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Abstract 

The goal of this project is to develop a recommender system that derives song 

recommendations from an implicit music dataset provided by the streaming service 

Spotify. We implemented current baseline systems and then two advancements over 

the baselines: Feature Enhanced Matrix Factorization and Non-Linear Matrix 

Factorization. To compare these systems, we took the predicted songs for a given 

playlist and calculated the performance score based on the accuracy of those results. 

We then compared the results from these NDCG scores to determine which system 

performed the best for the given Spotify dataset. Based off of the results, we were able 

to draw conclusions regarding the design process for an effective recommender system 

for music data. 
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1. Introduction 

There is no doubt that music streaming services have forever changed the way 

we listen to and enjoy music. The days of purchasing physical copies of albums are 

dead, as the general public now has access to millions of songs via music streaming 

platforms like Spotify and LastFM. As streaming services become more prevalent and 

competitive, it is essential for them to cater to their customers by addressing one of the 

most widely criticized drawbacks of music recommender systems; that is creating a 

system that accurately allows for the user to find new music to enjoy. Streaming giants 

have detailed recommender systems ingrained into their applications dedicated to 

recommending new music to users - either when their playlist has finished (playlist 

continuation) or directly via weekly-generated playlists based on user’s listening 

histories. While streaming services continue to be on the cutting-edge with regards to 

recommending new music to their customers, these services still have to focus on one 

of the significant disadvantages of having such an immense catalog of music: the long 

tail of less-popular albums available to users that go unlistened. 

Music stores have limited shelf space, so they generally choose to carry products 

that guarantee positive revenue - which tends to be the highly popular albums. Because 

they are not limited on space, streaming services can hold entire discographies of 

artists that upload their music to their platforms. Below is a diagram showing the range 

of products and their popularity that the music industry may contain: 
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Figure 1: The long tail 

 

If you wanted to discover new music in a store that had shelves to hold all of 

Spotify’s available albums, how would you go about finding your new favorite song? A 

music store with limited shelf space carrying all of the highly popular albums (the head - 

Figure 1) would make it much easier to discover new music due to the smaller selection, 

coupled with the fact that the selection is entirely made up of successful artists. 

However, where does this leave the niche and somewhat-popular albums depicted in 

Figure 1 above? 

As technology rapidly advances, large music streaming companies have the 

ability and obligation to personalize the user’s listening experience. One of the principal 

methods used for music-based personalization is accomplished by scraping large heaps 

of user data to identify trends in listening histories. Services like Spotify have a large 
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enough user base to implement these such tactics. They can use these massive data 

scrapes to recommend music to each user by examining the trends and similarities in 

their music tastes compared to other users with similar listening histories. 

Recommender systems are a widely used personalization feature on media 

platforms. The purpose of a recommender system is to “turn data on users and their 

preferences into predictions of users’ possible future likes and interests.” (Lü et. al. 

2009).  One of the most fundamental approaches of a recommender is to find objects 

that other users have shown interest in that the target user may also like. The method of 

determining the similarity between items varies from system to system, but the 

underlying foundation stays relatively the same (Lü et. al. 2009). 

Many companies have adapted their business models to use recommender 

systems too. For example, companies like Hulu and Netflix have implemented a 

“recommended for you” section, which contains shows or movies for the specified user 

based on the results of their internal recommender systems. By doing this, users will 

most likely find things that are more appealing to them, and watch shows they would not 

watch otherwise. By always having an algorithm determine new content for the user to 

enjoy, the platform becomes more appealing. In addition to that, it helps companies stay 

relevant to their users and engage their interests over time.  

When it comes to music streaming services, finding new content is crucial for 

users. Many listeners do not know what music they precisely want to listen to and rely 

on radio-like services to pick songs for them. Spotify does this through “Daily Mixes”, 
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and a weekly playlist called “Discover Weekly.” These curated playlists are created 

based on the comparison between multiple user’s listening habits and saved songs. 

Spotify also uses recommender systems to create continuous playback once a 

playlist ends. After all the songs in a playlist have played, Spotify continues to play 

songs that it thinks are similar to what was previously played in that playlist. 

Recommender systems are entirely changing the music industry in multiple 

ways. Listeners can use them to refine their music taste by continually discovering new 

music. New and upcoming artists have a much better chance to be heard and 

discovered. Anyone can create music and put it on a streaming service, and from there, 

anyone can discover it. Listeners are moving further down the long tail of the niche 

music genres, which is creating a push on artists to develop newer sounds and make 

the music industry a more eclectic market. 

As detailed recommender systems become a mainstay of streaming services, it 

is essential that these services understand which system works best for their specific 

problem. Each streaming service has drastically different user bases, music inventories, 

and available features to enhance the precision of their recommendations. These 

services can only utilize the data they have available and design a system based 

around these factors. With multiple state-of-the-art approaches to recommending 

implicit music data, it can be a challenge to understand which base recommendation 

system makes the most sense for a given service. In general, the best recommendation 

systems must be effective in their recommendation, but also easily implementable and 

scalable (Falkman, 2016). With recommender systems becoming such an integral part 
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of the success of streaming services, it is paramount that the systems are well-designed 

and perform speedily and accurately. We first analyzed the current state of 

recommender algorithms that utilize implicit music data; we then implemented our 

system with a feature-enhanced recommender algorithm; finally, we designed 

evaluation metrics to determine the strengths and weaknesses of each system 

concerning the accuracy and overall performance of the recommendation. 

The contributions of this work are summarized as follows: 

● We designed two new recommender systems: Feature-Enhanced Matrix 

Factorization and Non-Linear Matrix Factorization. 

