
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2019

Song Recommendation for Automatic Playlist
Continuation
Jackson Craig Baker
Worcester Polytechnic Institute

Quinn S. Averill
Worcester Polytechnic Institute

Samuel Christopher Coache
Worcester Polytechnic Institute

Steven McAteer
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Baker, J. C., Averill, Q. S., Coache, S. C., & McAteer, S. (2019). Song Recommendation for Automatic Playlist Continuation. Retrieved
from https://digitalcommons.wpi.edu/mqp-all/6744

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/6744?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Project Number: MQP-KL2-ABRV

SONG RECOMMENDATION FOR AUTOMATIC PLAYLIST CONTINUATION

A Major Qualifying Report
Submitted to the Faculty

of
Worcester Polytechnic Institute

In partial fulfilment of the the requirements

for the Bachelor of Science Degree

by

Quinn Averill
Jackson Baker
Samuel Coache
Steven McAteer

Professor Kyumin Lee, Project Advisor
Professor Xiangnan Kong, Project Advisor

 1

Acknowledgements

We want to acknowledge the help of our two Major Qualifying Project Advisors, Dr.

Xiangnan Kong, and Dr. Kyumin Lee without whose guidance this project would not

have come to fruition with ease.

Abstract

The goal of this project is to develop a recommender system that derives song

recommendations from an implicit music dataset provided by the streaming service

Spotify. We implemented current baseline systems and then two advancements over

the baselines: Feature Enhanced Matrix Factorization and Non-Linear Matrix

Factorization. To compare these systems, we took the predicted songs for a given

playlist and calculated the performance score based on the accuracy of those results.

We then compared the results from these NDCG scores to determine which system

performed the best for the given Spotify dataset. Based off of the results, we were able

to draw conclusions regarding the design process for an effective recommender system

for music data.

 2

Table of Contents
Acknowledgements 1

Abstract 1

Table of Contents 2

1. Introduction 3

2. Related Work 8
2.1 Baseline Systems 10

2.1a User-Based 10
2.1b Item Based 11
2.1c Matrix Factorization 13

2.2 State of the Art Systems 14

3. Our Approaches 17
3.1 Data 17

3.1a Challenge 17
3.1b Square Dataset Smoothing 18

3.2 Baseline Techniques 19
3.2a User Based Collaborative Filtering 20
3.2b Item Based Collaborative Filtering 20
3.2c Matrix Factorization 21

3.3 Baseline Advancements 23
3.3a Feature Enhanced Matrix Factorization 23
3.3b Non-Linear Matrix Factorization 24

3.4 Web Application 26

4. Results 29
4.1 Evaluation Techniques 29

4.1a Scoring 29
4.1b Presentation 30
4.1c Comparisons 30

4.2 Baseline Results 31
4.3 Feature Enhanced Matrix Factorization Results 33
4.4 Nonlinear Matrix Factorization Results 35

5. Discussion 37

6. Conclusion 38

7. References 39

 3

1. Introduction

There is no doubt that music streaming services have forever changed the way

we listen to and enjoy music. The days of purchasing physical copies of albums are

dead, as the general public now has access to millions of songs via music streaming

platforms like Spotify and LastFM. As streaming services become more prevalent and

competitive, it is essential for them to cater to their customers by addressing one of the

most widely criticized drawbacks of music recommender systems; that is creating a

system that accurately allows for the user to find new music to enjoy. Streaming giants

have detailed recommender systems ingrained into their applications dedicated to

recommending new music to users - either when their playlist has finished (playlist

continuation) or directly via weekly-generated playlists based on user’s listening

histories. While streaming services continue to be on the cutting-edge with regards to

recommending new music to their customers, these services still have to focus on one

of the significant disadvantages of having such an immense catalog of music: the long

tail of less-popular albums available to users that go unlistened.

Music stores have limited shelf space, so they generally choose to carry products

that guarantee positive revenue - which tends to be the highly popular albums. Because

they are not limited on space, streaming services can hold entire discographies of

artists that upload their music to their platforms. Below is a diagram showing the range

of products and their popularity that the music industry may contain:

 4

Figure 1: The long tail

If you wanted to discover new music in a store that had shelves to hold all of

Spotify’s available albums, how would you go about finding your new favorite song? A

music store with limited shelf space carrying all of the highly popular albums (the head -

Figure 1) would make it much easier to discover new music due to the smaller selection,

coupled with the fact that the selection is entirely made up of successful artists.

However, where does this leave the niche and somewhat-popular albums depicted in

Figure 1 above?

As technology rapidly advances, large music streaming companies have the

ability and obligation to personalize the user’s listening experience. One of the principal

methods used for music-based personalization is accomplished by scraping large heaps

of user data to identify trends in listening histories. Services like Spotify have a large

 5

enough user base to implement these such tactics. They can use these massive data

scrapes to recommend music to each user by examining the trends and similarities in

their music tastes compared to other users with similar listening histories.

Recommender systems are a widely used personalization feature on media

platforms. The purpose of a recommender system is to “turn data on users and their

preferences into predictions of users’ possible future likes and interests.” (Lü et. al.

2009). One of the most fundamental approaches of a recommender is to find objects

that other users have shown interest in that the target user may also like. The method of

determining the similarity between items varies from system to system, but the

underlying foundation stays relatively the same (Lü et. al. 2009).

Many companies have adapted their business models to use recommender

systems too. For example, companies like Hulu and Netflix have implemented a

“recommended for you” section, which contains shows or movies for the specified user

based on the results of their internal recommender systems. By doing this, users will

most likely find things that are more appealing to them, and watch shows they would not

watch otherwise. By always having an algorithm determine new content for the user to

enjoy, the platform becomes more appealing. In addition to that, it helps companies stay

relevant to their users and engage their interests over time.

