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Abstract 

Our project goal was to develop a depression sensing application that leverages multi-

modal data sources collected from a smartphone, focusing on features extracted from audio, text 

messages, social media data, as well as GPS modalities. We conducted extensive experiments to 

study the effectiveness of these features to improve our machine learning model. We deployed 

our EMU app on Amazon Mechanical Turk for crowd-sourced data collection and incorporated 

feature extraction techniques and machine learning algorithms to reliably predict levels of 

depression. 
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1. Introduction 

Depression is one of the most common mental disorders in the U.S. It causes severe 

symptoms that negatively affect how people feel, think, and handle daily activities. To be 

diagnosed with depression, the symptoms must be present for at least two weeks (The National 

Institute of Mental Health, 2018). These symptoms may include feelings of sadness, tearfulness, 

emptiness or hopelessness and many other signs (Mayo Clinic Staff, 2018). About 9.5 million 

people experience depression in the U.S. each year. According to the World Health Organization, 

by 2020, depression will become the world's second largest medical burden (The National 

Alliance on Mental Illness, 2018). Although depression is so common, it is often over-detected 

or under-detected by doctors. Currently, less than 25% of people with depression receive 

treatment (The National Alliance on Mental Illness, 2018). A study about clinical diagnosis of 

depression found out that general practitioners only correctly identified depression in 47.3% of 

50,371 patients who were examined across 41 other studies. There are even more false positives 

than either missed or identified cases (Mitchell, Vaze, & Rao, 2009). 

Recently, more researchers have begun to use machine learning to help doctors diagnose 

symptoms of depression while being both accurate and as effortless as possible. Using machine 

learning for mental health detection can prove to be an excellent technique to detect depression 

as it is more convenient and can be discovered much faster. Under the hood, there are many 

factors that go into determining whether or not someone is depressed, and studies have shown 

that various types of data including voice patterns, text post data, GPS data, social media data, 

and facial expressions are all related to depression (Ball, Dogrucu, Isaro, & Perucic, 2018). 

Several voice acoustic measures are significantly correlated with depression severity (Mundt, 

Snyder, Cannizzaro, Chappie, & Geralts, 2007). A recent work reports that depression is 

associated with vowel space in speech (Scherer, Lucas, Gratch, Rizzo, & Morency, 2016). 

Moreover, text patterns such as the usage of first-person pronouns, social references words, 

negatively and positively valenced words are also correlated with depression (Rude, Gortner, & 

Pennebaker, 2004). 

 Ball et al. (2018) worked on a similar project and created a mobile application, named 

Moodable, that aimed to detect depression by collecting these types of data from a patient’s 
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smartphone. This application was designed to give people an on-the-spot depression rating on 

how severe depression symptoms they show (Ball et al., 2018). Our project goal was to develop 

a new application, named EMU, that improves the performance of the Moodable application and 

collect more data for our and further studies, and then lastly to conduct a much more 

comprehensive experimental study using machine learning to improve depression detection. To 

achieve our project goals, we addressed some key objectives. Through background research, we 

have determined two major aspects to focus on: audio analysis and text analysis. Further, we 

advanced feature extraction and generation capabilities for audio analysis, text analysis, and also 

for GPS data analysis. We then repeated the baseline machine learning experiments using the k-

nearest-neighbors, support vector machine, and random forest machine learning algorithms on 

the Moodable dataset collected by the prior MQP team. with previous data. After mastering these 

basic machine learning concepts, we implemented and then applied a variety of more advanced 

machine learning algorithms, including XGBoost, Adaptive Boosting, decision trees, logistic 

regression, artificial neural networks, Gaussian processes, and more. We also improved the 

mobile EMU application itself in several significant ways, both to make it more human-computer 

friendly and to have more secure storage and security during data collection and subsequent 

transmissions. Thereafter, we conducted a second study to collect additional 

test data in order to test the performance of the improved EMU application. Finally, we built the 

EMU website for this project with the ultimate objective of sharing our refined data and results, 

as appropriate. 
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2. Background 

Depression as a common mental health disorder is on the rise globally (World Health 

Organization, 2018). A previous MQP team developed an application for doctors to effortlessly 

detect depression, and in effect, achieve greater coverage in detecting depression over the 

general population. Literature reviews found that text and voice features contain sufficient 

information to indicate people's emotion or mental state, since they carry statistical correlations 

with depression across many studies. 

2.1 Summary of the Previous MQP 

 The previous MQP team deployed a mobile application that can be used to collect user 

data (texts, social media content, geospatial data, and voice samples that are two weeks prior to 

the point when they give consent to the application) on the spot. Simultaneously, these data go 

through a machine learning pipeline that can introduce an evaluation of the state of the user's 

mental health. Rather than having to wait for a certain amount of time for the application to 

obtain data as of previous approaches, such application enables the doctor or medical workers to 

inquire almost real-time feedback on their patients. Yielding an average test set root-mean-

square error (RMSE) of 5.67 in predicting the PHQ-9 score, this approach demonstrates a simple 

and intuitive way to diagnose depression (Ball et al., 2018). 

The team firstly ran an exploratory “willingness to share data” study to determine what 

information participants feel comfortable giving to a member of medical staff. Their results 

showed that people were most willing to share their microphone data (say a phrase into a 

microphone) and images of their face. For all the other types of data, including text, social media, 

GPS, call logs, and browser history, about 40% to 50% of the participants were willing to share 

those kinds of data.  

After the team learned what information would the patients feasibly allow them to obtain, 

they developed an Android application, which takes and gathers the personal information from 

the participants’ phone. The information included the GPS data, the text message, the message 

from Instagram, the sleep pattern, and the audio sample. With the different kinds of information, 
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they extracted some features, like pause time speaking rate from the audio sample, number of 

syllables from the text message, and so on. 

Meanwhile, all the participants were asked to fill out a questionnaire, called PHQ-9, 

which is a multipurpose instrument used by medical professionals to screen, monitor, and 

measure the severity of depression. The participant need to answer every question of the below 

PHQ-9 form and combine the scores of all the answers indicate. The combined score is the PHQ-

9 score of the participant. Scores of 5, 10, 15 and 20 are the cut-points of mild depression, 

moderate depression, moderately severe depression and severe depression. The benefit of PHQ-9 

is that it provides more information on individual depression symptoms for medical professionals 

or us to analyze the severity of all participants. According to the questionnaires, the previous 

group got the PHQ-9 scores of all the participants. 

 

 

Figure  SEQ Figure \* ARABIC 1: The PHQ-9 

Questionnaire (Ball et al., 2018) 
Figure 1: The PHQ-9 Questionnaire (Ball et al., 2018)  
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Then, the previous group used these features and the PHQ-9 scores to train the machine 

learning systems. They used 85% of the data as the training set and the rest as the testing set to 

test the accuracy of the machine learning systems.  

Finally, the previous group’s Android application was deployed with the trained machine 

learning systems, and gathered data from the participants’ phones and analyze the severity of 

depression of the participants. 

Simultaneously, the previous group hoped that the future developers of the application 

develop the function of facial image analyze to increase the accuracy. Another area for 

improvement is in the machine learning systems, which is also what we aim to achieve. Along 

with that, more data sets and more complete data are required. The previous team also urged any 

future groups to gather more data to train the machine learning systems (Ball et al., 2018). 

 

2.2 Background on Depression 

 Certain factors, such as age and gender, influence the rate of depression among people. 

Depression occurs across different races, genders, ages, and socioeconomic statuses. Among 

these, age can be a deciding factor in associating to the rate of depression. Furthermore, within 

the same age groups, depression incidents happen somewhat more on women than on men. 

However, such phenomena do not necessarily predict depression by any means, but rather, as 

depression is a complex biological and social issue, a subset under a complex system. 

 The table below shows some forms of depressive disorders, which were mentioned in the 

report of the previous MQP group. 

 

 

Disruptive Mood Dysregulation Most common type of depression amongst children of 

age 12, and is characterized by persistent irritability and 

frequent episodes of extreme behavioral decontrol.   

Major Depressive Disorders Often associated with considerable morbidity, disability 

and an elevated risk of suicide and is categorized into 

two types of chronic and non-chronic major depressive 

disorders.  
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Persistent Depressive Disorders Persistent depressive disorder is a consolidation of 

chronic major depressive disorder and dysthymic 

disorder, but differ in occurrences. 

Premenstrual Dysphoric Disorder  A more severe form of premenstrual syndrome that 

affects about 50 - 80% of women in their menstruation 

cycle. Symptoms such as irritability, dysphoria, muscle 

pain and insomnia can be essential features of the 

premenstrual dysphoric disorder. 

Substance/Medication-Induced 

Depressive Disorders 

Refers to the specificity of the substance causing the 

depressive symptoms.  

 

 

Table 1: Some Forms of Depressive Disorders (Ball et al., 2018) 

 

 This next table shows some clinically validated measures of depression, which were also 

covered in the previous MQP group’s report. 

Screening 

tools 

Number of items Scoring time Psychometric 

properties 

Cost and development 

Hamilton 

Depression 

Rating Scale 

(HDR) 

21 15 to 20 min Sensitivity: 93% 

Specificity: 98% 

Free 

Beck 

Depression 

Inventory 

(BDI) 

21 5 to 10 min Sensitivity: 84% 

Specificity: 81% 

Proprietary ($115/kit) 

Patient Health 

Questionnaire 

(PHQ) 

9 < 5 min Sensitivity: 88% 

Specificity: 88% 

Free with permission 

Major 

Depression 

Inventory 

(MDI) 

10 < 5 min Sensitivity: 86% 

Specificity: 82% 

Free 

Table 2: Some Clinically Validated Measures of Depression (Ball et al., 2018) 
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 These tools help people to determine the severity of depression and the diagnosis of 

depression. In our project, we will use PHQ (also called PHQ-9) as the tool to predict depressive 

behavior. 

 

2.3 Detecting Depression from Text 

 The text of messages is always an important indicator for depression. The sentence 

structure and content are two main things we will analyze. 

2.3.1 Sentence Structure 

 The first of two factors worth considering in text analysis is how a sentence is structured. 

More simply, arrangement, syntax, grammar choice, and spelling, among other features. The 

more relevant features for the analysis of text are the number of words, word frequency, the 

number of syllables, the word case (capitalization), and punctuation usage (Morales & Levitan, 

2016). Our word choice can be used to get an idea of how we are feeling at the time of writing a 

text. 

 Directly considering a sentence’s word count doesn’t seem too useful alone, but when 

used in conjunction with the analysis of content features and word frequencies, we can determine 

how much of the sentence contains words from certain categories. When used with syllable 

count, we learn just a little bit more about what’s being said. This helps in misleading situations 

where, for instance, a sentence may be short, but uses words with more syllables and is more 

useful to us than a simple “yes okay” statement. When it comes to word case and punctuation, 

we are able to detect the strength of the topic being discussed. A word in ALL CAPS provides 

emphasis, and punctuation, namely the exclamation point, indicates an increase of intensity 

without altering the words in the sentence (Hutto, 2015) (e.g., “That lecture was interesting.” 

versus “That lecture was interesting!”). 

 A final clarifying notes about analyzing sentences: When analyzing text, we don’t have to 

look at one sentence at a time. A sentence is just the minimal unit, and we are able to do all of 

the things stated above on multiple sentences, on paragraphs, on autobiographies, and essentially 

all kinds of forms of text. 

All features of sentence structure of text will be discussed in detail in Section 3.1.4. 
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2.3.2 Content 

The second factor we want to look at is the content. Specifically, we want to know what 

is being talked about and how the subject is choosing their words. We’ll be considering self-

references, social words, positive emotions, and negative emotions. (Morales & Levitan, 2016). 

The big takeaway from these features is that we want to predict signs of depression, using text 

samples from the subject. 

The amount of occurrences of references to the self is indicative of depressed behavior 

(Rude et al., 2004). This makes sense, as someone who is going through a hard time would be 

inclined to talk a lot about what is going wrong with them; how their day is going; how they feel 

about something that has happened, overall being more self-focused (Tausczik, & Pennebaker, 

2009). Extraverted persons tend to use more social words, as well as express more positive and 

less negative emotions (Tausczik, & Pennebaker, 2009). And it’s no surprise that those who do 

not show symptoms of depression use more positive and less negative words in their everyday 

life, while conversely, those who either appear or are depressed via diagnosis use a more 

negative and less positive tone in their conversations with others. 

All features of content of text will be discussed in detail in Section 3.1.3. 

  

2.4 Detecting Depression from Voice 

 Recent research has found that features of human voice play an important role in 

depression prediction. In particular, speaking style, vowel space, and speech pause time.  

2.4.1 Speaking Style & Vowel Space 

For speaking style, a study of depression detection concludes that comparing with 

reading speech, spontaneous speech has more variability, which increases the recognition rate of 

depression (Alghowinem et al., May 2013). Another study also suggests that data collections for 

depression diagnosis or prediction should include spontaneous speech to get more accurate 

results, rather than only include read speech (Mitra & Shriberg, Apr 2015).  

Vowel space is defined as the frequency range spanned by the first and second formant of 

the vowels (Scherer, et al., 2016). In Scherer, et al.'s journal, they found that people suffering 
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from depression tend to have reduced vowel space, which is often reported when comparing 

speech affected by depression to speech from healthy subjects (Cummins, Sethu, Epps, 

Schnieder, & Krajewski, 2015). 

2.4.2 Speech Pause Time and Speech Rate 

Significant correlation has been found between depression and speech pause time (SPT) 

in recent years. In fact, SPT is often used as a depression indicating biomarker in clinical studies. 

Clinicians can even intuitively sense the change in SPT across patients in order to detect their 

emotional state without the need of any analytical tools. We will discuss SPT related features we 

used in our study in details in Section 3.2.2. 