● To test the scalability of each model, we used two different datasets containing 

real user-created Spotify playlists: one contained 100 playlists, while the other 

contained 1000. 

● We evaluated the performance of our two advanced systems compared to the 

baseline systems via a universal test that calculated the accuracy of the 

predicted songs using the NDCG evaluation metric. 

● To make the recommendation process as transparent as possible, we created a 

web application that acts as a demonstration of how our systems predict songs 

for a given playlist. The application is meant to concisely highlight the inner 

workings of a recommender model and display it in an easy-to-understand 

manner. 
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2. Related Work 

It is essential to understand that when designing recommender systems, there is 

no designated ‘best’ approach to take. The most optimal recommender systems are 

those that are simple and transparent, and that understand and utilize the available data 

throughout the decision-making process while working towards the sought-after solution 

(Falkman, 2016). The best-designed recommender systems are all created with a 

unique solution in mind for a given problem; however, there are still common methods 

used as baselines for a variety of recommendation techniques. These methods differ 

substantially based on the available data and the goal of the system, and are generally 

modified as necessary to optimize recommendation. Below we will compare three of the 

most common baseline systems for constructing a recommendation and discuss the 

strengths and limitations of each system with regards to how they handle the challenges 

that music data presents. Additionally, we will highlight state-of-the-art systems 

designed for music recommendation. 

The current baseline recommendation systems are collaborative filtering, 

content-based filtering, and matrix factorization. While all three approaches have certain 

advantages and disadvantages based on the data available, ultimately the dataset 

determines the viability of each respective approach. Collaborative filtering focuses on 

analyzing the similarities between users or items via data collected by a user’s behavior 

and preferences (Hu, et al. 2008). Comparatively, content-based approaches compare 

the description of an item versus a user’s preferences to find similarities to utilize in the 

 



 9 

recommendation. By treating each playlist as a User, and each track as an Item, 

collaborative filtering was the best option for our system due to our lack of valuable 

metadata on our users. Content-based filtering is an advantageous approach for 

recommendation systems but tends to have difficulty making reasonable 

recommendations without explicit data pulled directly from users. Matrix factorization is 

a bit more confusing, as rather than merely treating playlists and tracks as users and 

items and analyzing the trends and similarities found from the data as seen in the 

collaborative filtering methods, matrix factorization relies heavily on calculus and linear 

algebra to identify hidden latent features (trends) within the dataset. 

It is important to note that the results of the collaborative filtering recommender 

systems rely entirely on the data given to them. If the data contains a considerable 

number of users (in our case, playlists) with random items (songs of random genres in 

them), then the recommendations won’t make sense, and the algorithm of the system is 

rendered useless. It is imperative that the systems are given accurate data, with as 

many item crossovers as possible in order for the system to perform its best. While the 

intake of inaccurate data does not cripple matrix factorization, it impacts the latent 

features identified because they are assigned no weight due to the inherent 

randomness of the input data. 

To create a baseline of results for our further experimentation, we implemented 

the current most popular recommended systems of collaborative filtering: user based, 

item based, and matrix factorization. 
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2.1 Baseline Systems 

2.1a User-Based 
The first example of a functional memory-based collaborative filtering 

recommendation system can be accredited to Resnick (Resnick, et al. 1994), who 

modeled a user u’s preferences for an item i using a rating matrix r(u,i). Resnick 

formulated that user’s preferences do not change over time and that they should be 

expected to behave similarly throughout their lifetime (Resnick, 1994). With this in mind, 

Resnick created a system that would group users who had similar preferences based 

on explicit historical data to recommend products to these users in hopes that they 

would enjoy what each other already were known to like. He formulated the following 

equation, which results in a rating prediction r̃  (u,i) given a user and item.  

To make the rating prediction, the system takes the sum of the average ratings 

across the rating matrix r̃(u) , a normalization factor C0, and the sum of the similarity 

values generated using the preferences given users have for the item in question. Here, 

Nk(u, i) represents the set of k most similar users to the input user u. This set of similar 

users changes in size based on the size of the dataset and is referred to as the 

“neighborhood”. The similarity between the input user u and one of the users from the 

neighborhood v is performed in the function sim(u, v). Finally, the rating prediction is 

formulated and the system can determine whether or not the input user would enjoy the 

item in question. 
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User-based recommendation is a useful baseline technique, but relies heavily on 

a rating matrix - unfortunately, the user cannot “rate” music on streaming services, 

which makes incorporating collaborative filtering techniques in music recommendation 

so tricky. That being said, by making playlists act as users, we can create a rating 

matrix based on the existence of unique songs within playlists. Rather than comparing 

the similarities of user’s ratings of given items, we focus on whether or not similar 

playlists contain the same songs. The input playlist (playlist being recommended songs 

to) is matched to playlists that are the most similar to it, and then the tracks that appear 

most frequently in those playlists are recommended to the input playlist. The system 

fundamentally recommends items to users, based on comparisons made between their 

preference in items, and other user’s preferences. 

