa, A3, Ay, A5, \g are the eigenvalues of A, and the columns of
X are the corresponding eigenvectors vy, va, V3, V4, Vs, Vg. Make sure
to check that your solution is correct.

Your complete solution should be coded in a script file (all commands
should be saved in the m-file) called number2.m. For this problem
submit the following

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of a test run of your m-file.

'Hint: Check out the Matlab function “eig”.

61

3. (15 Points) Consider the PDE,

ou Ou 1 ,0%
E_Tﬁ_x_'_ia @—T’U. (77)

Write a Matlab function called spatialCoeffs that takes inputs

e the spatial step Az,

e the number of space grid points /V,

e the volatility o,

e the interest rate r,
and returns the matrix A that results from the spatial discretization of
(77) that we covered in lecture 3.

Note that since this is a function, it should neither prompt the user nor
print any output. The top line of your m-file spatialCoeffs.m should be

function[A] = spatialCoeffs(deltaX,r,N,sigma). (78)

You function returns the resulting matrix as an argument. You can
thus use your function at the Matlab prompt in the following manner

>> “myMatrix = spatialCoeffs(.01,.05,100,2)”. (79)

Your complete solution should be coded in an m-file called spatialCo-
effs.m. For this problem submit the following
e A printout of your m-file,

e an electronic version of your m-file sent to me sent to me as an
attachment in an email, and

e a printout of two test runs of your m-file.

62

HW 4 Solutions - Math 573, Marcel Blais, Spring 2009

1. Using the hint, set
dv dv ptl —
6_ n 1 o n+1 z
gl a0 Al

We now use the ODE to set 22" = \o", and 2|"*! = A"+, Substitute
into above to get

(80)

OAAL - 0" + (1 — O)NAL - " T ="t — g (81)

We rewrite this as [1— (1 —0)AAtJo" ™ — [1+6AAtv" = 0. Introducing
the shift operator E, this becomes

[1— (1= 0)AAEV" — [1+ O A" =0 (82)
We define P(E) so that above becomes P(E)v™ by

P(E)=1[1—(1—-0)AAt|E — [1 + O\AT] (83)
Solving P(A) = 0 gives us the amplification error of our finite difference
scheme,
1+ 0XAt
A= 84
1—(1—-0)\At (84)

We now consider the function f(z) = ﬁ We want to write

this as a power series and then substitute z = AAt to build a series
representation for A. Considering f to be the sum of a geometric series
with a=1 and r = (1 —)z gives

-3 (-0)
We observe that -
f(z)(1+ 6x) i ¥4 0z[(1 - 0)x])") (86)
This simplifies to -
f)14+02)=1+2+ (1 —0)2* + O(z?) (87)

63

The Maclaurin series expansion of e* is
p

=140+ %xQ + 0@ (88)
Noting that A = f(AA#)(1 + OAAt) and that e*! can be obtained
from the above equation, we compare the two series representations to
detect the order of accuracy of our method. We see that regardless of
our choice of #, our method is first-order accurate because the constant
and x terms match. This is consistent with the results that the implicit
Euler method (# = 0) and the exlicit Euler method (§ = 1) are first-
order accurate. However, we see that in order to have the z? terms

1

match, we require ¢ = ;. This is the only way to get second-order

accuracy with this scheme.

. Matlab Code:
% factor the given A (a 6x6) matrix such that A = XLX 1
% L is a diagonal matrix formed by the eigenvalues of A

% X are the corresponding eigenvectors of A
[—25 -2 14 0 0 0]
-2 =22 5 =8 0 0
14 5 =54 16 7 0
0O -8 16 —-26 10 -—15
0 0 7 10 =20 -1
| 0 0 0 —-15 -1 -35 |

[X,L]=eig(A)
B =X x*Lxinv(X)
% Can see that A=B

64

3. Matlab Code:
% Takes imputs deltaX, r, N, and sigma to return alpha, gamma, beta
of the
% matrix A as well as the matrix A that results from spatial discretiza-
tion

% of the PDE.
function[A]=spatialCoeffs(deltaX,r,N, sigma)

alpha=(r/(2*deltaX))+((sigma?)/(2*(delta X?)))
gamma=((sigma?)/(deltaX?))+r
beta=(-r/(2*deltaX))+((sigma?)/(2*(deltaX?)))
B=zeros(N);

c=(-gamma).*ones(N,1);

d=(alpha).*ones(N-1,1);

f=(beta).*ones(N-1,1);
A=diag(c)+diag(d,1)+diag(f,-1);

65

HW 5 - Math 573, Marcel Blais, Spring 2009
Due before class on Tuesday February 24, 2009
This homework counts as % of a regular homework.

You must compose your assignments independently; however, you may
discuss your work with one another at the rough level.

1. Consider a European put option with time ¢ price P(S,t), strike price
K, and maturity 7. Suppose that that interest rate r is constant. The
spatial boundary conditions for such an option are

e P(S,t) - 0as S — o0

e P(0,t) = Ke (T
If we are pricing this option using finite difference methods, how should
we implement these boundary conditions?

Hint: Yes, this is a really easy problem.