In addition, scholars have produced reports that show strong statistical correlation 

between SPT and depression measures/scales. Stassen et. (1998) discovered the SPT and 

Hamilton Rating Scale for Depression (HAMD) score of 60% her patients were positively 

correlated. Cannizzaro et al. (2004) discovered that patients with reduced speaking rates (number 

of pauses) showed increased level of depression on HAMD scores. Mundt et al. (2012) learned 

that different properties of pause time (such as percent pause time and speech to pause ratio) 

correlated strongly with HAMD scores. Hong et al. (2014) revealed a positive correlation 

between average syllable duration and depression. 

Furthermore, studies have shown that the change in the length and frequency of pause 

can detect different types of depression. Alpert et al. (2001) split depressed patients into groups 

with agitated and retarded forms of depression. They discovered that the group with retarded 

depression had briefer pause times but longer utterances while the group with agitated depression 

exhibited longer pauses and shorter utterances.  

 

2.5 Detecting Depression from GPS Data 

 A recent study found that GPS data or mobility data sponsored by smartphones can 

predict depression with good accuracy (Farhan et al., 2016). In their study, for Android, raw GPS 

data such as longitude and latitude information are collected through Android’s location services, 

and activity data is sensed using Google’s Activity Recognition API (Farhan et al., 2016). They 

categorized mobility features into three types, features based on raw GPS data, features based on 
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location clusters, and features based on activity data. The features they extracted include location 

variance, time spent in moving, total distance, average moving speed, number of unique 

locations, entropy, normalized entropy, time spent at home and percentage of time in a state. In 

Canzian and Musolesi’s study, they used similar features such as the total distance covered and 

the number of different places visited (Canzian & Musolesi, 2015). Inspired by their work, we 

also used some of those features in our project. These features will be discussed in detail in 

Section 3.3.  
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3. Feature Engineering Methodology  

To be more specific than “machine learning on text, audio, and GPS data,” the 

methodology will go into great detail about how we extract features from those data, and what 

tools and scripts are used. Moreover, we will explore several machine learning algorithms and 

apply them to the features that will be extracted from the existing data. 

  

3.1 Text Features 

3.1.1 Feature Selection 

In the report, Language use of depressed and depression-vulnerable college students, 

Stephanie Rude, Eva-Maria Gortner and James Pennebaker found that the number of occurrences 

of “I,” used in the text, is associated with the mood of the writer. The figure below shows the 

statistics of the report. 

 

 

Figure 2: Statistics of the Report (Rude et al., 2004) 

 

All the data from these statistics are collected from the result of an experiment that was 

held by Rude et al. First of all, all the participants of the experiment were classified into 3 groups 
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of people by their scores of Beck Depression Inventory (BDI) and Inventory to Diagnose 

Depression, Lifetime Version (IDD-L). The person, with a BDI score higher than 14, was 

classified as currently depressed. Among the rest people, the person, with IDD-L score lower 

than 9, was classified as never depressed, and the person, with IDD-L score higher than 25, was 

classified as formerly depressed.  After that, all the participants were asked to write a paragraph 

related to a specific topic. Then, all their paragraphs were analyzed to get the statistics above.  

They found that the number of the first-person singular (I, me, my) words used by the 

currently depressed people were greater than the same kind of words used by the never depressed 

person. Moreover, the difference between the number of first-person singular words was mainly 

caused by the frequency of the pronoun “I” (Rude et al., 2004). 

The number of the first-person singular is also considered to be an indicator of depression 

(Zimmermann, Brockmeyer, Hunn, Schauenburg, & Wolf, 2017). As a result, the number of 

first-person singular words is a reliable feature of text analysis for our project. More obviously, 

more currently-depressed persons tend to use more negative emotion words than someone who 

has never been depressed (Rude et al., 2004). 

 The degree modifiers always play an important role in the text. For example, “lonely”, “a 

little bit lonely”, and “very lonely” are very different in showing the severity of depression. Thus, 

the degree modifiers should also be considered to keep the precision of the result. To achieve this 

function, we consider a library of all degree modifiers and combine it with other features to get a 

better and more reliable result (Wang, et al., 2013). 

3.1.2 Data Preprocessing 

3.1.2.1 Data Pretreatment 

We group all the data in the database by the users’ ID via Python script. Since we are 

focusing on the extraction of text features, we are only interested in the data which is of type 

“phq” or “text”. The “phq” data contain the Patient Health Questionnaire (PHQ) score for the 

user, which indicates whether or not, and if so how much, the patient is depressed. The text data 

contain the text that has been received by the user, which is what we need to extract the text 

features. 

The tables below show an example that the data before and after being grouped. 
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id type content 

1111 phq 10 

1111 text text1 

1111 text text2 

1111 tweet tweet1 

2222 phq 9 

2222 audio audio1 

Table 3: Data Before Grouped 

 

id content 

1111 phq:10; [text1, text2] 

Table 4: Data After Grouped 

 

3.1.2.2 Spam Removal 

To increase the effectiveness and accuracy of the extraction of the text features, our team 

decided to remove the spam in the database. For us, spam mainly means messages sent by 

business, messages trying to sell something and notifications. We had tried to use Naive Bayes 

spam filtering to remove the spam. However, the Bayes filtering is too sophisticated for the 

problem. Because of this, our team tried to use other methods to remove the spam. The first 

method we used is the keywords method. The keywords method deletes the text which contains 

the specific words or sentences (like “PLEASE REPLY XXX-XXX” or “PLEASE 

DOWNLOAD XXX”). The second method we used is the address check method. This deletes 

the text which is sent by a suspicious address (phone number), such as ones that start with a letter 

instead of a number. However, we failed to implement this method in our project. 
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3.1.3 Features Based on Content 

3.1.3.1 Frequencies and Volume 

For the frequencies of a particular category, we count the number of the words per text 

message that fall in that category, and then divide by the total number of words in that text 

message. Additionally, we create a volume feature by counting the number of texts a user 

receives. These frequencies and volumes are then regarded as text features! 

3.1.3.2 The Speech Tag Frequency 

The speech tag frequency means the frequency of different kinds of words for every user. 

The table below shows all the 33 kinds of tag and their abbreviations and examples. 

Tag Description Example 

CC conjunction and, but 

CD cardinal number seven, 16% 

DT determiner a, these 

EX existential there there is a boy 

FW foreign word tsunami  

JJ adjective  big, small 

JJR adjective, comparative bigger, smaller 

MD verb, modal auxiliary may 

NN noun, singular or mass child 

NNS noun, plural children 

NNP noun, proper singular God 

NNPS noun, proper plural we met two Christmases ago 

PDT predeterminer either his children 

RB adverb loudly 

RBR adverb, comparative better 
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RBS adverb, superlative best 

RP adverb, particle about 

SYM symbol % 

TO infinitival to when to go 

UH interjection gosh 

VB verb, base form grow 

VBZ verb, 3rd person singular 

present 

it grows 

VBP verb, non-3rd person singular 

present 

I grow 

VBD verb, past tense grew 

VBN verb, past participle grown 

VBG verb, gerund or present 

participle 

growing 

WDT wh-determiner which 

WP wh-pronoun, personal who 

WP$ wh-pronoun, possessive whose 

WRB wh-adverb where 

IN conjunction, subordinating or 

preposition 

on, of 

PRP pronoun, personal you, me 

PRP$ pronoun, possessive your, my 

 

Table 5: All Tags of Speech Tag (CLiPS Research Center, 2010) 

 

3.1.4 Features Based on Sentence Structure 

Two scores are considered when it comes to sentence structure: polarity score and 

subjectivity score. Polarity score is calculated according to the words and the sentence structure 
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used by a user. It is a float within the range [-1.0, 1.0]. The higher the score is, the more positive 

that particular segment of the user’s text is. Subjectivity score is calculated according to the 

words and the sentence structure used by a user. It is a float within the range [0.0, 1.0] where 0.0 

means the user’s text is very objective and 1.0 means it is very subjective.  

 

3.1.5 Feature Extraction 

 In order to get the text data in a format we can work with, we first grouped all texts by 

participant ID, and ran each ID through the tools mentioned in the following subsections. After 

getting results, we combined all three tools’ output into one centralized CSV file for easy access 

and readability. 

3.1.5.1 Empath 

 Empath is a tool developed by a PhD student at Stanford University that allows us to 

extract features across lexical categories. We passed in the data and enabled normalization, 

which will return the percentage of the text in each category as opposed to the number of words 

in each category. The output format of Empath is a JSON file; this had to be converted to a CSV 

file via Python script. 

 One thing unique to Empath is category creation. This allows us to extract features from 

categories that the tool doesn’t extract out of the box. We made use of this to extract features in 

an acronym category, which encompasses things like “lol”, “omg”, “idk”, and more. 

 More information about Empath can be found in Ethan Fast, Binbin Chen, and Michael S. 

Bernstein’s Empath: Understanding Topic Signals in Large-Scale Text, including access to the 

tool itself (Bernstein, Chen, & Fast, 2016). 

3.1.5.2 Linguistic Inquiry and Word Count 

 The Linguistic Inquiry and Word Count (LIWC) tool is a widely-accepted tool for text 

analysis and using its application program interface (API), we were able to run the data and 

receive output in the form of a JSON file, which also had to be converted to a CSV file. 

LIWC is very special in the sense that it does exactly what we are looking for in regards 

to text analysis. It that counts words in psychologically meaningful categories (like an emotion 
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dictionary). It detects positive and negative words, words referencing other people, and 

“pronouns which can capture inclusive language (us, we) vs. exclusive language (you, they, 

them), and words referencing how the person is feeling (sad, anxious, sleep)”, to name a few 

(Morales, 2018). 

3.1.5.3 TextBlob 

We mainly are interested in two functions of TextBlob to extract text features. One is 

Sentiment Analysis and the other is Speech Tag. Sentiment Analysis enables us to get the 

polarity score as well as the subjectivity score of a sentence or a user. The table below shows 

how Sentiment Analysis works. 

Text Polarity Subjectivity 

I am so happy. 0.8 1.0 

I am so sad. -0.5 1.0 

 

Table 6: Examples of Sentiment Analysis 1 

 

Since most users have more than one text message, we also did tests to figure out how 

TextBlob works when there are multitudes of sentences instead of just one sentence and found 

out that TextBlob calculates the average scores of the sentences as the final result.  

The table below shows how Sentiment Analysis analyzes a paragraph which contains 

several sentences. 

Text Polarity Subjectivity 

I am so happy. 0.8 1.0 

I am so sad. -0.5 1.0 

I love this world. 0.5 0.6 

I am so happy. I am so sad. 

I love this world. 

0.26666 0.86666 

 

Table 7: Examples of Sentiment Analysis 2 
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After concatenating all the texts of a user into a paragraph, we then analyze the polarity 

score and the subjectivity score of a user, and take the two scores as two text features. 

3.1.5.4 Manual Extraction 

 There are some text features that we’ve decided to extract manually, such as the 

frequency of certain words, and the volume of a user’s texts. For the frequency, it is as simple as 

iterating through the texts and counting the occurrences of the desired word. For volume, we 

count the number of texts per ID and make that its own feature. 

The reason we’ve chosen to do it this way is because none of the tools we’re using have 

the capability to do these things, but they’re important enough to take the time and manually 

calculate. Both of the above two features are easily calculated with a Python script created and 

maintained by us. 

3.2 Audio Features 

3.2.1 Feature Selection 

A previously conducted MQP study (Ball et al, 2018)  generated 1583 audio features 

using OpenSmile, a leading audio feature extraction tool (Eyben et al, 2013). Models were 

trained using features provided from a dynamic feature selection technique. The technique scans 

through all 1583 features generated by openSmile and suggests the top 40 features that it 

estimates as most correlated with depression. In this study, instead of using dynamic feature 

selection for audio, we plan to test and use specific biomarkers as audio features in order to 

improve prediction results as measured by Accuracy, Precision, Sensitivity and F1 scores. There 

are numerous published studies that have closely examined features that demonstrate sufficient 

correlation with measurements of depression (PHQ-9, HAMD, BDI-II, etc…) (Morales, 2017). 

For example, scholars such as Cannizzaro et al. (2004), Mundt et al (2012), and Honig et al 

(2014) ran studies that performed statistical analysis on acoustic measures such as speaking rate, 

pause time, and pitch variation. We will test these research approved features against features 

from the selection process in order to compare their accuracy and performance. 
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3.2.2 Features Based on Speech Pause Time (SPT) 

Several features can be generated from acoustic measures related to speech pause time 

and/or speaking rate.  

James C. Mundt et al. gathered controlled voice data from depressed patients and 

produced the following table that shows the correlation between acoustic measures (including 

pause time) and the Hamilton Rating Scale for Depression (HAMD). 

 

Table 8: Correlation between SPT and HAMD (Mundt, 2017) 

 

Acoustical measures F0 COV, F1 COV, and F2 COV represent pitch variability across 

different frequency bands and are not related to pause time (Mundt, 2017). Therefore their 

negative reliability and association with HAMD scores are irrelevant. However, the table shows 

a significant correlation between HAMD scores and total pause time, recording duration, ratio of 

vocalization to pause, pause duration variability and speaking rates. This proposes that subjects 

that with higher HAMD scores took longer to accomplish speaking tasks. Speaking duration did 

not increase because of speech content but was instead a result of large number of pauses, longer 

pause duration, slower speaking rates and lower vocalization to pause ratios. Therefore, all the 
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acoustic measures, except for F0 COV, F1 COV, and F2 COV, in the table can be used as 

features that help detect depression.  

The correlation to depression of the acoustic measures/features listed above change 

depending on the type of speech production tasks used by the test subjects. For example, total 

pause time best correlated to depression (r=0.27, p<0.01) during automatic speech tasks such as 

counting or reading, and  pause time (r=0.21, p<0.01) better correlated to depression during free 

speech tasks. On the contrary, pause variability and vocalization to pause ratio had a better 

correlation with depression during free speech tasks (r=0.34, p<0.001) and (r =0.22, p=0.001) 

than with free speech tasks (r=0.3, p<0.001) and (r=-0.18, p<0.01). Therefore, different acoustic 

measures should be used as different combination of features while using different type of 

speech tasks. 

