
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2019

ConText, A Tool For the FDA's Adverse Event
Reporting System
Jacob Taylor Kaplan
Worcester Polytechnic Institute

Logan Romero
Worcester Polytechnic Institute

Peter Nolan
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Kaplan, J. T., Romero, L., & Nolan, P. (2019). ConText, A Tool For the FDA's Adverse Event Reporting System. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/6779

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/6779?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6779&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Faculty Code: EAR
Project Number: 1902

ConText, A Tool For the FDA's Adverse Event
Reporting System

A Major Qualifying Project Report:
Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted by:
Jacob Kaplan
Peter Nolan

Logan Romero

Date: March 21, 2018

Approved by:
Professor Elke A. Rundensteiner

Acknowledgments

We would like to thank all of those who assisted us in this project.

We thank our advisor, Professor Elke Rundensteiner, for providing us with guidance over the
course of this project.

We thank Tabassum Kakar and Xiao Qin for assisting us in communicating with the Food and
Drug Administration, for helping us review our project materials, and for providing guidance on
our development.

Finally, we thank the Food and Drug Administration for providing us with the needed report
materials for our testing.

We thank all of these individuals for their support and critique, providing valuable insight for our
project.

All code and deliverables can be accessed at:
https://github.com/peternolan/MEV-MQP/tree/pnolan

https://github.com/peternolan/MEV-MQP/tree/pnolan

Abstract

This project is a continuation of the development of ConText, a Web Application that’s
purpose is to assist FDA Agents in their work of analyzing FDA's Adverse Event Reporting
System reports and finding potential patterns between Drug Related incidents. Our focus was on
updating numerous previously built functions of the project while also providing brand new
features that would make navigating through reports more efficient. Our changes have improved
upon the functionality of the previous prototype, making it easier for an agent to sort through the
thousands of reports in their workload. This brings the FDA one step closer in realizing their
goal in streamlining their pharmacovigilance and potentially saving countless lives.

Table of Contents
Acknowledgments 2

Abstract 3

Table of Contents 4

Introduction 6

2. Background 7
2.1 Medication Error Visualizer 7
2.2 ConText Main Features 8

2.2.A Report Table Interface 10
2.2.B Document Searching 10

3. Methods & Implementation 11
3.1 Interface Redesign & Face Lift 11

3.1.A Report Table Interactions 11
3.1.A Case Management Walkthrough 14
3.1.B Case Summary Interactions 16
3.1.B Case Summary Walkthrough 18

3.2 Narrative Annotation 19
3.2.A Front End 19
3.2.A Comments Walkthrough 21
3.2.B Back End 21
3.2.C Database 22

3.3 Document Search 22
3.3.A Technologies Considered 22
3.3.B Structure of Report Search 23
3.3.C Handling the Search String 23
3.3.D Architecture of Search Pipeline 24
3.3.E Structure of “Recommendations” 25

3.4 Deploy Management & Continuous Integration 25
3.4.A Jenkins Integration 25

3.5 Performance Optimizations 25
3.5.A Database Optimization 25
3.5.B React Schema Rework 27

4. Evaluation 29
4.1 User Study Structure 29
4.2 Evaluation Results 30
4.3 Evaluation and Discussion 37

5. Conclusion 38
5.1 Summary 38
5.2 Future Work 38

5.2.A Revisiting the Visualization 38
5.2.B Natural Language Processing 39
5.2.C Dashboard Mechanisms 39
5.2.D Other Areas of Interest 40

References 41

Appendix A: User Evaluation Script 42

Appendix B: User Evaluation (What a Participant Sees) 49

Appendix C: Data Table 55

Appendix D: Email to Student Body Requesting Pa 61

Appendix E: Evaluation Tutorial (Shown to each Participant) 62

Appendix F: Project Readme 67

1. Introduction

The United States Food and Drug Administration, or FDA, is responsible for “assuring
the safety, effectiveness, quality, and security of human and veterinary drugs, vaccines and other
biological products...” (Center for Drug Evaluation and Research). As part of these efforts, one
of the main tasks of the FDA is to receive and analyze medical reports submitted to the FDA's
Adverse Event Reporting System, or FAERS. These reports can originate from healthcare
professionals, consumers, and manufacturers, and can detail any manner of drug related incident,
such as the assignment of the wrong dosage or accidental exposure to a particular drug. In
addition to informing the FDA about such an incident, these reports serve a special purpose of
providing FDA agents with further understanding of the nature of drugs that are currently out in
the market. Even with the extensive testing that the FDA requires, there is no way for a
manufacturer to be able to test a drug against every possible scenario. To this end, the FDA
collects the information provided by the FAERS reports, and uses this information to see if they
can determine any previously unforeseen adverse reactions or any patterns of drug misuse.

As it stands now, however, the FDA’s workflow for analyzing FAERS reports is in need
of an update. Currently, FDA agents are required to go through each report they are provided one
by one, analyzing and keeping notes all on their own. Each year, the FDA can receive over a
million FAERS reports, with nearly 17 million reports currently being processed within the
system. In addition, since an individual FDA agent can potentially receive thousands of reports
as part of their workload, going through a significant number of reports is, by itself a very
tedious task that requires a large amount of time to complete. It is in the hopes of making this
process more efficient that our project first originated. (FDA Dashboard)

Last school year, a group of WPI students were tasked with providing a prototype for a
new web application for the FDA. This web application would serve as a new tool for the FDA,
with the purpose of providing the FDA with a new means of organizing and analyzing the
information from thousands of FAERS reports in an efficient and user friendly manner. This web
application was given the name Medication Error Visualizer, or MedVis. By the end of their
MQP term, this team had provided a working prototype for the FDA that would serve as the first
step in the development of the FDA’s new analysis tool. (Murphy et al, 2018)

For our project, our group was tasked with continuing the development of the MedVis
prototype. We were to look at what the previous MQP had accomplished, determine what areas
could use improvement, and implement as many of these improvements into a new design as
would be feasible within our allotted time, as well as provide new features that would expand on
the web application’s capabilities.

From our analysis, discussions, and development, we have produced what we hope will
act as the next iteration of the FDA’s analysis tool, ConText.

2. Background
2.1 Medication Error Visualizer

As stated above, ConText is the second iteration of the web application first developed by
a previous MQP, the Adverse Reaction Reports Analysis Tool project submitted in March 2018,
and was originally called the Medication Error Visualizer, or MedVis. In this project, the
students were tasked with creating the initial prototype for the web application, establishing the
basic structure of the application, and beginning development on the primary features.

It is from MedVis that our project inherited its general structure, which is focused around
three major components, a front-end for visualizations and UI, a database which contains user
data and report data modeled after the FAERS reports, and a back-end that connects the two
together. Both the front-end and back-end run with Node JS as their runtime environments,
utilizing the numerous additional packages Node JS provides to increase functionality. Together,
they are responsible for retrieving the information from the database, and providing the user with
effective visualizations that summarize the amassed data. In order to accommodate the influx of
data, ConText makes use of the PostgreSQL Database System for its database, as it allows for
developers to load large portions of data in real time. Most of the database is divided into User
data, which contains information on the application’s users, report data, which contains the mock
FAERS reports, and Case data, which contains reports that an FDA agent has determined to be
similar. (Murphy et al, 2018)

Normally, a user will only be looking at a relatively small portion of the total number of
reports, which represents the current workload for an FDA agent. However, even this portion can
contain thousands of reports that need to be analyzed and interacted with. In order to
accommodate this, the previous MQP constructed numerous features that an FDA agent could
use to make searching through and analyzing their workload more efficient. For our project, our
task was to assess these features and provide updates wherever necessary.

Figure 2.1.1: Original MedVis Visualization Page

2.2 ConText Main Features

ConText contains three major sections: the Visualization Page, the Reports Table, and the
Dashboard. The Visualizations Page contains tools that summarized the reports within the user’s
workload into numerous graphics and charts. These charts included bar charts that display the
demographics of report subjects, a timeline of provided reports, and, as its centerpiece, a series
of Treemaps which represent fields with a wider variety of articles that can be filtered for, such
as the drug name or cause. (Figure 2.1.1)

For our project, we largely left this section unchanged from what was originally in
MedVis, as we found that it already suited the needs of our sponsors sufficiently. We did,
however, provide some updates to some aspects of the UI, which we will further discuss in the
next section.

The Dashboard serves to provide quick links to user created cases, and is the first thing
that the user will see when they log into the application. (Figure 2.2.1) Again, we found most of
this page to be fine, and only made minor UI changes.

