
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2009-05-05

Course Summary of Computational Methods of
Financial Mathematics
Jessica L. Copp
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Copp, Jessica L., "Course Summary of Computational Methods of Financial Mathematics" (2009). Masters Theses (All Theses, All Years).
745.
https://digitalcommons.wpi.edu/etd-theses/745

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213002938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/745?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Course Summary of Computational Methods
of Financial Mathematics

by
Jessica Lee Copp

A Thesis
Submitted to the Faculty

of
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Master of Science

in
Financial Mathematics

May 2009
ADVISOR: Marcel Blais

Table of Contents

1. Introduction 1
2. Background 2
2.1 Options 2
2.2 Stochastic Processes and Brownian Motion 4
2.3 Ito’s Formula 6
2.4 Black-Scholes-Merton Partial Differential Equation 6
2.5 Option Pricing Approaches 7

3. Finite Difference Methods 8
3.1 Estimation Using Taylor’s Theorem 8
3.2 Spatial Discretization 9
3.3 Time Discretization 10
3.4 Method Evaluations 11
3.5 Specific Finite Difference Methods 12
3.6 Implementation of the Time Advancement 14
3.7 Types of Iterative Solvers 14
3.8 Boundary Conditions 15
3.9 Bellman Priciple 16
3.10 Bellman Eqauation 16
3.11 Pricing Equation 17
3.12 Partial Differential Complementary Problem 17
3.13 Finite Difference Approach to American Options 17

4. Monte Carlo Methods 20
4.1 Introduction 20
4.2 European Call Option 23
4.3 Random Number Generator 24
4.4 Linear Congruential Generator 25
4.5 Inverse Transform Method 28
4.6 Acceptance-Rejection Method 29
4.7 Normal Random Variables 31
4.8 Box-Muller Method 32
4.9 Generating Multivariate Normals 33
4.10 Generating Sample Paths 37
4.11 Path Dependent Payoffs 42
4.12 Variance Reduction Techniques 47

i

5. Appendix 51
5.1 Homework 1 51
5.2 Homework 2 54
5.3 Homework 3 57
5.4 Homework 4 60
5.5 Homework 5 66
5.6 Homework 6 68
5.7 Homework 7 73
5.8 Homework 8 78
5.9 Homework 9 84
5.10 Homework 10 90
5.11 Homework 11 99
5.12 Finite Difference Project 101

6. References 106

ii

Introduction

Most realistic financial derivatives models are too complex to allow ex-
plicit analytic solutions. The computational techniques used to implement
those models fall into two broad categories: finite difference methods for the
solution of partial differential equations (PDEs) and Monte Carlo simulation.
Accordingly, the course consists of two sections.

The first half of the course focuses on finite difference methods. The fol-
lowing topics are discussed; Parabolic PDEs, Black-Scholes PDE for Euro-
pean and American options; binomial and trinomial trees; explicit, implicit
and Crank- Nicholson finite difference methods; far boundary conditions,
convergence, stability, variance bias; early exercise and free boundary con-
ditions; parabolic PDEs arising from fixed income derivatives; implied trees
for exotic derivatives, adapted trees for interest rate derivatives.

The second half of the course focuses on Monte Carlo. The following
topics are discussed; Random number generation and testing; evaluation of
expected payoff by Monte Carlo simulation; variance reduction techniquesan-
tithetic variables, importance sampling, martingale control variables; strati-
fication, low-discrepancy sequences and quasi-Monte Carlo methods; efficient
evaluation of sensitivity measures; methods suitable for multifactor and term-
structure dependent models.

Computational Methods of Financial Mathematics is taught by Marcel
Blais, a professor at Worcester Polytechnic Institute.

1

Background

Options

European Option:
A Euroean Option is a financial contract between two parties, the holder and
the writer. At a fixed expiry time T, the holder receives a payoff, and no
payoff occurs before time T. Further, the contract is uniquely described by
its payoff fuction.

European Call Option:
A Euroean Call Option is a financial contract with the following conditions:

1. at a prescribed time in the future, the expiry date, the holder of the
option may purchase a prescribed asset, known as the underlying asset,
for a prescribed amount, called the strike price

2. the holder has a right not an obligation

3. seller potentially has an obligation

4. has value

European Put Option:
A Euroean Put Option is a financial contract with the same conditions as a
European call, except the holder has the right to sell the underlying to the
writer a expiry for the strike price.

2

Figure 1: European Options

American Option:
An American Option is a financial contract between two parties, the holder
and the writer, with expirty time T . At any time t, 0 < t ≤ T , the holder
may exercise the option and receive payoff g(t, St), where St is the time-t
value of the underlying.

Path Dependent Options:
The option payoff can depend on the history of the underlying price path.
An example of a path dependent option in and Asian call option. It’s defined
by its payoff as follows:

Payoff = max(At −K, 0) (1)

At = avg(St : 0 ≤ t ≤ T) =
1

T

∫ T

0

Stdt (2)

3

Stochastic Processes and Brownian Motion

Stochastic Process:
A stochasitic process X is a colletion of random variables such that:

(Xt, t ∈ [0, τ]) = (Xt(ω), t ∈ [0, τ], ω ∈ Ω) (3)

where Ω is our sample space and (Ω,F , P) is our probability space.

Brownian Motion:
A stochastic process

W = (Wt, t ∈ [0,∞]) (4)

is called a standard Brownian Motion if the following are satisfied:

1. W0 = 0

2. for 0 ≤ s ≤ t,Wt −Ws ∼ N(0, t− s)

3. independence of increments for 0 ≤ s ≤ t < u ≤ v,
(Wt −Ws)⊥(Wu −Wv)

4. W has continuous sample paths

A Brownian Motion is nowhere differentiable with probability one.

4

Examples of Brownian Motion:

• Brownian motion with drift: (E[Wt] = 0)

Xt = µt+ σWt (5)

E[Xt] = E[µt+ σWt] = µt+ σE[Wt] = µt (6)

• Geometric Brownian Motion:

Xt = exp(µt+ σWt) (7)

Stochastic Differential Equations:
Consider a small time interval, dt, during which an asset price changes from
S to S+dS.
We decompose it into two parts:

1. One part comes from a fixed rate of return over dt, written µdt, where
µ is called the drift.

2. The random component is given by a random sample drawn from a
normal distribution with mean 0 and variance dt.

This gives us the following equation:

dS

S
= µdt+ σdWt (8)

5

Ito’s Formula

Ito Process:
Xt is an Ito Process if it is a stochastic process that can be written

dXt = u(t)dt+ v(t)dWt (9)

Ito’s Formula:
Suppose Xt is an Ito process and g(t, x) ∈ C2([0,∞)× R).
Then Yt = g(t,Xt) is an Ito process and

dYt = gt(t,Xt)dt+ gx(t,Xt)dXt +
1

2
gxx(t,Xt)dXtdXt (10)

where dXtdXt is computed using the following:

• dt · dt = 0

• dt · dWt = 0

• dWt · dWt = dt

Black-Scholes-Merton Partial Differential Equation

Deriving the Black-Scholes-Merton Partial Differential Equation:
Form a portfolio with one option and −∆ units of the underlying. The time
t value of our portfolio is πt = Vt −∆St
It’s value changes according to dπt = dVt −∆dSt
Ito’s formula can be applied to obtain the Black-Scholes-Merton PDE:

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
+ r

∂V

∂S
St − rV = 0 (11)

This works backward in time becasuse an end condition is known instead of
an initial condition when looking at the boundary value problem. Using the
transfomation t = T − t will allow moving forward in time.
We can rewrite the Black-Scholes-Merton PDE as:

∂V

∂t
= r

∂V

∂S
St +

1

2
σ2S2

t

∂2V

∂S2
− rV (12)

6

Option Pricing Approaches

There are four option pricing approaches:

1. Fundamental Theorem of Asset Pricing

• use of probability

• price options by taking the discounted expected payoff under the
risk-neutral measure

• can get analytic solutions in some cases

2. Option Replication

• create a synthetic option

• use positions in different financial instruments that collectively
replicate the option value

3. Solving Partial Differential Equations

• often an option’s value can be determined by solving a boundary
value problem, which is a partial differential equation and a set of
boundary conditions

• sometimes can find analytic solutions

• usually approximate the solution numerically using finite differ-
ence methods

• deal with discretizing the continuous models

4. Carlo Methods

• approximate an option’s value by simulation

• repetition (look at how things are converging)

This paper is going to focus on solving partial differential equations using
the finite difference method and Monte Carlo methods.

7

Finite Difference Methods

Estimation Using Taylor’s Theorem

To estimate ∂u
∂x

and ∂2u
∂x2 Taylor’s Theorem can be applied to u(x + h) and

u(x− h).

• First look at u(x+ h)− u(x− h)
Expand to get:

u(x+h)−u(x−h) =
[u(x) + u′(x)h+ u′′(x)h2

2
+ u′′′(x)h3

3!
+ ...]

−[u(x)− u′(x)h+ u′′(x)h2

2
− u′′′(x)h3

3!
+ ...]

(13)

Rearrange and solve in terms of x and t to get:

∂u

∂x
(x, t) =

u(x+ ∆x, t)− u(x−∆x, t)

2∆x
+O(∆x2) (14)

• Now look at u(x+ h) + u(x− h)
Expand to get:

u(x+ h) + u(x− h) = 2u(x) + 2
u′′(x)h2

2
+ 2

u(4)(x)h4

4!
+O(h6) (15)

Rearrange and solve in terms of x and t to get:

∂2u

∂x2
(x, t) =

u(x+ ∆x, t)− 2u(x) + u(x−∆x, t)

(∆x)2
+O(∆x2) (16)

Note: O is the order of the approximation for the error term.

8

Spatial Discretization
Let ui = u(xi), then the above equations are of the form:

∂u

∂x
(xi, t) =

ui+1 − ui− 1

2∆x
−O(∆x2) (17)

∂2u

∂x2
(xi, t) =

ui+1 − 2ui + ui−1

(∆x)2
−O(∆x2) (18)

These equations hold for the interior points. To solve for the boundary con-
ditions, linearly extrapolate the values for u0 and uI using the two adjacent
points. This gives the following two equations.

u0 = 2u1 − u2 (19)

uI = 2uI−1 − uI−2 (20)

Applying these spatial discretizations we get the following:

∂u

∂t
= r(

ui+1 − ui−1

2∆x
) +

1

2
σ2(

ui+1 − 2ui + ui−1

(∆x)2
)− rui + ε (21)

Simplify to:
∂u

∂t
= βui−1 − γui + αui+1 (22)

Where:

• β = −r
2∆x

+ σ2

2(∆x)2

• γ = σ2

(∆x)2
+ r

• α = r
2∆x

+ σ2

(∆x)2

This can be vectorized to give the following (after dropping the error term):

dū

dt
= Aū (23)

Where: A=

1 −2 1 0 0 . . . 0 0 0 0 0
β −γ α 0 0 . . . 0 0 0 0 0
0 β −γ α 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0 β −γ α 0
0 0 0 0 0 . . . 0 0 1 −2 1

9

• A is non-singular

• A has rank A

• A has eigenvectors x̄m , m = 1,2,...,m

• A has eigenvalues λ1, λ2, ...λm

• Ax̄m = λmx̄m

Define the following:

• X = [x̄1|x̄2|...|x̄m]

• λ is a diagonal matrix of the eigenvalues of A

• AX = [Ax̄1|Ax̄2|...|Ax̄m] = [λ1x̄1|λ2x̄2|...|λmx̄m] = λX

• λ = X−1AX

• v̄ = X−1ū

This transforms the spatial finite difference scheme into:

dv̄

dt
= λv̄ (24)

Time Discretization

Shift Operator:
Let vn = v(n∆t). The shift operator Ei is defined by:

Eivn = vn+i = v([n+ i]∆t) (25)

Time discretized finite differences can be expressed as polynomials in the
shift operator. The polynomial shift operator is denoted by P(E).

Define the homogeneous difference equation by:

P (E)vn = 0 (26)

10

Consider dv̄
dt

= λv̄ Looking at the jth component, obtain the finite difference
expression:

dvj
dt

(tn) =
dvj
dt

(n∆t) ∼=
1

∆t

M∑
i=0

civ
n+i
j (27)

for some constants ci

This gives the solution:

vnj =
K∑
k=0

cjk(Λjk)
n (28)

where the Λjk are the solutions of P (Λ) = 0
The set Λjk are called the amplification errors.

Method Evaluations

1. Consistency: A numerical scheme is consistent if the finite difference
scheme converges to the partial differential equation as the space and
time steps converge to zero.

2. Stability: A numerical scheme is stable if the difference between the nu-
merical solution and the exact solution remains bounded as the number
of steps goes to infinity. If any one |Λjk| > 1, the scheme is unstable.

3. Converenge: A numerical scheme converges if the difference between
the numerical solution and the exact solution at a fixed point in the
domain tends to zero uniformly as the space and time steps tend to
zero.

4. Lax Equivalence Theorem: Given a properly posed linear initial value
problem and a consistent finite difference scheme, then stability is the
only requirement for convergence.