When it comes to music streaming services, finding new content is crucial for

users. Many listeners do not know what music they precisely want to listen to and rely

on radio-like services to pick songs for them. Spotify does this through “Daily Mixes”,

 6

and a weekly playlist called “Discover Weekly.” These curated playlists are created

based on the comparison between multiple user’s listening habits and saved songs.

Spotify also uses recommender systems to create continuous playback once a

playlist ends. After all the songs in a playlist have played, Spotify continues to play

songs that it thinks are similar to what was previously played in that playlist.

Recommender systems are entirely changing the music industry in multiple

ways. Listeners can use them to refine their music taste by continually discovering new

music. New and upcoming artists have a much better chance to be heard and

discovered. Anyone can create music and put it on a streaming service, and from there,

anyone can discover it. Listeners are moving further down the long tail of the niche

music genres, which is creating a push on artists to develop newer sounds and make

the music industry a more eclectic market.

As detailed recommender systems become a mainstay of streaming services, it

is essential that these services understand which system works best for their specific

problem. Each streaming service has drastically different user bases, music inventories,

and available features to enhance the precision of their recommendations. These

services can only utilize the data they have available and design a system based

around these factors. With multiple state-of-the-art approaches to recommending

implicit music data, it can be a challenge to understand which base recommendation

system makes the most sense for a given service. In general, the best recommendation

systems must be effective in their recommendation, but also easily implementable and

scalable (Falkman, 2016). With recommender systems becoming such an integral part

 7

of the success of streaming services, it is paramount that the systems are well-designed

and perform speedily and accurately. We first analyzed the current state of

recommender algorithms that utilize implicit music data; we then implemented our

system with a feature-enhanced recommender algorithm; finally, we designed

evaluation metrics to determine the strengths and weaknesses of each system

concerning the accuracy and overall performance of the recommendation.

The contributions of this work are summarized as follows:

● We designed two new recommender systems: Feature-Enhanced Matrix

Factorization and Non-Linear Matrix Factorization.

● To test the scalability of each model, we used two different datasets containing

real user-created Spotify playlists: one contained 100 playlists, while the other

contained 1000.

● We evaluated the performance of our two advanced systems compared to the

baseline systems via a universal test that calculated the accuracy of the

predicted songs using the NDCG evaluation metric.

● To make the recommendation process as transparent as possible, we created a

web application that acts as a demonstration of how our systems predict songs

for a given playlist. The application is meant to concisely highlight the inner

workings of a recommender model and display it in an easy-to-understand

manner.

 8

2. Related Work

It is essential to understand that when designing recommender systems, there is

no designated ‘best’ approach to take. The most optimal recommender systems are

those that are simple and transparent, and that understand and utilize the available data

throughout the decision-making process while working towards the sought-after solution

(Falkman, 2016). The best-designed recommender systems are all created with a

unique solution in mind for a given problem; however, there are still common methods

used as baselines for a variety of recommendation techniques. These methods differ

substantially based on the available data and the goal of the system, and are generally

modified as necessary to optimize recommendation. Below we will compare three of the

most common baseline systems for constructing a recommendation and discuss the

strengths and limitations of each system with regards to how they handle the challenges

that music data presents. Additionally, we will highlight state-of-the-art systems

designed for music recommendation.

The current baseline recommendation systems are collaborative filtering,

content-based filtering, and matrix factorization. While all three approaches have certain

advantages and disadvantages based on the data available, ultimately the dataset

determines the viability of each respective approach. Collaborative filtering focuses on

analyzing the similarities between users or items via data collected by a user’s behavior

and preferences (Hu, et al. 2008). Comparatively, content-based approaches compare

the description of an item versus a user’s preferences to find similarities to utilize in the

 9

recommendation. By treating each playlist as a User, and each track as an Item,

collaborative filtering was the best option for our system due to our lack of valuable

metadata on our users. Content-based filtering is an advantageous approach for

recommendation systems but tends to have difficulty making reasonable

recommendations without explicit data pulled directly from users. Matrix factorization is

a bit more confusing, as rather than merely treating playlists and tracks as users and

items and analyzing the trends and similarities found from the data as seen in the

collaborative filtering methods, matrix factorization relies heavily on calculus and linear

algebra to identify hidden latent features (trends) within the dataset.

It is important to note that the results of the collaborative filtering recommender

systems rely entirely on the data given to them. If the data contains a considerable

number of users (in our case, playlists) with random items (songs of random genres in

them), then the recommendations won’t make sense, and the algorithm of the system is

rendered useless. It is imperative that the systems are given accurate data, with as

many item crossovers as possible in order for the system to perform its best. While the

intake of inaccurate data does not cripple matrix factorization, it impacts the latent

features identified because they are assigned no weight due to the inherent

randomness of the input data.

To create a baseline of results for our further experimentation, we implemented

the current most popular recommended systems of collaborative filtering: user based,

item based, and matrix factorization.

 10

2.1 Baseline Systems

2.1a User-Based
The first example of a functional memory-based collaborative filtering

recommendation system can be accredited to Resnick (Resnick, et al. 1994), who

modeled a user u’s preferences for an item i using a rating matrix r(u,i). Resnick

formulated that user’s preferences do not change over time and that they should be

expected to behave similarly throughout their lifetime (Resnick, 1994). With this in mind,

Resnick created a system that would group users who had similar preferences based

on explicit historical data to recommend products to these users in hopes that they

would enjoy what each other already were known to like. He formulated the following

equation, which results in a rating prediction r̃ (u,i) given a user and item.