The following is a list of features that are related to pause time and speech rate. Features 

are supported by research work from Mundt et al (2017), deJong et al (2009), and Klára et al 

(2012): 

3.2.2.1 Number of Pauses 

This feature is a count of pauses found in between the subject’s speech. Pauses were 

determined at a silence threshold of -25dB. 

3.2.2.2 Number of Syllables 

This feature is a count of the number of syllables that found in between the subject’s 

speech. Syllables were detected by the number of voiced counts in between pauses detected.  

3.2.2.3 Total Recording Length 

This feature is calculated as the amount of time it took the subject to complete the entire 

speech task successfully. 
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3.2.2.4 Vocalization Time 

This feature is calculated by adding the amount of time it took to complete each syllable 

during the subject’s speech task. In other words, it’s the total time that the subject was producing 

sound during the entire recording session.  

3.2.2.5 Total Pause Time 

This feature is calculated by adding the amount of time that the user took during each 

pause. 

  

3.2.2.6 Speech Rate 

This feature calculates the speed at which the subject speaks. The number of syllables a 

subject’s produces over the entire recording time represents the speaking rate of the subject. 

Speech Rate = Number of syllables / Total recording length 

3.2.2.7 Articulation Rate 

The articulation rate is a calculation of speech rate where are the pauses are excluded 

during the calculation process.  

Articulation Rate = Number of syllables / Vocalization time 

3.2.2.8 Pause Variability (𝜎pause time) 

The is a calculation of the standard deviation between all the pause times detected during 

the subject’s speech task.  

  

3.2.2.9 Percent Pause Time 

This feature is the ratio of time spent pausing to the time it took to complete the speech 

task. 
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Percent pause time = Total pause time / total recording length 

3.2.2.10 Average Syllable Duration 

This feature calculated the average amount of time it takes a subject to finish one 

complete syllable.  

Average syllable duration = Vocalization time / number of syllables 

 

3.2.3 Features Based on Signal Analysis 

3.2.3.1 Jitter 

This feature is a measure of frequency instability or periodicity of vocal fold vibration. It 

is calculated to be the absolute difference between consecutive time periods (T) in speech 

divided by the average time period, where N is the number of periods and T is the length of the 

periods. (Klára et al 2012). 

 

3.2.3.2 Shimmer 

This feature is a measure of amplitude instability. It is calculated to be the average 

absolute difference between consecutive differences between the amplitudes of the consecutive 

periods. 

 

3.2.3.3 Mean Harmonics to Noise Ratio 

This feature is the measure that quantifies the additive amount of additive noise in the 

voice signal. In other words it represents the degree of acoustic periodicity. 
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3.2.3.4 Mean Noise to Harmonics Ratio 

This feature is a measure of hoarseness.  

3.2.3.5 Mean Autocorrelation 

This feature helps detect repeating patterns in signals. Formally, it the measure of the 

delayed correlation of a given series. Meaning it represents the degree of similarity between the 

current time series and lagged versions of the current time series over consecutive time intervals. 

The definition of the autocorrelation between times s and t is 

 

3.2.3.6 Fractional Locally Unvoiced Frames 

This feature represents the fraction of pitch frames that are detected as unvoiced frames. 

3.2.3.7 Number of Voice Breaks 

This feature represents the distances between consecutive pulses that is longer than 1.25 

divided by the pith floor. 

3.2.3.8 Degree of Voice Breaks 

This feature also closely resembles the pause percent time feature. It is the measure of the 

total duration of voice breaks that exist between vocal sounds.  

3.2.4 Feature Extraction (Pratt) 

OpenSmile extracts a vast array of audio features, however, the most important research 

approved features such as pause time and voice breaks are not contained in it. Therefore, another 

audio analysis tool was required. The tool we are using to generate new features is called Praat. 

Praat, developed at the University of Amsterdam, is a software package that focuses on speech 
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analysis. It is capable of pitch, formant, intensity and spectral analysis and can also detect 

excitation patterns and voice breaks. 

Praat can either be used through its graphic user interface or command line interface. The 

graphic user interface produces detailed graphs of properties such as pitch, intensity and pulse 

over waves generated by the test subject’s recording. This visual component can help us 

understand which features exhibit common properties and patterns among subjects that subjects 

that produce higher PHQ-9 scores. The following graph, generated by Praat, shows pitch, pulse, 

and intensity over a select pick of voice frames from a recording. 

 

Figure 3: Praat GUI Analysis 

 

 Contrarily, the command line interface of Praat enables us to write custom scripts that 

generate feature data which is used by other machine learning or other analytic tools. In fact, 

Praat scripts are commonly used in studies that investigate voice source bio markers and 

depression (Wolters, 2015 and Mundt, 2007). In our study, we created a Praat script that takes a 

sound object and detects minute silences in order to categorize sound sections into intervals. 

Those intervals are then analyzed for properties such as pause time, number and degree of vocal 

breaks, fraction of vocally unvoiced pitch frames, and noise to harmonic ratio (which are features 

that are strongly associated to depression (Liu, 2017). 
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3.2.4.1 Extraction of Pause Time Features 

Pause time features were extracted using a praat script. The script takes an input of the 

audio file and other numerical parameters that are used as configuration values. The 

configuration parameters include silence threshold, minimum pause duration and minimum dip 

between peeks. These inputs are all used during the pause detection process and are essential to 

improving the accuracy of the features generated. This is because most of the other features are 

generated by applying various equations and formulas that contain the number of pauses during 

speech and the amount of time that each pause (as shown above). For example vocalization time 

is the difference between total recording length and total pause time, average pause time is the 

ratio of total pause time to the number of pauses, and pause percent time is the ratio of total 

pause time to total recording length.  

The script also tries to improve the accuracy of features generated by doing some extra 

audio analysis. For example, voiced count (the number of syllables) can be generated by 

decrementing the number of pauses detected by one. However, there could have been some 

external or internal factors that generated errors during the pause detection process, which in turn 

can ruin all other features generated. Therefore the script tries to detect any errors by attempting 

to detect number of syllables using built in praat syllable detection techniques and comparing it 

against the voiced count value generated by decrementing the number of pauses. The script used 

for detecting these features is attached at Appendix F - 1. 

  

3.2.4.2 Extraction of Signal Based Features 

 OpenSMILE generates thousands of signal based features, however, some signal based 

features referenced in depression detection literatures were not found among the openSMILE 

features. Therefore, we used the praat analysis tool and script to extract those features instead. 

The praat script used to extract this feature set did not require us to deal with audio analysis 

details through scripting (unlike the pause time features). The script used for detecting these 

features is attached at Appendix F – 2.  
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The Praat script shown above (along with a smaller python script used to combine 

generated files) was used to process 265 .wav audio recordings. The process generated the 

following list of features and stored them in .csv format files: 

Property Features 

Voicing Fraction of locally unvoiced frames 

Number of voice breaks 

Degree of voice breaks 

Harmonicity Mean autocorrelation 

Mean noise-to-harmonics ratio 

Mean harmonics-to-noise ratio 

Jitter Local 

Local, absolute 

rap 

Ppq5 

Ddp 

Shimmer Local 

Local, dB 

Apq3 

Apq5 

Apq11 

Dda 

Pitch Median pitch 

Mean pitch 

Standard Deviation 

Minimum pitch 

Pulses Number of pulses 

Number of periods 

Mean period 

Standard deviation of period 

Table 9: Audio Features Generated by Praat 

3.2.5 Feature Extraction (openSMILE) 

 OpenSMILE feature extraction was done by the previous MQP team. The feature 

extraction process is simple and direct. Eyben et al. (2017) created a tutorial and user guide that 

helps install the tool and run commands that automatically generate thousands of signal based 

features from audio files.  
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3.3 GPS Features 

We extracted GPS features from Google GPS data. We have two types of GPS features, 

features based on raw GPS data and features based on activity data. From these features, we 

produced three GPS feature sets, includes raw GPS data features, activity data features, and 

combined features. 

3.3.1 Features Based on Raw GPS Data 

Features Based on raw GPS data were calculated from the time, latitude, and longitude 

values. The first feature we extracted, location variance, is the variability in a user’s location. 

Both Saeb et al. and Farhan et al. found that location variance has a high importance or 

correlated with PHQ-9 scores. It is calculated as the logarithm of the sum of variances in latitude 

and longitude values (Farhan et al., 2016). 

  

 

We also applied clustering techniques to all coordinates points. The feature number of 

clusters is calculated from the DBSCAN algorithm (Farhan et al., 2016). 

 One other feature is entropy. Entropy measures the variability of time that a participant 

spends at different locations. The entropy is calculated as the equation below, where pi 

represents the percentage of time that a user spends in location cluster i (Farhan et al., 2016). 

   

 

 A problem of entropy is that the entropy increases as the number of location clusters 

increases. Farhan et al. solved this problem by adopting normalized entropy, which is invariant 

to the number of clusters and depends solely on the distribution of the visited location clusters. 

The normalized entropy is calculated as the equation below, where Nloc represents the number 

of clusters calculated formerly (Farhan et al., 2016).  
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Since we have two weeks of GPS data, so we calculated each feature for each day’s data 

and the data over the two weeks. In this feature set, we have 4 kinds of features and a total of 60 

features. 

3.3.2 Features Based on Activity Data 

The previous MQP team extracted activity data features. After carefully reviewed their 

code, we fixed errors in their feature extraction methods and added more features. Each user has 

14 KML files that contain their geographic and activity data, one KML file for each day. For one 

user’s one day’s data and one user’s two weeks’ data, we calculated 7 features. So we have 105 

features in this feature set in total.  

These seven features include the number of placemarks, max distance, total distance, 

transition time, the number of activities, activities distance and the number of non-activities. 

The number of placemarks is the number of different placemarks in a user’s KML files, 

which indicates the number of places a user has been and activities a user has done. Max distance 

is the distance of the longest trip of a user. Total distance is the total distance a user traveled. 

Transition time is the sum of time when the data showed a user was walking, cycling, running, 

driving, flying, motorcycling, moving, on a bus, on a train, on a tram, or on the subway. The 

number of activities is the number of times a user did the following activities including walking, 

running, and cycling. Activities distance is the total distance traveled by a user during those three 

activities. The number of non-activities is the number of times a user did stationary activities 

such as staying at a place for a long time.  

3.3.3 Data Preprocessing 

 Two weeks’ worth of data had to be collected immediately after the user first installs the 

application. Therefore, raw GPS data was not collected from sensors. In order to retrieve location 

data that existed before our applications installation, data should have had been getting stored by 

other applications. Fortunately, Google Maps constantly stores location data in the background 

inform of a KML format. The KML (short for Keyhole Markup Language) format is a type of 

XML notation that was developed at Google for expressing geographic annotation and 

visualization on Google based mapping applications (eg. Google Maps and Google Earth). 
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Figure 4: Example of KML Data 

 

The KML data shown above contains a “Placemark” tag that represents a point drawn 

over a map. Placemark tags found in the data collected for this study usually represented the 

activity that user had been performing at that time. Placemark tags provide valuable attributes 

such as “name” (shown above), “Point”, and “Track” that give us a good indication of the 

person’s physical activity and location in between time ranges. These attributes reported very 

specific details about the user’s current state. For example, it reports it detects if the user is using 

one of the train, bus or tram and stores it in the structure. In addition, we learnt that the multiple 

Placemark tags found in a single KML file represented different activities a user completed 

within a single day for the data collected for our study. The data collection study implemented by 

the previous MQP group provided us with nearly 14 KML file that represented the users location 

data for the last two weeks. 

The KML (XML) structure does not provide a good structure to process data. The data 

had to be flattened out in order to write scripts that can generate features from it. Therefore, we 

wrote a script that converted the KML structure to a CSV structure (the minidom module from 

xml.dom package was used to parse the KML structure). The following shows the conversion 

result: 



30 

 

 

Figure 5: Example of CSV Data 

             

The CSV file shown above created a much more helpful structure that tools like pandas 

could use during data manipulation or feature extraction. 

 

3.3.4 Feature Extraction 

             3.3.4.1 Activity Features 

            Activity based features can simply get detected by reading strings from rows. For 

example, in the example shown above, we can easily tell that the person was driving for a 

specific amount of time till he/she stopped at a certain location (at placemark 2) and then 

continued driving for given time again. We can generated several features from only this piece of 

data. For example, we can extract the amount of time the person was driving and count it as part 

of the “transition_time” feature. We can get the distance driven from the person and add it to the 

“total_distance” feature. We wrote a python script that goes through the CSV file and automates 

this process of detecting activity based features from reading strings in rows and columns. 

             3.3.4.2 Raw GPS Data Features 

            Raw GPS features were much more complicated to extract. The GPS coordinate data 

collected from the Google Maps KML file lacked a lot of details and was not compatible for 

feature generation. However, some extra work was done to artificially fill in missing information 

in order to test the prediction performance we could attain using the data we already possess. For 
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example, each “Track” tag in a Placemark represents the movement of the user across a specific 

path. These Track tags contain an arbitrary number of GPS coordinate readings. None of these 

readings possess timestamps. However, the existence of timestamps is very important to generate 

the features selected. Fortunately, the Track  Placemark comes with a start and end time. We 

therefore decided to take the range between the start/end times and divide it with the number of 

coordinates collected in the Track tag. This gives us the average time range between each 

coordinate. We can use this average time range value to create artificial timestamps for each 

coordinate by adding the value to each consecutive coordinates’ new timestamp. 

After modifying the data using processes similar to the one above, we created the raw 

GPS features using a python script. numpy, pandas and sklearn were used to make the complex 

calculations required for the formulas listed for each feature in the previous section. 
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4. Machine Learning Methodology  

4.1 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) Algorithm, is one of the supervised machine learning 

algorithm mostly used for classification. It classifies a data point based on how its neighbors are 

classified.  

 

K is a user-defined constant, and an unclassified element is classified by being compared 

with the k nearest classified elements. KNN makes predictions based on how similar training 

observations are to the new, incoming observations. The figure below illustrates how the KNN 

algorithm works.  