66

HW 5 Solutions - Math 573, Marcel Blais, Spring 2009

1. We implement these boundary conditions in the following manner:

e For the first condition, P(S,t) — 0 as S — oo, we set Sy,4: to be
a large positive value. We then set P(S4z,t) = 0 for all t.

e For the second condition, P(0,t) = Ke "™ we set S, to
be a small value, usually S,;, = 0. We then set P(Sin,t) =
Ke_T(T_t).

67

HW 6 - Math 573, Marcel Blais, Spring 2009

Due by 5pm on Friday March 27, 2009

1. Using the Monte Carlo methods we covered in class on March 17, write
a Matlab program to calculate

/0 2 de (89)

Your program should be written as a function integralMC saved in the
file integralMC.m. It should take n as an input and return both the
estimate of the integral and the error of the approximation. For this
problem submit the following

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of two test runs of your m-file using different values for
n.

68

2. Using the Monte Carlo methods we covered in class on March 17, write
a Matlab program that calculates the time zero no-arbitrage value of a
European call option and a European put option with strike price K,
underlying asset price S;, and maturity 7. Your program should be
written in the m-file euroOptionMC.m. It should take inputs

e the number of draws n,

e the initial underlying asset price Sy,

e the interest rate r, and

e the volatiliy of the underlying o.
Your program should output the estimated prices of the put and call,
along with 95% and 99% confidence intervals for each estimate. For
this problem submit the following

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of several test runs of your m-file using different values
for n.

69

HW 6 Solutions - Math 573, Marcel Blais, Spring 2009

1. Matlab Code:
%Using the Monte Carlo methods calculate the integral from 0 to 1 of
2? dx
%takes n as an input and returns the estimation of the integral and the
%error of approximation

function[alpha_hat]|=integralMC(n);

f=zeros(n,1);

for ii=1:n
f(ii,1)=(rand(1));
end

f;

sum_old=0;

for ii=1:n

sum_new=(f (4, 1)?)+sum_old;
sum_old=sum_new;
end

sum=sum_new;
alpha_hat=(1/n)*sum;

errSum_old=0;

for ii=1:n
errSum_new=(f(ii,1)-alpha_hat)?+errSum _old;
errSum_old=errSum_new;

end

errSum=errSum_new;
S_f=sqrt(errSum/(n-1));
errorAprox=S_f/(sqrt(n))

70

2. Matlab Code:
%Using the Monte Carlo mthods calculate the time zero no-arbitrage
value of a European call option and a European put option with strike
price K, underlying asset price S_t, and maturity T. Ouputs the prices
of the put and call along with 95% and 99% confidenceintervals

n=10; %number of draws

S_0=>5; %initial underlying asset price
r=.05; %interest rate

sigma=.001; %volatility of the underlying
T=6; %maturity

K=10; %strike price

c=zeros(n,1);

for ii=1:n

Z=randn(1);
S_T=(S.0)*exp((r-(.5*(sigma?)))*T+(sigma*sqrt(T)*Z));
c(ii,1)=exp(-r*T)*max(S_-T-K,0);
end

c;

callSum=0;

for ii=1:n
callSum_new=c(ii,1)+callSum;
callSum=callSum _new;

end

callSum,;
callPrice_hat=callSum/n
cError=0;

for ii=1:n
cSum_new=(c(ii,1)-callPrice_hat)?+cError;
cError=cSum_new;

end

cError;

S_c=sqrt(cError/(n-1));

disp(["A 95% confidence interval for the call option price is
(*, num2str(callPrice_hat-(1.96*(S_c/sqrt(n)))), ', 7,

71

num?2str(callPrice_hat+(1.96*(S_c/sqrt(n)))) , ’).” |)
disp(["A 99% confidence interval for the call option price is
(*, num2str(callPrice_hat-(2.575*(S_c/sqrt(n)))), ’, 7,
num?2str(callPrice_hat+(2.575*(S_c/sqrt(n)))) , ’).” |)

p=zeros(n,1);

for ii=1:n

Z=randn(1);
S_T=(S.0)*exp((r-(.5*(sigma?)))*T+(sigma*sqrt(T)*Z));
p(ii,1)=exp(-r*T)*max(K-S_T,0);
end

p;

putSum=0;

for ii=1:n
putSum_new=p(ii,1)+putSum;
putSum=putSum _new;

end

putSum;
putPrice_hat=putSum/n
pError=0;

for ii=1:n
pSum_new=(p(ii,1)-putPrice_hat)?*+pError;
pError=pSum _new;

end

pError;

S_p=sqrt(pError/(n-1));

disp(["A 95% confidence interval for the put option price is
(’, num2str(putPrice_hat-(1.96*(S_p/sqrt(n)))), ’, *,
num2str(putPrice_hat+(1.96*(S_p/sqrt(n)))) , ’).” |)

disp(['A 99% confidence interval for the put option price is
(*, num2str(putPrice_hat-(2.575*(S_p/sqrt(n)))), ’, *,
num?2str(putPrice_hat+(2.575*(S_p/sqrt(n)))) ,).” |)

72

HW 7 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday March 31, 2009

1. (10 Points) Write a Matlab function the generates uniformly distributed
pseudorandom numbers in [0, 1]. Use a linear congruential generator

ziy1 = (a-x;+¢) modm
(90)

_ Tyl
Uitl = S

Your program should be written as a function linConGenerator saved
in the file linConGenerator.m. It should take modulus m, multiplier
a, ¢, seed zg, and N as inputs. It should return a vector of length N
containing the pseudorandom values.

