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Abstract 

This Interdisciplinary Qualifying Project focuses on the role of robots in increasing safety, 

productivity and profit for four specific industries. These industries include manufacturing, 

medical, construction and food packaging. In the manufacturing industry, robots are used primarily 

in welding process, material handling systems and inspection of parts. Some of the robots used 

include Fanuc LR200i, Fanuc R20000iC and Motosight. The technical specifications of these 

robots range from an end effector payload of approximately 25-210 kg, distance reach of 717-2650 

mm and power of 200-575 volts. In the medical industry, robots are used in surgical and sanitation 

applications. Examples of these robots include the Da Vinci and Xenex. A notable specification of 

the Da Vinci robot is its capability to provide seven degrees of freedom at its end effector. In the 

construction industry, robots are used to improve worker safety and structure of the building. 

Robots as the SAM 100 and the Oscar 100 provide a wide range of end effector capabilities of 

approximately 2,000 to 3,229 mm. In the food packaging industry, robots are used primarily for 

picking, packing and palletizing finished products. Some of these robotic systems include IRB 

340, IRB 260 and the IRB 660, which are manufactured by ABB. Their payload capabilities are 

approximately 1-250 kg and they are used for wide range of packaging operations. A cost analysis 

shows that the incorporation of robotic systems into the four industries reduce labor and 

operational costs, and improve performance substantially. In many robotic system, translational, 

rotational and simultaneous translation and rotational motion may be required to move or orient 

loads. The motion planning, selecting suitable mechanical components and electrical power 

systems for robots with many degrees of freedom demand several design iterations. Paths, speeds 

and orientations of robots are controlled by motors embedded with software, hardware and 

electronic amplifiers. A prototype robot for welding process is designed and built. This provide 

the IQP team an opportunity to apply basic engineering experience to industrial robotic systems. 

A detailed engineering drawing of the prototype welding robot is presented. The IQP team used 

the robots in WPI Washburn machine shop to gain hands-on experience of pick and place robots 

and measurement of machined parts using robots. Recent developments in the role of robotic 

systems in manufacturing, medicine, construction and food packaging are also presented. The 

literature dealing with robotic systems show that there is a growing effort to increase robotic 

systems in many other industries. Robots are found to reduce accidents in the work place and the 

making of defective parts. The societal impacts of this IQP are the robots improve performance, 

increase safety and reduce costs. 
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CHAPTER 1. THE ROLE OF ROBOTS IN MANUFACTURING INDUSTRY 

1. Introduction 

There is a growing interest in using robots in various industries. This interest stems from 

the fact that robotics helps to increase safety in the workplace, increase productivity and reduce 

production costs. With robotic applications, significant amount of labor work can be done 

autonomously. Advanced sensors in robots allow high precision tasks that are difficult for human 

workers to be done. Therefore, higher qualities for products and services are achieved when robots 

are used. There are robots developed specifically for manufacturing industries, applications in 

medicine, food production, agriculture and construction industry. These robots can be used for 

many different tasks, such as welding process in automotive industry, painting automobile 

components and inspection. Industrial robots provide better efficiency in manual labor and usually 

have the ability to run 24 hours per day. These benefits greatly reduce production costs for 

companies in long term since they don’t have to employ a group of workers to do the same job. 

Many surgeries can be carried out by robots or co-operation between human doctors and robots. 

Medical robots in hospitals can autonomously do the initial stage of cochlear implantation surgery, 

which is drilling the skull with high precision. Hospitals are also interested in implementing robots 

that directly cooperate with doctors and act as robotic tools. Doctors can control these robots 

directly from a control unit and work with enhanced vision and robotic arms with high precision. 

Surgeries done with this method can improve recovery time in patients and minimize the damage 

to the body, providing a safer surgery and higher quality treatment. Industrial robots that are mainly 

built for people’s safety conduct communication through hand gestures between workers, so that 

workers can receive input from robot easily when there is distance in between and noise in the 

environment. These robots are expected to decrease overall cost in long term, improve safety of 

people and have better and more consistent quality in products and services. It is the purpose of 

this project to investigate robots that are used in different industries and their roles in companies.  

The main goal of this project is to describe the roles of robots in various industries and 

their social impacts. This includes how robots can carry out tasks autonomously to reduce manual 

labor, or how robots can be used in high precision requiring tasks to produce better results than 

humans. Robots can have significant social impact by doing tasks that can be dangerous for human 
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workers. This reduces potential employee injuries and allows employees to work on safer tasks. 

The project also focuses on financially analyzing robots that are used in companies to determine 

long term benefits and possible financial challenges of using robots.  Despite being used in 

different fields, it is determined that robots from various industries have a certain group of common 

aspects. This project focuses on evaluating robots in these industries under their impact on costs, 

quality and safety; which mainly the common aspects of different robots. In addition, the IQP team 

is aiming to is to learn more about robotic systems and the engineering behind it by making a 

prototype robotic arm and analyze its kinematics. Therefore, overall objective of this project is to 

determine the role that robots serve in different industries and learn more about their design with 

hands on experience and training. 

In the initial phase of this IQP, a prototype robotic welding arm has been created and 

mathematical analysis of dynamics and kinematics of the robotic arm has been conducted. 

SolidWorks is used to model the components of the robotic arm and 3D printed them to physically 

assemble them. Arduino Mega 2560 is used as a microprocessor to control the arm. To learn more 

about the welding process, appropriate training from WPI Washburn labs is received by the IQP 

team. Armed with that knowledge, an extensive research has been done about robots and their 

roles that are used in manufacturing industry. A set of examples of robots from various industries 

have been gathered. Their impact on cost, quality and safety have been analyzed thoroughly. The 

way medical robots perform and improve surgery results have been investigated. A comprehensive 

cost analysis for industrial robots have been made. Financial concepts such as return of investment 

for mid-size industrial robots and estimations of average costs for industrial robots in future have 

been evaluated. The IQP team has researched about safety systems implemented in robots and 

learned about their impact on safety improvement. In chapter 2, examples of robots from 

manufacturing industry, medicine, construction industry and food packaging industry are provided 

to discuss their advantages and technical capabilities. In the next section, the project focuses on 

robots used in medical applications and robots with safety systems to minimize foreseeable 

injuries. The cost analysis on examples of manufacturing robots in companies is demonstrated 

along with discussing the estimations of manufacturing robot market in U.S.A. In Chapter 3, the 

project focuses on IQP team’s welding training in WPI Washburn Labs and the designing process 

of the prototype robotic arm followed by kinetics and kinematics equations with free body 

diagrams of the prototype robotic arm.  
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CHAPTER 2. APPLICATIONS OF ROBOTS IN FOUR INDUSTRIES  