2.1b Item Based 
An item-based recommendation is similar to user-based collaborative filtering in 

that it focuses heavily on identifying similarities within the dataset; however, item-based 

recommendation looks for items that have been similarly rated by users who have used 

both items. If it is apparent that two items a and b have been similarly rated across the 

database of ratings, then it can be assumed that users who like the item are also 

inclined to like item b and vice-versa. Item-based collaborative filtering addresses one of 

the issues with user-based collaborative filtering - while the user-based system may be 

logically straightforward, it can become very expensive when dealing with more massive 

datasets (Falkman, 2016). By focusing on items, which generally appear in significantly 

smaller numbers compared to users in an item/user rating matrix, item-based 
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collaborative filtering performs more cost effective when compared to user-based 

collaborative filtering on large datasets. Understandably, item-based collaborative 

filtering seems like a viable system when dealing with datasets of music containing 

hundreds of thousands of unique songs. Unfortunately, due to the sheer mass of items 

compared to users within music datasets the performance strengths of item-based 

collaborative filtering are lost. One playlist may contain anywhere from twenty to over a 

hundred songs, and with a limited number of playlists compared to songs, it is much 

harder to isolate songs that appear across the database to find similarities in tracks. 

Item-based collaborative filtering relies heavily on the number of times a song 

appears across the dataset. Since there are no ratings for music data, just whether or 

not a song exists in the playlist or not, the item-based collaborative filtering system 

designates those songs that appear in many playlists across the dataset as more 

valuable, in this way acting as the basis for the item-based collaborative filtering 

process. Firstly, every song in the input playlist (the given playlist to recommend songs 

to) is matched to songs that are similar to it from the dataset of unique songs, recording 

which is identified by the system as “similar tracks.” From there the input playlist takes 

in the tracks that appear most frequently within the “similar tracks” matrix. It takes a 

user’s preference in items and then recommends items to them based on other items 

that are similar to their preference. 
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2.1c Matrix Factorization 
Matrix factorization is significantly different than the other two collaborative 

filtering systems. To determine what songs the system recommends for the input 

playlist, matrix factorization uses calculus and linear algebra. It determines hidden 

features for each song and playlist and determines each track’s importance in a playlist 

based on those features. 

Matrix factorization utilizes two hidden feature matrices: for users and items. The 

calculated dot product of these two matrices creates a predicted rating matrix and the 

loss, or error, of each prediction, is calculated. The algorithm uses an optimizer to 

minimize the loss, so that the loss is as close to zero as possible. The loss of each 

prediction is calculated again for both matrices the same way as before, but this time, 

they are different because its gradient changed it; this updates the loss value for each 

iteration the algorithm loops through. 

This process is explained more in Section 3.2c Matrix Factorization, but for now, 

know that it is an approach that decomposes the user-item matrix into two lower 

dimensionality rectangular matrices that when combined, create a mathematical 

approximation of the original matrix with previously empty spots in the playlist filled with 

songs that it thinks should be recommended. 
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2.2 State of the Art Systems 

To get further insight into how to improve the baseline recommender system, our 

team researched current state-of-the-art systems in hopes of improving our 

recommendations. Generally, the state-of-the-art recommender systems for music data 

build off of the baseline systems mentioned above, adding layers of logic and 

enhancements based off of their unique dataset to improve recommendation scores. 

Recently, matrix factorization has become the standard algorithm for current 

recommender systems, as it consistently outperforms other systems when utilizing 

explicit music data and can easily be enhanced via implementing different combinations 

of the loss function and learning rates (Bodke et. al. 2015, Chen et. al. 2015). That 

being said, user-based and item-based systems are still viable when it comes to simpler 

recommender systems utilizing implicit datasets. 

Simplicity is essential when designing a high-performance music recommender 

system, and many of the state-of-the-art approaches attempt to improve upon matrix 

factorization by making small changes to the base system and measuring the change in 

performance. Scientist Ishteva Kannan implemented a bounded matrix factorization 

system that imposes a lower and upper bound on every estimated rating. Adding these 

bounds to the songs score significantly improved recommendation accuracy when 

compared to using a binary rating matrix (wherein the song exists in the playlist or not), 

because of this addition songs could be weighted more heavily making it more apparent 

which songs were the most important to the playlist. The results of the experiment 
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proved that the proposed method outperformed the regular matrix factorization system. 

(Kannan et. al. 2014). 

With regards to the quality of recommendation, deep learning has the potential to 

revolutionize the user experience for better customer satisfaction. Deep learning, unlike 

the baseline systems mentioned above, can accurately interpret and incorporate user 

intent when making predictions (Mu, 2018). Scientists at the University of Beijing 

implemented an item-based deep network structure for collaborative filtering, which 

aimed to identify hidden latent features within the dataset by utilizing a batch gradient 

descent on the rating matrix (Yong-Ping et. al. 2017). The hidden latent features that 

were identified due to the deep network structure positively affected the 

recommendation. Although the study was performed using explicit movie data, the 

inclusion of a gradient descent to identify a feature vector would be useful for implicit 

music data. The system outperformed the standard collaborative filtering algorithm, 

which was the comparison system (Yong-Ping et. al. 2017). 

One of the most substantial issues with collaborative filtering is the sparsity of the 

initial rating matrix (Wang, et al., 2006). When there is not enough information on each 

user, the system lacks the insight that requires it to make accurate predictions. One way 

to solve this issue is by clustering - rather than using the totality of the rating matrix 

when calculating recommendation scores, the matrix would begin with only those items 

and users that possess a certain level of similarity to the input user or item (Frémal & 

Lecron, 2017). This method of clustering items and users is extremely effective, as it 

eliminates the need for countless comparisons between the input playlist and playlists 
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that contain no worthwhile tracks. Another method of solving the sparsity problem was 

implemented via a model that uses a user-tag matrix which represents the user’s 

preference on each tag. This is then used to make the user-item matrix denser, allowing 

the system to gather additional information on each user when predicting the ratings. 

Experiments found that this method generates more precise prediction than general 

matrix factorization that suffers from the sparsity problem (Bu Sung Kim et. al., 2014). 