To make the rating prediction, the system takes the sum of the average ratings

across the rating matrix r̃(u) , a normalization factor C0, and the sum of the similarity

values generated using the preferences given users have for the item in question. Here,

Nk(u, i) represents the set of k most similar users to the input user u. This set of similar

users changes in size based on the size of the dataset and is referred to as the

“neighborhood”. The similarity between the input user u and one of the users from the

neighborhood v is performed in the function sim(u, v). Finally, the rating prediction is

formulated and the system can determine whether or not the input user would enjoy the

item in question.

 11

User-based recommendation is a useful baseline technique, but relies heavily on

a rating matrix - unfortunately, the user cannot “rate” music on streaming services,

which makes incorporating collaborative filtering techniques in music recommendation

so tricky. That being said, by making playlists act as users, we can create a rating

matrix based on the existence of unique songs within playlists. Rather than comparing

the similarities of user’s ratings of given items, we focus on whether or not similar

playlists contain the same songs. The input playlist (playlist being recommended songs

to) is matched to playlists that are the most similar to it, and then the tracks that appear

most frequently in those playlists are recommended to the input playlist. The system

fundamentally recommends items to users, based on comparisons made between their

preference in items, and other user’s preferences.

2.1b Item Based
An item-based recommendation is similar to user-based collaborative filtering in

that it focuses heavily on identifying similarities within the dataset; however, item-based

recommendation looks for items that have been similarly rated by users who have used

both items. If it is apparent that two items a and b have been similarly rated across the

database of ratings, then it can be assumed that users who like the item are also

inclined to like item b and vice-versa. Item-based collaborative filtering addresses one of

the issues with user-based collaborative filtering - while the user-based system may be

logically straightforward, it can become very expensive when dealing with more massive

datasets (Falkman, 2016). By focusing on items, which generally appear in significantly

smaller numbers compared to users in an item/user rating matrix, item-based

 12

collaborative filtering performs more cost effective when compared to user-based

collaborative filtering on large datasets. Understandably, item-based collaborative

filtering seems like a viable system when dealing with datasets of music containing

hundreds of thousands of unique songs. Unfortunately, due to the sheer mass of items

compared to users within music datasets the performance strengths of item-based

collaborative filtering are lost. One playlist may contain anywhere from twenty to over a

hundred songs, and with a limited number of playlists compared to songs, it is much

harder to isolate songs that appear across the database to find similarities in tracks.

Item-based collaborative filtering relies heavily on the number of times a song

appears across the dataset. Since there are no ratings for music data, just whether or

not a song exists in the playlist or not, the item-based collaborative filtering system

designates those songs that appear in many playlists across the dataset as more

valuable, in this way acting as the basis for the item-based collaborative filtering

process. Firstly, every song in the input playlist (the given playlist to recommend songs

to) is matched to songs that are similar to it from the dataset of unique songs, recording

which is identified by the system as “similar tracks.” From there the input playlist takes

in the tracks that appear most frequently within the “similar tracks” matrix. It takes a

user’s preference in items and then recommends items to them based on other items

that are similar to their preference.

 13

2.1c Matrix Factorization
Matrix factorization is significantly different than the other two collaborative

filtering systems. To determine what songs the system recommends for the input

playlist, matrix factorization uses calculus and linear algebra. It determines hidden

features for each song and playlist and determines each track’s importance in a playlist

based on those features.

Matrix factorization utilizes two hidden feature matrices: for users and items. The

calculated dot product of these two matrices creates a predicted rating matrix and the

loss, or error, of each prediction, is calculated. The algorithm uses an optimizer to

minimize the loss, so that the loss is as close to zero as possible. The loss of each

prediction is calculated again for both matrices the same way as before, but this time,

they are different because its gradient changed it; this updates the loss value for each

iteration the algorithm loops through.

This process is explained more in Section 3.2c Matrix Factorization, but for now,

know that it is an approach that decomposes the user-item matrix into two lower

dimensionality rectangular matrices that when combined, create a mathematical

approximation of the original matrix with previously empty spots in the playlist filled with

songs that it thinks should be recommended.

 14

2.2 State of the Art Systems

To get further insight into how to improve the baseline recommender system, our

team researched current state-of-the-art systems in hopes of improving our

recommendations. Generally, the state-of-the-art recommender systems for music data

build off of the baseline systems mentioned above, adding layers of logic and

enhancements based off of their unique dataset to improve recommendation scores.

Recently, matrix factorization has become the standard algorithm for current

recommender systems, as it consistently outperforms other systems when utilizing

explicit music data and can easily be enhanced via implementing different combinations

of the loss function and learning rates (Bodke et. al. 2015, Chen et. al. 2015). That

being said, user-based and item-based systems are still viable when it comes to simpler

recommender systems utilizing implicit datasets.

Simplicity is essential when designing a high-performance music recommender

system, and many of the state-of-the-art approaches attempt to improve upon matrix

factorization by making small changes to the base system and measuring the change in

performance. Scientist Ishteva Kannan implemented a bounded matrix factorization

system that imposes a lower and upper bound on every estimated rating. Adding these

bounds to the songs score significantly improved recommendation accuracy when

compared to using a binary rating matrix (wherein the song exists in the playlist or not),

because of this addition songs could be weighted more heavily making it more apparent

which songs were the most important to the playlist. The results of the experiment

 15

proved that the proposed method outperformed the regular matrix factorization system.

(Kannan et. al. 2014).