 

 The white rhombus with a question mark at the center is the unclassified new element. 

The yellow and green rhombuses around the white one are the classified elements. If we use 

KNN algorithm to classify the white rhombus and take 3 as the value of K, we need to find the 3 

Figure  SEQ Figure \* 

ARABIC 8: KNN Example 
Figure 6: KNN Example 
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nearest elements, which are two green and one yellow rhombus in the inner circle. Then, the 

white rhombus will be classified as a green rhombus since there are more green elements next to 

it. In another case, if we take 5 as the value of K, we need to find the 5 nearest elements, which 

are two green and three yellow rhombuses in the outer circle. In this case, the white rhombus will 

be classified as a yellow one since there are more yellow elements next to it.  

 According to the example above, we can see that the value of K is a significant factor in 

the KNN algorithm. There are several ways to determine the value of K, such as bootstrap, K-

fold cross validation (as known as the KFCV algorithm) and so on. In most cases, the value of k 

is an odd number to avoid the case that there are same number of element 1 as well as element 2 

next to the new element. If the value of k is too large, it will cause underfitting, which refers to a 

model can neither model the training data nor generalize to new data, in machine learning. If the 

value of k is too small, it will cause overfitting, which refers to a model that models the training 

data too well. For example, if the value of k is 1, the machine will just simply classify the new 

element as its nearest element. Overfitting happens when a model learns the detail and noise in 

the training data to the extent that it negatively impacts the performance of the model on new 

data. This means that the noise or random fluctuations in the training data is picked up and 

learned as concepts by the model. The problem is that these concepts do not apply to new data 

and negatively impact the models ability to generalize (Brownlee, 2016).   

Both underfitting and overfitting deteriorate the performance of the machine learning. 

Ideally, we can avoid these problems by using techniques like holding back a validation dataset 

or using a resampling technique to estimate model accuracy. However, all these techniques cost a 

lot time and are hard to achieve in our project. 

Although KNN is simple and solves problems quickly, it has its own limitations. On 

classifying depression patients and normal subjects, KNN does not have good performance 

compare with Logistic regression. (Behshad, Mohammad, & Reza, 2012). According to a study 

on feature selection methods for depression detection, KNN has a relatively low accuracy and 

larger standard difference among other machine learning algorithms that have been tested in this 

study (Cai, Chen, Han, Zhang, & Hu, 2018).  
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4.2 Support Vector Machine 

 Support Vector Machine or SVM, is one of the supervised machine algorithms that, like 

decision tree, is implemented in regression and classification analysis. Although it was first 

introduced as a suggested way to create nonlinear classifiers by applying the Kernel trick to 

maximum-margin hyperplanes, it is applicable in numeric prediction, and is vastly applied in 

many data analysis models (Ghose, 2017). 

 SVM generally is complex in that the model is hard to understand. Nonetheless, having 

high accuracy in numeric prediction, SVM is utilized into a black box method. Thus, to analyze 

the accuracy of an SVM prediction, one would use a training set to build the model and use a 

testing set to test the outcome of that particular model. 

4.2.1 The Basic Concepts of SVMs 

 As shown in Figure 7, an SVM performs classification by finding the best fit to separate 

distinct data sets. In this case, we can see a clear line that lies across the plane, on each side has 

different categorical data. 

 

Figure  SEQ Figure \* ARABIC 9: SVM 

Linear Figure 7: SVM Linear 
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As shown in Figure 8, there are times when classification does not work with simple 

linear or curve lines. However, if the data is mapped into a three-dimensional space (as shown in 

Figure 9), it is easy to find a hyperplane that separates distinct data. As such, SVM projects 

datasets into higher dimension so as to increase the accuracy on prediction. 

 

 
Figure 8: SVM Non-Linear 

 

 

  

Figure 9: SVM Space 
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Figure 10: SVM Parameters (Ghose, 2017) 

 

Nonetheless, real life data cannot always be as clean and simple as in the figures, so it is 

not always possible to completely classify data. Therefore, a parameter, C, is needed to indicate 

the margin of error that the model is willing to take. As shown Figure 10, the increasing value of 

C leads to the shrinkage of margin between the line and furthest distinct data; Because at high 

values, it tries to accommodate the labels of most of the red points present at the bottom right of 

the plots.  

 

 

Figure 11: Basic Kernel Models (Hsu, Chang, & Lin, 2016) 
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Note that in those basic models shown in figure 11, γ, r, and d are all kernel parameters. 

Kernel functions maps datasets into higher dimensional space. Among these, RBF is the most 

useful for basic training model as it does not limited to simple linear model, but also do not have 

complex parameters as Polynomial kernel function does. 

 

4.2.2 Applications of SVMs 

 To put in perspective the application of support vector machines, consider object 

recognition and facial recognition. In object recognition, we can extract the features from an 

image to develop a “visual vocabulary” and representation of images by frequencies of “visual 

words,” that we can refer to when trying to identify the features of said image. An example of 

this can be seen in Figure 12. 

 

 

 

Figure 12: Object Recognition Example (Stricker, n.d.) 

Figure  SEQ Figure \* ARABIC 14: Object Recognition Example 

(Stricker, n.d.) 
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Notice how several features of the image (sky, building, mountain, etc.) were recognized and 

appropriately labeled. 

In facial recognition, we capture the difference between two faces. Upon presenting the 

algorithm with an image of a face, it reports its best estimate of the unknown face based on its 

currently known repertoire of faces. Another scenario is presenting the algorithm with a face and 

an identity, and having algorithm either accept or reject the claim that the given image matches 

the given identity (and optionally returning a confidence measure of the validity of the claim). 

Depression detection from features is also an application of support vector machines. 

Similar to the above two scenarios, we can extract features from audio and text data that allow us 

to predict how depressed someone is. 

 

4.3 Random Forest 

Random forest is a supervised learning algorithm that can also be used for regression and 

classification. Random Forest is popular because it’s the algorithms that is the most reliable, 

flexible, and easy to use. Random forest is also an ensemble algorithm. Ensemble algorithms 

have the ability to combine with a number of other algorithms that either have the same or 

different type of classifying object. For example, Random Forest uses a number of different 

decision tree classifiers that fit subsets of the input data and averages those trees in order to 

improve accuracy. 
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4.3.1 Basic Concept of  Random Forest Algorithm 

 

Figure 13: Random Forest Classification (Holczer, 2018) 

 

Random Forest algorithm attempts fits a number of decision tree classifiers on various 

sub-samples of the dataset and uses averaging to improve the predictive accuracy and control 

over-fitting [sklearn]. The general process of the algorithm is easy to understand in 4 steps: 

1. Split the input dataset into random sub samples 

2. Each subsample gets its own decision tree classifier that will give a prediction to that 

specific sub sample only. 

3. Vote on each result predicted from decision trees 

4. Finally select the result with the highest vote and present it as output 

4.3.2 Advantage of Random Forest - Measuring Feature Importance 

        Random forest has the ability to measure the relative importance of each feature used in 

the prediction. For example, scikit-learn (a machine learning tool for python) uses Random 

Forest to measure feature importance by observing how much tree nodes that use a specific 

feature reduce impurity across the trees inside the forest (Donges, 2018). It calculated the score 

of each feature while training data and then scales the score/importance of features in the form of 

percentages (summing to 100%). This feature of Random Forest will be important to analyze the 

new features we are using for text and voice analysis. 
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4.4 XGBoost 

XGBoost is an efficient implementation of gradient boosting algorithm. Gradient 

boosting algorithms produce strong prediction models by summing up the results of weak 

prediction models (trees) (Chen & Guestrin, 2016). For example, as shown in Figure 14, the final 

prediction for the boy is 2.9, which is the sum of 2 from tree1 and 0.9 from tree2. 

 

Figure 14: Tree Ensemble Model (Chen & Guestrin, 2016) 

 

In some depression detection research, people chose to use Performance on Different 

Algorithms and Cutoffs for Combined Features (Saeb et al., 2017). 

Just like any tree based modeling packages, there are three options for measuring feature 

importance in XGBoost: One is weight. In other words, the number of times a feature is used to 

split the data across all trees. Another one is Cover. A cover is the number of times a feature is 

used to split the data across all trees weighted by the number of training data points that go 

through those splits. Last but not least, gain, which is the average training loss reduction gained 

when using a feature for splitting. These procedures can be summarized as bagging. After that, is 

where the actual boosting takes place. 

Boosting means each subtree “learn” from the mistake of its parent. As shown by the 

formula: F1 is the child with a fewer bias and variance. So accordingly, the next child F2 has 

even less bias and variance than its parent F1. This iteration goes on until it reaches the stopping 

point of the tree. 
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Figure 15: Pseudo code for actual boosting (Synced, 2017) 

 

 

4.5 AdaBoost 

         AdaBoost, short for Adaptive Boosting, is a machine learning meta-algorithm. It can be 

used in conjunction with many other types of learning algorithms to improve performance. The 

output of the other learning algorithms (“weak learners”) is combined into a weighted sum that 

represents the final output of the boosted classifier.  

AdaBoost is adaptive in the sense that subsequent weak learners are tweaked in favor of 

those instances misclassified by previous classifiers. It is sensitive to noisy data and outliers. In 
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some problems it can be less susceptible to overfitting problem than other learning algorithms. 

The individual learners can be weak, but as long as the performance of each one is slightly better 

than random guessing, the final model can be proven to converge as a strong learner. 

The final equation for AdaBoost classification can be represented as follows: 

 

Figure 16: Final Equation for AdaBoost Classification (SauceCat, 2017) 

 

4.6 Decision Tree 

         Decision tree is a machine learning algorithm to solve both classification and regression 

problems. It often mimics human-level thinking, so it is easy to understand the logic of the data. 

Take a look at the following visual of this algorithm: 

 

Figure 17: Example of Decision Tree (Gupta, 2017) 

 

Squares represent decision nodes, circles represent chance nodes, and triangles represent 

end nodes. There are two main types of decisions: classification trees and regression trees. 

Classification tree analysis is when the predicted outcome is the (discrete) class to which the data 

belongs. Regression tree analysis is when the predicted outcome can be considered a real number 

(e.g. the price of a house, or a patient's length of stay in a hospital). 
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Gini impurity is a measure of how often a randomly chosen element from the set would 

be incorrectly labeled if it was randomly labeled according to the distribution of labels in the 

subset. Here is the equation to calculate Gini Impurity. 

 

Figure 18: Equation of Gini Impurity (Gupta, 2017) 

 

All in all, the workflow of decision trees are not that complicated. First, they start from 

the root and observes the value of the attribute at the root. Then, they follow the path that 

corresponds to the observed value. It then repeats these steps until it reaches a leaf node, which 

will give us the final decision. 

 

4.7 Logistic Regression 

         Logistic regression is the appropriate regression analysis to conduct when the dependent 

variable is dichotomous (binary). For example, predicting whether a message is sent by a female 

or not is a scenario in which logistic regression could be used. Like all regression analyses, 

logistic regression is a predictive; it is used to describe data and to explain the relationship 

between one dependent binary variable and one or more nominal, ordinal, interval or ratio-level 

independent variables. 

         There are three kinds of logistic regression: binary logistic regression, multinomial 

logistic regression, and ordinal logistic regression. Binary logistic regression’s categorical 

response has only two possible outcomes (for example, spam or not spam); Multinomial logistic 

regression’s response has three or more possible outcomes without ordering. (such as predicting 

which food is preferred more: vegetarian, non-vegetarian, vegan); ordinal logistic regression’s 

response has three or more possible outcomes with ordering (say, a movie rating from one to 

five). The final equation to calculate the probability is shown below: 
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Figure 19: Final Equation of Logistic Regression (Binary) (Swaminathan, 2018) 

 

4.8 Artificial Neural Networks 

         Artificial neural networks (ANNs), or connectionist systems, are computing systems 

vaguely inspired by the biological neural networks that constitute animal brains. The neural 

network itself is not an algorithm, but rather a framework for many different machine learning 

algorithms to work together and process complex data inputs. Such systems "learn" to perform 

tasks by considering examples, generally without being programmed with any task-specific rules 

(Josh, 2015). 

An ANN is a model based on a collection of connected units or nodes called "artificial 

neurons", which loosely model the neurons in a biological brain. Each connection, like the 

synapses in a biological brain, can transmit information (a "signal") from one artificial neuron to 

another. An artificial neuron that receives a signal can process it and then signal additional 

artificial neurons connected to it. In common ANN implementations, the signal at a connection 

between artificial neurons is a real number, and the output of each artificial neuron is computed 

by some non-linear function of the sum of its inputs. The connections between artificial neurons 

are called "edges". Artificial neurons and edges typically have a weight that adjusts as learning 

proceeds. The weight increases or decreases the strength of the signal at a connection. Artificial 

neurons may have a threshold such that the signal is only sent if the aggregate signal crosses that 

threshold. Typically, they are aggregated into layers, with different layers performing different 

kinds of transformations on their inputs. Signals travel from the first layer (the input layer) to the 

last layer (the output layer), possibly after traversing the layers multiple times (Josh, 2015). 
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4.9 Voting 

Voting, while similar to artificial neural networks, is not an algorithm. Instead, it is a 

framework for many different machine learning algorithms to work together. The voting 

framework is straightforward: it gets results from several machine learning algorithms and lets 

them vote for the final decision. There are two kinds of voting methods: hard voting and soft 

voting. The following example shows you how these methods work: 

 

If we have three classifiers (1, 2, 3) and two classes (A, B). Classifier 1 predicts class A with 

probability 99%; classifier 2 predicts class A with probability 49%; classifier 3 predicts class A 

with probability 49%. Hard voting chooses class B, since 2/3 (more than half) of classifiers 

predict class B. Soft voting chooses class A, since (99 + 49 + 49) / 3 = 65.67% (more than class 

B). 

  

4.10 Gaussian Process 

Gaussian processes are stochastic processes (a collection of random variables indexed by 

time or space), such that every finite collection of these random variables has a multivariate 

normal distribution (i.e., every finite linear combination of them is normally distributed). The 

distribution of a Gaussian process is the joint distribution of all (infinitely many) random 

variables, and as such, is a distribution over functions with a continuous domain (e.g., time or 

space). 

