Worcester Polytechnic Institute

Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2010-04-29

Molecular Graph Theory

Chase R. Johnson
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

Repository Citation

Johnson, Chase R., "Molecular Graph Theory" (2010). Masters Theses (All Theses, All Years). 1179.
https://digitalcommons.wpi.edu/etd-theses/1179

This thesis is brought to you for free and open access by Digital WPL It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.


https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/1179?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Molecular Graph Theory by Chase Johnson A Masters Project

Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the Degree of Master of

Science in Applied Mathematics

May 2010

APPROVED: Professor Brigitte

Servatius, Project Advisor

Professor Bogdan Vernescu, Head of Department



Abstract

Graph Theory is a branch of mathematics that has a wealth of
applications to other science and engineering disciplines, specifically
Chemistry. The primary application of graphs to Chemistry is re-
lated to understanding of structure and symmetry at the molecular
level. By projecting a molecule to the plane and examining it as a
graph, a lot can be learned about the underlying molecular structure
of a given compound. Using concepts of Graph Theory this masters
project examines the underlying structures of two specific families of
compounds, fullerenes and zeolites, from a chemical and mathematical

perspective.
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1 Fullerenes

1.1 Introduction

The term fullerene refers to a family of molecules, consisting typically of only
Carbon or Boron atoms. More commonly referred to as buckyballs, these
molecules are given this name in reference to the famous American architect
Buckminster Fuller (1895-1983) who is primarily known for the design of the
geodesic sphere. The name of the family is appropriate as these molecules
inherently take on a spherical structure due to intermolecular forces as well
as the geometry of each individual atom. The existence of a soccer-ball
shaped molecule was first theorized in 1970 by Japanese chemist Eiji Osawa.
Fifteen years later the first fullerene was officially discovered by a group of
chemists who named it Buckminsterfullerene. Although not the smallest
fullerene, Buckminsterfullerene is arguably the most famous for its impact
on chemistry. Since, several other fullerenes have been discovered.

1.2 Fullerene Graphs

Fullerenes are difficult to observe in nature however their structure is well
known. Utilizing Graph Theory we can better understand the underlying
structure of fullerene molecules. A planar representation of a molecule is
known as a Lewis Dot Structure. In this contstruction each atom is repre-
sented by its chemical symbol and these are connected with a line if they
share a bond. To transform a Lewis Dot Structure into a graph we simply
make every atom in the molecule a vertex in the graph with vertices shar-
ing edges if the atoms share a bond in the molecule. Doing so we generate
the graphical representations of Buckminsterfullerene Cjy given by Figure
1. Looking at this graph we see that every vertex is connected to exactly
three other vertices. Moreover, we can also see that the graphs contain only
pentagonal and hexagonal faces. Thus a fullerene graph is defined as a three-
reqular planar graph with only pentagonal and hexagonal faces. Moreover,
fullerene graphs are the planar projection of the Platonic and Archimedean
Solids.



Figure 1: Buckminsterfullerene Graph

1.3 Euler’s Formula (Graph Theory)

A planar graph is one that can be drawn in the plane with no edge crossings.
One of Leonhard Euler’s (1707-1783) primary contributions to mathematics,
(referred to simply as Fuler’s Formula), states that for any planar graph the
following equation must hold:

o] —lel + 1] = 2

Where |# represents the number of vertices (v), edges (e), and faces (f).
Using Euler’s Formula we can derive several identities regarding Fullerene
Graphs. Since the faces of the graph are only pentagons or hexagons we
know there are precisely 5 vertices per pentagon and 6 vertices per hexagon.
If we call the number of pentagonal faces p and the number of hexagonal
faces h we can deduce that |v| = 5p + 6h. However this formula is incorrect
as vertices in the graph lie in more than one face thus we are over-counting.
Using the fact that the graph is 3-regular we can deduce that each vertex is

in exactly three faces. As such we must divide our equation by a factor of

three. Thus:
5p+ 6h

of = 22

A similar argument will get us the formula for the number of edges |¢].
The naive solution to the number of edges would be |e| = 5p + 6k as each
pentagonal face would have 5 edges and each hexagonal 6. However since the




edges separate the faces each edge will be in two faces. Therefore we must

divde by a factor of 2:
_ dp+6h

o = 21
Trivially the number of faces is:

fil=p+h
Putting all of these formulas into Euler’s Formula we get:

5p+6h  5p+G6h

h=2
3 g Pt
Performing basic arithmetic this becomes:
10p 15p 6p
— +2h— — —3h+—+h=2
6 * 6 * 6 i

Combing like terms we see that h cancels out of the equation and the terms
involving p simplify to:

£_9
6

From this we can deduce that for any fullerene graph there are ezactly 12
pentagonal faces. This is quite a powerful result as theoretically we could
choose a graph with a trillion vertices. Graphically this may be difficult to
picture however chemically there is no phsyical limit to the number of atoms
a given molecule could have. Using the fact that p = 12 we can also deduce
other characteristics of fullerenes that are not immeadiately apparent. For
instance, replacing p with 12 to our formula for number of vertices we see

that: 5 %19 1 6k
|m=—17;;—=20+%

Therefore the smallest possible fullerene graph/molecule would be the result
of choosing h = 0. This graph would consist of only pentagonal faces and
would have 20 vertices. This graph is known as the dodecahedral graph, as it
is the planar projection of the dodecahedron. The graph corresponds to the
U5y molecule given by Figure 2. Choosing different values for h will generate
all the different fullerene graphs with one particular exception.



Figure 2: Dodecahedral Graph

1.4 The 22-Fullerene Problem

If we choose h = 1, we would generate a fullerene graph with 22 vertices, 12
pentagonal faces and 1 hexagonal face. Plugging in these values into Euler’s

Formula we get:

ox12+6

22 +12+1=2;

thus
22—-33+13=—-11+13=2

Thus Euler’s Formula holds. To construct this graph we would first start with
the dodecahedral graph and insert a hexagon into the middle: Examining
this graph we see that by inserting the hexagon in the middle it forces the
outer face to become a hexagon in order to preserve 3-regularity as given
by Figure 3. A rigorous proof of the nonexistence of the 22-fullerene is
provided by Grunbaum and Motzkin (1963). They were also able to prove
the nonexistence of fullerenes on 62, 64, 66, and 68 vertices. These graphs
would correspond to choosing 21,22,23, and 24 hexagons respectively. Aside
from these counterexamples, any even value of vertices greater than or equal
to 20 holds. The chemical implications of this is that a molecule with 22, 62,
64, 66, or 68 vertices would not have the fullerene structure.



Figure 3: A failed Attempt to Construct the 22-Fullerene

2 Combinatorial 2-D Zeolites

2.1 Basic Definition

A combinatorial d-dimensional zeolite is a connected complex of corner shar-
ing simplices. For this masters project we will only consider simplices that
are equilateral triangles. If we consider every corner of the triangles as a
vertex we will have two triangles at every vertex. A toy example of a zeolite
is given by figure 4. The only vertices that don’t have two triangles are the
two top corners as well as the two bottom corners however wrapping this
around it self would satisfy that condition.

2.2 Generating Zeolites via Line Graphs

To generate different zeolites we make use of the line graph. To generate the
line graph of a graph we take each edge of the graph and make it a vertex in
the line graph. Vertices in the line graph are connected if their corresponding
edges share a vertex in the original graph. In order to generate a line graph
with triangular faces we will require that the original graph be 3-regular.

2.2.1 K,

A basic example of a graph and its line graph is given by Figure 5. The
original graph (the complete graph on 4 vertices, referred to as K,) has 6



Figure 4: A section of a zeolite chain

edges, therefore its line graph has 6 vertices. Looking at the line graph of
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Figure 5: Complete Graph on four vertices and its line graph

K4 we can see the zeolite structure as all of the faces are triangles. However
at every vertex we have more than two triangles. In fact at vertex 6 we
have four triangles. We must now differentiate between triangular faces and
triangular holes in each line graph. We can see that if we define our triangles
as in Figure 6, then naturally the triangles 126, 346, 235 are triangular holes
in the graph.
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Figure 6: Triangles of the K line graph

2.2.2 Graph of the Cube

We now perform the same transformation on the graph of cube as shown in
Figure 7. Figure 8 shows the triangles in this graph which at first glance are
much more difficult to distinguish.

11
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Figure 7: Cube Graph (left) and its line graph (right)
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Figure 8: Triangles of the Cube line graph

2.2.3 Non-Planar K33

Lastly we consider a non-planar example. Figure 9 represents the non-planar
bipartite graph K33 and its line graph.