For the pure case (¢ = 0), you program should check that the generator
has full period. If it does not have full period, your program should
print a warning to the user before returning its outputs.

For this problem submit the following

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of a few test runs of your m-file using different inputs.

73

2. (10 Points) The Burr distribution with parameters ¢,k > 0 has cumu-
lative distribution function

F(e)=1-(1+a9)" (91)

and density function
P 92
flx)=c (5 2oyt (92)

for x > 0.

Using the inverse transform method, give a formula for generating sam-
ples of the Burr distribution from independent uniform random vari-
ables on [0, 1], Uy, Us, Us, . ..

3. (10 Points) Write a Matlab function the generates non-negative pseu-
dorandom samples from the exponential distribution with
parameter 6.

Your program should be written as a function ezponentialGenerator
saved in the file exponentialGenerator.m. It should take N and 6 as
inputs. It should return a vector of length N containing the pseudo-
random values.

You can use Matlab’s rand function or your linear congruential gener-
ator from the first problem.

For this problem submit the following

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of a few test runs of your m-file using different inputs.

74

HW 7 Solutions - Math 573, Marcel Blais, Spring 2009

1. Matlab Code:
%Generates uniformly distributed pseudorandom numbers in [0,1]
%takes inputs m,a,c,x 0, and N
Y%returns vector of length N containing pseudorandom values

function[u]=linConGenerator(m,a,c,x_0,N);
x=zeros(N,1);

x_old=x_0;

for ii=1:N

x_new=mod((a*x_old+c),m);
x(ii,1)=x_new;

x_old=x_new;

end

X;
u=zeros(N,1);
for ii=1:N
u(ii,1)=x(ii,1) /m;
end

u;
p=zeros(5,1);
if c==
p(1,1)=0;

else p(1,1)=1;
end

k=1;

for jj=1:m-2
if mod((a#7)-1,m)==0;
k=0;

end

end

if k==
p(271):1§
else p(2,1)=0;
end

if mod(((a™1)-1),m)==0

75

p(371)20;

else p(3,1)=1;

end

it x 0==

p(4,1)=1;

else p(4,1)=0;

end

if isprime(m)

p(5,1)=0;

else p(5,1)=1;

end

if c==

if p==zeros(5,1)
disp('generator has full period’)
else disp(’generator does not have a full period’)
end

end

u;

. Invert F(x)

U=1—(1+a°)7"*

U—-1=—(1+2z°"*

1-U = (1+2°)"*

(1—-U)V*F=1+a2°

(1 - 0)/ —1)Ve =

If U is from Unifrom[0,1], then (1-U) is also from Uniform[0,1], so can
use ((U)VF —1)Ve =2

76

3. Matlab Code:
%Generate non-negative pseudorandom samples from an exponential
distribution with mean theta. Input N and theta.

function[x]=exponential Generator(N,theta)

u=zeros(N,1);

for ii=1:N
u(ii,1)=rand(1);
end

u;

x=zeros(N,1);

if theta;0

for ii=1:N
x(ii,1)=(-1)*theta*log(u(ii,1));
end

else

for ii=1:N
x(ii,1)=theta*log(u(ii,1));

end

end

<

?

77

HW 8 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday April 7, 2009

1. Prove the following:

(a) (10 Points) Suppose that ¥ € R4 is positive definite. Show that
¥ is invertible.

(b) (10 Points) Suppose that ¥ € R?*? is positive semidefinite but
not positive definite. Show that X is singular.

(c) (10 Points) Suppose that A € R¥*? is invertible. Show that AT A
is positive definite.

2. (a) (15 Points) Suppose X is a random variable on [0, 1] with density
function f(z) = 20x(1 — z)®. Using the uniform distribution on
[0,1] and the acceptance-rejection method, give an algorithm for
generating samples from X.

(b) (10 Points) Write a Matlab function that generates N pseudoran-
dom samples of X. Your program should be written as a function
HWS saved in the file HWS.m. It should take N as an input, and
it should return a vector of length N containing the pseudorandom
values. For this problem submit the following

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attach-
ment in an email, and

e a printout of a few test runs of your m-file using different
inputs.

78

3. (15 Points) Write a Matlab function that generates N samples from
a normally distributed random variable with mean p and variance o?
using the Box-Muller method. Your program should be written as a
function bozMuller saved in the file boxMuller.m. It should take N, pu,
and o as inputs, and it should return a vector of length N containing
the pseudorandom values. For this problem submit the following

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of a few test runs of your m-file using different inputs.

4. (20 Points) Write a Matlab function that generates a sample from a
bivariate normally distributed random variable with mean [u, p12]7 and
symmetric positive definite covariance matrix ». Your program should
be written as a function bivariateNormal saved in the file bivariateNor-
mal.m. Tt should take [, po]” and ¥ as inputs, and it should return a
vector of containing the pseudorandom values.

Make sure that your program checks that > is symmetric and posi-
tive definite.? Use your Box-Muller program to generate the standard
normals in this program.

For this problem submit the following

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of a few test runs of your m-file using different inputs.

2Hint: A 2 x 2 matrix is positive definite if its top left entry is positive and its deter-
minant is positive.