2. Introduction 

 The use of robots in the manufacturing, medical, construction and food packaging industry 

has benefited companies in increasing safety, productivity and reducing production costs. The 

increase in demand of such robotic systems, has allowed for robot manufacturers to increase the 

variety of robotic systems in the market. In addition, increased competition in the market has 

pressed manufacturers to provide innovative solutions that reduce costs and meet the needs of the 

industry. This financial benefit has incentivized companies to keep themselves informed on the 

latest technologies. For companies to narrow down applicable technologies, is essential to analyze 

and understand the specifications and benefits that each robot can provided. Although not all robot 

systems are explained in this chapter, this chapter intends to provide information of the variety of 

robots that are used in four major industries. In addition, specific specifications are provided for 

each robot that are considered of most importance when considering overall costs and benefits.  

2.1. Application of Robots in Manufacturing Industry  

 Robots are widely used in the Manufacturing Industry for different processes and 

operations. Within the many processes, the most prominent areas of robot utilization include 

welding, material handling and inspection. The utilization of robots in these areas aid in 

performing hazardous and repetitive tasks that increase risk to employees and reduce the quality 

of the finished product. Due to the advance in technology, robot utilization in areas of inspection 

have provided increased capabilities that are not affected by the human factors as concentration 

and motivation. In addition, the ability to reduce overall production time and costs through robotic 

systems has become a strong force for implementing these systems.  

2.1.1 Spot and Arc Welding Processes 

The process of robotic welding has gained traction over the years especially in the automotive 

industry. The welding versatility of robots has provided applications in arc welding, tungsten inert 

gas welding and spot welding. Details of the seven major robot manufacturers in the industry are 

provided in the list below [6].  

● Yaskawa: Motoman robotics 
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o Total of 15 welding robots  

o Largest diversities of robots  

o Payloads 3 kg to 15 kg.  

● Fanuc Robotics  

o Robots on rails  

o “ARC Mate” designation (branding) 

o Total of 11 welding robots  

● ABB Company  

o Total of 2 welding robots  

o Recognized by letters ‘ID’ at the end of their name  

● Kuka Company 

o Robots and robotic accessories 

o Smaller collaborative to 1,300 kg payload  

o Hollow wrists, install a welding torch or feed material 

● Kawasaki  

o 7 welding robots  

o ‘RS’ designation before their name  

● Comau 

o Italian company  

o Build automotive body welding cells 

o Spot welding background  

● Panasonic, Cloos, Nachi  

o Small Arc welding robot line  

The LR- Mate 200iD and ARC Mate 0 iB robots provide some of the highest capabilities 

in the welding industry. As shown in Figure 1 below, the robots are set up for coordinated motion 

to efficiently weld a range of parts and detect any discrepancies using accessory systems like the 

IR vision [12]. The synchronized movement of the two robot arm and the degrees of freedom 

specifications (DOF) allow for a faster welding process to occur. In addition, allowing for a 

continuous welding process to occur without having to reposition the part, provides a noticeable 

reduction in production time and costs. Some of the specifications of this robot include:  
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• DOF: 6 

• Reach:  717 mm 

• Weight: 25 kg 

• Payload at Wrist: 7 kg  

• Controller: R-30iB 

• Power: 200-230 V 

 

 

Figure 1. LR-Mate 200iD and ARC Mate 

 The performance capabilities of this robot are advertised by the manufacturer to increase 

in “optimization of energy and a reduction of cycle time by 15%” [12]. In March of 2016, 

Hypetherm Inc. incorporated this robotic cell into their industrial cutting equipment. Their results 

exceeded the manufacturer’s expectations by providing an overall production output “increase of 

200 percent, a 50 percent increase in operator output and reduced scrap by 50 percent” [18]. 

2.1.2 Material Handling in Automated Assembly Operations 

The movement of components in the manufacturing industry plays a major role in 

supporting repetitive roles. A robot model known as the Fanuc R20000iC (Figure 2) is widely used 

in the industry specifically in automated assembly operations due to its high payload capabilities 

[12]. Some of the additional capabilities of this robot model include transporting devices (material 

handling of work pieces between machines), additive- (e.g. assembly, welding, gluing, painting) 

and subtractive- manufacturing process (e.g. milling, cutting, grinding, deburring, polishing) [8]. 

Some additional technical specifications of this robot include:  
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• DOF:  6                                                       

• Reach: 2655 mm 

• Weight:1370 kg 

• Payload: 210 kg 

• Input Power:  380-575 V 

• Controller: R-30iB 

 

Figure 2. Fanuc R20000iC Component Robot 

2.1.3 Faulty and Defective Products Inspection 

 Shipping faulty or defective products can have devastating effects in the success of any 

manufacturing business. Machine vision has a long history in part inspection, ensuring consistent 

and predictable quality. Whether it’s gauging a part, detecting presence of a feature or error 

proofing, MotoSight systems have all the necessary inspection and data analysis tools for part 

inspection. Their inspection interface software shown in Figure 3, provides a detail view to the 

operator of the part being analyzed and any resulting flaws detected in the process.  

 

Figure 3. Visual Inspection System Depiction 

        A study from Institute Maupertuis compared welding quality of a Robotic Friction Stir 

Welding (RFSW) arm and a CNC system. Gantry-type CNC machines offer high stiffness and 

they can tolerate high forces during FSW. There is an effort done by companies to replace them 

with industrial serial robots to increase process flexibility and reduce cost investment. However, 
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there are two limitations that should be considered. The first one is the payload capability of 

industrial robots which limits the welding thickness up to 8 mm for aluminum materials. Second 

one is low stiffness of robotic joint, therefore deformations that occur to FSW tools under high 

process forces which impact the welding quality. To compensate for the deformations, a real-time 

embedded controller calculates the deviations in tools and improves welding quality. 

In the CNC machine experiment, good welding quality was not obtained due to high forces 

on the CNC system creating deviations in the welding path as shown in Figure 4 and Figure 5. In 

RSWF this problem is overcome by having an algorithm to compensate for the deviations in real 

time. Program takes a while to correct itself back to the right path while still welding, however, 

researchers concluded that overall quality was improved in RFSW application.  