Figure 2.2.1: MedVis Dashboard Page

The Reports Page contains a full list of the reports, and provides the user with the ability
to separate them into Cases (groups of related reports) and gain access to a report’s full contents.
It is within the Reports Page where the majority of our changes have taken place, and is where
our new features are made available to the user. (Figure 2.2.2)

Figure 2.2.2: Original MedVis Reports Table Page

According to the previous project, user testing for these features returned mostly positive
results. Most participants were able to comprehend what each feature was intended for, how to
use the feature, and were able to understand the feedback they received after performing an
action, meaning that as it stood, MedVis was functional. However, after our analysis, we
determined that there were numerous aspects that could be further improved. The previous MQP
set up the foundations for the Reports Table and Dashboard, and put the majority of their efforts
into the treemap visualization. As such, while the treemap is almost production quality, other
sections had only basic functionality implemented. During our initial analysis of the application,
our group was informed that the FDA was most interested in expanding the Reports Table, as it
previously featured a user interface for accessing individual reports, but no way of organizing
them outside of putting them into Cases or finding reports with specific characteristics. In order
to solve these issues, the FDA informed us that they would like to add new features such as a
Search Engine for the Table, as well as new means of summarizing reports and making
information easier to obtain. Since these were the points that the FDA was most interested in,
implementing these two features would be what our project primarily focused on. (Murphy et al,
2018)

In addition to these changes, there were other parts of the project that could be improved
upon. While testing, the previous MQP noted that these features performed at desired levels.
Most participants were able to complete the assigned tasks in the correct manner, and were able
to determine the purposes of the different features. However, there were also several features that
participants responded negatively to. For example, were also problems that occurred during
review of report annotations, in which a user can highlight a section of a report with a specific
color. Participants expressed some confusion over how to add and remove annotations. In
addition, while analyzing the application ourselves, we determined that there could be other
minor UI elements that could be improved, which we will go into more detail on in later
sections.

2.2.A Report Table Interface
As previously mentioned, one of the sections that out project focused on the most was the

Reports Page. The primary focus of our predecessors was on the basic structuring and the
Visualization Page of the website, and due to the time constraints of an MQP, were unable to
allocate as many resources to the reports section. As a result, the report interface lacks the
interactivity that the previous MQP team expanded on in section 6 of their report. They
mentioned altering the case summary to include “…a series of bar charts to show the frequency
of specific highlighted words within the case report narratives…”. (Murphy et al, 2018)
Alongside the features requested by the FDA, a large portion of this work will be using the
ReportList structure designed by the previous group. The ReportList structure is the underlying
class for the Reports Table and contains the ReportTable structure, which presents and houses all
cases within a pool of reports (All reports, read reports, a case, etc.). Within the ReportsList, we
have included numerous new features, and have changed many different aspects of the web
application’s Front End.

2.2.B Document Searching
As mentioned, in addition to updating the ReportList for viewing and sorting reports, the

FDA expressed interest in adding a search function for the Report Section. This feature would
allow a user to enter a search text/phrase to further filter through the reports in the Report. Using
this tool could improve efficiency by allowing a user to search through 10,000’s of reports’ texts,
which, at present, can only be done by manually reading each report. This facilitates new types
of report filtering, for example; antibiotic A may help treat a rash caused by wearing a cast, but
while the FDA can see all reports with A present, a search function is needed to further filter
based on presence of words like “cast” or “broken bone”, etc. Later, we discuss additional
features dependent on text search, such as: “similar reports”, “tag based filtering”, and others.

3. Methods & Implementation

3.1 Interface Redesign & Face Lift

As stated above, the site is split into three separate pages: The Dashboard, The
Visualization, and The Reports Listing page. The previous MQP group spent a large portion of
their time working on the dashboard and the visualization, as well as many of the common
features between pages (such as the navigation bar), but due to time constraints were unable to
spend as much time developing the reports page. One of our goals in this project was to polish
the system interface as a whole, but we paid especially close attention to the Reports Listing
page to make up for the discrepancy in development time. Overall, our time spent redesigning
the website would be focused into two categories: Report Table Interactions and Case Summary
Interactions. (Murphy et al, 2018)

Figure 3.1.A1: Original row within ReportList (Collapsed)

3.1.A Report Table Interactions
Probably the largest target of our interface redesign, the general interface encapsulates

the reports listing and its many interactions. The initial design featured a very large (almost
loquacious) table of reports that allows the user to very quickly sift through the reports on screen
by certain parameters expressed by the column headers (see Figure 3.1.A1). However, many of
the fields within the structure were superfluous and didn’t add meaningful information for the
user. For example, there are three separate columns referring to a reports identity: The report ID,
the report version, and the primary ID. The primary ID serves as the actual identification of
unique elements within the list, and is actually just the concatenation of the case version onto the
case ID, thus making the presence of all three redundant. Another element of the listing that
serves little purpose is the last element, the narrative, which is the HTML stylized version of the
report text.

Figure 3.1.A2: Original row within ReportList (Expanded)
Beyond the listing itself, the other issues with the interface come with the contents of the

listings. Each row of the report table can be expanded to reveal several functions and to allow the

user to access the report text (see Figure 3.1.A2). This method of display very rapidly takes over
the user’s screen space, and the vertical growth of the contents can make the user lose track of
their place if the elements of the list is constantly growing and shrinking. Further, the space
within the contents is not being used effectively; all the functions within it are valuable, however
they take up a large portion of the screen, making it very hard to perform these operations on
different reports in succession. In order to move ten reports from the listing into a case the user
would need to expand each report individually and select the operation. However, given that only
one report can fit on screen at a time, they will likely lose their place. These same issue bleeds
over when viewing the report text.

The report text is expanded below the interfaces of the aforementioned functions, and,
depending on the size of the user’s display and the length of the report, may not be able to be
displayed at the same time as those functions. The content display as a whole does not
effectively consider the screen real estate of the user, and an overuse of negative space within the
design greatly limits its effectiveness. Instances of negative space can be found in the margins
surrounding the pieces of the display; the report table has excess padding within the application
window, and the contents of the table have excess padding, and the contents of the individual
listings have excess padding and so on. While padding can be effective in conveying separations
within the interface, too much can prove redundant and in this case detrimental to the function of
the interface. Further, the presence of a button to go to the report text is redundant if the report
text can also be viewed below that same button.

Figure 3.1.A3: New Reports Page Design for ConText

Our redesign represents a shift from the previous vertical listing of the interface to a more
commonly used paneled interface (see Figure 3.1.A3). This design draws inspiration from most
email software front-ends where there is a selection of folders, a listing of emails (in this case
reports), and a panel for the contents of those emails. To make this all work, we’ve decided to
rearrange the pieces of the interface to better convey the control flow of the system. Panel A
contains the workings of the case summary system, which we will be explaining in more detail in
section 3.1.B, and can control the contents of panel B. Additionally, the contents of panel B can
be changed with the use of the tab selection bar at the top of the interface. From there, a line
within panel B can be selected and the contents of the report, comment, and summary
information for that report will be displayed in panel C.

Moving from a vertically aligned interface to a horizontally aligned interface allows us to
convey more information to the user whilst also retaining access to multiple features on the same

screen. Displays are almost always wider than they are tall (with more displays featuring a 16:9
display ratio) which will allow us to fit more information on the page at a given time. Further we
have added toggles to each panel to allow the user to decide what is displayed on the screen.
Panels A and C can be minimized to increase the amount of space available to other elements of
the interface.

Panel B will always remain on the screen because it is the link between the other two
panels, and it is not feasible that the user would use A or C without B. The inverse also holds
true, wherein the user would not often use the table without using one of the other two elements
of the interface, therefore we have decided to make our toggles follow ‘OR’ logic. A can be
minimized to show just B and C or C can be minimized to show just A and B. When A or C are
minimized the other will grow to fit the new allotment of space, a valuable option when
analyzing either the report text or the case summaries.

Figure 3.1.A4: Columns Retained for new Report Page Design

This redesign would also require various adjustments to many of the individual pieces of
the interface to maximize our space efficiency while maintaining simplicity. Within panel B our
primary concern was to maximize the efficiency of our use of horizontal space within the panel,
we can stack as many things vertically as we want, but we can only display so much information
horizontally. To work around this, we decided that we would need to prune some of the columns
on the table listing. The columns we maintained can be seen in Figure 3.1.A4. Once the
horizontal dimension had been reduced we needed to address the positioning of functions
previously found within expanded listings: The ability to mark reports as supportive, and the
ability to move them to and from the system and case bins.

One of the largest issues with the previous system was that all actions and content
pertaining to a report required the report to be expanded. To address this the managerial
functions of the reports were placed into a side menu within the row, denoted by a vertical
ellipsis—a symbol essentially synonymous in modern design with meaning more. Further, in
keeping the function on a per line basis we can allow the user to perform the same action on
multiple reports in rapid succession without scrolling between reports, thus mitigating the chance
that they lose their place.

Another addition to panel B was the report search bar, which would allow the user to
search through reports in specific pools of reports ranging from all reports to specific cases. We
will be discussing the exact functioning of our system’s search later on in this chapter.
Accompanying the search bar is a drop down menu for selecting the target pool of the search.
The system defaults search to target all of our reports, but if the user were to select another
option from the dropdown they could just as easily search one of their cases, or even trash or
read.