11

Specific Finite Difference Methods

1. The Explicit Euler Scheme:

• begin with the spatial discretization dv
dt

= λv

• use the explicit approximation dv
dt
|n ∼= vn+1−vn

∆t

• combine to get vn+1 = λ∆tvn + vn

• rewrite as P (E)vn = 0
vn+1 − vn − λ∆tvn = 0
Evn − vnλ∆tvn = 0
(E − 1− λ∆t)vn = 0
P (E)vn = 0

• solve P (E) = 0 to find the amplification error
Λ− 1− λ∆t = 0
Λ = 1 + λ∆t

• compare Λ to the expansion of eλ∆t to find that this method is
first order accurate

• to find stability conditions, look at |Λ|, which shows if λ > 0 then
it’s unstable and if λ < 0 then ∆t ≤ −2

λ
which shows restricted

stability

2. The Implicit Euler Scheme:

• begin with the spatial discretization dv
dt

= λv

• use the explicit approximation dv
dt
|n+1 ∼= vn+1−vn

∆t

• combine to get vn = (1 + λ∆t)vn+1

• rewrite as P (E)vn = 0
(1 + λ∆t)vn+1 − vn = 0
(1 + λ∆t)Evn − vn = 0
[(1 + λ∆t)E − 1]vn = 0
P (E)vn = 0

• solve P (E) = 0 to find the amplification error
(1 + λ∆t)Λ− 1 = 0
Λ = 1

1−λ∆t

12

• compare Λ (expressed as a geometric series) to the expansion of
eλ∆t to find that this method is first order accurate

• to find stability conditions, look at |Λ|, which shows if λ ≤ 0 then
it’s stable

3. Crank - Nicolson Scheme:

• begin with the spatial discretization dv
dt

= λv

• incoroporates both implicit and explicit features by taking the
average of the implicit and explicit Euler schemes

• use the approximation 1
2
[dv
dt
|n + dv

dt
|n+1] = vn+1−vn

∆t

• combine to get 1
2
∆t(λvn + λvn+1) = vn+1 − vn

vn+1 = vn + 1
2
λ∆t(vn+1 − vn)

• rewrite as P (E)vn = 0
vn+1(1− 1

2
λ∆t)− vn(1 + 1

2
λ∆t) = 0

Evn(1− 1
2
λ∆t)− vn(1 + 1

2
λ∆t) = 0

[(1− 1
2
λ∆t)E − (1 + 1

2
λ∆t)]vn = 0

P (E)vn = 0

• solve P (E) = 0 to find the amplification error

Λ =
1+ 1

2
λ∆t

1− 1
2
λ∆t

• compare Λ to the expansion of eλ∆t to find that this method is
second order accurate

• to find stability conditions, look at |Λ|, which shows if λ ≤ 0 then
it’s stable

13

Implementation of the Time Advancement
Inserting the spatial discretization into the Crank-Nicolson scheme gives:

un+1 = un +
∆t

2
[Aun + fn + Aun+1 + fn+1] (29)

where fn and fn+1 are vectors that specify spatial boundary conditions

This can be rewritten as the following:

(I − ∆t

2
A)un+1 = (I +

∆t

2
A)un +

∆t

2
(fn + fn+1) (30)

This can be simplified to:
Âun+1 = b (31)

There are two approaches to solving this equation; direct solver and iterative
solvers. Direct solvers give a solution in a finite number of steps, but the ac-
curacy can’t be controlled. This uses Gaussian Elimination to get a system
of linear equations which solves the above equation. Iterative solvers satisfy
accuracy criteria. There are two main types; stationary and non-stationary
methods.

Types of Iterative Solvers

1. Jacobi Method: sets a stopping criteria and initial values for u
uN+1
i = 1

aii
[fi −

∑n
j=1 aiju

N
j]

where i 6= j, i represents the rows, and the superscripts represent the
iteration of the method

2. The Gauss-Seidel Method: this is a modification of the Jacobi Method
where the updates to the unkowns are incorporated into the scheme as
they occur and uses the following equation
uN+1
i = 1

aii
[fi −

∑
j<i aiju

N+1
j −

∑
j>i aiju

N
j]

3. Successive Overrelaxation Method: this averages the Gauss-Seidel it-
erate with the previous iterate which give the following equations
uN+1
i = ωũN+1

i + (1− ω)uNi
where ũN+1

i = 1
aii

[fi −
∑

j<i aiju
N+1
j −

∑
j>i aiju

N
j]

and ω is the overrelaxation parameter

14

Boundary Conditions Boundary conditions may have infinite domains but
in finance the boundaries can be set far enough from the region of interest
so in practicality it won’t effect to solution.

Example: A European Call option

• Boundary Condition: C(0, t) = 0
Implementation: set a minimum value for S, Smin = 0
gives C(Smin, t) = 0 = C(0, t)

• Boundary Condition: C(S, t) ∼ S as S →∞
Implementation: set a maximum value for S, Smax, large enough so S
is highly unlikely to get there

• Boundary Condition: C(Smax, t) = Smax −Ke−r(T−t)
Implementation: as S →∞, S −Ke−r(T−t) ≈ S
as t→ T,Ke−r(T−t) is increasing
thus Smax −Ke−r(T−t) is decreasing to the payoff Smax −K

American Derivatives

• The holder faces an optimal exercise problem.

• In region A it’s optimal to hold the option. The option can be treated
as a European Option.

• In region B it’s optimal to exercise the option. The option has exercise
value f(s, t).

• The option is priced via dynamic optimization.

15

Figure 2: American Derivative

Bellman Principle At a given time, the optimal exercise strategy is the
maximum of either the exercise value or the value associated with selecting
an optimal strategy later.

Bellman Equation

V (St) = max(F (St), PVt[V (St + dSt, t+ dt]) (32)

• St is the underlying

• F (S) is the exercise value which depends only on S

• PVt is the present value at time t

• this a recursive structure

• starts with the final condition at expiry and works backwards in time

• solves for the option value and the optimal strategy

16

Pricing Equation

V (r, S, t) = sup
τ
Ẽs,t[e

−r(T−t)f(Sτ)] (33)

τ are all stopping times conditional on information available at time t.
Ẽ is the expectation under the martingame measure.
The pricing equation will hold if the partial differential complementary prob-
lem is satisfied.

Partial Differential Complementary Problem

1. V ≥ f
the option value can never be below its immediate exercise value

2. ∂dV
∂dt

+ rS ∂dV
∂dS

+ 1
2
σ2S2 ∂d2V

∂dS2 ≤ rV
if the option value is growing more slowly than the money market
account, you should exercise

3. (∂dV
∂dt

+ rS ∂dV
∂dS

+ 1
2
σ2S2 ∂d2V

∂dS2 − rV)(V − f) = 0
complemetary condition; early exercise or the Black-Scholes partial dif-
ferential equation is satisfied

4. V (T, S) = f(S)
this is the payoff function

Finite Difference Approach to American Options

• Consider a general linear complementary problem, find x̄ that satisfies:
Ax̄ ≥ b̄
x̄ ≥ c̄
(x̄− c̄)(Ax̄− b̄) = 0

• Want the partial differential complementary problem to fit this form.

• Consider an option with time-t value u(S, t)

• Define differential operator L = rS ∂d
∂dS

+ 1
2
σ2S2 ∂d2

∂dS2 − r

• Lu = ∂du
∂dt

is the Black-Scholes partial differential equation after the

time change t̂ = T − t

17

• Set up the partial differential complementary problem with exercise
value F (S, t)

1. u(S, t) ≥ F (S, t)

2. ∂du
∂dt
− Lu ≥ 0

3. (∂du
∂dt
− Lu)(u− F) = 0

4. u(S, 0) = F (S, 0)

• Use Crank-Nicolson to approzimate Lu to get the following:

(I − 1

2
∆tA)un+1 = (I − 1

2
∆tA)un +

∆t

2
(fn + fn+1) (34)

where fn and fn+1 are boundary conditions

• Let M = I − 1
2
∆tA to give Mun+1 = b̄

• Let F̄ be a discrete approximation to the exercise value F

• Apply the above to the partial differential complementary problem to
get:

1. un+1 ≥ F̄

2. Mun+1 ≥ b̄

3. (Mun+1 − b̄)T (un+1 − F̄) = 0

4. u0 = F̄

• The above system needs to be solved at each time step

• Simplify with two substitutions:

1. z̄ = u− F̄
2. q̄ = MF − b̄

• Now the linear complementary problem is:

1. z̄ ≥ 0̄

2. q̄ +Mz̄ ≥ 0̄

18

3. z̄T (q̄ +Mz̄) = 0̄

• This has a unique solution if and only if M is a P-matrix.
i.e. if all its eigenvalues are positive

• z̄ is a solution to the linear complementary problem if and only if it
satisfies the component wise minimum min(z̄, q̄ +Mz̄) = 0̄

• Suppose M=B+C where B is non-singular

• At the kth iteration, if z̄k is known, consider finding z̄k+1 such that:
min(Bz̄, q̄ + Cz̄k +Bz̄k+1) = 0̄
min(0, q̄ + Cz̄k) = Bz̄k+1

min(0, q̄ + Cz̄k +Bz̄k −Bz̄k) = Bz̄k+1

min(0, q̄ +Mz̄k −Bz̄k) = Bz̄k+1

z̄k+1 = B−1 min(0, q̄ +Mz̄k −Bz̄k)

• There are other choices for B:

1. The Projected Jacobi Method: set B as the diagonal of M

2. Projected Successive Overrelaxation Method: set B = L+ 1
ω
D

L is the strictly lower triangular part of M
D is the diagonal of M
ω is the overrelaxation parameter

19

Monte Carlo Methods

Introduction

Monte Carlo Methods rely on probability and statistics
Have a sample space Ω and an event
Find a set of outcomes in Ω that lead to this event occuring (call this set A)
A ∈ F
P(A) is the probability of the event occuring

Monte Carlo:

• A different approach to the above calculation

• Randomly sample ω ∈ Ω many times

• For each sampled ω, determine whether or not the event occurs

• P(A) is approximated by the fraction of outcomes that caused the event
to occur

• The law of large numbers ensures that this estimate converges to P(A)
as the number of draws goes to ∞

• The central limit theorem gives information about the error of our ap-
proximation

Weak Law of Large Numbers:
For any ε > 0, lim P [|X̄n − µ| ≤ ε] = 1 as n → ∞ (X̄n converges in proba-
bility). Also written as X̄n → µ in probability

Strong Law of Large Numbers:
P [lim X̄n = µ] = 1 as n→∞
this law implies the weak law
the events for which X̄n does not converge to µ have probability zero
also written as X̄n → µ almost surely

20

Central Limit Theorem:
If V ar[Xi] = σ2 <∞, then ∀a ≤ b, limP [a ≤ (X̄n−µ)(

√
n)

σ2 ≤ b] = Φ(b)− Φ(a)

• Φ is the cumulative distribution function of the standard normal dis-
tribution

• (X̄n−µ)(
√
n)

σ2 ∼ N(0, 1)

• X̄n ∼ N(µ, σ
2
√
n
)

Monte Carlo Example:

• calculate α =1
0 f(x)dx

• can think of α as an expectation, E[f(u)], where U is uniformly dis-
tributed on [0,1]

• sample U1, U2, ... are indepently and uniformly distributed from [0,1]

• form α̂n = 1
n

∑n
i=1 f(ui)

• if f is integrable on [0,1], then the strong law of large numbers implies
α̂n → α almost surely

• if f is square integrable on [0,1],

σ2
f = V ar[f(u)] = E[(f(u)− E[f(u)])2] =

∫ 1

0
[f(x)− α]2dx

• consider the error of our approximation, α̂n − α

• the central limit theorem implies the distribution of α̂n is approximately

N(α,
σ2

f

n
)

• our error is thus approximately N(0,
σ2

f

n
)

σ2
f is unknown, but the sample standard deviation can be used to esti-

mate it

Sf =
√

1
n

∑n
i=1[f(ui)− α̂n]2

have error estimate
σf√
n
≈ Sf√

n

21

• from f(u1), f(u2),... an estimate of α can be found and an error esti-

mate
Sf√
n

error is O(1√
n
)

• compare this to the trapazoid rule:
α̂n = f(0)+f(1)

2n
+ 1

n

∑n−1
i=1 f(i

n
)

error bound |α̂n − α| ≤ k
12n2 , where k is bound on |f ′′(x)| on [0,1] if it

exists
error is O(1

n2), which is clearly better than Monte Carlo

Multiple Integrals:

•
∫

[0,1]d
f(x̄)dx̄, x̄ ∈ Rd

• based on n draws from [0, 1]d, we get error estimates:
trapaziod rule: O(1

n2/d)
monte carlo: O(1√

n
)

• once d > 4, monte carlo has a better rate of convergence

• monte carlo is useful for computing multiple integrals

Corollary to Fundamental Theorem of Asset Pricing:
Let Vt be the time-t price of a European-style option. Assume the market
has a risk-neutral probability measure P̃ . Then the no arbitrage price V0 of
the option is V0 = Ẽ(DTVT), where Ẽ denotes expectation under the risk-
neutral measure P̃ and Dt is the discount factor.

for fixed interest rate, Dt = e−r(T−t)

for variable interest rate, rt, Dt = e−
∫ T

t rsds

22

European Call Option

• strike K, underlying St, maturity T, interest rate r (r is drift for stock)

• the underlying asset price evolves accordingly to the stochastic differ-
ential equation
dSt

St
= rdt+ σdWt

• this has solution ST = S0e
(r− 1

2
σ2)T+σWT

where WT ∼ N(0, T)

• this can be represented by ST = S0e
(r− 1

2
σ2)T+σ

√
TZ

• take logs of both sides to get a normally distributed random variables
ln(ST) ∼ N((r − 1

2
σ2)T, σ2T)

• recall, V0 = STΦ(d1)− e−rTKΦ(d2)
Φ(y) is a standard normal cummalative distribution function

d1 =
ln S

K
+(r+ 1

2
σ2)T

σ
√
T

d2 =
ln S

K
+(r− 1

2
σ2)T

σ
√
T

Monte Carlo Pricing:
V0 = Ẽ[e−rT (ST −K)+]
Generate a sequence of standard normal random variables Z1, Z2, ... and use
these to estimate V0

Algorithm:
for i=1:n

generate Zi
set Si(T) = S0e

(r− 1
2
σ2)T+σ

√
TZi

set ci = e−rT (Si(T)−K)+

end
set ĉn = 1

n

∑n
i=1 ci

23

Confidence Intervals:

• To control the error of the approximation, use the sample standard
deviation of c1, c2, ..., cn

• Sc =
√

1
n−1

∑n
i=1(ci − ĉi)2

• Let Zδ denote the (1− δ) quantile of the standard normal
Φ(Zδ) = 1− δ = P [Z ≤ zδ]

• By the central limit theorem, ĉn−c0
Sc/
√
n

converges to N(0,1)

• (ĉn − zδ/2 Sc√
n
, ĉn + zδ/2

Sc√
n
) is an asymptotically valid (1− δ) confidence

interval for c0

Random Number Generation

• want to simulate randomness - pseudorandom

• generate a sequence of random variables U1, U2, ... with two properites:

1. Ui is uniformly distributed on [0,1]

2. the Ui are independent

• [0, 1] in the first above property is arbitrary

• mimic randomness: produce finite sequences u1, ..., uk ∈ [0, 1], where k
is large

• the ui constitutes possible outcomes for the independent uniforms U1, ..., Uk

• small (relative to k) segments of this sequence should be difficult to
distinguish from the realization of independent uniforms
i.e. statistical tests for independence should not easily reject segments
of u1, ..., uk