 

                        a) Reference path         b) Tool Deviation          c) Tool Compensation 

Figure 4. Real-time Compensation of the Lateral Tool Deviation 

 

Figure 5. FANUC Weldment: Corrected Path (Blue); Real Path (Red) 

2.2 Application of Robots in Medical Industry  

 The medical industry has also had an increase of robotic systems implementation. Although 

reduction of costs is typically the driving force for such expensive implementation, increase patient 

recovery and reducing complications has also become of immense importance. In addition, the 

increase of liability insurance and medical costs has driven companies to streamline their processes 

across all areas of medicine. The following robot assembly analyzed have been found to have a 
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direct impact in the quality of patient care. In addition, they have provided more ergonomic 

postures for surgeons and increased motion precision. Other non-surgical robotic systems have 

allowed for an increased sterilization of medical floors with consistent and measurable results. 

Systems as these can reduce human errors associated with performing strenuous repetitive tasks.  

2.2.1 Non-Intrusive Surgical Procedures  

The application of robotic systems in surgery has increased over the past years. 

Specifically, surgery procedures such as cystectomies have greatly benefited from the advanced 

capabilities of these robots. A robot having beneficial and consistent results on surgical operations 

is known as the Da Vinci, manufactured in 2000 by Intuitive Surgical. An image of the robot is 

provided in Figure 6 below.   

 

 

Figure 6. Da Vinci Robot by Intuitive Surgical 

The entire system is composed of a surgeon console, a patient side car and endowrist 

instruments. One of the many outstanding capabilities of this robot is its 7 degrees of motion at its 

endowrist end effector [9]. Since its introduction into the medical field, it has had remarkable 

success as depicted by a study conducted by the Department of Surgery in Tottori University. 

During this study, the objective was to investigate the usefulness of these robot assisted surgery 

by comparing its surgical technique, perioperative and oncological outcomes and learning curve 

with surgeries performed without assistance of a robot. The overall findings regarding 

Perioperative outcomes provided significant statistical differences in surgery time in favor of non-

Endowrist 
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assisted surgeries, blood loss in favor of assisted surgeries, transfusion in favor of assisted 

surgeries, in hospital stay in favor of assisted surgeries and similar intraoperative complications 

rate. Regarding survival and recurrence, a few reports showed the five-year survival rates were 

similar. Furthermore, regarding the learning curve analysis, a steep learning curve was found to be 

necessary when utilizing a robot assisted surgery equipment. The study further showed that 

surgeons who had performed less than 50 robot assisted surgeries, their operative time was longer 

[3].  

2.2.2 High Precision Implantation Cochlear Implantation  

Researchers in University of Bern developed a surgical robot in 2013 to be used in Cochlear 

Implantation [13]. This surgery is a risky process that requires high precision to drill through skull 

bone without damaging facial nerves and it is very hard for surgeons to perform it on their own. 

Surgeons must drill from a 1.8 - 2.5 mm space between two facial nerves and if they damage the 

nerves, it can cause facial paralysis in the patient. Around 30% to 55% of patients have significant 

hearing loss in the implanted ear after surgery. This can be ascribed to variations in surgeon-

operator experience, practice and method. The robot is expected to overcome those human operator 

limitations with reproducible and minimally invasive cochlear access. A model of implantation 

after surgery and the process of drilling through bone is shown in figures below. 

 

 

a) Intraoperative CBCT Imaging                          b) Inserted Electrode Array 

Figure 7. Cochlear Implantation 

(a) Intraoperative CBCT imaging allows delineation of the trajectory and the facial nerve. A neuro-

radiologist manually confirms sufficient distance between the trajectory and the facial nerve. (b) 
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Inserted electrode array, excess lead placement, and final implant position as measured in 

postoperative CT imaging. 

 

 

 

(i)                            (ii)                        (iii)                       (iv) 

a) Elements of RCI 

 

(i)                            (ii)                        (iii)                       (iv) 

b) Scale of RCI 

 

Figure 8. Cochlear Implantation Procedure 

The Cochlear Implantation procedure shown in Figure 8 has two distinctive specifications 

which include the following: First specifications includes the Elements of RCI (a): (i) computer-

based patient-specific intervention planning, (ii) RMA, (iii) RIA, and (iv) robotic electrode array 

insertion. Second specification includes the Scale of RCI (b): A 1.8-mm trajectory to be planned 

and drilled starting from behind the ear (i), through the mastoid bone (ii) bypassing critical 

structures at <1-mm proximity and toward the inner ear. Trajectory viewed along its axis (iii) and 

from the side (iv). 
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Figure 9. Surgical Robot for Cochlear Implantation 

With the approval of Ethics Committee of the Canton of Bern, this robot was tested on a 

51 year old female patient with bilateral deafness in 2016. The goal was to achieve high precision 

and sensing beyond human capabilities, thus avoid two vitally important components which are 

facial nerve and chorda tympani. After the surgery was performed, Postoperative CT scanning of 

patient’s skull was taken and scanning’s confirmed safe distances of robotically drilled tunnel to 

facial nerve and chorda tympani to be about 1.0 and 0.3 mm respectively. Neuromonitoring 

showed unchanged facial nerve function in the patient which confirmed that the integrity of the 

nerve was achieved during surgery. 11 out of 12 electrodes implanted were activated by sound 

stimulation. Patient was tested with Freiburg monosyllabic test under 65 dB sound pressure and 

quiet testing. Results showed that she had 50% word recognition. 

Because of the experimental surgery, Doctors found that a robotic solution to the surgery 

is more effective than template guided, manually drilled approaches in terms of geometric 

accuracy and active safety mechanisms. The data confirms that a clinical application based on a 

robotic treatment model will be able to resolve challenges of precision, accuracy and safety. In this 

robotic application we can see that the robotic approach to a medical problem provided 

reproducible results with higher precision and safety than results of human surgeons. Therefore, it 

is an example where robots impact quality of the service provided, along with safety of patient in 

a positive way.  

2.2.3 Hospital Sanitation Assistance  

 Another important application of robot systems can be found in the sanitation of hospital 

buildings. A robot manufacturer called Xenex has taken the lead in providing a hospital robot that 

utilizes pulsed xenon ultraviolet light as a means of destroying “bacteria, viruses, mold and other 

pathogens” [16]. The ultraviolet light penetrates the cell walls of microorganisms and fuses their 
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DNA. This prevents viruses from being able to mutate sequentially killing them entirely. As 

reported in 2016, “Doctors Hospital at Renaissance” located in Edinburg, Texas, incorporated 7 

Xenex robots. The current goal of the hospital is to “reduce the hospital acquired infections to 

zero” [16]. In retrospect, such sanitation robots provide additional benefits associated with 

reducing cleaning staff exposure to hazardous environments and labor scheduling issues.   