Once a search query is launched the reports page will enter a loading state until the search
returns results—while in the loading state, all interactions with the reports page will be locked.
Once the query returns the results the report table will be updated with these results and the
individual cells will be expanded to display excerpts from within the text of the report that best
match the query. These excerpts are generated by the search system we have in place and are
ordered by the score given by that system (detailed more in section 3.3). All interactions with

each cell remain the same, the excerpts are just given to allow the user insight as to how the
report was chosen.

For insight on how all aforementioned changes operate and appear, refer to the 3.1.A
Case Management Walkthrough found at the end of this sub section.

Moving on to panel C, most of our work would be reformatting the report text and some
minor additions revolving around user interaction with the report text (see a visual example in
section 3.2). The first addition to the interface was the addition of a space for the system to
display report summaries, an intended feature for a future release of the system—accompanying
this was the ability to toggle the display of the summary. The next and most prominent
interaction between the user and the report text was the ability for the user to highlight specific
portions of the report with different colors to signify different keys (such as patient age, and drug
names). The original design featured the annotation interface as part of the generic display of the
report text (seen above). The initial design was not very intuitive and used colored buttons to
display the controls for the report text, however it did not in any way explain to the user the
functions of these buttons relative to the interface. The actual function of the interface is that any
text that you highlight after pressing on of the buttons will be highlighted with that color in the
display. More on this is explained in section 3.2.

Beyond our changes to the interface surrounding these functions we have also changed
the formatting of the report text itself. Report text will be displayed pretty standardly with the
ability to scroll down the page should the text extend beyond the bounds of the display. Further,
we make standard use of padding and font weight and size to align different sections of the text
and make the different bodies differentiable at a glance. Our intent with this panel was to keep
the display as simple as possible without the use of any gimmicks or too many moving parts, so
the user could simply parse through the text for what they need. Overall, we believe the general
redesign to have addressed most of our concerns with the previous interface while also providing
the user with more functionality and ease of use.

3.1.A Case Management Walkthrough
I. Case Management Options

Previously, the management tools for reports were nested inside of a collapsible panel
attached to each report entry in the table (see figure 3.1.A2). These tools allowed the user to
move reports to different bins and, when accessed from within a bin, remove the
report from that bin or mark a report as supportive or primary. These functionalities
were all retained in the new system you can access them as follows.

To start, simply click the vertical ellipsis (shown right) to expand the context
menu (seen below):

1. To move a report to a bin/case:
a. Select the name of the desired bin.

i. If the desired bin is one of your created cases, hover over the “add to case”
text to reveal a list of your cases.

As was previously mentioned, there are specific interactions you can perform when

opening this menu inside one of the system bins:
1. To remove a report from a bin/case:

a. Select the “Remove From Case” option from the menu.

2. To mark a report as Primary or Supportive:
a. Check or uncheck the “Primary Evidence” box.

After each action has been successfully completed, the icon associated with that action
will update. If you are adding the report to another case the hue of the icon will shift to let you
know that it is already in there. Removing a report will simply remove the report. And checking
the box will show a visible check within the box.
II. Search Interactivity

To launch a search query, enter the desired text into the search bar found at the top of the
Report Table panel. Once you have entered the text into the search bar, press enter to launch the
query. Additionally, you may choose to select a target for the search query via the dropdown
menu found adjacent to the search bar (see below).

Once the query has been launched, the screen will enter a loading state like the one the
site enters when you first venture to the reports page. Once the query has been resolved you will
be presented with the results of the search query. These results resemble the entries in the base
report table, however they now have a small section that shows the excerpts related to the query
you launched (see below).

3.1.B Case Summary Interactions
As previously mentioned, panel A contains an interface that in-part functions

semi-laterally to the tab selection bar at the top of the interface. Much like the tab bar, this panel
has the ability to change the contents of panel B to display the reports within a case entirely
independent of the filters in place on the system. As a result, we thought it best to move its
interface to the far left of the site to better convey the control hierarchy of the system (explained
in more detail in section 3.1.A).

Figure 3.1.B1: Original Case Summary Panel

The original design (see Figure 3.1.B1) was originally on the far right of the site and fell
prey to the same design choices as the rest of the system. The panel would open to display a list
of bins pertaining to the user’s active cases, and when one would select a bin it would expand
down beyond the length of the page with large portions of the display not even being effectively
utilized. To display word frequency, they utilized a bar chart to convey the occurrence of each
word, however the previous group did not account for the scenario wherein there would be a
substantial number of keywords. Further, even with a small number of keywords the chart is
excessively padded and extends beyond the length of the screen with most horizontal space
containing nothing. Accompanying the bar chart was a pie chart to see the ratio of supportive and
primary reports within a case—supportive meaning it supports a potential hypothesis, and
primary meaning it is a report that falls within the bounds of the hypothesis.

Following basic design principles, humans are less effective at judging the differences in
angles than they are at judging the length of a bar along a fixed scale. This discrepancy is well
documented and on the of the most popular explorations of this comes from William Cleveland
and Robert McGill (Cleveland & McGill 1985). The original interface featured both a pie chart
and a bar graph, however both were not implemented properly, as stated above. While the pie
chart does its job quite well, making it easy for the user to see the ratio between the two
categories, it becomes less effective when the number of categories increases—a feature needed
in the new system.

It was decided that the new system would need to allow more exploration of contents of
the cases; building off of the supportive vs. primary comparison we also wanted the user to be
able to compare across certain fields within the table (such as medication error, outcome, etc.).
When implementing these features, it became quite difficult to justify our use of the pie chart as
it lacked a balance of accuracy and compactness that would be necessary within the panel. To fix
this, we replaced the original pie chart with a horizontal stacked bar chart (see Figure 3.1.B2), a
tool commonly used to display partitions. Aside from using an aligned scale to compare
length—a method ranking higher than pie charts (Cleveland & McGill 1985)—the bar chart also
allowed us more efficient use of vertical space within the panel. The bar chart shows only one
category at a time, but the contents of the bar chart can be changed by selecting an option within
the Case Breakdown dropdown menu. Further, to allow the user more precision when viewing
the partitions, we have added a legend with the names of the categories and the counts within
each. Once the pie chart had been remedied we moved onto the bar graph.

Figure 3.1.B2: New Bar Chart, showing Evidence Type distribution

Figure 3.1.B3: New Keyword Display within Case Summary Panel

Much like the pie chart, in our iteration of the system, the original bar graph would need
to accommodate a new mechanism for the user. The keywords would now be used in structuring
a query for generating report recommendations—a new feature of the system (detailed in section
3.4). As such, it no longer felt proper to use a bar graph to display the information—aside from
its poor use of space. In the redesign, keywords are now displayed as a descending-ordered list of
buttons displaying both the keyword and the occurrences of said word (see Figure 3.1.B3). Each
button is defaulted to a green color and can be clicked to turn the word off when generating
recommendations (which will also change its color to red) and clicked again to toggle it back.
Once the user is happy with their selection of keywords for generating recommendations they

simply press the Get Recommendations text button and the system resolves the request. Once the
request has been sent, the site will enter a loading state until the search returns the
recommendations in the same form as a generic search from the table.

Figure 3.1.B4: New Case Summary View. Example shown is for Case “Test Synthroid”

In addition to these changes, we have rearranged many parts of the case summary
interface (see Figure 3.1.B4). The Case Reports button has been renamed to “show reports” and
moved to be in-line with the total number of reports and their classifications. The Get
Recommendations button has been moved into the keyword sections, as it will be recommending
reports based on these keywords. And more broadly, we have reduced a fair amount of the
padding within the bin listing and the contents of the bins. With this, the user will be able to see
the information within the cases and toggle between them with greater ease and efficiency.

3.1.B Case Summary Walkthrough
As was previously mentioned, the new case summary allows for the user to request the

retrieval of reports similar to those in the case that they are viewing. Accompanying this new
feature, we have added two elements to the case summary: the keyword summary section and the
get recommendations command button (see below). The former allows the user to view the
keywords associated with the case they are examining and additionally allows them to change
the query used to find similar reports.

The recommendations are generated via a series of keywords from within the case
summary, by default all keywords are selected but the user may toggle any of them off to change
the query. To toggle a word on or off simply click on the keyword bubble; a word is considered
“on” if it’s green, and “off” if it’s red (see Figure 3.1.B3). Once the user is satisfied with their
selection of keywords, they may press the Get Recommendations button to launch the query. The
query will then resolve identically to a search query—for more information regarding that see
section 3.1.A Walkthrough, subsection I.