A machine learning algorithm that involves a Gaussian process uses lazy learning and a 

measure of the similarity between points (the kernel function) to predict the value for an unseen 

point from training data. The prediction is not just an estimate for that point, but also has 

uncertainty information; it is a one-dimensional Gaussian distribution (which is the marginal 

distribution at that point). 

Here are the equations for Gaussian processes. 
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Figure 20: Equations for Gaussian Processes (Bailey, 2016) 

 

4.11 Grid Search 

Grid search is a traditional way to perform hyperparameter optimization. A 

hyperparameter is a parameter whose value is used to control the learning process. In machine 

learning, hyperparameter optimization, or tuning, is the idea of choosing a set of optimal 

hyperparameters for a learning algorithm. By contrast, the values of other parameters (typically 

node weights) are learned. 

Grid search is a method to find the best combination of hyperparameters (an example of a 

hyperparameter is the learning rate of the optimizer), for a given model (e.g., a CNN) and test 

dataset. In this scenario, you have several models, each with a different combination of 

hyperparameters. Each of these combinations of parameters, which correspond to a single model, 

can be said to lie on a point of a "grid". The goal is then to train each of these models and 

evaluate them (by using, say, cross-validation). You then select the one that performed best. 
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5. EMU Pipeline 

5.1 Feature Extraction Pipeline 

In order to collect raw files for each part of the feature extraction, the first step of this 

pipeline is having Python run SQL queries to extract each type of data. Each kind of data is 

stored with an ID and the contents associated with that ID. 

For extracting text features, we grouped their text contents by ID. Since the text data 

contains both sent and received types, this grouping process creates three sets of files, which are: 

• Each ID having all texts grouped together 

• Each ID having only sent texts grouped together  

• Each ID having only received texts grouped together 

Additionally, We did similar procedures for tweets data: 

• Each ID having the tweets body grouped together 

In total, we have four grouped files read to apply feature engineering to.  

For text feature engineering, we call upon up to three libraries, TextBlob, Empath, and 

Linguistic Inquiry and Word Count (LIWC), by adding arguments to loop through each person's 

grouped texts as dictionary chunks. This process might take up to five minutes (depending on 

system specs) since there are loops for every person. Accordingly, four JSON feature files that 

contain all of the IDs and associated features are generated. In the next step, we implemented a 

Python function that simply transposes the JSON file into a clean CSV file with the IDs of each 

person, and the columns being the features (Figure 21). The last step of our text feature 

engineering pipeline is to use pandas to merge the score of the ninth question in the PHQ-9 and 

PHQ-9 total score into the four files, according to their IDs.  
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Figure 21: Feature CSV File Structure 

 For extracting audio features, we first decode Base64 encoded strings and transform them 

into 3GP files, and then convert the 3GP files to WAV files. Finally, we use Praat and 

OpenSMILE to extract features from those WAV files, and save the IDs, features, and PHQ-9 

scores into a CSV file, which is ready to be fed into the machine learning pipeline.  

For extracting GPS features, we firstly convert the strings that we receive from the 

database into XML files. Following that we catch the information we want from the XML files 

and store all of the data into one CSV file. The data includes the duration of activities, the name 

of the activities, the coordinates, etc. Finally, we extract GPS features from the CSV file and 

store the features in a final feature CSV file. 

 

5.2 Machine Learning Pipeline 

5.2.1 Metrics 

This section describes the classical metrics that we used in the evaluation of our models. 

Although we generated all of the metrics for each experiment and stored them in our project 

repository, in later chapters we mainly use the F1 score to evaluate the performance of models. 

1. TP stands for true positive, which is the number of depressed people who are correctly 

classified as depressed by the model. 
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2. TN stands for true negative, which is the number of non-depressed people who are 

correctly classified as non-depressed by the model. 

3. FP stands for false positive, which is the number of non-depressed people who are 

wrongly classified as depressed by the model. 

4. FN stands for false negative, which is the number of depressed people who are wrongly 

classified as non-depressed by the model. 

5. Precision explains the proportion of positive identifications that was actually correct, and 

is calculated as:  

 

6. Sensitivity explains the proportion of actual positives that was identified correctly, and is 

calculated as:  

 

7. F1 score is a combination of precision and sensitivity, and is calculated as:  

 

8. Accuracy explains the proportion of the total number of predictions that was correct 

predictions, and is calculated as:  

 

We primarily used F1 scores as our reference since a higher F1 score ensures a higher 

precision as well as a higher sensitivity. In principle, we would rather have more people that are 

misdiagnosed as depressed than ignoring the people who actually are depressed. 

 

5.2.2 Resampling and feature reduction 

 In order to address the unbalanced data, the pipeline provides two options to address the 

issue: downsampling and upsampling. The default is downsampling to randomly remove the 

majority class, since unlike upsampling, it does not produce a new database on resampling 

original data, and accordingly is more stable for the whole pipeline.  

 After downsampling, the machine learning pipeline provides the options of feature 

reduction, The default feature reduction metrics use chi-square statistics to find the k best 

features: 
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A chi-square statistic compares the target variable (PHQ-9 score) with features. The 

calculation of chi-square statistics between every feature variable and the target variable gives us 

an observation of the existence of a relationship between the variables and the target. We rank 

them by how closely (how dependent they are) and then choose the top k features. In this case, k 

is a user input. 

We also implemented principle component analysis (PCA), which reduces the 

dimensionality of a feature set but still retains and rescales the variation between them. In 

addition to that, we do also provide the options of linear discriminant analysis (LDA) and 

quadratic discriminant analysis (QDA), which make predictions by estimating the probability of 

a new set of inputs belongs to each class. The class that gets the highest probability is the output 

class and a prediction is made. The primary difference is that QDA estimates different classes 

with a different variance. Lastly, we provided the option of doing recursive feature reduction 

(RFE). This algorithm recursively trains and eliminates the least important features until it 

reaches the number of desired features. 

 

 

5.2.3 Training and testing           

We implemented a series of baseline machine learning algorithms to train the data. These 

include logistic regression, random forest classifiers, support vector machines, neural networks, 

k-nearest neighbors, XGboost, and Gaussian processes. The training process is done using 5-fold 

cross-validation. The pipeline gives a series of options as the arguments of the pipeline including 

the following: 

1. Cutoff: An integer from 0 to 20. The PHQ-9 score ranges from 0 to 27, so we can select 

the score we want to set as the marker saying that someone is depressed or not for 

machine learning. For example, if the cutoff is set to 10, then someone with a score above 

10 is classified as depressed, and someone with a score below or equal to 10 is classified 

as not depressed. 

2. Filename: The input path of the feature file (if Filename2 exist, this will be the training 

set, otherwise, this cross-validation will be applied on this file). 
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3. (Optional) Filename2: The input path of the feature file (testing set). 

4. Feature type: The pipeline takes in 3 arguments, “text”, “gps” and “audio”, which 

correspond to three specific sets of tuned classifiers. 

5. Resample type: This takes in “down” or  “up” for the type of resampling. As mentioned, 

the default is downsampling. 

6. Model type: This includes all of the baseline classifiers and ensembled algorithms 

AdaBoost and voting. 

7. Feature selection: The pipeline provides all the feature reduction techniques mentioned 

above. 

8. Target data: In most cases, we input the column index of the PHQ-9 score in the feature 

file, which is usually -1 or -2. 

9. Grid parameters: The parameter scope for hyperparameter tuning. Tuning means that 

hyperparameter optimization is using exhaustive grid search. 

This approach tries all of the combinations of parameters and returns the best F1 score and the 

corresponding set of parameters. After all is said in done, we use the cross-validation provided 

by scikit-learn to train and test the feature sets. The training includes a binary classification using 

the PHQ-9 score as the target within the balanced feature sets.  

 

 

 

Figure 22: Machine Learning Pipeline Flow 
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6. Experimental Methodology 

6.1 Amazon Mechanical Turk 

Amazon Mechanical Turk (MTurk) is a crowdsourcing marketplace that makes it easier 

for individuals and businesses to outsource their processes and jobs to a distributed workforce 

who can perform these tasks virtually. This could include anything from conducting simple data 

validation and research to more subjective tasks like survey participation, content moderation, 

and more. MTurk enables companies to harness the collective intelligence, skills, and insights 

from a global workforce to streamline business processes, augment data collection and analysis, 

and accelerate machine learning development. 

 
Figure 23: Starting Page of Mturk 

 

We use Mturk to collect more people’s phone data to improve our machine learning 

algorithm and our APP. 

 

6.1.1 Preparation 

To setup a project on Mturk. You need to create an Amazon account and sign in as a 

requester. 
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Figure 24: Sign in Page 

 

After that, you need to click “New Project” and select the project type you want. For our 

project, we choose “Survey Link”. 
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Figure 25: Choosing Project Type 

 

Then, you can edit the project name, title, keywords and so on of your project. You need 

to decide how many participants you want for your project and how much many they will get. 

You can also add qualifications for your participants here. 
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Figure 26: Edit Project Page 

 

After saving, you can start to design the layout of your project. For our project, we put 

the link to download our APP at “Survey Link”. 

 

 
Figure 27: Design Layout Page 

 

After saving, the project is all set. 



56 

 

6.1.2 Publishing a Batch and Viewing the Result 

Now, you can publish a batch of your project and choose you payment method. After that, 

you need to wait for the participants to finish your project. 

 

 

 

 
Figure 28: Publish Page 
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You can manage your project on the manage page. You can accept or reject participants’ 

work on this page. You can also click any work’s ID to go to the bonus page and give him/her 

bonus. 

 

 

 
Figure 29: Manage Page 

 

 
Figure 30: Bonus Page 
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6.1.3 Publishing Another New Batch 

You can also publish a new batch in the publish page to get more participants. 

 

 

6.2 Mobile Application 

An Android application was developed for collecting data. The Android platform was 

mainly selected because it allows third party applications access to more user data (after 

requesting permission from the user). It also increases the number of users we can gather data 

from. Android is more prevalent than other competing platforms, it currently consisting of 74% 

of mobile devices worldwide.  

The application we developed is called EMU Survey. The application takes users through 

a series of pages that collect data while keeping track of the reward we will pay to the user. The 

application collects demographics information, phq9, gad7, basic phone data (which includes 

text messages, call logs, calendar, and contacts), Google Maps location data, voice recordings, 

Instagram posts and tweets from Twitter.  These modalities were selected after running an 

investigative study that explored which data modalities people would willingly share with us for 

our study.  

The application has a consistent design format. Two bars are displayed on the top and 

bottom of each screen. The bar on top informs users which section of the data collection process 

they are in, which also displaying the amount of money they would be paid once finishing the 

current survey session. The bar at the bottom is a button that submits data and guides users to the 

next section of the data collection process. It also displays the amount of money users should 

expect to add if they submit data from the current page. The section in between these bars is 

scrollable and its content changes for each screen. The following shows the order and content of 

each screen in the app. 

1. Home Page –  
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Figure 31: Home Page 

 

This page informs the user about how the app works. It also explains that their data is 

handles securely and anonymously. Data collection does not start in this page. However, this 

page does check if there is an internet connection before sending the user to the next page. It 

displays a message of there is no internet connection and blocks the user from continuing the 

survey. If the user clicks the button on the bottom of this page and if there is a working internet 

connection, a connection to our server is established. If the user has already previously 

completed a survey session, then a message is displayed on the phone informing the user that 

they can’t proceed to create a new session.  
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Figure 32: Error and Alert Pages 

 

If the user has not completed a session previously, the server generated a unique session 

code and a new session is started on the device. 

 

2. Demographics Page – The very first thing that happens on this page is not related to 

demographics data. Instead a series of permission requests pop out in order to collect basic phone 

data.  
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Figure 33: Permission Page 

Once these permissions are accepted and the collected data has been sent to the server. 

The reward amount is updated on top bar of the page and then users can enter demographics data. 

Demographics data is entered through a series of questions that allow input through radio buttons. 

Users cannot proceed to the next screen if all questions have not been answered.  

 

Figure 34: Demographics Page 
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Once users have answered all questions they can press the submit button.  

 

3. Fill out the PHQ-9 – This page contains a PHQ9 questionnaire form. It allows user input 

in the same format as the demographics page, however, each choice is a number from 0 to 3. An 

immovable section right below the top bar displays the meaning of the numbers next to each 

radio button. 

 

Figure 35: PHQ-9 Page 

 

4. Fill out the GAD-7 – This page contains a GAD7 questionnaire form. The design of this 

page is exactly the same as the PHQ9 page. 
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Figure 36: GAD-7 Page 

5. Recording a Voice Sample – This page requires users to read from a prompt while the 

phone records their voice through its microphone. It contains a button that starts the recording 

process. The button also requests audio recording permission if it has not already been granted. 

Once the user is done reading the prompt, they press the stop button and record again or press 

submit to go to the next page.  

   

Figure 37: Voice Page 
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6. Record an Opened Ended Voice Sample – We need two different type of audio 

recordings. The first one requires the user to read a prompt. This one asks users an open ended 

question in order to get a sample of their natural speaking pattern. This page also sets a timer to 

how long users can speak (currently 30 seconds). Users cannot stop the recording until the timer 

reaches at least half of the allotted time (currently 15 seconds). 

   

Figure 38: Voice Page 2 

7. Google Maps –Google continuously collects location information through GoogleMaps 

in Android phones. This page allows us to access this data. The user is presented with a Google 

login form. After a user logs in, GoogleMaps KML data is collected for the last 2 weeks and sent 

to the server.  
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Figure 39: Google Page 

The user can skip this or any of the next data collection methods through a skip button 

shown on the bottom left part of the screen (just above the bottom bar).    

 

8. Twitter – This page contains a simple textbox that asks the user for a twitter username. 

The app checks if the user has put in a valid username and then sends it to the server. The server 

then accesses tweets from the last two weeks for this user and stores the text data. 