24

Linear Congruential Generator:
for a, m, c ∈ Z

• xi+1 = (aXi + c) mod m

• ui+1 = xi+1

m

• if c 6= 0, it’s called mixed

• if c = 0, it’s called pure

• little generatlity is achieved for c 6= 0 and scheme is slower, so usually
the pure case is used

• a is called the multiplier

• m is the modulus

• an initial seed x0 is required, where 1 ≤ x0 ≤ m− 1

Modulus:
for y,m ∈ Z, ymodm returns the remainder of y after dividing by m
y mod m = y −

⌊
y
m

⌋
m

Notes:

• in general, 0 ≤ amodm ≤ m− 1

• when c = 0, 0 ≤ xi+1 ≤ m− 1
therefore 0 ≤ ui+1 = Xi+1

m
≤ m−1

m
≤ 1

thus ui+1 ∈ [0, 1]

Example:
a=6, m=11, x0 = 1, c=0
x1 = 6, x2 = 3, x3 = 7, x4 = 9, x5 = 10, x6 = 5, x7 = 8, x8 = 4, x9 = 2, x10 = 1
after this the values start repeating
here, all integers in the interval [1,m-1] appeared

25

Example:
a=3, m=11, x0 = 1, c=0
x1 = 3, x2 = 9, x3 = 5, x4 = 4, x5 = 1
here, only five distinct values appears, which shows that a needs to be chosen
carefully

Full Period:
A linear congruential generator that produces all m-1 distinct values is said
to have a full period. In general, choose m large and a needs to be chosen
carefully

Issues for Random Number Generators:

1. Period Length: the longer the better
the gaps between the ui have size 1

m

the larger the m, the better the approximation to the uniform

2. Reproducibility: the sequences can be reproduced

3. Speed: generators are used many times

4. Portability: an alogrithm should produce the same sequence on any
platform

5. Randomness: theoretical properties for construction
statistical tests to scrutinize results

26

Theorem:
Suppose c 6= 0. For any seed x0, the linear congruential generator generates
m-1 distinct values if:

1. c and m are relatively prime (their only common divisor is 1)

2. every prime number that divides m also divides (a-1)

3. (a-1) is divisible by 4 if m is divisible by 4

Consequence:
The generator has full period if m = 2N , c is odd, and a=4n+1 for some n

Theorem:
Suppose c = 0. If m is prime, for any seed x0 6= 0, the linear congruential
generator generates m-1 distinct values if:

1. am−1 − 1 is a multiple of m

2. aj − 1 is not a multiple of m for j=1,2,...,m-2

A number satisfying these two properties is called a primative root of m.

Property:
If a is a primitive room of m, then all the xi are non-zero if x0 6= 0.
General Sampling Methods:
Assume an available sequence of independent uniformly distributed random
variables on [0,1]; U1, U2, ...

P [Ui ≤ u] =
0, u < 0
u, 0 ≤ u ≤ 1
1, 1 < u

(35)

want to transform these randrom variables into paths of stochastic processes

27

Inverse Transform Method:

• Random variable X with cummalative distribution function F

• If X has density function f, F (x) =
∫ x
−∞ f(y)dy

• If U is uniform [0, 1], it can be interpreted as a probability

• Since F is a cummalative density function, it is monotone increasing

• If F is strictly increasing, it has an inverse

• If F−1 denotes the inverse of F, we set X = F−1(U)
if F (0) ≤ u1 < 1 then x1 ≥ 0

Verification:
Make sure X = F−1(U) actually generates samples from F (or X).
P [X ≤ x] = P [F−1(U) ≤ x] = P [U ≤ F (x)] = length([0, F (x)]) = F (x)

Example: Exponential Distribution(θ)

• F (x) = 1− e−x/θ

• f(x) = 1
θ
e−x/θ

• Invert F(x)

• U = 1− e−x/θ and solve for x

• therefore x = −θ ln(1− U)

• if uniforms are given to the above formula it will produce exponentials

• if U ∼ U [0, 1], then so is 1-U, so simplify above to x = −θ ln(U)

28

Acceptance-Rejection Method:

• First generate samples from a convenient distribution. Then reject a
random subset. The accepted sampes are distibuted according to the
target distribution.

• Suppose we have a density function f defined on some subset X ⊆ Rd

• Let g be a density on X from which we can generate samples such that
f(x) ≤ cg(x), sor some constant c ≥ 1,∀X

Method:

• Generate a sample X from g

• Accept the sample with probability f(x)
cg(x)
≤ 1

• Specifically, the uniform distribution can be used

– sample U uniformly on [0, 1]

– accept X if U ≤ f(x)
cg(x)

– if X is rejected, sample X from g again and sample U again

– repeat

Verification:

• Suppose Y is returned by our algorithm

• Then Y has the distribution of X conditional on U ≤ f(x)
cg(x)

• Let A ⊆ X. Look at P [Y ∈ A].

P [Y ∈ A] = P [x ∈ A|U ≤ f(x)
cg(x)

]

• If give X, P [U ≤ f(x)
cg(x)

] = f(x)
cg(x)

• For X, P [U ≤ f(x)
cg(x)

] =
∫
x

1
c
f(x)dx = 1

c

• Plug in to get: P [Y ∈ A] = P [X ∈ A,U ≤ f(x)
cg(x)

]c =
∫
A
f(x)dx

Therefore Y has density f(x)

29

Notes:

1. The probability of accepting a draw is O(1
c
)

2. If c is large, it’s less likely to be accepted (good to have c close to 1)

Example: Normal from Double Exponential

• A half-normal random variable as the distribution of the absolute value
of a normal random variable.

• The double exponential on (−∞,∞) has distribution g(x) = 1
2
e−|x|

• Normal density function is f(x) = 1√
2π
e−x

2/2 ∼ N(0, 1)

• Ratio: f(x)
g(x)

=
√

2
π
e−x

2/2+|x| ≤
√

2e
π
≈ 1.3155 = c

• To sample a double exponential, draw a standard exponential, x =
−θln(U) where U ∼ U [0, 1], Then randomize the sign

• Rejection Test: U ≥ f(x)
cg(x)

= e−x
2/2+|x|−1/2 = e−(|x|−1)2/2

Algorithm:

1. Generate U1, U2, U3 ∼ U [0, 1]

2. X ← −θ ln(U1)

3. If U2 > e−(|x|−1)2/2, then go to step 1

4. If U3 ≤ 1
2
, then X ← −X

5. Return X

30

Normal Random Variables:

• If Z ∼ N(0, 1), then µ+ σZ ∼ N(µ, σ2)

• Thus to generate normal random variables, we need only to generate
standard normals

• A d-dimensional normal distribution is characterized by µ ∈ Rd and
Σ ∈ Rdxd

Properties of Σ:

1. Σ is symmetric, Σ = ΣT

2. Σ is positive semi-definite

Positive Definite:
A matrix Σ ∈ Rdxd is positive definite if xTΣx > 0∀x ∈ Rd with x 6= 0. Σ is
invertible.

Positive Semi-Definite:
A matrix Σ ∈ Rdxd is positive semi-definite if xTΣx ≥ 0∀x ∈ Rd with x 6= 0.

Notes:

• If Σ is positive semi-definite, then it may not be positive definite. There
might be an x 6= 0 such that xTΣx = 0. If that’s the case, Σ is not
invertible.

• If Σ is positive definite, N(µ,Σ) has density:

Φ(x) =
1

(2π)d/2 |Σ|1/2
e
−1
2

(x−µ)T Σ−1(x−µ) (36)

• The standard d-dimensional normal N(0, Id) has density:

Φ(x) =
1

(2π)d/2
e
−1
2
xT x (37)

• If x ∼ N(µ,Σ) then its ith componant Xi has distribution xi ∼ (µi, σ
2
ii)

31

• Further Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)]

• The correlation between Xi and Xj is given by ρij =
Σij

σiiσjj

Box-Muller Method:

• generates a sample from bivariate standard normal, where each com-
ponent is a standard normal

• consider Z ∼ N(0, I2), two properties:

1. R = Z2
1 + Z2

2 is exponentially distributed with θ = 2

2. given R, the point (Z1, Z2) is uniformly distributed on the circle
of radius

√
R, centered at the origin

• to generate (Z1, Z2):

1. generate R : R = −2 ln(U1), U1 ∼ U [0, 1]

2. choose a point uniformly from the circle of radius
√
R

get a new R every time (to insure independence)
generate a random angle uniformly between 0 and 2π
V = 2πU2

point on circle: (
√
R cosV,

√
R sinV)

Algorithm:

1. Generate U1, U2 ∼ U [0, 1] independently

2. R← −2 ln(U1)

3. V ← 2πU2

4. Z1 ←
√
R cosV

5. Z2 ←
√
R sinV

6. Return Z1, Z2

32

Multivariate Normals:

• Z ∼ N(µ,Σ)

• Using the correlations ρij =
σij

σiiσjj
, we get σij = ρijσiiσjj

• If Σ is positive semi-different, but not positive definite:

– ∃x 6= 0 such that xTΣx = 0 therefore Σ is singular

– There is no normal density with covariance matrix Σ

– We can define N(µ,Σ) as the distribution of x = µ+ AZ as long
as Z ∼ N(0, Id) for any A ∈ Rdxd such that AAT = Σ. If A has
rank k¡d, then one can find k components of x with multivariate
density in Rk

Theorem: Linear Transformation Property
Any linear transformation of a normal vector is normal. If X ∼ N(µ,Σ),
then AX ∼ N(Aµ,AΣAT) for any µ ∈ Rd, Σ ∈ Rdxd, and A ∈ Rkxd, ∀ k.

Generating Multivariate Normals

• Generate independent Z1, Z2, ..., Zd ∼ N(0, 1) and put them in a vector
Z ∼ N(0, 1)

• Then AZ ∼ N(0, AAT)

• Sampling X from N(µ,Σ) reduces to finding a matrix A with AAT = Σ

• There are two cases: positive definite and non-positive definite Σ

Theorem: Cholesky Factorization

• Suppose Σ ∈ Rdxd is positive definite. Then ∃ a lower triangular matrix
A ∈ Rdxd such that Σ = AAT . A is unique up to changes in sign.

• Consider the computation of X = µ+AZ. The matrix vector product
AZ has fewer multiplications than if A was dense (by almost half)

33

Example (2x2 case):

• Assume Σ is positive definite

Σ =

[
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

]
(38)

• Want:

Σ = AAT =

[
A11 A12

A21 A22

] [
A11 A21

A12 A22

]
(39)

• Therefore:[
Σ11 Σ12

Σ21 Σ22

]
=

[
A11 0
A21 A22

] [
A11 A21

0 A22

]
=

[
A2

11 A21A11

A21A11 A2
21 + A2

22

]
(40)

• Can solve for A to get:

A =

[
σ1 0

ρσ2 σ2

√
1− ρ2

]
(41)

General Case: Σ ∈ Rd×d

• Σ = AAT by the Cholesky Factorization Theorem, which gives:

Σ =

A11 0 0 . . . 0 0
A21 A22 0 . . . 0 0

...
...

...
...

...
...

A(d−1)1 A(d−1)2 A(d−1)3 . . . A(d−1)(d−1) 0
Ad1 Ad2 Ad3 . . . Ad(d−1) Add

 (42)

• Over row 1 of Σ
Σ11 = A2

11

Σ12 = A11A21
...
Σ1d = A11Ad1

34

• Over row 2 of Σ
Σ21 = A21A11

Σ22 = A2
21 + A2

22
...
Σ2d = A21Ad1 + A22Ad2

• Over row d of Σ
Σd1 = A11Ad1

Σd2 = A21Ad1 + A22Ad2
...
Σdd = A2

d1 + A2
d2 + . . .+ A2

dd

• While working through the rows and columns of Σ, in each equation,
exactly one new entry from A appears. Can solve for Aij

General Solution (when Σ is positive definite):

• Σij =
∑j

k=1AikAjk, for j ≤ i

• Gives: Aij = 1
Ajj

(Σij −
∑j−1

k=1 AikAjk), for j < i

Aii = (Σii −
∑i−1

k=1 A
i−1
ik)

1
2

• If Σ is positive semi-definite and not positive definite, one of these terms
will be zero

Algorithm (Cholesky Factorization):
Given Σ is symmetric and positive-definite
A← 0 ∈ Rdxd

for j=1:d
for i=j:d

vi = Σij

for k=1:j-1
vi ← vi − AjkAik

end
Aij ← vi/

√
vj

end
end
return A

35

Semi-Definite Σ (but not positive-definite):

• Σ is singular.

• If AAT = Σ, then A is singular.

• Suppose A is lower triangular. Since it’s rank deficient, some diagonal
element Ajj = 0.

• Therefore the Cholesky algorithm fails because of a division by 0.

• If Ajj = 0, we set column j of A to 0.

Algorithm:
Given Σ is symmetric and positive semi-definite but now positive-definite
Same as positive definite case with one update
A← 0 ∈ Rdxd

for j=1:d
for i=j:d

vi = Σij

for k=1:j-1
vi ← vi − AjkAik

end
if vj > 0

Aij ← vi/
√
vj

end
end

end
return A

Problem:
In practice, if vj > 0 is checking that vj 6= 0, however, if vj should be 0, it
may be positive and very small on a machine.