With regards to the quality of recommendation, deep learning has the potential to

revolutionize the user experience for better customer satisfaction. Deep learning, unlike

the baseline systems mentioned above, can accurately interpret and incorporate user

intent when making predictions (Mu, 2018). Scientists at the University of Beijing

implemented an item-based deep network structure for collaborative filtering, which

aimed to identify hidden latent features within the dataset by utilizing a batch gradient

descent on the rating matrix (Yong-Ping et. al. 2017). The hidden latent features that

were identified due to the deep network structure positively affected the

recommendation. Although the study was performed using explicit movie data, the

inclusion of a gradient descent to identify a feature vector would be useful for implicit

music data. The system outperformed the standard collaborative filtering algorithm,

which was the comparison system (Yong-Ping et. al. 2017).

One of the most substantial issues with collaborative filtering is the sparsity of the

initial rating matrix (Wang, et al., 2006). When there is not enough information on each

user, the system lacks the insight that requires it to make accurate predictions. One way

to solve this issue is by clustering - rather than using the totality of the rating matrix

when calculating recommendation scores, the matrix would begin with only those items

and users that possess a certain level of similarity to the input user or item (Frémal &

Lecron, 2017). This method of clustering items and users is extremely effective, as it

eliminates the need for countless comparisons between the input playlist and playlists

 16

that contain no worthwhile tracks. Another method of solving the sparsity problem was

implemented via a model that uses a user-tag matrix which represents the user’s

preference on each tag. This is then used to make the user-item matrix denser, allowing

the system to gather additional information on each user when predicting the ratings.

Experiments found that this method generates more precise prediction than general

matrix factorization that suffers from the sparsity problem (Bu Sung Kim et. al., 2014).

When designing our system, we drew inspiration from the state-of-the-art

approaches that tackle tweaking the standard matrix factorization system to produce

better results. For example, in Kannan’s paper on bounded matrix factorization, he

emphasizes the importance of using a baseline system and changing it to include and

upper and lower bound on every estimated rating. Although this change was not difficult

to implement, it made considerable improvements to the standard performance of the

baseline matrix factorization system. Throughout the systems mentioned above, it is

evident that simplicity is key when designing recommendation systems. When designing

our advanced systems, we kept this ideology in mind and subsequently made smaller

changes to the baseline matrix factorization system rather than building our own

system.

 17

3. Our Approaches

3.1 Data

The data used in our research comes from a large dataset that Spotify released

for their Million Playlist Dataset challenge in 2018. We obtained three slices of 10,000

playlists, which when broken down contained well over 300,000 unique tracks. We

chose to use a set of 3000 playlists taken from our available dataset for our

experiments. These playlists contained around 100,000 unique songs. The data is

comprised of playlists that have been created by real Spotify users, so it contains 100%

accurate real-world data (Chen, 2018). To persist our datasets, we utilized MongoDB

Atlas’s free non-relational database services. Each playlist’s tracks were saved, along

with basic information on each track such as title, artist, and album. Each track contains

a unique Spotify ID which allowed us to append additional information to each song

using the Spotify API. Section 3.3a goes into further detail regarding how this additional

information was used.

3.1a Challenge

In recommender systems, the data used for the recommendations can be either

explicit or implicit. Explicit data contains information deliberately entered by the user,

such as a rating that they give the movie that they just watched. Implicit data is what is

inferred by the user’s interaction with the computer interface, such as how much of a

 18

movie the user watched. Explicit data carries more useful information than implicit with

regards to a recommender system, since the data comes directly from the user and tells

us what they do and don’t like. Since our experiment uses playlists that contains songs,

our data is implicit with the playlist being the user, and the song being the item. Without

this explicit data, we cannot answer the question why certain songs were included in

playlists, or if the playlist favors one song over another, since each song carries the

same weight by simply being included in the playlist - therefore all songs are treated

equally (Schedl et. al. 2018). This inherent problem with implicit music data is one of the

reasons well-designed recommender systems are so valuable to music streaming

giants (Najafabadi et. al. 2017).

3.1b Square Dataset Smoothing

In order to keep the testing datasets easy to work with, we smoothed the data

from Spotify’s MPD into square datasets. Each dataset contains an equal number of

playlists and tracks, making each of them extremely dense. For example, one of the

datasets used for quick results was a 100 playlist by 100 track testing set; this made

computation faster and also created less sparse matrices.

To acquire these dense, square datasets, we found the most popular songs in

the entire dataset. Then, we sorted the playlists based on the number of popular songs

that each one had. We took the top N playlists from this sorting and removed any songs

in each playlist that were not in the N most popular songs. After the selection it has

been narrowed down to N playlists containing only the top N most popular songs,

therefore creating an N by N matrix that is as dense as possible.

 19

We used two different values for N: 100 and 1000. The matrix containing 100

playlists by 100 tracks had a sparsity value of 0.367, and the matrix with 1000 playlist by

1000 tracks had a sparsity of 0.076. We tested all of our systems on both of these

datasets and reported all results in Section 4. Results.

3.2 Baseline Techniques

The following section outlines the three different recommendation techniques our

group implemented as a baseline to compare results to: item-based recommendation,

user-based recommendation, and matrix factorization. The goal of each method is to

recommend a list of K songs (where K is the number of songs to recommend) that the

user may want to add to a given input playlist. In our programming, our “users” are

Spotify playlists and our “items” are Spotify tracks, or songs.

The systems are initially given a matrix that contains a row for each playlist, and

a column for each track. Each cell in the matrix contains a value of “1” if the playlist

index contains the track index and a value of “0” if not; this matrix is referred to as the

rating matrix. Each system uses this rating matrix to compare the users and items to a

given playlist and return a list of similar tracks to it, ordered by greatest similarity to

least. Tracks are then taken from these lists and are recommended to the given playlist,

which is detailed more in Section 4.1.