 

Figure 40: Twitter Page 
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9. Instagram – We are not analyzing image data for this project, but we wanted to collect 

image data for people that might work on this project in the future. The app presents an 

Instagram login form to the user. Once the user has logged in, metadata of their posts are 

accessed and sent to the server. The metadata contains links to the images on 

Instagram’s/Facebook’s server. 

 

Figure 41: Instagram Page 

 

10. Thank You and Code Screen – Once the app is done collecting data for all modalities, 

the user is presented with this final screen. The screen reveals the session ID the app has been 

using to communicate with the server on this page. Users are told that this session ID is the code 

they need to enter on MTurk in order to get their compensation. Once the user is displayed this 

page, the server will recognize that this phone has completed a full survey session and will block 

any attempts to start a new session in the future. 
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Figure 42: Thank You Page 

 

 

 

 

6.3 EMU Server  

The EMU server takes care of the information received by the study participants. All of 

the participants’ responses from the mobile Android application are sent here and properly 

inserts the data into an SQLite database. We can then read from this database and begin feature 

extraction and machine learning analysis, without ever looking at the data itself. To avoid a 

single user participating multiple times, we’ve restricted duplication by enforcing unique phone 

IDs. 

      

6.3.1 SQLite Database 

An SQLite database is used to house all of the data received. Two tables were used, one 

for the actual data, and one used to check user compensation. We can then use simple queries to 

access more specific information (or just view the tables in their entireties). The two tables are 

broken down below:    
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Table Column Type 

data id number 

type string 

content JSON 

ids sessionid number 

phoneid string 

date number 

compensation number 

paid number 

 

Table 10: Database Structure 

 

          

6.3.2 Raw Data 

 The two subsequent subsections break down the specifics of each table. 

 

6.3.2.1 Data Table 

1. id - This matches up with the sessionid of the ids table (broken down in section 

6.3.2.2). Each time the app is launched, a new session is created. All values of 

sessionid are unique in the other table, but there may be multiple instances of a 

single id in this table due to the way the data is stored. 

2. type - This represents the type of data that appears in the content column. This 

falls into one of: 

o current_location (current location) 

o demographic (answers to demographics questions) 
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o calendar (calendar data) 

o log (call logs) 

o text (text messages) 

o contact (contacts data) 

o phq (answers to PHQ-9 questions) 

o gad (answers to GAD-7 questions) 

o audio (response to closed audio prompt) 

o audio_open (response to open audio prompt) 

o twitter_username (Twitter username) 

o tweets (Twitter data) 

o gps (GPS data) 

o Instagram (Instagram profile information) 

o Instagram media (Instagram data) 

3. content - This is where the actual data is. It is a string representation of a JSON 

object, and is the data we use during feature extraction and machine learning 

analysis! The contents of this column contain sensitive data and we do not need to 

look at them to proceed. 

 

6.3.2.2 IDs Table 

1. sessionid - This matches up with the id of the data table. Each time the app is 

launched, a new session is created. All values of sessionid are unique. Each 

session has different types of data associated with it. For each type of a 

participant’s data, there is a row in the database for it. 

2. phoneid - This is an identifier for the device being used. Ideally, there is only one 

record for each phone so that any given device only participates in the study a 

single time. 

3. date - A string representation of when the session took place. 

4. compensation - The amount of money to be paid to each participant. 
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5. paid - A ternary value representing previous sessions by a user, if any (0), the final 

and accepted session of a user (1), and if the user was paid (2). 

      

      

6.3.3 Server Hosting 

The server is accessible via SSH with login information only available to EMU personnel 

(student researchers and advisors). After gaining access, the database is able to be found in the 

form of a *.db file, which can be opened and viewed by any supported programs and plugins (for 

instance, DB Browser for SQLite). Participant privacy and security is of major importance to us, 

and thus having WPI host it for us was certainly the way to go. 
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7. Experimental Evaluation and Analysis 

The study involves a dataset was collected by a previous team, which has 335 instances 

with at least one data modality. While collecting a new dataset, we used the old dataset to test the 

reliability of our features and the performance of our machine learning methods. Then we used 

the tuned classifiers to run machine learning experiments on the new data. 

Before we started our experiments, we generated a histogram (Figure 43) to show the 

distribution of the participants’ PHQ-9 scores. The horizontal axis measures the PHQ-9 scores 

and the vertical axis is the number of participants with that score. Although it seems right-

skewed, scoring from 10 through 27 means that the depression severity is moderate to severe, 

and scoring below 10 means the depression severity is none to mild. 10 is also the median of this 

dataset, so we decided to mark 10 as an import cutoff. Accordingly, most of our experiments are 

designed on the merit of such an ideology. 

 

Figure 43: PHQ9 Scores Distribution 

 

7.1 Text Features 

 We designed a series of experiments following this order: First we ran an experiment to 

find out how to obtain the best feature subsets, and in the later experiments we will use the 

selected tool to extract features. Next, we ran experiments to select the best classifier and its 
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parameters for text features. Then we ran experiments between features selected in different 

ways. Finally, we concluded the best combination we found in the previous steps and applied it 

to the new dataset. 

7.1.1 Performance Analysis on Different Feature Subsets 

7.1.1.1 Spam Removal 

This experiment is designed to test out the effectiveness of spam removal in the data 

processing step. We only used keywords method to remove spam in our project. We used 

support vector machines (SVC) as our machine learning model and ran the experiment 

repeatedly at cutoff 10, yielding the data shown in the figure below. We ran it 100 times in order 

to simulate a true random stimulation. The spam removal did increase the stability for prediction; 

however, it also decreased the F1 score. Considering spam removal does not effectively increase 

the overall performance of the prediction score, we decided not to include it in future trials. 

 

 

Figure 44: Boxplots of Spam and No Spam Performance 
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Table 11: With Spam and No Spam Performance (F1 Score) 

 

7.1.1.2 Feature Extraction Tools 

 

This is an experiment designed to analyze the impact of features generated by each tool. 

We decided to use SVC as the model type. We ran it 100 times in order to simulate a true 

random stimulation at cutoff 10. The result is shown in the figure below. LIWC has an 

outstanding performance against other tools; this is why we consider it to be worth purchasing. 

Apart from LIWC, TextBlob is a tool that is not only free, but also reliable. 

 

 

Figure 45: Boxplots of Different Tools Performance 
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Table 12: Different Tools Performance (F1 Score) 

 

7.1.2 Performance Analysis on Different Classifiers 

 

This part of the experiment is set up aiming to find the most ideal classifiers for machine 

learning results. In this way, we first need to fine-tune each classifying algorithm and then 

compare them across each other. We utilized the following seven baseline algorithms: 

 

•  Support Vector Machine (SVC) 

•  k-Nearest Neighbours (kNN) 

•  Random Forests (RF) 

• XGBoost (XGB) 

• Logistic Regression (LR) 

• Neural Network (NN) 

• Gaussian Process (GP) 

 

For hyperparameter optimization, we implemented an exhaustive grid search. The general 

metric we used to decide the final parameters is to run it 100 times. For each run, we call a built-

in grid search function that returns the combination of parameters with the highest F1 score. 

After that, we selected the combination of parameters of each algorithm that has the highest 

frequency. The control variables in this experiment are the cutoff (at 10) and no feature 

selections. To obtain the best combination of each algorithm, we utilized pivot tables (see 

Appendix C). Accordingly, this mechanism would be applied for text, audio, and GPS features. 

 

Below are the classifiers with their optimized parameters for text features:   
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• SVC: C:1, kernel:rbf, gamma:10 

• kNN: n_neighbors: 9, leaf_size: 1 

• RF: max_depth: 3, min_samples_leaf: 1, min_samples_split: 5, n_estimators: 500 

• XGB: min_child_weight: 1, gamma: 5, subsample: 0.7, colsample_bytree: 0.6, 

max_depth: 4 

• LR: C: 0.1, solver: ‘lbfgs’, multi_class ‘ovr’, random_state: 0 

• GP: max_iter_predict: 1 ,n_jobs: 1 

• NN: max_iter:50, learning_ratez:’adaptive’,solver: ‘sgd’,init = 2 

 

After obtaining these tuning sets, we entered into the next step of this experiment, where 

we ran the machine learning pipeline with the aforementioned classifiers and parameters; 100 

times each. The results can be seen in Figure 46 and Table 13. Random forest has shown the best 

performance across all seven baseline algorithms in terms of both scores and stability. Having a 

maximum F1 score of 0.75, a mean F1 score of 0.72 and a minimum F1 score of 0.69, RF 

outperforms SVC (second place) in all three measurements. So overall, fine-tuned RF has the 

best performance among all seven classifying algorithms within the scope of a cutoff of 10, and 

not doing any feature selection. Nonetheless, feature selection is crucial to improving machine 

learning results. Ideally, to find the most optimized hyperparameter, it is best to do feature 

selection and grid search tuning simultaneously. This is not entirely feasible for our pipeline and 

computational power, so we decided to optimize a general tuned classifier first, followed by 

feature reduction to further boost the results (the same is true with audio and GPS features). 
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Figure 46: Tuned Classifiers For Text Features Comparison 

  

 

 

Table 13: Statistic Summary of Tuned Classifiers For Text Features Comparison 
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7.1.3 Performance Analysis on Different Feature Sets 

 

This part of the experiment aimed to find the most ideal sets of features for machine 

learning results. To do so, we divided the process into two parts. First, we experiment on various 

possible combinations of manual features. After finding the feature set with better performance, 

we then run experiments using different feature reduction mechanisms to further improve the 

results. The metrics of these experiments will be conducted by the previously determined best-

tuned classifier algorithms. The independent variable in this case, would only be the different 

feature sets. 

7.1.3.1 Manual Selection 

For the first trial, we derived a combination of five feature sets from our text database. 

The first one being the features extracted from all text messages, regardless of whether a text is 

sent or received. The second and the third ones are features for sent text messages and received 

text messages, respectively. The fourth one is a joint features set of the sent and received texts. 

Finally, we also transformed tweets and treated it in a similar fashion as text data, which in turns 

gives us the fifth feature set. The results of machine learning on those features sets are shown in 

Figure 47 and Table 14. Doubling the text features by separating them into sent and received 

texts helped boost the F1 score to an average of 0.83. We then applied this insight of doubling 

text features to the next trial of experiments, where we derived a set of combination features 

based on the rankings of the results of the first trial. Namely, they are: 1) all texts and tweets 

feature set, 2) sent texts and tweets feature set, and 3) sent, received, and tweets combined 

feature set. The result is shown in Figure 48 and Table 15. The result is not as good as the first 

trial, because by doubling the features without doing feature selection, the classifier will take all 

of the less effective features into account. Hence, we need to implement a feature selection 

technique in order to utilize the benefits of simply doubling the features. 
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Figure 47: Boxplots of Text Feature Sets Comparison 

 

 

Table 14: Statistic Summary of Text Feature Sets Comparison 
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Figure 48: Boxplots of Combined Text Feature Sets Comparison 

 

 

 

Table 15: Statistic Summary of Combined Text Feature Sets Comparison 
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7.1.3.2 Chi-Squared Selection 

Here are the results for performing a series of chi-squared feature selections on the 

combined feature sets. The highest F1 score we obtained from applying feature selection 

technique is 20 features on the sent, receive and Twitter triple count feature sets. The F1 score 

ranges from 0.75 to 0.88 with an average of 0.81. In contrast to our hypothesis, this feature 

selection technique did not significantly improve the F1 score. One explanation we have is that 

the very first step of hyperparameter tuning optimized the random forest parameters for no 

feature selection. However, is not optimized for selected features. Still, in conclusion we can say 

that combining sent, received, and tweets feature sets can significantly improve the machine 

learning results as long as the number of features for feature selection is controlled under 

30.

 

Figure 49: Boxplots of Feature Selection on Sent And Tweets Feature Set 
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Table 16: Statistic Summary of Feature Selection on Sent And Tweets Feature Set 

 

 
Figure 50: Boxplots of Feature Selection on Sent, Received And Tweets Feature Set 

 

 
Table 17: Statistic Summary of Feature Selection on Sent, Received And Tweets Feature Set 
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7.1.4 Analysis of New Text Data 

Here are experiments we conducted for new text data. In these experiments, we reuse the 

same metrics and procedure for old text data. Although we concluded that Random Forest is our 

best working classifier algorithm among the seven baseline Algorithms, we decided to include 

the top three fine-tuned classifiers to test out on the new text data because the new data is not 

entirely identical to the old one so something might go wrong. In addition, since there are not 

sufficient participants that fit the best feature selection metrics we had (participants having either 

sent, receive and tweets or combined are less than 10), we conducted this experiments using 

features derived from all texts. As shown in figure 51 and table 18, Support Vector Machine 

(SVC) and Logistic Regression (LR) obtained an average of 0.72. This shows that our machine 

learning pipeline successfully avoided overfitting and is usable on random test samples. We 

believe the reason Random Forest does not have a good f1 score is because of that the algorithm 

itself is needy on the number of training sets, and for the new text data, we only have 100 

participants. Given enough text data, random forest can still be promising. 

 
Figure 51: Boxplots of Tuned Classifiers For Text Features Comparison (New Data) 
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Table 18: Statistic Summary of Tuned Classifiers For Text Features Comparison (New Data) 
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7.1.5 Text Features Discussion 

After finishing the two parts of experiments for text features machine learning, the 

highest average F1 score we managed to obtain is 0.83. Our prediction is that this result may be 

further increased if we reimplement hyperparameter optimization on random forest for this 

particular feature set. We repeated the procedure of hyperparameter optimization specifically for 

RF with 10 feature selections. After that, we ran a various feature reduction algorithm 100 times 

each with 10 features. The highest result we have is using Recursive Feature Reduction (RFE) 

with an average of 0.83, which is the same as we had before. However, we managed to increase 

the lower bound from 0.76 to 0.78 and upper bound from 0.89 to 0.9. However, our experiments 

did not address on testing out overfitting problem, so accordingly we collected new text data to 

test out our model. As mentioned in 7.1.4, the model performs well on the new text data and is 

almost as good as the old ones. In this way, we can safely say that our model refrained from 

overfitting. 