79

HW 8 Solutions - Math 573, Marcel Blais, Spring 2009

1. (a) By definition, for z € R¥? with x # 0, 7Yz > 0. Thus 27 (Xx) >
0 and Xx # 0. This means that the nullspace of X consists of only
0, which is equivalent to ¥ being non-singular.

(b) For positive semidefinite 3 € R¥? we know there exists a lower-
triangular Cholesky factor A such that ¥ = AA”. From our algo-
rithm in class, since ¥ is not positive definite we know that this
factor A has at least one zero diagonal entry. Since the determi-
nant of a lower-triangular matrix is the product of its diagonal
entries, det(A)=0, and thus
det(3)=det(AAT)=det(A)-det(AT)=0-0=0.

This means that X is singular.

(c) Let xz € R? with x # 0.
2T AATy = (2T A)(ATz) = (ATx)T (ATx) = || AT |2.

Since A is non-singular, Ax # 0 and thus ||[ATz||2 > 0, which
means that AAT is positive definite.

80

2.

(a)

First we find the maximum value of f(x) on [0,1]. Computing
f’(x) and solving f’(x*)=0 gives x*=1, and f(3) = 2, which is
the maximum value attained by f on [0,1]. We choose ¢ = 2. Our
target distribution has density f, and the uniform distribution on

[0,1] has density g(x)=1. Our algorithm is as follows:

e Generate Uy, U, independent from Uniform|0,1]

o IfU; < f;gﬁﬁ) = 3L 20U5(1 — Uy)?, accept Uy

o If U, > 16—;5 - 20Us(1 — Uy)3, reject Up and return to the first
step

Matlab Code:

% Generates N random samples from the distribution with pdf
% f(x) = 20x(1 — x)? using the acceptance-rejection method

% Input N, Number of samples to be generated.

function|[X] = HWS8(N)

X = zeros(N,1);
accept_sample = false;
for ii = 1:N
accept_sample = false;
while (~ accept_sample)
x = rand();

u = rand();

if (x j= (256/27)*u*(1 — u)?),
accept_sample = true;
end

end

X(ii) = x;

end

81

3. Matlab Code:
function|[Z] = boxMuller(mu,sigma,N)
% Generates N samples from a N(mu,sigma?) distribution using the
Box-Muller method
%Input mu, the mean of the normal random sample, sigma, the stan-
dard deviation of the standard normal, and N, the numer of samples

function|[Z] = boxMuller(mu,sigma,N)

Z = zeros(N,1);

for ii=1:N

ul = rand();
u2 = rand();

R = -2*log(ul);
V = 2*pi*u2;

z = sqrt(R)*cos(V);
Z(ii) = mu + sigma*z;
end

82

4. Matlab Code:
%Generates a bivariate normal random sample w distribution N(mu,Sigma)
%Inputs: mu, mean vector (2x1), Sigma, covariance matrix (2x2). It
must be symmetric positive definite
%Generate two independent standard normals using the Box Muller
method.

function[X] = bivariateNormal(mu, Sigma)

Zl = bOXMuHGI'(O,lal);
72 — bOXMuller<07171);
7 = [21;22];

[muRows,muCols| = size(mu);

if (muRows == 1) & (muCols == 2)

mu = mu’;

elseif muRows + muCols ~= 3

error(’Input vector mu must have two entries’);

end

if sum(sum(Sigma == Sigma’)) ~= 4
error(’The covariance matrix is not symmetric.’);
end

if ((Sigma(1,1) j= 0) — (det(Sigma) j= 0))
error(’Sigma is not positive definite.’);
end

A = zeros(2);

A(1,1) = sqrt(Sigma(1,1));

A(2,1) = Sigma(1,2)/A(1,1);
A(2,2) = sqrt(Sigma(2,2)-A(2,1)?);

X = mu + A*Z;

83

HW 9 - Math 573, Marcel Blais, Spring 2009
Due before class on Tuesday April 14, 2009

Note: The Matlab functions you write should not have any display state-
ments or uses of plot functions. To plot or display infomation from your
functions, call your functions in separate m-files.

1. (10 Points) Show that the random walk construction for simulating
Brownian Motion is exact. To do this, show that (X,,,, — X;,) has
distribution N(/L(tz_;,_l — tz), 0'2(ti+1 — tz>> and that
(Xti+i - Xti)J—(Xti - Xti—l)'

2. (10 Points) Write a Matlab function called brownianMotion saved in
m-file brownianMotion.m. It should take drift u, volatility o, time
T, and number of time-steps N as inputs (At = %) Your function
should return a vector of simulated values [W;,, Wy, , ..., W;,]* from a
Brownian motion W; that is distributed BM (i, o). For this problem

please submit the following:

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of a few test runs of your m-file using different inputs.
Plot your simulation in each case.

84

3. (10 Points) Write a Matlab function called multiVarNormal saved in
m-file multiVarNormal.m. It should take mean vector u € R? and
covariance matrix ¥ € R%*? as inputs. Your function should return
a d-vector of normally distributed random variables according to the
distribution N(p,). Your program should check that 3 is symmetric
positive definite. You should compute the Cholesky factorization of X

AAT =% (93)

using the algorithm that we studied in class. For this problem submit
the following
e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of a few test runs of your program using different inputs.