2.3 Application of Robots in Construction Industry  

 To mitigate some of the hazards and inefficiencies within the construction industry, robots 

have been integrated into areas of safety and structure assembly. The downfall in the labor force 

and increased construction work liabilities has provided an opportunity for consistent use of 

robotic systems. In addition, such system can reduce the number of workers per job creating greater 

efficiency and reduction in project completion times. Since some of these robotic systems are 

manipulated through electrical control systems, they can be utilized in adverse weather while 

keeping the operator indoors. Another benefit can be found in the compactness and mobility of 

these robotic systems. This benefit allows them to be easily integrated in a construction floor and 

transported to a different site at a moment’s notice. Although the market is not flooded with a 

variety of robotic systems, the robots described in this chapter inform of some of the capabilities 

that are currently commercially available and in circulation.  

2.3.1 Worker Safety Mitigation  

Another type of safety robot that has been implemented in the construction industry is 

known as the Robotic Safety Barrel. The focus of this implementation is to mitigate the safety risk 

associated with the installation of safety cones and traffic signs in busy highway roads. 

Mechanically, the robot as seen in Figure 10 is composed of dual 20 cm diameter wheels that are 

independently driven. This design allows for the ease of rotation of the robot. In addition, the robot 

measures 30 cm in height. The robot is powered by a 12 V battery and can operate continuously 

for about 20 hrs. [19]. The implementation of such robots could have a significant impact on 

reducing the companies costs of employee insurance and labor compensation. In addition, it could 

allow for staff to be utilized more efficiently in other tasks of more importance. 
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           a) Traffic Cone Top Assembly               b) Traffic Cone Robotic Base 

Figure 10. Robotic Safety Barrel 

2.3.2 Structure Assembly Operations  

The construction assembly industry is also moving in line with technology to mitigate the 

shortage of workers and their exposure to harsh environments. The utilization of robot systems for 

construction provides unique advantages that are transforming the way structures are created. Here 

are a few of these system that are being implemented today and in the future.   

 A New York based company called Construction Robotics has developed what is known 

as the SAM100. Its name defines a Semi Automated Mason that is utilized to lay construction 

bricks. It has been widely used successfully implemented in the construction of a Middle Schools 

in Tennessee, New York, Maryland and Washington DC to name a few. It is advertised as 

providing an increase of productivity by a factor of 3-5 times and reducing lifting by 80 percent 

[14]. In addition, the robotic arm can lay in impressive 2,000 to 3,000 bricks per day [15].  Figure 

11 provides a side image of the robotic arm (red) and the conveyor belt system (gray).  

 

 

Figure 11. SAM100 Construction Brick Robot 

Robotic Arm 
Brick Conveyor Belt 

Wheels Control Module 
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 A different robot application within the construction industry can be found in a robot 

manufactured in UK based GGR group. Oscar 100, as it is known, provides glass panels and 

windows installation assistance. Its dual circuit hydraulics allows for all 14 suction cups, located 

at its end effector, to be easily controlled through a radio remote [16]. Technical specifications and 

visual representation of the robot is shown below. 

 

 

• DOF: 2 

• Payload: 1000 kg 

• Horizontal Reach: 1398 mm 

• Vertical Reach: 3229 mm 

• Power: 110 V  

• Controller: Radio Remote  

 

Figure 12. Oscar 100 Glazing Robot 

2.3.3 Wearable Exoskeleton for Reducing Strain 

 A more relatable area of robot application can be found in the wearable robotics systems. 

These systems, sometimes known as exoskeletons, can improve the efficiency and increase 

personal safety of construction workers. The wearable exoskeleton provides stability and support 

to back muscles that are repeatedly under strain. It is estimated that such strain can be reduced by 

15 kg. [17].   Although costs for such systems are currently very high to be widely implemented, 

the long-term benefits could outweigh the short-term costs of liability insurance, workers 

compensation and turnover rates.   

2.4 Application of Robots in Food Packaging Industry  

 As the demand for package foods increases, the food packing industry has shifted towards 

more efficient and reliable systems. In turn, robots have been incorporated into the industry in 

tasks as picking, packing and palletizing. These tasks widely use in the food packing industry can 

have a wide range of floor formats. In addition, the number of workers needed to perform these 
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tasks can be considered to be of great numbers. In turn, food packaging robots have been designed 

to be adaptable to almost any factory configuration. This includes the ability for some of these 

robots to be mounted on the ceiling if necessary. Another ability implemented in the design of 

such robots is the ability to synchronize their motions with the motions of other sections of the 

factory. This allows for easy of integration and flexibility in adjusting for company and customer 

demands. The robots described in this chapter provide an overview of the typical robots utilized 

in the food packaging industry.  

2.4.1 Picking Products in Conveyor Belt  

 Robots can be utilized to pick products as they travel through the conveyor belt of a food 

packaging process. Robots as the IRB340 (FlexPicker) has been claimed to be “the fastest robot 

in the world” [ 1]. It is composed of carbon fiber arms with a high strength to weight ratio. The 

internal gear system is in the base of structure which allows for a compact design measuring only 

950 mm high and 1,050 mm across. Figure 13 provides additional technical specifications.  

 

 

• DOF: 4 

• Payload: 1 kg 

• Reach: 1050mm 

• Weight: 140 kg 

• Tracking Speed: 150 mm/s 

• Input Power: 50V 

 

 

 

2.4.2 Packing Products in Large Quantities   

  Another ability of food packaging robots includes the ability to assemble packaging of 

final products. Robots as the IRB 260 manufactured by ABB, has the accuracy, strength and 

versatility to be integrated into many compact packing systems. Its application success has allowed 

Figure 13. IRB340 FlexPicker Picking Robot 
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for 12,000 installations since its introduction into the industry. The speed has been optimized for 

an “800 by 800 by 800 mm working envelope” [2]. Additional specifications are provided below.  

 

 

• DOF: 4  

• Payload: 30 kg 

• Reach: 1.56 m 

• Input Power: 50-250 V 

• Weight: 340 kg 

 

 

 

 

 

 

2.4.3 Palletizing and Relocation  

  A final process in the packaging industry is known as palletizing. Palletizing is the process 

of stacking and relocating large ready to ship items. A palletizing robot utilized in the industry is 

known as IRB 660. Generally designed for floor mounting, the robot is available in two versions 

of handling capacities [10]. Additional specifications are provided below.  