Figure 3.1.B4: Search Results display. Beneath each row, a short excerpt will be provided to preview the narrative

By launching the query formed by the “on” keywords in Figure 3.1.B3 the system will
return a series of reports close to this query (the first two are shown in Figure 3.1.B4). The
reports are ordered based on closeness to the query; meaning that reports with a higher frequency
of keywords from the query will be scored higher and rise to the top. Within our response we can
see the presence of several of our keywords, namely: “patient”, “BV”, “report”, “months”, and
“return”. You will also note that some of our “off” keywords appear in the results, such as
“pain”, this means the off keywords are not exclusively toggled. If you launch a query you may
receive results containing your “off” keywords. Know that the reports are not graded with these
and they do not impact the ranking of the returned reports.

3.2 Narrative Annotation

3.2.A Front End
In order to view and annotate report narratives, ConText utilizes React-Quill, an open

source text editor. This library was first implemented during the original project, and was kept by
us since it already provided much of the needed functionality for viewing the narrative and
making highlights. By itself, React-Quill provides text editor functionality, such as changing font
size, bolding, italicizing, etc. However, for our project, we needed to add our own functionality
to the system with the goal of allowing users to put their own, written comments into the report,
as well as updating the current UI in order to properly convey this functionality to the user.

Figure 3.2.A1: Original Narrative Annotator

As we can see above, the previous Reports View includes numerous buttons that
represent the different highlighting categories that can be used on the report text. In order to
highlight part of the text, the user needs to first highlight the desired portion normally with their
cursor, then press one of the above buttons while the text is still selected. The text will then be
highlighted with the chosen color. After this is done, the user needs to press the save button in
order to make their changes permanent.

During our project, we realized that one problem with the current system was that it is
difficult for people who are unfamiliar with the system to discover the process needed to
annotate the report text, or that there is even a method of editing at all. All they were given is the
text and the toolbar at the top, but no instruction on how to use the buttons to highlight the text.
In response, our team took several measures in changing the front end to provide the user with
more direction. First, in order to confirm that the user is able to edit the text, we added an “Edit
Report” button to the top of the editor, which hides the toolbar until the user is ready to edit. This
way, the user can clearly see that they are able to edit the report in some way, and when they hit
the button, they will know that anything that appears can be used as a tool for them to interact
with. For when the user is editing, we also added a small help icon to the toolbar, so that when
the user hovers over the text, they will see a short set of instructions on the highlighting process.
This will provide them with all of the information that they need in order to properly edit the
report text. With these changes, the user is provided with the necessary information on how they
can highlight the report text.

In addition to updating the highlighting feature, we also expanded the user’s ability to
annotate the text through making comments. In conjunction with the search engine, it was
decided that for this project, the comments would be saved by having them concatenated with the
report text within its own ‘<comments>’ section of the html, which includes an unique id that is
based on the id of the report. With each comment placed into its own <comment> line, which
includes an id based on the current user’s id in order to help keep track of who’s comment
belonged to who. When a comment is loaded from the system, the report text html is scanned for
the <comments> tag. If it appears, it is separated from the rest of the text and placed inside of the
middle text box. This way, search results will be able to also search through comments without

adding any significant overhead to the system. All together, this system allows for users to
quickly make and save annotations to the system in a simple manner.

3.2.A Comments Walkthrough
To allow for comments, we included a new Comments Section into the Report Panel,

which always remains on the bottom of the Panel no matter where the user has scrolled to.
Within this section, we have included a text box for the user to type out their comment in, and a
toggle that can be used to determine if the comment will be private, in which only the user would
be able to see it, or public, in which all users would be able to see the comment. In order to make
a comment, the user simply needs to enter the desired annotation into the bottom textbox and
then press the “Make Comment” button. This will add the comment to the report and present it
above the text box. If the comment is public, the comment will be within a bright blue box that
also shows the user name of the poster. If Private, the user will see the same, but box will be grey
and hidden from other users. As with highlighting, the user then needs to press the save button in
order to make this comment permanent.

Figure 3.2.A2: Current Quill-Editor Annotator

3.2.B Back End
For our project, we decided to keep the majority of the current backend intact. There are

only two main queries that we utilize when we are annotating the text. The first is the
‘getreporttext’ query, which asks for the HTML text, as well as information from the “tags”
column, which contains the location and categories of previously made highlights, for a specific
report that is identified through the primaryid.

When the user is saving their edited report, we use the ‘savereporttext’ query. This will
save the current report text and tags to the specified report primaryid.

Figure 3.2.B1: Example of ‘getreporttext’ query

Figure 3.2.B2: Example of ‘savereporttext’ query

3.2.C Database
Currently, annotations only require two rows within the “Reports” table, ‘report_text’ and

‘tags’. ‘report_text’ holds the actual narrative and the user comments, all contained in a single
block of HTML formatted string, and is null when empty. The ‘tags’ row contains a json object
that holds all of the tag key-value attributes of that particular report, including the locations and
type of the highlighted text in the report narrative.

3.3 Document Search
For our project, after considering multiple libraries for report text searching/indexing, we

chose Elasticsearch (ES). We considered building the search tool from Lucene, however we
changed our plan and chose Elasticsearch as it allows us to save time and still retain the powerful
features Lucene provides.

3.3.A Technologies Considered

PostgreSQL Full Text Search
PostgreSQL can support full text searching/indexing natively. However, while it

can satisfy our requirements, an implementation in PostgreSQL will need potentially intensive
maintenance if the database schema changes, or if the project switches from PostgreSQL to
another DBMS. Likewise, development in just SQL would be difficult to debug, and an
implementation in a more “typical” programming language has the benefits of quick prototyping,
editing, and testing. (PostgreSQL, 2018)

Apache Lucene
Apache Lucene is a powerful tool supporting many different kinds of indexing,

searching, and document analysis. For example, it can perform single/multiple keyword searches
either for exact matches, or for “fuzzy” matches. Lucene can also perform multiple-index
searches, which will be useful for creating a “similar reports” feature, as well as for efficiently
updating the search index, as we would only need to index new reports added to the system, as
opposed to re-indexing all reports. Additional features of Lucene which will be useful are:

● Ranking of search results, so that we can display the most relevant results first.

● Updating the index while searching.

● Low memory profile, and efficient, configurable storage.

● Open Source and free for use. All file formats are even fully documented, and there are
easy ways to manipulate/explore the search structures Lucene creates.

● Lucene is fully implemented in Java, increasing portability, but is also available in other
programming languages, such as Python, Ruby, and more. (Lucene, 2016)

Xapian
Another open source searching library is Xapian. While it includes many of the

features of Lucene, there have been much fewer projects implemented with Xapian, which
makes finding code examples of certain features more difficult. Likewise, we are developing on
Windows and Unix for a Linux environment, so portability is important for collaboration, as well
as for the future of this project, however the Xapian bug list contained multiple features not
working properly caused by MSVC compilation on Windows. (Xapian, 2018)

Elasticsearch (ES)
Elasticsearch (ES) is a RESTful search framework built over Lucene. ES provides

all of the functionality of Lucene, while simplifying implementation for us, and offering a
Domain Specific Language (DSL) library for Python. This is particularly useful for us, as the
DSL allows us to perform powerful operations in very few lines of code. In terms of
performance speed, Elasticsearch automatically configures itself to run on shards, splitting up
the document index into different locations which can all be indexed simultaneously; and nodes,
which are instances of the elastic server that are run on different machines, and which contain
their own shards. This automatic, configurable, and scalable deployment will be useful for the
FDA, as their document collection is quite large. (Elasticsearch, 2019)

3.3.B Structure of Report Search
Since ES’s index is separate from the database, and the reports do not have titles, only

text, we “titled” each report with its primary key from the database in order to establish a relation
between ES ↔ PostgreSQL. When building the index, we store the report text and the unique
report “title” in the index, along with age, sex, and report text, and more fields which the user
will likely wish to search on.

3.3.C Handling the Search String
To provide a suite of useful features to the user, we implemented a few niceties and

specially handled control sequences to be entered in the search box:
Fuzzy Search:
The default search method uses “fuzzy” matching. Fuzzy search helps locate relevant

results which do not directly match the search term. For example, with a fuzziness of 2, if a user
searches “Treat”, then the results would contain some documents which do not exactly contain
“Treat”, but which may contain “Treats”, “Treated”, etc., but would not contain “Treatment”
(because ‘ment’ is 4 characters, which surpasses the fuzziness of 2). It is important to set a good

value for the fuzziness parameter, which is why we use the “AUTO” parameter for fuzziness,
which defaults to:

● 0 for strings of one or two characters

● 1 for strings of three, four, or five characters

● 2 for strings of more than five characters

Negative Search:
Similar to how Google’s search allows you to enter “Fruit” to see all fruit, and “Fruit

-banana” to see all fruit EXCEPT for bananas, we implemented negative search as well. A user
can enter “Aspirin” to see all documents which mention Aspirin, and “Aspirin topical !oral” to
help filter onto the documents in which a patient may have used aspirin without swallowing it.
As a design decision, we chose to use the ‘!’ symbol instead of the ‘-’, as we want to allow the
FDA to search for words which may begin with a dash; these include some medications with
spaces and dashes in their names, or if a doctor lists suffixes, and each of them begin with a ‘-’.
Although this case is unlikely, we considered that the ‘!’ will never be intentionally searched for.