4. (10 Points) Write a Matlab function called geo BrownianMotion saved in
m-file geoBrownianMotion.m. It should take drift u, volatility o, time

T, and number of time-steps N as inputs (At = L). Your function
should return a vector of simulated values [Sy,, S, ..., St]’ from a

geometric Brownian motion S; that is distributed GBM (u, o?).

Hint: Call your function brownianMotion in this program. Make sure
to be careful with your drift terms.

For this problem please submit the following:

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of a few test runs of your m-file using different inputs.
Plot your simulation in each case.

85

HW 9 - Math 573, Marcel Blais, Spring 2009

1. By definition,
(Xt — X)) = pltiyn —ti) +o/tisn —ti - Zia (94)

where Z;,1 is a standard normal random variable.

i1

To compute the distribution of (Xy,,, — X;,), we have three steps:

e By (94), Xy,,, — Xy, is of the form a + bZ;;; where a,b € R.
Therefore X;, ., — X, is normally distributed.

o BE(Xy,, —Xy) = Elu(tivr — ti) + ov/lisy — i - Zig]
= Elu(tivs — ;)] + ov/lis1 — 1 - E[Zi44]
= pltipr —ti) +o/ligr — 1 - 0
= p(tiy1 — t;)

o Var(Xi,, — Xy,) = Var[u(tiva —ti) + ov/lixs — ti - Ziga]

= Var(u(tiys — ;)] + 0*(tigr — ;) - Var[Z;]

=0+ O'Q(ti_H - tz) -1

Thus (Xy,,, — Xy,) has distribution N (pu(tiv1 — t;), 02 (tig1 — t;)).

To show that (X,,, — Xy,) and (X;, — X;, ,) are independent, we look
at their constructions:

(Xt — X)) = pltia — i) +o/tin — i - Zipa
(th. — Xti—l) = ,u(tl — ti,1> + O'\/ti — tifl . ZZ

The only random variable term in (X,,,, — X,) is Z;41, and the only
random variable term in (X;, — X3,) is Z;. Since Z;;1 and Z; are
independent, (X;,,, — X,) and (X, — X;,_,) are also independent.

(95)

i+1

86

2. Matlab Code:
%Simulates a Brownian motion with timestep T/N
% Inputs: mu, Drift of the Brownian motion, sigma, Volatility of the
Brownian Motion, N, Number of timesteps, T, Final time, and W _0,
Initial value

function [W]=brownianMotion(mu, sigma, N, T, W_0)

deltaT=T/N;
W=zeros(N,1);
W(1)=W_0;
a=mu*deltaT;
b=sigma*sqrt(deltaT);

for i=2:N
W(i)=W(i-1)+a+b*randn(1);
end

87

3. Matlab Code:
% Generates a vector of multivariate normal
% Input mu, the mean vector of the normal distribution, Sigma, co-
variance matrix of the normal distribution, and N, number of pseudo-
random values to be returned

function [randValues] = multiVarNormal(mu, Sigma, N)
d=length(mu);
[muRows,muCols] = size(mu);

if muRows ==
mu = mu’;
end

[n,m] = size(Sigma);

it d~=n — d~=m

error(’Dimensions must agree.’)

end

if Sigma ~= Sigma

error(’Sigma must be symmetric.’)

end

if min(eig(Sigma))j= 0

error(’Sigma must be positive definite.”)

end

A=zeros(d);

for jj=1:d

for ii=jj:d

v(il)= Sigmaf(ii,jj);

for kk=1:jj-1
v(ii)=v(ii)-A(jj,kk) *A(ii,kk);
end

A i) =v(ii) /sart (v(3):
end

end

randValues = zeros(d,N);
for i=1:N

Z=randn(d,1);
randValues(:,i)= mu + A*Z;
end

88

4. Matlab Code:
% Generates a path of a geometric Brownian motion with timestep
T/N
% Input mu, drift of the geometric Brownian motion, sigma, volatility
of the geometric Brownian motion, N, number of timesteps, T, final
time in the simulation, and S_0, initial value

function [S]=geoBrownianMotion(mu, sigma,N,T,S_0)

deltaT=T/N;

S=zeros(N+1,1);

S(1)=S.0;

Z = randn(N+1,1);

for ii = 2:N+1

S(ii) = S(ii-1)*exp((mu-0.5*sigma?)*deltaT + sigma*sqrt(deltaT)*Z(ii))

Y

end

89

HW 10 - Math 573, Marcel Blais, Spring 2009
Due before class on Tuesday April 21, 2009

Note: The Matlab functions you write should not have any display state-
ments or uses of plot functions. To plot or display infomation from your
functions, call your functions in separate m-files.

1. (10 Points) Write a Matlab function called asianOption saved in m-
file asianOption.m that prices Asian call and put options with discrete
monitoring. It should take interest rate r, drift u, volatility o, time
T, strike K, initial underlying price Sy, number of monitoring dates
M, and number of time-steps N for the underlying asset simulation as
inputs (At = %) Assume that the monitoring dates are equally spaced
apart.

You may force the user to enter a value of NV that is an integer multiple
of M. Hint: Use the error function in Matlab for this.

Use your function to price an Asian call option with monthly moni-
toring and parameters K = 10.5, Sy = 10, T'=1, 4 = r = .05, and
o = .01. Give a 95% confidence interval for your option price.