 

 

• DOF: 4 

• Payload: 180-250 kg 

• Reach: 3.15 m 

• Input Power: 200-220 V 

• Power Consumption (Max Speed): 3.08 kW 

 

 

Figure 14. IRB260 Packing Robot 

Figure 15. IRB660 Palletizing Robot 
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CHAPTER 3: FINANCIAL ANALYSIS OF ROBOTS IN THE INDUSTRY 

3. Introduction 

The implementation of robotic systems has been known to be an expensive investment. 

Costs for a single robot can range from 500 to 30,000 dollars. Due to this high price range, it is 

necessary for companies to analyze and quantify through research the long-term benefits of such 

investment. Not doing so, could easily pivot a company from succeeding in the market to becoming 

bankrupt. This chapter seeks to provide research documentation that supports the purchase of 

robotic systems through the analyzes of labor pay, robot costs and future reduction of overall costs 

due to increase in demand. This chapter also considers underlying costs associated with human 

labor that may be overseen but can be found to be eye opening when comparing long term costs 

for companies.  

3.1 Cost Comparison of Robots vs Humans 

A research document titled “Industrial Robot Application Trend in World’s Metal 

Industry” presented by the University of Bihac, provided very insightful information worth 

comparing in the future. Its research goal was focused on providing an analysis of existing data 

concerning installed robots worldwide and promotes the implementation of such systems. 

Specifically, a comparison is made between the costs of a human worker and a robot system. In 

summary, the cost per an 8 Hr. shift is as follows:  

• Robot Worker: $2.40  

• U.S. Worker: $120 

• Chinese Worker: $24 

It is evident that the cost gap is large. This cost gap is associated with human maintenance 

costs which to name a few include: 

● Lunch breaks 

● Vacations  

● Injuries  

● Turnover 

● Protective Gear/Supplies  

● Insurance  
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● Pensions  

● Parking space 

● Unpredictable production 

        Although the initial cost of robots is very high and preventive maintenance to ensure 

consistent operation is required, they have estimated through a robot project payback analysis that 

the costs of robots in comparison to human labor is considerably lower. A depiction of this 

information is provided in Table 3 below [4]. 

 

Table 1. Cost Comparison Between Humans and Robots 

Year of 

Use 

Robot System Cost Manual Labor Cost Yearly Cash 

Flow 

Cumulative 

1 $200,000 $100,000 -$100,000 -$100,000 

2 $500 $102,000 $101,500 $1,500 

3 $500 $104,040 $103,540 $105,040 

4 $500 $106,121 $105,621 $210,661 

5 $5,000 $108,243 $103,243 $313,904 

6 $500 $110,408 $109,908 $423,812 

7 $500 $112,616 $112,116 $535,928 

8 $500 $114,869 $114,369 $650,297 

9 $500 $117,166 $116,666 $766,969 

10 $30,000 $119,509 $989,509 $856,472 
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Table 2. Robotic System Cash Flow Analysis 

Year System 

Cost 

Maintenance 

Costs 

Operating 

costs* 

Labor 

Savings** 

Productivity 

Savings*** 

1 $250,000 $1,000 $6,000 $162,000 $43,740 

2  $1,000 $6,120 $165,240 $44,615 

3  $1,000 $6,242 $168,545 $45,507 

4  $1,000 $6,367 $171,916 $46,417 

5  $10,000 $6,495 $175,354 $47,346 

6  $1,000 $6,624 $178,861 $48,292 

7  $1,000 $6,757 $182,438 $49,258 

8  $1,000 $6,892 $186,087 $50,244 

9  $1,000 $7,030 $189,809 $51,248 

10  $60,000 $7,171 $193,605 $52,273 

11  $1,000 $7,314 197,477 $53,319 

12  $1,000 $7,460 $201,427 $54,385 

13  $1,000 $7,609 $205,455 $55,473 

14  $1,000 $7,762 $209,564 $56,582 

15  $1,000 $7,917 $213,756 $57,714 

TOTAL $83,000 $103,761 $2,801,534 $756,414 

 

The table above makes a direct comparison between total costs of robots and total costs of 

labor work assigned for the same job. These values are based on a mid- sized robot as well. We 

can see that the robot will cost relatively a lot of money in the beginning. However just like in 

most robotic systems, return of investment of robot in this example is aiming to generate positive 

cash flow over long term. Therefore, its benefits are getting more visible as years pass. Despite the 

expensive purchase price, robots are a lot cheaper to maintain compared to laborers by about %95 

every year. From this table we can see that, ROI can be achieved after 2-3 years and it turns into 

profit over rest of the years. 
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3.2 Impact on Labor Costs of Manufacturing 

Industrial robots are expected to have a very big impact on labor costs of manufacturing 

companies. Boston Consulting Group estimates that average global labor-cost savings are going 

to be 16% by 2025 across the globe. USA is estimated to have 22% labor cost reduction and South 

Korea will have 33% cost reduction as the country that saves the most percentage of costs. Saving 

values for each country can be seen in the graph below. 

 

 

Figure 16. Labor Cost Saving Graph 

There are some companies, like Rethink Robot, that offer agile factory robot for as little as 

$25,000. According to a study made by Stanford University, this cost is equivalent to paying a 

worker $4 per hour. PayScale estimates that average labor salary in manufacturing industry is 

between $9 - $18. Therefore, such robots save at least half of a salary given to one person. The 

table below shows the cash flow of an average robotic system to the company.  
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Figure 17. Robotic Systems Cumulative Cashflow Over Years 

3.3 The Decline of Robot Costs 

Even though robots cost less to company compared to human workers in long term, most 

companies are still reluctant to adopt industrial robots because it is expensive in short term. 

However, Boston Consulting Group found that spot welding used in industries like car 

manufacturing are reduced from $182,000 in 2005 to $133,000 in 2015. They estimate that decline 

in costs will continue by 20 percent by the next decade. 

Industrial robot market is also growing rapidly as more companies adopt their products. An 

Investment company called ARK has made a research about unit costs of robotic systems over the 

years and also compared their estimates to BCG’s (Boston Consulting Group) estimates.  
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Figure 18. Industrial Robot Cost Decline 

3.4 Robot Systems Demand Increase 

As we can see from the graph, there is a steep decline of unit costs for industrial robots. 

This lures smaller manufacturing companies into buying Industrial robots more, because it is 

getting more affordable to smaller companies. 