When designing our system, we drew inspiration from the state-of-the-art 

approaches that tackle tweaking the standard matrix factorization system to produce 

better results. For example, in Kannan’s paper on bounded matrix factorization, he 

emphasizes the importance of using a baseline system and changing it to include and 

upper and lower bound on every estimated rating. Although this change was not difficult 

to implement, it made considerable improvements to the standard performance of the 

baseline matrix factorization system. Throughout the systems mentioned above, it is 

evident that simplicity is key when designing recommendation systems. When designing 

our advanced systems, we kept this ideology in mind and subsequently made smaller 

changes to the baseline matrix factorization system rather than building our own 

system. 
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3. Our Approaches 

3.1 Data  

The data used in our research comes from a large dataset that Spotify released 

for their Million Playlist Dataset challenge in 2018. We obtained three slices of 10,000 

playlists, which when broken down contained well over 300,000 unique tracks. We 

chose to use a set of 3000 playlists taken from our available dataset for our 

experiments. These playlists contained around 100,000 unique songs. The data is 

comprised of playlists that have been created by real Spotify users, so it contains 100% 

accurate real-world data (Chen, 2018). To persist our datasets, we utilized MongoDB 

Atlas’s free non-relational database services. Each playlist’s tracks were saved, along 

with basic information on each track such as title, artist, and album. Each track contains 

a unique Spotify ID which allowed us to append additional information to each song 

using the Spotify API. Section 3.3a goes into further detail regarding how this additional 

information was used. 

3.1a Challenge 

In recommender systems, the data used for the recommendations can be either 

explicit or implicit. Explicit data contains information deliberately entered by the user, 

such as a rating that they give the movie that they just watched. Implicit data is what is 

inferred by the user’s interaction with the computer interface, such as how much of a 
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movie the user watched. Explicit data carries more useful information than implicit with 

regards to a recommender system, since the data comes directly from the user and tells 

us what they do and don’t like. Since our experiment uses playlists that contains songs, 

our data is implicit with the playlist being the user, and the song being the item. Without 

this explicit data, we cannot answer the question why certain songs were included in 

playlists, or if the playlist favors one song over another, since each song carries the 

same weight by simply being included in the playlist - therefore all songs are treated 

equally (Schedl et. al. 2018). This inherent problem with implicit music data is one of the 

reasons well-designed recommender systems are so valuable to music streaming 

giants (Najafabadi et. al. 2017).  

3.1b Square Dataset Smoothing 

In order to keep the testing datasets easy to work with, we smoothed the data 

from Spotify’s MPD into square datasets. Each dataset contains an equal number of 

playlists and tracks, making each of them extremely dense. For example, one of the 

datasets used for quick results was a 100 playlist by 100 track testing set; this made 

computation faster and also created less sparse matrices. 

To acquire these dense, square datasets, we found the most popular songs in 

the entire dataset. Then, we sorted the playlists based on the number of popular songs 

that each one had. We took the top N playlists from this sorting and removed any songs 

in each playlist that were not in the N most popular songs. After the selection it has 

been narrowed down to N playlists containing only the top N most popular songs, 

therefore creating an N by N matrix that is as dense as possible. 
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We used two different values for N: 100 and 1000. The matrix containing 100 

playlists by 100 tracks had a sparsity value of 0.367, and the matrix with 1000 playlist by 

1000 tracks had a sparsity of 0.076. We tested all of our systems on both of these 

datasets and reported all results in Section 4. Results. 

3.2 Baseline Techniques 

The following section outlines the three different recommendation techniques our 

group implemented as a baseline to compare results to: item-based recommendation, 

user-based recommendation, and matrix factorization. The goal of each method is to 

recommend a list of K songs (where K is the number of songs to recommend) that the 

user may want to add to a given input playlist. In our programming, our “users” are 

Spotify playlists and our “items” are Spotify tracks, or songs. 

The systems are initially given a matrix that contains a row for each playlist, and 

a column for each track. Each cell in the matrix contains a value of “1” if the playlist 

index contains the track index and a value of “0” if not; this matrix is referred to as the 

rating matrix. Each system uses this rating matrix to compare the users and items to a 

given playlist and return a list of similar tracks to it, ordered by greatest similarity to 

least. Tracks are then taken from these lists and are recommended to the given playlist, 

which is detailed more in Section 4.1. 
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3.2a User Based Collaborative Filtering  

Our first approach implemented was user-based collaborative filtering. This 

method consists of comparing characteristics between playlists and tracks according to 

what tracks are placed in each playlist. For each input playlist, the algorithm creates a 

list of playlists that are similar to it using cosine similarity. It then takes the top N similar 

playlists, and creates a sum of how many times each track appears in those N playlists, 

and multiplies each count by its playlist similarity score as a weight. The algorithm lastly 

returns a list of these tracks ordered from most to least similar according to their sums. 

Determining the value of N is accomplished by trying it with each value between 1, and 

however many playlists are in the dataset - 1. The best value is then utilized for the 

recommendation algorithm according to which dataset it is being run against. 

3.2b Item Based Collaborative Filtering 

In this approach, it is the same process as user-based collaborative filtering, with 

the only difference being that each track is compared to one another instead of users. 

To make implementation of Item-Based Collaborative Filtering more efficient, the input 

rating matrix is transposed before the similarity computation in turn reducing 

computational overhead when comparing tracks. 

For each input track, the algorithm first creates a list of tracks that are similar to it 

using cosine similarity. It then takes all the tracks in the input playlist and creates a sum 

for each of the top N tracks in its list of most similar tracks multiplied by its similarity as a 

weight. Finally, the algorithm returns the list of these tracks ordered by their sums from 
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greatest to least. The value for N was found the same way as in Section 3.2a User 

Based Collaborative Filtering above. 