3.3.D Architecture of Search Pipeline

3.3.D1 Diagram of data flow through the search pipeline when a search is made

When a search is made from the front end, the search string is sent to our Node.js server,
which loads the user’s document context (the pool of documents they intend to search on), and
then calls our ES Python script with a JSON string containing the search string and context. The
script then executes the search on the elastic server, and returns a JSON string containing all of
our search results and some metadata (eg, how long the search took on the elastic server) to the
node server, which sends this data to the front end to be displayed.

We use a Python script instead of a Python RESTful server, as the time it takes to do any
initializing and connect to the Elastic server is negligible, and using a script allows us to quickly
make changes to the script and have it be immediately available to the users - without any
overhead.

3.3.E Structure of “Recommendations”
We considered various approaches to creating the functionality of “from all reports R,

given a set X of reports, return a set Y of similar reports”. We implemented this by presenting
the user with their highlighted keywords (and their counts) from X, and allowing the user to
toggle the keywords in/out of the search string used to yield Y. This affords the user the ability to
fine-tune the similar reports, while still being a quick and easy tool. For more details refer to
Section 3.1.B above.

3.4 Deploy Management & Continuous Integration

3.4.A Jenkins Integration
We use Jenkins on Linux to quickly update and deploy the website, while also providing

a simple way to run and monitor builds from any device. Our Jenkins server, which runs on port
8080, automatically pulls from git and executes the proper commands to cleanly re/launch the
website all with the click of a button. Jenkins has been very useful to check the status of each
launch both throughout production, and now in deployment. In earlier versions, we also used
Cobertura and jest to get code coverage, to spot and clean deprecated code from the previous
MQP.

3.5 Performance Optimizations

3.5.A Database Optimization
The database previously consisted of many tables which had keys referencing other

entries in other tables, but had no formally declared relationships/constraints. In this way, the
‘tables’ functioned like lists, which is very slow, and does not benefit from the very many
performance optimizations afforded to us with modern DBMS systems.

3.5.A1: A screenshot of a graphical representation of the original database. Notice that all tables are orphan tables, and that

most tables lack any form of key.
To fix this, we ran various queries to discover the underlying structure and relationships of the
data/tables, and used our findings to properly add constraints like uniqueness and/or foreign
keys, as seen below.

3.5.A2: A screenshot of a graphical representation of the new database. All but 3 tables are related, and most tables have a
primary and/or foreign key.

The performance improvement of our database changes has been drastic.

3.5.B React Schema Rework
The previous MQP built their system with React, a feature we have maintained in our

release, however there were several issues with their React schema that slowed the system. The
previous group mixed different techniques of implementation with React. Some components
were using a “Will” schema and others were using a “Did” schema. The difference between the
two is that the Will schema works via preemption of an update to control the components while
the Did schema reacts to actions to control components. When you mix the two you will often
get undesirable effects, most commonly taking the form of excessive calls to the same function at
different intervals during a process call.

The most rampant example of this was within the report table where they had the
methods for retrieving reports in both a Will and Did React function that resulted in several
queries to the server to retrieve the same reports. The problem here is that the site very quickly
ran into memory issues for the user and could reach CPU usage ranges in the high nineties. This
level of rigor on the hardware slowed the system quite drastically. To remedy this, we changed

the React Schema to be a thoroughly grounded in a Did schema, using Will components only
where it was absolutely necessary. The results is a much more controlled and regulated
interaction between the site, the server, and the user’s hardware—it also made the website run
much faster.

4. Evaluation

In order to test the usability of the web application’s new and improved features, the team
decided to hold a User Study. The main goal of this study would be to test how intuitive our new
system is when used by a participant with no prior experience with the application.

4.1 User Study Structure
For this study, we determined that the best method of understanding the usability of the

system would in the form of a live study in which a participant would go through numerous
different features and answer both quantitative and qualitative questions on tasks they were
assigned. Since the vast majority of the new features and changes made were within the Reports
Page, the study would be focused on this section alone.

 Participants were chosen at random from amongst WPI’s student population, providing
us with a diverse group of individuals from different backgrounds and technical skill. After
discussing the project with WPI’s Institutional Review Board, it was determined that since we
were not requiring the participant to provide any personal information that would be used in the
study outside of a short demographic survey, we would not need to provide them with a written
consent form before starting the study. Instead, we simply told them that this study was by no
means necessary, and that they could choose to discontinue at any time.

When a participant agreed to partake in the study, the first step was to provide them with
a short tutorial on ConText, namely what ConText is and providing them with at least some
reference for the features that are available within the system. This tutorial would also explain
that the user would be focused on the Reports Page, and provide a short overview on the
different aspects of the Reports page. (Appendix E) After this tutorial was completed, the
participant would then be asked to fill out a short survey in order to get their general
demographic, i.e. age, gender, and previous education. (Appendix A)

Finally, the user would then begin the user study itself. The study was broken up into 5
separate sections, or Tasks, each one having a varying amount of tasks and questions to
complete.

1. Building a Case/Getting Started: This Task is where the participant first enters
into the system and is familiarized with building a case and using our new search
engine. The tests are meant to see how easily the participant is able to determine
how to create new cases, and the different methods by which they can add reports
into their case.

2. Marking Reports: Here, the participant is asked to make use of different
methods of interacting with reports in a case, namely by marking reports as
“Primary Evidence” and annotating the narrative of a report. This is to show them
how interacting with reports will cause changes not only in the reports
themselves, but also in the Case Summary panel, which will change depending on
the status of the reports within it.

3. Summarizing a Case: This section is meant to show the participant more on how
they can alter the case, namely by seeing what happens when they remove a
report from a case. Here, the participant will see changes in both the D3 graph and
the Keyword Summary as they remove reports from the case.

4. Dummy Test/Summarizing and Adding to a Larger Case: This test is focused
on furthering the participant’s understanding of the Case Summary panel by
having them look for specific information and utilizing the Get Recommendations
feature.

5. Commenting On a Report: Finally, this section tests the usability of the new
commenting system, and had the participant interact with an already commented
report, and has them leaving their own comment, thus going through all of the
workflow paths for working with comments.

Each section contained a list of smaller tasks for the participant to complete, as well as
some quantitative questions that could be attached to a particular task and were to be completed
in parallel. At the end of each set of tasks, the participant would be asked to answer some
qualitative questions, providing their opinion on the effectiveness or ease of use of the tested
features on a scale from 1 (Unintuitive/Hard) to 5 (Intuitive/Easy). During examination, in the
event that a participant was stuck or asked a question, the investigator would be allowed to
provide a small hint in order to help them along. For example, occasionally a user would be
unable to locate the Report Count indicator at the top of the screen, so if they were struggling to
find it or asked, the investigator would be allowed to say something to the effect of “The count is
visible at this time,” which usually was enough to expand their view and bring them to the
correct answer. In such instances, we would mark down any hints or guidance that were
provided, which in turn gave us valuable information on which features were most difficult for
participants, as well as insight into potential fixes that could be done in the future. (Appendix B)

In addition to recording the answers to these questions, investigators also kept track of
the time that it took for a participant to complete each section, starting from the start of the first
task and ending on them beginning the qualitative questions for that section. Investigators also
recorded the state of the Reports Page at the end of each section, such as whether or not they had
the correct panels open or saved their annotations. (Appendix C)

Once the user ended the study, we offered them the chance to enter their email for a free
$30 Amazon Gift Card. For obvious purposes, these emails have been kept confidential and are
not included in the notes.

4.2 Evaluation Results
 By the end of the Evaluation phase, 15 participants had taken the User Study. For the
most part, it appears that participants were able to get a handle on the system fairly quickly.

All of the results of our data collection is available in Appendix C: Data Table.

Time wise, most of our participants were able to get through the examination fairly
quickly, although there are fluctuations in terms of how quickly an individual participant
completed individual Tasks.

Task Building a Case
/Getting Started

Marking
Reports

Summarizing
a Case

Dummy Test /Summarizing
and Adding to a Larger Case

Commenting
on a Report

Total Time

Avg Time
(Min:Sec)

5:32 2:15 0:56 3:46 1:19 13:50

Table 4.1: Table of Completion Times. This table shows the averages time that it took participants to complete
individual tasks, as well as the total time it took for them to complete the User Study.