Figure 9: K33 (left) and its line graph (right)
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Figure 10: Triangles of K33 Line Graph

2.2.4 Conclusions

An interesting observation from these line graphs is the existence of two dis-
tinct Hamiltonian Cycles. A Hamiltonian Cycle is a path where each vertex
crossed exactly once. From the line graphs we can see the first Hamiltonian
cycle by tracing a path around all the vertices. The second is acheived by
doing the same procedure through all the vertices using the edges in the in-
terior of the graph. For the K, line graph we have cycles (1 2 6 3 4 5) and
(1435 26). For the line graph of the cube graph we have cycles (1 4 5 12
9710811632)and (15910111264 3827). Lastly for the K33 line
graph we have cycles (123456 789)and 135728496). From this
we can theorize that 2-D zeolites (ie line graphs of 3-regular graphs) are the
edge-disjoint union of two Hamiltonian Cycles.

2.3 Grunbaum Example
2.3.1 Introduction

In a 1988 paper entitled Structural Topology, Branko Griinbaum claims that
the smallest arrangement of non-overlapping triangles such that at every
vertex there are exactly two triangles has 42 triangles as given in Figure 11.
We notice that the structure can be partitioned into equivalent thirds as
seen by the figure on the right. Examining the partition we see that there
is a total of 14 triangles (excluding the additional four on the far right). If



Figure 11: Griinbaum Example (left) with partition on right

we take each set of four triangles as one unit we see that the Grinbaum
Example has twelve of these units. Therefore we can conclude that the outer
shell of the Griinbaum Example is a dodecagon. Basic geometry tells us that
the sum of the interior angles of a dodecagon must add up to 1800 degrees
or 107 (approximately 31.4159) radians. Since we know each triangle is an
equilateral triangle, we know that at each angle of the dodecagon we must
add 120 degrees (2.0944 radians). Since there are 12 of these angles we must
add a total of 1440 degrees (25.1327 radians). Subtracting this from 31.4159
we get 6.2832 radians. With these angles taken care of all we are left with
are angles of degree A, B, or C as labeled in Figure 11. From here we can
arrive at the following equation:

3A+ 6B + 3C = 6.2832

A+2B+ C =2.0944

Since this system is underconstrained we must find other means to calculate
two out of the three unknowns.

2.3.2 Calculating the other Angles

In order to solve for these angles we must assume that the length of any side
of each triangle is 1 as well as examine the shapes of the holes (areas shaded
white in Figure 11). We will also use radians as our unit of measure. The
shape of the hole invovling angle B we see is an isosceles triangle as given

10



by Figure 12. Using the law of cosines we can figure out the measure of the

Figure 12: Isoceles Triangle Hole

angle B:
c® = a® +b? — 2ab * cos(B)
thus
12 =22 4+2% —2(2%2) * cos(B)
—7 = —8cos(B)
thus
B = 5054

Although we now have the measure of B we must solve for one more of the
unkowns. Since the hole including the angle A is not a known geometric
shape we choose to solve for the angle C. This hole is a kite as given in
Figure 13. First we must solve for the two congruent angles in the kite. To
do so we subtract the measure of one of the congruent angles of the isoceles
triangle plus two times the measure of one angle of the equilateral triangle
from 2 * 7.
=21 — (1.3181 + 2 % 1.0472) = 2.8707

Now that we have this angle we can compute the length of the diagonal d of
the kite by splitting the kite in half and using the law of cosines.

d= /12 +22 — 2% (1 % 2)c0s(2.8707) = \/5 — 4c0s(2.8707) = 2.9756

11



Figure 13: Kite Shaped Hole

Now that we have the length of the diagonal we solve for the length of the
angle C again using the law of cosines. Since the diagonal bisects the angle
C we must multiply our final answer by 2.

22 4+ 2.9756% — 12 11.8542

“oeox297m6 )~ 2 arccos(Tgnay) = 180

C = 2 x arccos(

Now that we have angles B and C we can find angle A using the equation
generated by the fact that the construction is a dodecagon.