 

Figure 19.  Worldwide Annual Supply of Industrial Robots 



23 
 

This table shows the increase of demands on industrial robots. This increase in supply and 

decrease of unit costs from previous table mutually affect their trends, since as cost decreases more 

companies including smaller ones are beginning to buy more industrial robots. As industrial robots 

are becoming more and more common, their costs are decreasing. 

Ron Potter is Director of Robotics Technology for Factory Automation Systems, Inc. in Atlanta, 

Georgia. He provides an example of a robotic system and makes a cost analysis of the robot and 

compares it to labor costs. He uses a medium-sized robot, about 100-kg payload, as an example of 

a typical industrial robot. He takes power consumption into account which is 7.35kW and the 

average energy cost of 10 cents per kWh. He then calculates that average cost of running mid-

sized robot costs 75 cents. 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.robotics.org/company-profile-detail.cfm?company=308
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CHAPTER 4. DESIGNING AND BUILDING A WELDING ROBOT  

4. Introduction 

 To begin designing a robot system, the team begin to familiarize itself with available 

resources provided by the institution. This familiarization was a key component in providing 

exposure to robotic systems and understanding the complexities of their designs. To begin, this 

chapter provides a breakdown of some of the fundamental specifications and operations of robotic 

systems. Secondly, information is provided regarding TIG welding as it applies to the design of 

the robotic welding arm prototype. Thirdly, an analysis of the associated forces during the motion 

of the robotic arm is provided. Freed body diagrams for each section are provided to better 

understand the complexity of the motions. Lastly, a detail overview of the robot design, assembly 

and operation is provided.    

4.1 WPI Washburn Robot Systems 

 WPI Washburn Laboratories is composed of several types of robot and welding systems. 

For familiarization purposes, the team was introduced to the FANUC LR Mate Model and the 

Tungsten Inert Gas welding system.  

4.1.1 FANUC LR Mate Model Familiarization 

 This robotic system model # LR MATE 200iB 5P, is composed of several key 

components shown in Figure 21 and 22.  

 

 

• Built in Ethernet  

• 100 Base-TX/0 Base-T 

• Three RS-232 Ports 

• iPendant Touch Screen Option 

 

 

Figure 20. FANUC System Controller R-J3iB 

Control

ler 

iPendant 
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• DOF: 6 

• Payload: 5 kg 

• Reach: 700 mm 

• Mass: 45 kg 

• Mounting: Floor 

 

 

Figure 21. FANUC LR MATE Robot 

The Controller in Figure 20 is a system of circuits that allow for precise control of the six 

different motors located in each of the axis depicted by red arrows in Figure 21. Although complete 

familiarity of the system has yet to be achieved, operation using the Teach Pendant as seen in 

Figure 22, is straight forward system. The teach pendant allows for the control of each axis on 

command by the user. For safety purposes, the teach pendant is composed of two dead man 

switches depicted in Figure 23, that must be pressed appropriately to allow the robot to move. To 

distinguish between a weak and strong pressure (associated with fainting or death), the dead man 

switch has three positions in which the second position is considered normal. If a weak or strong 

hold is detected, the robot will stop all operation in the system until it is reset.  

 

 

Figure 22. Teach Pendant for FANUC Robot System 

4.1.2 FANUC LR Model 200iB Specifications 

There are other details about this robot that are worth noting considering that they are 

important when implementing in the manufacturing industry. As shown in CONTROLLER 

SPECIFICATIONS (APPENDIX A), the power supply necessary to operate this robot is 200-220 

Volts for single phase or 380-500 VAC in three phases. This is particularly important considering 

that a three phase system has been found to be a more economical system to use in the 

manufacturing industry, due to its reduction of current use. Specifically, a three phase provides 

Dead Man Switches 
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higher power density with approximately 43 % less current (3 Phase). In addition, this controller 

allows for up to 40 I/O Subsystems that can be used to incorporate pneumatic actuation of different 

end pieces. This can be very beneficial in a adaptability stand point. In addition, all of these 

subsystems are routed inside the case of the robot which ensure that they protected and also that 

they do not conflict with the movement of the robot.  

 

The typical application that this robot can provide includes the following  

● Assembly  

● Clean Room  

● Dispensing  

● Machine Loading  

● Material Handling  

● Material Removal  

● Part Transfer 

● Spindling  

● Vision.  

Some of the benefits that are advertised by the manufacturer include:  

● Commercial/Industrial applications  

● Upright, invert or angle mounting positions  

● Placement in tight surroundings  

● No calibration at power up  

● Brushless AC servos 

Regarding robot maintenance, we were able to find significant amount of literature that 

supports a direct and consistent process. Appendix A provides a portion of how such maintenance 

intervals are distributed and organized for this robot. The literature is user friendly which allows 

for quick referencing of the maintenance crew. 

4.1.3 Research Welding Experience 

To better understand the welding procedure for design purposes, a welding training 

exercise was performed at WPI Washburn Lab with Senior Instructional Laboratory technician Ian 

Anderson. The objective of the training exercise was to expose the team to the fundamental manual 
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operation of Tungsten Inert Gas welding system and its general components. In addition, the team 

focused on gathering information pertaining to posture, mobility and surrounding environment 

necessary to perform the task. The details of these topics and their application to automation are 

as follows:  

Understanding the posture of a welding technician allows us to determine how to integrate 

the assisted welding robot into the welding position without interfering with the movement of the 

filler rod. Although parts being welded vary in size and position, the selected part was placed on a 

table the welding technician utilized a stable metal chair to position himself. The position of the 

welding technician is depicted in Figure 23. 

 

 

a) Front Welding Position View       b) Side Welding Position View 

Figure 23. TIG Welding Technician Position 

 As noted in the image, the welder utilized the welding table for support as his body leaned 

forward to get a pleasant view of the TIG torch contact point. Analyzing the hand motion of the 

welding technician allowed for a clear understanding of the limitations that we may encountered 

with the robot degrees of freedom. As shown in Figure 24 above, the TIG torch and the filler rod 

have their respective positions to support arms during long welding sections. This provided a clear 

view of not only the position of the robot figure but also the end factor position and mechanism to 

ensure visibility of the welding technician.  

 Analysis of the surrounding environment provided insight on the position of the robot 

relative to supporting and surrounding equipment. Better mounting and securing options for the 

robot base were analyzed to ensure no movement during operation. The venting system was also 
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considered to ensure adaptability of robot system to different venting configurations. Lastly, the 

position of the TIG assembly grounding cable, TIG torch cable, and welding pedal were considered 

to ensure no interference or movement during the welding process.  