For the qualitative questions, most participants were able to come to the correct answer.
For example:

Figure 4.2.1: Results of Task 2 Question 2.1, “What is the current ratio between Primary and Supportive reports as indicated
by the graph?” The correct Answer is “2 to 3”

The above graph shows participant’s answers to the first question of the Marking Reports
Task, in which they are asked to report the ratio of Primary Reports to Supportive Reports after
making 2 out of 5 reports Primary. Specifically, the user is meant to view the Case Summary
Panel and find the D3 graph that shows the proper ratio. The correct answer to this question is “2
to 3”, which we see that most participants (11/15) were able to discern for themselves through
the system. In addition, the second most common answer is “3 to 2” (3/15), which while not
exactly the correct answer, shows that the user was at least able to discern how to get the needed
information, but either misread the question or misinterpreted the graph. (Figure 4.1)

Figure 4.2.2: Results Question of Task 1 Question 1, “How many reports are made available to the user when you first
entered the reports page? (hint: there is an indicator on the page)” The correct answer is “23889”

Figure 4.2.3: Results Question of Task 1 Question 2, “How many search results appeared?” The correct answer is “150”

For other questions, participants would occasionally need to be provided a hint for them
to find the correct answer. Above, we see the results of two other Qualitative questions, the first
of which the user needed to identify how many reports they currently had access to when the first
opened the reports page, the second being to identify the number of search results they get when

they enter the word “patient” into the search bar. For the first question, the correct answer to this
question was “23889”, which most participants (14/15) were able to successfully identify. Only
one seemed to not understand the question, or did not see the proper count of reports. Ideally,
this would have been accomplished by looking at the top of the screen and finding the “Report
Count” tab. However, as we discovered and recorded in our notes, some people did not seem to
see this count when they first opened the system. When they asked about this, the proctor usually
would provide a simple hint, such as reaffirming that the count was visible. In many cases, we
found that this almost immediately provided our users with the insight to find the count, and
record the correct answer. This was much the same for second question, in which the correct
answer was “150.” Similarly, the participant would occasionally need a slight hint, but then was
able to find the answer on their own, with 13/15 getting the answer correct. (Figure 4.2.2: Figure
4.2.3)

In other examples, we see that the participants, while not finding the exact answer,
appears to at least be near the correct answer.

Figure 4.2.4: Results of Task 4 Question 1, “Which medication error is most prevalent?” The correct answer is “Wrong
Dosage Form”

In the above graph, we see the answers to Question 1 in Task 4. This question asks the
user to use the D3 graph again, this time switching the mode from Primary vs. Supportive to
checking the distribution of Medical Errors. The correct answer to this question is “Wrong
Dosage Form,” and as we can see above, we have received some interesting results. The most
common answer to this question was “Wrong Dosage” (8/15) and the second most common
answer was “Wrong Dosage Form” (7/15). While “Wrong Dosage” is not entirely correct, it
shows us that the participant was able to find the necessary information in the system, and was

able to at least provide a partially correct answer. In addition, there were no other answers for
Medication Errors that didn’t have anything to do with “Wrong Dosage,” meaning that there
were no completely incorrect answers to this question. (Figure 4.2.4)

Figure 4.2.5: Results of Task 4 Question 2, “How many Recommended Reports are currently available after
removing keywords?” The correct answer was anything less than 150, as long as it is a number.

For question 2 in Task 4, this question was meant to check the search results feature
results, only this time when applied with the Get Recommendations Tool. For this question, the
goal was to test what would happen when a user reduces the number of keywords involved in a
query so as to test whether or not the query can help narrow down reports. This question was to
see if a participant could change the search result amount significantly through the Get
Recommendations. For the most part, participants seemed to receive a full list of returned reports
(10/15), but occasionally they would return less. As we can see, this is indeed the case, showing
us that the tool is, in its current state, a potential means of narrowing down related reports and
finding potential links. However, we can also clearly see that the tool still needs further tuning,
as we see that most participants were not able to reduce the amount results from their search.
(Figure 4.2.5)

Figure 4.2.6: Results of Task 1 Question 3, “When choosing your reports, from which of the following groups did
they belong to?” There is no correct answer to this question, as its purpose was to check to see how participants

determined which results were important.

For the rest of the quantitative questions, these were less about providing a correct
answer, and more of getting an idea for how the participant thinks. For example, in the table
below, we see the answers provided to the question “When choosing your reports, from which of
the following groups did they belong to?” that relates directly to the task of searching through the
reports with the search engine using the work “patient.” When the participant entered this search
query, they would receive a list of results, and then have to select five of them to put into case
Patients. As we see above, there were a variety of strategies that a participant had for choosing
their reports, particularly choosing from both from and outside the first 5 search results. This
question was meant to provide us with an idea for what users would do when provided with
search results, and how they would go about determining what is relevant and what is not. This is
then expanded upon in the next question, where they provide an extended answer. From these
answers, we see that most users went off of the information within Report Table, rather than
from the Report Panel, or that they simply chose at random. (Figure 4.2.6)

In terms of the qualitative questions, we have found that people responded positively to
most features. As said before, qualitative answers were put on a scale of 1 to 5, with 1
representing unintuitive/difficult and 5 representing intuitive/easy. In the table below, the
qualitative questions that participants were asked is listed, along with the averages of all 15
participants’ responses.

Task 1: Building a Case/Getting Started:

How intuitive was it to navigate to the reports section? 4.0667

How easy was it to find reports related to the query? 4.1333

How easy was it to add reports to the case? 3.6667

How difficult was it to get to the reports within the case? 3.6

Task 2: Marking Reports

How intuitive is the primary/supportive graph provided? 4

How intuitive is it to annotate a report? 3.6

Task 3: Summarizing a Case

How easy was it to remove a report? 4.9333

Task 4: Dummy Test/Summarizing and Adding to a Larger Case

How intuitive is it to interact with recommended reports? 3.7333

How insightful are the case summary demographic distribution
graphs?

3.8

How intuitive is the keyword selector? 3.8

How insightful is the keyword distribution? 4.3333

How relevant are the Recommended Reports to the entered
Keywords?

3.7333

How intuitive is it to manipulate the Query? 3.6

How useful are the recommended reports? 4.0667

Task 5: Commenting On a Report

How easy was it to remove comments? 4.9333

How easy was it to add comments? 4.2

How useful do you think comments would be in this tool? 4.8667

Table 4.2: Table of Qualitative Results. This table shows the different qualitative questions that we asked out
participants on the left and shows the average of all of their answers on the right.

 For the most part, we were able to keep our grades around 3.5-5, which tells us that most
participants found the improved system to be intuitive, but that some improvements to the
system are possible. (Table 4.2)

4.3 Evaluation and Discussion
Our results provide us with a great deal of information about how well our participants

were able to adapt to ConText, namely that while the current system is functioning as expected,
there is certainly room for future improvement.

 When building the User Study, it was estimated that it would take approximately 15-20
minutes for someone to complete all of the tasks. For the most part, this estimation was accurate,
and we found that many participants were able to complete the examination even before the 15
minute point. However, as we can see above, there are certainly fluctuations in terms of how
long it took participants to complete each task. For example, Task 1 was longer than the other
tasks as it required the participant to do more so that they could become more familiar with the
system. On average, most participants took approximately 5 minutes to complete the task,
showing they were able to get a handle on the new system in a fairly short amount of time.
However, others took more time to complete Task 1, sometimes even as high as 8-9 minutes.
This type of fluctuation occurs across all of the Tasks, showing us that while some were able to
get a grasp on the functionality fairly quickly, some had more difficulty understanding parts of
the system. (Table 4.1)

During the study, the parts that we found participants to have the most trouble with were
in identifying the Case manipulation menu that was available in every Report Row, first in that it
may not be too clear that the menu is there and that there was not enough feedback provided
when a user moved a report to a Case. The Get Recommendations feature was also a place where
participants seemed to struggle, as they would occasionally be confused about where it was
located and how to tell what words were selected or not. In the qualitative questions, when asked
to rate their feelings on adding reports, participants only gave it a 3.6666, and when asked their
feelings about the intuitiveness of the Get Recommendations feature, answers stayed around
3.6-3.8. These were the sections that most participants seemed to take the longest to complete,
and also asked the most questions on during the study.

In addition, it would appear that there are still some issues with the highlighting tool in
terms of its intuitiveness, as it also received only a 3.6, meaning that further improvements to the
annotation workflow will be necessary outside of just adding a tooltip. There are also some
improvements that could be made to the workflow of adding comments. While adding comments
received a fairly high score of 4.2, one of the most common complaints from participants was
that it was unnecessary to have both a “Post” and “Save” button for the system. (Table 4.2)

Also, as said above, while most participants were able to come close to the desired
answer, there were still several instances in which participants weren’t entirely correct, usually
providing an incomplete or partial answer to what we were expecting. This most likely indicates
that our main issue is that while we are making a lot of information available to the user, there is
still some work to be done in refining that information, and making it easier for the user to
understand completely.

In conclusion, while these scores show that people had mostly positive experiences with
our system, the overall results of our study show that our newest features are not completely
ready, and will most likely require finer tuning in future iterations of the project.

5. Conclusion
5.1 Summary

For this project, our task was to update the MedVis system that had been created by last
year’s MQP.