 

3.2c Matrix Factorization 

Matrix factorization factorizes the rating matrix into two hidden feature matrices: 

one for the users and one for the items. The user hidden feature matrix contains a row 

for each user and a column for each hidden feature. The item hidden feature matrix is 

structured the same way, but a row for each item. For the remainder of this section, the 

user hidden feature matrix is referred to as U, and the item hidden feature matrix as V. 

The algorithm starts by first initializing U and V to contain random decimals 

between 0 and 1. The initial rating matrix given to the system is also multiplied by a 

constant alpha, allowing more variations to be made when predicting the rating for a 

user/item combination. Then, for a defined number of times (steps), the following 

process is repeated (this process is also known as Alternating Least Squares (Yehuda, 

2009)): 

1. The dot product of U and V is calculated, creating the predicted ratings matrix.  

2. The loss (error) of each prediction is found by taking the squared difference 

between the user/item combo in the ratings matrix from the corresponding combo 

in the predicted ratings matrix. The formula is below: 

ratingsMatrix V ) eui = ( ui − U u
T

i 
2  

3. To minimize this loss, the algorithm uses an optimizer so that the loss is as close 

to 0 as possible. It does this by calculating the gradient (derivative) of the error 
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function above, and then taking a small step,  (learning rate), in the opposite 

direction of the gradient. The system loops over each vector in the item hidden 

feature matrix and updates the row using a method known as Stochastic 

Gradient Descent (Artificial Intelligence - All in One, 2016). Below is the formula 

for each update: 

 V 2γ UV i =  i +  * ei   

4. The loss of each prediction is calculated again the same way as in step 2, but 

this time, V is different because it was changed by it’s gradient; this updates the 

loss. 

5. For each user in U, it’s gradient is calculated just like in step 3: 

 U 2γ VU u =  u +  * eu   

These five steps repeat until the gradient of the loss is low enough to yield good 

recommendations. The algorithm knows to stop after a set parameter called steps, 

which is found by trial and error. If it is too large, then the model will be overfitted, and 

the predictions will match the actual ratings too well. If the algorithm is not stepped 

through enough, then the model is under fitted and predictions are accurate. It is 

imperative that this constant is at the optimal spot so that the predictions are close to 

the actual ratings, but not spot on to the point where there are predictions that do not 

exist in the original rating matrix. 

In the equations above, there is a value . This is known as the learning rate, 

and is what nudges the value along the gradient to bring it closer to zero, or the actual 

value. The values for the number of hidden features, the number of steps, alpha, and 
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the learning rate are found by testing a range of values for each parameter, and finding 

what combination of all four works the best. 

For a given playlist that is being recommended to, the dot product of U and V 

(after all the steps have run through) is calculated, and the playlist’s row of tracks are 

then ordered from greatest to least, where the value in the cell indicates how well the 

track fits the given input playlist. Finally, the program returns the list, and the top K 

songs are then recommended for the playlist. 

3.3 Baseline Advancements 

For the contribution to the current research in the field of recommender systems, 

the team implemented two alternative systems in an attempt to yield better results. In 

doing so, the inner workings of matrix factorization dissected, and the team gained a 

better understanding of what happens inside the process. The first system implemented 

is called Feature Based Matrix Factorization, and the second is called Non-Linear Matrix 

Factorization; outlined below. 

3.3a Feature Enhanced Matrix Factorization 

This method uses the standard matrix factorization as a base, and appends three 

Spotify API features to each item vector. For each step in the matrix factorization 

process, the last three latent features in the item to feature matrix are kept constant 

since they are known features of the track (this would be completed right after the third 

step in Section 3.2c Matrix Factorization). This allows matrix factorization to continue its 

normal procedure, while adding known information for a given track to the calculation. A 
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constant, C, was multiplied by each Spotify feature in the item hidden features matrix to 

make them have a prominent role when predicting songs to recommend. The 

anticipation is that these three features pulled from Spotify’s API will assist the normal 

matrix factorization and increase the performance. 

The three features added were all normalized to be values between 0 and 1. The 

first was Valence, which determines the overall positiveness of the song, with 0 being 

not positive, and 1 being extremely positive. The second was danceability, which 

determines if the song is easy to dance to or not. The last was energy, which tells the 

intensity and activity of the song. (Spotify, 2018) 

3.3b Non-Linear Matrix Factorization 

This form of matrix factorization uses a nonlinear function to predict if the track 

would be a good recommendation to the playlist or not. After the dot product of the user 

hidden features matrix U and the item hidden features matrix V is taken to create the 

prediction matrix p, the matrix is then normalized across each user using the equation 

below to make all values between 0 and 1. This equation was taken from the Python 

library Pytorch (Pytorch, 2018) 

pui = pui
max(||p || ,ε)ui 2

 

Where  is the predicted rating for the track in the user row, and is a small value pui ε  

(1e-12) that avoids dividing by zero [WAT]. This normalization bounds the estimates, 

giving an upper and lower bound that creates a range for the predictions. 
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Then the sigmoid of each normalized predicted rating was taken to further 

specify its importance in the user / item combo. The classic sigmoid equation was 

altered a bit in order to encompass only values between 0 and 1. Here is that equation, 

along with its graph to visualize what it is doing to the prediction matrix: 

pui = 1
1+e(−40p +20)ui

 

 

Figure 2: Sigmoid graph 

This nonlinear approach allows predictions closer to 1 to be greater, where 

predictions closer to 0 will be lower. This further increases the separation between the 

1’s and the 0’s, allowing the system to solidify what it thinks should be recommended to 

a playlist and not. 
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3.4 Web Application 

To present our system and components as well as demonstrate a 

recommendation utilizing our design, we designed a web application demonstration to 

educate a user on the system by displaying an example of a given playlist and the 

output songs recommended to it. The demonstration was created as a Node.JS web 

application using core Javascript libraries and with Bootstrap added for styling; the D3.js 

library was used to create the graphs. To protect the project database instead of the 

demonstration hosts a small subset of the data required to show our results without 

exposing the rest of the data to malicious automated enumeration. Therefore, the final 

demonstration is an isolated demo designed with the purpose of displaying and 

explaining the process in a streamlined method. 