36

Problem Reduction:

• X ∼ N(0,Σ)

• Suppose rank(Σ) = k < d

• The components of x ∈ Rd can be expressed as a linear combination of
k components i.e. ∃ a subvector x̃ of x and a matrix D ∈ Rd×k such
that Dx̃ ∼ N(0,Σ) and the covariance matrix of x̃, Σ̃ has full rank k

• We can find the Cholesky factorization of Σ̃, Σ̃ = ÃÃT

• We recover x using x = DÃZ, Z ∼ N(0, Id)

• Situation arises if d variables are generated using k < d sources of un-
certainty

Generating Sample Paths

Stochastic Process:
A standard one-dimensional Brownian Motion is a stochastic process, Wt : 0 ≤ t ≤ T
such that:

1. W0 = 0

2. Wt is continuous on [0, T] almost surely

3. W has independent increments

4. (Wt −Ws) ∼ N(0, t− s) for any 0 ≤ s < t ≤ T

Notes:

• In many applications we need the entire path of an asset price

• For constants µ, σ > 0, we call a process Xt a Brownian Motion with
drift µ and diffusion coefficient σ2

– X ∼ BM(µ, σ2) if Xt−µt
σ

is a standard Brownian Motion

37

– given a standard Brownian Motion Wt, a Brownian Motion X ∼
BM(µ, σ2) can be constructed by setting Xt = µt+ σWt

• Further, Xt solves the stochastic differential equation dXt = µdt+σdWt

• A Brownian Motion can be defined with deterministic drift µ(t) and
diffusion coefficient σ(t) through dXt = µ(t)dt+ σ(t)dWt

• Stochastic integration is needed to find the solution:

Xt = X0 +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dWs (43)

• In this case (Xt −Xs) ∼ N(
∫ t
s
µ(u)du,

∫ t
s
σ2(u)du)

Random Walk Construction:

• focus: simulate Brownian Motion at a fixed set of times 0 < t1 < t2 <
... < tn

• use the properties that increments are normal and independent

• suppose Z1, Z2, ..., Zn ∼ N(0, 1) independently

• set t0 = 0 and W0 = 0

• generate a standard Brownian Motion using:

Wti+1
= Wti +

√
ti+1 − tiZi+1, fori = 0, 1, ..., n− 1 (44)

• to generate X ∼ BM(µ, σ2) given X0, then:

Xti+1
= Xti + µ(ti+1 − ti) + σ

√
(ti+1 − ti)Zi+1 (45)

• for Brownian Motion with time dependent µ(t) and σ(t)

Xti+1
= Xti +

∫ ti

ti+1

µ(s)ds+

√∫ ti

ti+1

σ2(u)duZi+1 (46)

38

• These methods are exact, meaning that the joint distribution of the
simulated values match that of the true Brownian Motion.

– for values between ti and ti+1 there is error

– usually linearly interpolate between the times

Alternative Construction:

• Consider the vector [Wt1 ,Wt2 , ...,Wtn]T

• This is a linear transformation of the increments [Wt1 −Wt0 , ...,Wtn −
Wtn−1]
These increments are independent and normally distributed
Therefore [Wt1 ,Wt2 , ...,Wtn] is multivariate normal

• E[Wti]=0

• Cov(Ws,Wt) = Cov(Ws,Ws) + Cov(Ws,Wt −Ws) = V ar[Ws] = s

• Let C be the covariance matrix for [Wt1 ,Wt2 , ...,Wtn]T

Then, Cij = min(ti, tj)

• This random vector has mean 0

• Since [Wt1 ,Wt2 , ...,Wtn]T ∼ N(0, C), simulate using AZ, where Z is a
vector of standard normals and A is the Cholesky factorization of C

• The Cholesky factorization of C gives:

A =

√
t1 0 0 . . . 0 0√
t1
√
t2 − t1 0 . . . 0 0

...
...

...
...

...
...√

t1
√
t2 − t1

√
t3 − t2 . . .

√
tn−1 − tn−2 0√

t1
√
t2 − t1

√
t3 − t2 . . .

√
tn−1 − tn−2

√
tn − tn−1

(47)

39

Standard Brownian Motion:
A process Wt = [W1(t), ...,Wd(t)]

T , is a standard Brownian Motion on Rd if:

1. W0 = 0

2. W has continuous sample paths almost surely

3. W has independent increments

4. (Wt −Ws) ∼ N(0, (t− s)I)

Each Wi(t), i=1,...,d is a standard Brownian Motion

Brownian Motion: Suppose µ ∈ Rd and Σ ∈ Rd×d which is positive semi-
definite. Say X is a Brownian Motion with drift µ and covariance Σ if X
has continuous sample paths and independent increments with (Xt, Xs) ∼
N((t− s)µ, (t− s)Σ)

If B ∈ Rd×k is such that BBT = Σ and W is a standard Brownian Motion
on Rk, then Xt = µt+BWt is a BM(µ,Σ), where X solves dXt = µdt+BdWt

Simulation:

• Let Z1, Z2, ... ∼ N(0, 1) independent. To simulate Wt, apply the one-
dimensional random walk construction to each componenet of Wt.

Wj(ti+1) = Wj(ti) +
√
ti+1 − tiZi+1 (48)

i=0,1,...,n-1, for each j

• To simulate Xt ∼ BM(µ,Σ)

1. find B ∈ Rdxk such that BBT = Σ

2. set X0 = 0

3. Xti+1
= Xti + µ(ti+1 − ti) +

√
ti+1 − tiBZi

Geometric Brownian Motion:
A stochastic process St is a geometric Brownian Motion if ln(St) is a Brown-
ian Motion with initial value ln(S0). To simulate geometric Brownian Motion
use exponentiation.

40

Fundamental Property for Financial Modeling:
If St is geometric Brownian Motion, then St does not have independent in-

crements. Instead,
St2−St1

St1
,
St3−St2

St2
, ...,

Stn−Stn−1

Stn−1
are independent.

Stochastic Differential Equation for Geometric Brownian Motion:

• Suppose W is a standard Brownian Motion and X satisfies dXt = µdt+
σdWt

• Then X ∼ BM(µ, σ2)

• Let St = S0e
xt = f(xt), where S0 is the initial stock price

• dS = ft(xt)dt+ fx(xt)dXt + 1
2
fxx(xt)dX

2
t

• Thus dSt = 0 + S0e
Xt(µdt+ σdWt) + 1

2
σS0e

xtdt
dSt = St(µ+ 1

2
σ2)dt+ StσDWt

dSt

St
= (µ+ 1

2
σ2)dt+ σDWt

• This is a differnt stochastic differential equation than what is usually
used for geometric Brownian Motion.

• The usual model is: dSt

St
= µdt + σdWt, where µ is the drift for the

geometric Brownian Motion

• If St ∼ GBM(µ, σ2), then the solution is St = S0e
(µ− 1

2
σ2)t+σWt

• For u < t, St = Sue
(µ− 1

2
σ2)(t−u)+σ(Wt−Wu)

• To simulate, use Sti+1
= Stie

(µ− 1
2
σ2)(ti+1−ti)+σ

√
ti+1−tiZi+1

• The exponential is the randsom walk construction of the brownian mo-
tion with drift µ− 1

2
σ2

• The method is exact. i.e. the resulting vector [St1 , ..., Stn]T has the
joint deistribution of St ∼ GBM(µ, σ2) at times t1, ..., tn

41

Notation:

• Money Market Account: 1 dollar invested at time t=0 has time t value
β(t) = ert

• Is S pays no dividends, dSt

St
= µdt+ σdWt

• No arbitrage condition: under the risk neutral measure, µ = r, where
r is the interest rate

• In the risk neutral world, all assets have the same average rate of return

• Further, under hte risk neutral measure, the discounted stock price,
St

β(t)
is a martingale

Path Dependent Payoffs:
path = geoBrownianMotion(µ, σ,N)

Asian Option (with discrete monitoring):
Call: Payoff = (S̄ −K)+

Put: Payoff = (K − S̄)+

where K is the strike price and S̄ = 1
n

∑n
i=1 S(ti) is the average price of the

underlying over monitoring dates t1, t2, ..., tn

Asian Option (with continuous monitoring):
S̄ = 1

t−u

∫ t
u
S(τ)dτ

Continuous average of S over [u,t]
More difficult to simulate
Can find analytic solutions in some cases

42

Barrier Options:
Down-and-out call option has barrier b, strik K, and expiry T
Payoff = 1{τ(b)>T}(ST −K)+

where τ(b)− inf{ti : Sti < b} is the first time in t1, ..., tn that the under-
lying price drops below b

Example:
Below used discrete monitoing simulate by sampling S(t0), S(t1), ..., S(tn)
and keep generating price paths and taking the average
Here the Payoff=0 because it breaks the barrier (Up-and-out), however if the
barrier was set at 4, Payoff=(ST −K)+

In the continuous monitoring case τ̃(b) = inf t ≥ 0 : St < b, and often get
analytic solutions

Figure 3: Barrier Option

43

Lookback Options:
Discrete versions:

Put: Payoff = max(Sti)− Stn for i=1,2,...,n
Call: Payoff = Stn −max(Sti) for i=1,2,...,n

Call: profit from buying the underlying at the lowest price over t1, ..., tn and
selling at the final price
Continuous versions:

Put: Payoff = max(St)− ST for t ∈ [0, t]
Call: Payoff = ST −max(St) for t ∈ [0, t]

Incorporate a Term Structure of Interest Rates:

• If we have a constant interest rate r, the time-t price of a zero-coupon
bond paying 1 dollar at time T > t is B(t, T) = e−r(T−t)

• In reality, r is not constant

• We determine the term structure of interest rates using a collection of
bond prices

• Define time-varying interest rate r(u) by r(u) = − ∂d
∂dt

[B(0, t)]|T=u

• Solve for B(0,T) to get B(0, T) = e−
∫ T
0 r(u)du

• Under the risk-neutral measure, the dynamics of an asset price are
dSt

St
= µ(t)dt+ σdWt with solution St = S0e

∫ t
0 r(u)du− 1

2
σ2t+σWt

• Can simulate over 0 = t0 < t1 < ... < tn using

Sti+1
= Stie

∫ ti+1
ti

r(u)du− 1
2
σ2(ti+1−ti)+σ

√
ti+1−tiZi+1 ,

where Z1, ..., Zn are independent N(0,1)

• Suppose bond prices B(0,t) are observed

B(0, ti)

B(0, ti+1)
=

e−
∫ ti
0 r(u)du

e−
∫ ti+1
0 r(u)du

= e
∫ ti+1

ti
r(u)du (49)

• The simulation simplifies to Sti+1
= Sti

B(0,ti)
B(0,ti+1)

e−
1
2
σ2(ti+1−ti)+σ

√
ti+1−tiZi+1 , i =

0, 1, ..., n− 1

44

Assets with Dividends:

• Holding a single share of an asset is no longer self-financing, strategy
must deal with the dividends.

• If dividends are automatically reinvested into the asset, then the stat-
egy is self-financing. Required neither withdrawls or deposits and the
number of shares changes over time.

Model:

• St is the underlying asset price

• S̃t is the asset price with dividends reinvested

• dSt

St
= µdt+ σdWt

• dS̃t

S̃t
= dSt+dDt

St

• dDt is the divident payment over dt

• S̃t will have continuous paths. If Dt jumps, then St jumps in the
opposite direction to offset

• In this case S̃t

β(t)
is a martingale under the risk-neutral measure instead

of St

β(t)
which shows that it’s a very natual thing to reinvest dividends

• Suppose an asset pays a continuous dividend yield at a rate δ , then
dDt = δStdt

• Therefore dS̃t

S̃t
= dSt+δStdt

St
= dSt

St
+ δdt

no jumps because it’s continuous dividends

• Therefore (µdt+ σdWt) + δdt = (µ+ δ)dt+ σdWt

for no arbitrage, µ+ δ = r

• dSt

St
= µdt+ σdWt = (r − δ)dt+ σdWt

• Risk neutral dynamics of an asset price with continuous dividend yield
δ

45

• St = S0e
(r−δ− 1

2
σ2)t+σWt

dividend yield reduced the growth rate of the underlying

Applications:

1. Equity Indecies
Often model an index as a geometric brownian motion
The index itself does not pay dividends, but the stocks that make up
the index might
There are a wide range of dividends on different dates
Can approximate with continuous dividend yield

2. Exchange Rates
S is an exchange rate
A unit of foriegn currency earns interest at rate r, which can be viewed
as a dividend stream
To model S as geometric brownian motion, µ = r − rf

3. Commoditites
Physical commodities like gold and oil
Cost of storage acts as a negative dividend yield
Also have the benefit of being able to sell or consume when there’s a
shortage, quantified with a convenience charge
Net dividend yield is different between the two

Multiple Dimensions:

• Specify a multidimensional geometric brownian motion through the
system

dSi(t)

Si(t)
= µidt+ σidXi(t) (50)

• Xi(t) is a standard one-dimensional brownian motion

• Xi and Xj have correlation ρij

• Letting Σij = σiσjρij defines Σ ∈ Rdxd

46

• X(t) ∼ BM(0,Σ) and S ∼ GBM(µ,Σ)

• Σ is the covariance matrix for X(t), not S, same for µ

• ABM(0,Σ) can be represented as AW(t), where W(t) is a d-dimensional
standard BM(0, T) amd A is any matrix such that AAT = Σ

• Apply to above to get dSi(t)
Si(t)

= µidt+ aidW (t)

• Explicitly dSi(t)
Si(t)

= µidt+ Σd
j=1AijdWj(t)

Simulation:

• Solution is Si(t) = Si(0)e(µi− 1
2
σ2

i)t+
∑d

j=1 AijWj(t)

• Can use this form to simulate GBM(µ,Σ)

• Simulate at 0 < t0 < t1 < ... < tn:
Si(tk+1) = Si(tk)e

(µi− 1
2
σ2

i)(tk+1−tk)+
√
tk+1−tk

∑d
j=1 AijZk+1,j

Choose A as the Cholesky factor of Σ and the number of computations
are reduced

• If asset Si has dividend yield δ i, set µi = r − δ i

Application:

1. Spread Option
A call option on the spread between two assets, S1, S2 with strike K
and expiry T
Payoff = ([S1(T)− S2(T)]−K)+

Example: crack spread: option on the spread between heating oil and
crude oil futures

2. Basket Option
An option on a portfolio of underlying assets
Example: Payoff = ([c1S1(T) + c2S2(T) + ...+ cdSd(T)]−K)+

Could be related assets such as currencies or stocks in the same eco-
nomic sector

3. Outperformance Option
Options on the maximum or minimum of mulitple assets
Example: Payoff = (max[c1S1(T) + c2S2(T) + ...+ cdSd(T)]−K)+

47

4. Barrier Option
Can be knock-in or knock-out and there are many variations
Example: Down-and-in put option on S1 that knowck in when S2 drops
below the barrier
Payoff = 1{minS2(ti)<b}(K − S1(T))+

S1 could be a stock and S2 an index

5. Quantos
Options that depend on both an underlying asset and an exchange rate
Example: An option to buy a stock denominated in a foreign currency,
with the strike price fixed in the foreign currency, but the payoff is to
be made in the domestic currency.
Payoff = S2(T)(S1(T)−K)+

where S1 is the stock price and S2 is the exchange rate

Variance Reduction Techniques:
Goal is to increase the efficiency of Monte Carlo Methods by reducing the
variance of simulation estimates, which is often done by exploiting features
or specific problems.