We built on the previous project with improvements to:
● The Reports Page — Making a new 3-panel view that centralizes all information.
● The Case Summary Panel — Adding new views to the panel to help summarize Cases.
● The Narrative Annotator — Improving the efficiency and simplicity of viewing and

annotating a report.
while adding entirely new functionality via:

● Search capability — Being able to enter a search string, and view relevant reports.
● Report comments — The ability to add public and private comments to reports.
● Recommended reports — Finding more reports relevant to reports currently in the case.

After conducting a study, we evaluated that our changes:

● Excelled in:
○ Simplifying the workflow of viewing and interacting with reports.
○ Improving the simplicity of the Reports Page

● Could be improved by:
○ Working more with the Case Summary Panel, especially its Front-End to improve

interactivity.
○ Improving Comments UI functionality.

Through our efforts, the MedVis project has entered the next stage of its development,

ConText, and has been brought closer to achieving its full potential as a lifesaving tool for the
FDA.

5.2 Future Work
 Much like the previous project team, our efforts were focused primarily on one portion of
the project and while we believe we have addressed many of the issues with the system as a
whole, there is still much to do. Due to time constraints and a lack of expertise in certain areas of
development, certain features we had planned had to be pulled from the site. These features
included a revision of the visualization page, implementation of Natural Language Processing
(NLP) on the report text, and a revision of the Dashboard interface. Additionally, we have also
written a subsection on potential avenues for development that we feel would benefit the project
as a whole.

5.2.A Revisiting the Visualization
 There are certain oversights with the implementation of the TreeMap found on the
visualization page. The first being the limitation of not being able to fully show the user the
categories within the tree map selections, particularly where the number of options is quite large

(such as the drugs TreeMap). This results in the user only being able to see the top 15 or so drugs
from within a pool of over 100 making the others inaccessible. To remedy this, we proposed the
addition of a searchable list field in place of the TreeMap for drugs. While not as elegant as a
TreeMap the primary concern here should be function, rather than neatness of the visualization.
Unfortunately, due to scope constraints we were unable to address these concerns but feel it
necessary to offer up to future teams to work on.

5.2.B Natural Language Processing
 The introduction of NLP into the system surrounding reports would greatly bolster the
efficiency of the report analysts. Our proposed uses for this technology are to automatically
generate summaries of the report text for the user and to automatically recognize and highlight
keyword annotations within the report text. The general thought surrounding this is that the
primary purpose of the tool is to allow analysts to collect and go through the text of the report
and shortening the text they need to review would increase efficiency. However, in order to
become a true replacement, it is necessary to properly train the agent to generate effective
summaries.

 The biggest issue with this feature lies within this training. As it stands, we only have
access to a collection of around 50 faux reports given to us by our sponsors so effectively
training the model isn’t feasible. And given that we lack knowledge of how to write reports that
mimic the style of health care professionals and random generation may breed undesirable
results. In order to truly implement the proposed NLP, it is imperative to train the model on the
actual reports from the database.

5.2.C Dashboard Mechanisms

Another avenue for improvement on the system lies in an overhaul of the current
dashboard interface. As it stands, the only unique thing the dashboard offers is the ability to set
the user’s cases as active or inactive. We believe that the best direction to take this portion of the
interface is in a much more in-depth version of the case summary panel found within the reports
page. Given that the dashboard has its own dedicated space and mechanism for managing cases it
appears to be the optimum candidate for deep exploration of the cases.

In terms of the actual exploration of the reports, it may make more sense to draw on a
number of different visualization strategies to follow intended areas of intrigue. To track the
interactions between certain drugs within a case (or even the whole body of reports) it might
make sense to look to something like the DIVA project. This project uses a force-directed graph
to map the interactions between drugs and tracks the frequencies and magnitudes of these
interactions. Other areas to look at may be additional views for tracking the distributions of
errors, outcomes, etc. for a case. These views would offer more fidelity than would be achievable
within the case summary. Without too much thought, a view could be a map of the distributions
of errors and outcomes, the data could be run through a neural network to detect certain patterns
and distributed with these groups as guides. Another view could encompass multiple cases to
check commonalities between the two that may otherwise be overlooked in case specific

analysis. There are many other possibilities here and these are just a few, regardless we feel that
a revision of the dashboard into an analysis tool would greatly aide analysts.

5.2.D Other Areas of Interest

Aside from those previously mentioned, the system would benefit from additional
features, such as:

● ‘Smarter’ search — for example having the search engine to understand that “advil” and
“ibuprofen” are the same, and to automatically search on both.

● Security — limiting access to reports, and intelligently keeping track of what data has
been delivered to each person. This is important, as although we are using publicly
available data, the FDA is using data which should be kept secure.

● Full database rework — the database still contains redundant data, and could be
drastically trimmed in size while reducing latencies. Likewise, combining the elastic
index with the postgres database is a direction worth exploring. Elastic might be able to
fully replace and improve the database currently in use.

References
1. FDA Dashboard,

fis.fda.gov/sense/app/d10be6bb-494e-4cd2-82e4-0135608ddc13/sheet/7a47a261-d58b-42
03-a8aa-6d3021737452/state/analysis.

2. Center for Drug Evaluation and Research. “Questions and Answers on FDA's Adverse
Event Reporting System (FAERS).” U S Food and Drug Administration Home Page,
Center for Drug Evaluation and Research,
www.fda.gov/drugs/guidancecomplianceregulatoryinformation/surveillance/adversedruge
ffects/default.Htm.

3. Cleveland, William S., and Mcgill, Robert. “Graphical Perception and Graphical
Methods for Analyzing Scientific Data.” Science 229.4716 (1985): 828–833. Web.

4. “FDA Basics - FDA Fundamentals.” U S Food and Drug Administration Home Page,
Center for Drug Evaluation and Research,
www.fda.gov/AboutFDA/Transparency/Basics/ucm192695.htm.

5. “Get Started in the Cloud.” (2019) Elastic, www.elastic.co/.
6. Murphy, D., Spring, O.B., Tapply, C.M., & Yun, D. (2018). Adverse Reaction Reports

Analysis Tool (Undergraduate Major Qualifying Project No. E-project-032218-172311).
Retrieved from Worcester Polytechnic Institute Electronic Projects Collection:
https://web.wpi.edu/Pubs/E-project/Available/E-project-032218-172311/

7. PostgreSQL, PostgreSQL, 2018: https://www.postgresql.org/
8. PostgreSQL (2018). “Full Text Search”:

https://www.postgresql.org/docs/10/static/textsearch-intro.html
9. Lucene (2016). Apache Lucene. “Lucene Features”:

https://lucene.apache.org/core/features.html
10. Xapian (2018). The Xapian Project. “Features”: https://xapian.org/features

http://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/surveillance/adversedrugeffects/default.Htm
http://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/surveillance/adversedrugeffects/default.Htm
http://www.fda.gov/AboutFDA/Transparency/Basics/ucm192695.htm
http://www.elastic.co/
https://web.wpi.edu/Pubs/E-project/Available/E-project-032218-172311/
https://web.wpi.edu/Pubs/E-project/Available/E-project-032218-172311/
https://www.postgresql.org/
https://www.postgresql.org/docs/10/static/textsearch-intro.html
https://lucene.apache.org/core/features.html
https://xapian.org/features

Appendix A: User Evaluation Script

FDA MQP Evaluation Task List
Script:

1. Thank the participant for their interest, and assure them that this is completely voluntary.
2. Have the participant complete the survey for their background information.
3. Once the survey is complete, we will read an introduction to the participant, introducing

them to the system and providing them with an overview of what to expect from the
following evaluation.

4. Start the evaluation. While the participant is answering the following question, we will
record:

a. The amount of time it takes for the participant to complete each section.
b. The number of times the proctor must assist the participant during a task.
c. Their answers to each of our questions.
d. The status of the screen at the end of each task. (To check accuracy)

5. When the participant has completed the evaluation, thank them for their time and offer
them a chance to enter their email for the gift card.

Survey
What is your age?

1. 18-20

2. 21-29

3. 30-39

4. 40-49

5. 50-59

6. 60 or older

What is you gender?

1. Female

2. Male

3. Other: __________

4. Prefer not to answer

What is the highest level of school you have completed or the highest degree you have
received?

1. Less than high school degree

2. High school degree or equivalent (e.g., GED)

3. Some college but no degree

4. Associate degree

5. Bachelor degree

6. Graduate degree

Have timer at ready to jot down times for each task.
Make sure to take note of the number of times the participant requires the proctor’s assistance.

Make sure to note the status of the screen when the participant ends their each task.

Evaluation Section 1: Starting From a New Account

Building a Case/Getting Started

1. Create a new account.

2. Go into reports section.

o Question: How many reports are made available to the user when you first
entered the reports page? (hint: there is an indicator on the page)
(Ans: 28,339)

3. Create a new case titled “Patients.”

4. Enter “Patients” into the search engine and execute search.

o Question: How many search results appeared?
(Ans: 150)

5. Take any 5 reports from the search results that you feel are relevant and add them to
case “Patients.”

o Question: When choosing your reports, from which of the following groups did
they belong to?