 

Figure 52: Boxplots of Feature Selection on Sent, Received And Tweets Feature Set 
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Table 19: Statistic Summary of Feature Selection on Sent, Received And Tweets Feature Set 

 

 

 

7.2 Audio Features 

7.2.1 Performance Analysis on Different Classifiers 

Similar to our approach for text features, we first did grid search on seven classifiers and 

ran experiments on them. Below is the results we got for audio features, and the classifiers with 

their optimized parameters. 

  

• SVC: C: 0.001, kernel: rbf, gamma: 0.1 

• kNN: n_neighbors: 1, leaf_size: 1 

• RF: max_depth: 2, min_samples_leaf: 3, min_samples_split: 5, n_estimators: 500 

• XGB: min_child_weight: 5, gamma: 0, subsample: 0.8, colsample_bytree: 0.6, 

max_depth: 2 

• LR: C: 100, solver: lbfgs, multi_class: ovr, random_state: 0 

• GP: max_iter_predict: 1 ,n_jobs: 1 

• NN: solver: ‘sgd’, learning_rate_init: 0.001, max_iter: 100, learning_rate: ‘adaptive’ 

  

After obtaining these tuning sets for audio features, we ran the next experiment with 

classifiers and parameters 100 times each. The results can be seen in Figure 53 and Table 20. 
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XGBoost has the best performance across all seven baseline algorithms in regards to both scores 

and stability. Having a maximum F1 score of 0.59, a mean F1 of 0.50 and a minimum F1 of 0.38, 

XGBoost is slightly better than the other algorithms. So overall, fine-tuned XGBoost has the best 

performance among all seven classifying algorithms within the scope of audio features, setting 

the cutoff to 10 and not doing any feature selection.  

 

 
Figure 53: Tuned Classifiers For Audio Features Comparison 
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Table 20: Statistic Summary of Tuned Classifiers For Audio Features Comparison 

 

 

7.2.2 Performance Analysis on Different Feature Sets 

  

This part of the experiment aimed to find the most ideal sets of features for machine 

learning results. To do so, we divided the process into two parts. First, we experiment on various 

possible combinations of manual features. After finding the feature set with better performance, 

we then run experiments using different feature reduction mechanisms to further improve the 

results. The metrics of these experiments are conducted by the previously determined best-tuned 

classifier algorithms. The independent variable in this case, would only be the different feature 

sets.  

 

7.2.2.1 Manual Selection 

 Since we used different tools and scripts to extract different kinds of audio features, we 

finally got five feature sets. These sets are: 1) OpenSmile feature set, 2) Praat signal feature set, 3) 

Praat pause time feature set, 4) Praat combined feature set, and 5) all audio feature set. The 

results of machine learning on those features sets are shown in Figure 54 and Table 21. With the 

exception of the Praat pause time feature set having a slightly better performance, all of the other 



88 

 

feature sets have similar results. Therefore, we need to implement some feature selection 

techniques in order to improve performance and determine the best feature set. 

 

 
Figure 54: Boxplots of Audio Feature Sets Comparison 

 

 

Table 21: Statistic Summary of Audio Feature Sets Comparison 

 

 

 



89 

 

7.2.2.2 Chi-Squared Selection 

Following are the results for performing a series of chi-squared feature selection on every 

feature set except for the Praat pause time feature set (Figure 55-60, Table 22-27), which we 

didn’t do feature selection on because it only contains eight features. The best F1 scores we 

obtained from applying feature selection technique occurred when selecting 50 features from all 

audio features. The F1 score ranges from 0.55 to 0.67 with an average of 0.62.  

 

 
Figure 55: Boxplots of Feature Selection on Audio All Feature Set (# of features <= 50) 
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Table 22: Statistic Summary of Feature Selection on Audio All Feature Set (# of features <= 50) 

 

 

 
Figure 56: Boxplots of Feature Selection on Audio All Feature Set (# of features >= 50) 
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Table 23: Statistic Summary of Feature Selection on Audio All Feature Set (# of features >= 50) 

 

 
Figure 57: Boxplots of Feature Selection on OpenSmile Feature Set (# of features <= 50) 
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Table 24: Statistic Summary of Feature Selection on OpenSmile Feature Set (# of features <= 50) 

 

 
Figure 58: Boxplots of Feature Selection on OpenSmile Feature Set (# of features >= 50) 
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Table 25: Statistic Summary of Feature Selection on OpenSmile Feature Set (# of features >= 50) 

 

 
Figure 59: Boxplots of Feature Selection on Praat Combined Feature Set 
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Table 26: Statistic Summary of Selection on Praat Combined Feature Set 

 

 
Figure 60: Boxplots of Feature Selection on Praat Signal Feature Set 

 

 

Table 27: Statistic Summary of Feature Selection on Praat Signal Feature Set 
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7.2.3 Analysis of New Audio Data 

Here are a series of experiments we conducted for new audio data. In these experiments, 

we reused the same metrics and procedure for old audio data. The first part will be 

hyperparameter optimization for different classifiers. After that, we will compare across to find 

the best classifiers.  

We first did grid search on seven classifiers and ran experiments on them. Below is the 

results we got for audio features, and the classifiers with their optimized parameters. 

• SVC: C: 0.001, kernel: rbf, gamma: 10 

• kNN: n_neighbors: 1, leaf_size: 1 

• RF: max_depth: 5, min_samples_leaf: 3, min_samples_split: 3, n_estimators: 20 

• XGB: min_child_weight: 1, gamma: 0.1, subsample: 0.8, colsample_bytree: 0.6, 

max_depth: 4 

• LR: C: 0.01, solver: lbfgs, multi_class: ovr, random_state: 0 

• GP: max_iter_predict: 1 ,n_jobs: 1 

• NN: solver: ‘sgd’, learning_rate_init: 0.001, max_iter: 100, learning_rate: ‘adaptive’ 

 

After obtaining these tuning sets for audio features, we ran the next experiment with 

classifiers and parameters 100 times each. The results can be seen in Figure 61 and Table 28. 

kNN has the best performance across all seven baseline algorithms in regards to both scores and 

stability. Having a maximum F1 score of 0.63, a mean F1 of 0.55 and a minimum F1 of 0.49, 

kNN is better than the other algorithms. So overall, fine-tuned kNN has the best performance 

among all seven classifying algorithms within the scope of audio features, setting the cutoff to 10 

and not doing any feature selection. 
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Figure 61: Boxplots of Tuned Classifiers For Audio Features Comparison (New Data) 

 

 

Table 28: Statistic Summary of Tuned Classifiers For Audio Features Comparison (New Data) 

 

The second part will be the experiments on finding the best feature sets. We have six 

manual feature sets for the new audio data: 
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• d1: Old audio data (reading speech) 

• d2: New audio data (reading speech) 

• d3: New audio data (open response) 

• d1traind2test: d1 as the training set, d2 as the testing set 

• Stackedd1d2: Combined audio data (without open response) 

• Joinedd2d3: New audio data (includes both reading speech and open response) from the 

same participant, in other words, double the number of features by extracting two sets of 

features from two audio files. 

 

We used kNN to run experiments on each dataset for 100 times. As shown in Figure 62 and 

Table 29 stacked d1 and d2 has the best performance in that the max f1 is 0.61, min f1 is 0.51 

and the average is 0.56. In this way, we managed to keep the f1 above 0.5. We can conclude that 

stacking d1 and d2 improves the f1 score. 

 

 
Figure 62: Boxplots of Audio Data Sets Comparison (New Data) 
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Table 29: Statistic Summary of Audio Data Sets Comparison (New Data) 

 

 

 

 

7.2.4 Audio Features Discussion 

In conclusion, experiments show that the best performance for machine learning on audio 

features occurs under the following conditions: using XGBoost as the algorithm, 50 features for 

feature selection, and using the dataset that is generated by OpenSMILE. Since we did grid 

search on all audio features, which mainly consisted of OpenSMILE features, the tuned 

classifiers might be not very fit for Praat features. Still, the result for pause time features 

generated by Pratt is not optimum as the manual recording of participants reading one sentence 

has too many limitations. In order to have better results, we want data that includes more than 

just one sentence, and preferably is spontaneous. Therefore we modified our data collection 

methods on the mobile application. Accordingly, we reimplemented the whole hyperparameter 

tuning and manual feature selection process for Praat features on the new data. This turned out to 

be satisfying as the f1 is improved from an average of 0.46 to 0.56 with only 91 participants. It is 

promising to further collect spontaneous speech or open response. 
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7.3 GPS Features 

7.3.1 Performance Analysis on Different Classifiers 

Similar to our approach for text and audio features, we first did gird search on seven 

classifiers and ran experiments on them. Below is the results we got for GPS features, and the 

classifiers with their optimized parameters. 

  

• SVC: C: 0.001, kernel: rbf, gamma: 0.001 

• kNN: n_neighbors: 9, leaf_size: 1 

• RF: max_depth: 3, min_samples_leaf: 3, min_samples_split: 2, n_estimators: 500 

• XGB: min_child_weight: 5, gamma: 5, subsample: 0.8, colsample_bytree: 0.8, 

max_depth: 2 

• LR: C: 0.01, solver: ‘lbfgs’, multi_class: ‘ovr’, random_state: 0 

• GP: max_iter_predict: 1 ,n_jobs: 1 

• NN: solver: ‘sgd’, learning_rate_init: 0.001, max_iter: 50, learning_rate: ‘constant’ 

  

After obtaining these tuning sets for GPS, we ran the next experiment with classifiers and 

parameters 100 times each. The results can be seen in Figure 63 and Table 30. SVM has the best 

performance across all seven baseline algorithms in terms of both scores and stability. Having a 

maximum F1 score of 0.67, a mean F1 of 0.63 and a minimum F1 of 0.58, RF significantly 

outperforms other algorithms in all three measurements. Overall, fine-tuned SVC has the best 

performance among all seven classifying algorithms within the scope of GPS features, setting the 

cutoff to 10, and not doing any feature selection. 
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Figure 63: Tuned Classifiers For GPS Features Comparison 

 

 
 

Table 30: Statistic Summary of Tuned Classifiers For GPS Features Comparison 
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7.3.2 Performance Analysis on Different Feature Sets 

  

This part of the experiment aimed to find the most ideal sets of features for GPS machine 

learning results. Identical to the previous experiment sets, we divided the process into two parts. 

First, we experiment on various possible combinations of manual features. Secondly, we run 

experiments using different feature reduction mechanisms to further improve the results. The 

metrics of these experiments will be conducted by the previously determined best-tuned 

classifier algorithms. The independent variable, in this case, would only be the different feature 

sets.  

 

7.3.2.1 Manual Selection 

 For the first trial, we derived a combination of three feature sets from our GPS database; 

the first one being the features extracted from raw GPS data. The second was the activity 

features we created based on the raw data. The third one is a joint feature sets of the first two. 

The results of machine learning on those features sets are shown in Figure 64-67 and Table 31-

3.  Unlike text features, simply doubling the feature does not boost the F1 score but instead, it 

stabilized it for a bit. We can see that while having similar average scoring, the upper and lower 

bounds of the joint feature set is steadier. We presume the reason for raw data features not 

having an optimum outcome to be not having an accurate timestamp for each coordinate pair. 

Instead, we did some manual calculation to add uniform timestamps based on each activity's time 

interval. Next, we implemented feature selection techniques in order to further test these feature 

sets. 
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Figure 64: Boxplots of GPS Feature Sets Comparison 

 

 

Table 31: Statistic Summary of GPS Feature Sets Comparison 
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Figure 65: Boxplots of Feature Selection on Activity Feature Set 

 

 

Table 32: Statistic Summary of Feature Selection on Activity Feature Set 
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Figure 66: Boxplots of Feature Selection on Raw GPS Feature Set 

 

 

Table 33: Statistic Summary of Feature Selection on Raw GPS Feature Set 
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Figure 67: Boxplots of Feature Selection on Combined GPS Feature Set 

 

 

Table 34: Statistic Summary of Feature Selection on Combined GPS Feature Set 

 

 

 

7.3.2.2 Chi-Squared Selection 

Here are the results for performing a series of chi-squared feature selections on the 

combined feature sets. The highest F1 score we obtained from applying feature selection 

techniques is 40 features on the activity feature sets. The F1 score ranges from 0.58 to 0.66 with 
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an average of 0.61. In contrast to our hypothesis, the feature selection technique did not 

significantly improve the F1 score. In fact, the best score comes from no feature selection for the 

combined feature set where the average of F1 is 0.63 in a range of 0.58 to 0.67. This is very 

likely due to GPS not having features that are distinctly better than others. 

 

7.3.3 GPS Features Discussion 

 After finishing the two parts of experiments for GPS feature machine learning, the 

highest average F1 score we managed to obtain is 0.63. This result may be further increased if 

the raw data was a little more accurate with respect to timestamp and coordinate pairs. If we can 

find a better way to get the timestamp for the coordinates, we would be able to get more accurate 

features. Also, reimplementing hyperparameter optimization on SVC for this particular feature 

set might also increase the results. Since MTurk’s policy did not allow a further collection of 

GPS data, there won’t be more new data for our machine learning experiments at this moment. 

 

7.4 All Features 

 For the last part of this experiment, we decided to test out the possibility of combining all 

features together. We set up an all feature file with all IDs, making a total of 1881 feature 

columns. Firstly, since out of all the feature files, we have text having the highest F1 score on 

average, we decided to use the parameter setting for text features in this experiment. Secondly, 

we chose to experiment using SVC with rbf kernel because it is the strongest classifier 

considering its performance in all three feature sets. Lastly, we set up this experiment in two 

parts. The former to find a number of features that have higher performance, and the latter to 

perform various feature reduction techniques to squeeze as much as possible. We ran each trial 

100 times, and as shown in Table 35, 36, and 37, the F1 score is highest when we do a chi-square 

top 60 feature selection, ranging from 0.60 to 0.78 with an average of 0.70. Considering this 

result overlooks everything in audio and GPS, we decided to proceed to the next step of this part 

of the experiment. 