For this problem please submit the following:

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of your program being used to price the specified option.

90

2. (10 Points) Write a Matlab function called barrierOption saved in m-file
barrierOption.m that prices barrier call and put options with discrete
monitoring. It should take interest rate r, drift u, volatility o, time
T, strike K, initial underlying price Sy, number of monitoring dates
M, and number of time-steps N for the underlying asset simulation as
inputs (At = %) Assume that the monitoring dates are equally spaced
apart.

Your program should take inputs that allow the user to specify whether
the option is down-and-in, down-and-out, up-and-in, or up-and-out.
You may force the user to enter a value of NV that is an integer multiple
of M.

Use your function to price an up-and-in call option with monthly mon-
itoring and parameters K = 10.5, So =10, b=11,T =1, u = r = .05,
and o = .01. Give a 95% confidence interval for your option price.

For this problem please submit the following:

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of your program being used to price the specified option.

91

3. (15 Points) Write a Matlab function called multiple Geo BrownianMo-
tion saved in m-file multiple Geo BrownianMotion.m. It should take drift
vector [y, o, . . ., pta)T and covariance matrix ¥ € R%*? for the distri-
bution of the underlying Brownian motion as inputs. It should also
take time 7" and number of time-steps N as inputs. Your function
should return a matrix of d simulated geometric Brownian motions

Si(t)) Silt) ... Si(t)

So(t)) Soltr) ... Saltw)

Sg(to) Sg(tl) Sg(tN) (96)
| Sulte) Sulty) Sd(:tN)_

from a d-dimensional geometric Brownian motion S; that is distributed
GBM([H’l? K2y - nud]Ta E) s

For this problem please submit the following:

e A printout of your m-file,

e an electronic version of your m-file sent to me as an attachment
in an email, and

e a printout of a two test runs of your m-file using different inputs.
Plot your simulation in each case with all the Brownian motions
on the same plot.

3For this problem we are directly implementing the material from the end of lecture
11. You will have to use this function to price options in the final homework assignment
for the course.

92

HW 10 Solutions - Math 573, Marcel Blais, Spring 2009

1. Matlab Code:
% Uses a Monte Carlo method to estimate the time-zero values of the
Asian Put and the Asian Call w discrete monitoring.
% INPUTS:
% n: Number of samples to draw
% S0: Initial price of the underlying
% 1: Continuously compounded annual interest rate
% sigma: Volatility of the underlying
% K: Strike price of the option
% T: Maturity of the option
% N: Number of time-steps in the simulation
% M: Number of monitoring dates
% delta: A (1-delta)% convidence interval is computed
% OUTPUTS:
% CallPrice: The Asian call option price
% putPrice: The Asian put option price
% callCI: A (1-delta)% confidence interval for the call price
% putCIL: A (1-delta)% confidence interval for the put price

function[callPrice,putPrice,callCI,put CI] = asianOption(n,S0,r,sigma, K, TN, M,delta)

if mod(N,M) ~= 0,
error(’asianOption(n,S0,r,sigma, K, T,N,M): N should be a multiple of
M.");

monitorFactor = N/M;
callPayoffs = zeros(n,1);
putPayoffs = zeros(n,1);

for count = 1:n

S = geoBrownianMotion(r,sigma,N,T,S0);
S_at_M _dates = zeros(M+1,1);

for index = 1:M—+1

93

monitorDate = 1 + monitorFactor*(index-1);
S_at_M_dates = S(monitorDate);

end

callPayoffs(count) = max(0,mean(S_at_M_dates)-K);
putPayoffs(count) = max(0,K-mean(S_at-M_dates));
end

callPrice = exp(-r*T) * mean(callPayoffs);
putPrice = exp(-r*T) * mean(putPayoffs);

zScore = norminv(1-delta/2,0,1);

callSampleStDev = callPayoffs - callPrice;

callSampleStDev = 1/(n-1)* sum(callSampleStDev.?);

callCI = [callPrice - zScore*callSampleStDev/sqrt(n),callPrice + zS-
core*callSampleStDev/sqrt(n)]

putSampleStDev = putPayoffs - putPrice;

putSampleStDev = 1/(n-1)* sum(putSampleStDev.?);

putCI = [putPrice - zScore*putSampleStDev/sqrt(n),putPrice + zS-
core*putSampleStDev/sqrt(n)]

94

2. Matlab Code:
% Uses a Monte Carlo method to estimate the time-zero values
% of the Barrier Put option and Barrier Call option w discrete moni-
toring.
% The barrier option can be knock-in or knock-out, and the barrier
can be
% an upward or a downward barrier.
% INPUTS:
% n: Number of samples to draw
% S0: Initial price of the underlying
% 1: Continuously compounded annual interest rate
% sigma: Volatility of the underlying
% K: Strike price of the option
% b: Barrier of the option
% T: Maturity of the option
% N: Number of time-steps in the simulation
% M: Number of monitoring dates
% upDown: Set to "U’ for an upward barrier, 'D’ for a downward
% barrier.
% inOut: Set to 'I’ ofr a knock-in option, 'O’ for a knock-out
% option.
% delta: A (1-delta)% convidence interval is computed
% OUTPUTS:
% callPrice: The Asian call option price
% putPrice: The Asian put option price
% callCI: A (1-delta)% confidence interval for the call price
% putCI: A (1-delta)% confidence interval for the put price

function|callPrice,putPrice,callCI,putCI] = barrierOption(n,S0,r,sigma,K,b,T,N, M upDown,i

if (upDown ~="D’) &(upDown ~= 'd’) & (upDown ~= "U’) & (up-
Down ~="u’)

error(’'Bad upDown parameter.”)