1. Amongst the first 5 results

2. Below the first 5 results

3. Both from and below the first 5

o Question: Why did you choose these particular reports out of the results?

6. Go to the case summary panel.

7. View the reports in the “Patients” case.

Difficult How intuitive was it to navigate to the reports section? Easy

1 2 3 4 5

Difficult How easy was it to find reports related to the query? Easy

1 2 3 4 5

Difficult How easy was it to add reports to the case? Easy

1 2 3 4 5

Difficult How difficult was it to get to the reports within the case? Easy

1 2 3 4 5

Marking Reports

1. Select 2 of the reports within case “Patient” and toggle them to primary.

2. Open the Case Summary Tab to the Left.

3. View the distribution of primary to supportive (using d3 graph).

o Question: What is the current ratio between Primary and Supportive reports as
indicated by the graph?

___________ (Ans: Should be 2 Primary / 3 Supportive)

4. Navigate to 1st Report.

5. Annotate using the “Drug” highlight in the report.

Uninformative How intuitive is the primary/supportive graph provided? Very Informative

1 2 3 4 5

Unintuitive How intuitive is it to annotate a report? Intuitive

1 2 3 4 5

Summarizing a Case

1. Keywords should update in the Case Summary panel.

2. Remove a report from the case.

3. Go back to keywords; check that the keywords were removed.

Question: Can you tell the information within the graphs has changed as a result
of the report being removed?

1. Yes

2. No

Difficult How easy was it to remove a report? Easy

1 2 3 4 5

Section 2; Using an Existing Account

Dummy Test/Summarizing and Adding to a Larger Case

1. Log into a premade account, Username “EvalAcc”

2. Navigate to the premade case called “Target” in reports section.

3. View Case Summaries.

4. View distribution of medication error.

Question: Which medication error is most prevalent?
(Ans: Wrong Dosage Form)

5. Select Keywords to query for Recommended Reports.

6. Remove Keywords from query.

Question: How many Recommended Reports are currently available after removing
keywords?
(Ans: Depends on which Keywords are removed)

7. Look for recommended reports.

8. Add the top recommended report to the premade case.

Unintuitive How intuitive is it to interact with recommended reports? Intuitive

1 2 3 4 5

Not Insightful How insightful are the case summary demographic distribution graphs? Very Insightful

1 2 3 4 5

Not Intuitive How intuitive is the keyword selector? Very Intuitive

1 2 3 4 5

Uninsightful How insightful is the keyword distribution? Very Insightful

1 2 3 4 5

Not Relevant How relevant are the Recommended Reports to the entered Keywords? Relevant

1 2 3 4 5

Not Intuitive How intuitive is it to manipulate the Query? Very Intuitive

1 2 3 4 5

Not Useful How useful are the recommended reports? Very Useful

1 2 3 4 5

Commenting On a Report

1. Go to reports in Case “Target”.

2. Select the report with id ‘132812391’.

o Question: How many comments were within the report when you first opened it?

(Ans: Should only be 1)

3. Delete previous comment.

4. Leave a comment.

5. Save your work.

Difficult How easy was it to remove comments? Easy

1 2 3 4 5

Difficult How easy was it to add comments? Easy

1 2 3 4 5

Not Useful How useful do you think comments would be in this tool? Very Useful

1 2 3 4 5

Enter Email for Amazon Gift Card!

Email:

Appendix B: User Evaluation (What a Participant Sees)

ConText User Evaluation

Survey
What is your age?

1. 18-20

2. 21-29

3. 30-39

4. 40-49

5. 50-59

6. 60 or older

What is you gender?

1. Female

2. Male

3. Other: __________

4. Prefer not to answer

What is the highest level of school you have completed or the highest degree you have
received

1. Less than high school degree

2. High school degree or equivalent (e.g., GED)

3. Some college but no degree

4. Associate degree

5. Bachelor degree

6. Graduate degree

Evaluation Section 1: Starting From a New Account

Building a Case/Getting Started

1. Create a new account.

2. Go into reports section.

o Question: How many reports are made available to the user when you first
entered the reports page? (hint: there is an indicator on the page)

3. Create a new case titled “Patients.”

4. Enter “Patients” into the search engine and execute search.

o Question: How many search results appeared?

5. Take any 5 reports from the search results that you feel are relevant and add them to

case “Patients.”

o Question: When choosing your reports, from which of the following groups did
they belong to?

1. Amongst the first 5 results

2. Below the first 5 results

3. Both from and below the first 5

o Question: Why did you choose these particular reports out of the results?

6. Go to the case summary panel.

7. View the reports in the “Patients” case.

Difficult How intuitive was it to navigate to the reports section? Easy

1 2 3 4 5

Difficult How easy was it to find reports related to the query? Easy

1 2 3 4 5

Difficult How easy was it to add reports to the case? Easy

1 2 3 4 5

Difficult How difficult was it to get to the reports within the case? Easy

1 2 3 4 5

Marking Reports

1. Select 2 of the reports within case “Patient” and toggle them to primary.

2. Open the Case Summary Tab to the Left.

3. View the distribution of primary to supportive (using d3 graph).

o Question: What is the current ratio between Primary and Supportive reports as
indicated by the graph?

4. Navigate to 1st Report.

5. Annotate using the “Drug” highlight in the report.

Uninformative How intuitive is the primary/supportive graph provided? Very Informative

1 2 3 4 5

Unintuitive How intuitive is it to annotate a report? Intuitive

1 2 3 4 5

Summarizing a Case

1. Keywords should update in the Case Summary panel.

2. Remove a report from the case.

3. Go back to keywords; check that the keywords were removed.

Question: Can you tell the information within the graphs has changed as a result
of the report being removed?

1. Yes

2. No

Difficult How easy was it to remove a report? Easy

1 2 3 4 5

Section 2; Using an Existing Account

Dummy Test/Summarizing and Adding to a Larger Case

1. Log into a premade account, Username “EvalAcc”

2. Navigate to the premade case called “Target” in reports section.

3. View Case Summaries.

4. View distribution of medication error.

Question: Which medication error is most prevalent?

5. Select Keywords to query for Recommended Reports.

6. Remove Keywords from query.

Question: How many Recommended Reports are currently available after removing
keywords?

7. Look for recommended reports.

8. Add the top recommended report to the premade case.

Unintuitive How intuitive is it to interact with recommended reports? Intuitive

1 2 3 4 5

Not Insightful How insightful are the case summary demographic distribution graphs? Very Insightful

1 2 3 4 5

Not Intuitive How intuitive is the keyword selector? Very Intuitive

1 2 3 4 5

Uninsightful How insightful is the keyword distribution? Very Insightful

1 2 3 4 5

Not Relevant How relevant are the Recommended Reports to the entered Keywords? Relevant

1 2 3 4 5

Not Intuitive How intuitive is it to manipulate the Query? Very Intuitive

1 2 3 4 5

Not Useful How useful are the recommended reports? Very Useful

1 2 3 4 5

Commenting On a Report

1. Go to reports in Case “Target”.

2. Select the report with id ‘132812391’.

o Question: How many comments were within the report when you first opened it?

3. Delete previous comment.

4. Leave a comment.

5. Save your work.

Difficult How easy was it to remove comments? Easy

1 2 3 4 5

Difficult How easy was it to add comments? Easy

1 2 3 4 5

Not Useful How useful do you think comments would be in this tool? Very Useful

1 2 3 4 5

Enter Email for Amazon Gift Card!

Email:

Appendix C: Data Table

Appendix D: Email to Student Body Requesting Pa
Subject: Request for Participants in User Study

Hello Everyone,

We are an MQP group working with the US Food and Drug Administration, and we are looking
for participants for a User Evaluation aimed at testing the usability of our Web Application,
ConText. ConText is aimed at assisting Food and Drug Administration Agents in finding
correlations between drug-related medical incidents. Participants will be given the option to
enter a raffle, in which three Students will win a $50 Amazon gift card.

This test should not take any longer than 20 minutes.

If you would like to participate, please sign up for a time on the following signup sheet:

[LINK REDACTED]

We will be setting up a testing location in the Wedge (between Daniels and Morgan Halls).
Please Note, we will only be accepting 20 Evaluation Participants, so sign up quick!

Thank you,

Jacob Kaplan
Peter Nolan
Logan Romero

Appendix E: Evaluation Tutorial (Shown to each
Participant)
Slide 1:

Slide 2:

Slide 3:

Slide 4:

Slide 5:

Slide 6:

Slide 7:

Slide 8:

Slide 9:

Appendix F: Project Readme

	Worcester Polytechnic Institute
	Digital WPI
	March 2019

	ConText, A Tool For the FDA's Adverse Event Reporting System
	Jacob Taylor Kaplan
	Logan Romero
	Peter Nolan
	Repository Citation

	tmp.1554310086.pdf.iCPxe