 



107 

 

 
Figure 68: Boxplots of Feature Selection on All Features Using SVC (10-50) 

 

 

Table 35: Statistic Summary of Feature Selection on All Features Using SVC (10-50) 
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Figure 69: Boxplots of Feature Selection on All Features Using SVC (50-200) 

 

 

Table 36: Statistic Summary of Feature Selection on All Features Using SVC (50-200) 
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Figure 70: Boxplots of Feature Selection on All Features Using SVC (250-600) 

 

 

Table 37: Statistic Summary of Feature Selection on All Features Using SVC (250-600) 

 

 

In the second part of this experiment, we ran different feature reduction techniques 100 

times each, with the desired number of features set to 600. As shown in Figure 71 and Table 38, 

recursive feature elimination significantly outperforms any other feature reduction algorithms. 
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Ranging from 0.79 to 0.96 with an average of 0.88, we managed to obtain the highest F1 score 

ever. RFE has better performance in larger feature sets since this algorithm recursively 

eliminates the least important feature until it reaches the desired number of features. So, it is 

almost guaranteed that, when using a bottom-up approach, the chosen features have better 

performance than the eliminated ones.  

 

 
Figure 71: Boxplots of Different Feature Selection Methods on All Features Using SVC 
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Table 38: Statistic Summary of Different Feature Selection Methods on All Features Using SVC 

 

7.5 Conclusion and Discussion 

 The experiments results showed detecting depression from personal data is very 

promising. In this project we made an effort to improve the quality of participants on Amazon 

Mechanical Turk (MTurk), since MTurk users may be biased in terms of representing the general 

public. There is simply too much uncertainty within this particular population. For future studies, 

we suggest acquiring experimental data from other sources (this might be costly but it is 

beneficial to compare across different samples). Our results indicate that text and tweets (written 

content) can best predict depression. The only source of this kind of data right now is text and 

Twitter, however for future studies, perhaps more social media data can be included to further 

improve the potential of text features. Furthermore, our experiments also showed that LIWC as a 

sentiment analysis library is significantly helpful for feature engineering processes and we have 

various literature to actually support this tool. Even though it is not free, it is definitely worth 

using if we want to take text feature machine learning to the next level. For other modalities, 

which may not be as powerful as text features, still contribute very much in the joint feature set. 

Future studies could focus more on digging out possibilities from combining various feature sets. 
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8. Website 

We need a way to clearly and concisely display our findings. This is where the idea of a 

dataset website comes into play. With such a site, we’re able to show off several things, 

including background information on the project, who was involved, and the data itself! This 

section will go into detail about all components of the website and why they are important. The 

EMU website is hosted on WPI’s domain and can be accessed at https://emu.wpi.edu. 

 

8.1 Pages 

Also referred to as the landing page, the “Home” page is the first page that most users 

will see (unless they have a direct link to any of the other pages). It contains a brief overview of 

why and how we pursued the notion of predicting depressive behavior. This is important as 

going straight to the data might be a little overwhelming without any kind of previous knowledge 

about the project, say from an extensive research paper! 

The “About Us” page holds information about everyone involved throughout the entire 

project. This is including the current team, past teams who inspired this project, advisors, and 

honorable mentions. Student information includes WPI degree and class year, while faculty and 

honorable mention information includes position and field of interest. 

The main point of the website is for us to cleanly show the results of our study, so it 

would make sense to have a “Dataset” page dedicated to this. It consists of a citation (referring to 

this paper!) for those who plan to use information from our dataset to support future research in 

related fields. This is followed by an explanation of how the data is organized, and then delves 

depth-first into each of the types of data. It also contains information about our study and results 

of feature extraction and machine learning analysis. A quick glimpse of this page can be seen 

below. 

https://emu.wpi.edu/
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Figure 72: EMU Website - Dataset Page Preview 

 

In order to properly give credit to all sources that made this website and dataset possible, 

there is a dedicated “Publications” page that does just that. Each reference has a citation and link 

that goes straight to the report. It’s important to give credit to those who both inspired us and 

supplied us with previous research in similar areas and disciplines, which is why publications 

receive their own page. 

 

8.2 Compatibility 

 Being that on-the-go technology has become more and more prevalent over the years, it 

only makes sense to provide functionality supporting compatibility for more than just desktop 

and laptop computers. That said, the EMU website takes this into consideration and is beautifully 

displayed on all mobile and tablet devices. See some screenshots below: 
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Figure 73: EMU Website - Taken on iPhone X 
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Figure 74: EMU Website - Taken on iPad Pro 10.5-inch 

 

 

As seen above, mobile and tablet devices have slightly different looks. This is required as 

screen sizes are different, and so things need to be adjusted accordingly to optimize user 
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experience, appearance, and performance. The provided compatibility of the EMU site across 

platforms allows all users to navigate comfortably and efficiently, while being able to receive the 

exact same information as PC users. 

 

8.3 Other Features 

This subsection covers a few smaller features of the site that aren’t necessarily worthy of 

their own subsection: the search functionality and footer buttons. 

At the bottom of each page, a search bar is present that allows users to type in some text. 

Using the entered search terms, the website will return all pages that contain the given words. 

For instance, searching “audio” will return the “Home” and “Dataset” pages. If there’s nothing 

found, no results will be displayed. This makes it simple for users who are looking for anything 

in particular, and takes them straight to it. 

A piece of functionality implemented solely for convenience, the footer buttons allow 

quick and easy access to the project members as well as a link to this paper. They have a very 

simplistic design, and their icons get their points across quite nicely: 

 
 

Figure 75: EMU Website - Footer Buttons 

 

 The email button (left) will open up a new email message, pre-filled with the appropriate 

email address and subject line to properly address the team and reason for communication. 

Anything can be entered in the body of the message and all personnel will receive said message. 

The button linking to the paper (right) will, in a new tab, take users directly to this paper should 

they want to learn about the more technical aspects of, say, our methodology and reasoning. 
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8.4 Alterations 

 Credentials to access the back-end of the website have been passed on to those who will 

carry on further research based off this project (or to make any other changes they deem 

necessary). With these privileges, any aspect of the website are able to be changed. This is 

particularly useful if there is new data to share, more team members to add, or any design 

changes to make (this list is not exhaustive). All websites are different, and our particular 

implementation is not useful, informative, nor relevant to this project, so further details on how 

changes themselves are made will be excluded. 
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9. Conclusion 

To wrap up, this final section contains a brief summary of the project and any closing 

remarks regarding our study, along with improvements that could be made by future members. 

9.1 Summary of the Project 

Using the EMU mobile Android application in conjunction with various machine 

learning algorithms, we were successfully able to predict levels of depression on our dataset. The 

app collected SMS messages along with open- and closed-ended audio prompt responses from 

real people on Amazon Mechanical Turk (MTurk), which made up part of our dataset. We used 

several tools and machine learning algorithms to see which combinations performed the best, and 

were able to obtain results with satisfyingly high accuracies. Of course, we do hope overall 

accuracies in this field of interest will be improved by those doing similar studies as our results 

are not perfect. Nonetheless, this is a process that makes it easier for someone to receive an 

estimate of depression severity, and a type of diagnosis that we hope has potential to reduce the 

number of people who may have depression but are unaware of it. 

 

9.2 Future Work 

The EMU app has more potential than what it has been used for in this project. In 

addition to text and audio, it can collect the following types of data: 

• Call logs 

• Contacts 

• Calendar information 

• GPS (via Google account) 

• Twitter 

o Username 

o Tweets 

• Instagram 

o Username 
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o Posts 

Some of these kinds of information have been collected, but were not used. We strongly suggest 

that future studies encourage the collection of either or all of these modalities. Ideally, each 

participant in the study will provide all of the modalities that can be used, and we recommend 

that members to come dedicate a good amount of time ensuring that this happens. 

 We also want to note that although the Linguistic Inquiry and Word Count (LIWC) tool 

is a paid one, we believe it is worth utilizing as it showed very promising results when compared 

to other tools. Its outstanding performance allows text analysis to be taken to the next level, and 

in the end could satisfy our goal of maximizing the number of people who are aware that they 

show signs of depression. 
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Format & Citation: 

Yufei 

Background Summary of the 

Previous MQP 

Yuxin, Yufei, Jerry 

Background on 

Depression 

Yuxin, Jerry 

Detecting Depression 

from Text 

Maurice, Yuxin 

Detecting Depression 

from Voice 

Yufei, Adonay 

Detecting Depression 

from GPS Data 

Yufei 

Feature Engineering 

Methodology 

Text Features Maurice, Yuxin 

Audio Features Adonay 

GPS Features Adonay, Yufei 

Machine Learning 

Methodology 

K-Nearest Neighbors Yuxin, Yufei 

Support Vector 

Machine 

Jerry, Maurice 

Random Forest Adonay 

XGBoost Yufei, Jerry 
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Self-reported symptoms of 
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space in screening interviews 

https://ieeexplore.ieee.or
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arnumber=7117386 
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Voice acoustic measures of 

depression severity and 
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via interactive voice response 

(IVR) technology 

https://www.sciencedirec

t.com/science/article/pii/

S0911604406000303 

 

Audio 

3 LIWC, NRC Emotion mining from text http://www.dx.doi.org/10
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syllables, the 

word case 
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punctuation 
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Speech vs. text: A comparative 

analysis of features for 

depression detection systems 

https://doi.org/10.1109/S

LT.2016.7846256 

Text 

5 Word case, 

punctuation 

A Parsimonious Rule-based 

Model for Sentiment Analysis 

of Social Media Text 

https://www.researchgate

.net/publication/2758289

27_VADER_A_Parsimo

nious_Rule-

based_Model_for_Senti

ment_Analysis_of_Socia

l_Media_Text 

Text 

６ Self-references Language use of depressed 

and depression-vulnerable 

college students 

https://doi.org/10.1080/0
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7 Social words The Psychological Meaning of 

Words: LIWC and 

Computerized Text Analysis 

Methods 

https://doi.org/10.1177/0

261927X09351676 
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https://doi.org/10.1080/02699930441000030
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8 Switching 
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Vocal 

fundamental 

frequency (F0) 

Detecting Depression Severity 

from Vocal Prosody 

https://www.pitt.edu/~jef

fcohn/biblio/tac_prosody

.pdf 

Audio 

9 To be 

determined 

A Depression Detection Model 

Based on Sentiment Analysis 

in Micro-blog Social Network 

https://link.springer.com/

content/pdf/10.1007%2F

978-3-642-40319-

4_18.pdf 

Social 

Media 

10 Number of 

First-Person 

Pronoun 

First-person Pronoun Use in 

Spoken Language as a 

Predictor of Future Depressive 

Symptoms: Preliminary 

Evidence from a Clinical 

Sample of Depressed Patients. 

 

https://onlinelibrary.wile

y.com/doi/epdf/10.1002/
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The Psychology of Word Use 
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Effects of feature type, 

learning algorithm and 
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https://ieeexplore.ieee.or

g/document/7178877 
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Pronoun Me, myself, and I: self-

referent word use as an 

indicator of self-focused 
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h.gov/pmc/articles/PMC
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Speech as Indicators of 

Depression and Suicidal Risk 
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g/stamp/stamp.jsp?tp=&

arnumber=846676 

Audio 

https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpp.2006
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spectral 

density 

measurements 
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jitter and 

shimmer 

Speech Features for 

Depression Detection  

https://www.isca-

speech.org/archive/Inters

peech_2016/pdfs/1566.P

DF 

Audio 

16 Doc2Vec of 

the Python 

Gensim library 

COVAREP 

features 

Detecting Depression with 

Audio/Text Sequence 

Modeling of Interviews 

https://groups.csail.mit.e

du/sls/publications/2018/

Alhanai_Interspeech-

2018.pdf 

Audio & 

Text 

17 Acoustic 

Space 

Variability in 

Speech 

Analysis of Acoustic Space 

Variability in Speech Affected 

by Depression 

https://www.researchgate

.net/publication/2817192

39_Analysis_of_Acousti

c_Space_Variability_in_

Speech_Affected_by_De

pression 

Audio 

18 High jitter 

Low shimmer 

Characterising Depressed 

Speech for Classification 

https://pdfs.semanticscho

lar.org/63d5/28976b69e1

22b6e494cb4c50dd83b2

dac3d4.pdf 

Audio 

19 Speaking 

style,  

jitter, 
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energy and 

loudness 

feature groups 

DETECTING 

DEPRESSION:A 

COMPARISON BETWEEN 

SPONTANEOUS AND 

READ SPEECH 

https://ieeexplore.ieee.or

g/stamp/stamp.jsp?tp=&

arnumber=6639130 
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20 Location 

variance, Time 

Spent in 

Moving, Total 

distance, 

Number of 

Unique 

Locations 

Behavior vs. introspection: 

refining prediction of clinical 

depression via smartphone 

sensing data 

https://ieeexplore.ieee.or

g/document/7764553 

GPS 

21 Location 

variance 

Mobile Phone Detection of 

Semantic Location and Its 

Relationship to Depression 

https://www.ncbi.nlm.ni

h.gov/pmc/articles/PMC

5571235/ 

GPS 
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the number of 
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places visited 

Trajectories of Depression: 

Unobtrusive Monitoring of 

Depressive States by means of 

Smartphone Mobility Traces 

Analysis 

https://userpages.umbc.e

du/~nroy/courses/shhasp

18/papers/Depressive_St

ate%20Monitoring_Ubic

omp15.pdf 
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Appendix C – Pivot Tables of Grid Search Results For Text Features 
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XGB: 
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Appendix D – Pivot Tables of Grid Search Results For Audio Features 
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XGB: 

 



141 

 

Appendix E – Pivot Tables of Grid Search Results For GPS Features 
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XGB: 
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Appendix F – Code 

 

1 – Pratt script that was used to generate pause time features 
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2 – Pratt script that was used to generate signal features 
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