 20

3.2a User Based Collaborative Filtering

Our first approach implemented was user-based collaborative filtering. This

method consists of comparing characteristics between playlists and tracks according to

what tracks are placed in each playlist. For each input playlist, the algorithm creates a

list of playlists that are similar to it using cosine similarity. It then takes the top N similar

playlists, and creates a sum of how many times each track appears in those N playlists,

and multiplies each count by its playlist similarity score as a weight. The algorithm lastly

returns a list of these tracks ordered from most to least similar according to their sums.

Determining the value of N is accomplished by trying it with each value between 1, and

however many playlists are in the dataset - 1. The best value is then utilized for the

recommendation algorithm according to which dataset it is being run against.

3.2b Item Based Collaborative Filtering

In this approach, it is the same process as user-based collaborative filtering, with

the only difference being that each track is compared to one another instead of users.

To make implementation of Item-Based Collaborative Filtering more efficient, the input

rating matrix is transposed before the similarity computation in turn reducing

computational overhead when comparing tracks.

For each input track, the algorithm first creates a list of tracks that are similar to it

using cosine similarity. It then takes all the tracks in the input playlist and creates a sum

for each of the top N tracks in its list of most similar tracks multiplied by its similarity as a

weight. Finally, the algorithm returns the list of these tracks ordered by their sums from

 21

greatest to least. The value for N was found the same way as in Section 3.2a User

Based Collaborative Filtering above.

3.2c Matrix Factorization

Matrix factorization factorizes the rating matrix into two hidden feature matrices:

one for the users and one for the items. The user hidden feature matrix contains a row

for each user and a column for each hidden feature. The item hidden feature matrix is

structured the same way, but a row for each item. For the remainder of this section, the

user hidden feature matrix is referred to as U, and the item hidden feature matrix as V.

The algorithm starts by first initializing U and V to contain random decimals

between 0 and 1. The initial rating matrix given to the system is also multiplied by a

constant alpha, allowing more variations to be made when predicting the rating for a

user/item combination. Then, for a defined number of times (steps), the following

process is repeated (this process is also known as Alternating Least Squares (Yehuda,

2009)):

1. The dot product of U and V is calculated, creating the predicted ratings matrix.

2. The loss (error) of each prediction is found by taking the squared difference

between the user/item combo in the ratings matrix from the corresponding combo

in the predicted ratings matrix. The formula is below:

ratingsMatrix V) eui = (ui − U u
T

i
2

3. To minimize this loss, the algorithm uses an optimizer so that the loss is as close

to 0 as possible. It does this by calculating the gradient (derivative) of the error

 22

function above, and then taking a small step, (learning rate), in the opposite

direction of the gradient. The system loops over each vector in the item hidden

feature matrix and updates the row using a method known as Stochastic

Gradient Descent (Artificial Intelligence - All in One, 2016). Below is the formula

for each update:

 V 2γ UV i = i + * ei

4. The loss of each prediction is calculated again the same way as in step 2, but

this time, V is different because it was changed by it’s gradient; this updates the

loss.

5. For each user in U, it’s gradient is calculated just like in step 3:

 U 2γ VU u = u + * eu

These five steps repeat until the gradient of the loss is low enough to yield good

recommendations. The algorithm knows to stop after a set parameter called steps,

which is found by trial and error. If it is too large, then the model will be overfitted, and

the predictions will match the actual ratings too well. If the algorithm is not stepped

through enough, then the model is under fitted and predictions are accurate. It is

imperative that this constant is at the optimal spot so that the predictions are close to

the actual ratings, but not spot on to the point where there are predictions that do not

exist in the original rating matrix.

In the equations above, there is a value . This is known as the learning rate,

and is what nudges the value along the gradient to bring it closer to zero, or the actual

value. The values for the number of hidden features, the number of steps, alpha, and

 23

the learning rate are found by testing a range of values for each parameter, and finding

what combination of all four works the best.

For a given playlist that is being recommended to, the dot product of U and V

(after all the steps have run through) is calculated, and the playlist’s row of tracks are

then ordered from greatest to least, where the value in the cell indicates how well the

track fits the given input playlist. Finally, the program returns the list, and the top K

songs are then recommended for the playlist.

3.3 Baseline Advancements

For the contribution to the current research in the field of recommender systems,

the team implemented two alternative systems in an attempt to yield better results. In

doing so, the inner workings of matrix factorization dissected, and the team gained a

better understanding of what happens inside the process. The first system implemented

is called Feature Based Matrix Factorization, and the second is called Non-Linear Matrix

Factorization; outlined below.

3.3a Feature Enhanced Matrix Factorization

This method uses the standard matrix factorization as a base, and appends three

Spotify API features to each item vector. For each step in the matrix factorization

process, the last three latent features in the item to feature matrix are kept constant

since they are known features of the track (this would be completed right after the third

step in Section 3.2c Matrix Factorization). This allows matrix factorization to continue its

normal procedure, while adding known information for a given track to the calculation. A

 24

constant, C, was multiplied by each Spotify feature in the item hidden features matrix to

make them have a prominent role when predicting songs to recommend. The

anticipation is that these three features pulled from Spotify’s API will assist the normal

matrix factorization and increase the performance.

The three features added were all normalized to be values between 0 and 1. The

first was Valence, which determines the overall positiveness of the song, with 0 being

not positive, and 1 being extremely positive. The second was danceability, which

determines if the song is easy to dance to or not. The last was energy, which tells the

intensity and activity of the song. (Spotify, 2018)

3.3b Non-Linear Matrix Factorization

This form of matrix factorization uses a nonlinear function to predict if the track

would be a good recommendation to the playlist or not. After the dot product of the user

hidden features matrix U and the item hidden features matrix V is taken to create the

prediction matrix p, the matrix is then normalized across each user using the equation

below to make all values between 0 and 1. This equation was taken from the Python

library Pytorch (Pytorch, 2018)

pui = pui
max(||p || ,ε)ui 2

Where is the predicted rating for the track in the user row, and is a small value pui ε

(1e-12) that avoids dividing by zero [WAT]. This normalization bounds the estimates,

giving an upper and lower bound that creates a range for the predictions.