Control Variates:

• Exploit information about the error in estimates of known quantities
to reduce the error in an estimate of an unknown quantity

• Let Y1, ..., Yn be outputs of n runs of a simulation
Yi could be the discounted payoff of an option on the ith simulated path
Assume the Yi are independent and identically distributed

• Want to estimate E(Yi)

• Estimator: Ȳ = 1
n

∑n
i=1 Yi

This estimator is unbiased and converge to E(Yi) almost surely

• Suppose on each replication, another outputXi is calculated in addition
to Yi

• Assume the pairs (Xi, Yi), i=1,...,n are independent and identically
distributed and E(Xi) is known

48

• For any fixed b, calculate Yi(b) = Yi−b[Xi−E(X)] for the ith replication

• Calculate the sample mean: Ȳ (b) = Ȳ − b[X̄ − E(X)] = 1
n

∑n
i=1[Yi −

b[Xi − E(X)]]
Called the control variance estimator
The observed error, X̄ − E(X) is a control in estimating E(Y)

• E(Ȳ (b)) = E[Ȳ − b(X̄ − E(X))] = E[Y]− b(E[X̄]− E[X]) = E[Y]
Therefore Ȳ (b) is an unbiased estimator of E[Y]

• As n→∞ :
limȲ (b) = lim 1

n

∑n
i=1[Yi − b(Xi − E[X])] = E[Y] − bE[X] + bE[X] =

E[Y]
Therefore Ȳ (b) is a consistency estimator of E[Y]

• V ar[Yi(b)] = V ar[Yi− b(Xi−E[X])] = E(Y 2
i)− 2bE[Yi(Xi−E[X])] +

b2E[(Xi − E[X])2]− (E[Yi])
2 = σ2(b)

• The control variate estimator Ȳ (b) has variance:

V ar[Ȳ (b)] = V ar[1
n

∑n
i=1 Yi(b)] = V ar[Yi(b)] = σ2(b)

n

• The sample mean, Ȳ , has variance V ar[Ȳ] =
σ2

Y

n
= σ2(0)

n
(can choose

b=0)

• Want a reduction in variance, V ar[Ȳ (b)] < V ar[Ȳ]

• This holds if σ2(b)
n

<
σ2

Y

n

if and only if b2σ2
X < 2bσXσY ρXY

• To minimize σ2(b), d[σ2(b)]
db

= 0 = −2σXσY ρXY + 2bσ2
X

Therefore b = σXσY ρXY

σ2
X

= Cov(X,Y)
V ar[X]

= b∗

• σ2(b∗) = ρ2
Y − 2σY ρXY

σX
σXσY ρXY + (σY ρXY

σX
)2σ2

X = σ2
Y (1− ρ2

XY)

• Compute the ratio of the optimally controlled estimator to that of the
uncontrolled estimator:
σ2(b∗)
σ2(0)

=
σ2

Y (1−ρ2XY)

σ2
Y

= 1− ρ2
XY

49

Notes:

• The strength of the correlation between X and Y determines the effec-
tiveness of the control variate

• The variance reduction factor = 1
1−ρ2XY

• By using the control variate, this is the variance reduction

Examples:

• If ρXY = .95, then there’s a ten-fold reduction

• If ρXY = .9, then there’s a five-fold reduction

• If ρXY = .7, then there’s a two-fold reduction

• Strong correlation is required to get A benefit

• Often σY and ρXY are unknown, so estimate B∗. If the parameters are
replaced with their sample counterparts, gives:

b̂n =
∑n

i=1(Xi−X̄)(Y−i−Ȳ)∑n
i=1(Xi−X̄)2

• Multiply top and bottom by 1
n
, strong law of large numbers implies

b̂n → b∗ almost surely

• Can use Ȳ (b̂n) as an estimator, Yi(b̂n) = Yi − b̂n(Xi − E[X]), which
adds a little bias

• b̂n is the slope of the least squares regression line, through the points
(Xi, Yi)

• The control variate estimate Ȳ (b̂n) is the value fitten by the line at E[X]

50

Example: Underlying Assets

• The absence of arbitrage is equivalent to the requirement that dis-
counted asset prices are martingales under the risk-neutral measure.

• If r is the constant interest rate, e−rtSt is a martingale.

• Given S0, by above, if St is adapted to the filtration Ftt≥0, then E[e−rtSt] =
E[e−rtSt|F0] = S0

• Suppose want to price an option on S with discounted payoff Y

• Assume Y is a function of the price path

• Form independent price path replications S1, ..., Sn over [0, T] of S and
form the control variate estimator 1

n

∑n
i=1[Yi − b(Si(T)− ertS(0))]

• If pricing a call, Y = e−rt(ST −K)+

• The correlation between T and ST depends on K
If K=0, ρ = 1
If K is large and option is deep out of the money, ρ is small

51

Appendix

HW 1 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday January 27, 2009

You must compose your assignments independently; however, you may
discuss your work with one another at the rough level.

1. (10 Points) Suppose you hold two European call options on the same
underlying asset with the same expiry T . The underlying asset has
time-t price St. The strike prices of the opitions are K1 and K2 where
K1 < K2. Carefully sketch the payoff diagram of your portfolio. Make
sure to label your diagram and indicate the slopes of the different linear
parts of the graph.

2. (10 Points)Consider two European put options on the same underlying
asset with the same expiry T . The underlying asset has time-t price
St. The strike prices of the opitions are K1 and K2 where K1 < K2.
Suppose you buy one put option with strike K2 and you write one put
option with strike K1. Carefully sketch the payoff diagram of your
portfolio. This position is called a Bear Spread. Why is it given this
title?

3. (30 Points) Assuming Wt is a standard Brownian motion, use Ito’s
formula to derive stochastic differential equations for the following pro-
cesses:

(a) Xt = e
1
2
t sin(Wt)

(b) Yt = e
1
2
t cos(Wt)

(c) Zt = (1 + 1
3
Wt)

3. In this case your solution should be simplified
to be in terms of Zt.

52

HW 1 Solutions - Math 573, Marcel Blais, Spring 2009

1. Payoff =
y = 0 , ST < K1 < K2

y = ST −K1 , K1 < ST < K2

y = 2ST −K1 −K2 , K1 < K2 < ST

2. Payoff =
y = K2 −K1 , ST < K1 < K2

y = K2 − ST , K1 < ST < K2

y = 0 , K1 < K2 < ST
This option is used to hedge risk in a bear market (when the market is
going down), hence the name.

3. (a) Xt = e1/2t sin(Wt)
We set g(t, x) = e1/2t sin(x). Thus gt = 1

2
g, gx = e1/2t cos(x), and

gxx = −g.
Using Ito’s formula, we get
dXt = 1

2
gdt+ e1/2t cos(Wt)dWt + 1

2
(−g)dt

and dXt = e1/2t cos(Wt)dWt

(b) Yt = e1/2t cos(Wt)
We set g(t, x) = e1/2t cos(x). Thus gt = 1

2
g, gx = −e1/2t sin(x),

and gxx = −g.
Using Ito’s formula, we get
dXt = 1

2
gdt− e1/2t sin(Wt)dWt + 1

2
(−g)dt

and dXt = −e1/2t sin(Wt)dWt

(c) Zt = (1 + 1
3
Wt)

3. In this case your solution should be simplified
to be in terms of Zt.
We set g(t, x) = (1 + 1

3
x)3. Thus gt = 0, gx = (1 + 1

3
x)2 = g2/3,

gxx = 2
3
(1 + 1

3
x) = 2

3
g1/3.

Using Ito’s formula gives
dZt = 0dt+ g2/3dWt + 1

3
g1/3dt

and dZt = 1
3
Z

1/3
t dt+ Z

2/3
t dWt

53

HW 2 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday February 3, 2009

You must compose your assignments independently; however, you may
discuss your work with one another at the rough level.

1. (10 Points) Suppose a stock price is governed by dSt

St
= µdt + σdWt.

Consider a European digital call option written on this stock with strike
price K and maturity time T . At time T , this option pays $1 if ST > K
and $0 if ST ≤ K. What is the boundary value problem that determines
the time-t value of this option?

2. (a) (5 Points) Show that

lim
h→0

4u(x+ h, t)− u(x+ 2h, t)− 3u(x, t)

2h
(51)

is a valid definition of ∂u
∂x

.

(b) (10 Points) Show that if we use

∂u

∂x
≈ 4u(x+ ∆x, t)− u(x+ 2∆x, t)− 3u(x, t)

2∆x
(52)

that the error of our approximation is O([∆x]2).

Hint: Use Taylor series to show that

∂u

∂x
=

4u(x+ ∆x, t)− u(x+ 2∆x, t)− 3u(x, t)

2∆x
+c2∆x2+c3∆x3+c4∆x4

(53)

3. (10 points) Consider the approximation

∂2u

∂x2
≈ u(x+ 2∆x, t)− 2u(x+ ∆x, t) + u(x, t)

(∆x)2
(54)

.

Determine the order of error of this approximation. Is this approxima-
tion to ∂2u

∂x2 more or less accurate than the approximation we derived in
class? Why?

54

HW 2 Solutions - Math 573, Marcel Blais, Spring 2009

1. We denote the option value by V(S,t). The boundary value problem
consists of

• V must satisfy the Black-Scholes-Merton PDE,

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
= rV (55)

• The final condition is given by the payoff,

V (S, t) =
1 ifST ≥ K
0 ifST ≤ K

(56)

• If the stock price is zero, it never escapes from zero, and thus the
option will have a payoff of zero at maturity. We thus set

V (0, t) = 0 (57)

• As S →∞, it becomes more and more likely that the option will
be exercised. Thus we set

V → 1− as S →∞ (58)

2. (a) limh→0
4u(x+h,t)−u(x+2h,t)−3u(x,t)

2h

= limh→0[4ux(x+ h, t)− ux(x+ 2h, t)− 3ux(x, t) · 0] · 1
2

= 2ux(limh→0[x+ h], t)− ux(limh→0[x+ 2h], t)
= 2ux(x, t)− ux(x, t) = ux(x, t)

(b) We use the Taylor series expansions

u(x+ h) = u(x) + u′(x)h+ 1
2
u′′(x)h2 + 1

3!
u′′′(x)h3 + ...

u(x+ 2h) = u(x) + u′(x)2h+ 1
2
u′′(x)(2h)2 + 1

3!
u′′′(x)(2h)3 + ...

(59)
Setting h = ∆x in above and supressing the notation for depen-
dency on t gives

4u(x+ ∆x, t)− u(x+ 2∆x, t)− 3u(x, t)

2∆x
= u′(x)−2

3
u′′′(x)(∆x)2+O([∆x]3)

(60)
Thus our approximation to ∂u

∂x
has an O([∆x]2) error.

55

3. Setting h = ∆x in (59) and supressing the notation for dependency on
t gives

(x+ 2∆x, t)− 2u(x+ ∆x, t) + u(x, t)

(∆x)2
= u′′(x)+u′′′(x)(∆x)+O([∆x]2)

(61)
Thus the error of our approximation is O(∆x). This error is larger
than the error of the approximation that we used in lecture.

56

HW 3 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday February 10, 2009

You must compose your assignments independently; however, you may
discuss your work with one another at the rough level.

1. (20 Points) The Black-Scholes-Merton partial differential equation can
be written

∂u

∂t
= r

∂u

∂x
x+

1

2
σ2∂

2u

∂x2
x2 − ru. (62)

Using the spatial finite differences

∂u

∂x
=
ui+1 − ui−1

2∆x
+O(∆x2) (63)

and
∂2u

∂x2
=
ui+1 − 2ui + ui−1

(∆x)2
+O(∆x2) (64)

discretize (62) in x to form a system of ordinary differential equations.
Express this system of equations in martix-vector form.

2. (10 Points) Find the eigenvalues and corresponding eigenvectors of the
matrix

M =

 2 0 0
1 −1 −2
−1 0 1

.

3. (10 Points) Prove that if A ∈ Rn×n, then AAT and ATA have the same
eigenvalues.

57

HW 3 Solutions - Math 573, Marcel Blais, Spring 2009

1. The resulting linear system is

du

dt
= Au + ε (65)

where u = [u0, u1, . . . , un]T ,

A =

1 −2 1 0 0 . . . 0
β1 −γ1 α1 0 0 . . . 0
0 β2 −γ2 α2 0 . . . 0
0 0 β3 −γ3 α3 . . . 0
...

...
...

...
0 0 . . . 0 βn−1 −γn−1 αn−1

0 0 . . . 0 1 −2 1

(66)

and αi = 1
2
[r
∆x
xi + σ2

(∆x)2
x2
i],

βi = 1
2
[− r

∆x
xi + σ2

(∆x)2
x2
i],

γi = r + σ2

(∆x)2
x2
i .

2. The characteristic polynomial for M is

(λ− 2)(λ− 1)(λ+ 1). (67)

The eigenvalue-eigenvector pairs are−1,

 0
1
0

,

1,

 0
−1

1

, and

2,

 1
1
−1

.

58

3. Suppose λ is an eigenvalue of AAT . Then for some vector x ∈ Rn with
x 6= 0,

(AAT − λI)x = 0. (68)

We can multiply both sides of (68) by AT and use the fact that
AT I = IAT to get

(ATAAT − λIAT)x = 0. (69)

We factor AT out of the expression on the right hand side to get

(ATA− λI)(ATx) = 0. (70)

Note that ATx ∈ Rn. We have two cases:

• If λ 6= 0, by (68) we have

AATx = λx 6= 0. (71)

If ATx = 0, then (71) would not hold. Thus ATx 6= 0, and
ATx ∈ Rn is an eigenvector for ATA corresponding to the eigen-
value λ by (70).

• If λ = 0, then AAT is singular. This means that A and AT are
both singular, and thus ATA is also singular. A singular matirx
has λ = 0 as an eigenvalue, thus λ = 0 is an eigenvalue of ATA.

In both cases we see that λ is an eigenvalue for ATA.

We repeat this argument for an eigenvalue λ of ATA and conclude that
λ is also an eigenvalue for AAT . This shows that ATA and AAT have
the same eigenvalues.

59

HW 4 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday February 17, 2009

You must compose your assignments independently; however, you may
discuss your work with one another at the rough level.

1. (25 Points) Show that the Crank-Nicolson finite difference scheme for

dv

dt
= λv (72)

is the only possible second-order accurate scheme that can result from
a weighted average of the implicit Euler method and the explicit Euler
method.

Can you find a weighted average that gives you a first-order accu-
rate finite difference scheme that is different from the Crank-Nicolson
scheme?