To create the demo the first step was the selection of a highly perfect playlist 

from the dataset to provide the most visibly exciting results. Once the playlist from the 

dataset was chosen we performed evaluations with the different implementations of the 

algorithm using this playlist as the given input. With these results, we then developed a 

series of graphs to show the correlated data in a visually appealing and interactive way. 

The informational component of the demonstration explains the equations used 

and system in a brief overarching view of the project. The purpose of the demonstration 

is to allow someone to go from start to finish of the application and see step by step the 

process for recommending songs with the data displayed in the graphs described in the 

next paragraph. 
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The data visualizations components of the demonstration is an NCDG precision 

graph and two radar graphs. The NDCG precision graph, Figure 3 below, is a line graph 

displaying the Average NDCG precision of Normal Matrix Factorization, Feature Matrix 

Factorization, and Nonlinear Matrix Factorization versus K Values; the K value 

represents the number of songs recommended to the input playlist. 

 

Figure 3: NDCG Precision Evaluation Graph 

The two radar graphs display similar data but from different sources. Each axis of 

the chart represents a different feature supplied by the Spotify API for each song; 

Energy, Acoustic, Instrumental, Dance, Tempo, Valence, Speech, and Loudness. The 

first graph, Figure 4, displays the average of these features for the complete dataset 

and the input playlist to see how it compares to the available pool of songs. The second, 

Figure 5, displays the same average playlist features in comparison to the features of 
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the ten recommended songs, by selecting a song from the section underneath the 

values update to see how accurate the song recommendation was. 

  
Figure 4: Dataset vs. Playlist Feature 

Radar Graph 
Figure 5: Playlist vs. Recommended  

Songs Feature Radar Graph 
 

 

 

 
 
 
 
 
 
 
 
 

 



 29 

4. Results 

4.1 Evaluation Techniques 

To find the parameters for each system trial and error was used that lead to the 

most significant outcome. Every result in this paper uses these parameters in each 

system, giving us the best case scenario result for each system. 

4.1a Scoring 

One-fifth of the input playlist tracks is removed at the start of the algorithm to be 

used to evaluate the ability of each recommender system. Before each system runs the 

algorithm, we record the overlap between the recommended songs and the removed 

tracks for every playlist in the dataset. Then, after each run terminates, the overlap 

between the recommended songs and the removed tracks is again recorded. The 

algorithm then runs, and the system recommends K songs to each input playlist in the 

dataset, and then uses initially removed fifth of the playlist to evaluate the accuracy 

these K songs. The average calculated score for each playlist is used to determine the 

overall score of the recommender system. We sample this average multiple times, and 

then each run’s average is taken to make a more precise total score. 

To calculate a score for the system’s recommendation the output is measured 

using Normalized Discounted Cumulative Gain (NDCG) as the evaluation metric. This 

metric allowed us to see if the songs recommended matched the fifth that was removed, 
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as well as see if the order of the recommended songs were correct. This evaluation is 

crucial as it tells us if ranked the most similar songs in the correct order (Busa-Fekete 

et. al. 2012). It is also normalized, so it always returns a value between 0 and 1. 

4.1b Presentation 

We evaluated the systems using different values of K to see how it affects the 

results of each system. We tested values of K from 5 to 15, because that is around the 

average number of songs recommended to a playlist at a time in music recommender 

systems. Having results for each K value allowed us to graph the score versus K to see 

how the score of a system changes as more songs are recommended. These charts are 

in both Sections 4.2 Baseline Results and 4.3 Feature Enhanced Matrix Factorization 

Results. The Spotify playlist recommendation feature in their desktop app recommends 

10 songs at a time, so we mainly used K = 10 when comparing systems using a single 

value. 

4.1c Comparisons 

To compare each system against the other systems, each ran its algorithm using 

the same split playlists, allowing us to compare all scores to each other honestly. 

Because of this, it yields the most accurate results to determine how the systems 

compare to each other. The rest of the evaluation process continued, and the final 

NDCG results were compared and graphed against each other. 
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4.2 Baseline Results 

After running the three baseline recommender systems against all playlists in the 

mpd_square_100 dataset 100 times, it was found that the matrix factorization system 

outperformed both user and item collaborative filtering, with item and user based 

yielding fairly similar results. To compare the systems numerically, a K value (number of 

songs recommended) of 10 was used since that is how many songs Spotify 

recommends to playlist in a given time. Here is a graph showing the results of this test: 

 

Figure 6: 100 Playlist NDCG scores 

Matrix factorization scored an average of 0.474 at K = 10, Item based 

collaborative filtering scored an average of 0.461, and user based scored 0.458. These 
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results were expected, due to our prior research in the state of the art recommender 

systems.  

After running the three baseline recommender systems against all 1000 playlists 

in the mpd_square_1000 dataset 100 times, it was again found that matrix factorization 

had a better average score than both item and user collaborative filtering. Here is the 

graph showing the results of this test: 

 

Figure 7: 1000 Playlist NDCG scores 

Matrix factorization scored an average of 0.246 at K = 10, Item based 

collaborative filtering scored an average of 0.209, and user based scored 0.229.  