 25

Then the sigmoid of each normalized predicted rating was taken to further

specify its importance in the user / item combo. The classic sigmoid equation was

altered a bit in order to encompass only values between 0 and 1. Here is that equation,

along with its graph to visualize what it is doing to the prediction matrix:

pui = 1
1+e(−40p +20)ui

Figure 2: Sigmoid graph

This nonlinear approach allows predictions closer to 1 to be greater, where

predictions closer to 0 will be lower. This further increases the separation between the

1’s and the 0’s, allowing the system to solidify what it thinks should be recommended to

a playlist and not.

 26

3.4 Web Application

To present our system and components as well as demonstrate a

recommendation utilizing our design, we designed a web application demonstration to

educate a user on the system by displaying an example of a given playlist and the

output songs recommended to it. The demonstration was created as a Node.JS web

application using core Javascript libraries and with Bootstrap added for styling; the D3.js

library was used to create the graphs. To protect the project database instead of the

demonstration hosts a small subset of the data required to show our results without

exposing the rest of the data to malicious automated enumeration. Therefore, the final

demonstration is an isolated demo designed with the purpose of displaying and

explaining the process in a streamlined method.

To create the demo the first step was the selection of a highly perfect playlist

from the dataset to provide the most visibly exciting results. Once the playlist from the

dataset was chosen we performed evaluations with the different implementations of the

algorithm using this playlist as the given input. With these results, we then developed a

series of graphs to show the correlated data in a visually appealing and interactive way.

The informational component of the demonstration explains the equations used

and system in a brief overarching view of the project. The purpose of the demonstration

is to allow someone to go from start to finish of the application and see step by step the

process for recommending songs with the data displayed in the graphs described in the

next paragraph.

 27

The data visualizations components of the demonstration is an NCDG precision

graph and two radar graphs. The NDCG precision graph, Figure 3 below, is a line graph

displaying the Average NDCG precision of Normal Matrix Factorization, Feature Matrix

Factorization, and Nonlinear Matrix Factorization versus K Values; the K value

represents the number of songs recommended to the input playlist.

Figure 3: NDCG Precision Evaluation Graph

The two radar graphs display similar data but from different sources. Each axis of

the chart represents a different feature supplied by the Spotify API for each song;

Energy, Acoustic, Instrumental, Dance, Tempo, Valence, Speech, and Loudness. The

first graph, Figure 4, displays the average of these features for the complete dataset

and the input playlist to see how it compares to the available pool of songs. The second,

Figure 5, displays the same average playlist features in comparison to the features of

 28

the ten recommended songs, by selecting a song from the section underneath the

values update to see how accurate the song recommendation was.

Figure 4: Dataset vs. Playlist Feature

Radar Graph
Figure 5: Playlist vs. Recommended

Songs Feature Radar Graph

 29

4. Results

4.1 Evaluation Techniques

To find the parameters for each system trial and error was used that lead to the

most significant outcome. Every result in this paper uses these parameters in each

system, giving us the best case scenario result for each system.

4.1a Scoring

One-fifth of the input playlist tracks is removed at the start of the algorithm to be

used to evaluate the ability of each recommender system. Before each system runs the

algorithm, we record the overlap between the recommended songs and the removed

tracks for every playlist in the dataset. Then, after each run terminates, the overlap

between the recommended songs and the removed tracks is again recorded. The

algorithm then runs, and the system recommends K songs to each input playlist in the

dataset, and then uses initially removed fifth of the playlist to evaluate the accuracy

these K songs. The average calculated score for each playlist is used to determine the

overall score of the recommender system. We sample this average multiple times, and

then each run’s average is taken to make a more precise total score.

To calculate a score for the system’s recommendation the output is measured

using Normalized Discounted Cumulative Gain (NDCG) as the evaluation metric. This

metric allowed us to see if the songs recommended matched the fifth that was removed,

 30

as well as see if the order of the recommended songs were correct. This evaluation is

crucial as it tells us if ranked the most similar songs in the correct order (Busa-Fekete

et. al. 2012). It is also normalized, so it always returns a value between 0 and 1.

4.1b Presentation

We evaluated the systems using different values of K to see how it affects the

results of each system. We tested values of K from 5 to 15, because that is around the

average number of songs recommended to a playlist at a time in music recommender

systems. Having results for each K value allowed us to graph the score versus K to see

how the score of a system changes as more songs are recommended. These charts are

in both Sections 4.2 Baseline Results and 4.3 Feature Enhanced Matrix Factorization

Results. The Spotify playlist recommendation feature in their desktop app recommends

10 songs at a time, so we mainly used K = 10 when comparing systems using a single

value.

4.1c Comparisons

To compare each system against the other systems, each ran its algorithm using

the same split playlists, allowing us to compare all scores to each other honestly.

Because of this, it yields the most accurate results to determine how the systems

compare to each other. The rest of the evaluation process continued, and the final

NDCG results were compared and graphed against each other.