4.2 Researching Forces of Robotic Systems 

                 

Figure 24. Complete Robot Arm Representation 

This figure is a rough representation of arms of our robot. In this picture “l0” represents 

length of our base which has no degrees of freedom. “l1” represents the length of first arm and “l2” 

represents the length of end effector arm. “𝜃1” stands for the angle of first arm’s orientation with 

respect to “x” axis. “𝜃2” stands for the angle made by end effector arm with “x” axis. Kinematics 

equations that represent position and velocity of the end effector of this model are shown below. 

𝑋 = 𝑙1𝑐𝑜𝑠 𝜃𝑎𝑟𝑚   

 

𝑌 = 𝑙0 +  𝑙1𝑠𝑖𝑛 𝜃𝑎𝑟𝑚  

 

𝑍 = �̇�𝑡 

 

Where “X”, “Y”, “Z” stand for x, y, z position of end effector respectively. �̇� stands for 

the velocity of slider in z direction and t stands for time. If we take the derivative of each individual 

equation with respect to time. We can find the velocity of end effector in x, y, z direction too. 

Velocity equations are shown below. 



29 
 

�̇� = −𝑙1𝑠𝑖𝑛 𝜃𝑎𝑟𝑚𝜃𝑎𝑟𝑚
̇    

 

�̇� = 𝑙1𝑐𝑜𝑠 𝜃𝑎𝑟𝑚𝜃𝑎𝑟𝑚
̇   

 

�̇� = 𝑟𝑝𝑚𝑚𝑜𝑡𝑜𝑟 ∙  
2𝜋

60𝑡
∙ 𝑟𝑔𝑒𝑎𝑟 

 Where  �̇�, �̇�, �̇� stand for x, y and z velocities of end effector, t stands for time in seconds, 

rpmmotor stands for rotation speed of motor in rotation per minute and rgear stands for radius of the 

gear attached to the motor. 

Since l0 has no degrees of freedom we didn’t have to use D-H parameters to determine 

kinematics of this robot arm. However, it can be improved by giving it the ability to rotate around 

vertical axis. Then, D-H parameters and other necessary tools can be used to evaluate the 

kinematics of our robot arm. 

To better design our welding robot, research was performed on the forces that the robot structure 

encounters during its full range of motion. Calculations were performed on the base slide, arm and 

end effector.  

4.2.1 Base Slider Calculations of Associated Forces 

 

 

Figure 25. Slider Free Body Diagram 
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In the figure 25 above we depicted the forces acting on the base slider where, “Fn” stands 

for normal force, “T” stands for tension force applied by the first arm of the robot, “Fr “stands for 

reaction force by the vertical ends of rail(walls of rail).”Mslider” stands for the mass of slider and 

“g” stands for gravity constant. We omitted stand of the arm since it has no degrees of freedom 

and it is technically a part of slider anyway. Force equations of the slider is shown below. 𝜃 is the 

angle between horizontal axis and tension force. 

 

𝐹𝑥 = −𝑇𝑐𝑜𝑠 𝜃 + 𝐹𝑟 = 0 

 

𝐹𝑦 = 𝑁 − 𝑀𝑠𝑙𝑖𝑑𝑒𝑟  𝑔 − 𝑇𝑠𝑖𝑛 𝜃 = 0 

 

4.2.2 Robotic Arm Calculations 

 

 

Figure 246. Arm 1 Free Body Diagram with Associated Forces 

This figure above represents the free body diagram of the first arm of robot (arm 1), where 

motor is currently attached in our prototype. In the diagram, “Fs” stands for reaction force from 

slider, “Te” stands for tension caused by end effector arm connected to end of this arm, “Marm1” 

stands for mass of arm 1 and “Fj” stands for reaction caused by joint to the motor (as in stalling 

state). Force equations regarding arm 1 are shown below. 
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𝐹𝑥 = 𝑇𝑒𝑐𝑜𝑠 𝛼 +𝐹𝑠𝑐𝑜𝑠 𝜃 − 𝐹𝑗 = 0 

 

𝐹𝑦 = 𝐹𝑠𝑠𝑖𝑛 𝜃 −𝑀𝑎𝑟𝑚1 𝑔 − 𝑇𝑒𝑠𝑖𝑛 𝛼 = 0 

 

Where 𝜃 stands for angle of reaction force with respect to horizontal axis and 𝛼 stands for 

angle of end effector tension force made by horizontal axis. 

 

4.2.2 End Effector Force Calculations 

 

 

Figure 257. End Effector Free Body Diagram 

This figure 27 above represents free body diagram of end effector. In this diagram, “Fyarm1” 

stands for vertical component of reaction force from joint with arm 1, “Fxarm1” stands for horizontal 

component of joint reaction force and Mee stands for mass of end effector arm.  

We can see that x component of joint force must be zero because it is the only force acting 

on x axis. There is no motor attached to the arm yet, in this prototype. Therefore, it is only held up 

by the joint force on +y direction. Force equations regarding arm 2 are shown below. 

𝐹𝑥 = 𝐹𝑥𝑎𝑟𝑚1
= 0 

 

𝐹𝑦 = 𝐹𝑦𝑎𝑟𝑚1
− 𝑔𝑀𝑒𝑒  = 0 
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Minimum force required from the motor to move the slider in z direction will depend on 

radius of the gear attached to the end of the motor, and it should be at least more than static friction 

force on the slider so that it can move. Equation regarding this limitation is shown below. 

𝐹𝑧𝑚𝑜𝑡𝑜𝑟
=

𝑇𝑚𝑜𝑡𝑜𝑟

𝑟𝑚𝑜𝑡𝑜𝑟
≥ 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

 

4.3 Welding Robot Prototype Design and Assembly 

4.3.1 Materials Utilized on Prototype Design 

 The Prototype consisted of many associated spare and new parts that were assembled and 

shaped with minimal tools. These were as follows.  

1. Electrical assembly box: was composed of four plexiglass parts that were glued in order 

to create a rectangle shape box. 

2. The step motor shafts were drilled in order to accommodate for fasteners to secure that 

arm and gear system of each motor. Hot glue was also used as a backup reinforcement on 

these components.  

3. The sliding mechanism was a spare part that was previously machined in another group 

project at WPI. The parts were not modified or drilled to preserve the smooth operation 

of its components.  

4. The second step motor gear rack was glued to the sliding mechanism as a temporary 

measure of the prototype.  