Since matrix factorization yielded the greatest results for both datasets, it will be 

used as the baseline to compare against the baseline advancement systems. 
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4.3 Feature Enhanced Matrix Factorization Results 

To evenly compare the results of feature enhanced matrix factorization with the 

regular matrix factorization, feature enhanced was given the exact same parameters as 

regular matrix factorization. For the 100 playlist dataset, the number of latent features 

was 300, and for the 1000 playlist dataset it was 15. It was found that for feature 

enhanced to achieve the best results, the feature constant C had to make the spotify 

features weigh equally with the other latent features. If it was increased or decreased to 

make them more or less important, then the results lowered. 

For the 100 playlist dataset, the two systems achieved the exact same scores. 

This is thought to be because of the high amount of latent features (300) required to 

make regular matrix factorization yield the highest results. This caused the Spotify 

features to not make a big enough impact on the system. As Zafari & Moser suggest, 

“...the sparsity of the user-item ratings matrix makes it difficult to learn the user 

preferences over feature values” (Zafari & Moser, 2017). Adding features values does 

not give enough information regarding whether or not a user will like the recommended 

songs. In our scenario, even when using the best feature constant, C, the Spotify 

features did nothing to help improve matrix factorization results. There is no need to 

show a graph for this experiment, for both lines overlap and it shows no added 

information. 

For the 1000 playlist dataset, feature enhanced matrix factorization achieved 

worse results than the regular matrix factorization. At K = 10, it scored an NDCG of 

 

https://www-sciencedirect-com.ezproxy.wpi.edu/topics/computer-science/sparsity


 34 

0.241 (regular matrix factorization scored a 0.246) . Here is a graph showing the 

comparison: 

 

Figure 8: 1000 Playlist NDCG scores 

Since the number of latent features was only 15, having 3 of those features be 

the Spotify features caused the average score to lower when compared to normal 

matrix factorization. This just further shows that the added Spotify features do not 

provide assistance to the matrix factorization system. 
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4.4 Nonlinear Matrix Factorization Results 

For the 100 playlist dataset, the nonlinear matrix factorization did not beat the regular 

matrix factorization in NDCG scores. At K = 10, it scored an NDCG score of 0.470 (regular 

matrix factorization scored 0.474). Here is the graph comparing the two systems: 

 

Figure 9: 100 Playlist NDCG scores 

For the 1000 playlist datasets, the results of the nonlinear matrix factorization were much 

closer to the regular matrix factorization. At K = 10, it scored a 0.245 (where regular matrix 

factorization scored 0.246). Here is a graph comparing the systems: 
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Figure 10: 1000 Playlist NDCG scores 

At each K value, the results are extremely similar, showing that with more data in 

the dataset, the nonlinear approach does not change the results by much. Overall it was 

slightly worse, but not as much as the 100 playlist dataset.  
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5. Discussion 

As Section 4 shows, there are many factors that affect the performance of each 

system. In Figure 3, the NDCG values show that the user-based and item-based 

recommender systems clearly trail behind matrix factorization recommender. User and 

item yield poor performance due to the nature of each algorithm; the former only 

focuses on the user factors and compares them, while the latter only focuses on the 

items. The predictions from matrix factorization are more accurate than those from the 

prior two methods because it utilizes both the user and item factors during its algorithm. 

When comparing the 3 different matrix factorization methods from Section 4, the 

results are similar. For matrix factorization and feature-based matrix factorization, the 

NDCG values are exactly the same. This shows that adding additional static feature 

values from Spotify’s API to each individual track did not improve performance.  A 

weight constant was multiplied to these features to increase their importance over the 

other hidden features, however the system performed best when this constant treated 

the known features the exact same as the hidden features. The nonlinear matrix 

factorization method also did not perform better than the standard matrix factorization 

method; it yields considerably lower performance when compared to the other two 

matrix factorization methods. 

After implementing these two variations of matrix factorization, we realized that 

adding more data and changing parts of the standard matrix factorization algorithm did 

not affect the performance as intended.  We learned that the simplicity that matrix 
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factorization provides makes the prediction results more accurate since there are less 

complications within the algorithm. 

6. Conclusion 

Although the proposed advanced recommender systems did not improve 

performance when recommending songs, they both displayed the importance of 

simplicity within a recommendation algorithm. While the advanced systems we 

designed utilized more of the available data when calculating their recommendations, 

ultimately it was clear that when it comes to recommending music from an implicit 

dataset, simplicity is key. Recommender systems should be as scalable, efficient, and 

transparent as possible - and due to the inherent difficulties that come with music data, 

it was apparent that the more we focused on attempting to improve the performance via 

analyzing individual track features, the more unreliable the recommendations would 

become. The matrix factorization recommender system consistently produces the best 

performance with regards to Spotify music data.  

 

 

 

 



 39 

7. References 

Advanced Intelligent Systems (ISIS) (pp. 980–984). IEEE. 

https://doi.org/10.1109/SCIS-ISIS.2014.7044855 

Artificial Intelligence - All in One. (2016, April 13). Finding the Latent Factors | 

Stanford University [Video File]. Retrieved from 

www.youtube.com/watch?v=GGWBMg0i9d4. 

Bodke, D., Girase, S., & Mukhopadhyay, D. (2015). Matrix Factorization Model 

in Collaborative Filtering Algorithms: A Survey, [Abstract]. Procedia 

Computer Science, 49, 136-146. Retrieved March 3, 2019, from 

https://doi.org/10.1016/j.procs.2015.04.237. 