 31

4.2 Baseline Results

After running the three baseline recommender systems against all playlists in the

mpd_square_100 dataset 100 times, it was found that the matrix factorization system

outperformed both user and item collaborative filtering, with item and user based

yielding fairly similar results. To compare the systems numerically, a K value (number of

songs recommended) of 10 was used since that is how many songs Spotify

recommends to playlist in a given time. Here is a graph showing the results of this test:

Figure 6: 100 Playlist NDCG scores

Matrix factorization scored an average of 0.474 at K = 10, Item based

collaborative filtering scored an average of 0.461, and user based scored 0.458. These

 32

results were expected, due to our prior research in the state of the art recommender

systems.

After running the three baseline recommender systems against all 1000 playlists

in the mpd_square_1000 dataset 100 times, it was again found that matrix factorization

had a better average score than both item and user collaborative filtering. Here is the

graph showing the results of this test:

Figure 7: 1000 Playlist NDCG scores

Matrix factorization scored an average of 0.246 at K = 10, Item based

collaborative filtering scored an average of 0.209, and user based scored 0.229.

Since matrix factorization yielded the greatest results for both datasets, it will be

used as the baseline to compare against the baseline advancement systems.

 33

4.3 Feature Enhanced Matrix Factorization Results

To evenly compare the results of feature enhanced matrix factorization with the

regular matrix factorization, feature enhanced was given the exact same parameters as

regular matrix factorization. For the 100 playlist dataset, the number of latent features

was 300, and for the 1000 playlist dataset it was 15. It was found that for feature

enhanced to achieve the best results, the feature constant C had to make the spotify

features weigh equally with the other latent features. If it was increased or decreased to

make them more or less important, then the results lowered.

For the 100 playlist dataset, the two systems achieved the exact same scores.

This is thought to be because of the high amount of latent features (300) required to

make regular matrix factorization yield the highest results. This caused the Spotify

features to not make a big enough impact on the system. As Zafari & Moser suggest,

“...the sparsity of the user-item ratings matrix makes it difficult to learn the user

preferences over feature values” (Zafari & Moser, 2017). Adding features values does

not give enough information regarding whether or not a user will like the recommended

songs. In our scenario, even when using the best feature constant, C, the Spotify

features did nothing to help improve matrix factorization results. There is no need to

show a graph for this experiment, for both lines overlap and it shows no added

information.

For the 1000 playlist dataset, feature enhanced matrix factorization achieved

worse results than the regular matrix factorization. At K = 10, it scored an NDCG of

https://www-sciencedirect-com.ezproxy.wpi.edu/topics/computer-science/sparsity

 34

0.241 (regular matrix factorization scored a 0.246) . Here is a graph showing the

comparison:

Figure 8: 1000 Playlist NDCG scores

Since the number of latent features was only 15, having 3 of those features be

the Spotify features caused the average score to lower when compared to normal

matrix factorization. This just further shows that the added Spotify features do not

provide assistance to the matrix factorization system.

 35

4.4 Nonlinear Matrix Factorization Results

For the 100 playlist dataset, the nonlinear matrix factorization did not beat the regular

matrix factorization in NDCG scores. At K = 10, it scored an NDCG score of 0.470 (regular

matrix factorization scored 0.474). Here is the graph comparing the two systems:

Figure 9: 100 Playlist NDCG scores

For the 1000 playlist datasets, the results of the nonlinear matrix factorization were much

closer to the regular matrix factorization. At K = 10, it scored a 0.245 (where regular matrix

factorization scored 0.246). Here is a graph comparing the systems:

 36

Figure 10: 1000 Playlist NDCG scores

At each K value, the results are extremely similar, showing that with more data in

the dataset, the nonlinear approach does not change the results by much. Overall it was

slightly worse, but not as much as the 100 playlist dataset.

 37

5. Discussion

As Section 4 shows, there are many factors that affect the performance of each

system. In Figure 3, the NDCG values show that the user-based and item-based

recommender systems clearly trail behind matrix factorization recommender. User and

item yield poor performance due to the nature of each algorithm; the former only

focuses on the user factors and compares them, while the latter only focuses on the

items. The predictions from matrix factorization are more accurate than those from the

prior two methods because it utilizes both the user and item factors during its algorithm.

When comparing the 3 different matrix factorization methods from Section 4, the

results are similar. For matrix factorization and feature-based matrix factorization, the

NDCG values are exactly the same. This shows that adding additional static feature

values from Spotify’s API to each individual track did not improve performance. A

weight constant was multiplied to these features to increase their importance over the

other hidden features, however the system performed best when this constant treated

the known features the exact same as the hidden features. The nonlinear matrix

factorization method also did not perform better than the standard matrix factorization

method; it yields considerably lower performance when compared to the other two

matrix factorization methods.

After implementing these two variations of matrix factorization, we realized that

adding more data and changing parts of the standard matrix factorization algorithm did

not affect the performance as intended. We learned that the simplicity that matrix

 38

factorization provides makes the prediction results more accurate since there are less

complications within the algorithm.

6. Conclusion

Although the proposed advanced recommender systems did not improve

performance when recommending songs, they both displayed the importance of

simplicity within a recommendation algorithm. While the advanced systems we

designed utilized more of the available data when calculating their recommendations,

ultimately it was clear that when it comes to recommending music from an implicit

dataset, simplicity is key. Recommender systems should be as scalable, efficient, and

transparent as possible - and due to the inherent difficulties that come with music data,

it was apparent that the more we focused on attempting to improve the performance via

analyzing individual track features, the more unreliable the recommendations would

become. The matrix factorization recommender system consistently produces the best

performance with regards to Spotify music data.

 39

7. References

Advanced Intelligent Systems (ISIS) (pp. 980–984). IEEE.

https://doi.org/10.1109/SCIS-ISIS.2014.7044855

Artificial Intelligence - All in One. (2016, April 13). Finding the Latent Factors |

Stanford University [Video File]. Retrieved from

www.youtube.com/watch?v=GGWBMg0i9d4.