Hint: Consider the average

θ
dv

dt
|n + (1− θ)dv

dt
|n+1 (73)

for θ ∈ [0, 1].

60

2. (10 Points) Using Matlab find1 a factorization of the 6× 6 matrix A

A =

−25 −2 14 0 0 0
−2 −22 5 −8 0 0
14 5 −54 16 7 0
0 −8 16 −26 10 −15
0 0 7 10 −20 −1
0 0 0 −15 −1 −35

 (74)

such that A = XLX−1. L and X should have the form

L =

λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 λ3 0 0 0
0 0 0 λ4 0 0
0 0 0 0 λ5 0
0 0 0 0 0 λ6

 , (75)

X =
[

v1 | v2 | v3 | v4 | v5 | v6 |
]

(76)

where λ1, λ2, λ3, λ4, λ5, λ6 are the eigenvalues of A, and the columns of
X are the corresponding eigenvectors v1,v2,v3,v4,v5,v6. Make sure
to check that your solution is correct.

Your complete solution should be coded in a script file (all commands
should be saved in the m-file) called number2.m. For this problem
submit the following

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of a test run of your m-file.

1Hint: Check out the Matlab function “eig”.

61

3. (15 Points) Consider the PDE,

∂u

∂t
= r

∂u

∂x
+

1

2
σ2∂

2u

∂x2
− ru. (77)

Write a Matlab function called spatialCoeffs that takes inputs

• the spatial step ∆x,

• the number of space grid points N ,

• the volatility σ,

• the interest rate r,

and returns the matrix A that results from the spatial discretization of
(77) that we covered in lecture 3.

Note that since this is a function, it should neither prompt the user nor
print any output. The top line of your m-file spatialCoeffs.m should be

function[A] = spatialCoeffs(deltaX,r,N,sigma). (78)

You function returns the resulting matrix as an argument. You can
thus use your function at the Matlab prompt in the following manner

>> “myMatrix = spatialCoeffs(.01,.05,100,2)”. (79)

Your complete solution should be coded in an m-file called spatialCo-
effs.m. For this problem submit the following

• A printout of your m-file,

• an electronic version of your m-file sent to me sent to me as an
attachment in an email, and

• a printout of two test runs of your m-file.

62

HW 4 Solutions - Math 573, Marcel Blais, Spring 2009

1. Using the hint, set

θ
dv

dt
|n + (1− θ)dv

dt
|n+1 =

vn+1 − vn

∆t
(80)

We now use the ODE to set dv
dt
|n = λvn, and dv

dt
|n+1 = λvn+1. Substitute

into above to get

θλ∆t · vn + (1− θ)λ∆t · vn+1 = vn+1 − vn (81)

We rewrite this as [1− (1−θ)λ∆t]vn+1− [1+θλ∆t]vn = 0. Introducing
the shift operator E, this becomes

[1− (1− θ)λ∆t]Evn − [1 + θλ∆t]vn = 0 (82)

We define P(E) so that above becomes P (E)vn by

P (E) = [1− (1− θ)λ∆t]E − [1 + θλ∆t] (83)

Solving P (Λ) = 0 gives us the amplification error of our finite difference
scheme,

Λ =
1 + θλ∆t

1− (1− θ)λ∆t
(84)

We now consider the function f(x) = 1
1−(1−θ)x . We want to write

this as a power series and then substitute x = λ∆t to build a series
representation for Λ. Considering f to be the sum of a geometric series
with a=1 and r = (1− θ)x gives

f(x) =
∞∑
k=0

[(1− θ)x]k (85)

We observe that

f(x)(1 + θx) =
∞∑
k=0

([(1− θ)x]k + θx[(1− θ)x]k) (86)

This simplifies to

f(x)(1 + θx) = 1 + x+ (1− θ)x2 +O(x3) (87)

63

The Maclaurin series expansion of ex is

ex = 1 + x+
1

2
x2 +O(x3) (88)

Noting that Λ = f(λ∆t)(1 + θλ∆t) and that eλ∆t can be obtained
from the above equation, we compare the two series representations to
detect the order of accuracy of our method. We see that regardless of
our choice of θ, our method is first-order accurate because the constant
and x terms match. This is consistent with the results that the implicit
Euler method (θ = 0) and the exlicit Euler method (θ = 1) are first-
order accurate. However, we see that in order to have the x2 terms
match, we require θ = 1

2
. This is the only way to get second-order

accuracy with this scheme.

2. Matlab Code:
% factor the given A (a 6x6) matrix such that A = XLX−1
% L is a diagonal matrix formed by the eigenvalues of A
% X are the corresponding eigenvectors of A

A=

−25 −2 14 0 0 0
−2 −22 5 −8 0 0
14 5 −54 16 7 0
0 −8 16 −26 10 −15
0 0 7 10 −20 −1
0 0 0 −15 −1 −35

[X,L]=eig(A)
B = X ∗ L ∗ inv(X)
% Can see that A=B

64

3. Matlab Code:
% Takes imputs deltaX, r, N, and sigma to return alpha, gamma, beta
of the
% matrix A as well as the matrix A that results from spatial discretiza-
tion
% of the PDE.

function[A]=spatialCoeffs(deltaX,r,N,sigma)

alpha=(r/(2*deltaX))+((sigma2)/(2*(deltaX2)))
gamma=((sigma2)/(deltaX2))+r
beta=(-r/(2*deltaX))+((sigma2)/(2*(deltaX2)))
B=zeros(N);
c=(-gamma).*ones(N,1);
d=(alpha).*ones(N-1,1);
f=(beta).*ones(N-1,1);
A=diag(c)+diag(d,1)+diag(f,-1);
A(1,1)=1;
A(1,2)=-2;
A(1,3)=1;
A(N,N-2)=1;
A(N,N-1)=-2;
A(N,N)=1;
A;

65

HW 5 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday February 24, 2009

This homework counts as 1
3

of a regular homework.

You must compose your assignments independently; however, you may
discuss your work with one another at the rough level.

1. Consider a European put option with time t price P (S, t), strike price
K, and maturity T . Suppose that that interest rate r is constant. The
spatial boundary conditions for such an option are

• P (S, t)→ 0 as S →∞
• P (0, t) = Ke−r(T−t)

If we are pricing this option using finite difference methods, how should
we implement these boundary conditions?

Hint : Yes, this is a really easy problem.

66

HW 5 Solutions - Math 573, Marcel Blais, Spring 2009

1. We implement these boundary conditions in the following manner:

• For the first condition, P (S, t)→ 0 as S →∞, we set Smax to be
a large positive value. We then set P (Smax, t) = 0 for all t.

• For the second condition, P (0, t) = Ke−r(T−t), we set Smin to
be a small value, usually Smin = 0. We then set P (Smin, t) =
Ke−r(T−t).

67

HW 6 - Math 573, Marcel Blais, Spring 2009

Due by 5pm on Friday March 27, 2009

1. Using the Monte Carlo methods we covered in class on March 17, write
a Matlab program to calculate∫ 1

0

x2 dx. (89)

Your program should be written as a function integralMC saved in the
file integralMC.m. It should take n as an input and return both the
estimate of the integral and the error of the approximation. For this
problem submit the following

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of two test runs of your m-file using different values for
n.

68

2. Using the Monte Carlo methods we covered in class on March 17, write
a Matlab program that calculates the time zero no-arbitrage value of a
European call option and a European put option with strike price K,
underlying asset price St, and maturity T . Your program should be
written in the m-file euroOptionMC.m. It should take inputs

• the number of draws n,

• the initial underlying asset price S0,

• the interest rate r, and

• the volatiliy of the underlying σ.

Your program should output the estimated prices of the put and call,
along with 95% and 99% confidence intervals for each estimate. For
this problem submit the following

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of several test runs of your m-file using different values
for n.

69

HW 6 Solutions - Math 573, Marcel Blais, Spring 2009

1. Matlab Code:
%Using the Monte Carlo methods calculate the integral from 0 to 1 of
x2 dx
%takes n as an input and returns the estimation of the integral and the
%error of approximation

function[alpha hat]=integralMC(n);

f=zeros(n,1);
for ii=1:n
f(ii,1)=(rand(1));
end
f;

sum old=0;
for ii=1:n
sum new=(f(ii, 1)2)+sum old;
sum old=sum new;
end

sum=sum new;
alpha hat=(1/n)*sum;
errSum old=0;
for ii=1:n
errSum new=(f(ii,1)-alpha hat)2+errSum old;
errSum old=errSum new;
end

errSum=errSum new;
S f=sqrt(errSum/(n-1));
errorAprox=S f/(sqrt(n))

70

2. Matlab Code:
%Using the Monte Carlo mthods calculate the time zero no-arbitrage
value of a European call option and a European put option with strike
price K, underlying asset price S t, and maturity T. Ouputs the prices
of the put and call along with 95% and 99% confidenceintervals

n=10; %number of draws
S 0=5; %initial underlying asset price
r=.05; %interest rate
sigma=.001; %volatility of the underlying
T=6; %maturity
K=10; %strike price

c=zeros(n,1);
for ii=1:n
Z=randn(1);
S T=(S 0)*exp((r-(.5*(sigma2)))*T+(sigma*sqrt(T)*Z));
c(ii,1)=exp(-r*T)*max(S T-K,0);
end
c;
callSum=0;
for ii=1:n
callSum new=c(ii,1)+callSum;
callSum=callSum new;
end
callSum;
callPrice hat=callSum/n
cError=0;
for ii=1:n
cSum new=(c(ii,1)-callPrice hat)2+cError;
cError=cSum new;
end
cError;
S c=sqrt(cError/(n-1));

disp([’A 95% confidence interval for the call option price is
(’ , num2str(callPrice hat-(1.96*(S c/sqrt(n)))), ’, ’ ,

71

num2str(callPrice hat+(1.96*(S c/sqrt(n)))) , ’).’])
disp([’A 99% confidence interval for the call option price is
(’ , num2str(callPrice hat-(2.575*(S c/sqrt(n)))), ’, ’ ,
num2str(callPrice hat+(2.575*(S c/sqrt(n)))) , ’).’])

p=zeros(n,1);
for ii=1:n
Z=randn(1);
S T=(S 0)*exp((r-(.5*(sigma2)))*T+(sigma*sqrt(T)*Z));
p(ii,1)=exp(-r*T)*max(K-S T,0);
end
p;
putSum=0;
for ii=1:n
putSum new=p(ii,1)+putSum;
putSum=putSum new;
end
putSum;
putPrice hat=putSum/n
pError=0;
for ii=1:n
pSum new=(p(ii,1)-putPrice hat)2+pError;
pError=pSum new;
end
pError;
S p=sqrt(pError/(n-1));

disp([’A 95% confidence interval for the put option price is
(’ , num2str(putPrice hat-(1.96*(S p/sqrt(n)))), ’, ’ ,
num2str(putPrice hat+(1.96*(S p/sqrt(n)))) , ’).’])
disp([’A 99% confidence interval for the put option price is
(’ , num2str(putPrice hat-(2.575*(S p/sqrt(n)))), ’, ’ ,
num2str(putPrice hat+(2.575*(S p/sqrt(n)))) , ’).’])

72

HW 7 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday March 31, 2009

1. (10 Points) Write a Matlab function the generates uniformly distributed
pseudorandom numbers in [0, 1]. Use a linear congruential generator

xi+1 = (a · xi + c) mod m

ui+1 = xi+1

m

(90)

Your program should be written as a function linConGenerator saved
in the file linConGenerator.m. It should take modulus m, multiplier
a, c, seed x0, and N as inputs. It should return a vector of length N
containing the pseudorandom values.

For the pure case (c = 0), you program should check that the generator
has full period. If it does not have full period, your program should
print a warning to the user before returning its outputs.

For this problem submit the following

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of a few test runs of your m-file using different inputs.

73

2. (10 Points) The Burr distribution with parameters c, k > 0 has cumu-
lative distribution function

F (x) = 1− (1 + xc)−k (91)

and density function

f(x) = ck
xc−1

(1 + xc)k+1
(92)

for x > 0.

Using the inverse transform method, give a formula for generating sam-
ples of the Burr distribution from independent uniform random vari-
ables on [0, 1], U1, U2, U3, . . .

3. (10 Points) Write a Matlab function the generates non-negative pseu-
dorandom samples from the exponential distribution with
parameter θ.

Your program should be written as a function exponentialGenerator
saved in the file exponentialGenerator.m. It should take N and θ as
inputs. It should return a vector of length N containing the pseudo-
random values.

You can use Matlab’s rand function or your linear congruential gener-
ator from the first problem.

For this problem submit the following

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of a few test runs of your m-file using different inputs.

74

HW 7 Solutions - Math 573, Marcel Blais, Spring 2009

1. Matlab Code:
%Generates uniformly distributed pseudorandom numbers in [0,1]
%takes inputs m,a,c,x 0, and N
%returns vector of length N containing pseudorandom values

function[u]=linConGenerator(m,a,c,x 0,N);
x=zeros(N,1);
x old=x 0;
for ii=1:N
x new=mod((a*x old+c),m);
x(ii,1)=x new;
x old=x new;
end
x;
u=zeros(N,1);
for ii=1:N
u(ii,1)=x(ii,1)/m;
end
u;
p=zeros(5,1);
if c==0
p(1,1)=0;
else p(1,1)=1;
end
k=1;
for jj=1:m-2
if mod((ajj)-1,m)==0;
k=0;
end
end
if k==0
p(2,1)=1;
else p(2,1)=0;
end
if mod(((am−1)-1),m)==0

75

p(3,1)=0;
else p(3,1)=1;
end
if x 0==0
p(4,1)=1;
else p(4,1)=0;
end
if isprime(m)
p(5,1)=0;
else p(5,1)=1;
end
if c==0
if p==zeros(5,1)
disp(’generator has full period’)
else disp(’generator does not have a full period’)
end
end
u;

2. Invert F(x)
U = 1− (1 + xc)−k

U − 1 = −(1 + xc)−k

1− U = (1 + xc)−k

(1− U)1/k = 1 + xc

((1− U)1/k − 1)1/c = x
If U is from Unifrom[0,1], then (1-U) is also from Uniform[0,1], so can
use ((U)1/k − 1)1/c = x

76

3. Matlab Code:
%Generate non-negative pseudorandom samples from an exponential
distribution with mean theta. Input N and theta.

function[x]=exponentialGenerator(N,theta)

u=zeros(N,1);
for ii=1:N
u(ii,1)=rand(1);
end
u;

x=zeros(N,1);

if theta¿0
for ii=1:N
x(ii,1)=(-1)*theta*log(u(ii,1));
end
else
for ii=1:N
x(ii,1)=theta*log(u(ii,1));
end
end
x;

77

HW 8 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday April 7, 2009

1. Prove the following:

(a) (10 Points) Suppose that Σ ∈ Rd×d is positive definite. Show that
Σ is invertible.