end

if (inOut ~="T") &(inOut ~="1") & (inOut ~="0’") & (inOut ~= "0’)
error(’'Bad upDown parameter.”)

end

95

if mod(N,M) ~= 0,
error(’asianOption(n,S0,r,sigma, K, T,N,M): N should be a multiple of
M.7);

monitorFactor = N/M;
callPayoffs = zeros(n,1);
putPayoffs = zeros(n,1);

for count = 1:n
S = geoBrownianMotion(r,sigma,N,T,S0);

S_at_M_dates = zeros(M+1,1);

for index = 1:M+1

monitorDate = 1 + monitorFactor*(index-1);
S_at_M _dates = S(monitorDate);

end

callPayoffs(count) = max(0,S(N)-K);
putPayoffs(count) = max(0,K-S(N));

hitBarrier = 0;

if (max(S) ;= b) & (upDown == 'u’ — upDown == "U’)
hitBarrier = 1;

elseif (min(S) j= b) & (upDown == 'd’ — upDown == "D’)
hitBarrier = 1;

end

if (inOut =="1") — (inOut == "T)
if hitBarrier ==

barrierIndicator = 1;

else

barrierIndicator = 0;

96

end
end

if (inOut == ’0’) — (inOut == "0’")
if hitBarrier ==

barrierIndicator = 0;

else

barrierIndicator = 1;

end

end

callPayoffs(count) = callPayoffs(count)*barrierIndicator;
putPayoffs(count) = putPayoffs(count)*barrierIndicator;

end

mean(callPayoffs);
mean(putPayoffs);

callPrice = exp(-r*T) *
putPrice = exp(-r*T) *

zScore = norminv(1-delta/2,0,1);

callSampleStDev = callPayoffs - callPrice;

callSampleStDev = 1/(n-1)* sum(callSampleStDev.?);

callCI = [callPrice - zScore*callSampleStDev/sqrt(n),callPrice + zS-
core*callSampleStDev/sqrt(n)];

putSampleStDev = putPayoffs - putPrice;

putSampleStDev = 1/(n-1)* sum(putSampleStDev.?);

putCI = [putPrice - zScore*putSampleStDev/sqrt(n),putPrice + zS-
core*putSampleStDev/sqrt(n)];

97

3. Matlab Code:
% Generates a path of a geometric Brownian motion with timestep
T/N
% INPUTS:
% mu: Drift of the geometric Brownian motion
% sigma: Volatility of the geometric Brownian motion
% N: Number of timesteps
% T: Final time in the simulation
% S_0: Initial value

function [S]=geoBrownianMotion(mu, sigma,N,T,S_0)

deltaT=T/N;
S=zeros(N+1,1);
S(1)=S.0;

Z = randn(N+1,1);
for ii = 2:N+1
S(ii) = S(ii-1)*exp((mu-0.5*sigma?)*deltaT + sigma*sqrt(deltaT)*Z(ii))

I

end

98

HW 11 -

Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday April 28, 2009

1. Write a Matlab function called basketOption saved in m-file basketOp-
tion.m that prices a basket option on d underlying assets Si,..., Sy
with payoff

([015’1 (T) + CQSQ(T) + ... Cde(T)] — K)+ (97)

You function should take inputs

Drift vector [u1, fo, . . ., ptg]” and covariance matrix ¥ € R%¥*? for
the distribution of the underlying Brownian motion .

Initial underlying price vector S(0).

Maturity time 7'.

Number of time-steps IV.

Weights ¢ = [c1, ..., cq]T.

Interest rate r.

Strike price K.

You can use your function the simulates a d-dimensional geometric
Brownian motion in this problem. Please electronically submit copies
of any of your own functions that you use in this problem.

For this problem please submit the following:

A printout of your m-file,

an electronic version of your m-file sent to me as an attachment
in an email, and

a printout of your program being used to price two options. Also
specify your inputs.

99

HW 11 Solutions - Math 573, Marcel Blais, Spring 2009

1. Matlab Code:
%price a basket option
%inputs dirft vector mu (1xd), covariance matrix Sigma (dxd), initial
price vector S_0, maturity time T, number of time steps N, weight vec-
tor c, interest r, strike price K

function[P]=basketOption(mu,Sigma,S_0,T ,N,c,r,K)
[m,d]=size(Sigma);
for ii=1:d

mu(ii,1)=r-.5*Sigmal(ii, i1)
end

2.
7
mu;

s=multipleGeoBrownianMotion(mu,Sigma,T,N,S_0);

p=0;

for ii=1:d
Price=c(ii,1)*s(ii,d)+p;
p=Perice;

end

b;

P=max(p-K,0);

100

Finite Difference Project

Finite Difference Project Summary

Using the spatialCoeffs function, I discretized the Black-Scholes-Merton par-
tial differential equation in time to get the matrix A. I found the eigenvalues
and eigenvectors of the matrix A which allowed me to find the amplification
errors. For a call option I used the boundary conditions C(Smax,t)=Smax*K*exp(-
r(T-t)) where Smax is very large and C(Smin,t)=0, where Smin=0. For a
put option I used the boundary conditions V(Smax,t)=0 for very large Smax
and V(Smin,t)=K*exp(-r(T-t)) for Smin=0. Then to discretize the scheme
in time, the user has the option in use either the Jacobi Method or direct
solver. The Jacobi Method iterates until the error is less than an epsilon
specified by the user. A graph of the option price over time is an output as
well as the minimum and maximum eigenvalues, the amplification errors and
whether or not the scheme is stable. The Matlab code is broken into three
programs as follows.