Bodke, D., Girase, S., & Mukhopadhyay, D. (2015). Matrix Factorization Model

in Collaborative Filtering Algorithms: A Survey, [Abstract]. Procedia

Computer Science, 49, 136-146. Retrieved March 3, 2019, from

https://doi.org/10.1016/j.procs.2015.04.237.

Bu Sung Kim, Heera Kim, Jaedong Lee, & Jee-Hyong Lee. (2014). Improving a

recommender system by collective matrix factorization with tag

information. In 2014 Joint 7th International Conference on Soft Computing

and Intelligent Systems (SCIS) and 15th International Symposium on

Busa-Fekete, R., Szarvas, G., Élteto, T., & Kégl, B. (2012). An apple-to-apple

comparison of Learning-to-rank algorithms in terms of Normalized

Discounted Cumulative Gain. In ECAI 2012 - 20th European Conference

on Artificial Intelligence : Preference Learning: Problems and Applications

in AI Workshop (Vol. 242). Ios Press.

http://www.youtube.com/watch?v=GGWBMg0i9d4
https://doi.org/10.1016/j.procs.2015.04.237

 40

Chen, L., Chen, G., & Wang, F. (2015). Recommender systems based on user

reviews: the state of the art. User Modeling and User-Adapted Interaction,

25(2), 99–154. https://doi.org/10.1007/s11257-015-9155-5

Chen, C. (2018, June 06). Introducing The Million Playlist Dataset and RecSys

Challenge 2018. Retrieved from

https://labs.spotify.com/2018/05/30/introducing-the-million-playlist-dataset

-and-recsys-challenge-2018/

Falkman, G. (2018). A Scalable Recommender System for Automatic Playlist

Continuation Master Degree Project : Report.

Frémal, S., & Lecron, F. (2017). Weighting strategies for a recommender system

using item clustering based on genres. Expert Systems with

Applications,77, 105-113. doi:10.1016/j.eswa.2017.01.031

https://www.sciencedirect.com/science/article/pii/S0957417417300404?via%3Di

hub

Kannan, R., Ishteva, M., & Park, H. (2014). Bounded matrix factorization for

recommender system. Knowledge and Information Systems, 39(3),

491–511. https://doi.org/10.1007/s10115-013-0710-2

Lü, L., Matúš, M., Chi Ho, Y., Yi-Cheng, Z., Zi-Ke, Z., & Tao, Z. (2009).

Recommender Systems. Physics Reports, 519(1), 1-49. Retrieved

January 10, 2019

https://doi.org/10.1007/s11257-015-9155-5
https://www.sciencedirect.com/science/article/pii/S0957417417300404?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0957417417300404?via%3Dihub
https://doi.org/10.1007/s10115-013-0710-2

 41

Mu, R. (2018). A Survey of Recommender Systems Based on Deep Learning.

IEEE Access,6, 69009-69022. doi:10.1109/access.2018.2880197

https://ieeexplore.ieee.org/document/8529185

Najafabadi, M., Mahrin, M., Chuprat, S., & Sarkan, H. (2017). Improving the

accuracy of collaborative filtering recommendations using clustering and

association rules mining on implicit data. Computers in Human Behavior,

67, 113–128. https://doi.org/10.1016/j.chb.2016.11.010

Pytorch. (n.d.). Torch.nn Documentation. Retrieved November 2, 2018, from

https://pytorch.org/docs/stable/nn.html

Resnick, P. (n.d.). GroupLens: An Open Architecture for Collaborative Filtering

of Netnews. Proceedings of the 1994 ACM Conference on Computer

Supported Systems (pp. 175-186). doi:10.1145/192844.192905

Schedl, M., Zamani, H., Chen, CW. et al. Int J Multimed Info Retr (2018) 7: 95.

https://doi.org/10.1007/s13735-018-0154-2

Spotify. (n.d.). Spotify Web API. Retrieved October 1, 2018, from

https://developer.spotify.com/documentation/web-api/

Wang, J., De Vries, A.P., and Reinders, M.J.T. “Unifying User-Based and

Item-Based Collaborative Filtering Approaches by Similarity Fusion.” Vol.

2006. N.p., 2006. 501–508. Print.

Yehuda, K. (2009). Matrix Factorization Techniques for Recommender Systems.

IEEE Computer,42(8), 30-37. Retrieved February 02, 2019.

https://ieeexplore.ieee.org/document/8529185
https://doi.org/10.1007/s13735-018-0154-2

 42

Yifan Hu, Koren, Y., & Volinsky, C. (2008). Collaborative Filtering for Implicit

Feedback Datasets. In 2008 Eighth IEEE International Conference on

Data Mining (pp. 263–272). IEEE. https://doi.org/10.1109/ICDM.2008.22

Yong-Ping, D., Chang-Qing, Y., & Jing-Xuan, L. (2017). A new item-based deep

network structure using a restricted Boltzmann machine for collaborative

filtering. Frontiers of Information Technology & Electronic Engineering,

18(5), 658–666. https://doi.org/10.1631/FITEE.1601732

Zafari, F., & Moser, I. (2017). Modelling socially-influenced conditional

preferences over feature values in recommender systems based on

factorised collaborative filtering. Expert Systems with Applications,87,

98-117. doi:10.1016/j.eswa.2017.05.058

	Worcester Polytechnic Institute
	Digital WPI
	March 2019

	Song Recommendation for Automatic Playlist Continuation
	Jackson Craig Baker
	Quinn S. Averill
	Samuel Christopher Coache
	Steven McAteer
	Repository Citation

	tmp.1554310086.pdf.nZAsI