Bu Sung Kim, Heera Kim, Jaedong Lee, & Jee-Hyong Lee. (2014). Improving a 

recommender system by collective matrix factorization with tag 

information. In 2014 Joint 7th International Conference on Soft Computing 

and Intelligent Systems (SCIS) and 15th International Symposium on  

Busa-Fekete, R., Szarvas, G., Élteto, T., & Kégl, B. (2012). An apple-to-apple 

comparison of Learning-to-rank algorithms in terms of Normalized 

Discounted Cumulative Gain. In ECAI 2012 - 20th European Conference 

on Artificial Intelligence : Preference Learning: Problems and Applications 

in AI Workshop (Vol. 242). Ios Press. 

 

http://www.youtube.com/watch?v=GGWBMg0i9d4
https://doi.org/10.1016/j.procs.2015.04.237


 40 

Chen, L., Chen, G., & Wang, F. (2015). Recommender systems based on user 

reviews: the state of the art. User Modeling and User-Adapted Interaction, 

25(2), 99–154. https://doi.org/10.1007/s11257-015-9155-5 

Chen, C. (2018, June 06). Introducing The Million Playlist Dataset and RecSys 

Challenge 2018. Retrieved from 

https://labs.spotify.com/2018/05/30/introducing-the-million-playlist-dataset

-and-recsys-challenge-2018/ 

Falkman, G. (2018). A Scalable Recommender System for Automatic Playlist 

Continuation Master Degree Project : Report. 

Frémal, S., & Lecron, F. (2017). Weighting strategies for a recommender system 

using item clustering based on genres. Expert Systems with 

Applications,77, 105-113. doi:10.1016/j.eswa.2017.01.031 

https://www.sciencedirect.com/science/article/pii/S0957417417300404?via%3Di

hub 

Kannan, R., Ishteva, M., & Park, H. (2014). Bounded matrix factorization for 

recommender system. Knowledge and Information Systems, 39(3), 

491–511. https://doi.org/10.1007/s10115-013-0710-2 

Lü, L., Matúš, M., Chi Ho, Y., Yi-Cheng, Z., Zi-Ke, Z., & Tao, Z. (2009). 

Recommender Systems. Physics Reports, 519(1), 1-49. Retrieved 

January 10, 2019 

 

https://doi.org/10.1007/s11257-015-9155-5
https://www.sciencedirect.com/science/article/pii/S0957417417300404?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0957417417300404?via%3Dihub
https://doi.org/10.1007/s10115-013-0710-2


 41 

Mu, R. (2018). A Survey of Recommender Systems Based on Deep Learning. 

IEEE Access,6, 69009-69022. doi:10.1109/access.2018.2880197 

https://ieeexplore.ieee.org/document/8529185 

Najafabadi, M., Mahrin, M., Chuprat, S., & Sarkan, H. (2017). Improving the 

accuracy of collaborative filtering recommendations using clustering and 

association rules mining on implicit data. Computers in Human Behavior, 

67, 113–128. https://doi.org/10.1016/j.chb.2016.11.010 

Pytorch. (n.d.). Torch.nn Documentation. Retrieved November 2, 2018, from 

https://pytorch.org/docs/stable/nn.html 

Resnick, P. (n.d.). GroupLens: An Open Architecture for Collaborative Filtering 

of Netnews. Proceedings of the 1994 ACM Conference on Computer 

Supported Systems (pp. 175-186). doi:10.1145/192844.192905 

Schedl, M., Zamani, H., Chen, CW. et al. Int J Multimed Info Retr (2018) 7: 95. 

https://doi.org/10.1007/s13735-018-0154-2 

Spotify. (n.d.). Spotify Web API. Retrieved October 1, 2018, from 

https://developer.spotify.com/documentation/web-api/ 

Wang, J., De Vries, A.P., and Reinders, M.J.T. “Unifying User-Based and 

Item-Based Collaborative Filtering Approaches by Similarity Fusion.” Vol. 

2006. N.p., 2006. 501–508. Print. 

Yehuda, K. (2009). Matrix Factorization Techniques for Recommender Systems. 

IEEE Computer,42(8), 30-37. Retrieved February 02, 2019. 

 

https://ieeexplore.ieee.org/document/8529185
https://doi.org/10.1007/s13735-018-0154-2


 42 

Yifan Hu, Koren, Y., & Volinsky, C. (2008). Collaborative Filtering for Implicit 

Feedback Datasets. In 2008 Eighth IEEE International Conference on 

Data Mining (pp. 263–272). IEEE. https://doi.org/10.1109/ICDM.2008.22 

Yong-Ping, D., Chang-Qing, Y., & Jing-Xuan, L. (2017). A new item-based deep 

network structure using a restricted Boltzmann machine for collaborative 

filtering. Frontiers of Information Technology & Electronic Engineering, 

18(5), 658–666. https://doi.org/10.1631/FITEE.1601732 

Zafari, F., & Moser, I. (2017). Modelling socially-influenced conditional 

preferences over feature values in recommender systems based on 

factorised collaborative filtering. Expert Systems with Applications,87, 

98-117. doi:10.1016/j.eswa.2017.05.058 

 
 

 
 

 

 


	Worcester Polytechnic Institute
	Digital WPI
	March 2019

	Song Recommendation for Automatic Playlist Continuation
	Jackson Craig Baker
	Quinn S. Averill
	Samuel Christopher Coache
	Steven McAteer
	Repository Citation


	tmp.1554310086.pdf.nZAsI