(b) (10 Points) Suppose that Σ ∈ Rd×d is positive semidefinite but
not positive definite. Show that Σ is singular.

(c) (10 Points) Suppose that A ∈ Rd×d is invertible. Show that ATA
is positive definite.

2. (a) (15 Points) Suppose X is a random variable on [0, 1] with density
function f(x) = 20x(1 − x)3. Using the uniform distribution on
[0, 1] and the acceptance-rejection method, give an algorithm for
generating samples from X.

(b) (10 Points) Write a Matlab function that generates N pseudoran-
dom samples of X. Your program should be written as a function
HW8 saved in the file HW8.m. It should take N as an input, and
it should return a vector of length N containing the pseudorandom
values. For this problem submit the following

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attach-
ment in an email, and

• a printout of a few test runs of your m-file using different
inputs.

78

3. (15 Points) Write a Matlab function that generates N samples from
a normally distributed random variable with mean µ and variance σ2

using the Box-Muller method. Your program should be written as a
function boxMuller saved in the file boxMuller.m. It should take N , µ,
and σ as inputs, and it should return a vector of length N containing
the pseudorandom values. For this problem submit the following

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of a few test runs of your m-file using different inputs.

4. (20 Points) Write a Matlab function that generates a sample from a
bivariate normally distributed random variable with mean [µ1, µ2]T and
symmetric positive definite covariance matrix Σ. Your program should
be written as a function bivariateNormal saved in the file bivariateNor-
mal.m. It should take [µ1, µ2]T and Σ as inputs, and it should return a
vector of containing the pseudorandom values.

Make sure that your program checks that Σ is symmetric and posi-
tive definite.2 Use your Box-Muller program to generate the standard
normals in this program.

For this problem submit the following

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of a few test runs of your m-file using different inputs.

2Hint: A 2 × 2 matrix is positive definite if its top left entry is positive and its deter-
minant is positive.

79

HW 8 Solutions - Math 573, Marcel Blais, Spring 2009

1. (a) By definition, for x ∈ Rd×d with x 6= 0, xTΣx > 0. Thus xT (Σx) >
0 and Σx 6= 0. This means that the nullspace of Σ consists of only
0, which is equivalent to Σ being non-singular.

(b) For positive semidefinite Σ ∈ Rd×d, we know there exists a lower-
triangular Cholesky factor A such that Σ = AAT . From our algo-
rithm in class, since Σ is not positive definite we know that this
factor A has at least one zero diagonal entry. Since the determi-
nant of a lower-triangular matrix is the product of its diagonal
entries, det(A)=0, and thus
det(Σ)=det(AAT)=det(A)·det(AT)=0·0=0.
This means that Σ is singular.

(c) Let x ∈ Rd with x 6= 0.
xTAATx = (xTA)(ATx) = (ATx)T (ATx) = ||ATx||22.
Since A is non-singular, Ax 6= 0 and thus ||ATx||22 > 0, which
means that AAT is positive definite.

80

2. (a) First we find the maximum value of f(x) on [0,1]. Computing
f’(x) and solving f’(x*)=0 gives x*=1

4
, and f(1

4
) = 135

64
, which is

the maximum value attained by f on [0,1]. We choose c = 135
64

. Our
target distribution has density f, and the uniform distribution on
[0,1] has density g(x)=1. Our algorithm is as follows:

• Generate U1, U2 independent from Uniform[0,1]

• If U1 ≤ f(U2)
c·g(U2)

= 64
135
· 20U2(1− U2)3, accept U1

• If U1 >
64
135
· 20U2(1 − U2)3, reject U1 and return to the first

step

(b) Matlab Code:
% Generates N random samples from the distribution with pdf
% f(x) = 20x(1− x)3 using the acceptance-rejection method
% Input N, Number of samples to be generated.

function[X] = HW8(N)

X = zeros(N,1);
accept sample = false;
for ii = 1:N
accept sample = false;
while (∼ accept sample)
x = rand();
u = rand();
if (x ¡= (256/27)*u*(1− u)3),
accept sample = true;
end
end
X(ii) = x;
end

81

3. Matlab Code:
function[Z] = boxMuller(mu,sigma,N)
% Generates N samples from a N(mu,sigma2) distribution using the
Box-Muller method
%Input mu, the mean of the normal random sample, sigma, the stan-
dard deviation of the standard normal, and N, the numer of samples

function[Z] = boxMuller(mu,sigma,N)

Z = zeros(N,1);

for ii=1:N
u1 = rand();
u2 = rand();
R = -2*log(u1);
V = 2*pi*u2;
z = sqrt(R)*cos(V);
Z(ii) = mu + sigma*z;
end

82

4. Matlab Code:
%Generates a bivariate normal random sample w distribution N(mu,Sigma)
%Inputs: mu, mean vector (2x1), Sigma, covariance matrix (2x2). It
must be symmetric positive definite
%Generate two independent standard normals using the Box Muller
method.

function[X] = bivariateNormal(mu, Sigma)

z1 = boxMuller(0,1,1);
z2 = boxMuller(0,1,1);
Z = [z1;z2];

[muRows,muCols] = size(mu);
if (muRows == 1) & (muCols == 2)
mu = mu’;
elseif muRows + muCols ∼= 3
error(’Input vector mu must have two entries’);
end

if sum(sum(Sigma == Sigma’)) ∼= 4
error(’The covariance matrix is not symmetric.’);
end
if ((Sigma(1,1) ¡= 0) — (det(Sigma) ¡= 0))
error(’Sigma is not positive definite.’);
end

A = zeros(2);
A(1,1) = sqrt(Sigma(1,1));
A(2,1) = Sigma(1,2)/A(1,1);
A(2,2) = sqrt(Sigma(2,2)-A(2,1)2);

X = mu + A*Z;

83

HW 9 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday April 14, 2009

Note: The Matlab functions you write should not have any display state-
ments or uses of plot functions. To plot or display infomation from your
functions, call your functions in separate m-files.

1. (10 Points) Show that the random walk construction for simulating
Brownian Motion is exact. To do this, show that (Xti+1

− Xti) has
distribution N(µ(ti+1 − ti), σ2(ti+1 − ti)) and that
(Xti+i

−Xti)⊥(Xti −Xti−1
).

2. (10 Points) Write a Matlab function called brownianMotion saved in
m-file brownianMotion.m. It should take drift µ, volatility σ, time
T , and number of time-steps N as inputs (∆t = T

N
). Your function

should return a vector of simulated values [Wt0 ,Wt1 , . . . ,WtN]T from a
Brownian motion Wt that is distributed BM(µ, σ2). For this problem
please submit the following:

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of a few test runs of your m-file using different inputs.
Plot your simulation in each case.

84

3. (10 Points) Write a Matlab function called multiVarNormal saved in
m-file multiVarNormal.m. It should take mean vector µ ∈ Rd and
covariance matrix Σ ∈ Rd×d as inputs. Your function should return
a d-vector of normally distributed random variables according to the
distribution N(µ,Σ). Your program should check that Σ is symmetric
positive definite. You should compute the Cholesky factorization of Σ

AAT = Σ (93)

using the algorithm that we studied in class. For this problem submit
the following

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of a few test runs of your program using different inputs.

4. (10 Points) Write a Matlab function called geoBrownianMotion saved in
m-file geoBrownianMotion.m. It should take drift µ, volatility σ, time
T , and number of time-steps N as inputs (∆t = T

N
). Your function

should return a vector of simulated values [St0 , St1 , . . . , StN]T from a
geometric Brownian motion St that is distributed GBM(µ, σ2).

Hint: Call your function brownianMotion in this program. Make sure
to be careful with your drift terms.

For this problem please submit the following:

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of a few test runs of your m-file using different inputs.
Plot your simulation in each case.

85

HW 9 - Math 573, Marcel Blais, Spring 2009

1. By definition,

(Xti+1
−Xti) = µ(ti+1 − ti) + σ

√
ti+1 − ti · Zi+1 (94)

where Zi+1 is a standard normal random variable.

To compute the distribution of (Xti+i
−Xti), we have three steps:

• By (94), Xti+1
− Xti is of the form a + bZi+1 where a, b ∈ R.

Therefore Xti+1
−Xti is normally distributed.

• E(Xti+1
−Xti) = E[µ(ti+1 − ti) + σ

√
ti+1 − ti · Zi+1]

= E[µ(ti+1 − ti)] + σ
√
ti+1 − ti · E[Zi+1]

= µ(ti+1 − ti) + σ
√
ti+1 − ti · 0

= µ(ti+1 − ti)

• V ar(Xti+1
−Xti) = V ar[µ(ti+1 − ti) + σ

√
ti+1 − ti · Zi+1]

= V ar[µ(ti+1 − ti)] + σ2(ti+1 − ti) · V ar[Zi+1]

= 0 + σ2(ti+1 − ti) · 1

Thus (Xti+i
−Xti) has distribution N(µ(ti+1 − ti), σ2(ti+1 − ti)).

To show that (Xti+i
−Xti) and (Xti −Xti−1

) are independent, we look
at their constructions:

(Xti+1
−Xti) = µ(ti+1 − ti) + σ

√
ti+1 − ti · Zi+1

(Xti −Xti−1
) = µ(ti − ti−1) + σ

√
ti − ti−1 · Zi.

(95)

The only random variable term in (Xti+1
− Xti) is Zi+1, and the only

random variable term in (Xti − Xti−1
) is Zi. Since Zi+1 and Zi are

independent, (Xti+1
−Xti) and (Xti −Xti−1

) are also independent.

86

2. Matlab Code:
%Simulates a Brownian motion with timestep T/N
% Inputs: mu, Drift of the Brownian motion, sigma, Volatility of the
Brownian Motion, N, Number of timesteps, T, Final time, and W 0,
Initial value

function [W]=brownianMotion(mu, sigma, N, T, W 0)

deltaT=T/N;
W=zeros(N,1);
W(1)=W 0;
a=mu*deltaT;
b=sigma*sqrt(deltaT);
for i=2:N
W(i)=W(i-1)+a+b*randn(1);
end

87

3. Matlab Code:
% Generates a vector of multivariate normal
% Input mu, the mean vector of the normal distribution, Sigma, co-
variance matrix of the normal distribution, and N, number of pseudo-
random values to be returned

function [randValues] = multiVarNormal(mu, Sigma, N)
d=length(mu);
[muRows,muCols] = size(mu);
if muRows == 1
mu = mu’;
end
[n,m] = size(Sigma);
if d∼=n — d∼=m
error(’Dimensions must agree.’)
end
if Sigma ∼= Sigma
error(’Sigma must be symmetric.’)
end
if min(eig(Sigma))¡= 0
error(’Sigma must be positive definite.’)
end
A=zeros(d);
for jj=1:d
for ii=jj:d
v(ii)= Sigma(ii,jj);
for kk=1:jj-1
v(ii)=v(ii)-A(jj,kk)*A(ii,kk);
end
A(ii,jj)=v(ii)/sqrt(v(jj));
end
end
randValues = zeros(d,N);
for i=1:N
Z=randn(d,1);
randValues(:,i)= mu + A*Z;
end

88

4. Matlab Code:
% Generates a path of a geometric Brownian motion with timestep
T/N
% Input mu, drift of the geometric Brownian motion, sigma, volatility
of the geometric Brownian motion, N, number of timesteps, T, final
time in the simulation, and S 0, initial value

function [S]=geoBrownianMotion(mu, sigma,N,T,S 0)

deltaT=T/N;
S=zeros(N+1,1);
S(1)=S 0;

Z = randn(N+1,1);

for ii = 2:N+1
S(ii) = S(ii-1)*exp((mu-0.5*sigma2)*deltaT + sigma*sqrt(deltaT)*Z(ii))
;
end

89

HW 10 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday April 21, 2009

Note: The Matlab functions you write should not have any display state-
ments or uses of plot functions. To plot or display infomation from your
functions, call your functions in separate m-files.

1. (10 Points) Write a Matlab function called asianOption saved in m-
file asianOption.m that prices Asian call and put options with discrete
monitoring. It should take interest rate r, drift µ, volatility σ, time
T , strike K, initial underlying price S0, number of monitoring dates
M , and number of time-steps N for the underlying asset simulation as
inputs (∆t = T

N
). Assume that the monitoring dates are equally spaced

apart.

You may force the user to enter a value of N that is an integer multiple
of M . Hint: Use the error function in Matlab for this.

Use your function to price an Asian call option with monthly moni-
toring and parameters K = 10.5, S0 = 10, T = 1, µ = r = .05, and
σ = .01. Give a 95% confidence interval for your option price.

For this problem please submit the following:

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of your program being used to price the specified option.

90

2. (10 Points) Write a Matlab function called barrierOption saved in m-file
barrierOption.m that prices barrier call and put options with discrete
monitoring. It should take interest rate r, drift µ, volatility σ, time
T , strike K, initial underlying price S0, number of monitoring dates
M , and number of time-steps N for the underlying asset simulation as
inputs (∆t = T

N
). Assume that the monitoring dates are equally spaced

apart.

Your program should take inputs that allow the user to specify whether
the option is down-and-in, down-and-out, up-and-in, or up-and-out.
You may force the user to enter a value of N that is an integer multiple
of M .

Use your function to price an up-and-in call option with monthly mon-
itoring and parameters K = 10.5, S0 = 10, b = 11, T = 1, µ = r = .05,
and σ = .01. Give a 95% confidence interval for your option price.

For this problem please submit the following:

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of your program being used to price the specified option.

91

3. (15 Points) Write a Matlab function called multipleGeoBrownianMo-
tion saved in m-file multipleGeoBrownianMotion.m. It should take drift
vector [µ1, µ2, . . . , µd]

T and covariance matrix Σ ∈ Rd×d for the distri-
bution of the underlying Brownian motion as inputs. It should also
take time T and number of time-steps N as inputs. Your function
should return a matrix of d simulated geometric Brownian motions

S1(t0) S1(t1) . . . S1(tN)
S2(t0) S2(t1) . . . S2(tN)
S3(t0) S3(t1) . . . S3(tN)

...
...