1. %uses the Jacobi method to find a solution for the u vector.
function[u]=jacobiMethod(N,F A epsilon)

u=ones(N,1);

errorCheck=1;

while errorCheck j epsilon

for t=1:N-1
newU=((F(:,t)+F(:,t+1))-dot(A(t,:),u))/A(t,t);
end

errorCheck = norm(newU-u,2);

u=newU;

end

101

2. % Takes imputs deltaX, r, N, and sigma to return alpha, gamma, beta
of the
% matrix A as well as the matrix A that results from spatial discretiza-
tion
% of the PDE.
% Used to be function[A]|=spatialCoeffs(deltaX,r,N,sigma)
function[A]=spatialCoeffs(deltaX,r,N sigma)

x=0);

d=zeros(N-1,1);

c=zeros(N,1);

f=zeros(N-1,1);

for ii=1:N-1
alpha=((r*x)/(2*deltaX))+(((sigma?)*(z?))/(2* (deltaX?)));
d(ii,1)=alpha;

d;

beta=((-r*x)/(2*deltaX))+(((sigma®)*(x?)) /(2*(deltaX?)));
f(ii,1)=beta;

f;
x=x+deltaX;

end

for jj=1:N
gamma=(((sigma?)*(x?))/(deltaX?))+r;
c(ii,1)=-gamma;

c;

x=x-+deltaX;

end

B=zeros(N);
A=diag(c)+diag(d,1)+diag(f,-1);

102

3. %optionPricer is a program to price a European option using the
%Crank-Nicolson finite difference method
%The following parameters are to be filled out before running this file
Option=1; %Chose 1 for a call or 2 for a put
sigma=.1; %volatility
r=.05; %interest rate
T=10; %time at maturity
K=6; %strike price
S_T=2 %final price
Jacobi=1; %for the Jacobi method chose 2, for the direct method chose
1
delta_t=1; %time steps
deltaX=1; %spatial steps
epsilon=.00001; %error tolerance

T=T+1;

S_max=5*K;

N=S_max/deltaX; %number of spaces
N=N+1;

%load in the contents of the file spatialCoeffs.m and run the function
A=spatialCoeffs(deltaX r,N sigma);

[V, D]=ecig(A);

X=V;

minEig=min(D);

maxEig=max(D);

lambda=D;

minEigenvalue=min(minEig)
maxEigenvalue=max(maxEig)

if Option==

u=zeros(N,1);

x_start=T}

for ii=1:N
u(ii,1)=max((x_start+(ii*deltaX))-K,0);

103

u;

end

F=zeros(N,N+1);

for jj=1:N

F(Nji)=S max*K*exp(-r*(T-ij));
F;

end

elseif Option==2
u=zeros(N,1);

x_start=T;

for ii=1:N
u(ii,1)=max(K-(x_start+(ii*deltaX)),0);
u;

end

F=zeros(N,N+1);

for jj=1:N
F(Ljj)=K*exp(r*(T-ii));

F;

end

else disp(’Error in Option input’)
end

E=ones(N,1);

for ii=1:N

ampError(ii)=(1+(1/2)*lambda(ii,ii) *delta_t) /(1-(1/2)*lambda(ii,ii) *delta_t);
E(ii,1)=ampError(ii);

E;

end

ampErrors=E

stable=1;

for jj=1:N

if abs(ampErrors(jj))¢1

stable=0);

disp(['Amp Error ' num2str(ampErrors(jj)),” causing instability.’])
end

end

104

it stable==0

disp('Routine is unstable’)
else disp('Routine is stable’)
end

[d1,d2]=size(A);
A_hat=eye(d1)-(delta_t/2)*A;

U=zeros(N,N);

U(:,1)=u;

old_u=u;

for jj=2:T
b=(eye(N)+(.5*delta_t*A))*old_u+(delta_t/2)*(F(:,jj)+F(:,jj+1));
if Jacobi==

new_u=inv(A_hat)*b;

elseif Jacobi==2
new_u=jacobiMethod(N,F,A epsilon);
else disp(’Error in Jacobi input’)

end

U(:,jj)=new_u;

U;

old_u=new_u;

end

surf(U)

105

References

1. Tavella, D. & Randall, C. (2000). Pricing Financial Instruments: The
Finite Difference Method. New York: Jonh Wiley & Sons, Inc.

2. Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering.
New York: Springer Science + Business Media, LLC.

106

	Worcester Polytechnic Institute
	Digital WPI
	2009-05-05

	Course Summary of Computational Methods of Financial Mathematics
	Jessica L. Copp
	Repository Citation

	tmp.1530275769.pdf.fP5is