4.3.2 Assembly Instructions of Prototype Design 

 The assembly of the robot prototype was assembled as follows:  

1. Install the sliding rail system on to the grate with fastening bolt and nuts. Be sure to 

utilize bolts that will allow for the top assembly to clear as it slides through the rail 

system.  

2. Next position the L stops at each end of the rail system to prevent disengagement during 

operation.  
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3. Install the step motor onto the base of the robot with fastening screws. ensure that the 

cable is routed carefully at the top of the bracket system.  

4. Secure base to top sliding rail mechanism.  

5. Install the robot arm on the motor and secure to motor shaft with a screw fastener.  

6. Install the end factor on the arm of the robot and secure with screw fastener.  

7. Secure second step motor to mounting bracket with screws. Ensure wiring is routed after 

of the bracket to prevent interaction with moving arm.  

8. Secure second step motor bracket to the base with fasteners and nuts.  

9. Install arm pivoting controller and second step motor controller on the far right and aft of 

the step motor. Route the wires through the grate into the electrical assembly box.  

10. Once all the components have been secured, begin to wire all the cables inside the 

electrical assembly box. Ensure that no tension is placed on the wires to prevent damage 

or from being disconnected.  

 

 

Figure 26. Isometric View of Prototype Robotic Arm 

4.3.3 Operational Instructions of Prototype Design 

 

-Control wheel: 

Use the control wheel to move the base back and forward.  

clockwise for right orientation (yellow arrow) 

counterclockwise for left orientation (blue arrow) 
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click the wheel to move the base back to midpoint (black arrow) 

-Joystick: 

Push the joystick back/forward to control the arm from 0 to 45 degrees. (orange arrow) 

-Main Components: 

 

Figure 27. Micro Servo Hardware Dimensions 

Tiny and lightweight with high output power. Servo can rotate approximately 180 degrees 

(90 in each direction), and works just like the standard kinds but smaller. You can use any servo 

code, hardware or library to control these servos. Good for beginners who want to make stuff move 

without building a motor controller with feedback & gear box, especially since it will fit in small 

places. It comes with a 3 horns (arms) and hardware.  
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CHAPTER 5. CONCLUSIONS AND DISCUSSION 

 The team enjoyed this interdisciplinary qualifying project specially during the exposure to 

robots located in Washburn Labs and learning how to TIG weld. In addition, the detailed 

breakdown of the report structure has exposed the team to the professional format utilized in the 

research industry. In general, the focus of this project allowed the team to evaluate the roles of 

robots in various industries including manufacturing, medicine, construction and food packaging. 

We have collected examples of robots from those industries and evaluated what role they serve. 

Our findings show that implementing robotic systems has a high short-term cost but a high long-

term benefit. These benefits include reduced labor costs, increase safety and increase production. 

Contributing factors to these benefits include the robot’s dependability and effectiveness in 

performing the desired tasks. In addition, we found that robotic systems can be very beneficial in 

reducing employee exposure to hazardous environments or repetitive motions.  
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 APPENDICES 

Appendix 1. FANUC Controller Specifications 
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Appendix 2. Welding Robot Prototype Engineering Drawings 
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Appendix 3. Stepper Motor Hardware 

 

 
Servo Motor: 

 
Joystick: 

 

 
Control Wheel: 
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Appendix 4. Welding Robot Prototype Operational Code 

 

#include <Stepper.h> 

#include <Servo.h> 

Servo tilt, pan;  

int joyX = A1; //  X - axis of Joystick 

int joyY = A0; // y - axis of Joystick 

int x, y;  

const int stepsPerRevolution = 200;  // change this to fit the number of steps per revolution 

// initialize the stepper library on pins 8 through 11: 

Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11); 

int stepCount = 0;  // number of steps the motor has taken 

#define STEPS  32   // Number of steps for one revolution of Internal shaft 

                    // 2048 steps for one revolution of External shaft 

volatile boolean TurnDetected;  // need volatile for Interrupts 

volatile boolean rotationdirection;  // CW or CCW rotation 

const int PinCLK=2;   // Generating interrupts using CLK signal 

const int PinDT=3;    // Reading DT signal 

const int PinSW=4;    // Reading Push Button switch 

int RotaryPosition=0;    // To store Stepper Motor Position 

int PrevPosition;     // Previous Rotary position Value to check accuracy 

int StepsToTake;      // How much to move Stepper 

// Setup of proper sequencing for Motor Driver Pins 

// In1, In2, In3, In4 in the sequence 1-3-2-4 

Stepper small_stepper(STEPS, 8, 10, 9, 11); 

// Interrupt routine runs if CLK goes from HIGH to LOW 

void isr ()  { 

  delay(4);  // delay for Debouncing 

  if (digitalRead(PinCLK)) 

    rotationdirection= digitalRead(PinDT); 
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  else 

    rotationdirection= !digitalRead(PinDT); 

  TurnDetected = true; 

} 

void setup ()  { 

tilt.attach(23); // TILT on PIN 23 

pinMode(PinCLK,INPUT); 

pinMode(PinDT,INPUT);   

pinMode(PinSW,INPUT); 

digitalWrite(PinSW, HIGH); // Pull-Up resistor for switch 

attachInterrupt (0,isr,FALLING); // interrupt 0 always connected to pin 2 on Arduino UNO 

} 

void loop ()  { 

  x = joyX;    // X value btwn 0 and 1023)  

  x = map(analogRead(joyX), 0, 1023, 900, 1800);  

  tilt.write(x);  

  // read the sensor value: 

  small_stepper.setSpeed(600); //Max seems to be 700 

  if (!(digitalRead(PinSW))) {   // check if button is pressed 

    if (RotaryPosition == 0) {  // check if button was already pressed 

    } else {        small_stepper.step(-(RotaryPosition*50)); 

        RotaryPosition=0; // Reset position to ZERO 

      } 

    } 

  // Runs if rotation was detected 

  if (TurnDetected)  { 

    PrevPosition = RotaryPosition; // Save previous position in variable 

    if (rotationdirection) { 

      RotaryPosition=RotaryPosition-1;} // decrase Position by 1 

    else { 

      RotaryPosition=RotaryPosition+1;} // increase Position by 1 

    TurnDetected = false;  // do NOT repeat IF loop until new rotation detected 

    // Which direction to move Stepper motor 

    if ((PrevPosition + 1) == RotaryPosition) { // Move motor CW 

      StepsToTake=50;  

      small_stepper.step(StepsToTake); 

    } 

    if ((RotaryPosition + 1) == PrevPosition) { // Move motor CCW 

      StepsToTake=-50; 

      small_stepper.step(StepsToTake); 
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