...
...

Sd(t0) Sd(t1) . . . Sd(tN)

 (96)

from a d-dimensional geometric Brownian motion St that is distributed
GBM([µ1, µ2, . . . , µd]

T ,Σ). 3

For this problem please submit the following:

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of a two test runs of your m-file using different inputs.
Plot your simulation in each case with all the Brownian motions
on the same plot.

3For this problem we are directly implementing the material from the end of lecture
11. You will have to use this function to price options in the final homework assignment
for the course.

92

HW 10 Solutions - Math 573, Marcel Blais, Spring 2009

1. Matlab Code:
% Uses a Monte Carlo method to estimate the time-zero values of the
Asian Put and the Asian Call w discrete monitoring.
% INPUTS:
% n: Number of samples to draw
% S0: Initial price of the underlying
% r: Continuously compounded annual interest rate
% sigma: Volatility of the underlying
% K: Strike price of the option
% T: Maturity of the option
% N: Number of time-steps in the simulation
% M: Number of monitoring dates
% delta: A (1-delta)% convidence interval is computed
% OUTPUTS:
% CallPrice: The Asian call option price
% putPrice: The Asian put option price
% callCI: A (1-delta)% confidence interval for the call price
% putCI: A (1-delta)% confidence interval for the put price

function[callPrice,putPrice,callCI,putCI] = asianOption(n,S0,r,sigma,K,T,N,M,delta)

if mod(N,M) ∼= 0,
error(’asianOption(n,S0,r,sigma,K,T,N,M): N should be a multiple of
M.’);
end

monitorFactor = N/M;
callPayoffs = zeros(n,1);
putPayoffs = zeros(n,1);

for count = 1:n
S = geoBrownianMotion(r,sigma,N,T,S0);
S at M dates = zeros(M+1,1);
for index = 1:M+1

93

monitorDate = 1 + monitorFactor*(index-1);
S at M dates = S(monitorDate);
end
callPayoffs(count) = max(0,mean(S at M dates)-K);
putPayoffs(count) = max(0,K-mean(S at M dates));
end

callPrice = exp(-r*T) * mean(callPayoffs);
putPrice = exp(-r*T) * mean(putPayoffs);

zScore = norminv(1-delta/2,0,1);

callSampleStDev = callPayoffs - callPrice;
callSampleStDev = 1/(n-1)* sum(callSampleStDev.2);
callCI = [callPrice - zScore*callSampleStDev/sqrt(n),callPrice + zS-
core*callSampleStDev/sqrt(n)]

putSampleStDev = putPayoffs - putPrice;
putSampleStDev = 1/(n-1)* sum(putSampleStDev.2);
putCI = [putPrice - zScore*putSampleStDev/sqrt(n),putPrice + zS-
core*putSampleStDev/sqrt(n)]

94

2. Matlab Code:
% Uses a Monte Carlo method to estimate the time-zero values
% of the Barrier Put option and Barrier Call option w discrete moni-
toring.
% The barrier option can be knock-in or knock-out, and the barrier
can be
% an upward or a downward barrier.
% INPUTS:
% n: Number of samples to draw
% S0: Initial price of the underlying
% r: Continuously compounded annual interest rate
% sigma: Volatility of the underlying
% K: Strike price of the option
% b: Barrier of the option
% T: Maturity of the option
% N: Number of time-steps in the simulation
% M: Number of monitoring dates
% upDown: Set to ’U’ for an upward barrier, ’D’ for a downward
% barrier.
% inOut: Set to ’I’ ofr a knock-in option, ’O’ for a knock-out
% option.
% delta: A (1-delta)% convidence interval is computed
% OUTPUTS:
% callPrice: The Asian call option price
% putPrice: The Asian put option price
% callCI: A (1-delta)% confidence interval for the call price
% putCI: A (1-delta)% confidence interval for the put price

function[callPrice,putPrice,callCI,putCI] = barrierOption(n,S0,r,sigma,K,b,T,N,M,upDown,inOut,delta)

if (upDown ∼= ’D’) &(upDown ∼= ’d’) & (upDown ∼= ’U’) & (up-
Down ∼= ’u’)
error(’Bad upDown parameter.’)
end
if (inOut ∼= ’I’) &(inOut ∼= ’i’) & (inOut ∼= ’O’) & (inOut ∼= ’o’)
error(’Bad upDown parameter.’)
end

95

if mod(N,M) ∼= 0,
error(’asianOption(n,S0,r,sigma,K,T,N,M): N should be a multiple of
M.’);
end

monitorFactor = N/M;
callPayoffs = zeros(n,1);
putPayoffs = zeros(n,1);

for count = 1:n

S = geoBrownianMotion(r,sigma,N,T,S0);

S at M dates = zeros(M+1,1);
for index = 1:M+1
monitorDate = 1 + monitorFactor*(index-1);
S at M dates = S(monitorDate);
end

callPayoffs(count) = max(0,S(N)-K);
putPayoffs(count) = max(0,K-S(N));

hitBarrier = 0;
if (max(S) ¿= b) & (upDown == ’u’ — upDown == ’U’)
hitBarrier = 1;
elseif (min(S) ¡= b) & (upDown == ’d’ — upDown == ’D’)
hitBarrier = 1;
end

if (inOut == ’i’) — (inOut == ’I’)
if hitBarrier == 1
barrierIndicator = 1;
else
barrierIndicator = 0;

96

end
end

if (inOut == ’o’) — (inOut == ’O’)
if hitBarrier == 1
barrierIndicator = 0;
else
barrierIndicator = 1;
end
end

callPayoffs(count) = callPayoffs(count)*barrierIndicator;
putPayoffs(count) = putPayoffs(count)*barrierIndicator;

end

callPrice = exp(-r*T) * mean(callPayoffs);
putPrice = exp(-r*T) * mean(putPayoffs);

zScore = norminv(1-delta/2,0,1);

callSampleStDev = callPayoffs - callPrice;
callSampleStDev = 1/(n-1)* sum(callSampleStDev.2);
callCI = [callPrice - zScore*callSampleStDev/sqrt(n),callPrice + zS-
core*callSampleStDev/sqrt(n)];

putSampleStDev = putPayoffs - putPrice;
putSampleStDev = 1/(n-1)* sum(putSampleStDev.2);
putCI = [putPrice - zScore*putSampleStDev/sqrt(n),putPrice + zS-
core*putSampleStDev/sqrt(n)];

97

3. Matlab Code:
% Generates a path of a geometric Brownian motion with timestep
T/N
% INPUTS:
% mu: Drift of the geometric Brownian motion
% sigma: Volatility of the geometric Brownian motion
% N: Number of timesteps
% T: Final time in the simulation
% S 0: Initial value

function [S]=geoBrownianMotion(mu, sigma,N,T,S 0)

deltaT=T/N;
S=zeros(N+1,1);
S(1)=S 0;

Z = randn(N+1,1);

for ii = 2:N+1
S(ii) = S(ii-1)*exp((mu-0.5*sigma2)*deltaT + sigma*sqrt(deltaT)*Z(ii))
;
end

98

HW 11 - Math 573, Marcel Blais, Spring 2009

Due before class on Tuesday April 28, 2009

1. Write a Matlab function called basketOption saved in m-file basketOp-
tion.m that prices a basket option on d underlying assets S1, . . . , Sd
with payoff

([c1S1(T) + c2S2(T) + . . . cdSd(T)]−K)+. (97)

You function should take inputs

• Drift vector [µ1, µ2, . . . , µd]
T and covariance matrix Σ ∈ Rd×d for

the distribution of the underlying Brownian motion .

• Initial underlying price vector S(0).

• Maturity time T .

• Number of time-steps N .

• Weights c = [c1, . . . , cd]
T .

• Interest rate r.

• Strike price K.

You can use your function the simulates a d-dimensional geometric
Brownian motion in this problem. Please electronically submit copies
of any of your own functions that you use in this problem.

For this problem please submit the following:

• A printout of your m-file,

• an electronic version of your m-file sent to me as an attachment
in an email, and

• a printout of your program being used to price two options. Also
specify your inputs.

99

HW 11 Solutions - Math 573, Marcel Blais, Spring 2009

1. Matlab Code:
%price a basket option
%inputs dirft vector mu (1xd), covariance matrix Sigma (dxd), initial
price vector S 0, maturity time T, number of time steps N, weight vec-
tor c, interest r, strike price K

function[P]=basketOption(mu,Sigma,S 0,T,N,c,r,K)

[m,d]=size(Sigma);

for ii=1:d
mu(ii,1)=r-.5*Sigma(ii, ii)2;
end
mu;

s=multipleGeoBrownianMotion(mu,Sigma,T,N,S 0);

p=0;
for ii=1:d
Price=c(ii,1)*s(ii,d)+p;
p=Price;
end
p;

P=max(p-K,0);

100

Finite Difference Project

Finite Difference Project Summary
Using the spatialCoeffs function, I discretized the Black-Scholes-Merton par-
tial differential equation in time to get the matrix A. I found the eigenvalues
and eigenvectors of the matrix A which allowed me to find the amplification
errors. For a call option I used the boundary conditions C(Smax,t)=Smax*K*exp(-
r(T-t)) where Smax is very large and C(Smin,t)=0, where Smin=0. For a
put option I used the boundary conditions V(Smax,t)=0 for very large Smax
and V(Smin,t)=K*exp(-r(T-t)) for Smin=0. Then to discretize the scheme
in time, the user has the option in use either the Jacobi Method or direct
solver. The Jacobi Method iterates until the error is less than an epsilon
specified by the user. A graph of the option price over time is an output as
well as the minimum and maximum eigenvalues, the amplification errors and
whether or not the scheme is stable. The Matlab code is broken into three
programs as follows.

1. %uses the Jacobi method to find a solution for the u vector.

function[u]=jacobiMethod(N,F,A,epsilon)

u=ones(N,1);
errorCheck=1;
while errorCheck ¿ epsilon
for t=1:N-1
newU=((F(:,t)+F(:,t+1))-dot(A(t,:),u))/A(t,t);
end
errorCheck = norm(newU-u,2);
u=newU;
end

101

2. % Takes imputs deltaX, r, N, and sigma to return alpha, gamma, beta
of the
% matrix A as well as the matrix A that results from spatial discretiza-
tion
% of the PDE.
% Used to be function[A]=spatialCoeffs(deltaX,r,N,sigma)
function[A]=spatialCoeffs(deltaX,r,N,sigma)

x=0;
d=zeros(N-1,1);
c=zeros(N,1);
f=zeros(N-1,1);
for ii=1:N-1
alpha=((r*x)/(2*deltaX))+(((sigma2)*(x2))/(2*(deltaX2)));
d(ii,1)=alpha;
d;
beta=((-r*x)/(2*deltaX))+(((sigma2)*(x2))/(2*(deltaX2)));
f(ii,1)=beta;
f;
x=x+deltaX;
end
for jj=1:N
gamma=(((sigma2)*(x2))/(deltaX2))+r;
c(ii,1)=-gamma;
c;
x=x+deltaX;
end
B=zeros(N);
A=diag(c)+diag(d,1)+diag(f,-1);
A(1,1)=1;
A(1,3)=1;
A(N,N-2)=1;
A(N,N-1)=-2;
A(N,N)=1;
A(1,2)=-2;
A;

102

3. %optionPricer is a program to price a European option using the
%Crank-Nicolson finite difference method
%The following parameters are to be filled out before running this file
Option=1; %Chose 1 for a call or 2 for a put
sigma=.1; %volatility
r=.05; %interest rate
T=10; %time at maturity
K=6; %strike price
S T=2 %final price
Jacobi=1; %for the Jacobi method chose 2, for the direct method chose
1
delta t=1; %time steps
deltaX=1; %spatial steps
epsilon=.00001; %error tolerance

T=T+1;
S max=5*K;
N=S max/deltaX; %number of spaces
N=N+1;

%load in the contents of the file spatialCoeffs.m and run the function
A=spatialCoeffs(deltaX,r,N,sigma);
[V,D]=eig(A);
X=V;
minEig=min(D);
maxEig=max(D);
lambda=D;

minEigenvalue=min(minEig)
maxEigenvalue=max(maxEig)

if Option==1
u=zeros(N,1);
x start=T;
for ii=1:N
u(ii,1)=max((x start+(ii*deltaX))-K,0);

103

u;
end
F=zeros(N,N+1);
for jj=1:N
F(N,jj)=S max*K*exp(-r*(T-jj));
F;
end
elseif Option==2
u=zeros(N,1);
x start=T;
for ii=1:N
u(ii,1)=max(K-(x start+(ii*deltaX)),0);
u;
end
F=zeros(N,N+1);
for jj=1:N
F(1,jj)=K*exp(-r*(T-jj));
F;
end
else disp(’Error in Option input’)
end

E=ones(N,1);
for ii=1:N
ampError(ii)=(1+(1/2)*lambda(ii,ii)*delta t)/(1-(1/2)*lambda(ii,ii)*delta t);
E(ii,1)=ampError(ii);
E;
end
ampErrors=E

stable=1;
for jj=1:N
if abs(ampErrors(jj))¿1
stable=0;
disp([’Amp Error ’,num2str(ampErrors(jj)),’ causing instability.’])
end
end

104

if stable==0
disp(’Routine is unstable’)
else disp(’Routine is stable’)
end

[d1,d2]=size(A);
A hat=eye(d1)-(delta t/2)*A;

U=zeros(N,N);
U(:,1)=u;
old u=u;
for jj=2:T
b=(eye(N)+(.5*delta t*A))*old u+(delta t/2)*(F(:,jj)+F(:,jj+1));
if Jacobi==1
new u=inv(A hat)*b;
elseif Jacobi==2
new u=jacobiMethod(N,F,A,epsilon);
else disp(’Error in Jacobi input’)
end
U(:,jj)=new u;
U;
old u=new u;
end

surf(U)

105

References

1. Tavella, D. & Randall, C. (2000). Pricing Financial Instruments: The
Finite Difference Method. New York: Jonh Wiley & Sons, Inc.

2. Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering.
New York: Springer Science + Business Media, LLC.

106

	Worcester Polytechnic Institute
	Digital WPI
	2009-05-05

	Course Summary of Computational Methods of Financial Mathematics
	Jessica L. Copp
	Repository Citation

	tmp.1530275769.pdf.fP5is