A+2B+C =29044 = A+ 2(.5054) + .1801 = 2.9044, A = .9035

2.3.3 Rigidity

Now that we have the measure of all interior angles of the Griinbaum Example
we can begin to discuss rigidity. For a structure to be rigid it must have no
degrees of freedom. In context to this problem it means we cannot adjust
the angles A, B, or C without violating having exactly two triangles at every
vertex or disconnecting the graph. To prove whether or not this contruction
is rigid we again look at a section as in Figure 11. Adjusting the angle A
will in turn adjust all of the angles of the holes of the graph. So first we
decrease A by .01 radians. In doing so we increase B by .01 radians. If the
structure is rigid, this will cause the triangles to overlap or disconnect. Now
computing the measure of the congruent angles in the isoceles triangle using

12



Figure 14: A section of the Griinbaum Example

law of sines we get

sin(.5154)  sin(1)

1 2

thus
I = arcsin(2 * sin(.5154)) = .9858

Using this we can solve for the congruent angle in the kite
K =27 — (1.8088 + 1.4019) = 2.7869

Now we compute the length of the diagonal of the kite using the law of cosines

d= /12422 — 2% (2% 1)cos(2.7869) = 2.9582
Now using the law of sines we calculate the new measure of the angle C

sin(2.7869)  sin(C)

29582 2

thus
C' = 2xarcsin(2 x sin(2.7869)) = .4740

We calculate the congruent angles of this new isoceles triangle by taking 27
- 29044 - 2.7869 = 1.4019. For this to be a triangle its interior angles must

13



sum to 7. Therefore, 2%1.4019 + .4740 should be equal to m however
2% 1.4019 + .4740 = 3.2778

which is not equal to m. Therefore we can conclude that the Griinbaum
Example is in fact rigid as increasing/decreasing any angle causes one of
the vertices to break and thus make the graph disconnected or overlap thus
violating our requirement that there be exactly two triangles at every vertex.

2.3.4 Minimization

Griinbaum states that his example is the smallest such arrangement of non-
overlapping equilateral triangles. Taking a section of the construction as in
Figure 14 we see that this alone (14 triangles) would not satisfy having two
triangles at every vertex. Moreover we cannot wrap this around itself to
make a quadrilateral because the interior angles of this quadrilateral would
be greater than 8.3776 radians, far greater than the required 27 radians. If
we doubled the section (28 triangles) as given in Figure 15, we would need
dy to be greater than dy to prevent overlap. Clearly d; is not greater than

d,

Figure 15: A section of the Griinbaum Example

d, and thus such a construction is impossible. Adding one more section of
14 triangles gives us the Gritbaum Example. From 42 on we can construct
new zeolites by replacing every triangle with the set of triangles given in
Figure 16. Since we are doing this 42 times, we can generate a formula for

14



Figure 16: New unit triangle

the number of triangles for each new construction.

Triangles = 3" x42;n =0,1,2, ...

2.4 Harborth Example

Griinbaum’s formula does not include all possible constructions. In fact all
we have to do is add sections of 14 triangles to Griinbaum’s example to gener-
ate more zeolites. These are documented in a 1990 paper by Heiko Harborth
entitled Plane four-reqular graphs with vertex-to-vertex unit triangles. In ad-
dition to the 42 triangle construction, Harborth introduces the next smallest
construction which simply adds another section of 14 triangles as given by
Figure 17. We can use the same argument as the previous example to prove
rigidity. Moreover we simply add more sections of 14 triangles to generate
larger constructions. From this we can conclude that all examples of this
nature must have a common factor of 14.

15



Figure 17: Harborth Example

3 3-D Zeolites

3.1 Chemical Zeolites

Zeolites are chemical compounds that are traditionally used as microfilters
as well as in commerical absorbents. At the molecular level zeolite molecules
bond together in a chainlike structure where each molecule is a tetrahedral
molecule as given in Figure 18. The molecule Si0O,4 as given in Figure 18
is a tetrahedral molecule as the four oxygen atoms repel each other due to
intermolecular forces as well as carrying the same charge. Since Oxygen has

Figure 18: Tetrahedron (left) and Tetrahedral Molecule (right)



6 valence electron it requires two to be bonded in order to satisfy having eight
valence electrons for every atom of the molecule. Therefore one electron of
each Oxygen atom is bonded to the central Silicon atom. Since we still have
that extra valence electron each tetrahedral molecule must bond to another
tetrahedral molecule forming a chainlike structure. Therefore we can classify
the molecular structure of Si0, as a 3-D zeolite with unit tetrahedra.

3.2 A Mathematical Approach

If we consider the molecular structure of compounds with tetrahedral molecules
as a lattice of unit tetrahedra we can further understand specific properties
of said molecules. This isn’t too dissimilar from our 2-D examples as we
simply subsistute for every triangle a unit tetrahedron thus expanding into
three dimensions.

17
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